
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735624412
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735624412
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735624412
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735624412
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735624412/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/624412/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2008920571

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to rkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, Internet Explorer, JScript, MSDN, Silverlight, SQL
Server, Visual Basic, Visual Studio, Win32, Windows, Windows Media, Windows NT, Windows
PowerShell, Windows Server, Windows Vista and Xbox are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall
Project Editor: Victoria Thulman
Editorial Production: Custom Editorial Productions, Inc.
Technical Reviewers: Bob Dean, Bob Hogan; Technical Review services provided by Content Master,
a member of CM Group, Ltd.
Cover: Tom Draper Design; illustration by Todd Daman

Body Part No. X14-14918

Contents at a Glance

Part I Foundation
1 Introducing IIS 7.0 .3
2 Understanding IIS 7.0 Architecture . 29
3 Understanding the Modular Foundation . 57
4 Understanding the Configuration System . 67

Part II Deployment
5 Installing IIS 7.0 . 117

Part III Administration
6 Using IIS Manager . 153
7 Using Command Line Tools . 187
8 Remote Administration . 229
9 Managing Web Sites . 259

10 Managing Applications and Application Pools 291
11 Hosting Application Development Frameworks 323
12 Managing Web Server Modules . 367
13 Managing Configuration and User Interface Extensions 421
14 Implementing Security Strategies . 747

Part IV Troubleshooting and Performance
15 Logging . 535
16 Tracing and Troubleshooting . 563
17 Performance and Tuning. 605

Part V Appendices
A IIS 7.0 HTTP Status Codes . 657
B IIS 7.0 Error Messages . 663
C IIS 7.0 Modules Listing . 671
D Modules Sequence. 683
iii

iv Contents at a Glance
E IIS 7.0 Default Settings and Time-Outs/Thresholds 687
F IIS 7.0 and 64-Bit Windows . 719
G IIS Manager Features to Configuration References 723
H IIS 6.0 Metabase Mapping to IIS 7.0 . 727
I IIS 7.0 Shared Hosting . 739
J Common Administrative Tasks Using IIS Manager 745

Table of Contents

Acknowledgments. xix

Introduction . xxi

What’s New in IIS 7.0 . xxi

Overview of Book . xxii

Document Conventions. xxiii

Reader Aids . xxiii

Sidebars . xxiii

Command Line Examples . xxiv

Companion Media . xxiv

Find Additional Content Online . xxiv

Resource Kit Support Policy . xxv

Part I Foundation

1 Introducing IIS 7.0 .3
Overview of IIS 7.0 . 3

What’s New in IIS 7.0 . 5

Core Web Server. 5

Configuration . 8

Administration Tools . 10

Diagnostics . 13

Windows Process Activation Service . 14

Application Compatibility . 15

Basic Administration Tasks . 15

Creating a Web Site . 15

Creating an Application . 17

Creating a Virtual Directory . 19
v

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi Table of Contents
Creating an Application Pool . 20

Assigning an Application to an Application Pool . 21

IIS 7.0 Features in Windows Server 2008 and Windows Vista 22

Summary . 26

Additional Resources . 27

2 Understanding IIS 7.0 Architecture . 29
Overview of IIS 7.0 Architecture . 30

IIS 7.0 Core Components . 33

HTTP.sys . 33

World Wide Web Publishing Service . 35

Windows Process Activation Service. 37

Configuration Store . 38

Worker Process. 40

Request Processing in Application Pool . 42

Classic Mode. 43

.NET Integrated Mode . 46

Module Scope . 51

Module Ordering. 51

Non-HTTP Request Processing . 53

Summary . 55

Additional Resources . 56

3 Understanding the Modular Foundation . 57
Concepts . 57

The Ideas . 58

Types of Modules. 58

Modules and Configuration. 59

Key Benefits . 61

Security . 61

Performance . 63

Extensibility . 63

Built-in Modules. 64

Summary . 65

Additional Resources . 65

4 Understanding the Configuration System . 67
Overview of the Configuration System. 68

Configuration File Hierarchy . 69

Configuration File Syntax . 74

Table of Contents vii
The IIS 7.0 Configuration System and the IIS 6.0 Metabase 81

IIS 7.0 and the .NET Configuration Systems . 83

Editing Configuration . 85

Deciding Where to Place Configuration. 86

Setting Configuration . 87

Understanding Configuration Errors . 90

Managing Configuration. 94

Backing Up Configuration . 94

Using Configuration History. 95

Exporting and Importing Configuration. 96

Delegating Configuration . 97

Sharing Configuration Between Servers . 107

Summary . 113

Additional Resources . 114

Part II Deployment

5 Installing IIS 7.0 . 117
Planning the Installation . 117

Installation Scenarios for IIS 7.0 . 119

Ways to Install IIS 7.0 . 131

Using Server Manager . 131

Using Package Manager . 132

Using ServerManagerCMD . 133

Unattended Answer Files . 136

Sysprep/New Setup System . 138

Auto-Installs . 139

Windows Server 2008 Setup for Optional Features . 139

Post Installation. 140

Folders and Content . 141

Registry . 142

Services . 142

Validation. 143

Troubleshooting Installation . 143

Event Logs . 144

IIS 7.0 Log . 144

Other Related Logging Options. 144

viii Table of Contents
Removing IIS 7.0. 145

The User Interface in Windows Server 2008 and Windows Vista 145

Command Line Method . 147

Summary . 148

Additional Resources . 149

Part III Administration

6 Using IIS Manager . 153
Overview of IIS Manager . 153

Starting IIS Manager . 155

IIS Manager User Interface . 156

Navigation Toolbar . 159

Connections Pane . 159

Workspace . 162

Actions Pane . 174

Understanding Features . 175

Feature to Module Mapping . 175

Where the Configuration Is Written . 177

Feature Scope. 180

IIS 7.0 Manager Customization and Extensibility . 181

Remote Administration . 184

Summary . 186

Additional Resources . 186

7 Using Command Line Tools . 187
Using Command Line Management Tools. 187

Appcmd.exe . 189

Getting Started with Appcmd . 190

Appcmd Syntax . 191

Supported Objects. 193

Getting Help . 194

Understanding Appcmd Output . 196

General Parameters . 199

Using Range Operators. 200

Avoiding Common Appcmd Pitfalls . 201

Using Basic Verbs: List, Add, Set, Delete . 201

Using the List Command to List and Find Objects . 202

Using the Add Verb to Create Objects . 203

Table of Contents ix
Using the Set Verb to Change Existing Objects . 204

Using the Delete Verb to Remove Objects . 205

Working with Configuration . 206

Viewing Configuration with the List Config Command 207

Setting Configuration with the Set Config Command 208

Managing Configuration Delegation . 212

Managing Configuration Backups . 213

Working with Applications, Virtual Directories, and Application Pools 213

Working with Web Server Modules. 214

Inspecting Running Worker Processes and Requests . 215

Listing Running IIS Worker Processes . 215

Listing Currently Executing Requests . 215

Working with Failed Request Tracing . 217

Turning on Failed Request Tracing. 217

Creating Failed Request Tracing Rules . 218

Searching Failed Request Tracing logs . 220

Microsoft.Web.Administration . 222

Creating Sites with MWA . 222

Creating Application Pools with MWA . 223

Setting Configuration . 224

Windows PowerShell and IIS 7.0 . 225

WMI Provider . 226

IIS 7.0 Configuration COM Objects . 227

Summary . 227

Additional Resources . 228

8 Remote Administration . 229
The IIS Manager . 230

Web Management Service . 230

Installation . 231

WMSvc Configuration . 232

Managing Remote Administration . 240

Using Remote Administration . 249

Troubleshooting . 252

Logging . 254

Summary . 257

Additional Resources . 257

x Table of Contents
9 Managing Web Sites . 259
Web Sites, Applications, Virtual Directories, and Application Pools 259

Web Sites . 260

Applications . 262

Virtual Directories . 264

Application Pools . 265

Administrative Tasks . 266

Adding a New Web Site . 267

Configuring a Web Site’s Bindings . 270

Limiting Web Site Usage . 273

Configuring Web Site Logging and Failed Request Tracing 275

Starting and Stopping Web Sites . 276

Managing Virtual Directories . 277

Adding a New Virtual Directory . 277

Configuring Virtual Directories . 279

Searching Virtual Directories . 282

Managing Remote Content . 284

Configuring the Application to Use Remote Content 285

Selecting the Security Model for Accessing Remote Content 285

Configuring Fixed Credentials for Accessing Remote Content. 287

Granting Access to the Remote Content . 288

Summary . 289

Additional Resources . 289

10 Managing Applications and Application Pools 291
Managing Web Applications . 291

Creating Web Applications . 292

Listing Web Applications . 297

Managing Application Pools . 299

Application Pool Considerations . 300

Adding a New Application Pool . 302

Managing Application Pool Identities . 305

Advanced Application Pool Configuration . 309

Managing Worker Processes and Requests . 315

Monitoring Worker Processes and Requests . 316

Summary . 320

Additional Resources . 321

Table of Contents xi
11 Hosting Application Development Frameworks 323
IIS as an Application Development Platform . 323

