How to access your CD files

The print edition of this book includes a CD. To access the CD files, go to http://aka.ms/625174/files, and look for the Downloads tab.

Note: Use a desktop web browser, as files may not be accessible from all ereader devices.

Questions? Please contact: mspininput@microsoft.com

Microsoft Press
This book is dedicated to my family, both near and far, who continue to support my endeavors.

—JSC

I dedicate this book to my two children, Alex and Xavier. They continue to inspire me every day.

—REL
Contents at a Glance

Acknowledgments
Introduction

PART I GETTING STARTED WITH WINDOWS SERVER 2008 HYPER-V

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducing Virtualization</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Hyper-V Overview</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Hyper-V Architecture</td>
<td>69</td>
</tr>
</tbody>
</table>

PART II UNDERSTANDING WINDOWS SERVER 2008 HYPER-V

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Hyper-V Installation and Configuration</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>Hyper-V Advanced Features</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>Hyper-V Security</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>Hyper-V Best Practices and Optimization</td>
<td>269</td>
</tr>
<tr>
<td>8</td>
<td>Moving from Virtual Server 2005 R2 to Hyper-V</td>
<td>311</td>
</tr>
<tr>
<td>9</td>
<td>Taking a Look at Windows Server 2008 R2 Hyper-V</td>
<td>331</td>
</tr>
</tbody>
</table>

PART III MANAGING A WINDOWS SERVER 2008 HYPER-V INFRASTRUCTURE

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Hyper-V Management Overview</td>
<td>357</td>
</tr>
<tr>
<td>11</td>
<td>Hyper-V Single Server Management</td>
<td>377</td>
</tr>
<tr>
<td>12</td>
<td>Server Farm Management</td>
<td>441</td>
</tr>
<tr>
<td>13</td>
<td>Hyper-V Backup and Recovery</td>
<td>483</td>
</tr>
<tr>
<td>14</td>
<td>Server Migration Using System Center Virtual</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Machine Manager</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Server Monitoring with the Windows Server 2008</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>Hyper-V Management Pack for System Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations Manager 2007</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hyper-V Management Using Windows PowerShell</td>
<td>565</td>
</tr>
</tbody>
</table>

PART IV SERVER VIRTUALIZATION PROJECT METHODOLOGY

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Server Virtualization Scenarios</td>
<td>597</td>
</tr>
</tbody>
</table>
CHAPTER 18 Virtual Desktop Infrastructure 617
CHAPTER 19 Server Virtualization Project: Envisioning Phase 635
CHAPTER 20 Server Virtualization Project: Discovery Phase 655
CHAPTER 21 Server Virtualization Project: Assessment Phase 681
CHAPTER 22 Server Virtualization Project: Planning and Design Phase 703
CHAPTER 23 Server Virtualization Project: Pilot Phase 721

Glossary 737

Index 745
Contents

Acknowledgments
Introduction

PART I
GETTING STARTED WITH WINDOWS SERVER 2008 HYPER-V

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introducing Virtualization</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Virtualization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Virtualization Background</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>x86-Based Virtualization</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>What Is Software Virtualization?</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Machine-Level Virtualization</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Operating System-Level Virtualization</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Application-Level Virtualization</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Desktop Virtualization</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Making a Business Case for Server Virtualization</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Reducing Capital and Operational Costs</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Implementing a Simple, Flexible, and Dynamic Server Infrastructure</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Increasing the Availability of Computing Resources</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Decreasing Time to Provision or Distribute Services</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Decreasing Management Complexity</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Defining Server Virtualization Scenarios</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Consolidating the Data Center</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Consolidating the Branch Office</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for you. To participate in a brief online survey, please visit:

Contents

- Virtualizing Test and Development Infrastructure 24
- Implementing Business Continuity and Recovery 25

Summary ... 25

Additional Resources .. 25

Chapter 2 Hyper-V Overview ... 27

Hyper-V Background .. 28

Hyper-V Core Features .. 30
- AMD-V and Intel VT Support ... 31
- Full Installation and Server Core Installation Support 31
- Microsoft Hyper-V Server 2008 32
- Access Control Using Authorization Manager 33
- Live Backup with Volume Shadow Copy Service 34
- High Availability Using Failover Clustering 34
- Quick Migration .. 34
- Integration Services ... 35
- Virtual Machine Import and Export 35
- Virtual Hard Disk Management ... 35
- Virtual Machine Snapshots .. 36
- Virtual Machine Connection ... 36
- Host Operating System Support .. 39
- Guest Operating System Support 39

Reviewing Hyper-V .. 41

Virtual Machine Hardware Environment 41
- Virtual Hard Disks .. 43
- Pass-Through Disks .. 44
- Virtual IDE Interface ... 44
- Virtual SCSI Interface ... 45
- iSCSI Disks .. 45
- Virtual Networks .. 45
- Virtual Network Adapters ... 46

Using the Hyper-V Manager Console 47
- Managing Multiple Hyper-V Servers 48
- Managing Virtual Machines .. 49
Chapter 4 **Hyper-V Installation and Configuration** 105

- Installation Overview .. 105
- Installation Prerequisites 106
 - Integrate Hyper-V RTM into Windows Server 2008 106
 - Required Software and Tools 107
 - Install the WAIK .. 108
 - Prepare for Slipstreaming 108
 - Extract the Hyper-V RTM Update 109
 - Slipstream the Hyper-V RTM Update 109
 - Build a New ISO ... 110
- Installation Options: Hyper-V Role 111
 - Install Using Server Manager MMC 111
 - Install Using ServerManagerCmd.exe 114
 - Using OCSetup.exe .. 115
- Installation Options: Microsoft Hyper-V Server 2008 116
- Additional Installation Methods 121
 - Using Unattend.xml to Install Hyper-V 121
 - Microsoft Deployment Toolkit 2008 123
 - Install the Hyper-V Role Using System Center Virtual Machine Manager 2008 131
- Post-Install Configuration Considerations 136
 - Commands for Modifying a Server Core Installation 137
 - Microsoft Hyper-V Server 2008 Configuration Tool 139
- Summary .. 150
- Additional Resources ... 151

Chapter 5 **Hyper-V Advanced Features** 153

- Using Virtual Hard Disk Advanced Features 153
 - Differencing Disks .. 154
 - Automatic Differencing Disks 162
 - Physical Disk to VHD Copy 163
 - Converting a VHD ... 164
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compacting a VHD</td>
<td>165</td>
</tr>
<tr>
<td>Expanding a VHD</td>
<td>170</td>
</tr>
<tr>
<td>Using Virtual Machine Snapshot Features</td>
<td>170</td>
</tr>
<tr>
<td>Creating a Virtual Machine Snapshot</td>
<td>172</td>
</tr>
<tr>
<td>Using the Revert Snapshot Option</td>
<td>176</td>
</tr>
<tr>
<td>Using the Apply Snapshot Option</td>
<td>176</td>
</tr>
<tr>
<td>Using the Delete Snapshot Option</td>
<td>179</td>
</tr>
<tr>
<td>Using the Delete Snapshot Subtree Option</td>
<td>179</td>
</tr>
<tr>
<td>Using Integration Services Features</td>
<td>179</td>
</tr>
<tr>
<td>Time Synchronization Service</td>
<td>180</td>
</tr>
<tr>
<td>Heartbeat Service</td>
<td>181</td>
</tr>
<tr>
<td>Shutdown Service</td>
<td>181</td>
</tr>
<tr>
<td>Key/Value Pair Exchange Service</td>
<td>181</td>
</tr>
<tr>
<td>Volume Shadow Copy Service (VSS)</td>
<td>183</td>
</tr>
<tr>
<td>Integration Services Supported Guest Operating Systems</td>
<td>183</td>
</tr>
<tr>
<td>Using Virtual Network Advanced Features</td>
<td>184</td>
</tr>
<tr>
<td>Understanding Virtual Network Traffic Flow</td>
<td>184</td>
</tr>
<tr>
<td>Understanding Virtual LANs</td>
<td>194</td>
</tr>
<tr>
<td>Understanding MAC Address Pools</td>
<td>198</td>
</tr>
<tr>
<td>Using a Pass-Through Disk</td>
<td>200</td>
</tr>
<tr>
<td>Configuring a Pass-Through Disk</td>
<td>200</td>
</tr>
<tr>
<td>Using Failover Clustering Features</td>
<td>202</td>
</tr>
<tr>
<td>High Availability</td>
<td>202</td>
</tr>
<tr>
<td>Windows Server 2008 Failover Clustering</td>
<td>202</td>
</tr>
<tr>
<td>Implementing a Hyper-V Server Cluster</td>
<td>203</td>
</tr>
<tr>
<td>Implementing a Virtual Machine Failover Cluster</td>
<td>218</td>
</tr>
<tr>
<td>Summary</td>
<td>223</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>223</td>
</tr>
</tbody>
</table>

Chapter 6 Hyper-V Security

Reviewing Hyper-V Files | 225 |
Reviewing Hyper-V Services | 237 |
Reviewing Hyper-V Firewall Rules | 237 |
Securing Hyper-V Resources .. 239
 Using Authorization Manager with Hyper-V 240
 Creating an Authorization Store in Active Directory 241
 Understanding Hyper-V Security 244
 Configuring a Hyper-V Monitor Role 249
 Configuring a Virtual Network Manager Role 255
 Configuring a Virtual Machine Manager Role 256

Reviewing Hyper-V Security Best Practices 260
 Minimize the Hyper-V Parent Partition Attack Surface 260
 Run Applications Only in Child Partitions 261
 Define Virtual Machine Security Levels 261
 Define a Least-Privilege Authorization Policy 261
 Implement a Rigorous Update Strategy 261
 Dedicate a Physical Network Adapter to the Parent Partition .. 262
 Use Windows BitLocker Drive Encryption in the Parent Partition 262
 Implement or Extend Your Audit Strategy 262

Securing Virtual Machine Access .. 263
 Configuring Centrally Managed Virtual Machine Folders 265
 Configuring Organizationally Managed Virtual Machine Security 266
 Configuring Project-Managed Virtual Machine Security 267

Summary ... 268

Additional Resources .. 268

Chapter 7 Hyper-V Best Practices and Optimization 269
 Modifying the Default Hyper-V Installation 269
 Rename the First External Virtual Network 271
 Use Common Virtual Network Names 272
 Back Up the Authorization Store 272
 Microsoft Services Enable Remote Desktop 273

 Optimizing Server Performance .. 274
 Maximizing Processor Performance 274
 Maximizing Memory Performance 275
 Maximizing Host Storage Performance 278
Understanding Disk Drive Configuration 280
Maximizing Network Performance 283
Network Adapter Teaming 286
Installation of Teamed Network Adapters 289
Optimizing Virtual Machine Performance290
 Maximizing Processor Performance 290
 Maximizing Memory Performance 296
 Maximizing Network Performance 300
 Maximizing Storage Performance 305
Operational Considerations ...308
 Establishing Standards 308
 Sample VHD Naming Standard 309
Summary ..309
Additional Resources ...310

Chapter 8 Moving from Virtual Server 2005 R2 to Hyper-V 311
Considerations Before Migrating a Virtual Server 2005 R2
Host to Hyper-V ..311
 Maintaining Virtual Server 2005 R2 Hosts 312
 Wireless Networking Support 312
 Server Hardware Support 312
 Minimizing Downtime 313
Migrating a Virtual Server 2005 R2 Host to Hyper-V313
 Developing the Hyper-V Server Specification 314
 Installing Hyper-V 315
 Migrating Virtual Networks 315
Considerations Before Migrating Virtual Machines316
 Boot Disk Configuration 316
 Virtual Machine Additions 316
 Undo Disks 317
 Saved States 317
 Hardware Abstraction Layer Differences 317
 Differencing Disks 317
 Shared SCSI Virtual Machine Clusters 318
Migrating Virtual Machines .. 318
 Determine Compatibility .. 318
 Convert SCSI Boot to IDE Boot ... 319
 Remove Virtual Machine Additions 321
 Remove Emulated Network Interface Cards 321
 Commit or Discard Undo Disks ... 322
 Restore or Discard Saved States 323
 Merge Differential Disks .. 323
 Check the Hardware Abstraction Layer 325
 Complete the Migration .. 325

Summary ... 330

Additional Resources .. 330

Chapter 9 Taking a Look at Windows Server 2008 R2 Hyper-V 331

Installing the Hyper-V Role on Windows Server 2008 R2 331

Reviewing New Features in Hyper-V 337
 Live Migration .. 338
 Second Level Address Translation 341
 Core Parking ... 342
 Dynamic Addition and Removal of Storage 343
 TCP Offload Support .. 343
 Virtual Machine Queue Support 343
 Jumbo Frames .. 343
 MAC Address Range Configuration 344
 Virtual Machine Snapshot Operation 345
 New Default Hyper-V Folders ... 345

Using Live Migration ... 346
 Creating a Two-Node Hyper-V Host Cluster 347
 Configuring Cluster Shared Volumes 350
 Creating a New Virtual Machine 351
 Making a Virtual Machine Highly Available 351
 Configuring Cluster Networks for Live Migration 352
 Initiating a Live Migration ... 352

Managing Hyper-V R2 .. 353
PART III MANAGING A WINDOWS SERVER 2008 HYPER-V INFRASTRUCTURE

Chapter 10 Hyper-V Management Overview 357
Management Solutions 358
Hyper-V Manager MMC 358
Failover Cluster Manager 360
System Center Virtual Machine Manager 2008 361
Disaster Recovery Management Solutions 366
Windows Server Backup 366
System Center Data Protection Manager 2007 SP1 368
Monitoring Solutions 370
Reliability and Performance Monitor 370
System Center Operations Manager 2007 373
Summary 375
Additional Resources 375

Chapter 11 Hyper-V Single Server Management 377
Managing Hyper-V 378
Installing the Hyper-V Management Tools 378
Enabling Remote Management 383
Customizing the Hyper-V Manager View 393
Managing Hyper-V Settings 395
Changing the Virtual Machine Management Service State 396
Managing Virtual Machines Using the Hyper-V Manager 398
Creating a New Virtual Machine 399
Tuning Virtual Machine Key Configuration Settings 401
Adding Virtual Hardware Devices 402
Configuring Virtual Machine BIOS Settings 403
Changing the Memory Setting 403
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing the Processor Settings</td>
<td>404</td>
</tr>
<tr>
<td>Changing the Virtual Hard Disk Settings</td>
<td>405</td>
</tr>
<tr>
<td>Changing the Virtual DVD Drive Settings</td>
<td>407</td>
</tr>
<tr>
<td>Changing the Virtual Network Adapter Settings</td>
<td>408</td>
</tr>
<tr>
<td>Changing the Virtual COM Port Settings</td>
<td>411</td>
</tr>
<tr>
<td>Changing the Virtual Diskette Drive Settings</td>
<td>412</td>
</tr>
<tr>
<td>Changing a Virtual Machine Name</td>
<td>413</td>
</tr>
<tr>
<td>Modifying Integration Services Settings</td>
<td>413</td>
</tr>
<tr>
<td>Modifying the Snapshot File Location</td>
<td>414</td>
</tr>
<tr>
<td>Modifying a Virtual Machine Automatic Start Action</td>
<td>415</td>
</tr>
<tr>
<td>Modifying a Virtual Machine Automatic Stop Action</td>
<td>416</td>
</tr>
<tr>
<td>Removing a Virtual Machine</td>
<td>417</td>
</tr>
<tr>
<td>Installing a Guest Operating System</td>
<td>418</td>
</tr>
<tr>
<td>Installing Integration Services</td>
<td>420</td>
</tr>
<tr>
<td>Controlling Virtual Machine State</td>
<td>422</td>
</tr>
<tr>
<td>Updating Virtual Machines</td>
<td>423</td>
</tr>
<tr>
<td>Performing Hyper-V Backup and Recovery</td>
<td>424</td>
</tr>
<tr>
<td>Installing Windows Server Backup</td>
<td>424</td>
</tr>
<tr>
<td>Configuring Windows Server Backup for Hyper-V Support</td>
<td>425</td>
</tr>
<tr>
<td>Windows Server Backup Considerations</td>
<td>428</td>
</tr>
<tr>
<td>Backing Up a Virtual Machine Using Windows Server Backup</td>
<td>428</td>
</tr>
<tr>
<td>Restoring a Virtual Machine Using Windows Server Backup</td>
<td>433</td>
</tr>
<tr>
<td>Monitoring Hyper-V Health and Performance</td>
<td>438</td>
</tr>
<tr>
<td>Summary</td>
<td>439</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>439</td>
</tr>
</tbody>
</table>

Chapter 12 Server Farm Management

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing System Center Virtual Machine Manager 2008</td>
<td>441</td>
</tr>
<tr>
<td>Installation Options</td>
<td>442</td>
</tr>
<tr>
<td>Software and Hardware Requirements</td>
<td>442</td>
</tr>
<tr>
<td>Software Requirements</td>
<td>442</td>
</tr>
<tr>
<td>Hardware Requirements</td>
<td>444</td>
</tr>
<tr>
<td>Step-by-Step Installation</td>
<td>449</td>
</tr>
</tbody>
</table>
Managing a Server Farm

- Types of Managed Hosts ... 455
- Host Management .. 456
- Self-Service Portal Management .. 461
- Library Server Management .. 463
- Virtual Machine Management .. 472
- Hyper-V Cluster Management .. 479

Summary ... 481

Additional Resources .. 481

Chapter 13 Hyper-V Backup and Recovery 483

- Backing Up a Virtualization Environment 483
- Understanding the Hyper-V VSS Writer 484
 - VSS Components .. 486
 - Hyper-V VSS Backup Process .. 487
 - Hyper-V VSS Writer Metadata Document 488
- Using Traditional Methods to Back Up Hyper-V and Virtual Machines . 488
- Backing Up an Active Directory Domain Controller Virtual Machine . 489
- Using VSS to Back Up Hyper-V and Virtual Machines 490
- Using System Center Data Protection Manager 2007 SP1 492
 - Updating Virtual Machine Integration Services 493
 - Installing System Center Data Protection Manager 2007 SP1 495
 - Enabling Local Data Protection in DPM 2007 SP1 497
 - Deploying a DPM 2007 SP1 Protection Agent 497
 - Configuring a DPM 2007 SP1 Storage Pool 502
 - Configuring a DPM 2007 SP1 Protection Group 504
 - Recovering a Virtual Machine Using DPM 2007 SP1 511

Summary ... 516

Additional Resources .. 516

Chapter 14 Server Migration Using System Center Virtual Machine Manager 517

- Migration Options .. 517
Backup Considerations 607
Operational Considerations 608

Test Lab Scenario 608
Server Design Considerations 609
Management Considerations 611
Operational Considerations 612
Alternative Use Considerations 613

Software Development Scenario 613
Host Design Considerations 614
Management Considerations 615

Summary 615
Additional Resources 615

Chapter 18 Virtual Desktop Infrastructure 617

Understanding Important VDI Attributes 618
Hardware-Independent Virtual Desktops 618
Dedicated, Isolated, and Secure Virtual Desktops 618
Dynamic Application Delivery and Configuration 619
Flexible Resource Allocation 619
Rapid Desktop Provisioning and Decommissioning 620
Rapid Desktop Migration 620
Centralized and Secure Data Storage 621
Centralized Backups 621
Extensive Client Device Support 622

Identifying Major VDI Components 622
Defining Static and Dynamic Virtual Desktops 623
Core Virtualization Components 624
Client Components 625
Application Virtualization Components 625
Management Components 627

Defining Common VDI Scenarios 628
Offshore Development 628
Call Centers, Help Desks, and Retail Branches 629

Microsoft VDI Solution Overview 629
Chapter 19 Server Virtualization Project: Envisioning Phase 635

Defining Server Virtualization Project Phases 635
What Is Envisioning? 636
Identifying the Envisioning Team 637
Establishing a Vision 637
Defining the Problem Statements 638
Process for Defining Problem Statements 640
Setting Priorities 640
Defining a Project Team 640
Identifying the Required Project Teams and Roles 641
Identifying Team Roles 642
Determining Project Scope 646
Defining What Is In Scope 647
Defining What Is Out of Scope 647
Determining Project Phases 648
Performing an ROI Analysis 649
Identifying Risks 651
Creating a Project Budget 654
Summary 654
Additional Resources 654
Chapter 20 Server Virtualization Project: Discovery Phase

Collecting Baseline Information ... 656
 Active Directory Forest Information 656
 Collecting Location Information .. 657
Collecting Inventory Information ... 658
 Hardware Inventory ... 658
 Software Inventory ... 661
 Services .. 662
Performance Monitoring ... 663
Environmental Information .. 665
Automating the Discovery Process ... 666
 Scripts ... 667
 General Purpose Tools ... 668
Discovery and Assessment Tools .. 672
 Microsoft Assessment and Planning 672
 PlateSpin PowerRecon ... 676
Summary .. 678
Additional Resources .. 679

Chapter 21 Server Virtualization Project: Assessment Phase

Identifying a Server Virtualization Candidate 681
Virtual Machine Hardware Limits .. 682
Assessing Hardware Limits .. 683
 Processor Hardware Limits ... 683
 Memory Hardware Limits ... 683
 Network Adapter Hardware Limits 684
 Disk Hardware Limits ... 684
 Peripheral Port Hardware Limits 685
Establishing Performance Thresholds 685
Assessing Performance .. 686
 Processor Performance Assessment 687
 Memory Performance Assessment 688
 Disk Performance Assessment .. 688
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Performance Assessment</td>
<td>689</td>
</tr>
<tr>
<td>Assessing Application Support Limits</td>
<td>690</td>
</tr>
<tr>
<td>Using MAP for Assessment and High-Level Planning</td>
<td>691</td>
</tr>
<tr>
<td>Virtualization Candidate Identification and Server Consolidation Scenarios</td>
<td>691</td>
</tr>
<tr>
<td>Walking Through the Server Virtualization and Consolidation Wizard</td>
<td>692</td>
</tr>
<tr>
<td>Identifying Cost Savings</td>
<td>698</td>
</tr>
<tr>
<td>Capital Cost Savings</td>
<td>698</td>
</tr>
<tr>
<td>Environmental Savings</td>
<td>699</td>
</tr>
<tr>
<td>Rack Space Savings</td>
<td>699</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>700</td>
</tr>
<tr>
<td>Cooling Costs</td>
<td>701</td>
</tr>
<tr>
<td>Summary</td>
<td>702</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>702</td>
</tr>
<tr>
<td>Chapter 22 Server Virtualization Project: Planning and Design Phase</td>
<td>703</td>
</tr>
<tr>
<td>Defining Hyper-V Server Configurations</td>
<td>705</td>
</tr>
<tr>
<td>Physical Requirements</td>
<td>705</td>
</tr>
<tr>
<td>High-Availability Hardware Requirements</td>
<td>706</td>
</tr>
<tr>
<td>Consolidation Planning</td>
<td>707</td>
</tr>
<tr>
<td>Grouping the Candidates</td>
<td>708</td>
</tr>
<tr>
<td>Performing Workload Analysis</td>
<td>709</td>
</tr>
<tr>
<td>Equipment Reuse</td>
<td>715</td>
</tr>
<tr>
<td>Additional Design and Planning Tasks</td>
<td>716</td>
</tr>
<tr>
<td>Virtualization Infrastructure Management</td>
<td>716</td>
</tr>
<tr>
<td>Virtualization Infrastructure Monitoring</td>
<td>716</td>
</tr>
<tr>
<td>Virtualization Infrastructure Update Management</td>
<td>717</td>
</tr>
<tr>
<td>Virtualization Infrastructure Backup and Recovery</td>
<td>717</td>
</tr>
<tr>
<td>Summary</td>
<td>718</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>719</td>
</tr>
</tbody>
</table>
Chapter 23 Server Virtualization Project: Pilot Phase

Pilot Objectives .. 721
Pilot Scope .. 722
 Selecting Pilot Locations .. 722
 Selecting Virtualization Candidates .. 723
Pilot Architecture .. 723
Planning the Pilot .. 724
 Creating a Deployment Plan .. 725
 Creating a Support Plan ... 725
 Creating an Issue Tracking Plan ... 726
 Developing a Migration Plan ... 727
 Developing an Operations Plan ... 728
 Developing a Training Plan .. 729
 Creating a Communications Plan .. 729
Documenting Risks ... 731
Establishing Pilot Project Milestones .. 732
Establishing Success Criteria .. 733
Implementing the Pilot .. 733
Measuring Project Success .. 734
Incorporating Lessons Learned .. 734
Summary ... 735
Additional Resources ... 735

Glossary ... 737

Index .. 745

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey
Acknowledgments

Principal Authors
Janique Carbone, Robert Larson

Contributing Authors
Tim Mueting, Vijay Tewari, Jim Collins, Arno Mihm, Paul Despe, Bryon Surace,
Rob Hefner, Shane Burton, Michael Michael, Ed Reed, Tony VoelIm, Tony Soper,
Matthijs ten Seldam, Keith Mange, John Howard, Mike Williams, Jeff Woolsey,
Gregoire Guetat, Justin Braun, Max Herrmann, Teresa Lewandowsk, Tom Pise,lo,
Mark Lunday, Ken Durigan, Dave Hamilton, Will Martin, Rakesh Malhotra,
David Ziembicki, James O’Neil, Tom Acker, Chuck Timon

Microsoft Press
Acquisitions Editor: Martin DelRe
Contract Specialist: Heather Stafford
Developmental Editor: Karen Szall
Project Editor: Melissa von Tschudi-Sutton
Project Manager: Megan Smith-Creed
Copy Editor: Julie Hotchkiss
Technical Editor: Randall Galloway

Microsoft Product Team Reviewers
Bryon Surace, John Howard, Michael Michael, Arno Mihm, Shai Ofek, Jeff Woolsey,
Peter Fitzsimon, Jason Fulenchek, Hector Linares, Bill Scheidel, Kerim Hanif,
Alan Goodman, Shadi El Hajj Sleiman, Vijay Tewari, Paul Despe, Ed Reed,
Keith Mange, Taylor Brown

Microsoft Consulting Services Reviewers
Ken Durigan, Alexander Ortha, Mike Williams, Keith Carey, Nicholas DiCola,
David Ziembicki
Microsoft Customer Support Services Reviewers
Tom Acker, Joseph Conway, Ken Grainger, Rob Hefner, Jim Collins, Chuck Timon

Microsoft Technical Specialist Reviewers
Tim Cerling, Matthijs ten Seldam, James O’Neill

Acknowledgments
As was the case with the Virtual Server 2005 R2 Resource Kit, the development of this book represents the collective effort of many individuals that shaped, wrote, reviewed, and prepared the content so that it is useful, accurate, and worth the time and investment that you make in it. Therefore, once again, we have many individuals to thank, as without their help, this book would been a lesser work.