Adding Support for Application Frameworks . 325

Supported Application Frameworks . 326

Hosting ASP.NET Applications . 327

Understanding the Integrated and Classic ASP.NET Modes 328

Running Multiple Versions of ASP.NET Side by Side . 330

Installing ASP.NET. 332

Deploying ASP.NET Applications . 334

Additional Deployment Considerations . 340

Hosting ASP Applications . 342

Installing ASP . 342

Deploying ASP Applications . 343

Additional Deployment Considerations . 344

Hosting PHP Applications . 345

Deploying PHP Applications. 346

Additional Deployment Considerations . 350

Techniques for Enabling Application Frameworks . 353

Enabling New Static File Extensions to Be Served. 354

Deploying Frameworks Based on IIS 7.0 Native Modules 356

Deploying Frameworks Based on ASP.NET Handlers . 357

Deploying Frameworks Based on ISAPI Extensions . 358

Deploying Frameworks That Use FastCGI. 358

Deploying Frameworks That Use CGI . 362

Summary . 364

Additional Resources . 365

12 Managing Web Server Modules . 367
Extensibility in IIS 7.0 . 367

IIS 7.0 Extensibility Architecture at a Glance . 368

Managing Extensibility . 370

Runtime Web Server Extensibility . 371

What Is a Module? . 372

Installing Modules . 377

Common Module Management Tasks . 389

Using IIS Manager to Install and Manage Modules . 396

Using IIS Manager to Create and Manage Handler Mappings 400

Using Appcmd to Install and Manage Modules . 403

xii Table of Contents
Creating and Managing Handler Mappings . 408

Securing Web Server Modules . 410

Summary . 420

Additional Resources . 420

13 Managing Configuration and User Interface Extensions 421
Administration Stack Overview . 421

Managing Configuration Extensions. 423

Configuration Section Schema . 425

Declaring Configuration Sections . 428

Installing New Configuration Sections . 431

Securing Configuration Sections . 432

Managing Administration Extensions. 436

How Administration Extensions Work . 438

Installing Administration Extensions. 439

Securing Administration Extensions . 439

Managing IIS Manager Extensions . 440

How IIS Manager Extensions Work . 441

Installing IIS Manager Extensions . 443

Securing IIS Manager Extensions . 443

Summary . 446

Additional Resources . 446

14 Implementing Security Strategies . 447
Security Changes in IIS 7.0 . 448

Reducing Attack Surface Area . 450

Reducing the Application’s Surface Area . 460

Configuring Applications for Least Privilege . 465

Use a Low Privilege Application Pool Identity . 466

Set NTFS Permissions to Grant Minimal Access . 468

Reduce Trust of ASP.NET Applications . 470

Isolating Applications . 472

Implementing Access Control . 474

IP and Domain Restrictions . 475

Request Filtering . 477

Authorization . 483

NTFS ACL-based Authorization . 484

URL Authorization . 485

Table of Contents xiii
Authentication . 490

Anonymous Authentication . 491

Basic Authentication . 493

Digest Authentication . 495

Windows Authentication. 497

Client Certificate Mapping Authentication . 501

IIS Client Certificate Mapping Authentication. 503

UNC Authentication. 508

Understanding Authentication Delegation . 509

Securing Communications with Secure Socket Layer (SSL) . 511

Configuring SSL . 511

Requiring SSL . 512

Client Certificates . 514

Securing Configuration . 515

Restricting Access to Configuration. 516

Securing Sensitive Configuration. 520

Controlling Configuration Delegation . 525

Summary . 530

Additional Resources . 531

Part IV Troubleshooting and Performance

15 Logging . 535
What’s New? . 535

IIS Manager . 536

The XML-Based Logging Schema . 536

Centralized Logging Configuration Options . 538

SiteDefaults Configuration Options. 538

Disable HTTP Logging Configuration Options . 539

Default Log File Location . 539

Default UTF-8 Encoding . 539

New Status Codes. 540

Management Service . 540

Log File Formats That Have Not Changed . 540

Centralized Logging. 540

W3C Centralized Logging Format . 541

Centralized Binary Logging Format . 541

xiv Table of Contents
Remote Logging. 541

Setting Up Remote Logging by Using the IIS Manager 542

Setting Up Remote Logging by Using Appcmd . 544

Remote Logging Using the FTP 7.0 Publishing Service 545

Custom Logging . 545

Configuring IIS Logging . 547

IIS Manager. 547

Appcmd. 550

Advanced Appcmd Details . 552

HTTP.sys Logging . 556

Application Logging . 557

Process Recycling Logging . 557

ASP. 558

ASP.NET . 558

IIS Events . 558

Folder Compression Option . 558

Logging Analysis Using Log Parser . 559

Summary . 561

Additional Resources . 561

16 Tracing and Troubleshooting . 563
Tracing and Diagnosing Problems . 564

Installing the Failed Request Tracing Module . 564

Enabling and Configuring FRT. 565

Reading the FRT Logs . 572

Integrating Tracing and ASP.NET. 576

Taking Performance into Consideration. 577

Troubleshooting . 579

Applying a Methodology . 579

Using Tools and Utilities . 581

Troubleshooting HTTP . 594

Solving Common Specific Issues . 601

IIS 6.0 Administration Tools Not Installed . 602

SSl Not Enabled . 602

Unexpected Recycling. 602

Crashes . 602

Unable to Reach Web Site . 603

Authentication Errors . 603

Slow Responses or Server Hanging. 603

Table of Contents xv
Summary . 603

Additional Resources . 604

17 Performance and Tuning. 605
Striking a Balance Between Security and Performance . 606

How to Measure Overhead. 606

Authentication . 610

SSL. 611

The Impact of Constrained Resources . 612

Processor . 612

What Causes CPU Pressure? . 613

Throttling. 613

CPU Counters to Monitor . 614

Impact of Constraints. 616

Countermeasures . 616

Memory . 617

What Causes Memory Pressure? . 617

Memory Counters to Monitor . 618

Impact of Constraints. 620

Countermeasures . 620

Hard Disks . 621

What Causes Hard Disk Pressure? . 621

Hard Disk Counters to Monitor . 621

Impact of Constraints. 622

Countermeasures . 622

Network . 623

What Causes Network Pressure? . 623

Network Counters to Monitor . 624

Impact of Constraints. 624

Countermeasures . 625

Application-Level Counters . 626

64-Bit Mode vs. 32-Bit Mode . 631

Configuring for Performance . 632

Server Level . 633

IIS . 634

Optimizing for the Type of Load . 634

Server-Side Tools . 635

Application . 645

xvi Table of Contents
Performance Monitoring . 647

WCAT . 647

Reliability And Performance Monitor . 647

FRT . 648

Event Viewer. 648

System Center Operations Manager 2007. 648

Scalability . 649

During Design . 649

Scale Up or Out . 649

Summary . 652

Additional Resources . 653

Part V Appendices

A IIS 7.0 HTTP Status Codes . 657
B IIS 7.0 Error Messages . 663

HTTP Errors in IIS 7.0 . 664

<httpErrors> Configuration . 665

Substatus Codes. 666

A Substatus Code Example. 667

Language-Specific Custom Errors . 667

Custom Error Options . 668

Execute a URL. 668

Redirect the Request . 669

C IIS 7.0 Modules Listing . 671
Native Modules . 671

Managed Modules. 679

D Modules Sequence. 683
E IIS 7.0 Default Settings and Time-Outs/Thresholds 687

ASP.NET . 687

IIS . 694

Management . 714

Application Pool Defaults . 717

F IIS 7.0 and 64-Bit Windows . 719
Windows Server 2008 x64 . 719

Configuring a 32-Bit Application on 64-Bit Microsoft Windows 720

Table of Contents xvii
G IIS Manager Features to Configuration References 723
ASP.NET . 723

IIS. 724

Management. 726

H IIS 6.0 Metabase Mapping to IIS 7.0 . 727
I IIS 7.0 Shared Hosting . 739

Implementing Process Gating . 739

Using the Command Line . 740

Configuration Changes . 741

Enabling Dynamic Idle Threshold . 741

Using the Command Line . 743

Configuration Changes . 744

J Common Administrative Tasks Using IIS Manager 745

Index . 753
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Acknowledgments

The book that you now hold in your hands is the result of the collective effort of many people.

We’d like to start by thanking Bill Staples, Mai-Lan Tomsen Bukovec, and the whole IIS
product team for their support. Several of us work in the IIS product team, and we know
firsthand that we simply wouldn’t be able to work on this book without the team’s invaluable
assistance.