Martin DelRe from Microsoft Press worked to make the Windows Server 2008 Hyper-V Resource Kit project a reality shortly after the completion of the Microsoft Virtual Server 2005 R2 Resource Kit. Martin, we thank you again for the opportunity that you provided to us and your assistance throughout this project.

Another thank you goes to Heather Stafford, who helped us with all contract and billing processes.

We had wonderful Microsoft Press editors that helped to guide our efforts and make certain that the book content was consistent and of high-quality. Many thanks go to Karen Szall for getting us started on the right track. Julie Hotchkiss and Megan Smith-Creed were wonderful copy editors. They did a great job in making the text clearer and more concise, as well as challenging our assumptions. Finally, we want to thank Randall Galloway, the technical editor, for his work on this book.

Melissa von Tschudi-Sutton was our main project editor and a pleasure to work with throughout the process. Melissa had her hands full keeping the project on-track and her suggestions were invaluable. Melissa, we appreciate all of your help and commitment to this book project and very much enjoyed working with you again.

We would like to thank the Windows Virtualization product team for helping us in the effort to create a worthwhile Windows Server 2008 Hyper-V Resource Kit. Many members of the product team reviewed and contributed input to the book outline and the content. They answered emails and questions while working on the Windows Server 2008 R2 Hyper-V release. We thank each and every one of you for your cooperation and support during this time.
In particular, we owe a special thanks to Arno Mihm and Jeff Woolsey, our main points of contact in the product team. Several developers also assisted us to ensure that we could get code-level questions answered. These developers were crucial in helping us document information concerning Hyper-V that will be of great interest and assistance to the readers of this book. Thank you one and all for the extra effort!

In addition to the product team, we wanted to ensure that each chapter in this book was reviewed by Microsoft team members “in the field.” Many field reviewers volunteered from the Microsoft Consulting Services and Customer Support Services teams, as well as Microsoft Sales. Each individual that participated in chapter reviews worked above and beyond their daily responsibilities to provide feedback and suggestions that greatly improved the book content. Thank you again for giving up some of your own time to help us and adding significant value to the resultant product.

We also had great support from Donna Becker and Tim Mueting from AMD, John Porterfield, Shane Burton, and Justin Brown from Compellent Technologies, and Trevor McGill from Sun Microsystems. As indicated in the Introduction section of this book, they provided us with hardware, their expertise, and content that allowed us to test and validate technical scenarios on real enterprise-class devices. Thank you so much for working with us under an extended timeline. We very much appreciate your support and cooperation!

And to you, the reader, thank you for purchasing this book. We have worked hard to compile and organize the content of this book such that it might be a valuable resource to help you deploy successful solutions based on Hyper-V technology. We are very interested in your comments, suggestions, and questions. Please send book-related emails to askme@doingITvirtual.com. We will generally respond to you within 24 hours. For additional information regarding Microsoft virtualization technology, join the Doing IT Virtual community at http://doingitvirtual.com and keep up with our blogs at http://doingitvirtual.com/blogs/virtualzone/default.aspx and http://blogs.technet.com/roblarson.

Best Regards,

Janique S. Carbone
Managing Member, Infrastructor Group
http://www.doingitvirtual.com

Robert E. Larson
Architect, Microsoft Consulting Services
http://blogs.technet.com/roblarson
Introduction

Welcome to the Windows Server 2008 Hyper-V Resource Kit!

Virtualization technology continues to evolve and change the options and speed at which IT departments can react to changing business needs by creating the basis for a powerful, flexible, and adaptable computing environment. Many organizations can draw benefits from the implementation of Hyper-V technology, including potential cost savings that can result from workload virtualization. Server consolidation, test and development infrastructure, business continuity, and branch office environments in enterprise settings are some of the principal targets of Hyper-V technology solutions. However, small and medium businesses also benefit from workload virtualization. Therefore, our purpose for this book was to provide information and tools that could be useful to a broad spectrum of IT professionals and organizations.

Within this Resource Kit, you will find in-depth information and procedures to help you manage all aspects of Windows Server 2008 Hyper-V and Hyper-V Server 2008, including manual and automated installation, security configuration, virtual machine and host-level failover clustering, virtual machine creation and migration processes, monitoring, and backup and recovery techniques. In addition, we have included guidance to assist you with all aspects of a virtualization project from the early vision and scope setting phase through the project pilot phase.

In this book, you will find numerous sidebars contributed by members of the Windows Virtualization product team, Microsoft Consulting Services, Microsoft Support Services, Microsoft Sales, and Microsoft Partners that explain Hyper-V design details, feature highlights, and best practices and optimization tips to assist you in getting the most from a Hyper-V deployment. Finally, the companion media includes sample scripts and job aids that you can use and customize to help you automate various aspects of managing Hyper-V environments.

Microsoft Partner Support

Many of the technical scenarios presented in this book were configured and tested on hardware that was provided by AMD, Compellent Technologies, Sun Microsystems, and the Microsoft Partner Solutions Center. All of these Microsoft partners repeatedly extended the loan of their equipment to accommodate our
changes in schedule, and they were all very forthcoming in answering questions and providing support when it was needed.

AMD provided us with enterprise-class hardware to support installation, failover clustering, and configuration test procedures. Donna Becker, Tim Mueting, and John McCarrae from AMD worked diligently to provide us with two Dell PowerEdge 2970 servers configured with dual quad-core Opteron 2356 processors, 16 gigabytes (GB) of RAM, a Dell PERC 5/I Integrated RAID controller, and 300 GB of internal storage. The configuration was enhanced with an additional 300 GB of external, iSCSI-based storage.

Compellent Technologies, Sun Microsystems, and the Microsoft Partner Solutions Center dedicated hardware and remote access to enterprise-class servers connected to a Compellent Storage Center storage area network (SAN). John Porterfield, Shane Burton, and Justin Braun of Compellent Technologies provided their time, expertise, and assistance in assembling a hardware configuration that could be used to test additional failover clustering scenarios remotely. The configuration of the Compellent Storage Center SAN was configured with 10 terabytes of Tier-1 storage and 41 terabytes of Tier-3 storage.

John Porterfield of Compellent Technologies coordinated with Trevor McGill of Sun Microsystems to secure several servers for the duration of our tests. In particular, Sun Microsystems provided a Sun X4450 server with four quad-core Intel X7350 processors, 64 GB of RAM, four 146-GB SAS drives, and four Gigabit Ethernet network adapters, and two Sun X4150 servers with two quad-core Intel E5345 processors, 16 GB of RAM, four 146-GB SAS drives, and four Gigabit Ethernet network adapters.

Overview of Book

The four parts of this book cover the following topics:

Part II Understanding Windows Server 2008 Hyper-V Provides in-depth information and guidance on installing Window Server 2008 Hyper-V and Microsoft Hyper-V Server 2008 using advanced product features, configuring security, tuning performance, and moving from Virtual Server 2005 R2 to Hyper-V. There is also a comprehensive preview of the new features that are included in Windows Server 2008 R2 Hyper-V.
Part III Managing a Windows Server 2008 Hyper-V Infrastructure Describes how to monitor and maintain the health of a Hyper-V infrastructure using tools such as System Center Virtual Machine Manager 2008, Windows Backup Server, System Center Data Protection Manager SP1, and the Windows Server 2008 Hyper-V Management Pack for System Center Operations Manager 2007. This part of the book also contains information to help you develop scripts using the Windows Management Instrumentation (WMI) application programming interface (API) and Windows PowerShell scripting tool.

Part IV Server Virtualization Project Methodology Defines common server virtualization scenarios, basic concepts and components that compose a VDI solution, and comprehensive guidance on how to manage a virtualization project from the initial vision and scope setting phase to the pilot deployment phase.

Document Conventions
The following conventions are used in this book to highlight special features or usage.

Reader Aids
The following reader aids are used throughout this book to point out useful details.

<table>
<thead>
<tr>
<th>READER AID</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Underscores the importance of a specific concept or highlights a special case that might not apply to every situation.</td>
</tr>
<tr>
<td>Important</td>
<td>Calls attention to essential information that should not be disregarded.</td>
</tr>
<tr>
<td>Caution</td>
<td>Warns you that failure to take or avoid a specified action can cause serious problems for users, systems, data integrity, and so on.</td>
</tr>
<tr>
<td>On the Companion Media</td>
<td>Calls attention to a related script or job aid on the companion media that helps you perform a task described in the text.</td>
</tr>
<tr>
<td>Best Practice</td>
<td>Provides advice that the authors or the Windows Virtual Team have gained from using and deploying the products.</td>
</tr>
<tr>
<td>More Info</td>
<td>Contains cross-references to other critical reference material, such as the product documentation, relevant Web sites, other books, or to other sections of this book.</td>
</tr>
</tbody>
</table>
Sidebars

The following sidebars are used throughout this book to provide added insight, tips, and advice concerning different Hyper-V features.

<table>
<thead>
<tr>
<th>SIDEBAR</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct from the Source</td>
<td>Contributed by Windows Virtualization product team experts at Microsoft to provide “from-the-source” insight into how Hyper-V works, best practices, and troubleshooting tips.</td>
</tr>
<tr>
<td>Direct from the Field</td>
<td>Contributed by field experts from Microsoft Consulting Services, Microsoft Customer Support Services, Microsoft Sales, and Microsoft Partners to provide “from-the-source” insight into how Hyper-V works, best practices, and troubleshooting tips.</td>
</tr>
<tr>
<td>How It Works</td>
<td>Provides unique glimpses of technology features and how they work.</td>
</tr>
</tbody>
</table>

NOTE Sidebars are provided by individuals in the industry as examples for informational purposes only and may not represent the views of their employers. No warranties, express, implied, or statutory, are made as to the information provided in sidebars.

Command-Line Examples

The following style conventions are used in documenting command-line examples throughout this book.

<table>
<thead>
<tr>
<th>STYLE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold font</td>
<td>Used to indicate user input (characters that you type exactly as shown).</td>
</tr>
<tr>
<td>Italic font</td>
<td>Used to indicate variables for which you need to supply a specific value (for example, file_name can refer to any valid file name).</td>
</tr>
<tr>
<td>Monospace font</td>
<td>Used for code samples and command-line output.</td>
</tr>
<tr>
<td>%SystemRoot%</td>
<td>Used for environment variables.</td>
</tr>
</tbody>
</table>
Companion Media
The companion media is a valuable addition to this book and includes the following items:

Scripts and Job Aids Sample scripts written in Visual Basic Scripting Edition (VBScript) or Windows PowerShell for the administration of different aspects of Hyper-V infrastructures. These scripts can be used either as-is or customized to meet your administrative needs. Also included are job aids referenced in the book text.

Bonus Content and Links to Resources In the Bonus Content folder, you’ll find an electronic version of the Microsoft Press title *Understanding Microsoft Virtualization*. On the Links to Resources and Tools page, you’ll find numerous links to helpful resources and tools identified by the authors of this resource kit.

eBook An electronic version of the entire *Windows Server 2008 Hyper-V Resource Kit* is also included on the companion media.

Full documentation of the contents and structure of the companion media can be found in the Readme.txt file on the media.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can enjoy select content from the print edition’s companion CD. Visit http://www.microsoftpressstore.com/title/9780735625174 to get your downloadable content. This content is always up-to-date and available to all readers.

System Requirements
The following are the minimum system requirements to run the companion media provided with this book:

- Windows Server 2008 or Windows Vista Service Pack 1
- Windows PowerShell 1.0 or later version (for scripts)
- Microsoft Office 2003 or later version (for job aid worksheets)
- DVD drive
- Internet connection
- Display monitor capable of 1024 × 768 resolution
- Microsoft Mouse or compatible pointing device
- Adobe Reader or PDF reader for viewing the eBook
Using the Scripts

Scripts on the companion media must be run using Cscript.exe or Windows PowerShell as the script host. You can do this in several ways:

- Type `cscript script_name.vbs <parameters>` at a command prompt. For a list of available parameters, type `cscript script_name.vbs /?` at a command prompt, or open the script using Notepad and read the comments in the script.

- Configure the default script host on the local computer to Cscript.exe so that you can run scripts by typing `script_name.vbs <parameters>` at a command prompt. To set the default script host to Cscript.exe, type `cscript //h:cscript //nologo //s` at a command prompt.

- For Windows PowerShell 1.0, open a PowerShell command window. To do this from the Run box, click Start, click Run, type powershell, and click OK. You can also start Windows PowerShell 1.0 from the Start menu. Just click Start, click All Programs, click Windows PowerShell 1.0, and then click Windows PowerShell.

- For Windows PowerShell 2.0, from the Start menu, click Start, click All Programs, click Windows PowerShell, and then click Windows PowerShell V2. Alternatively, you can click Windows PowerShell V2 ISE to open the Windows PowerShell V2 Integrated Scripting Environment.

To function as intended, most scripts on the companion media must also be run using elevated privileges. To open an admin-level command prompt in Windows Vista, click the Start button and select All Programs. Select Accessories, right-click on Command Prompt, and select Run As Administrator. (As an alternative, create a shortcut to an elevated command prompt and save the shortcut on your Quick Launch toolbar.)

Resource Kit Support Policy

Every effort has been made to ensure the accuracy of this book and the companion media content. Microsoft Press provides corrections to this book through the Web at the following location:

http://www.microsoft.com/learning/support/search.asp

If you have comments, questions, or ideas regarding the book or companion media content, or if you have questions that are not answered by querying the Knowledge Base, please send them to Microsoft Press by using either of the following methods:
E-mail:
rkinput@microsoft.com

Postal Mail:
Microsoft Press
Attn: Windows Server 2008 Hyper-V Resource Kit editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses. For product support information, please visit the Microsoft Product Support Web site at the following address:

http://support.microsoft.com
CHAPTER 2

Hyper-V Overview

- Hyper-V Background 28
- Hyper-V Core Features 30
- Reviewing Hyper-V 41
- Virtual Machine Hardware Environment 41
- Using the Hyper-V Manager Console 47
- Outlining the WMI API 67
- Summary 68
- Additional Resources 68

This chapter contains an overview of the Hyper-V features available as a role in a full installation of Windows Server 2008, as a Server Core role, and in Microsoft Hyper-V Server 2008. In order to provide a robust virtualization platform that abstracts physical hardware dependencies and scales to support numerous concurrent workloads, Hyper-V is based on a hypervisor-based architecture that enables standard services and resources to create, manage, and execute virtual machines. Hyper-V offers a standard virtual hardware environment, virtual hard disks (VHD), and virtual networks that enable virtual machine execution, storage, and communications, respectively. Integration Services (IS) and Integration Components (IC) support critical processes and enhance the performance of virtual machines. Hyper-V Manager, a Microsoft Management Console (MMC) snap-in, is available to perform Hyper-V management and virtual machine configuration functions. The Hyper-V Manager provides a primary interface to create, inspect, and configure virtual machines, virtual hard disks, and virtual networks, as well as to assign virtual machine memory and processor allocations. Hyper-V properties are also modified through the Hyper-V Manager. Virtual Machine Connection (VMC) is integrated into the Hyper-V Manager to provide remote access to virtual machines from within the console and is also available as a stand-alone application. In addition, Hyper-V offers an extensive Windows Management Instrumentation (WMI) interface that you can leverage using various scripting and development languages, including PowerShell, to programmatically and remotely control the deployment, administration, and configuration of virtual machines.
Hyper-V Background

In February 2003, Microsoft entered the virtualization arena with the acquisition of Connectix software virtualization technology. In October 2004, Microsoft released Virtual Server 2005, an enterprise infrastructure virtualization solution for the x86 platform with support for 32-bit virtual machines. Virtual Server 2005 represents a hosted virtualization architecture because it runs in conjunction with a host Windows operating system and depends on it to arbitrate hardware resource access. In November 2005, Virtual Server 2005 Release 2 (R2) was released with several performance-enhancing features, as well as support for x64 host operating systems, iSCSI connectivity, Non-Uniform Memory Access (NUMA), Pre-Execution Environment (PXE) booting, and Virtual Server host clustering. The last major release, Virtual Server 2005 R2 Service Pack 1 (SP1), occurred in June 2007. In this release, Microsoft added support for Intel VT and AMD-V processors and provided the ability to control hardware virtualization on an individual virtual machine (VM) basis. Finally, in May 2008, an update was released (KB948515) to extend Virtual Server 2005 R2 SP1 support to Windows XP SP3, Windows Vista SP1, and Windows Server 2008, both as host and guest operating systems.

In parallel with Virtual Server 2005 R2 SP1, Microsoft worked on the development of its next generation enterprise virtualization product, Windows Server 2008 Hyper-V, released in June 2008. Figure 2-1 shows the basic Hyper-V architecture, which is based on a 64-bit microkernel hypervisor, the Windows Hypervisor. The Windows Hypervisor runs directly above the hardware, enables multiple operating systems to run concurrently within partitions, and ensures strong isolation between the partitions by enforcing access policies for critical system resources such as memory and processors. Unlike Windows operating systems such as Windows Server 2003 and earlier versions, the Windows Hypervisor does not contain any third-party device drivers or code, which minimizes its attack surface and provides a more secure architecture.

NOTE Based on the microkernel architecture of the Windows Hypervisor, including the fact that it does not encompass Windows drivers, the Windows Hypervisor is less than 1 megabyte (MB) in size.

In addition to the Windows Hypervisor, there are two other major elements in Hyper-V: a parent partition and child partitions. The parent partition is a special virtual machine that runs Windows Server 2008, controls the creation and management of child partitions, and maintains direct access to hardware resources. This requires that device drivers for physical devices be installed in the parent partition. Finally, the role of a child partition is to provide a virtual machine environment for the installation and execution of guest operating systems and applications.
Hyper-V allows high-speed communication between the parent and child partitions through the VMBus. The VMBus supports dedicated point-to-point channels for secure interpartition communications between Virtualization Service Providers (VSP) in the parent partition and Virtualization Service Clients (VSC) in the child partitions. VSPs are software components that manage input/output (I/O) requests from the VSCs in the virtual machines and channel the requests to physical hardware through the device drivers. VSCs are synthetic drivers, basically software components without physical counterparts that provide high-performance access to networking, video, storage, and human-interface devices in virtual machines. In the current release of Hyper-V, VSCs are available for a subset of Windows operating systems and for Suse Linux Enterprise Server 10, which has a Xen hypervisor-aware kernel. When running on Hyper-V, Suse Linux Enterprise Server 10 uses a Hypercall Adapter to translate Xen hypervisor calls (hypercalls) into Hyper-V hypervisor calls, enabling high-performance execution.

MORE INFO For a complete list of the Windows operating systems that support VSCs, refer to Chapter 5, “Hyper-V Advanced Features.”

Virtual machines that run guest operating systems without VSC support use emulation (or legacy) drivers to provide access to virtualized hardware devices. The parent partition monitors and intercepts I/O requests to virtualized hardware devices and channels the requests to physical hardware.
Hyper-V Core Features

Table 2-1 summarizes the basic features found in Windows Server 2008 Hyper-V editions and Hyper-V Server 2008. Hyper-V VMs support both 32-bit and 64-bit guest operating systems and the allocation of up to four virtual processors and 64 gigabytes (GB) of memory for Hyper-V servers running on Windows Server 2008 Enterprise or Datacenter edition. In its original release, Hyper-V supported 16 processor cores and 128 virtual machines. However, a subsequent update (KB956710) increased Hyper-V support to 24 logical processors and a maximum of 192 concurrent virtual machines.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>MICROSOFT HYPER-V SERVER 2008</th>
<th>WINDOWS SERVER 2008 STANDARD</th>
<th>WINDOWS SERVER 2008 ENTERPRISE</th>
<th>WINDOWS SERVER 2008 DATACENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86 Support</td>
<td>Guest OS Only</td>
<td>Guest OS Only</td>
<td>Guest OS Only</td>
<td>Guest OS Only</td>
</tr>
<tr>
<td>x64 Support</td>
<td>Host and Guest</td>
<td>Host and Guest</td>
<td>Host and Guest</td>
<td>Host and Guest</td>
</tr>
<tr>
<td># of VMs—x64 Host</td>
<td>192 (Max)</td>
<td>192 (Max)</td>
<td>192 (Max)</td>
<td>192 (Max)</td>
</tr>
<tr>
<td>Host Memory Support</td>
<td>32 GB</td>
<td>32 GB</td>
<td>1 terabyte</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>Host Processor Support</td>
<td>24 Cores (Max) (See Note)</td>
</tr>
<tr>
<td>Virtual Networks</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Guest VM Memory</td>
<td>32 GB (Max)</td>
<td>32 GB (Max)</td>
<td>64 GB (Max)</td>
<td>64 GB (Max)</td>
</tr>
<tr>
<td>Guest Virtual Processor</td>
<td>4 per VM</td>
<td>4 per VM</td>
<td>4 per VM</td>
<td>4 per VM</td>
</tr>
<tr>
<td>Guest Virtual NICs</td>
<td>4 Legacy 8 Synthetic</td>
<td>4 Legacy 8 Synthetic</td>
<td>4 Legacy 8 Synthetic</td>
<td>4 Legacy 8 Synthetic</td>
</tr>
<tr>
<td>Guest Storage Adapters</td>
<td>2 IDE 4 SCSI</td>
<td>2 IDE 4 SCSI</td>
<td>2 IDE 4 SCSI</td>
<td>2 IDE 4 SCSI</td>
</tr>
<tr>
<td>Guest Storage Devices</td>
<td>4 IDE 256 SCSI</td>
<td>4 IDE 256 SCSI</td>
<td>4 IDE 256 SCSI</td>
<td>4 IDE 256 SCSI</td>
</tr>
<tr>
<td>Cluster Support</td>
<td>N N Y Y</td>
<td>N N Y Y</td>
<td>Y Y</td>
<td>Y Y</td>
</tr>
<tr>
<td>Quick Migration</td>
<td>N N Y Y</td>
<td>N N Y Y</td>
<td>Y Y</td>
<td>Y Y</td>
</tr>
<tr>
<td>Included Use Licenses</td>
<td>None 1 VM</td>
<td>1 Physical 4 VMs</td>
<td>1 Physical Unlimited VMs</td>
<td>1 Physical Unlimited VMs</td>
</tr>
</tbody>
</table>
NOTE If you are going to install and use Hyper-V on a physical server with 24 cores, you must download and install KB956710 for Windows Server 2008 Hyper-V from http://support.microsoft.com/kb/956710.

IMPORTANT The Windows license allows you to run one virtual machine in Windows Server 2008 Standard, four VMs in Windows Server 2008 Enterprise, and an unlimited number of VMs in Windows Server 2008 Datacenter. Because Microsoft Hyper-V Server 2008 is not a Windows edition, you do not receive any Windows licenses with it, and therefore you must have a valid Windows license for each Windows-based VM running on it.

AMD-V and Intel VT Support

Hyper-V requires an x64 AMD-V or Intel VT processor that supports hardware-assisted virtualization and hardware-based Data Execution Prevention (DEP). You must ensure that both of these options are enabled in the Basic Input/Output System (BIOS), as they may be disabled by default. Specifically for DEP, you must enable the AMD No-Execute (NX) bit, or Intel Execute-Disable (XD) bit, which assists in preventing buffer overflow exploits. Other advantages of running on an AMD-V or Intel VT x64 platform include access to a larger address space and a higher partition density. Hyper-V does not support Itanium or x86-based systems.

NOTE You may have to shut down and restart after you enable the AMD NX of Intel XD bit on your physical system for the change to take effect.

Full Installation and Server Core Installation Support

Hyper-V can be installed as a role in either a full installation or a Server Core installation of 64-bit Windows Server 2008 Standard, Enterprise, and Datacenter editions. In a full installation of Windows Server 2008, you can use the Initial Configuration Tasks or the Server Manager to add the Hyper-V role to your system. The Windows Hypervisor is present and enabled only after the Hyper-V role is installed on Windows Server 2008. Furthermore, when you select and add the Hyper-V role, all of the Hyper-V components are installed on your system. This also includes Hyper-V management tools such as the Hyper-V Manager MMC snap-in and the Virtual Machine Connection application, which allows you to remotely access virtual machines. Installing the Hyper-V role in a full installation of Windows Server 2008 requires that you restart the computer before it will boot the Windows Hypervisor.