Secondly, we are very grateful to Martin DelRe of Microsoft Press for his vision, his hard work
in getting this project off the ground and ensuring its successful completion, and also for his
never-ending support and encouragement.

It takes a lot of people and a lot of work to bring a book like this to life. There are several
people in particular who we would like to acknowledge; the book would not be there without
them. Brett Hill started this project and soldiered through till its completion. Special thanks to
Mike Volodarsky, whose passion for quality and completeness resulted in him stepping up as
the lead author. Kurt Meyer helped a lot as a project manager coordinating the writing and
ensuring that the project milestones were not widely missed.

Many of our colleagues on the IIS product team had significant input into the book content.
In fact, each chapter was reviewed by at least one member of the product team. Other product
team members wrote the “Direct from the Source” sidebars that are peppered throughout the
book, bringing you a unique insight into the design and development of IIS 7.0. We would like
to express our sincere gratitude to the following members of the IIS product team who
worked with us on this book, listed in alphabetical order by first name: Anil Ruia, Bill Staples,
Edmund Chou, Eric Deily, Fabio Yeon, Jaroslav Dunajsky, Kanwaljeet Singla, Nazim Lala,
Michael Brown, Thomas Marquardt, Tobin Titus, Ulad Malashanka, and Wade Hilmo.

We would also like to thank Tito Leverette for his guidance on and contributions to
Chapter 17, “Performance and Tuning.”

Many other teams in Microsoft provided technical reviews and shared their experience and
insights. In particular, we are grateful to Tom Hawthorn of the Windows Performance team, as
well as George Holman and the whole Microsoft.com Operations team. Nick McCollum of
Quixtar Inc. also helped with technical reviews and suggestions in Chapters 5, 15, and 17.

Next, we would like to acknowledge our outstanding editorial team. In particular, we would
like to thank the project editors, Karen Szall and Victoria Thulman of Microsoft Press, for their
professionalism, mentoring, excellent editorial work, and, more than anything, their patience.
xix

xx Acknowledgments
Bob Hogan and Bob Dean conducted the book technical reviews, ensuring the writing was
consistent and easy to understand. Jean Findley of Custom Editorial Productions, Inc., did a
great job managing the book production on a tight schedule.

In addition, we would like to thank Susan Chory and Isaac Roybal for helping us to get this
project off the ground. We are also grateful to Simon Brown and Arvindra Sehmi for their
encouragement for this work.

Thanks to everyone!

Sincerely,

The Author Team: Mike, Olga, Brett, Bernard, Steve, Carlos, and Kurt

Introduction

Welcome to the Internet Information Services (IIS) 7.0 Resource Kit! This book is a detailed
technical resource for planning, deploying, and operating Microsoft Internet Information
Services (IIS) 7.0, Microsoft’s next generation Web server platform. Though this resource kit is
intended primarily for IT professionals who have had experience with previous versions of
IIS, anyone who is interested in learning about how to deploy and operate IIS 7.0 will find this
resource kit extremely valuable.

Within this resource kit, you’ll find in-depth information about the improvements introduced
by IIS 7.0 and the underlying architectural concepts that will help you better understand
the principles behind deploying and managing IIS 7.0 Web servers, and you’ll discover
techniques for taking advantage of new IIS 7.0 features and capabilities. You will also review
detailed information and task-based guidance on managing all aspects of IIS 7.0, including
deploying modular Web servers; configuring Web sites and applications; and improving Web
server security, reliability, and performance. You’ll also find numerous sidebars contributed
by members of the IIS product team that provide deep insight into how IIS 7.0 works, best
practices for managing the Web server platform, and invaluable troubleshooting tips. Finally,
the companion media includes additional tools and documentation that you can use to
manage and troubleshoot IIS 7.0 Web servers.

What’s New in IIS 7.0
IIS 7.0 has been re-engineered at its core to deliver a modular and extensible Web server
platform, forming the foundation for lean, low-footprint Web servers that power customized
workloads and Web applications. The new extensible architecture enables the Web server
to be completely customized; you can select only the required IIS features and add or replace
them with new Web server features that leverage the new rich extensibility application
programming interfaces (APIs). In addition, the Web server enables the use of a new
distributed configuration system and management tools that simplify Web server deployment
and management. The core feature set of IIS 7.0 continues to leverage the reliability and
security-focused architecture established by its predecessor, IIS 6.0, and it adds additional
improvements to enhance the reliability and security of the Web server platform. IIS 7.0 also
includes extended support for application frameworks, including better integration with
ASP.NET and built-in support for FastCGI-compliant application frameworks.

Among its many improvements, IIS 7.0 delivers the following:

■ Modular Web server architecture Unlike its monolithic predecessors, IIS 7.0 is a
completely modular Web server, containing more than 40 components that the
administrator can individually install to create low-footprint, reduced surface-area Web
server deployments that play a specific role in the application topology. Furthermore,
xxi

xxii Introduction
the new extensibility architecture enables any of the built-in modular features to be
replaced with customized implementations that Microsoft and third parties provide.

■ .NET Extensibility through ASP.NET integration The new ASP.NET integration
capabilities enable you to develop IIS 7.0 features with the power of ASP.NET and the
.NET Framework, reducing development and maintenance costs for custom Web
server solutions. You can use existing ASP.NET services in this mode to enhance any
application technologies, even those that were not developed with ASP.NET in mind.
These abilities enable Web applications using IIS 7.0 to further customize the Web
server to their needs without incurring the higher development costs associated with
the previously used Internet Server Application Programming Interface (ISAPI).

■ Enhanced application framework support In addition to improved ASP.NET integration
for extending the Web server, IIS 7.0 provides more options for hosting other applica-
tion frameworks. This includes the built-in support for the FastCGI protocol, a protocol
used by many open source application frameworks such as PHP Hypertext Preprocessor
(PHP) so that they can be reliably hosted in a Windows environment.

■ Distributed configuration system with delegation support IIS 7.0 replaces the central-
ized metabase configuration store with a new configuration system based on a
distributed hierarchy of XML files, which enables applications to control their own
configuration. The new configuration system enables simplified application deploy-
ment without the overhead of required administrative involvement and provides the
foundation for more flexible Web server configuration management.

■ Improved management tools IIS 7.0 offers a host of management tools that leverage
the new configuration system to provide more flexible and simpler configuration
management for the Web server. This includes a brand new task-based IIS Manager tool,
which offers remote delegated management; a new tool for command line management
(Appcmd); and several APIs for managing Web server configuration from scripts,
Windows Management Instrumentation (WMI), and .NET Framework programs.

■ Enhanced diagnostics and troubleshooting IIS 7.0 provides diagnostic features to help
diagnose Web server errors and troubleshoot hard-to-reproduce conditions with a
Failed Request Tracing infrastructure. The diagnostic tracing features are integrated
with ASP.NET applications to facilitate end-to-end diagnostics of Web applications.

Overview of Book
The four parts of this book cover the following topics:

■ Part I: Foundation Provides an overview of IIS 7.0 features, describes the improvements
introduced in IIS 7.0, and introduces the core architecture of the Web server

Introduction xxiii
■ Part II: Deployment Explains the modular installation architecture for deploying IIS 7.0
and provides procedures for installing IIS 7.0 for common Web server workloads

■ Part III: Administration Describes the key concepts for managing IIS 7.0 and describes
how to perform management tasks using the management tools that IIS 7.0 provides

■ Part IV: Troubleshooting and Performance Describes how to use the logging and tracing
infrastructure to provide for smooth operation of the Web server and troubleshoot error
conditions, as well as how to monitor and improve Web server performance

The book also includes several appendixes on various topics and a glossary for reference.

Document Conventions
The following conventions are used in this book to highlight special features or usage.

Reader Aids

The following reader aids are used throughout this book to point out useful details.

Sidebars

The following sidebars are used throughout this book to provide added insight, tips, and
advice concerning different IIS 7.0 features.

Reader Aid Meaning

Note Underscores the importance of a specific concept or highlights a special
case that might not apply to every situation

Important Calls attention to essential information that should not be disregarded

Caution Warns you that failure to take or avoid a specified action can cause
serious problems for users, systems, data integrity, and so on

On the CD Calls attention to a related script, tool, template, or job aid on the
companion CD that helps you perform a task described in the text

Sidebar Meaning

Direct from
the Source

Contributed by experts at Microsoft to provide from-the-source
insight into how IIS 7.0 works, best practices for managing IIS 7.0, and
troubleshooting tips

How It Works Provides unique glimpses of IIS 7.0 features and how they work

The CD that accompanies the print edition of this book is not available with this eBook edition, although select CD

content is available for download at http://www.microsoftpressstore.com/title/9780735624412.

http://www.microsoftpressstore.com/title/9780735624412

xxiv Introduction
Command Line Examples

The following style conventions are used in documenting command line examples
throughout this book.