Windows Server 2008 Server Core is a new feature that allows you to install a minimal server configuration that includes only the subset of binaries that are required to run one of the supported roles. A key advantage of Server Core is the reduction in operating system
maintenance (i.e., fewer updates) and management requirements based on the smaller number of files and services included in the installation.

There are nine Server Core roles: Hyper-V, File Services, Active Directory Domain Services, Active Directory Lightweight Directory Services, DHCP Server, DNS Server, Print Services, Streaming Media Services, and Web Server. The default management interface for a Windows Server 2008 Server Core installation is a command prompt, since it does not install the Explorer shell graphical user interface (GUI). Therefore, you must rely on command-line options to enable the Hyper-V role in a Server Core installation. However, a Windows Server 2008 Server Core installation can be managed remotely using the standard MMC tools from a server with a full installation of Windows Server 2008. You can also use the Remote Server Administration Tools (RSAT) to manage your Server Core installations from 32-bit and 64-bit editions of Windows Vista Business with Service Pack 1 (SP1), Windows Vista Enterprise with SP1, and Windows Vista Ultimate with SP1.

NOTE If you are going to install and use RSAT to manage a Windows Server 2008 Server Core installation, you must download and install KB941314 from http://support.microsoft.com/kb/941314.

MORE INFO For detailed installation procedures of the Hyper-V role in either a full installation or Server Core installation of Windows Server 2008, refer to Chapter 4, “Hyper-V Installation and Configuration.”

Microsoft Hyper-V Server 2008

Microsoft Hyper-V Server 2008 is a stand-alone product based on the same virtualization architecture available in Windows Server 2008 Hyper-V. However, it has been simplified and optimized to run Hyper-V only. Similar to a Server Core installation of Windows Server 2008, it provides only a command-line user interface and can be administered remotely using the Hyper-V management tools and RSAT.

Microsoft Hyper-V Server 2008 is available as a free download from the Microsoft Web site. It is a good choice for single virtualization host deployments that do not require enterprise-class features such as high availability, and for virtual machines that need less than 32 GB of memory. You may also want to consider using Windows Hyper-V Server 2008 in non-production, development, and test environments. There is no software upgrade path from Microsoft Hyper-V Server 2008 to Windows Server 2008 Hyper-V. However, virtual machines are compatible between the two products and can be migrated using Hyper-V virtual machine export and import features, which will be discussed later in this chapter.
Microsoft Hyper-V Server 2008 includes a command-line, menu-driven configuration tool called HVConfig.cmd to permit the configuration of basic connectivity and features required to use it in a managed environment. HVConfig.cmd supports the following configuration and actions:

- Domain or workgroup membership
- Computer name
- Network settings
- Local administrators
- Windows Update settings
- Download and install Windows Updates
- Remote Desktop
- Regional and language options
- Date and time
- Log Off User
- Restart Server
- Shut Down Server
- Exit To Command Line

HVConfig.cmd actually executes a Visual Basic Script file called HVConfig.vbs that contains all the functionality. HVConfig.cmd launches every time that you log on to the system.

Access Control Using Authorization Manager

Hyper-V leverages Authorization Manager (AzMan) to provide role-based access control to Hyper-V and virtual machines. This allows you to create job definitions and translate them into a role with a limited set of operations and tasks. You can assign individual users or groups to appropriate roles, allowing them to fulfill their job responsibilities while restricting their access to only the required Hyper-V resources, operations, and tasks.

MORE INFO For more details on how to use AzMan with Hyper-V and the types of roles that might be useful to define for Hyper-V and virtual machine management, refer to Chapter 6, “Hyper-V Security.”
Live Backup with Volume Shadow Copy Service

Volume Shadow Copy Service (VSS) support in Hyper-V provides stateful, host-side backups, eliminating the need to load an agent in each virtual machine. Any VSS-aware application, such as System Center Data Protection Manager (DPM) 2007 SP1, can leverage this functionality to provide VSS snapshot backup services if it utilizes the VSS writer interface implemented in Hyper-V. Any virtual machine running a VSS-aware guest Windows operating system (Windows Server 2003 and later) can be backed up in a live state. Any other guest operating system (Windows 2000, Linux, and so on) will need to be in saved state prior to the VSS snapshot. Because VSS snapshots are performed through an extremely fast process (they take seconds), virtual machine downtime is minimized. Additionally, with VSS support, the number of steps involved in archive or restore operations is reduced and the consistency of the data is ensured.

More Info
For more details on performing live backups using VSS, refer to Chapter 13, “Hyper-V Backup and Recovery.”

High Availability Using Failover Clustering

Hyper-V supports Windows Failover Clustering to implement a high-availability strategy that can manage both unplanned and planned downtime. There are two levels at which you can implement a failover cluster with Hyper-V: at the guest operating system level, and at the virtualization host level. A guest operating system failover cluster requires cluster-aware applications running in virtual machines. In addition, you have to run an operating system in the virtual machine that supports failover clustering, such as Windows Server 2003 (for up to an 8-node cluster) or Windows Server 2008 Enterprise or Datacenter edition (for up to a 16-node cluster). The second failover cluster option consists of two or more Windows Server 2008 Hyper-V servers, each configured as a cluster node. This type of configuration allows you to provide a high-availability solution for both non-cluster-aware guest operating systems and applications that run in virtual machines.

More Info
For more details on how to configure guest and host failover clusters, refer to Chapter 5.

Quick Migration

Hyper-V also supports Quick Migration, the ability to move a virtual machine across cluster nodes without data loss and with minimal service interruption. To accomplish this, a virtual machine is placed in saved state, active memory and processor state are captured to disk, and storage resources ownership is transferred to another node in the cluster. On the new
node, the virtual machine active memory and processor state are reloaded and processing is resumed. Depending on the underlying storage and the size of the state data, the entire process can take place in a matter of seconds or minutes.

MORE INFO For more details on Quick Migration, refer to Chapter 14, “Server Migration Using System Center Virtual Machine Manager.”

Integration Services

In Hyper-V, Integration Services (IS) provide support for five unique components that require a secure interface between a parent and child partition. These functions are:

- Time synchronization
- Heartbeat
- Shutdown
- Key/value pair exchange
- Volume Shadow Copy Service (VSS)

Integration Services target very specific areas that enhance the functionality or management of supported guest operating systems. In addition to these services, Integration Services provide the synthetic or high-performance drivers for networking, video, storage, and human-interface devices. If you install Windows Server 2008 in a virtual machine, the Integration Services are pre-installed. However, you should update them to the latest version. For other operating systems, you should install the Integration Services after the operating system installation is complete. It is important to note that only a subset of Integration Services may be supported for some legacy or non-Windows guest operating systems.

MORE INFO For more details on Integration Services, refer to Chapter 3 and Chapter 5.

Virtual Machine Import and Export

The import and export features in Hyper-V are meant to move and copy virtual machines between Hyper-V servers. These features do not provide a solution to export or import virtual machines between other virtualization applications like Virtual Server 2005 R2. In addition, you can export only a virtual machine that is in saved state or that is shut down.

Virtual Hard Disk Management

Hyper-V provides several options to manage virtual hard disks (VHD), accessible through the Hyper-V Manager console. The VHD management options include:
Compact Provides the ability to shrink the size of a VHD by removing blank space that remains after data is deleted from the VHD file

Convert Provides the ability to transfer a dynamically expanding VHD to a fixed-size VHD or vice versa

Expand Provides the ability to increase the storage capacity of a dynamically expanding VHD or fixed-size VHD

Merge Provides the ability to combine the content of a child differencing disk with the parent differencing disk

Reconnect Provides the ability to reconnect a child differencing disk to the parent disk

The options that are available depend on the type of VHD that you select and also on the status of that VHD.

MORE INFO For more details on the VHD management options, refer to Chapter 5.

Virtual Machine Snapshots
The Hyper-V snapshot feature allows you to capture the configuration and state of a virtual machine at any particular point in time, and provides you with the ability to reload any existing snapshot within a matter of seconds. Hyper-V snapshots can be extremely useful in scenarios for which you need to make incremental changes to a virtual machine with the ability to roll back to a previous state. The Hyper-V snapshot feature is principally designed for use in test and development environments, not in a production infrastructure.

MORE INFO For more details on virtual machine snapshots, refer to Chapter 5.

Virtual Machine Connection
Virtual Machine Connection (VMC) is a remote administration tool provided with Hyper-V. VMC uses the Windows Remote Desktop Protocol to allow remote access to the guest operating system running in a virtual machine. It is embedded in the Hyper-V Manager MMC and is available as a stand-alone application. VMC provides access to the video frame buffer of the video machine from the moment a virtual machine is powered on so that you have access during the boot process.

MORE INFO For more details about using VMC, refer to Chapter 11, “Hyper-V Single Server Management.”
Microsoft has made a big investment in developing Windows Server 2008 Hyper-V, a virtualization platform that provides flexibility and performance for IT organizations to consolidate their workloads. Although this book provides an excellent in-depth look at various aspects of the Hyper-V platform, Microsoft continues to enhance and evolve Hyper-V with features and capabilities. Here is a sneak peek at some capabilities of Windows Server 2008 R2 Hyper-V, the next release of the Windows Server Virtualization platform.

Live Migration of Virtual Machines

Windows Server 2008 provides Quick Migration to move VMs between hosts in a cluster with minimal service interruption. However, this capability requires pausing the virtual machine momentarily while the saved state is moved from the source to the destination node. A virtual machine in saved state does not run during this period (called the “blackout” period), in effect causing downtime for the virtual machine. In today’s IT environment, downtime even for short periods is problematic. In order to address this issue, Microsoft is enhancing the Hyper-V product with the Live Migration capability. With Live Migration, there is no perceived downtime in the workloads running in the VM, and network connections to and from the migrated VM stay connected. As with Quick Migration, Live Migration will be possible between nodes within a failover cluster. In effect, the infrastructure investment made in order to use Quick Migration will be enhanced through Live Migration. In addition, Microsoft is adding Clustered Shared Volumes to failover clusters, which allow multiple VHDS for different VMs to be stored on a single Logical Unit Number (LUN). This not only simplifies management of shared storage for a cluster, it also provides a significant reduction in the blackout period for VMs moved through Live Migration.

Support for Enhanced Hardware Virtualization Features

Over the years, hardware vendors such as AMD and Intel have made significant enhancements (such as AMD-V and Intel VT) to processors and chipsets with capabilities specifically targeting virtualization. Continuing with these enhancements, AMD and Intel support Nested Page Tables (NPT) and Extended Page Tables (EPT), respectively. These capabilities improve the performance of memory address translations. Without these hardware enhancements, each time a guest page faults, it requires a context switch to the hypervisor to handle the page fault. With NPT and EPT, a guest can handle page faults directly, eliminating the need for a costly context switch to the hypervisor and reducing virtualization overhead for memory translations.
Addition and Removal of Virtual Storage

Virtualization decouples the software running on a system from the hardware and makes it convenient for IT organizations to deploy and manage their environments. With this flexibility, it is inevitable that customers also seek the ability to expand and reduce storage coupled with virtual machines. With Windows Server 2008 R2 Hyper-V, Microsoft is adding the ability to add and remove virtual hard disks from a virtual machine while it is in operation. This capability opens up a range of possibilities for backup storage solutions and so on.

Networking Enhancements

Networking vendors have also made enhancements to hardware that benefit virtualized platforms. Two such key technologies are TCP Offload Engine (TOE) and Virtual Machine Queues (VMQ).

TCP Offload Engine refers to the offloading of TCP/IP processing to the network interface card (NIC). This technology is not specific to virtualized platforms, as non-virtualized operating systems and applications can also benefit by using it. A generally well-accepted rule of thumb is that 1 Hertz (Hz) of CPU processing is required to send or receive 1 bit of TCP/IP data. For high speed NICs, the overhead associated with processing TCP/IP traffic can be substantial. Windows Server 2008 R2 Hyper-V will support offloading the TCP/IP processing from virtual machines onto supported NICs, reducing the overhead for network processing. This has the benefit to free up processor cycles for additional work.

VMQ provides multiple queues and sorting algorithms in the NIC. One or more queues can be assigned by the hypervisor to individual virtual machines. The NIC sorts incoming network traffic and places it in the appropriate queues for the virtual machines. Since this processing happens in the NIC hardware, it reduces the hypervisor overhead and again frees up processor cycles for other work.

In addition, Microsoft is also adding support for jumbo frames that enable large send and receive payloads. A jumbo frame is an Ethernet frame with up to 9000 bytes of data payload as opposed to the traditional 1500 bytes. This reduces the overhead incurred per transferred byte. Coupled with large send offload (LSO), which is the ability of the operating system to transfer large chunks of data to the NIC to create Ethernet frames, and large receive offload (LRO), which allows the creation of a single large data buffer from multiple incoming Ethernet frames, this provides additional reductions of network processing overhead.

Power Management Enhancements

Recognizing the fact that data center power distribution and cooling infrastructure for the computing infrastructure are uppermost in IT staff minds, the next generation of the Windows Hypervisor has enhancements to reduce the power footprint of virtualized workloads. These capabilities include the use of “core parking,”
which allows the hypervisor to proactively consolidate idle workloads onto fewer cores. The unused processors can then be put into a deep sleep state, effectively reducing the power consumption of the server. In addition, the virtual management infrastructure, more specifically System Center Virtual Machine Manager (SCVMM), also can assist through optimal workload placement that reduces the overall power consumption of workloads.

Remote Desktop Connection Broker

The Remote Desktop Connection Broker creates a unified administrative experience for traditional session-based (i.e., Terminal Services) remote desktops and for virtual machine-based remote desktops in a Virtual Desktop Infrastructure (VDI). The two key deployment scenarios supported by the Remote Desktop Connection Broker are persistent (permanent) VMs and pooled VMs. Using a persistent VM, a user is assigned a dedicated VM that can be personalized and customized, and that preserves any changes made by the user. With a pooled VM, a single VM image is replicated as needed for users. User state can be stored using profiles and folder redirection, but it does not persist on the VM after the user logs off.

Host Operating System Support

The following list includes all the currently supported 64-bit host operating systems for Hyper-V:

- Windows Server 2008 Standard Edition
- Windows Server 2008 Enterprise Edition
- Windows Server 2008 Datacenter Edition
- Microsoft Hyper-V Server 2008

Guest Operating System Support

The following list includes all the supported x86 guest operating systems that can be used with Windows Server 2008 Standard, Enterprise, and Datacenter editions, as well as Microsoft Hyper-V Server 2008:

- Windows 2000 (support for one virtual processor)
 - Windows 2000 Server with SP4
 - Windows 2000 Advanced Server with SP4
- Windows Server 2003 x86 (support for one or two virtual processors)
 - Windows Server Web Edition with SP2
 - Windows Server Standard Edition with SP2
• Windows Server Enterprise Edition with SP2
• Windows Server Datacenter Edition with SP2

- Windows Server 2003 R2 x86 (support for one or two virtual processors)
 • Windows Server Web Edition with SP2
 • Windows Server Standard Edition with SP2
 • Windows Server Enterprise Edition with SP2
 • Windows Server Datacenter Edition with SP2

- Windows Server 2003 x64 (support for one or two virtual processors)
 • Windows Server Standard Edition with SP2
 • Windows Server Enterprise Edition with SP2
 • Windows Server Datacenter Edition with SP2

- Windows Server 2003 R2 x64 (support for one or two virtual processors)
 • Windows Server Standard Edition with SP2
 • Windows Server Enterprise Edition with SP2
 • Windows Server Datacenter Edition with SP2

- Windows Server 2008 x86 (support for one, two, or four virtual processors)
 • Windows Server 2008 Standard Edition
 • Windows Server 2008 Enterprise Edition
 • Windows Server 2008 Datacenter Edition
 • Windows Web Server 2008 Edition
 • Windows Server 2008 Standard Edition without Hyper-V
 • Windows Server 2008 Enterprise Edition without Hyper-V
 • Windows Server 2008 Datacenter Edition without Hyper-V

- Windows Server 2008 x64 (support for one, two, or four virtual processors)
 • Windows Server 2008 Standard Edition
 • Windows Server 2008 Enterprise Edition
 • Windows Server 2008 Datacenter Edition
 • Windows Web Server 2008 Edition
 • Windows Server 2008 Standard Edition without Hyper-V
 • Windows Server 2008 Enterprise Edition without Hyper-V
 • Windows Server 2008 Datacenter Edition without Hyper-V

- Windows HPC Server 2008 (support for one, two or four virtual processors)

- Suse Linux Enterprise Server 10 x86 (support for one virtual processor)
 • SUSE Linux Enterprise Server 10 with SP1
Reviewing Hyper-V

Windows Server 2008 Hyper-V and Microsoft Hyper-V Server 2008 are both hypervisor-based virtualization platforms. Hyper-V is multithreaded and concurrently runs one or more virtual machines (workloads), each in its own thread of execution. Each virtual machine presents a set of virtualized or synthetic devices to the guest operating system and applications that abstracts the underlying physical hardware, providing workload portability between dissimilar physical servers running Hyper-V.

Virtual Machine Hardware Environment

Table 2-2 lists the standard set of virtualized components that a virtual machine exposes to a guest operating system and application stack. These devices are detected and appear to be the physical hardware resources available to the running workload. When a virtual machine workload requests access to the virtualized resources, Hyper-V works in conjunction with the parent partition to translate the requested operation from the virtual hardware environment to the physical hardware, and access is achieved via the standard kernel device drivers installed in the parent partition. This approach provides virtual machine workloads the ability to run across a wide variety of server hardware without requiring any modifications to the workload configuration.
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>VIRTUALIZED HARDWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic input/output system (BIOS)</td>
<td>American Megatrends (AMI) BIOS with Intel 440BX chip set and PIIX4 ACPI including:</td>
</tr>
<tr>
<td></td>
<td>• Complementary metal oxide semiconductor (CMOS)</td>
</tr>
<tr>
<td></td>
<td>• Real-time clock</td>
</tr>
<tr>
<td></td>
<td>• RAM and video RAM (VRAM)</td>
</tr>
<tr>
<td></td>
<td>• Memory controller</td>
</tr>
<tr>
<td></td>
<td>• Direct memory access (DMA) controller</td>
</tr>
<tr>
<td></td>
<td>• PCI bus</td>
</tr>
<tr>
<td></td>
<td>• ISA bus</td>
</tr>
<tr>
<td></td>
<td>• SM bus</td>
</tr>
<tr>
<td></td>
<td>• Power management</td>
</tr>
<tr>
<td></td>
<td>• 8259 programmable interrupt controller (PIC)</td>
</tr>
<tr>
<td></td>
<td>• Programmable interrupt timer (PIT)</td>
</tr>
<tr>
<td>Floppy disk drive</td>
<td>Single 1.44-MB floppy disk drive that maps to a floppy drive image.</td>
</tr>
<tr>
<td>Serial (COM) port</td>
<td>Dual serial ports that can be connected to local named pipes.</td>
</tr>
<tr>
<td>Printer (LPT) port</td>
<td>None</td>
</tr>
<tr>
<td>Mouse</td>
<td>Standard PS/2 Microsoft IntelliMouse pointing device mapped to the PS/2 device on the physical computer. Synthetic mouse device (requires Integration Services installation).</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Standard PS/2 101-key Microsoft keyboard that can be mapped to a PS/2 keyboard on the physical computer. Synthetic keyboard device (requires Integration Services installation).</td>
</tr>
<tr>
<td>Network adapter (multifunction)</td>
<td>Up to four legacy Multiport DEC/Intel 21140 Ethernet network adapters.</td>
</tr>
<tr>
<td></td>
<td>Up to eight synthetic network adapters (requires Integration Services installation).</td>
</tr>
<tr>
<td>Processor</td>
<td>Up to four processors that are the same as the physical computer processors.</td>
</tr>
</tbody>
</table>
Virtual Machine Hardware Environment

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>VIRTUALIZED HARDWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video card</td>
<td>VESA compatible emulated graphics adapter with 4 MB of VRAM, VGA, and SVGA support compliant with VESA 1.2, 2-D graphics accelerator and hardware cursor, and support for DirectX. Synthetic video adapter (requires Integration Services installation).</td>
</tr>
<tr>
<td>IDE/ATAPI storage</td>
<td>Dual IDE channels that support hard drives, CD-ROM or DVD-ROM drives, and ISO images. Each IDE channel supports two disks.</td>
</tr>
<tr>
<td>SCSI storage</td>
<td>Up to four synthetic SCSI adapters, each supporting 64 disks (requires Integration Services installation).</td>
</tr>
<tr>
<td>Sound card</td>
<td>None</td>
</tr>
</tbody>
</table>

A few limitations are imposed on virtual machine workloads based on the virtual hardware environment. Operating systems or applications that require direct access to a hardware device that is not listed in Table 2-2 cannot execute in a virtual machine. Because virtual machines expose only four CPUs to a hosted workload, applications that require symmetric multiprocessing (SMP) can be assigned one, two, or four processors in a virtual machine.

Virtual Hard Disks

Virtual hard disks (VHDs) are single file representations of a physical hard disk that encapsulate virtual machine data. Virtual hard disks reflect the same internal structure as a physical hard disk, including block allocation tables, data blocks, and sectors. Table 2-3 provides a list of virtual hard disk types available in Hyper-V.

TABLE 2-3 Virtual Hard Disk Types

<table>
<thead>
<tr>
<th>DISK TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Virtual hard disk file with all data blocks allocated on the host disk sub-system at creation time. A 10-GB fixed disk consumes 10 GB on the host physical disk where it is created.</td>
</tr>
</tbody>
</table>
DISK TYPE

<table>
<thead>
<tr>
<th>DISK TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamically Expanding</td>
<td>Virtual hard disk file that is preallocated with no data blocks reserved and grows as data is written until it reaches full size. A 10-GB dynamically expanding disk takes less than 2 MB initially and grows to 10 GB in 2-MB data block increments.</td>
</tr>
<tr>
<td></td>
<td>In Hyper-V, the maximum size for this VHD type is 127 GB.</td>
</tr>
<tr>
<td>Differencing</td>
<td>Virtual hard disk file that is tied to an existing "parent" virtual hard disk file as an overlay. All writes are made to the differencing disk, the “child,” whereas reads come from the parent and the child. Differencing disks are created as dynamically expanding disks.</td>
</tr>
<tr>
<td>Linked</td>
<td>A physical disk volume that you want to convert to a virtual hard disk. Linked disks exist only to perform the migration from physical to virtual hard disk.</td>
</tr>
</tbody>
</table>

Within a virtual machine, a virtual hard disk is represented as a physical disk. On a Hyper-V server physical disk, a virtual hard disk is stored as a file with a .vhd extension. Virtual machines connect to a virtual hard disk through a virtualized Integrated Drive Electronics (IDE) or Small Computer System Interface (SCSI) adapter. Hyper-V is responsible for mapping the virtual hard disk to the .vhd file on the physical disk. A VHD can be stored on any IDE, SCSI, iSCSI, storage area network (SAN), or Network-Attached Storage (NAS) storage system supported by the Windows Server 2008 operating system.

Virtual hard disks are created using either the Hyper-V Manager or through the WMI application programming interface (API). A virtual machine can support a maximum of 260 virtual hard disks through a combination of IDE and SCSI-connected VHDs.

NOTE Virtual hard disk specifications are independent of the bus type used to connect to the virtual machine. However, the bus type does impose a size limitation on virtual hard disks. Virtual hard disks connected via IDE cannot exceed 127 GB. Virtual hard disks connected via SCSI cannot exceed 2040 gigabytes.

Pass-Through Disks

Using Hyper-V, you can expose a disk to a virtual machine that is connected to the physical server without creating a volume on it. This is referred to as a pass-through disk. Pass-through disks can be physically connected to the Hyper-V server or as a LUN on a SAN. One of the advantages of pass-through disks is that they are not subject to the 2040-gigabyte size limitation that is imposed on VHDs. In contrast, pass-through disks do not support dynamically expanding VHDs, differencing VHDs, or Hyper-V snapshots.

Virtual IDE Interface

A virtual machine provides built-in primary and secondary virtual IDE interfaces. In Hyper-V, you can boot a virtual machine only from a virtual hard disk that is connected through the virtual IDE interface. Each virtual IDE interface can support two devices attached to it, for a
total of four IDE devices for every virtual machine. Either virtual hard disks or virtual CD-ROMs can be connected to an IDE interface. By default, the first virtual CD-ROM is attached to the secondary interface as the master device.

Virtual SCSI Interface
Contrary to the built-in virtual IDE interfaces exposed within the virtual machine environment, virtual SCSI interfaces are optional components that must be installed in a virtual machine before they can be used. A virtual machine supports up to four virtual SCSI adapters. Each virtual SCSI adapter can have up to 64 devices attached, for a total of 256 SCSI devices for every virtual machine.

Because virtual SCSI adapters are implemented as synthetic devices that load after the guest operating system loads, SCSI-attached VHDs cannot be used to boot a virtual machine.

iSCSI Disks
Another option to expose storage devices to a virtual machine is to install an iSCSI initiator in the guest operating system and connect directly to an iSCSI target. However, Hyper-V does not support booting from iSCSI-connected disk; therefore, you will still need to connect your boot disk through the virtual IDE interface. Using iSCSI-connected disks requires that you dedicate a NIC in the Hyper-V server for iSCSI communications.