Companion Media
The companion media is a valuable addition to this book and includes the following:

■ Electronic book The complete text of the print book, in a searchable PDF eBook

■ Scripts Scripts to help you automate IIS tasks

■ Tools Links to tools for IIS, Windows® PowerShell, and more that you can put to use
right away

■ Product information Links to information about the features and capabilities of IIA NS
Windows Server® 2008 and other products to help you optimize Windows Server 2008
in your enterprise

■ Resources Links to guides, technical resources, webcasts, forums, and more to help you
use and troubleshoot the features of IIS, Windows Server 2008, and other products

■ Sample Chapters Preview chapters from 15 Windows Server 2008 books, in PDF
format

Find Additional Content Online
As new or updated material becomes available that complements your book, it will be posted
online on the Microsoft Press Online Windows Server and Client Web site. Based on the
final build of Windows Server 2008, the type of material you might find includes updates to
book content, articles, links to companion content, errata, sample chapters, and more. This
Web site will be available soon at: http://www.microsoft.com/learning/books/online/serverclient
and will be updated periodically.

Style Meaning

Bold font Used to indicate user input (characters that you type exactly as shown)

Italic font Used to indicate variables for which you need to supply a specific value
(for example, file_name can refer to any valid filename)

Monospace font Used for code samples and command line output

%SystemRoot% Used for environment variables

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://www.microsoftpressstore.com/title/9780735624412. to get your downloadable content. This content
is always up-to-date and available to all readers.

http://www.microsoftpressstore.com/title/9780735624412

Introduction xxv
Resource Kit Support Policy

We have made every effort to ensure the accuracy of this book and the content of the
companion media. Microsoft Press provides corrections to this book through the Web at:
http://www.microsoft.com/learning/support/search.asp.

If you have comments, questions, or ideas regarding the book or companion media content,
or if you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press by using either of the following methods:

E-mail:

rkinput@microsoft.com

Postal Mail:

Microsoft Press
Attn: Microsoft Internet Information Services 7.0 Resource Kit, Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses.
For product support information, please visit the Microsoft Product Support Web site at:
http://support.microsoft.com.

Chapter 12

Managing Web Server Modules

In this chapter:

Extensibility in IIS 7.0 . 367

Runtime Web Server Extensibility . 371

Summary . 420

Additional Resources. 420

Extensibility in IIS 7.0
On the Microsoft Internet Information Services (IIS) 7.0 team, there is a running joke that
every release of IIS has to be a complete rewrite of the previous version. However, when
looking at the history of the product, there have been strong reasons behind each of the
rewrites. IIS 6.0, which was shipped with Windows Server 2003, was a complete rewrite of
Windows XP’s IIS 5.1, in the wake of the infamous CodeRed and Nimbda security exploits
that plagued it in the summer of 2001. The rewrite, focused on producing an extremely
reliable, fast, and secure Web server, was an overwhelming success—as evidenced by the rock-
solid reliability and security track record of IIS 6.0 to date.

IIS 7.0 is again a major rewrite of the Web server, but this time for a different reason—to
transform the reliable and secure codebase of IIS 6.0 into a powerful next-generation Web
application platform. To achieve this, the IIS 7.0 release makes a huge investment in providing
complete platform extensibility. The result? The most full-featured, flexible, and extensible
Web server that Microsoft has ever released.

The extensible architecture of IIS 7.0 is behind virtually all of the critical platform improvements
delivered in this release. Almost all functionality of the Web server, starting with the run-time
Web server features and ending with configuration and the IIS Manager features, can be
removed or replaced by third parties. This enables customers to build complete end-to-end
solutions that deliver the functionality needed by their applications.

What’s more, IIS 7.0’s very own feature set is built on top of the same extensibility model third
parties can take advantage of to further customize the server. This is a key concept, because it
insures that the extensibility model available to third parties is at least powerful and flexible
enough to build any of the features that come in the box. It also provides a unified way to
think about and manage Web server features, whether it be IIS 7.0 built-in features or those
provided by third parties. This is the heart of the modularity of IIS 7.0. This modularity,
367

368 Part III: Administration
together with the power of the extensibility model, enables you to turn your Web server into
an efficient, specialized server that does exactly what you need and nothing more.

With IIS 7.0, you can for the first time:

■ Build a low-footprint, reduced attack surface area Web server optimized for a specific
workload.

■ Replace any built-in feature with a custom feature developed in-house or by a third-party
independent software vendor (ISV).

■ Build complete end-to-end solutions that integrate seamlessly into the Web server, includ-
ing request processing functionality, configuration, diagnostics, and administration.

Though traditionally topics concerning extensibility have been reserved mostly for developer
audiences, with IIS 7.0, they become a critical component of deploying and operating the Web
server. Thus, they necessitate a solid level of know-how from the IT staff. The ability to
properly deploy, configure, tune, and lock down the feature set that comprises the Web server
is critical to achieving a functional, scalable, and secure IIS production environment. Properly
taking advantage of the flexibility IIS 7.0 offers can allow you to reap huge benefits in
achieving small-footprint, fast, and secure Web server deployments. On the other hand, the
complexity introduced by this same flexibility must be managed correctly, so that you can
guarantee proper operation and reduce the total cost of ownership for your Web server farm.

This chapter takes the IT professional’s perspective on the end-to-end extensibility platform
provided by IIS 7.0. In this chapter, you will learn how to manage the modular feature set in IIS
7.0 to provide for an efficient, reliable, and secure IIS environment.

IIS 7.0 Extensibility Architecture at a Glance

The IIS 7.0 Web server platform is a complex system, including a number of parts necessary
to operate, manage, and support Web applications running on top of it. This includes the Web
server itself, the configuration system that supports the Web server and its features, the
administration stack that provides an object model for managing the server, run-time state
reporting application programming interfaces (APIs), and several management tools and APIs
that expose the configuration and administration functionality to the user. Each of these
subsystems provides a public extensibility layer and surfaces built-in functionality as modular
components built on top of it. This design supports both server specialization as well as
complete server customization via third-party additions or replacements to the built-in feature
set. Figure 12-1 shows an overview of the extensibility architecture.

The main extensibility point lies in the Web server engine, which supports receiving HTTP
requests, processing them (often with the help of application frameworks such as ASP.NET or
PHP), and returning responses to the client. This is where most of the magic happens—IIS 7.0
ships with more than 40 Web server modules, which are responsible for everything from
authentication, security, and response compression to performance enhancements and
support for application frameworks such as ASP. These modules leverage one of the two

Chapter 12: Managing Web Server Modules 369
run-time extensibility models provided by IIS 7.0—the new C++ core extensibility model or the
integrated ASP.NET extensibility model—both of which provide the flexibility to replace any
built-in IIS 7.0 functionality or add new functionality of their own.

Figure 12-1 IIS 7.0 extensibility across the Web server, configuration system, and IIS Manager.

However, as you know, IIS is more than just a run time for processing requests. It also provides
a brand new distributed configuration system for configuring the functionality of the Web
server and its modules, with many features designed to simplify configuration, allow delegated
configuration for non-administrator, and xcopy-based deployment of configuration settings
with applications. In the face of increasing Web server complexity, the configuration system is
more critical than ever before, and it is required to support the multitude of unique configu-
rations and operational requirements of modern applications.

The IIS 7.0 team designed its configuration system to meet many of these challenges and to
allow third-party solutions to do so by leveraging configuration extensibility. Just like the Web
server features themselves, the configuration components leverage the same configuration
extensibility layer that can be used to create custom configuration for third party Web server
modules. This means that any custom Web server module can easily expose its own configu-
ration settings, which can then be stored in the same configuration files and managed with
the same standard APIs and tools that are used with the rest of the IIS 7.0 configuration.

In addition to static file-based configuration, IIS 7.0 provides support for administration
objects, which enable dynamic configuration or management functionality to be exposed
through the IIS 7.0 configuration object model. This enables new IIS management objects
to be added or custom management functionality to be exposed on existing IIS objects, such
as the site or application pool object, and consumed by the standard APIs and tools. Again,
the administration stack is extensible, and IIS administration objects leverage that very
extensibility model themselves.

Finally, IIS Manager (which replaces the old Microsoft Management Console-based
InetMgr.exe) provides its own extensibility to enable graphical user interface (GUI) management
pages to be added into IIS Manager, thus benefiting from the navigation, delegation, and
remote management capabilities.

IIS Manager

Web Server

Configuration
System

mgmt
extensions

modules

schema
extensionsXML

config
file

370 Part III: Administration
Together, these extensibility mechanisms provide the foundation for end-to-end solutions
that can be developed on IIS 7.0, where custom Web server features can also expose custom
configuration and management functionality, as well as a GUI administration experience with
IIS Manager.