Virtual Networks
A virtual network is a software emulation of a Layer 2 network switch with unlimited ports and a switched uplink that can connect to an external physical network through a physical network adapter or remain disconnected to create an isolated internal network. For each virtual network that you create in Hyper-V, a new software-based switch is created. In addition, each virtual network port simulates a 10-gigabit Ethernet port. Hyper-V supports an unlimited number of virtual networks with an unlimited number of ports for virtual machine connections.

Hyper-V provides three types of virtual networks: External, Private, and Internal. An external virtual network is used to provide connectivity to a physical network. When you create a new external virtual network, a virtual NIC is created in the Hyper-V parent partition with all the basic network bindings. The virtual NIC connects to a new virtual network switch, and the virtual network switch connects to the physical NIC that you select. If there are multiple physical NICs installed in a Hyper-V server, you can choose the one to bind to the new external virtual network. The physical NIC will have all network bindings removed with the exception of the Microsoft Virtual Network Switch Protocol. When a new virtual machine is connected to the external virtual network, a new network port is added to the virtual network switch.

An internal virtual network provides a means to allow virtual machines to communicate with the Hyper-V server, but it does not provide access to physical networks. In this case, a virtual NIC is again created in the Hyper-V parent partition and is connected to a port on a new virtual network switch. However, the new virtual network switch is not connected to any...
of the physical NICs installed in the Hyper-V server. When a new virtual machine is connected to the internal virtual network, a new network port is added to the virtual network switch.

A private virtual network allows multiple virtual machines to communicate with each other, but not with the Hyper-V server or with any host connected on an external physical network. Essentially, when you create a new private virtual network, a new virtual network switch is created, but no virtual NIC is created in the Hyper-V parent partition. As you add new virtual machine connections to the new virtual network switch, additional network ports are added to it.

All three types of virtual network can be created through the Hyper-V Manager MMC or using WMI.

Virtual Network Adapters

There are two types of supported virtual network adapters in Hyper-V: legacy (emulated) and synthetic. A legacy network adapter emulates a virtual Multiport DEC 21140 network adapter. Using a legacy network adapter will increase the processor overhead because device access requires context switching that is not required with the synthetic network adapter. A synthetic network adapter provides higher performance because virtual machine device access requests are made through the high-speed VMBus to the parent partition. In order to use a synthetic network adapter, the guest operating system in the virtual machine must support the installation of Integration Services.

Virtual machines support a maximum of four virtual legacy network adapters and eight synthetic network adapters. Only the legacy network adapter supports the Pre-boot Execution Environment protocol (PXE), allowing virtual machines to be provisioned using standard image-deployment tools such as Windows Deployment Services (WDS) or other third-party applications. This is the case because the synthetic network adapter is loaded only after the virtual machine has booted.

When a legacy network adapter is added to a virtual machine, you can define the virtual network to connect it to or leave the virtual machine disconnected from any virtual network. Hyper-V allocates a new dynamic media access control (MAC) address to the new virtual network adapter from its pool of available addresses. It is also possible to provide a virtual network adapter with a static MAC address that is manually configured. With Hyper-V, both legacy and synthetic network adapters provide support for virtual LAN (VLAN) identification.

IMPORTANT Although the virtual Multiport DEC 21140 network adapter defines a 10/100 megabit Ethernet interface, there is no network bandwidth limitation imposed on virtual machine workloads. If the underlying physical network adapter is capable of achieving higher network performance (for example, gigabit speed), the virtual machine workload has the ability to exceed the 100-megabit specification.
Using the Hyper-V Manager Console

The Hyper-V Manager MMC is installed when the Hyper-V role is configured in a full installation of Microsoft Windows Server 2008. It is the default graphical user interface that allows you to manage and configure Hyper-V servers and virtual machines. It is also available for Microsoft Vista with SP1 (x86 and x64) as a download from the Microsoft Web site.

NOTE If you are interested in running Hyper-V Manager on Microsoft Vista with SP1, it is available for download from http://support.microsoft.com/kb/952627.

The Hyper-V manager allows an administrator to manage multiple Hyper-V servers; however, it is meant to be the primary management tool only for small virtualization deployments. If you are deploying Hyper-V in a large or complex environment, you should use an enterprise-class management application like System Center Virtual Machine Manager.

You can launch Hyper-V Manager from the Start menu by selecting Hyper-V Manager from the Administrative Tools menu as shown in Figure 2-2. In a default full installation of Windows Server 2008, you can also invoke it using the Start menu Run option or from a command prompt by typing `C:\Program Files\Hyper-V\virtmgmt.msc`.

![FIGURE 2-2 Launching Hyper-V Manager from the Start menu](image)
As shown in Figure 2-3, the Hyper-V Manager console is divided into three sections. The left pane displays the tree view of managed Hyper-V servers. The center pane displays existing virtual machines and their state, as well as a tree view of existing snapshots and a minimized view of the virtual machine console when a virtual machine is selected. The right pane contains the list of actions available to manage the Hyper-V servers and virtual machines. The list of virtual machine actions is displayed only after a virtual machine is created or added on the Hyper-V server.

Managing Multiple Hyper-V Servers

Although the Hyper-V Manager allows only a single Hyper-V server to be managed at a time, it is a simple matter to connect to and switch the management focus to a different Hyper-V server. Figure 2-4 shows the Select Computer dialog box that is displayed when you right-click Hyper-V Manager in the left tree view pane and select Connect To Server. This dialog box is where you can specify the name or IP address of a Hyper-V server that you would like to manage.
In this dialog box, you also have the option to select Another Computer and browse for Hyper-V servers that you want to manage from your console.

Managing Virtual Machines

The Hyper-V Manager allows you to create, delete, export and import, or configure virtual machines on the managed Hyper-V server. You manage the virtual machines by selecting the desired management option and then providing or changing information through simple wizards.

Creating Virtual Machines

In order to create a new virtual machine, you can select the New option directly under the Hyper-V server name in the Actions pane and then choose the Virtual Machine menu option, as shown in Figure 2-5.
Hyper-V provides the New Virtual Machine Wizard, shown in Figure 2-6, to guide you through the process of configuring and creating a new virtual machine.

The wizard gathers basic information about the new virtual machine configuration, including the virtual machine name and storage location, memory to assign to the virtual machine, the virtual network to connect to the virtual machine, and whether you want to create a new virtual hard disk, use an existing virtual hard disk, or attach a virtual hard disk at a later time. Finally, you can specify the guest operating system installation options that include install-
ing the guest operating system later, installing the guest operating system from a boot CD or DVD-ROM, installing the guest operating system from a boot floppy disk, or installing a guest operating system from a network-based installation server. When you have made your selections, you will have an opportunity to review the settings and select whether or not to start the virtual machine after it is created.

When the information in the wizard is submitted to Hyper-V, a new virtual machine configuration file (.xml) that contains the settings information is created. The new virtual machine is registered and visible in the Hyper-V Manager; a new virtual hard disk is created, if specified; and a virtual network adapter is connected to the virtual machine. The new virtual machine is then ready to boot and install a new operating system or load an existing operating system.

Virtual Machine Export and Import

If you want to export a virtual machine, right-click the virtual machine in Hyper-V Manager or select the Export option from the Actions pane. You will then see the Export Virtual Machine dialog box shown in Figure 2-7. It is important to note that you can export only a virtual machine that is in a saved state or is powered off.

In the Export Virtual Machine dialog box, you can browse to specify the location to save the virtual machine export files. There is also an option to export only the virtual machine configuration file (.exp), but not other files, such as saved state files or VHDs.

After you have moved or copied the virtual machine export files and you are ready to import the virtual machine into Hyper-V, select the Import Virtual Machine option from the
Actions pane under the server name. As shown in Figure 2-8, you must enter the path to the export files in the Import Virtual Machine dialog box or browse to select it.

![Hyper-V Manager](image)

FIGURE 2-8 The Import Virtual Machine dialog box in Hyper-V Manager

You also need to decide whether or not to reuse the VM ID, which is the Global Unique Identifier (GUID) assigned when a new VM is created. If you are making a copy of an existing virtual machine, you should generate a new virtual machine ID and will leave this option unchecked. If you are moving a virtual machine or restoring a backup copy of a virtual machine, then you should reuse the old virtual machine ID.

NOTE If you select to reuse the old virtual machine ID and the original virtual machine is still present on the Hyper-V server, the import operation will fail because the virtual machine ID has to be unique.

When you import a virtual machine, it will be left in the import path location, and it will not be possible to move the virtual machine after import. Therefore, you should ensure that you move the exported virtual machine files to the destination storage location before you import the virtual machine.

Virtual Machine Snapshots

The Hyper-V snapshot feature allows you to capture the configuration and state of a virtual machine at any point in time and return it to that state without noticeable interruption. Hyper-V allows you to create a snapshot whether the virtual machine is running, in saved state, or powered off.
In order to create a snapshot of a virtual machine in Hyper-V Manager, right-click the virtual machine and select the Snapshot option from the menu, as shown in Figure 2-9.

![Figure 2-9 Creating a virtual machine snapshot using the Hyper-V Manager console](image)

Figure 2-9 illustrates the changes in the Hyper-V Manager console when the snapshot completes. The Snapshots section in the center pane now displays a tree structure that reflects the virtual machine snapshot hierarchy. The root node of the tree is the snapshot that was just created and includes the creation time stamp. Under the root node, there is a child named Now that represents the running version of the virtual machine.

![Figure 2-10 Snapshot display in the Hyper-V Manager console](image)
As you make changes to the configuration of a virtual machine, you can create and save additional snapshots. Figure 2-11 shows that another snapshot was generated after the initial one, and they are displayed in a parent and child hierarchy that also reflects the relationship of the differencing disks that are created for each snapshot to capture changes to the virtual machine operating system, applications, and data.

![Hyper-V Manager console](image)

Figure 2-11 Snapshot hierarchy display in the Hyper-V Manager console

If after making a series of changes to a virtual machine, you decide that you want to reload the previous snapshot, use the Hyper-V Revert option, as shown in Figure 2-12. After the Revert option is applied to a virtual machine, the resulting configuration and state of the virtual machine are returned to the settings saved in the snapshot files.

If you want to reload a snapshot that is two or more levels higher than the running virtual machine (represented by the Now marker in the Snapshot pane), you can right-click the snapshot and choose the Apply option from the menu, as shown in Figure 2-13.
Using the Hyper-V Manager Console

Figure 2-12 The Snapshot Revert Option in the Hyper-V Manager console

Figure 2-13 The Snapshot Apply option in the Hyper-V Manager console
If you decide that you no longer need a snapshot or snapshot subtree, Hyper-V provides two different Delete options (shown in Figure 2-14) to permanently remove one or more snapshots from the snapshot hierarchy.

![Hyper-V Manager Console](image)

FIGURE 2-14 The Delete Snapshot and Delete Snapshot Subtree options in the Hyper-V Manager console

You can choose to delete a single snapshot or a snapshot subtree, as you can see in the shortcut menu shown in Figure 2-14. Deleting a single snapshot will not affect other snapshots in the hierarchy; however, it will immediately delete the configuration file and save state files associated with the snapshot. Deleting a snapshot subtree immediately deletes the configuration and save state files associated with all the snapshots in the subtree.

Virtual Machine State

Virtual machine state can be changed through the Hyper-V Manager. Figure 2-15 shows the menu options that are available after you right-click a running virtual machine. The menu options will differ based on the state of a virtual machine. For example, if a virtual machine is in the Off or Saved state, the Start option will appear on the menu.
The virtual machine state options that you can change through the Hyper-V Manager are:

- **Start** Power on and boot a virtual machine
- **Turn Off** Noncontrolled power-off of a virtual machine (equivalent to pulling the power cord on a physical computer)
- **Shut Down** Controlled power-off of a virtual machine (requires Integration Services support)
- **Save** Stop virtual machine processing and save the memory and processor state to file
- **Pause** Suspend virtual machine processing
- **Resume** Restart virtual machine processing after pausing it
- **Reset** Noncontrolled restart of a virtual machine (equivalent to pushing the reset button on a physical computer)

Managing Virtual Machine Configurations

As shown in Figure 2-16, you can right-click a virtual machine and select Settings from the menu options to access the virtual machine settings in Hyper-V Manager.
Figure 2-17 shows an example of the virtual machine settings dialog box. The virtual machine hardware and management settings are displayed in the pane at left, divided by major component. The pane on the right displays the options that are available for each virtual machine hardware and management component.
Table 2-4 provides a list of virtual machine hardware configuration options and a description of the changes associated with each component.

TABLE 2-4 Virtual Machine Hardware Configuration Options

<table>
<thead>
<tr>
<th>CONFIGURATION OPTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Hardware</td>
<td>Allows the addition of synthetic SCSI controllers, synthetic network adapters, and legacy (emulated) network adapters to a virtual machine.</td>
</tr>
<tr>
<td>BIOS</td>
<td>Allows the configuration of the Num Lock state (on or off), and the startup order of the devices (CD, IDE, legacy network adapter, floppy) at boot time.</td>
</tr>
<tr>
<td>Memory</td>
<td>Allows the specification of the virtual machine memory allocation.</td>
</tr>
<tr>
<td>Processor</td>
<td>Allows the specification of the virtual machine logical processor allocation, resource control, and processor functionality.</td>
</tr>
<tr>
<td>IDE Controller 0</td>
<td>Allows the addition of virtual hard drives or DVD drives attached to the virtual machine through IDE Controller 0.</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>Allows the configuration of which virtual IDE or SCSI controller a hard drive is connected to and the position (location) where it is connected. Also provides access to the virtual hard drive management tools (compact, convert, expand, and so on), and allows the configuration of pass-through disks. Finally, allows removal of hard drives from the virtual machine.</td>
</tr>
<tr>
<td>IDE Controller 1</td>
<td>Allows the addition of virtual hard drives or DVD drives attached to the virtual machine through IDE Controller 1.</td>
</tr>
<tr>
<td>CD/DVD</td>
<td>Allows IDE-based CD/DVD drives to be attached to the virtual machine. The CD or DVD can be in the form of an ISO image or physical CD/DVD drive installed on the host. In addition, allows removal of CD/DVD drives from the virtual machine.</td>
</tr>
<tr>
<td>SCSI Controller</td>
<td>Allows the addition of virtual hard drives to the virtual machine that are connected using a SCSI Controller.</td>
</tr>
<tr>
<td>Legacy Network Adapter</td>
<td>Allows the addition, configuration, and removal of virtual network cards installed in the virtual machine. For each network adapter, you have options to specify the virtual network connection and whether the network adapter MAC address is assigned dynamically or statically. In addition, you can configure and enable virtual LAN (VLAN) identification.</td>
</tr>
</tbody>
</table>
Configuration Options

<table>
<thead>
<tr>
<th>Configuration Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Adapter</td>
<td>Allows the addition, configuration, and removal of synthetic network cards installed in the virtual machine. For each network adapter, you have options to specify the virtual network connection and whether the network adapter MAC address is assigned dynamically or statically. In addition, you can configure and enable virtual LAN (VLAN) identification.</td>
</tr>
<tr>
<td>COM 1 and COM 2 Ports</td>
<td>Allows for the connection of COM ports to or the disconnection of COM ports from the virtual machine. COM ports can connect to a named pipe on the local or remote computer.</td>
</tr>
<tr>
<td>Diskette Drive</td>
<td>Allows the virtual floppy disk drive to connect to an existing floppy disk image.</td>
</tr>
</tbody>
</table>

Table 2-5 provides a list of virtual machine management configuration options and a description of the changes that are associated with each component.

Table 2-5 Virtual Machine Management Configuration Options

<table>
<thead>
<tr>
<th>Configuration Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Allows the specification of a name for the virtual machine and a set of electronic notes about the virtual machine.</td>
</tr>
<tr>
<td>Integration Services</td>
<td>Allows the selection of the Integration Services components that Hyper-V will support for the virtual machine.</td>
</tr>
<tr>
<td>Snapshot File Location</td>
<td>Allows specification of the folder location used to store the snapshot files.</td>
</tr>
<tr>
<td>Automatic Start Action</td>
<td>Allows the configuration of the virtual machine start up action when the Hyper-V server starts. The action can be set to take no action, to start automatically if the virtual machine was running when the service stopped, or to always start the virtual machine automatically. In addition, there is an option to configure an automatic start delay to reduce resource contention between virtual machines.</td>
</tr>
<tr>
<td>Automatic Stop Action</td>
<td>Allows the configuration of the virtual machine stop action when the Hyper-V server shuts down. The action can be set to save the virtual machine state (saved state), turn off the virtual machine, or shut down the guest operating system. The Integrations Services component must be supported by the guest operating system.</td>
</tr>
</tbody>
</table>
Managing Virtual Hard Disks

The Hyper-V Manager allows you to create, inspect, and edit virtual hard disks and virtual floppy disks on the managed Hyper-V server. Just as a virtual hard disk is a single file representation of a physical hard disk, a virtual floppy disk is a single file representation of a physical floppy disk.

Creating Virtual Hard Disks

Virtual hard disk files are a main component of a virtual machine, encapsulating the guest operating system and application data. Within Hyper-V Manager, a virtual hard disk can be created separately from a virtual machine by clicking the New option in the Actions pane and selecting the Hard Disk option from the menu. Figure 2-18 shows the New Virtual Hard Disk Wizard that is launched. To create a virtual hard disk, you must define the virtual hard disk type (dynamically expanding, fixed size, or differencing), specify a name and storage location for the new VHD, and define the size of the new VHD. Optionally, you can specify to copy the contents of a physical disk to the new VHD.

![FIGURE 2-18 Creating a new virtual hard disk in Hyper-V Manager](image)

NOTE Details for each virtual hard disk type are provided in Chapter 3 and Chapter 5.

A virtual machine exposes a single virtual floppy drive to the guest operating system. A virtual machine does not allow the removal of the virtual floppy drive, nor does it support additional floppy drives to be connected. Hyper-V Manager allows only the creation of a 1.44-MB virtual floppy disk. The virtual floppy disk is created by clicking the New option in the Actions pane, selecting the Floppy Disk menu option, and then specifying the file name and storage location for the new virtual floppy disk.
Inspecting and Editing Virtual Hard Disks

If you select the Inspect Disk option in the Actions pane, Hyper-V Manager will prompt you to identify the targeted virtual hard disk. Hyper-V opens the virtual hard disk, obtains the current and maximum size settings as well as the virtual hard disk type, and displays the information, as shown in Figure 2-19.

![Figure 2-19 Inspecting a virtual hard disk in Hyper-V Manager](image)

If you select the Edit Disk option in the Actions pane, Hyper-V Manager will launch the Edit Virtual Hard Disk Wizard shown in Figure 2-20.

![Figure 2-20 Hyper-V Manager Edit Virtual Hard Disk Wizard](image)

After you select the targeted virtual hard disk and depending on the type of VHD that it is, a list of potential actions is displayed. Table 2-6 contains the list of potential actions that are available for each type of virtual hard disk.
Managing Virtual Networks

The Hyper-V Manager allows the creation, addition, and configuration of virtual networks on the managed Hyper-V server. Virtual networks allow virtual machines to connect to each other, the host, and other physical or virtual machines on a physical network.

Creating Virtual Networks

To create a new virtual network, click the Virtual Network Manager menu option in the Hyper-V Manager Actions pane. Hyper-V Manager launches the Virtual Network Manager shown in Figure 2-21.

To create a new virtual network, you must select one from the three types available: External, Internal, and Private. An external virtual network provides virtual machine connectivity to external physical networks. This type of virtual network must be bound to a physical network adapter installed in the Hyper-V server. An internal virtual network provides connectivity between virtual machines and the Hyper-V server but does not provide access to any physical networks. In other words, no packets from any attached virtual machines or the Hyper-V server are transmitted on a physical network. A private virtual network is even more restrictive than an internal one, as it provides connectivity only between virtual machines. There is no access to any physical networks or to the Hyper-V server.

TABLE 2-6 Virtual Hard Disk Edit Actions by VHD Type

<table>
<thead>
<tr>
<th>ACTION</th>
<th>VHD TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>Dynamically Expanding Differencing</td>
<td>Compact a dynamically expanding disk to regain unused space.</td>
</tr>
<tr>
<td>Convert</td>
<td>Dynamically Expanding Fixed Size</td>
<td>Convert a dynamically expanding disk to a fixed-size disk, or a fixed-size disk to a dynamically expanding disk.</td>
</tr>
<tr>
<td>Expand</td>
<td>Dynamically Expanding Fixed Size</td>
<td>Increase the storage size of the virtual hard disks.</td>
</tr>
<tr>
<td>Merge</td>
<td>Differencing</td>
<td>Merge the changes in a child disk into the parent disk or merge the parent and child disks into a new virtual hard disk.</td>
</tr>
<tr>
<td>Reconnect</td>
<td>Differencing</td>
<td>Reconnect a child differencing disk to a parent virtual hard disk.</td>
</tr>
</tbody>
</table>

If you choose to add a new External virtual network, you will have to specify a name for the new virtual network and select the physical network adapter to bind the virtual network. As shown in Figure 2-22, there is a drop-down menu in the New Virtual Network pane that allows you to choose the desired physical network adapter from the list of available adapters.
If you select a new Internal or Private virtual network, you would choose the Internal Only or Private Virtual Machine Network options in the Connection Type section, respectively.

If you select a new External or Internal virtual network, you can also choose to enable and configure a virtual LAN identifier (VLAN ID). A VLAN ID can be used to isolate the network traffic from different virtual machines connected to the same virtual network. Virtual machines with the same VLAN ID can communicate with each other but not with any other system configured with a different VLAN ID. VLANs are not supported for Private virtual networks.

Virtual Machine Connection Application

You can remotely access a virtual machine using the Virtual Machine Connection (VMC) application that is embedded in the Hyper-V Manager. As shown in Figure 2-23, to launch the VMC and connect to a virtual machine, double-click the thumbnail at the bottom of the Hyper-V Manager center pane or right-click the name of a virtual machine and select the Connect option from the shortcut menu.

![FIGURE 2-23 Connection to a virtual machine using VMC in Hyper-V Manager](image)

VMC essentially frames a remote desktop session within a Hyper-V specific GUI and allows connection to a virtual machine for administrative or functional purposes. An example of a VMC is shown in Figure 2-24. The VMC GUI provides much of the functionality available in Hyper-V Manager to manage virtual machines. This includes providing actions to change the virtual machine state (e.g., Start, Turn Off, Save, and so on), access virtual machine settings, manage snapshots, manipulate the bindings of the virtual DVD and floppy disk drives to different media, and provide an option to install Integration Services.
The VMC allows client remote access and interaction with a virtual machine from the moment the virtual machine is powered on.

Managing Hyper-V Settings

The Hyper-V Manager also provides the ability to configure Hyper-V settings. Figure 2-25 shows the Hyper-V Settings dialog box that is displayed when you select the Hyper-V Settings option in the Actions pane menu.

There are two sets of Hyper-V settings that you can modify: Server and User. The Server settings allow you to specify the default folder location to store the virtual hard disk files and virtual machine configuration files. The User settings provide several options. The Keyboard component allows you to set the focus of Windows key combinations to either the physical server or a virtual machine. The Mouse Release Key provides you with a way to set the key combinations to use when Integration Services are not installed or supported in the guest operating system. The User Credentials allow you to specify whether the Virtual Machine Connection should automatically use your default credentials to connect to a running virtual machine. The Delete Saved Credentials component allows you to delete the credentials that you used to connect to a running virtual machine. Finally, the Reset Check Boxes feature allows you to restore default settings for Hyper-V confirmation messages and wizard pages hidden by selecting certain check boxes.
Outlining the WMI API

Hyper-V provides an extensive and powerful WMI API that can be used to programmatically control and monitor Hyper-V as well as automate deployment and management of virtual machines. All of the features offered in Hyper-V Manager can be reproduced as scripts that leverage this development interface.

Scripts and self-developed applications can be created using a variety of languages, including C#, Perl, C++, or Visual Basic, to name just a few popular alternatives. Scripts can be executed using Microsoft Windows PowerShell, which provides you with the ability to run commands in a Windows Shell and immediately see the results.

NOTE The Hyper-V WMI API is discussed in detail in Chapter 16, “Hyper-V Management Using Windows PowerShell.” Chapter 16 contains many scripts that you can use or modify to use in your environment.
Summary

Hyper-V provides many features, including virtual machines that expose a standard virtual hardware environment to their guest operating system and applications. Becoming familiar with the virtual hardware environment and new synthetic device model in Hyper-V is crucial to making competent decisions concerning physical workloads that can successfully be redeployed as virtual machines.

Creation, inspection, and configuration of the main components of virtual machines, including virtual hard disks and virtual networks, can be accomplished through the Hyper-V Manager. You can also use the Hyper-V Manager to configure Hyper-V Settings.

Use the Virtual Machine Connection application from within Hyper-V (or as a stand-alone application) to access and manipulate virtual machines remotely from the moment they become active. If you anticipate having or already have a significant deployment of Hyper-V servers and virtual machines, leverage the WMI API to programmatically control the deployment, administration, and configuration of Hyper-V servers and virtual machines, or use System Center Virtual Machine Manager.

Additional Resources

The following resources contain additional information related to the topics in this chapter:

CHAPTER 8

Moving from Virtual Server 2005 R2 to Hyper-V

- Considerations Before Migrating a Virtual Server 2005 R2 Host to Hyper-V 311
- Migrating a Virtual Server 2005 R2 Host to Hyper-V 313
- Considerations Before Migrating Virtual Machines 316
- Migrating Virtual Machines 318
- Summary 330
- Additional Resources 330

Moving from Virtual Server 2005 R2 SP1 to Hyper-V involves migrating both the Virtual Server host and the virtual machines. Because of the change in architecture, it is not a simple process—you can’t perform an upgrade in place to make this move. Rather, the host and virtual machine migrations must be done separately. It is not a terribly difficult process, but the multiple steps involved in the migration must be performed in the correct order. This chapter will provide you with guidance about what should be moved, how to move it, when to move it, and other important considerations you need to be aware of during the process.

Considerations Before Migrating a Virtual Server 2005 R2 Host to Hyper-V

Virtual Server 2005 R2 SP1 is a hosted virtualization solution that runs on top of the operating system, and Hyper-V is a hypervisor that runs under the operating system. Because this is a significant change in architecture between Virtual Server 2005 R2 SP1 and Hyper-V, there is no option to perform an in-place upgrade of a Virtual Server 2005 R2 SP1 to Hyper-V.

The goal of the migration should be to get the Virtual Server host and virtual machines migrated with minimum impact and downtime. The best way to accomplish this is to migrate to new server hardware. This allows you to install Windows Server 2008
Moving from Virtual Server 2005 R2 to Hyper-V

312

CHAPTER 8 Moving from Virtual Server 2005 R2 to Hyper-V

and the Hyper-V role or Microsoft Hyper-V Server 2008, configure the machine for the migration, and properly optimize the configuration following the guidelines provided in Chapter 7, “Hyper-V Best Practices and Optimization.” After you have optimized the installation, the virtual machines can be migrated from the Virtual Server 2005 R2 SP1 server to the new Hyper-V server.

Maintaining Virtual Server 2005 R2 Hosts

Although you might be tempted to migrate off all Virtual Server 2005 R2 SP1 hosts, it is a good idea to keep Virtual Server around for certain guest operating systems. Virtual Server 2005 R2 SP1 provides support for the following guest operating systems that Hyper-V does not support:

- Windows NT Server 4.0 with Service Pack 6a
- Windows XP SP2 (for Virtual Server 2005 R2 only)
- OS/2 4.5
- Red Hat Enterprise Linux 2.1 (update 7)
- Red Hat Enterprise Linux 3.0 (update 8)
- Red Hat Enterprise Linux 4.0 (update 4)
- Red Hat Enterprise Linux 5.0
- Red Hat Linux 9.0
- SuSE Linux 9.3
- SuSE Linux 10.0
- SuSE Linux 10.1
- SuSE Linux 10.2

If you have virtual machines running any of these guest operating systems, we would recommend keeping them on Virtual Server instead of moving them to Hyper-V.

Wireless Networking Support

Virtual Server 2005 R2 SP1 provides support for wireless networks to be used for binding virtual networks. Hyper-V does not implement direct attachment of external virtual networks to wireless network adapters because Hyper-V adheres strictly to the 802.11 specifications, and those specifications do not allow wireless networks to modify the MAC address.

Server Hardware Support

You must evaluate your hardware before upgrading to Hyper-V to manage your virtual machines. The hardware you are planning to use for the Hyper-V server must be 64-bit and must provide hardware virtualization extensions enabled for the Hyper-V installation to be completed successfully. Since you cannot upgrade an existing Virtual Server 2005 R2 SP1...
server directly to Hyper-V, either you must provide new server hardware, or the existing hardware must meet the recommended minimum Hyper-V hardware specifications to be reused.

Minimizing Downtime

When you migrate virtual machines from Virtual Server to Hyper-V, the virtual machines must be powered off for the migration. This will cause a period of downtime for the individual virtual machines. In addition, depending on the approach you take during the migration of the Virtual Server host, the host also could experience downtime that will result in downtime for all the virtual machines. Therefore, you should determine how much downtime is acceptable for the host and the virtual machines before you choose the host migration approach.

Migrating a Virtual Server 2005 R2 Host to Hyper-V

Migrating from Virtual Server 2005 R2 SP1 to Hyper-V is a multistep process, but the steps may vary based on the current configuration of your Virtual Server host. From previous chapters, you know that to run Hyper-V, you must have either Windows Server 2008 64-bit or Microsoft Hyper-V Server 2008. Unless the current Virtual Server 2005 R2 SP1 installation is running on the Windows Server 2008 64-bit operating system, you will first need to create a new installation of Windows Server 2008 x64 or Microsoft Hyper-V Server 2008.

If the Virtual Server host is currently running on Windows Server 2008 x64, it is possible to back up the host, uninstall Virtual Server, install the Hyper-V role, and then migrate the virtual machines. This method allows you to use the same hardware during the migration without having to copy virtual machine files to another computer, but it requires the existing Virtual Server and the virtual machines to be taken offline, so users will experience downtime. It also means that if something goes wrong, the recovery process will not be quick or painless. To minimize downtime on the host and the virtual machines, a better approach is to build a new Hyper-V server and migrate the virtual machines to the new server. You will gain several advantages by using this approach:

- The flexibility to migrate virtual machines when needed
- The ability to size the hardware to meet the requirements
- No downtime for the existing Virtual Server host
- The consolidation of multiple Virtual Server hosts to a single Hyper-V server or cluster of hosts

In addition, if something goes wrong during the migration process, the virtual machines still exist on the Virtual Server host and can be rebooted quickly.

The host migration process discussed in the following sections focuses on the side-by-side migration approach versus the migrate-in-place approach. The steps in the process include developing the specification for the Hyper-V server hardware, building the Hyper-V servers, and migrating the configuration. When you have completed the migration, you will be able to add any new features or capabilities available in Hyper-V.
Developing the Hyper-V Server Specification

The first step in the process is discovering and documenting the configuration of the Virtual Server 2005 R2 SP1 environment so that you can determine the minimum required Hyper-V hardware configuration. This involves determining the current hardware specification for memory, disk storage, networking, and processor. In addition, collect the number of virtual networks currently configured on the Virtual Server host. When you have collected this information, you can start developing the Hyper-V server specification. Use the following guidelines to determine the specification.

Hyper-V memory configuration should include memory reserved for the parent partition—typically a minimum of 1 gigabyte (GB) of RAM, virtual machine memory—the size of the memory of each virtual machine plus overhead calculated by adding 32 MB for the first gigabyte (GB) of RAM and then 8 MB for each additional gigabyte of RAM, and memory for the predicted number of concurrent VMConnect.exe sessions on the host at 20 MB each. It is always a good idea to add additional memory for expansion for temporary purposes (1 to 2 GB of RAM). At a minimum, you should make sure the Hyper-V server has as much memory as the current Virtual Server host.

Disk storage can involve many choices, including disk drive speed, disk drive size, RAID configuration, controller cards, and so on. Focusing on just the amount of storage you will need, the server requires space for the parent partition operating system; space for each virtual machine’s virtual hard disk (VHD), the maximum defined size of the VHD; space for saved-state files, which will vary based on the amount of RAM in the virtual machine; space for snapshots, which will vary based on the number of snapshots planned; and space for additional files such as CD or DVD images. At a minimum, you will need the amount of storage space that is currently used on the Virtual Server host, plus additional space for snapshots if you plan to use them.

Networking configuration involves the needs of the parent partition, interfaces for iSCSI communications, interfaces for clustering if the Hyper-V server is a member of a host cluster, and interfaces for the required number of virtual networks. The Hyper-V server should include a minimum of one 1-gigabit Ethernet card reserved for parent partition management purposes, one 1-gigabit Ethernet card for iSCSI communications (if iSCSI will be used), two 1-gigabit Ethernet cards for cluster communications (if a member of a host cluster), and one 1-gigabit Ethernet card for each required external virtual network.

NOTE Virtual Server allowed multiple virtual networks to be configured to a single network interface card, but Hyper-V allows only a single virtual network to be bound to a network interface card.

Processor configuration involves the needs of the parent partition, each virtual machine, and reserve for unexpected peaks in performance. The Hyper-V parent partition should have a minimum of one processor core reserved for its use to manage shared parent partition resources; each virtual machine should have a minimum of a single processor core; and a re-
serve amount of processing (one or more cores) should be included for peaks in performance and possible expansion. Virtual machines in Virtual Server 2005 R2 SP1 could have only a single processor. With Hyper-V, each virtual machine can have up to four virtual processors (depending on the operating system). If any virtual machines currently running under Virtual Server are utilizing high amounts of processing power, there is an opportunity to add virtual processors during the migration. Be sure to account for any additional processors you may need during the sizing process.

Installing Hyper-V

When you have identified the Hyper-V configuration you will require and have purchased and assembled the hardware, you are ready to install Hyper-V on the system. Chapter 4, “Hyper-V Installation and Configuration,” goes into detail about how to install Hyper-V on the hardware and outlines the post-installation configuration changes that you should make.

Migrating Virtual Networks

After you have completed the default installation and optimization, you are ready to migrate the current configuration of the Virtual Server 2005 R2 SP1 virtual networks to the Hyper-V server. This is a manual process and involves recreating the required virtual networks that existed on the Virtual Server host on the Hyper-V server. In order to do this, you must determine the mapping of the existing virtual networks to physical adapters or loopback adapters (in the case of internal networks). When you have identified the mapping, collect the TCP/IP settings for the network adapter so that the subnet can be identified. This will allow you to determine which physical network adapter must be used in the Hyper-V server when the external virtual networks are recreated or how many internal or private virtual networks must be created.

The next step is recreating the external virtual networks on the new Hyper-V server to the correct physical network adapter using the mapping you identified. Although the virtual network name does not have to be the same as it was on the Virtual Server host, it is a good idea to use the same name to minimize any confusion. After the external virtual networks are completed, recreate any required internal or private virtual networks.

NOTE You no longer have to add a loopback adapter to get guest-to-parent partition communications internal to the Hyper-V server. An internal network provides this functionality. For each Virtual Server network that was created using a loopback adapter, create an internal virtual network in Hyper-V.

If the Hyper-V server was configured with additional physical network adapters to expand the number of available external virtual networks, now is the time to configure these. Remember to use the established naming convention for virtual networks.
BEST PRACTICE Dedicate a network adapter for parent partition communications by not binding it to any external virtual network.

BEST PRACTICE For any external virtual network you create, you must disable the parent partition virtual LAN adapter that was created so that the external virtual network is dedicated for virtual machine communications only.

Considerations Before Migrating Virtual Machines

Hyper-V does not provide the ability to import virtual machines that exist on a Virtual Server 2005 R2 SP1 host; you must migrate the virtual machines manually. The building blocks of a virtual machine in Virtual Server 2005 R2 SP1 and Hyper-V are basically the same, a virtual hard disk and a configuration file. The virtual hard disk has not changed and can be easily migrated from Virtual Server to Hyper-V. The configuration file has completely changed, however, and Microsoft does not provide a tool to migrate the settings from the old format to the new format.

Boot Disk Configuration

Virtual Server 2005 R2 SP1 virtual machines could be attached to the virtual SCSI adapter and the virtual machine would boot in this configuration (it was a recommended configuration for best performance). This was possible because the SCSI adapter was emulated and available at boot time. Hyper-V virtual machines cannot boot from the SCSI adapter, however, because it is synthetic, and synthetic devices are not available immediately at boot time. Therefore, virtual machines that are currently configured to boot from SCSI in Virtual Server must be converted to boot from IDE as part of the migration to Hyper-V.

NOTE Unlike Virtual Server IDE–attached virtual hard disks, IDE-attached virtual hard disks in Hyper-V perform almost on par with SCSI-attached virtual hard disks.

Virtual Machine Additions

Virtual Server 2005 R2 SP1 uses enhanced drivers to provide emulated devices and to improve performance in a virtual machine. Hyper-V uses something similar to provide synthetic devices and performance enhancements to virtual machines. The architecture and interfaces between these two technologies are not compatible; therefore, you must remove Virtual Machine Additions as part of the process of migration to Hyper-V. Although it is possible to remove the additions after you have migrated the virtual machines to Hyper-V, your ability to do this depends on the version of Virtual Machine Additions that is installed. The better
Considerations Before Migrating Virtual Machines

Chapter 8

Considerations Before Migrating Virtual Machines

A common approach, which will work regardless of the version installed, is to uninstall Virtual Machine Additions prior to migrating to Hyper-V.

Undo Disks

The Undo disk feature in Virtual Server 2005 R2 has been removed in Hyper-V and replaced with a more powerful feature called *snapshots*. You cannot migrate Undo disks to Hyper-V; they must be discarded or committed prior to migrating the virtual machine hard disk to Hyper-V.

Saved States

Virtual Server 2005 R2 SP1 and Hyper-V both have the ability to save the state of a running virtual machine to disk. The concept is similar to hibernation. In Virtual Server 2005 R2, the saved state file was a single file (.vsv) that contained the contents of memory and information on running processes, threads, and the processor stack. Hyper-V has split the save state file into two parts: the memory contents (.bin) and the stack and process information (.vsv). Because of this change, saved states cannot be migrated and must be merged or discarded before the migration can occur.

Hardware Abstraction Layer Differences

Virtual machines running in Virtual Server 2005 R2 can have only a single virtual processor. Hyper-V provides the ability for a virtual machine to be configured with up to four virtual processors. This presents an issue with hardware abstraction layer (HAL) compatibility. Hyper-V virtual machines require a multiprocessor Advanced Configuration and Power Interface (ACPI) HAL. Virtual Server 2005 R2 virtual machines can have ACPI or non-ACPI HALs based on how they were created and what version of additions are loaded. Regardless of which HAL the existing virtual machine has, the HAL must be changed during the migration of the virtual machine to Hyper-V. For instructions on changing the HAL for Vista and Windows 2008 virtual machines, go to http://technet.microsoft.com/en-us/library/dd296684.aspx.

Differencing Disks

Both Hyper-V and Virtual Server 2005 R2 support differencing disks, and the technology has not changed. Differencing disks require that the parent and the child retain the same relative path when they are moved on the same machine or between machines. The relative path to the parent VHD is stored in the disk header of the child VHD. If a child VHD is copied and the parent is not, or if the relative path is not maintained between the two files, the child VHD will not have all the information it requires and the differencing disk will not be usable.

Note During migration, you may want to modify the directory structure of how the virtual machines are stored. If the directory structure change breaks the differencing disk relative path, you can repair the virtual hard disk using the Inspect Disk feature in the Hyper-V Manager MMC console.
Shared SCSI Virtual Machine Clusters

Virtual Server 2005 R2 virtual machine–emulated SCSI controllers provided a mode called shared SCSI (a parallel SCSI bus). Enabling shared SCSI on the controller allowed a Windows Server 2003 cluster to be built between virtual machines. Hyper-V has switched to a synthetic SCSI controller and removed the ability to put the SCSI controller into parallel SCSI bus mode. You can still create a cluster between virtual machines in Hyper-V, but you must use an iSCSI Initiator to attach remote iSCSI LUNs to the virtual machines. Virtual Server–based virtual machine clusters must be manually migrated to Hyper-V.

Migrating Virtual Machines

The following sections will guide you through a process that will enable you to migrate virtual machines from Virtual Server 2005 R2 SP1 to Hyper-V. Not all of the steps provided in the process will be required for your Virtual Server installation, depending on what features you are using from Virtual Server. The process includes the following tasks:

- Determine compatibility with Hyper-V.
- Convert SCSI boot to IDE boot.
- Remove Virtual Server Additions.
- Remove network interface cards.
- Commit or discard all Undo drives.
- Merge or discard saved states.
- Merge all differential disks.
- Check the hardware abstraction layer (HAL).
- Copy the virtual hard disk to the new Hyper-V server.
- Create a new virtual machine using existing VHD.
- Install Integration Services.

Determine Compatibility

Before you migrate a virtual machine, you should determine if it contains a supported operating system, and if the applications running in the virtual machine are supported by the independent software vendor (ISV) for production use on Hyper-V. Compare the operating system with the Hyper-V–supported guest operating systems and be sure to match product versions and service pack levels.
Convert SCSI Boot to IDE Boot

We have already discussed that Hyper-V does not support booting from the synthetic SCSI controller. So before you can migrate a Virtual Server 2005 R2 virtual machine that currently boots from a SCSI adapter to Hyper-V, you must convert it to boot from the IDE controller. Follow these steps to migrate the boot disk from a SCSI controller to an IDE controller:

1. Launch the Virtual Server Administrative Web console.
2. Select Configure from the Virtual Machines menu and then select the virtual machine name from the list.
3. From the Configuration menu options, select Hard Disks to display the Virtual Hard Disk Properties page, which shows the current configuration of all the hard disks for the virtual machine (see Figure 8-1).

![FIGURE 8-1 Virtual Hard Disk Properties page]

4. To convert the virtual hard disk so that it boots from the primary IDE controller (ID 0) instead of the SCSI controller (ID 0), select Primary Channel (0) from the Attachment drop-down list, as shown in Figure 8-2.

![FIGURE 8-2 Virtual hard disk with Primary IDE channel (0) selected]

5. To save the change, click OK.
DIRECT FROM THE SOURCE

Migrate VHD from SCSI to IDE Controller
Tony Soper, Senior Technical Writer
Windows Server Technical Writing Team

If you standardized attaching VHDs to SCSI controllers as most people did for performance reasons, manually migrating them to IDE controllers can be time-consuming. Following is a script that can help automate that process. Save this script as SCSI2IDE.vbs and run it with a command-line option to indicate the virtual machine for which you want to reconfigure the boot disk to use IDE instead of SCSI.

ON THE COMPANION MEDIA This script is included on this book’s companion media, in the Scripts\Chapter 8 folder.

Option Explicit

dim id, rtn
dim objVS, objVM, objHardDisk
dim colArgs, colVMs
dim hdskConnections
dim objhdskConnection
dim strFile

Set objVS = CreateObject("VirtualServer.Application")
set colVMs = objVS.VirtualMachines
set colArgs = wscript.Arguments

id = 0

For Each objVM in colVMs
 If objVM.Name = colArgs.item(0) then
 set hdskConnections = objVM.HardDiskConnections
 For Each objhdskConnection In hdskConnections
 set objHardDisk = objhdskConnection.HardDisk
 strFile = objHardDisk.File
 wscript.echo "VM Disk File" & strFile
 If objhdskConnection.BusType = 1 Then
 rtn = objhdskConnection.SetBusLocation (0,0,id)
 id = id+1
 End If
 Next
 End if
Next

Next
NOTE You should make sure all the virtual machines are powered off on the Virtual Server host prior to running the previous script.

Remove Virtual Machine Additions

Virtual Server 2005 R2 SP1 Virtual Machine Additions are not compatible with the Hyper-V architecture and will not work properly with it. Although it is possible to remove Virtual Machine Additions version 13.813 or newer from within a migrated virtual machine, a less risky approach is to remove the additions prior to migrating the virtual machine.

Follow these steps to remove Virtual Machine Additions:

1. Power on the virtual machine and log in with administrative privileges.
2. In the virtual machine, open Control Panel and then double-click Add Or Remove Programs or Programs And Features (depending on the operating system version).
3. Select Virtual Machine Additions and then select Remove, or right-click and select Uninstall (depending on the operating system version).
4. Click Yes in the confirmation dialog box that appears.
5. After you have successfully removed Virtual Machine Additions, restart the virtual machine.

Remove Emulated Network Interface Cards

Virtual Server 2005 R2 SP1 virtual machines have a single network interface card installed inside the virtual machine by default. The network interface card emulates an Intel 21140 adapter. In Hyper-V, the default networking interface card is not the legacy network adapter (which also emulates an Intel 21140 adapter), but instead is the synthetic network adapter. If you attempt to move a virtual machine with the emulated Intel 21140 adapter still installed, the network adapter will become a hidden device. You can install Hyper-V Integration Services and all will seem to be fine, but if the emulated Intel 21140 adapter had a static IP address assigned, any attempt you make to reassign that static IP address to the new synthetic network adapter will result in a warning box that says the IP address is already in use.

Follow these steps to remove the network adapter from the virtual machine:

1. Power on the virtual machine.
2. Log in with administrative permissions.
3. Open Control Panel and double-click Device Manager.
4. Expand the Network Adapters node.
5. Right-click the Intel 21140 adapter listed and select Uninstall.
6. Shut down the virtual machine.

When you migrate the virtual machine to Hyper-V, a synthetic adapter will be installed. The network adapter might not function until you install the Integration Services, however.
NOTE The synthetic network adapter in Hyper-V does not support boot from pre-execution environment (PXE). To enable PXE boot, you must use a legacy adapter.

Commit or Discard Undo Disks

Virtual Server 2005 R2 provided a disk mode that would write all changes to a separate file. This mode, called Undo, allowed you to perform what-if changes to the disk without fear that the changes had to be permanent. Undo disks were not very flexible if you needed to perform multiple what-if scenarios, however, so in Hyper-V the technology was replaced with snapshots. This means that any Undo disks in Virtual Server virtual machines must be discarded or committed to the virtual hard disk prior to migrating it to Hyper-V.

If a virtual machine is configured to use Undo disks but does not currently have an active Undo disk, then you do not need to perform any additional steps. If you do need to commit or discard an Undo disk, the procedures are slightly different depending on whether the virtual machine is currently powered on or not.

Follow these instructions for committing or discarding the Undo disks for a virtual machine that is currently powered on:

1. Shut down the virtual machine.
2. Select Turn Off Virtual Machine And Commit Undo Disks to commit the Undo disk if you want to merge the current changes into the virtual hard disk, or select Turn Off Virtual Machine And Discard Undo Disks to discard the changes to the Undo disk if you do not want to merge the changes.

Follow these instructions for committing or discarding the Undo disks for a virtual machine that is currently powered off:

2. On the Master Status page, find the appropriate virtual machine in the list of virtual machines and click the arrow to display the actions menu.
3. Figure 8-3 displays the menu options available. Select Merge Undo Disks or Discard Undo Disks from the menu.

FIGURE 8-3 Undo Disk actions menu for a virtual machine
Migrating Virtual Machines

Restore or Discard Saved States

Virtual Server 2005 R2 saved states are not compatible with Hyper-V saved states, so the virtual machine must be powered on and shut down properly, or the saved state must be discarded. If the virtual machine is currently powered on, perform a shutdown from within the virtual machine and do not select to save the state.

Follow these instructions for discarding the saved state for a virtual machine that is currently powered off:

2. On the Master Status page, find the appropriate virtual machine in the list of virtual machines and click the arrow to display the actions menu.
3. Figure 8-4 displays the menu options available. Select Restore From Saved State or Discard Saved State from the menu.

![Figure 8-4](image)

FIGURE 8-4 Saved State actions menu for a virtual machine

4. If you select to restore the saved state, after the virtual machine is restored, perform a shutdown.
5. If you select to discard the saved state, then no further actions are required.

Merge Differential Disks

Differential disks allow you to save space by creating a dependent chain of virtual hard disks. This eliminates the need to duplicate copies of data. If you are migrating all virtual machines that contain differencing disks from a Virtual Server 2005 R2 host to the same Hyper-V server, then you do not have to merge the differencing disks. You will need to maintain the same relative path on both hosts, however, or you will need to repair the parent-child links.

If you are planning to migrate virtual machines that depend on the same differencing disk to different Hyper-V servers, then you must merge the differencing disks to break the dependency.

Follow these instructions for merging a virtual machine differencing disk:

1. Shut down the virtual machine with the differencing disk.
3. On the Master Status page, select Inspect Disk from the Virtual Disks menu.
4. Specify the virtual hard disk that has a parent that needs to be merged (as shown in Figure 8-5) and click Inspect.
5. The Properties and Actions will be displayed as shown in Figure 8-6. Select Merge Virtual Hard Disk from the Actions menu to merge the parent and child virtual hard disks.

6. The Merge Virtual Hard Disk page is displayed (as shown in Figure 8-7). Select Merge To New Virtual Hard Disk and specify the full path to the new virtual hard disk that will be created as a result of the merge operation. Optionally, you can specify the type of virtual hard disk to be created—dynamic or fixed.

7. When you have selected all the appropriate options, click Merge. The resulting merged virtual hard disk is the file that you will migrate to the Hyper-V server.
Check the Hardware Abstraction Layer

Hyper-V uses a multiprocessor APCI hardware abstraction layer (HAL). Although you would probably be prompted for the upgrade of HAL when you install Integration Services, it is best to prepare the machine for HAL detection prior to the migration so that it properly detects and updates the HAL.

Follow these steps to change the HAL prior to migrating the virtual machine:

1. Power on the virtual machine.
2. Log in with administrative permissions.
3. Run the System Configuration utility (MSConfig.exe) by clicking Start, clicking Run, typing `msconfig`, and then clicking OK.
4. Click the Boot tab and then select Advanced Options.
5. Select the Detect HAL check box, click OK, and then shut down the virtual machine.

Complete the Migration

After you have performed all the required pre-migration steps, the last tasks involve copying the virtual hard disk from the Virtual Server 2005 R2 server to the new Hyper-V server and creating a new virtual machine using that virtual hard disk.