Direct from the Source
The IIS 7.0 release is a testament to the power of a system architecture that builds on its
own extensibility foundation, rather than adding extensibility as an afterthought. Almost
all components of the server, including the Web server features, their configuration,
and IIS Manager management pages, are built on top of the same extensibility models
that are exposed to third parties. Over the four years of working on the project, I’ve
witnessed this power firsthand, through the unique opportunity to design and build
both the core extensibility platform and the features that leverage it. In a way, IIS 7.0 has
been our own best customer, helping us get the platform right before the real customers
started to use it.

Mike Volodarsky

Program Manager, IIS 7.0

Managing Extensibility

The modular architecture serves as the foundation for many of the exciting new capabilities
in IIS 7.0, from the ability to create specialized servers to securing and tuning server perfor-
mance. However, it also exposes a fair amount of complexity to the administrator, which must
be managed to harness the benefits of componentization. This moves the task of planning and
managing extensibility to the IT domain, rather than being a developer-only task, as it has often
been in the past. With this in mind, this chapter focuses on the key tasks around managing
extensibility, rather than the information about developing extensibility components.

The first topic of interest is of course installing the extensibility components so that you can
begin using them on the server. The built-in IIS 7.0 features are fully integrated with Windows
Setup and can be installed using Server Manager on Windows Server 2008 and the Turn
Windows Components On And Off UI on Windows Vista (you can learn more about this in
Chapter 5, “Installing IIS 7.0”). Windows Setup implements all the information necessary to
install and configure these components by using the IIS 7.0 configuration APIs. As such, these
components typically do not require any additional work to be installed, although in some
cases they may require additional configuration to control their availability to specific
applications on the server.

However, this is not so for third-party components developed by ISVs or your own in-house
development team. Without the support of Windows Setup, third-party components must be
installed using the IIS 7.0 configuration directly. In doing so, it is often necessary to consider

Chapter 12: Managing Web Server Modules 371
deployment and installation options that suit your component. In fact, because the ability to
customize and tailor IIS 7.0 to the specific application solutions often relies on leveraging its
modularity, the ability to properly install IIS 7.0 extensibility components and manage the
enabled feature set on the server becomes critically important. Thankfully, IIS 7.0 provides a
number of management tools that can be used to perform the installation tasks, and so armed
with the proper know-how, you can become a pro at deploying IIS 7.0 extensibility. To that
end, this chapter describes how to install and manage enabled Web server modules. You can
learn how to manage configuration and IIS Manager extensions in Chapter 13, “Managing
Configuration and User Interface Extensions.”

After covering initial deployment, you will also review common configuration and manage-
ment tasks for each extensibility type. Though not always required, these tasks are often
helpful to get your component to do exactly what you want in specific situations, and they
include things such as insuring the correct execution order for your modules and enabling
your modules to function correctly in a mixed 32-bit/64-bit environment. These tasks vary
between the different extensibility types and are largely based on the developer’s experience
developing and using the extensibility layers during the development of IIS 7.0.

IIS 7.0 continues the IIS 6.0 tradition of emphasizing security, providing additional lockdown
by default, and introducing new security features to help you further secure your Web server
assets. One of the powerful ways to improve your server’s security is to take advantage of
componentization and remove all unused components, which will result in the smallest
attack surface area possible for your server. When adding new components, then, you need to
be aware of the resulting increase in the surface area of your server, and you must understand
the security implications of the new code that is now running on your server. Proper under-
standing of the security impact of Web server components is critical to maintaining a secure
operating environment and being able to take advantage of the functionality afforded by
IIS 7.0 extensibility without compromising its security.

This chapter will cover what you need to know to securely deploy Web server modules and
will review key security tactics you can use to lock down your server. You will also review the
specific points to watch out for when configuring a shared hosting server or departmental
server, which allows extensibility components to be published by nonadministrators. You can
learn about securing configuration and IIS Manager extensions in Chapter 13.

Runtime Web Server Extensibility
The Web server extensibility model provides a foundation for IIS 7.0’s modular architecture,
enabling the low-footprint, low attack surface area, as well as highly specialized Web server
deployments. All of this is possible because built-in IIS 7.0 features are implemented as
pluggable modules on top of the same extensibility APIs that are exposed to third-party
modules and are configured and managed with the same configuration and management
tools.

372 Part III: Administration
What Is a Module?

Logically, a module is a Web server component that takes part in the processing of some or all
requests and typically provides a service that can involve anything from supporting specific
authentication methods (such as the Windows Authentication module) to recording and
reporting requests that are currently executing (such as the Request Monitor module). The
modules operate by executing during different stages of the request processing pipeline and
influencing the request processing by using the APIs exposed by the Web server extensibility
model. The majority of modules provide independent services to add functionality to the Web
application or otherwise enhance the Web server.

The application developer or IT administrator can then essentially put together the Web
server with the precise functionality that is required by controlling which modules are
enabled for the application, much like building a structure from a set of LEGO blocks. IIS 7.0
provides a fine degree of control over which modules are enabled, giving administrators
control of functionality on both the server as a whole and of specific applications, which we’ll
cover in depth later in this chapter.

Physically, IIS 7.0 modules are implemented as either native dynamic-link libraries (DLLs)
developed on top of the new IIS 7.0 native C++ extensibility model, or as managed .NET
Framework classes that leverage the new ASP.NET integration model available in IIS 7.0. Both
of these APIs enable modules to participate in the IIS 7.0 request processing pipeline, and
manipulate the request and response processing as needed. Though these two extensibility
models use two different APIs and have a number of different characteristics from both the
developer and IT administrator perspective, they both implement the logical module concept.
This enables IIS 7.0 to provide a consistent development abstraction to both C++ and .NET
Framework developers for extending the Web server. The logical module concept also enables
IIS 7.0 to expose the administrator to a largely unified view of managing the Web server
feature set. For information on the differences between native and managed Web server
modules and how they affect the installation and management of modules, see the section
titled “Differences Between Managed (.NET) and Native (C++) Modules” later in this chapter.

The Request Processing Pipeline

The IIS 7.0 request processing pipeline is the foundation of the modular architecture, enabling
multiple independent modules to provide valuable services for the same request.

Note In IIS 7.0, the amount of processing the Web server engine itself performs is minimal,
with the modules providing most of the request processing.

The pipeline itself is essentially a deterministic state machine that enables modules to interact
with the request during a fixed set of processing stages, also known as events. As shown in

Chapter 12: Managing Web Server Modules 373
Figure 12-2, when the request is received, the state machine proceeds from the initial stage
toward the final stage, raising the events and giving each module an opportunity to do its
work during the stages it is interested in.

Figure 12-2 The request processing pipeline.

The majority of events in the request processing pipeline are intended for a specific type
of task, such as authentication, authorization, caching, or logging. Modules that subscribe to
these events can provide a specific service appropriate for the particular stage. For example,
the authenticate event is home to a number of IIS 7.0 modules, including the Windows
Authentication module (NTLM and Kerberos authentication), the Basic Authentication
module, the ASP.NET Forms Authentication module, and so on. These events enable multiple
modules to execute during the request processing and perform typical Web server processing
tasks in the correct order. For example, determining the user associated with the request
during the authentication stage needs to happen before determining whether that user has
access to the requested resource during the authorization stage.

Other events are present for additional flexibility, enabling modules to perform tasks at a
specific time during request processing (typically between the events that have specific
intended roles such as authentication and authorization). Table 12-1 lists all the events, along
with some IIS 7.0 modules that subscribe to them.

Begin

Authenticate

Authorize

Execute Handler

Update Cache

Log

End

• • •

• • •

HTTP
Request

HTTP
Response

Basic Auth

Win Auth

Forms Auth

Static File

ASPX Page

FastCGI

Resp. Filter

Logging

• • •

• • •

IIS 7.0 Request
Processing Pipeline

374 Part III: Administration
It is important to understand that though the majority of modules are self-contained and
provide independent services during request processing, they do operate on a common set of
request and response state and can affect the other’s operation. In some cases, these relation-
ships are part of formal patterns (such as the authentication and authorization pattern), and
in others they may be unintentional. In the latter case, some modules may not be compatible

Table 12-1 Request Processing Events

Event Description Modules

BeginRequest The request processing is
starting.

Request Filtering module,
IP Restrictions module

AuthenticateRequest The authenticated user for
the request is determined.

Authentication modules, including
Windows Authentication module,
Basic Authentication module,
ASP.NET Forms Authentication
module

AuthorizeRequest Access to the requested
resource is checked for the
authenticated user, and the
request is rejected if access is
denied.

URL Authorization module

ResolveRequestCache The server checks if the
response to this request can
be retrieved from a cache.

IIS Output Cache module, ASP.NET
Output Cache module

MapRequestHandler The handler for this request is
determined.