Follow these steps to create a new virtual machine:

1. On the Hyper-V server, create a folder to hold the new virtual machine on a drive other than the system drive. Use the name of the virtual machine as the folder name (for example, D:\VMs\NEWVM).
2. Copy the virtual hard disk from the Virtual Server 2005 R2 host to the new directory.
3. Open the Hyper-V Manager MMC console.
4. Select New from the Actions menu and then select Virtual Machine. The New Virtual Machine Wizard will start. Click Next.
5. Specify the name of the virtual machine (use the same name as the directory you created) in the Name text box.
6. Select the check box that says Store The Virtual Machine In A Different Location and enter the path to the directory above the virtual machine folder you created (that is, enter D:\VMs for the example shown previously) in the Location text box, as shown in Figure 8-8. Click Next.

This will allow the wizard to use the directory you created for all the virtual machine files.
7. On the Assign Memory page, specify the amount of RAM the virtual machine requires and click Next.

8. On the Configure Networking page, select a virtual network to attach to the virtual machine and click Next.

9. On the Connect Virtual Hard Disk page (shown in Figure 8-9), select the Use An Existing Virtual Hard Disk option, and specify the path to the virtual hard disk (such as D:\VMs\NEWVM.VHD), and then click Next.

The virtual machine will power on.

11. At the login screen that will display after the virtual machine is booted, log in with administrative permissions.

12. On the VMConnect Actions menu, click Insert Integration Services Setup Disk. This should start the installation of Integration Services for the virtual machine. Complete the installation and reboot the virtual machine.

The virtual machine is now migrated to Hyper-V.
The tool shows several tabs related to the Virtual Machine Properties. The Processor tab allows you to specify the number of logical CPUs, the Resource Control, and Processor Functionality. The Drives tab (shown in Figure 8-11) shows the virtual disk drives such as floppy drives, CD/DVD ROM drives, and virtual hard disks, as well as their locations (IDE/SCSI and device ID).

In the case of a virtual machine that booted from SCSI under Virtual Server, the VMC2HV tool offers you the option to swap the SCSI disk at location 0 with IDE at location 0.

The Networking tab (shown in Figure 8-12) shows the number of network adapters and allows you to set them to Legacy; under Virtual Server, an adapter is always an emulated Dec/Intel adapter. By default, VMC2HV creates a synthetic adapter (which is also the default with Hyper-V). The tool also allows you to specify which virtual network and which VLAN you want the adapter to connect to.

Special features include recognizing the guest operating system and limiting the number of logical processors, if applicable (according to support policy), and warning you if the virtual hard disks cannot be found at the current location. Any new paths for virtual hard disks can be edited using the VMC2HV tool, which is available as a download from http://blogs.technet.com/matthts/.
FIGURE 8-11 The Drives tab of Virtual Machine Properties in VMC2HV

FIGURE 8-12 The Networking tab of Virtual Machine Properties in VMC2HV
Summary

Migrating virtual machines from Virtual Server 2005 R2 to Hyper-V involves migrating both the configuration of the host and the virtual machines themselves. In this chapter, we discussed what you need to consider prior to migrating the host and the virtual machines. A key decision you must make before migrating the host involves determining if there are any virtual machines using operating systems that are not supported on Hyper-V, in which case you should maintain a Virtual Server host.

The chapter provided you with the important considerations and the steps for preparing the virtual machine hard disk for migration. These included dealing with hardware differences (SCSI controllers, network adapters, and HAL), cleaning up the virtual hard disk (Undo, saved state, and differencing disks), and removing Virtual Machine Additions. After the host is migrated, you learned that you can create a new virtual machine using the existing virtual hard disk, and then you must install Integration Services to provide support for synthetic devices and improve performance.

Additional Resources

The following resources contain additional information related to the topics in this chapter.

- VMC2HV Migration Tool, a resource for simplifying the migration process, available at http://blogs.technet.com/matthts/
Index

A

access control, Authorization Manager for, 33
activation, of Hyper-V host, 138
active differencing virtual hard disks (VHDS), 176
central management of, 265
forests of, 656–657
Active Directory Application Mode (ADAM), 242
Active Directory domain controllers backup and recovery of, 489–490
online physical to virtual migration and, 520–526
Active Directory Domain Services (AD DS), 32, 240
Active Directory Group Policy, 343, 497
Active Directory Lightweight Directory Services, 32
Active Directory Service Marker (ADSM), 77–78
Active Directory Services Interface (ADSI), 667, 670
Active Directory Sites and Services Microsoft Management Console, 657
Active Directory Topology Diagrammer (ADTD), 670–671
Active Directory Users and Computers (ADUC), 383
ActiveX Data Objects (ADO), 670
Additions, Virtual Machine, 321, 492
Address Space Identifier (ASID), 5
address space translation, 341
address spoofing, MAC, 344–345, 365
Add-VDisk command-line parameters, 583–584
Add-VMDrive command-line parameters, 582
Add-VMNewHardDisk command-line parameters, 587–588
Add-VMNic command-line parameters, 583–584
Administration workspace, in SCOM 2007, 540, 543
Administrative Console, of SCVMM, 446, 452–453, 472
Advanced Configuration and Power Interface (ACPI), 317, 325, 342–343
advanced programmable interrupt controllers (APICs), 70
agents backup methods based on, 489
in online physical to virtual migration, 519
management packs and, 373
of System Center Data Protection Manager 2007 SP1, 497–502
of System Center Operations Manager 2007, 552–556
of Virtual Machine Manager, 364, 456
aggregation, in data center virtualization, 599
Alinean Value Base of IT metrics, 651
Alinean, Inc., 649
AMD NX (no execute) bit, 31, 332
AMD-V architecture of, 5
Hyper-V supported by, 31
installation with, 106
I-O virtualization technology of, 8
rapid virtualization indexing of, 6
antivirus software, 278–279
Application Programming Interface (API) Citrix hypercall, 13
Hyper-V hypercall, 13, 71
input-output control (IOCTL), 83
Windows Management Instrumentation (WMI), 44, 67
application stack, privileges of, 13
application virtualization, 619, 625–626
application-level virtualization, 3, 15–17
Apply-VMSnapshot command-line parameters, 592
architecture, 69–102
AMD-V, 5
in server virtualization design, 641, 643–644
Integration Services in, 94–96
Intel VT, 9
Non-Uniform Memory Access (NUMA) in, 277
of server virtualization pilot, 723–724
of Windows hypervisor, 70–71
partitions in, 72
virtual floppy disks in, 101–102
virtual hard disks in, 96–101
dynamic disk header for, 100–101
footer for, 98–99
pass-through, 97
virtual memory in, 89–90
virtual networking in, 92–94
virtual processors in, 92
virtualization stack in, 73–88
action of, 88
configuration component of, 79
Virtual Machine Management Service in, 74–79
Virtualization Infrastructure Driver in, 81–83
Virtualization Service Clients in, 80
Virtualization Service Providers in, 79
VMBus in, 80–81
Windows Management Instrumentation in, 83–85
worker process in, 85–87
ARP cache, 288
ASSOCIATORS OF query, 574
attack surface, reducing, 28, 236, 260
Audit Collection Services (ACS), in SCOM 2007, 262–263
authentication, 674
Authoring workspace, in SCOM 2007, 540, 542
Authorization Manager (AZMAN) default, 227
for security, 240–241
in Hyper-V, 33
privileges for, 261
remote management and, 383
role-based security from, 359
scope, 256–259
Windows Server Backup and, 428
automatic differencing virtual hard disks (VHDs), 154, 162–163, 173, 175
availability
Cluster Shared Volumes and, 340
desktop virtualization and, 17, 620
Failover Clustering for, 34, 202, 360
hardware for, 706–707
in branch office virtualization, 606
in data center virtualization, 600
isolation for, 8
of virtual hardware component, 547
of virtual machines, 216–218, 351–352
physical to virtual (P2V) migration and, 526–527
virtualization benefits for, 21

B
Background Intelligent Transfer Service (BITS), 603
back-office-class servers, 705
backup and recovery, 483–516. See also disaster recovery
desktop virtualization and, 17
hardware abstraction layer (HAL) and, 613
in branch office virtualization, 607
in data center virtualization, 601–602
of Active Directory domain controller virtual machines, 489–490
of Authorization Store, 241, 272–273
of Hyper-V and virtual machines, 490–491
of network adapters for iSCSI communications, 283
of registry values, 200
of server virtualization infrastructure, 717–718
of virtual desktops, 621, 628, 632
of virtualization environment, 483–484
physical network adapters and, 283
System Center Data Protection Manager (SCDPM) 2007 SP1 for, 492–515, 612
agent deployment for, 497–502
installation of, 495–496
Integration Services update and, 493–495
local data protection in, 497
overview of, 492–493
protection group for, 504–510
storage pool for, 502–504
virtual machine recovery by, 511–515
time synchronization in, 180
traditional methods of, 488–489
virtualization benefits for, 22
Volume Shadow Copy Service (VSS) for, 34
VSS Requestor for, 78–79
VSS writer for, 484–488
components of, 486–487
metadata document of, 488
overview of, 484–485
process of, 487
tools of, 485
Windows Server Backup for, 424–437
configuring, 425–428
considerations in, 428
for virtual machine backup, 433–437
for virtual machine restoring, 428–433
in disaster recovery, 366–368
installing, 424–425
bandwidth, NUMA and, 277
bare metal virtualization, 13
benchmarking, intelligence, 650
best practices. See also performance, optimizing
antivirus software, 279
backup and recovery, 497
default storage locations, 270
Disk Management Microsoft Management Console, 163
folder locations, 236
groups for roles, 248
Hyper-V resource permissions, 248
Hyper-V roles, 391
Integration Services, 291, 301
Internal versus External virtual networks, 272
large send offload (LSO), 302
legacy network adapters, 292, 302
maintenance mode, 541
memory, 275–276, 298
network adapters for cluster communications, 283
NUMA system, 278
on parent-child differencing disk relationship, 155
operating system selection, 290
physical network adapters dedicated to Hyper-V, 283
Process Resource Control, 295
processors, 291
Quick Migration, 417
RAID 1, 282
reporting, 563
ROI tools, 650
SATA and SAS drives, 280
screen savers, 292
SCSI controller, 307
security, 260–263
Server Core installation, 236, 278
servers with high density modules, 276
storage area networks, 282
TCP Chimney Offload, 285
team network adapters, 289
unused emulated devices, 292
virtual hard disks, 166, 279, 306–307, 309
virtual machines, 304–305, 308, 423
virtual networks, 272, 460
VMConnect, 274
workload profiles, 293, 296
BETest application, 485
binary file, virtual machine snapshots and, 173, 176
binary translation, 11
bindings, network, 45
BIOS (Basic Input-Output System), 31, 403, 658–659
BITS (Background Intelligent Transfer Services), 454
blackout period, in Quick Migration, 37
blade servers, 597
block allocation table (BAT), 97, 101
boot process, in hypervisor, 71, 88
bottlenecks, network, 304
branch offices
pilot projects in, 722
serial port devices in, 661
virtual desktop infrastructure for, 629
virtualization candidates in, 705
virtualization scenario for, 24, 606–608
budget setting, for server virtualization, 643, 654
buffer overflow exploits, 31
bug reproduction, 20, 24
business case for virtualization, 19–23
business continuity, 21, 25. See also disaster recovery

cab file, in installation, 123
cache
ARP, 288
performance and, 275, 277
Translation-Lookaside Buffer (TLB) as, 5, 7–8
call centers, virtual desktops and, 17, 629
candidate pool exclusion list, in virtualization, 658
capacity planning, 438
capital and operating cost savings, 19–20, 698–699
CD-DVD drives, virtual, 291–292
centralization, desktop virtualization and, 17
chain of differencing disks, 155
chargebacks, in server virtualization, 652
deployment issues in, 603
desktop infrastructure, virtual, 457, 617–633
descriptor tables, 82
devices, 3, 17–18
deployment
in data center virtualization, 603
in server virtualization, 725
in test and development virtualization, 24
in desktop virtualization, 17
in server virtualization, 725
in test and development virtualization, 24
in data center virtualization, 603
in desktop virtualization, 17
for high availability, 202, 340
for Hyper-V servers, 348–349
for virtual machines, 215–223
for Hyper-V R2 version support of, 338
in Windows Server 2008, 202–203
overview of, 203–207
Quick Migration with, 417
TCP Chimney Offload and, 285
virtual desktop infrastructure and,
629
in data center virtualization, 599–600
delegation administration in, 604
desktop infrastructure, 457, 617–633
dynamic application delivery for, 619
hardware-independent, 618
isolated and secure, 618
management components of, 627–628
Microsoft Application Virtualization and, 631
migration of, 620–621
provisioning and decommissioning, 620
resource allocation for, 619–620
scenarios for, 628–629
software virtualization and, 3, 17–18
in server farm management, 479–481
network adapters for, 283
network configuration for, 352
Quick Migration and, 34
two-node Hyper-V server, 347–349
virtual machines over host servers, 21, 25
Virtual Server host, 28
Collision rate characteristics, of networks, 709
COM ports, virtual, 411–412
command-line tools, 32, 150
Core Parking, 38, 342–343
cost reductions, capital and operating, 19–20, 698–701
counters, in Performance Monitor, 372–373
CPUID interrupts, 82
credential tracking, 656
Customer Experience Improvement Program (CEIP), 453
data center virtualization scenario, 597–606
availability issues in, 600
backup issues in, 601–602
Deskto...
Device Manager

static versus dynamic, 623–624
storage in, 621
System Center Data Protection Manager and, 632
System Center Virtual Machine Manager and, 632
Windows Server 2008 Hyper-V and, 629
Windows Server 2008 Terminal Services RemoteApp and, 632
Windows Vista Enterprise Centralized Desktop and, 630
Device Manager, 94
DHCP (Dynamic Host Configuration Protocol), 32, 265
differencing virtual hard disks (VHDs), 44, 97, 154–161
active, 176
automatic, 154, 162–163, 173, 175
creating, 156
description of, 154, 305
merging, 160–161, 237
migration and, 317, 323–324
parent versus child, 156–159
performance of, 305
reconnecting, 159–160
using, 161
differential disks, migration merging of, 323–324
direct attached storage (DAS), 369, 502
direct memory address (DMA), 80
disaster recovery. See also backup and recovery
management solutions for, 366–370
overview of, 21, 25
strategy for, 642, 646
test and development environments for, 613
Discovery Wizard, 552
disjoint domains, 366
diskette drives, virtual, 412–413. See also floppy disks, virtual
disks. See also virtual hard disks (VHDs)
Disk Management Microsoft Management Console for, 163
hardware limits for, 684–685
performance of, 280–282, 688–689
DiskShadow application, 485
DMA transfers, 8
DNS (Domain Name System), 32, 142, 265, 675
domain controllers, 612
backup and recovery of, 489–490
migration and, 364
online physical to virtual migration and, 520–526
virtual machines as, 423, 489–490
Domain Local Group, 248
domains disjoint, 366
in Hyper-V host, 137
Microsoft Hyper-V configuration tool for, 140–141
double rotated redundancy, in RAID, 282
downtime, 205, 219, 313. See also migration
drift, time, 180
drive letter restrictions, 217–218
drivers
files of, 234
information files of virtual, 228–230
localization files of, 234–235
DVD drives, virtual, 407–408
dynamic application delivery, 619
Dynamic Core Infrastructure Optimization, 651
dynamic MAC (media access control)
addresses, 46, 198
dynamic tagging, for VLANs, 196
dynamic tuning, 23
dynamic virtual desktops, 17, 623–624
dynamically expanding virtual hard disks (VHDs), 44, 97
as default, 401
description of, 305
fixed disk converted to, 164–165
header of, 100–101
in chain of differencing disks, 155–156
in default Hyper-V installation, 269
in libraries, 463
performance of, 305

E

Edit Virtual Hard Disk Wizard, 160, 164–166, 169
ElementName property, 574
emulated network adapters, 93–94, 301–302
emulation drivers, for virtualized device access, 29
enlightenments, 14
environmental savings, in virtualization, 699
Ethernet frames, 38
Ethernet network adapters, 94, 321
event logs, Hyper-V server, 139
Event Viewer, 227
Exchange Server, 368
expanding virtual hard disks (VHDs), 170
Extended Page Tables (EPTs), 9, 37, 342
External virtual networks
adapter settings for, 408
creating, 63–65
Hyper-V advanced features for, 186–189
New-VMExternalSwitch command-line parameters for, 589
offload features limited in, 284
performance of, 301
renaming, 271–272
SCVMM management of, 459
traffic flow and, 184
virtual switch in, 93

F

Failover Clustering, 202–223
adding, 214
cruster resource control for, 79
Clustered Shared Volumes added to, 37
 configuring, 214–215
Failover Cluster Manager for, 216, 360–361
for high availability, 202, 340
for Hyper-V servers, 348–349
for virtual machines
availability of, 216–218
creation on, 215–216
implementation of, 218–223
Hyper-V R2 version support of, 338
in data center virtualization, 599–600
in Hyper-V, 34
in Windows Server 2008, 202–203
Live Migration and, 339
overview of, 203–207
Quick Migration with, 417
TCP Chimney Offload and, 285
virtual desktop infrastructure and, 629
witness and data storage volumes for, 207–214
fault tolerance, 282, 598, 606
Fibre Channel shared storage, 203–204, 282, 601
File and Print Sharing, allowing, 136
file replication technologies, 25
File Services role, 32
firewalls
Hyper-V server configuration of, 138–139
installation and, 136
rules of, 237–239
Windows Firewall Remote Administration Exception for, 674
fixed-size virtual hard disks (VHDs), 43, 97
description of, 305
dynamically expanding disk converted to, 164–165
in chain of differencing disks, 155–156
floating point registers, 82
floppy disks, virtual, 101–102, 412–413
footer, of virtual hard disks (VHDs), 98–99
Format-List function, in PowerShell, 569
fragmentation, 305
friendly names, for networks, 272
full virtualization method, 11
fully qualified domain name (FQDM), 366, 456

G
Gantt charts, 727
general purpose registers, 82
GetText function, in PowerShell, 575
gigabit Ethernet network adapters, 321, 689, 710
GPADL (Guest Physical Address Descriptor List), 80
group nesting model, 391
guest page tables (gPT), 6–7
guest operating systems
address space translation for, 341ailover cluster for, 34
Hyper-V support of, 39–41
installation of, 418–420
Integration Services support of, 183–184
privileges of, 69
processor support of, 404
profiles of, 470–471
VHD compaction and, 166
Virtual Server 2005 R2 for, 312
guest page tables (gPT), 6–7
Guest Physical Address Descriptor List (GPADL), 80
guest physical addresses (GPAs), 86, 90
guest placement, in virtualization, 697
GUID (Globally Unique Identifier), 52
for virtual machines, 308
for virtual machines (VMs), 171, 173, 176
friendly names versus, 272
of child partition, 79
of VSS Writer, 425–426

H
hardware
for high availability, 706–707
for System Center Virtual Machine Manager (SCVMM) installation, 444–448
Hyper-V Manager and, 402
in Hyper-V virtual machine environment, 41–46
components of, 42–43
iSCSI disks in, 45
pass-through disks in, 44
virtual hard disks in, 43–44
virtual IDE interfaces in, 44
virtual network adapters in, 46
virtual networks in, 45–46
virtual SCSI interfaces in, 45
inventory of, 658–661
migration and, 312
offloading, 302
performance of, 279
PlateSpin PowerRecon inventory feature for, 677
profiles for, 469
reducing dependency on, 25
reuse of, 648, 715
server virtualization limits of, 683–685
standard emulated configuration for, 19
virtual component availability monitoring of, 547
virtual desktop independence from, 618
virtual machine configuration for, 477–478
virtual machine limits for, 682–683
Windows hypervisor control of, 70
hardware abstraction layer (HAL), 317, 325, 613
hardware-assisted virtualization, 4, 31, 106
Health Explorer monitoring tool, 438–439, 541, 561
heartbeat function, 87, 181, 541
desktops, virtual infrastructure for, 629
Help files, 230
Hewlett-Packard (HP) migration tool, 727
High-Availability Wizard, 216
homogeneous data center consolidation, 23
host cluster, 600
host intelligent placement algorithm, 532
Host Mode, in Virtual Machine Monitor (VMM), 5
host operating system, 39
host utilization reports, 374
Host-Bus Adapters (HBAs), 282, 601
hosted virtualization solution, 12–13
hosting, application, 626
”hot add” technology, 619
HTML help files, 230
Hvboot.sys, 71
HVConfig.cmd tool, 33
HVConfig.vbs file, 33
HVRemote configuration script, 392–393
Hypercall Adapter, in Suse Linux Enterprise Server, 29
hypercall Application Programming Interface (API), 13–14
hyperthreaded logical processors, 687
Hyper-V, 4, 27–68. See also architecture; also management, overview of; also Microsoft Hyper-V configuration tool; also PowerShell; also security; also server farm management; also single server management; also Windows Server 2008 R2
AMD-V and Intel VT support in, 31
as core virtualization component, 624
Authorization Manager in, 33
background of, 28–30
benchmarking hosts of, 710
description of, 13–14
failover clustering in, 34
features of, 30–31
for virtual desktops, 629
full and server core installation support in, 31–32
guest operating system support of, 39–41
hypercall Application Programming Interface (API) of, 13
Hyper-V Manager for, 47–48, 85, 716
import and export features of, 35
installation role of, 111–116
Integration Services in, 35
load balancing in, 706
Microsoft Hyper-V Server 2008 and, 32–33
multiple servers in, 48–66
setting management and, 66
total hard disk management and, 61–63
Virtual Machine Connection and, 65–66
total machine management and, 49–60
virtual network management and, 63–65
performance of, 10–11
Quick Migration in, 34–35
server configurations for, 705–707
server operating system support of, 39
settings management for, 395–396
snapshot feature of, 36
updating, 454
total hard disk management in, 35–36
Virtual Machine Connection in, 36–37
total machine hardware environment in, 41–46
components of, 42–43
iSCSI disks in, 45
pass-through disks in, 44
virtual hard disks (VHDs) in, 43–44
virtual IDE interfaces in, 44
virtual network adapters in, 44
Virtual Machine Connection and, 49–60
Virtual Machine Manager in, 35–36
Virtual Machine Connection in, 36–37
virtual machine hardware environment in, 41–46
components of, 42–43
total hard disk management in, 44
pass-through disks in, 44
virtual hard disks (VHDs) in, 43–44
virtual IDE interfaces in, 44
virtual network adapters in, 46
virtual networks in, 45–46
virtual SCSI interfaces in, 45
Hyper-V RTM

automatic stop in, 416–417
BIOS settings in, 403
naming in, 413
parameters for, 398–399
removing VMs as, 417–418
settings in, 401–402
VM creation in, 399–401
Integration Services settings in, 413–414
memory settings in, 403–404
overview of, 358–359
processor settings in, 404
snapshot file location in, 414–415
views of, 393–395
virtual COM port settings in, 411–412
virtual hard disk settings in, 405–407
virtual DVD drive settings in, 407–408
virtual hard disk settings in, 405–407
virtual hardware devices added in, 402
virtual network adapter settings in, 398–410
Hyper-V RTM
upgrading, 109–110
Windows Server 2008 integration with, 106–107
Hyper-V server. See also Hyper-V; also
Microsoft Hyper-V server 2008
specification for, 314–315
WMI queries to, 569–570
Hyper-V Services, 237, 245
Hyper-V Virtual Drive Free Space, 547
Hyper-V, advanced features of, 153–223
for automatic differencing virtual hard disks, 162–163
discovering virtual hard disks, 154–156
merging, 160–161
parent versus child, 156–159
reconnecting, 159–160
using, 161
for failover clustering, 202–223
adding, 214
configuring, 214–215
for high availability, 202
in Windows Server 2008, 202–203
overview of, 203–207
virtual machine availability and, 216–218
virtual machine created on, 215–216
virtual machine implementation of, 218–223
witness and data storage volumes for, 207–214
for networking, 184–200
MAC address pools in, 198–200
virtual LANs in, 194–198
virtual network traffic flow in, 184–194
for pass-through disks, 200–202
for virtual hard disks, 163–170
Integration Services as, 179–184
guest operating systems supported by, 183–184
heartbeat function in, 181
key value pair exchange function in, 181–183
shutdown function in, 181
Time Synchronization Service in, 180–181
Volume Shadow Copy Service in, 183
overview of, 153–154
virtual machine snapshots as, 170–179
apply snapshot option for, 176–178
creating, 172–176
delete snapshot option for, 179
overview of, 170–172
revert snapshot option for, 176
hypervisor. See Hyper-V; Windows hypervisor
IBM Corp., 4
IDE (Integrated Drive Electronics), virtual interface of, 44
migration and, 660
pass-through disks and, 202
SCSI conversion to, 316, 319–321
worker process and, 86
Image Management Service (IMS), 84, 237, 546
ImageX.exe, 107–109
import and export, Hyper-V and, 35
in scope of server virtualization project, 646–647
independent software vendors (ISPs), 318
indexing, rapid virtualization, 6
information localization files, 235
InitialStore.xml file, 272–273
initiator (iSCSI client), 282
input-output control (I/OCTL) API interface, 83
installation, 105–151
Hyper-V role in, 111–116
Hyper-V RTM integration into Windows Server 2008 in, 106–107
Hyper-V RTM update in, 109–110
ISO building in, 110–111
Microsoft Deployment Toolkit 2008 for, 123–131
Microsoft Hyper-V configuration tool for, 139–150
on computer names, 141–142
on date and time, 149
on domains or workgroups, 140–141
on exiting to command line, 150
on local administrator addition, 144
on logging off, 149
on network settings, 142–144
on regional and language options, 148
on Remote Desktop, 147–148
on restarting server, 150
on shutting down server, 150
on Windows Updates, 144–146
Microsoft Hyper-V server 2008 in, 116–120
of guest operating systems, 418–420
of Integration Services, 420–422
of Management Packs, in SCOM 2007, 549–556
of System Center Data Protection Manager 2007 SP1, 495–496
of System Center Virtual Machine Manager (SCVMM), 441–454
hardware requirements for, 444–448
software requirements for, 442
steps in, 449–454
of Windows Server Backup, 424–425
overview of, 105–106
performance modifications for, 269–274
security best practices and, 236
Server Core modification commands after, 137–139
slipstreaming in, 108–109
software and tools for, 107
System Center Virtual Machine Manager (SCVMM) for, 131–136
Unattend.xml for, 121–122
Windows Automated Installation Kit for, 108
Institute of Electrical and Electronic Engineers (IEEE), 194–196
integration components virtual device, 14, 87
Integration Services, 179–184
architecture of, 94–96
for storage addition and removal, 343
for virtualization backup and recovery, 718
guest operating systems supported by, 183–184
heartbeat function in, 181
Hyper-V Manager and, 413–414
in Hyper-V, 35
in worker process, 86
installation of, 420–422
key value pair exchange function in, 181–183
localization files of, 235–236
performance and, 290–291
PowerShell to access, 572
shutdown function in, 181
synthetic devices supported by, 402
synthetic network adapters enabled by, 301
System Center Data Protection Manager 2007 SP1 and, 493–495
Time Synchronization Service in, 180–181
Virtualization Service Clients and, 80
Volume Shadow Copy Service in, 183
VSS Writer and, 78
Windows hypervisor files and, 230–233
Intel VT
architecture of, 4, 9
Hyper-V supported by, 31
installation with, 106
Intel XD (execute-disable) bit, 31, 332
intelligence benchmarking, 650
Intelligent Placement, SCVMM use of, 632
Internal virtual networks, 459
adapter settings for, 408
creating, 63–65
Hyper-V advanced features for, 189–192
New-VMInternalSwitch command-line parameters for, 589
performance of, 301
traffic flow and, 184
virtual network switches and, 45
virtual switch in, 93
Internet Security & Acceleration Server 2008, 194
interrupt handling services, of VID, 83
invocationID attribute, 489
I-O Memory Management Unit (IOMMU), 5, 8
I-O virtualization technology, 8
IOCTL (input-output control) API interface, 83
IP address, of network adapter, 142
IP subnet sweeping, 672
iSCSI connectivity for, 28
failover clusters and, 202–204, 218–220
for clusters, 601
in data center virtualization, 600
in Hyper-V virtual machine environment, 44–45
jumbo frames and, 286
Live Migration and, 346–348
LUNs (logical unit numbers) of, 318
network adapters for, 283
pass-through disks and, 97
requirements for, 282
shared configurations for, 220–221
System Center Data Protection Manager 2007 SP1 and, 502
traffic storage for, 598
virtual hard disk storage and, 369
ISO building, 106, 110–111
isolation
for virtual desktops, 618
for VLANs, 194, 198
in application-level virtualization, 15
in software virtualization, 10
in Web hosting, 15
IOMMUs for, 8
issue tracking, 726–727
J
Java VM, 10
jumbo frames configuring, 286–287
description of, 38
performance and, 284
Windows Server 2008 R2 and, 343–344
K
kernel mode interface, for memory management, 83
kernel model, shared, 15
kernel-level driver, VMM as, 12
Keyboard component, in Hyper-V settings, 66
key-value pair exchange function, 87, 181–183
KPIs (Key Performance Indicators), 727
KVM (Keyboard-Video-Mouse) switches, 666
language options, 148
LANs, virtual. See VLANs (virtual LANs)
large receive offload (LRO), 38
large segment offloading support, 94
large send offload (LSO), 38, 284, 302
latency
command queuing to reduce, 280
full virtualization and, 11
Non-Uniform Memory Access (NUMA) to reduce, 277
testing for, 303–304
legacy network adapters, 46, 86, 94, 291–292, 301–302
LeoStream migration tool, 727
library server, 463–472
library service, 463–472
component hardware requirements of, 446–447
guest operating system profiles in, 470–471
hardware profiles in, 469
library files in, 471–472
overview of, 463–465
PowerShell scripts in, 468–469
virtual machine storage permissions in, 462
virtual machine templates in, 465–468
library, data center, 603–604
library, Hyper-V, 576–593
execution policy for, 576–577
functions of, 578–581
memory loading of, 577
snapshot management by, 580–581, 590–593
virtual hard disk management by, 579–580, 586–588
virtual machine management by, 578–579, 581–586
virtual network management by, 580, 588–590
lights-out management board, 608
Lightweight Directory Access Protocol (LDAP), 670
linked virtual hard disks, 44
Linux virtual machines, 13, 183
Live Migration, 37, 346–352. See also migration; also Quick Migration
calendar networks configuration for, 352
calendar shared volume configuration for, 350–351
in System Center Virtual Machine Manager (SCVMM), 365
initiating, 352
overview of, 338–341
two-node Hyper-V server cluster for, 347–349
virtual machine creation for, 351–352
load balancing
in data center virtualization, 599
in Hyper-V cluster, 706
in Live Migration, 346
load balancing and failover (LBFO), 286–289
local administrators group, 137, 144
localization files
driver, 234–235
information, 235
Integration Services, 235–236
locally attached disks, 97
logged data capture, in Performance Monitor, 371, 373
logging off, 149
logical processors (LPs), 274. See also processors
LTPR, 295–296
LUNs (logical unit numbers)
Clustered Shared Volumes and, 37
iSCUSI, 97, 318
Live Migration performance and, 340–341
multiple virtual machines per, 365
pass-through disks and, 44, 200
storage area networks (SANs) and, 282
MAC (media access control)

MAC (media access control)
address pools of, 198–200
Address Range configuration for, 344–345
dynamic and static addresses for, 409
in load balancing and failover (LBFO), 287–289
virtual network adapters and, 46
machine-level software virtualization, 10–14
maintenance hosts, 262
maintenance mode, 365, 541–542
maintenance, remote, 608
management client MakeCert, 577
management files of, 226
resources files of, 227
Management Packs, in SCOM 2007, 539–563
features of, 545–548
installation of, 549–556
monitoring Hyper-V servers with, 373–374, 556–563
overview of, 373–374, 539–545
management, overview of, 357–376.
See also PowerShell; also server farm management; also single server management
Failover Cluster Manager for, 360–361
for disaster recovery, 366–370
Hyper-V Manager for, 358–359
monitoring in, 370–375
System Center Virtual Machine Manager (SCVMM) for, 361–365
mapping virtual-to-physical memory addresses, 5
maximum transmission units (MTUs), 305
MaximumMAC address key value, 198
mean time between failures (MTBF), 622
memory as VMBus channel transfer pages, 80
for Hyper-V library, 577
guest address space for, 5
hardware limits for, 683–684
Hyper-V Manager and, 403–404
Hyper-V R2 version support of, 338
in Hyper-V architecture, 89–90
in saved state file, 317
in virtual machines, 296–300
inventory of, 660
I-O Memory Management Unit (IOMMU) for, 5
isolation to protect, 8
Live Migration performance and, 340
memory address translations for, 37
memory manager for, 86
Nested Page Tables to save, 7
Non-Uniform Memory Access (NUMA) for, 28
performance of, 275–278, 665, 688
random access, 70
Rapid Virtualization Indexing and, 7
Set-VMMemory command-line parameters for, 582
shadow paging impact on, 6
specification for, 314
Virtual Machine Management Service for, 82
virtual memory address space for, 72
Virtual Memory Control Data Structure (VMCS) for, 9
Virtualization Stack Memory Manager (VSMM) for, 81, 83
virtual-to-physical address mappings for, 5
Memory Management Unit (MMU), 8
metadata, from VSS writer, 78, 488
metrics, problem, 639
microkernel architecture, of Windows hypervisor, 28, 69. See also architecture; also Hyper-V
Microsoft Application Virtualization, 631
Microsoft Assessment and Planning Solution Accelerator (MAP), 672–676, 691–697
Microsoft Deployment Services, 301
Microsoft Deployment Toolkit 2008, 107, 123–131
Microsoft Exchange 2007 Unified Messaging Role, 691
Microsoft Hyper-V configuration tool, 139–150
for computer names, 141–142
for date and time, 149
for domains or workgroups, 140–141
for exiting to command line, 150
for local administrator addition, 144
for logging off, 149
for network settings, 142–144
for regional and language options, 148
for Remote Desktop, 147–148
for restarting server, 150
for shutting down server, 150
for Windows Updates, 144–146
Microsoft Hyper-V Server 2008. See also Hyper-V
description of, 32–33, 69
Hyper-V installation in, 116–120
Microsoft Installer (MSI) package, 632
Microsoft Integrated Virtualization Root tool (Alinean), 649
Microsoft iSCSI Software Initiator, 601
Microsoft iSCUSI service, 220
Microsoft Office Excel, 696, 712, 726
Microsoft Office Outlook, 730
Microsoft Office SharePoint Server (MOSS), 368, 726–727
Microsoft Office Word, 731
Microsoft Operations Manager (MOM), 667, 725
Microsoft Partner Solution Center (MPSC), 206
Microsoft SoftGrid Application Virtualization for Terminal Services, 16
Microsoft SoftGrid Management Web Service, 16
Microsoft SoftGrid Sequencer, 16
Microsoft SoftGrid Virtual Application Server, 16
Microsoft Speech Server, 691
Microsoft SQL Server, 363, 368, 448, 563
Microsoft SQL Server Express Edition, 672, 674
Microsoft Virtual Network Switch adapter, 188
Microsoft Virtual Network Switch Protocol, 45
Microsoft Visual Studio Team System, 726
Microsoft Windows Server Update Service (WSUS), 423
migration, 311–330. See also Live Migration
downtime minimizing in, 313
in server virtualization, 727–728
of virtual desktop infrastructure, 620–621, 627
doing virtual machines, 316–327
compatibility in, 318
completion of, 325–327
considerations in, 316–318
differential disks merged in, 323–324
emulated network card removal in, 321–322
hardware abstraction layer in, 325
saved states restored or discarded in, 323
SCSI boot to IDE boot conversion in, 319–321
undo disk discarded in, 322
Virtual Machine Additions removal in, 321
physical-to-virtual (P2V) machine, 660, 727
Quick Migration for, 34–35
server hardware support in, 312
System Center Virtual Machine Manager for, 364–365, 517–538
offline physical-to-virtual (P2V) migration by, 527–537
online physical-to-virtual (P2V) migration by, 519–527
options for, 517–518
requirements for, 518–519
to Hyper-V, 313–316
Virtual Server 2005 R2 hosts and, 312
wireless networking support in, 312
milestones, for pilot projects, 732–733
MinimumMAC address key value, 198
mirroring, in RAID, 281
mixed data center consolidation, 23
ModifyingVirtual System method, 575
monitoring, 370–375
Management Packs for, 373–374, 556–563
Reliability and Performance Monitor for, 370–373
System Center Operations Manager (SCOM) for, 373–375, 540–541
team for, 642, 646
motherboards, 275, 661
mountpoints, drive letter restrictions and, 217–218
Mouse Release Key, in Hyper-V settings, 66
multilevel differencing virtual hard disk hierarchy, 155
"my server" syndrome, 652
My Workspace, in SCOM 2007, 540, 544–545

names, virtual machine, 413
Native Command Queuing (NCQ), 280
native virtualization method, 11–12, 14
natural disasters, 21
NDIS intermediate MUX driver, for virtual switch, 94
Nestled Page Tables (NPTs), 5–7, 37, 342
.NET Framework, 577
netstat -t command, 285
network adapters, physical, 262
network adapters, virtual, 46
Add-VMNic command-line parameters for, 583–584
as plug-in DLLs, 86
Ethernet, 94
for iSCSI protocol, 321
Gigabit Ethernet, 689
hardware limits for, 684
Hyper-V Manager and, 408–411
inventory of, 660
legacy, 291–292, 301–302
overview of, 46, 94
parent partition communication through, 186
synthetic, 301
teamed, 286–287, 289, 599
network interface cards.
See NICs (network interface cards)
network ports, 186
Network-Attached Storage (NAS), 44, 620
Networking Management Service (NMS), 84, 237, 243, 546
networks, virtual
architecture of, 92–94
clustering, 352
collision rate characteristics of, 709
common names for, 272
enhancements to, 38, 365
for offline physical-to-virtual (P2V) migration, 533
Hyper-V and, 45–46, 63–65
Hyper-V library management of, 588–590
Hyper-V server configuration of, 138
Hyper-V specification for, 314
in data center virtualization, 598–599
in software development virtualization scenario, 614
in test and development environments, 610
Integration Services and, 35
Live Migration performance and, 340
MAC address pools in, 198–200
manager role for, 255–256
Microsoft Hyper-V configuration tool and, 142–144
migrating, 315–316
operations of, 245–246
performance of, 283–289, 665, 689–690
renaming, 271–272
server farm management and, 460–461
subnets in, 657
System Center Virtual Machine Manager (SCVMM) and, 459–461
time synchronization and, 180
traffic flow in, 184–194
virtual LANs in, 194–198
virtual machine performance and, 300–304
Virtual Network Manager for, 344
wireless, 312
New Virtual Hard Disk Wizard, 61, 401
New Virtual Machine Wizard, 50, 215, 325, 399–400, 405
New-VM command-line parameters, 581, 584
New-VMExternalSwitch command-line parameters, 589
New-VMInternalSwitch command-line parameters, 589
New-VMPrivateSwitch command-line parameters, 590
New-VMSnapshot command-line parameters, 591
NICs (network interface cards), 521
Add-VMNic Command-Line Parameters for, 583–584
emulated, 321–322
iSCSI disks and, 45
TCP Offload Engines and, 38
team of, 289
virtual, 45–46
nonmaskable interrupts (NMI), 71
Non-Uniform Memory Access (NUMA), 28, 277–278, 298–300
Novell SUSE, 677
NTDS Settings object, 489
NTFS formatted virtual hard disks, 165–166
NTFS security policy, 248, 263, 265–266
NUMPROC parameter, 277

O
OCSetup.exe command-line tool, 115–116
offline physical-to-virtual (P2V) migration, 364, 517, 527–537
Additional Properties page in, 534–535
conversion information for, 535–536
executing, 537
host for placement in, 532–533
networks for, 533
offline IP address for, 530–531
overview of, 527–528
prerequisites for, 528
storage path for, 533
system information for, 528–529
virtual machine configuration for, 531–532
volume configuration for, 529–530
offloading
by TCP Chimney Offload, 284–285
by TCP Offload Engine, 38
hardware, 302
iSCSI communications, 598
large receive, 38
large segment, 94
large send, 38, 283–284
offshore development, virtual desktop infrastructure for, 628–629
online physical-to-virtual (P2V) migration, 517, 519–527
Open Systems Interconnection (OSI) model, 194
open-source virtualization solutions, 13
operating system-level software virtualization, 14–15
Operations Manager 2007, 363, 373
operations plan for server virtualization, 728–729
operations team, in server virtualization, 642, 645–646
Oscdimg.exe command-line tool, 110
out of scope of server virtualization project, 646
overhead storage, 278
P2V wizard, 535

packet loss, testing for, 303

page tables, shadow versions of, 6

page walker, 7

paging, mapping versus, 89

Parallels Virtuozzo Containers, 15

paravirtualization, 12–14

parent partitions. See also child partitions
description of, 72

in Hyper-V, 28–29, 70

integration components virtual device and, 87

memory for, 276, 297, 314

monitoring, 370

network I-O for, 79

network performance and, 283

physical network adapter for, 262

RAM control by, 70

storage for, 278

time synchronization based on, 180

virtual memory pages of, 90

virtual network adapters in, 186

virtual NIC created in, 45

Virtualization Infrastructure Driver and, 81

VLANs in, 196–197

wireless networking and, 303

disk fragmentation and, 166

taxonomy of, 166

disk fragmentation and, 166

time synchronization based on, 180

virtual memory pages of, 90

virtual network adapters in, 186

virtual NIC created in, 45

Virtualization Infrastructure Driver and, 81

VLANs in, 196–197

wireless networking and, 303

disk fragmentation and, 166

taxonomy of, 166

disk fragmentation and, 166

time synchronization based on, 180

virtual memory pages of, 90

virtual network adapters in, 186

virtual NIC created in, 45

Virtualization Infrastructure Driver and, 81

VLANs in, 196–197

wireless networking and, 303

parent-child relationship, in differencing virtual hard disks, 154, 156–159

partitions. See also child partitions; also parent partitions
deleted from guest operating system, 166