AcquireRequestState The required state for this
request is retrieved.

ASP.NET Session State module

PreExecuteRequestHandler The server is about to execute
the handler.

ExecuteRequestHandler The handler for the request
executes and produces the
response.

All modules that provide request
handling, including Static File module,
Directory Listing module, Default
Document module, ISAPI extension
module, ASP.NET PageHandler

ReleaseRequestState The state is released. ASP.NET Session State module

UpdateRequestCache The cache is updated. IIS 7.0 Output Cache module,
ASP.NET Output Cache module

LogRequest The request is logged. Custom Logging module

EndRequest* The request processing is
about to finish.

Request Monitor module

* All of the events in this table except the EndRequest event also have a corresponding Post event, such as
PostBeginRequest for BeginRequest. Post events exist primarily to provide additional flexibility to modules so
that they can perform tasks that need to happen between specific events.

Chapter 12: Managing Web Server Modules 375
with each other, or they may require a specific ordering to function correctly. Module ordering
is discussed in the section titled “Controlling Module Ordering” later in this chapter.

Differences Between Managed (.NET) and Native (C++) Modules

As we mentioned earlier, IIS 7.0 supports modules developed with the native IIS 7.0 C++ API
as well as modules developed using the ASP.NET module API, sometimes referred to as
managed modules.

The IIS 7.0 C++ module API replaces the legacy ISAPI filter and extension API as the new
native extensibility model for IIS 7.0 and future versions of IIS. Existing ISAPI filters and
extensions are still supported, but developers are encouraged to take advantage of the module
extensibility model to build new server components. In fact, the support for ISAPI filters and
extensions in IIS 7.0 is implemented as a native module, developed with the new native API,
which hosts and executes ISAPI DLLs. Modules developed using the new native API are
similar to the ISAPI filters in that they are Win32 DLLs loaded in-process by each IIS worker
process, and they can affect the processing of every request. Because they execute under the
rights and privileges of the IIS worker process, they have the same security impact and there-
fore have to be trusted by the server administrator.

However, this is where many of the similarities end, because IIS 7.0 modules use a much more
refined and significantly more powerful C++ API, have access to many more extensibility
points by subscribing to one or more of the events in the request processing pipeline, and
can accomplish much richer tasks. The new C++ API also significantly improves the server
development experience and reduces the potential for reliability issues that plagued the
overly complex ISAPI interface. This makes IIS 7.0 native modules the most powerful—and yet
simpler and more reliable—way to extend IIS.

Also, for the first time in the history of IIS, IIS 7.0 provides a full-fidelity .NET extensibility
model based on ASP.NET. This makes server development significantly more accessible to
developers and enables them to rapidly build server features while taking advantage of
powerful features of ASP.NET and the .NET Framework. This is made possible by the new
ASP.NET integration engine, which elevates ASP.NET from being an application framework to
being a first-class extensibility mechanism for IIS 7.0.

As a server administrator, extending IIS with the .NET Framework enables you to delegate IIS
extensibility to application owners who do not have administrator privileges on the server.
This is possible because of the Code Access Security (CAS)–based ASP.NET hosting model,
which constrains the execution of code in ASP.NET applications when configured to run with
partial trust. Unlike native modules that execute with full privileges of the IIS worker process,
managed ASP.NET modules can execute with limited privileges that can prevent them from
negatively affecting the server itself or other applications on the server. This enables IIS 7.0
applications to deploy IIS features to the server without requiring administrative action (such
as installing COM objects or ISAPI filters), without compromising server security.

376 Part III: Administration
Table 12-2 is a summary of the differences between native and managed modules.

IIS 7.0 configuration is aware of the differences between native and managed modules. It
also enables administrators to take full advantage of the constrained execution nature of
managed modules by enabling managed modules to be added on a per-application basis by
packaging them together with the application content. Application-based deployment of man-
aged modules allows for simple xcopy deployment of IIS applications because they can spec-
ify their own IIS configuration and modules.

How It Works: ASP.NET Integrated Pipeline
With the unified pipeline model that IIS 7.0 provides, both native modules developed
using the IIS 7.0 native extensibility model and managed modules developed using the
ASP.NET module model can participate in the Web server’s request processing (when
using the ASP.NET Integrated mode). Both native and managed modules can participate
in all request processing stages and operate on a shared set of request and response
intrinsic objects.

In practice, however, ASP.NET and IIS are two separate software products. Moreover,
ASP.NET Integrated mode uses the standard ASP.NET interfaces that are used to
provide request processing services to the ASP.NET application framework on previous
versions of IIS. How, then, is such a tight integration possible?

The answer lies in the special native module, ManagedEngine, that is installed on IIS 7.0
when the “.NET Extensibility” Windows Setup component (Windows Vista) or Role
Service (Windows Server 2008) is installed. This module implements the ASP.NET
Integrated mode engine that enables the ASP.NET request processing pipeline to be
overlaid on the IIS request processing pipeline, proxying the event notifications and
propagating the required request state to support the pipeline integration. This module
is responsible for reading the managed modules and handler entries in the IIS module
and handler configuration and working together with the new ASP.NET engine

Table 12-2 Comparing Native and Managed Modules

Native Modules Managed Modules

Developed with IIS 7.0 C++ module API ASP.NET module API, any .NET language

Represented by Win32 DLL .NET class in a .NET assembly DLL

Scope of execution IIS worker process ASP.NET application domain

Execution privilege IIS worker process identity IIS Worker process identity, plus
constrained by the ASP.NET Trust Level

Deployment model Globally for the entire server Globally for the entire server by using the
.NET Global Assembly Cache, or xcopy-
deploy inside a specific application

Deployment privilege Administrators only Application owners can deploy with
application

Chapter 12: Managing Web Server Modules 377
implementation in System.Web.dll to set up the integrated pipeline. As a result, it enables
ASP.NET modules and handlers to act as IIS modules and handlers.

So, when you see the ManagedEngine module in the IIS modules list, pay it some
respect—it is arguably the most complex and powerful module ever written for IIS 7.0.
Also keep in mind that this module must be present for the integrated pipeline and
ASP.NET applications in general to work in IIS 7.0 Integrated mode application pools.

Mike Volodarsky

IIS Core Program Manager

However, IIS 7.0 also provides a consistent view of managing modules, whether they are
native or managed, so that administrators can control the server feature set in a standard
manner regardless of the module type. You will review the differences in the installation of
native and managed modules, as well as standard management tasks, later in this section.

Installing Modules

The modules that comprise the IIS 7.0 feature set in Windows Vista or Windows Server 2008
can be installed via Windows Setup. Thanks to the modular architecture, Windows Setup
enables very fine-grained installation of IIS 7.0 features—you can install most of the IIS 7.0
modules separately (along with all of their supporting configuration and administration fea-
tures). You can also install the .NET Extensibility role service, which enables ASP.NET man-
aged modules to run on IIS 7.0, or the ASP.NET role service, which also installs all of the of the
ASP.NET managed modules and handlers to support fully functional ASP.NET applications.
You can learn more about installing IIS 7.0 features in Chapter 5.

Windows Setup actually uses the same IIS 7.0 configuration APIs that you can use to manually
install a third-party module on the server. In fact, Windows Setup uses Appcmd.exe, the IIS
7.0 command line tool, to perform module installation, which is just one of the ways that you
can install modules on IIS 7.0. Later in this chapter, you will look at the most common ways
to perform the installation, which are IIS Manager and Appcmd.exe, as well as editing server
configuration directly. Of course you also have the option of using any of the programmatic
APIs, including the .NET Microsoft.Web.Administration API, the IIS 7.0 configuration COM
objects from C++ programs or script, or WMI. The choice is yours.

Installing Native Modules

To install a native module, it must be registered with the system.webServer/globalModules
configuration section at the server level, in the ApplicationHost.config configuration file.
Because only server administrators have access to this file, the installation of native modules
requires Administrative privileges on the server. This is by design—allowing native code to
execute in the IIS worker process is a potential security risk, and so Administrators must be
sure to trust the source of the module.

378 Part III: Administration
The globalModules section contains an entry for each native module installed on the server,
specifying the module name and the module image, which is the physical path to the
module DLL.

<globalModules>

<add name="UriCacheModule"

image="%windir%\System32\inetsrv\cachuri.dll" />

<add name="FileCacheModule"

image="%windir%\System32\inetsrv\cachfile.dll" />

<add name="TokenCacheModule"

image="%windir%\System32\inetsrv\cachtokn.dll" />

<add name="HttpCacheModule"

image="%windir%\System32\inetsrv\cachhttp.dll" />

<add name="StaticCompressionModule"

image="%windir%\System32\inetsrv\compstat.dll" />

<add name="DefaultDocumentModule"

image="%windir%\System32\inetsrv\defdoc.dll" />

...