expanding virtual hard disks and, 170

in application-level virtualization, 15

in Hyper-V, 28, 70, 72

multiple logical, 4

operations support for, 83

Virtual Machine Management Service for, 82

virtual NIC created in, 45

pass-through virtual hard disks (VHDS) architecture of, 97

child partitions storage on, 278
description of, 305

guest operating system booting and, 405, 407

Hyper-V advanced features for, 200–202

in Hyper-V virtual machine environment, 44

Pathping.exe utility, 303

payloads, send and receive, 38

performance assessment of, 686–690
disk fragmentation and, 166

full virtualization and, 11

Hyper-V processor specification and, 314

in server virtualization discovery phase, 663–665

jumbo frames for, 343

monitoring, 370–373, 438–439

of Live Migration, 340

Rapid Virtualization Indexing and, 7

shadow paging impact on, 6

thresholds for, 685–686, 712

Performance and Resource Optimization (PRO), 375, 456–457, 480, 605

Performance Metrics Wizard, 674–676, 692

performance, optimizing, 269–310

disk drives, 280–282

for host storage, 278–280

for memory, 275–278

for network, 283–289

for processors, 274–275

for virtual machines, 290–307

memory of, 296–300

network of, 300–304

processors of, 290–296

storage of, 305–307

installation modifications for, 269–274

standards for, 308–309

timed network adapters for, 289

peripheral port hardware limits, 685

peripherals, address translation for, 8

permissions

best practices for, 248

for virtual machine snapshot creation, 345

Full Control, 263

in Authorization Manager, 240

Self-Service Portal and, 462

persistent virtual machines (VMs), 631

phased implementation, of server virtualization project, 647

Physical Ethernet network adapters, 660

physical-to-virtual (P2V) migration, 727

IDE (Integrated Drive Electronics) and, 660

offline, 517, 527–537

online, 517, 519–527

System Center Virtual Machine Manager for, 364

ping test, 672

PlateSpin PowerRecon tool, 676–678, 727

Plug and Play (PnP) Device Interface, 83

plug-in DLLs, 86

point-to-point channels, 79–80

policy manager, of networking VSP component, 93

pooled virtual machines (VMs), 631

port scanners, in server virtualization discovery phase, 671

portability, of differencing disks, 158

port-based VLANs (virtual LANs), 610

power failure, 205. See also disaster recovery

power management, 20

Core Parking for, 342–343

cost savings in, 700

enhancements in, 38

server models and, 666

thin client devices and, 622

uninterruptible power supplies for, 661

Powercfg.exe utility, 343

PowerShell, 299, 565–594

for disk fragmentation, 167

for VHD file unmounting, 169

Hyper-V and, 27, 67

Hyper-V library for, 576–593

execution policy for, 576–577

functions of, 578–581

memory loading of, 577

snapshot management by, 590–593

timeout hard disk management by, 586–588

virtual machine management by, 581–586

virtual network management by, 588–590

in migration, 524, 537

library server scripts of, 468–469

Live Migration and, 339

SCVMM management by, 461

VMM Administrator Console and, 363

VMM Windows interface for, 442

VMI interface classes and, 566–576

categories of, 566–567

connecting to, 567–568

Hyper-V server queries in, 569–570

queries to multiple, 571–573

specific virtual machine queries in, 570–571

virtual machine settings for, 573–576

Pre-boot Execution Environment (PXE), 28, 46, 292

precompaction of virtual hard disks (VHDS), 165, 168

Print Services, 32

Private virtual networks, 459

adapter settings for, 408

creating, 63–65

Hyper-V advanced features for, 192–194

New-VMPrivateSwitch command-line parameters for, 590

performance of, 301

traffic flow and, 184

virtual switch in, 46, 93

privileges

for Authorization Manager, 261

for Virtual Machine Manager (VMM), 5

of Hyper-V services, 237

processor ring definition of, 69
Ring -1, 13
problem statements, in server virtualization, 638–640
Processor Resource Control, 293–295
processors
Core Parking of, 342–343
dual-core and quad-core, 4
hardware limits for, 683
Hyper-V Manager and, 404
Hyper-V specification for, 314
in Hyper-V architecture, 92
in Hyper-V R2 version, 337
Memory Management Unit (MMU) of, 8
performance of, 274–275, 664, 687–688
privileges defined by rings of, 69
Set-VMCPUCount command-line parameters for, 582
Translation-Lookaside Buffer (TLB) in, 5
Virtual Infrastructure Driver and, 82
virtual machine performance of, 290–296
Virtual Processor Identifier (VPID) for, 9
virtual machine performance of, 290–296
virtual processors
in planned downtime, 205
virtualization, 641–643
project phases, in server virtualization, 648–649
provisioning
in branch office virtualization, 607
in data center virtualization, 603
in desktop virtualization, 17, 620, 632
in test and development environments, 20, 609–610
library servers and, 464
Pre-boot Execution Environment (PXE) and, 46
time reductions for, 22
Quick Migration, 34–35, 37, 338, 417
Rack space savings, in virtualization, 699–700
rack-based uninterruptible power supplies, 661
rack-mount servers, 597, 666
RAID (redundant array of inexpensive disks)
best practices for, 280–282
hardware subsystems of, 688
in branch office virtualization, 606–607
in data center virtualization, 600
random access memory (RAM), 70
Rapid Virtualization Indexing (RVI), 5–6, 342
RBACs (role-based access controls), 239
RDP Encoder virtual device, 87
read-only parent differencing disks, 158
READY state, of virtual processors, 92
real-time data capture, in Performance Monitor, 371
receive side scaling, 284
Reconnect Virtual Hard Disk Wizard, 160
recovery. See backup and recovery;
disaster recovery; disaster recovery
RedHat Linux, 677
redundancy, in storage arrays, 280–282
redundant power supplies, 666
refresh cycles, lengthening, 622
.REG file, 427–428
regional options, 148
registers, Virtual Infrastructure Driver and, 82
Registry Editor (REGEDIT), 426
Reliability and Performance Monitor, 370–373, 377, 664
Remote Desktop Connection Broker, 39, 631
Remote Desktop Protocol (RDP), 36
Encoder virtual device for, 87
in worker process, 86
installation over, 114
Integration Services shutdown function and, 181
Microsoft Hyper-V configuration tool and, 147–148
Single Port Listener for, 77
VMConnect and, 273–274
VMConnect.exe use of, 359
Remote Desktop Services role, 631
Remote Installation Services, 301
remote maintenance, 608
remote management, 353, 383–393
Remote Procedure Call (RPC) service, 237
Remote Registry, 674
Remote Server Administration Tools (RSAT), 32, 274, 353, 358, 360, 383
Remove-VM command-line parameters, 585
Remove-VMSnapshot command-line parameters, 593
Rename-VMSnapshot command-line parameters, 591–592
Reporting workspace, in SCOM 2007, 540, 543, 562–563
repository, for virtual desktop infrastructure, 628
RequestStateChange method, 571–572
Reset Check Boxes, in Hyper-V settings, 66
Resume Configuration Wizard, 336
rich client devices, 625
Ring 0 execution mode, 5, 13, 69
Ring -1 execution mode, 5, 13
Ring 3 execution mode, 13, 69
ring buffers, 80
ring compression, 12–13
risk identification, 644, 651–653, 731–732
ROI (return on investment) analysis, 625, 649
rotated parity, in RAID, 281
Routing and Remote Access Services (RRAS), 610
RSS feeds, 545
RUNNING state, of virtual processors, 92
time support, Hyper-V architecture for, 83
SanSs (storage area networks), 44, 369
advantages of, 282
best practices for, 282
Compellent Technologies, 207–213
failover clusters and, 202
in data center virtualization, 600–601
migration of, 365
pass-through disks and, 200
System Center Data Protection Manager 2007 SP1 and, 502
virtual desktops and, 620
saved states
in planned downtime, 205
in virtual machine snapshots, 173, 176
migration and, 317, 323
storage for, 278
scenarios, virtualization, 23–25
scheduler, in project management, 643
scope
for Authorization Manager, 256–259
in server virtualization, 722–723
scope creep in, 647
ScopeOfResidence property, 259
screen savers, 292
scripts. See also PowerShell
for discovery process automation, 667–668
for disk fragmentation, 167
for SCSI to IDE conversion, 319–321
for site location information, 657
for VHD file unmounting, 169
for VM memory assignment, 299
for Windows Updates, 145
HVRemote configuration, 392–393
Hyper-V and, 27, 67
self-signed, 577
Visual Basic for Applications, 730
Visual Basic for Applications, 730
SCSI (Small Computer System Interface)
SCSI (Small Computer System Interface)
as plug-in DLL, 86
as synthetic controller, 306–307
description of, 44–45
IDE boot conversion and, 316, 319–321
in hardware inventory, 660
pass-through disks and, 202
performance and, 279–280
serial attached, 688
shared, 318
virtual motherboard and, 86
Second Level Address Translation (SLAT), 341–342
Secure Virtual Machine (SVM) architecture (AMD), 5
security, 225–268
Authorization Manager for, 240–241
Authorization Store for, 227, 241–243
best practices for, 260–263
firewall rules for, 237–239
Hyper-V compiled Help files and, 230
Hyper-V compiled HTML Help files and, 230
Hyper-V compiled Windows hypervisor and Integrated Services files and, 230–233
Hyper-V driver files and, 234
Hyper-V driver localization files and, 234–235
Hyper-V Event Viewer files and, 227
Hyper-V groups for, 391
Hyper-V information localization files and, 235
Hyper-V Integration Services localization files and, 235–236
Hyper-V management client files and, 226
Hyper-V management client resources files and, 227
Hyper-V management client resources files and, 227
Hyper-V operations for, 244–248
Hyper-V Services overview for, 237
Hyper-V virtual driver information files and, 228–230
Hyper-V virtual floppy disk default folder and, 228
Hyper-V virtual hard disk default folder and, 228
Hyper-V virtual machine snapshot default folder and, 228
Hyper-V virtual machines default folder and, 228
isolation for, 8, 10
monitor role for, 249–255
of storage devices, 17
of virtual desktops, 618
of virtual machine access, 263–268
port scanners and, 671
role-based, 359
server virtualization risks and, 652
SIDs (security identifiers) for, 264
third-party device drivers and, 28
virtual machine manager role for, 256–260
virtual network manager role for, 255–256
segment registers, 82
SELECT statements, 571, 574
Self-Service Web Portal
component hardware requirements of, 447
for server farm management, 461–463
for test labs, 611
for virtual machine management, 604–605
in Virtual Machine Manager, 363
installation of, 453–454
self-signed scripts, 577
send and receive payloads, 38
send-receive buffer adjustments, 284
serial communication ports, 86
serial port devices, 661
Serial-ATA (SATA) drives, 279–280
Serial-Attached SCSI (SAS) drives, 279–280, 688
server
Hyper-V settings for, 66
Server Core
as installation best practice, 236
Hyper-V installation in, 31–32, 105–106
modification commands for, 137–139
OCSetup.exe command-line tool for, 115–116
processor performance and, 275
server farm management, 441–481. See also single server management grouping for, 456–458
host types for, 455–456
of Hyper-V clusters, 479–481
of library server, 463–472
guest operating system profiles in, 470–471
hardware profiles in, 469
library files in, 471–472
overview of, 463–465
PowerShell scripts in, 468–469
virtual machine templates in, 465–468
of networking, 460–461
of properties, 458–460
of virtual machines, 472–478
checkpoints in, 474
cloning, 475–476
overview of, 472–474
properties of, 476–478
Self-Service Portal in, 461–463
System Center Virtual Machine Manager installed for, 441–454
hardware requirements for, 444–448
options for, 442
software requirements for, 442–444
steps in, 449–454
Server Manager MMC, 111–114
server message block (SMB) file transfers, 286
server virtualization
assessment phase of, 681–702
application support limits in, 690–691
candidate identification in, 681–682
cost savings in, 698–701
hardware limits in, 683–685
Microsoft Assessment and Planning Solution Accelerator (MAP) for, 691–697
performance assessment for, 686–690
performance thresholds for, 685–686
virtual machine hardware limits in, 682–683
discovery phase of, 655–679
automation, 666–672
environmental information in, 665–666
hardware inventory collection in, 658–661
information collection in, 656–657
Microsoft Assessment and Planning Solution Accelerator for, 672–676
performance monitoring in, 663–665
PlateSpin PowerRecon tool for, 676–678
services collection in, 662–663
software inventory collection in, 661–662
envisioning phase of, 635–654
budget setting in, 654
definition of, 635–637
problem statements for, 638–640
project scope in, 646–649
project team for, 640–642
risk identification in, 651–653
ROI analysis in, 649
team for, 637
team roles for, 642–646
vision statement for, 637
pilot phase of, 721–735
architecture of, 723–724
communications plan for, 729–731
deployment plan for, 725
implementing, 733–734
issue tracking plan for, 726–727
lessons learned from, 734
migration plan for, 727–728
milestones in, 732–733
objectives of, 721–722
operations plan for, 728–729
risk documentation in, 731–732
scope of, 722–723
success criteria for, 733
success measurement in, 734
support plan for, 725
training plan for, 729
planning and design phase of, 703–719
consolidation planning in, 707–715
Hyper-V host configurations in, 705–707
infrastructure backup and recovery
Automatic stop in, 416–417
BIOS settings in, 403
COM port settings in, 411–412
creation of, 399–401
diskette drive settings in, 412–413
drive settings in, 407–408
hardware devices added in, 402
Integration Services settings in, 413–414
memory settings in, 403–404
naming of, 413
parameters for, 398–399
processor settings in, 404
removing, 417–418
snapshot file location in, 414–415
tuning settings of, 401–402
virtual hard disk settings in, 405–407
virtual network adapter settings in, 408–411
of Windows Server Backup, 424–437
configuring, 425–428
considerations in, 428
for virtual machine backup, 432
for virtual machine restoring, 428–433
installing, 424–425
remote, 383–393
Virtual Machine Management Service
state and, 396–398
single-instance host operating system, 14
tsites-to-subnet mappings, 657
SLAT (Second Level Address Translation), 341–342
slipstreaming
Hyper-V RTM, 106, 109–110
preparing for, 108–109
snapshots
checkpoints reference to, 474
for inventorying, 663
Hyper-V feature for, 36
Hyper-V library management of, 590–593
Hyper-V R2 and, 345
in data center virtualization, 601
in differencing virtual hard disk (VHDs), 97
in Hyper-V Manager, 414–415
in virtual machine metadata, 78
in Volume Shadow Copy Service (VSS), 34
pass-through virtual hard disks (VHDs) and, 305
performance and, 269
Snapshot Manager for, 170
storage of, 22
time synchronization and, 180
undo disk feature versus, 317
virtual machine, 52–56
apply snapshot option for, 176–178
automatic differencing disk created
for, 162
creating, 172–176
delete snapshot option for, 179
overview of, 170–172
revert snapshot option for, 176
Virtual Machine Management Service (VMMS) for, 77, 237
virtual machines (VMs) default folder for, 228, 236
SNMP (Simple Network Management Protocol), 674
Softricity and SoftGrid products, 16
software
for System Center Virtual Machine Manager (SCVMM) installation, 442–444
inventory of, 661–662
PlateSpin PowerRecon inventory feature for, 677
virtualization scenario for development of, 613–615
software virtualization
application-level, 15–17
desktop-level, 17–18
machine-level, 10–14
operating system-level, 14–15
source replication partner directory database identities, 489
SPARC, 677
spoofing, MAC address, 344–345, 365
Stability Index, 370
standard emulated hardware configuration, 19
standards for performance, 308–309
state machine, 87
state, virtual machine, 56–57
static MAC (media access control) addresses, 46
static versus dynamic virtual desktops, 17, 623–624
steering committee, in server virtualization, 641–642
storage. See also SANs (storage area networks)
addition and removal of, 38
as core virtualization component, 624
desktop virtualization and, 17
dynamic addition and removal of, 343
expanding virtual hard disks for, 170
for iSCSI traffic, 598
for offline physical-to-virtual (P2V) migration, 533
for System Center Data Protection Manager 2007 SP1, 502–504
Hyper-V specification for, 314
in data center virtualization, 600–601
in software development virtualization scenario, 614
in test and development environments, 609–610
in virtual desktop infrastructure, 621
in virtual machine performance, 305–307
inventory of, 660
Live Migration performance and, 340
of virtual hard disks (VHDS), 369
performance of, 278–280, 665
Quick Migration and, 34
redundancy in, 280–282
SAN migration and, 365
virtualization benefits for, 22
witness and data volumes for, 207–214
Streaming Media Services, 32
streaming, application, 17, 626
striped mirrors, in RAID, 281
streaming, application, 17, 626

Audit Collection Services (ACS) in,
262–263
for infrastructure monitoring, 716
in data center virtualization scenario, 605
in pilot projects, 734
in test lab virtualization scenario, 612
Management Packs of, 539–543
features of, 545–548
installation of, 549–556
monitoring Hyper-V servers with,
373–374, 556–563
overview of, 539–545
monitoring by, 373–375, 438
Performance and Resource Optimization (PRO) feature of, 375, 457
virtual desktop infrastructure and, 632
System Center Virtual Machine Manager (SCVMM), 47
Authorization Store of, 243
for Hyper-V installation, 131–136
for migration, 517–538
offline physical-to-virtual, 527–537
online physical-to-virtual, 519–527
options for, 517–518
requirements for, 518–519
in pilot projects, 725–726, 729, 734
in server virtualization, 716
in virtualization scenarios, 603–604, 607
installation of, 441–445
hardware requirements for, 444–448
options for, 442
software requirements for, 442–444
steps in, 449–454
Live Migration and, 339
long-term storage and, 610
overview of, 361–365
power management by, 38
Self-Service Portal feature of, 611, 615
server farm management by, 358
virtual desktop infrastructure and, 632
system management interrupts (SMI), 71
system physical addresses (SPAs), 90
SYSTEM service user account, 264
System Services Configuration Registry, 96
System Center Configuration Manager (SCCM), 423, 666, 717
System Center Data Protection Manager (SCDPM) 2007 SP1, 34, 492–515
agents for, 497–502
backup and recovery by, 718
for disaster recovery, 368–370
in branch office virtualization scenario, 607
in deployment, 725
in test lab virtualization scenario, 612
installation of, 495–496
Integration Services update and, 493–495
local data protection in, 497
overview of, 492–493
protection group for, 504–510
storage pool for, 502–504
virtual desktop infrastructure and, 632
virtual machine recovery by, 511–515
System Center Operations Manager (SCOM) 2007, 667
T
Tagged Command Queuing (TCQ), 280
tagging, for VLANs, 196, 198, 302, 610
target (iSCSI server), 282
tcp Offload
checksum, 302
chimney, 284–285, 365
engines for, 38
Windows Server 2008 R2 support of, 343
tcp-IP checksum, 94
tCPv4 checksum offload, 284
teamed network adapters, 286–287
TCP-IP checksum, 94
teamed network adapters, 286–287
telemetric transactional dependencies, 423
terminal Services RemoteApp, 630, 632
test and development environments,
608–613
as disaster recovery sites, 613
management issues in, 611–612
network issues in, 610
operational issues in, 612
snapshot feature for, 171
storage issues in, 609–610
virtualization benefits for, 20–21, 24
VLANs for, 198
testing, in server virtualization, 641,
644–645
thin client devices, 622, 625, 629–630
time compression, in virtualization, 22
time drift, 180
Time Synchronization Service, 87, 180–181
time, Microsoft Hyper-V configuration tool for, 149
total cost of ownership (TCO), 649–651
touch-labor, 622
tracks, in hard disks, 279
training plan for server virtualization,
646, 729
transfer pages, in VMBus channels, 80
Translation-Lookaside Buffer (TLB)
Address Space Identifier in, 5
nested, 7
page walk entries in, 7
Rapid Virtualization Indexing and, 7
Virtual Processor Identifiers and, 9
troubleshooting
Health Explorer tool for, 561
remote, 608
test labs for, 613
trunking, 194
trust relationships, in Active Directory forests, 656
tuning, dynamic, 23
two-node Hyper-V server cluster, 347–349
type-1 VMM (hypervisor model), 10
type-2 VMM (hybrid model), 10

U
Unattend.xml, for installation, 121–122
undo disk feature, 317, 322
unicast flooded packets, 345
virtual machines (VMs)

uninterruptible power supplies (USP), 661, 666
Units, of rack-based server space, 666
update sequence numbers (USNs), 489, 612
update strategy, 261–262
upgrading, desktop virtualization and, 17
USB-connected devices, 660
User Credentials, in Hyper-V settings, 66
user mode interface, for memory management, 83
User settings, for Hyper-V, 66

V

VBScript, 392–393, 568
video frame buffer, 36
Virtual Desktop Infrastructure (VDI), 17, 39
virtual desktops. See desktop infrastructure, virtual
virtual floppy disk, 228
virtual hard disks (VHDs), 96–101
Add-VMDisk command-line parameters for, 583–584, 587
Add-VMNewHardDisk command-line parameters for, 587–588
automatic differencing, 162–163
child partition storage on, 278
Clustered Shared Volumes and, 37
compacting, 154, 165–169
converting, 154, 164–165
copying physical disk to, 154, 163–164
default folder of, 228
differencing, 154–161
creating, 156
merging, 160–161
parent versus child, 156–159
reconnecting, 159–160
using, 161
dynamic disk header for, 100–101
dynamically expanding, 269, 401
expanding, 154, 170
footer for, 98–99
Hyper-V and, 35–36, 61–63
Hyper-V library management of, 586–588
Hyper-V Manager and, 405–407
Image Management Service (IMS) and, 84, 237
in libraries, 463
in virtual machine environment, 43–44
local storage of, 369
naming standards for, 309
Network Management Service (NMS) and, 237
New-VMDisk command-line parameters for, 586–587
pass-through, 97
size limitations in SCSI, 660
types of, 305–306
Virtual Machine Management Service (VMMS) and, 237
virtual IDE interfaces, 44
Virtual Machine Connection (VMC), 31, 36–37, 65–66
Virtual Machine Extensions (VMX), 9
Virtual Machine Management Service (VMMS), 74–79, 237, 547
Active Directory Service Marker in, 77–78
Authorization Store and, 243
changing state of, 396–398
cluster resource control in, 79
components of, 170
partition management by, 82
Single Port Listener for RDP in, 77
Snapshot Manager in, 77
Virtual Machine Manager in, 76
virtual machine settings changed by, 573–574
VSS Writer in, 78–79
Windows Management Instrumentation (WMI) and, 75–76, 84
Worker Process Manager in, 76
Virtual Machine Manager (VMM), 5
Administrative Console installation for, 452–453
component hardware requirements of, 445
in Hyper-V architecture, 76
in machine-level virtualization, 10–11
server component installation for, 450–452
server for, 38, 343, 365
Virtual Machine Worker Process (VMWP), 170
virtual machines (VMs), 472–478. See also System Center Virtual Machine Manager (SCVMM)
access security for, 263–268
backup and recovery of, 490–491
BIOS settings of, 403
checkpoints in, 474
Choose-VM command-line parameters for, 585
cloning, 475–476
default folder of, 228
hardware limits for, 682–683
Hyper-V library management of, 581–586
Hyper-V Manager and, 398–418
automatic start in, 415–416
automatic stop in, 416–417
BIOS settings in, 403
creating new virtual machines in, 399–401
diskette drive settings in, 412–413
DVD drive settings in, 407–408
Integration Services settings in, 413–414
memory settings in, 403–404
naming in, 413
parameters for management by, 398–399
processor settings in, 404
removing VMs by, 417–418
snapshot file location in, 414–415
tuning virtual machine settings in, 401–402
virtual COM port settings in, 411–412
virtual hard disk settings in, 405–407
virtual hardware devices added in, 402
virtual network adapter settings in, 408–411
Hyper-V R2 version support of, 338
Live Migration for, 351–352
logical partitions as, 4
management overview of, 472–474
manager role for, 256–260
memory of, 298–300
migration of compatibility in, 318
completion of, 325–327
considerations in, 316–318
differential disks merged in, 323–324
emulated network card removal in, 321–322
hardware abstraction layer in, 325
saved states restored or discarded in, 323
SCSI boot to IDE boot conversion in, 319–321
undo disk discarded in, 322
Virtual Machine Additions removal in, 321
NTFS security policy for folder of, 248
offline physical-to-virtual (P2V) migration and, 531–532
operations of, 246
performance of, 290–307
memory in, 296–300
network in, 300–304
processors in, 290–296
storage in, 305–307
permission to create, 462
persistent, 631
property management of, 476–478
Remove-VM command-line parameters for, 585
ScopeOfResidence property for, 259
uninterruptible power supplies (USP), 661, 666
Units, of rack-based server space, 666
update sequence numbers (USNs), 489, 612
update strategy, 261–262
upgrading, desktop virtualization and, 17
USB-connected devices, 660
User Credentials, in Hyper-V settings, 66
user mode interface, for memory management, 83
User settings, for Hyper-V, 66
security levels for, 261
SIDs (security identifiers) for, 264
snapshots of
apply option for, 176–178
automatic differencing disk created for, 162
creating, 172–176
default folder for, 228, 236
delete option for, 179
overview of, 170–172
revert option for, 176
state of, 422–423
System Center Data Protection Manager 2007 SP1 recovery of, 511–515
templates for, 465–468
upgrading, 423
Virtual Machine Additions and, 492
Windows Server Backup for, 428–437
WMI queries to, 570–571
WMI settings for, 573–576
virtual memory address space, 72
Virtual Memory Control Block (VMCB), 5
Virtual Memory Control Data Structure (VMCS), 9
virtual motherboard, 86
virtual network adapters. See network adapters, virtual
Virtual Network Manager, 344
virtual network switch
creating, 588–590
network ports and, 186
of networking VSP component, 93–94
port for, 345
virtual networks. See networks, virtual
Virtual Processor Identifier (VPID), 9
virtual processors (VPs), 274. See also processors
virtual SCSI interfaces, 45
Virtual Server 2005 R2, 4, 12, 28, 239, 624. See also migration
Virtual Server 2005 RE SP1, 455
Virtual Server Migration Toolkit (VSMT), 518
Virtual Service Providers (VSPs), 86
virtualization candidate reports, 374
Virtualization Infrastructure Driver (VID), 81–83
Virtualization Service Clients (VSCs), 29, 80
Virtualization Service Providers (VSPs), 29, 79, 86
Virtualization Stack Memory Manager (VSMM), 81, 86
Virtualization Technology for Directed I-O (VT-d), 9
virtualization, introduction to, 3–26
business case for, 19–23
overview of, 3–4
scenarios for, 23–25
software, 10–18
application-level, 15–17
desktop-level, 17–18
machine-level, 10–14
operating system-level, 14–15
x86 server-based, 4–10
AMD-V architecture and, 5
AMD-V I-O virtualization technology for, 8
AMD-V rapid virtualization indexing for, 6
Intel VT architecture and, 9
virtual-to-physical memory address mappings, 5
virtual-to-virtual (V2V) migration, 364, 517
Virtuozzo Containers, Parallels, 15
vision statement, in server virtualization, 637
Visual Basic Script files, 33, 730
Visual Basic Script utility, 366
Vmlcmon.exe, 87
Vmtcb.dll, 87
VMware, 364, 456, 474
Volume Shadow Copy Service (VSS). See also backup and recovery; also VSS writer
components of, 78–79
for virtualization backup and recovery, 718
in data center virtualization, 601
in Hyper-V, 34
in Integration Services, 183
SCDPM support of, 632
Windows Server Backup use of, 424
Volume Shadow Copy Service Administrative command-line tool, 425
volumes
Cluster Shared, 37, 340–341
in offline physical-to-virtual (P2V) migration, 529–530
VShadow application, 485
VSS Framework, 78
VSS integration, 87
VSS Requestor, 78
VSS writer, 484–488. See also Volume Shadow Copy Service (VSS)
components of, 486–487
GUID of, 425–426
metadata document of, 488
overview of, 484–485
process of, 487
to restore applications, 367
Virtual Machine Management Service and, 78–79
VTPR, 296

W

WAITING state, of virtual processors, 92
WAN (wide area network), 606–607, 674
WBAdmin.exe utility, 366. See also Windows Server Backup
Web Console, in SCCM 2007, 545
Web hosting, operating system-level virtualization in, 15
Web portal, self-service. See Self-Service Web Portal
Web Server, 32
WHERE clause, 574
Windows Automated Installation Kit (WAIK), 107–109
Windows Backup Server, 241
Windows BitLocker Drive Encryption, 262
Windows Deployment Services, 46, 301
Windows Firewall Remote Administration Exception, 674
Windows Firewall With Advanced Security MMC, 238
Windows hypervisor. See also architecture; also Hyper-V
XML files, configuration settings in

Core Parking and, 342
Integrated Services files compiled with, 230–233
overview of, 70–71, 83
Windows Image (WIM) format, 106–108
Windows Installer 3.1, 528
Windows Integrated Virtualization ROI tool (Alinean), 649, 701
Windows Management Instrumentation (WMI) API of, 44, 67
classes of, 566–576
categories of, 566–567
connecting to, 567–568
Hyper-V server queries in, 569–570
queries to multiple, 571–573
specific virtual machine queries in, 570–571
virtual machine settings for, 573–576
for discovery process automation, 667, 669, 674
Hyper-V dependency to, 237
Image Management Service (IMS) and, 237
in Hyper-V architecture, 83–85
Live Migration and, 339
Networking Management Service (NMS) and, 237
remote management and, 383
Virtual Machine Management Service (VMMS) and, 75–76, 84, 237
virtual network creation by, 46
Windows Preinstallation Environment (WinPE) image, 121, 364, 517
Windows Server 2008 R2, 28, 69, 331–354. See also Hyper-V; also System Center Operations Manager (SCOM) 2007
Core Parking in, 342–343
default Hyper-V folders in, 345–346
failover clustering in, 202–203
Hyper-V feature overview for, 337–338
Hyper-V for virtual desktops in, 629
Hyper-V R2 management and, 353
Hyper-V role installed on, 331–337
jumbo frames in, 343–344
Live Migration in, 338–341, 346–352
cluster networks configuration for, 352
cluster shared volume configuration for, 350–351
initiating, 352
two-node Hyper-V server cluster for, 347–349
virtual machine creation for, 351–352
MAC Address Range configuration in, 344–345
Remote Desktop Services role in, 631
Second Level Address Translation (SLAT) in, 341–342
storage addition and removal in, 343
TCP Offload support in, 343
Terminal Services RemoteApp in, 630, 632
Virtual Machine Queue (VMO) in, 343
Windows Server Backup configuring, 425–428
considerations in, 428
for disaster recovery, 366–368
for virtual machine backup, 433–437
for virtual machine restoring, 428–433
in virtualization scenarios, 602, 607
installing, 424–425
VSS writer and, 485
Windows Server System Common Engineering Criteria, 690
Windows SharePoint Services (WSS), 368
Windows Software Assurance, 630
Windows Software Update Service (WSUS), 423, 717
Windows Updates, 144–146
Windows Vista Enterprise Centralized Desktop, 630
Windows Vista SP1, 28, 32
Windows XP SP3, 28
WINHV.sys kernel mode driver, 83
wireless networks, 302–303, 312
witness and data storage volumes, 207–214
Witness disks, 347
WMI Service (SVCHost.exe), 83
work groups, Microsoft Hyper-V configuration tool for, 140–141
worker processes, 264
in Hyper-V architecture, 85–87
Virtual Machine Management Service (VMMS) for, 76
Virtualization Stack Memory Manager (VSMM) and, 83
Worker Process Manager (WPM) for, 76, 170
workloads
capacity planning for, 438
central management of, 265–266
coaexistence of, 292–293
consolidation ratios for, 20
guest operating system installation and, 418
host cluster and, 600
optimizing, 704, 709–715
PlateSpin PowerRecon feature for, 677–678
Processor Resource Control and, 295
processor support of, 404
rebalancing, 21
virtual desktops and, 618, 620
virtual hardware devices and, 402
world switch, in Secure Virtual Machine (SVM), 5

X

x86 server-based virtualization, 4–10
AMD-V architecture and, 5
AMD-V I-O virtualization technology for, 8
AMD-V rapid virtualization indexing for, 6
Intel VT architecture and, 9
Xen hypervisor-aware kernel, 29
XenDesktop Desktop Delivery Controller (DDC), 630–632
XenSource, 13
XML files, configuration settings in, 79
About the Authors

JANIQUE CARBONE has been working in IT for over 15 years, specializing in enterprise infrastructure design and deployment projects. She is the coauthor of the Microsoft Virtual Server 2005 R2 Resource Kit (Microsoft Press, 2008) and writes articles focused on virtualization technology. After working for Microsoft Services for seven years, Janique founded the Infrastructor Group, which focuses on virtualization training and consulting. Janique is an MCSE and holds a B.S. and M.S. in Aerospace Engineering as well as an M.S. in Computer Science. She lives in Texas and shares life with her great husband, two wonderful children, and several lively dogs.

ROBERT LARSON is an Architect with Microsoft Consulting Services (MCS) and a subject matter expert on virtualization technologies. Robert is a regular speaker at TechEd and ITForum conferences on virtualization topics and has delivered multiple TechNet webcasts on Microsoft virtualization technologies. In addition to being the coauthor of the Microsoft Virtual Server 2005 R2 Resource Kit, he has authored or helped develop whitepapers for Microsoft on Hyper-V and Virtual Server 2005. Robert also writes articles on virtualization topics for Windows IT Pro magazine and VirtualizationAdmin.com. Robert has worked in the IT industry for over 20 years as engineer, outsourcer, and consultant. As an Architect for MCS, he assists customers and partners to plan and design data center and server consolidation projects involving virtualization. Robert has a master’s degree in Computer Science. Robert lives outside Houston, Texas, with his lovely wife and two active children, and he enjoys basketball, scuba diving, and cooking. You can read his ramblings on virtualization and other topics on his blog at http://blogs.technet.com/roblarson/default.aspx.