</globalModules>

The image attribute is an expanded string, which means that it can contain environment
variables (as it does for modules installed by Windows Setup). This is a good practice to make
sure that the ApplicationHost.config file remains portable and can be copied between servers
and works on servers with different system drives.

Note Native module DLLs should be located on the server’s local file system and not on
remote network shares. This is because the server attempts to load them under the application
pool identity and not the identity of the authenticated user or the configured virtual path
(UNC) identity. This identity will not typically have access to network shares.

The act of registering a native module instructs IIS worker processes in all application pools
to load the module DLL. The globalModules configuration section is also one of the few
sections that cause IIS worker processes to recycle whenever changes are made. This means
that you can install new modules, or uninstall existing modules, and IIS will automatically
pick up those changes without needing to manually recycle application pools, restart IIS
services, or run IISRESET.

Note By adding the module to globalModules, you are instructing IIS worker processes to
load the module DLL. This alone does not enable the module to run. To do that, you also need
to enable the module on the server or for a particular application.

After the module is installed, it will be loaded by all IIS worker processes on the server. Unfor-
tunately, IIS 7.0 does not enable native modules to be installed for a particular application
pool, so there is no easy way to load a native module only into certain application pools and
not into others.

Chapter 12: Managing Web Server Modules 379
Note IIS 7.0 does provide a way to load native modules selectively into a specific application
pool, by using the application pool name preconditions. See the section titled “Understanding
Module Preconditions” later in this chapter for more information on this. Though loading
native modules in this way is possible, you should not use this mechanism in most situations
because of its management complexity.

However, loading the module alone is not sufficient to enable the module to execute. It also
needs to be enabled by listing its name in the system.webServer/modules configuration
section. This is an important distinction that serves to provide more flexible control over the
enabled module set. Unlike the globalModules section, which can only be specified at
the server level, the modules configuration section can be specified at the application level,
such as in the application’s root Web.config. This enables each application to control the set
of enabled modules that process requests to itself.

Typically, a native module is also enabled at the server level (in ApplicationHost.config)
during its installation, which enables it for all applications on the server by default (except for
applications that specifically remove it in their configuration). This is the case for most of the
built-in native modules.

<modules>

<add name="HttpCacheModule" />

<add name="StaticCompressionModule" />

<add name="DefaultDocumentModule" />

...

<modules>

Each native module is enabled simply by listing its name in the modules collection.

Inside Global Web Server Events
If you read the globalModules section carefully, you will notice that some modules, such
as the TokenCacheModule, are listed there but yet are not listed in the modules list by
default. Does this mean that this module is disabled by default? No, not entirely.

Native modules loaded inside the IIS worker process can participate in global server
events, which are events that are not associated with request processing. These events
enable native modules to extend certain server functionality at the worker process level,
such as by providing the ability to cache logon tokens for improved performance.

Native modules that offer this kind of global functionality do not need to be listed in
the modules list and are able to offer it by simply being loaded in the worker process.
However, only modules listed in the modules list can provide request processing
functionality.

380 Part III: Administration
Note When the modules section changes, the IIS worker process does not need to recycle.
Instead, it picks up the changes automatically and applies the resulting module set to subse-
quent requests. However, ASP.NET applications whose modules configuration changes will
restart.

Uninstalling Native Modules

Caution Before removing modules, you should consider the security and performance
implications that the module removal will have on your server. The section titled “Securing
Web Server Modules” later in this chapter covers these implications in more detail.

To uninstall a native module, you need to remove the corresponding module entry from
the globalModules list. This prevents the module from being loaded in IIS worker processes
on the entire server. Removing the module from globalModules causes all IIS worker
processes to gracefully recycle.

In addition, when the native module is removed from the globalModules list, references to it
in the modules list also must be removed. Otherwise, all requests to the server or an applica-
tion that enables the missing module will generate an “HTTP 500 – Internal Server Error”
error until the module entry is removed. Typically, you should remove both the global-
Modules and modules entry for the module at the same time. However, if you do it in two sep-
arate steps, changing the modules section will not cause a worker process recycle—IIS will
automatically pick up this change by recycling any affected applications. Be sure to make a
configuration backup in case you need to restore the original configuration later.

When uninstalling a native module that is part of the IIS 7.0 feature set, you should instead
uninstall the corresponding IIS Windows Setup component (Windows Vista) or Role Service
(Windows Server 2008). Doing so has the benefit of removing the module binaries and
related configuration components, as well as indicating that the corresponding feature is
not installed to the Windows Setup infrastructure. The binaries remain stored in the OS
installation cache, where they are inaccessible to anyone other than the OS TrustedInstaller
subsystem. This ensures that you can re-install these modules later, and that any required
patches are applied to these binaries even when the patches are not installed on your server.

Caution You should not remove built-in IIS 7.0 modules manually. Use Windows Setup
instead to uninstall the corresponding feature or role service.

When a custom module is uninstalled and all IIS worker processes have recycled, you can
remove the module binary from the machine if necessary.

Chapter 12: Managing Web Server Modules 381
Look in the sections titled “Using IIS Manager to Install and Manage Modules” and “Using
Appcmd to Install and Manage Modules” later in this chapter to find steps detailing how you
can use IIS Manager or the Appcmd command line tool to uninstall a native module.

Installing Managed Modules

Managed modules developed using the ASP.NET APIs are not required to be installed globally
on the server. Instead, they simply need to be enabled in configuration for the application
where they are to be used, similar to classic ASP.NET applications in previous versions of IIS.
This enables simple xcopy deployment of applications containing managed modules, since
unlike native modules they do not require Administrative privileges to be deployed.

Needless to say, this makes managed modules very appealing in scenarios in which the
application administrator does not have administrative privileges on the server, such as on
shared hosting servers or departmental servers. Such applications can now deploy Web server
features without contacting the server administrator to install a global and trusted component,
which is often not possible. In these environments, the server administrator can constrain the
execution of managed modules by limiting the trust of the ASP.NET applications. The section
titled “Securing Web Server Modules” later in this chapter covers constraining the execution
of managed modules in more detail and discusses locking down module extensibility.

Note Running managed modules requires installation of the “.NET Extensibility” Windows
Setup component (Windows Vista) or Role Service (Windows Server 2008). This installs the
ManagedEngine module that enables managed modules to run inside Integrated mode
applications pools.

Installing the “ASP.NET” setup component/role service automatically installs the “.NET
Extensibility” component and also adds the modules and handler mappings used by the
ASP.NET framework. It also installs the classic ASP.NET handler mappings that enable application
pools that use Classic integration mode to run ASP.NET using the legacy ASPNET_ISAPI.dll
integration mechanism.

To install a managed module, the module simply needs to be added to the modules configu-
ration section. This is the same section that enables installed native modules, except managed
modules do not have to be listed in the globalModules configuration section. The modules
section, therefore, provides a unified view of enabled modules, whether they are native or
managed. Because this configuration section can be delegated down to the application level,
each application can specify the complete set of enabled modules (managed or native) by
using its modules configuration. Here is a more complete example of the modules configura-
tion section at the server level after the ASP.NET feature is installed.

<modules>

<add name="HttpCacheModule" />

<add name="StaticCompressionModule" />

<add name="DefaultDocumentModule" />

<add name="DirectoryListingModule" />

382 Part III: Administration
...

<add name="FormsAuthentication"

type="System.Web.Security.FormsAuthenticationModule"

preCondition="managedHandler" />

<add name="DefaultAuthentication"

type="System.Web.Security.DefaultAuthenticationModule"

preCondition="managedHandler" />

<add name="RoleManager"

type="System.Web.Security.RoleManagerModule" preCondition="managedHandler"

/>

...

</modules>

As you can see, this section contains both native modules that are simply identified by the
name attribute, and managed modules that also specify a type attribute. For each application,
the server resolves the enabled modules by looking up the native modules’ names in the
globalModules section and directly loading the specified .NET type for managed modules.
The type is the fully qualified .NET type name that refers to the class that implements this
module and resolves to an assembly that is packaged with the application or an assembly
installed in the machine’s Global Assembly Cache (GAC).

Important ASP.NET applications that define modules in the system.web/httpModules con-
figuration section and ASP.NET handler mappings in the system.web/httpHandlers configura-
tion section need to have their configurations migrated to the IIS system.webServer/modules
and system.webServer/handlers configuration sections to operate correctly in Integrated
mode. The server will generate a HTTP 500 error notifying you of this requirement if you
attempt to run such an application in Integrated mode. You can migrate the application easily
by using the Appcmd Migrate Config ApplicationPath command. To learn more about why this
is necessary and the options you have for running legacy ASP.NET applications, see Chapter 11,
“Hosting Application Development Frameworks.”

Deploying Assemblies Containing Managed Modules

Managed modules are classes implemented inside .NET assemblies. To support delegated
deployment of managed modules, the server provides several options, as shown in Table 12-3,
for deploying the module assemblies so that they can be added both globally on the server
and for a specific application only.

Table 12-3 Managed Modules and Deployment Options

Deployment Option Assembly Location Module Registration Location

Server Global Assembly Cache (GAC) Server level modules section in
ApplicationHost.config

Application Assembly in application’s
/BIN directory

OR

Source code in application’s
/App_Code directory

Application’s modules section in
application root’s Web.config

Chapter 12: Managing Web Server Modules 383
Deploying the Module Assembly at the Server Level If the module is to be installed
globally for all applications on the server, it needs to be registered with the machine’s Global
Assembly Cache (GAC). Before the managed assembly can be deployed to the GAC, it needs
to be strongly signed by the developer (for more information on strongly signing .NET assem-
blies, see http://msdn2.microsoft.com/en-us/library/xc31ft41.aspx). In particular, Microsoft
Visual Studio makes the signing process simple. Then, the managed assembly can be added to
the GAC by running the following command.

gacutil.exe /if AssemblyPath

Note The gacutil.exe command line tool is not available in the .NET Framework run-time
installation that comes with the operating system, so you have to download the .NET Frame-
work SDK to obtain it. After you obtain it, though, you can copy the tool to use on other
machines.

After your assembly is added to the Global Assembly Cache, you can add any of the modules
it contains to the server level modules section by specifying their type. This type name must
be fully qualified; that is, it must contain the full namespace path to the class (for example,
System.Web.Security.FormsAuthenticationModule). Because when it creates your module,
ASP.NET needs to locate an assembly that contains this type, the assembly must either be
listed in the system.web/compilation/assemblies configuration collection or included in the
type name by using the strong name notation. Here is an example of a strong name for the
built-in FormsAuthentication module.

System.Web.Security.FormsAuthenticationModule, System.Web, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=x86

Note You can get the assembly part of the strong name by using the gacutil.exe tool you
used earlier when you installed the assembly to the Global Assembly Cache. Run “gacutil.exe
/l AssemblyName” to display the assembly’s strong name signature. You can omit all parts of
the assembly’s strong name signature except for the assembly name, and ASP.NET will attempt
to find the first matching assembly based on the attributes you do include.

You may wonder why the default module entries for ASP.NET modules do not specify the
strong names and simply specify the fully qualified type names. This is because their parent
assembly, System.Web.dll, is configured to be automatically preloaded by the ASP.NET
applications (by being listed in the system.web/compilation/assemblies configuration
collection in .NET Framework’s root Web.config). Thus, ASP.NET can locate the types of
built-in ASP.NET modules by searching the preloaded assemblies, without having to specify
the assembly signature in the module type string.

Deploying the Module Assembly with the Application If the module is to be available in
a specific application only, it can be xcopy-deployed with that application without registering

384 Part III: Administration
anything globally on the server. In this case, the application owner can provide the module in
two ways: as a compiled .NET assembly DLL in the /BIN subdirectory of the application root
or as a source code file in the /App_Code subdirectory of the application root.

Note It is not necessary to sign the assembly in the application’s /BIN subdirectory.

The /App_Code deployment model is more appropriate for development and test
environments, because it enables editing of the module source code on the live server without
recompiling the module DLL. The /BIN deployment model is recommended for production
servers, because it does not require run-time compilation of the assembly and provides a more
compact way to deploy large codebases than source code does.

Because the module type deployed inside the application is available only in the application,
it can be used only in that application (unlike assemblies placed in the Global Assembly
Cache, which are available to all applications on the server). To add the module, you simply
need to add the fully qualified type into the modules configuration section in the application’s
root Web.config file. For modules whose assemblies are in the /BIN directory, you can option-
ally specify the assembly name, although it is not necessary—ASP.NET by default preloads all
/BIN assemblies. This is also true for modules that are deployed as source code to the /
App_Code directory, because ASP.NET automatically compiles and loads it.

Packaging IIS 7.0 managed modules in the application is a powerful way to create self-contained
applications that can be xcopy-deployed to a server and immediately function without
globally installing any functionality on the server.

Be sure to also read the section titled “Locking Down Extensibility” later in this chapter to
understand the security impact of allowing managed module delegation and how to properly
control it.

Uninstalling Managed Modules

Caution Before removing modules, you should consider the security and performance
implications that this action will have on your server. You can find more detail in the section
titled “Securing Web Server Modules” later in this chapter.

Unlike native modules, you can install managed modules simply by adding them to the
modules list. Therefore, uninstalling managed modules is identical to disabling them and
requires a single step.

Managed modules installed as part of ASP.NET installation cannot be individually uninstalled
using Windows Setup (Windows Vista) or Server Manager (Windows Server 2008). So, if
you need to remove any one of them, you have to do so by manually removing their entries

Chapter 12: Managing Web Server Modules 385
from the modules section. Be sure to make a configuration backup in case you need to restore
the original configuration later.

The section titled “Controlling What Modules Are Enabled” later in this chapter discusses
removing managed modules. Look in the sections titled “Using IIS Manager to Install and
Manage Modules” and “Using Appcmd to Install and Manage Modules” later in this chapter to
find steps detailing how you can use IIS Manager or the Appcmd command line tool to
remove managed modules.

Understanding Module Preconditions

The modular architecture of IIS 7.0 relies heavily on controlling which modules are installed
and enabled on the server and at the application level. Sometimes, making this determination
based on static configuration is not sufficient, and the decision to use the module in a
specific scenario must be made based on factors known only at run time. To support this
functionality, IIS 7.0 introduces the concept of preconditions, which are configured conditions
that the server evaluates at run time to determine whether a particular module should be used.

The following types of preconditions are supported:

■ Module load preconditions These preconditions may be associated with each installed
native module in the globalModules configuration section, and they determine whether
a particular module is loaded by each worker process when it starts. If any of the precon-
ditions do not evaluate to true, the module is not loaded in the worker process. These
preconditions can also be used in the isapiFilters configuration section to control the
loading of ISAPI filters.

■ Module enablement preconditions These preconditions may be associated with
each enabled module in the modules configuration section, and they determine
whether the module is enabled for a particular application (or request). If any of the
preconditions do not evaluate to true, the module does not run.

■ Handler mapping preconditions These preconditions may be associated with each
handler mapping in the handlers configuration section, and they determine whether
this handler mapping is considered when mapping a request to handlers. If any of the
preconditions do not evaluate to true, the handler mapping is ignored.

In each case, one or more precondition strings may be specified to allow the configuration
entry to be selectively used in cases where all of the specified preconditions evaluate to true.
If any of the preconditions fail, the module is not loaded or enabled, or the handler mapping
is not considered, depending on the scenario in which the precondition is being used. Here is
an example of ASP.NET setup using preconditions to load the “ManagedEngine” native
module only in application pools that use Integrated mode, run Framework version 2.0, and
are configured to execute in a 32-bit mode.

<globalModules>

…

<add name="ManagedEngine"

386 Part III: Administration
image="%windir%\Microsoft.NET\Framework\v2.0.50727\webengine.dll"

preCondition="integratedMode,runtimeVersionv2.0,bitness32" />

</globalModules>

Table 12-4 lists the supported precondition strings and scenarios in which they can be used.

The bitness32 and bitness64 preconditions match the bitness of the worker process and can
be used to selectively load modules in 32-bit or 64-bit application pools. In mixed 32-bit and
64-bit IIS environments, it may be necessary to load 32-bit native modules only in 32-bit
application pools, because IIS will fail to load the 32-bit native DLLs into the 64-bit worker
process. To help with this, the 32-bit native modules should configure the bitness32 precon-
dition, which selectively loads them in 32-bit application pools only. For more information
about running IIS in mixed 32-bit and 64-bit, please refer to the section titled “Installing
Modules for x64 Environments” later in this chapter.

The classicMode and integratedMode preconditions match the configured managedPipelineMode
attribute of each application pool. Together with the runtimeVersion preconditions, they
provide a foundation for the ASP.NET versioning in IIS 7.0 and also allow for selecting the
right set of ASP.NET handler mappings based on the integration mode of the application pool.
In application pools that either use the Classic ASP.NET integration mode or use a .NET
version that does not support direct integration, IIS 7.0 uses legacy ISAPI-based handler
mappings for ASP.NET. Both of these sets of handler mappings are configured at the server
level, and they use the classicMode/integratedMode and runtimeVersion preconditions to
automatically select the right set of handler mappings based on the application pool’s
managed pipeline mode and Framework version.

Table 12-4 Precondition Strings

Precondition Applicable To

bitness32, bitness64

Matches the “bitness” of the application pool

globalModules, isapiFilters, modules,
handlers

classicMode, integratedMode

Matches the configured managed pipeline mode of the
application pool

globalModules, isapiFilters, modules,
handlers

runtimeVersionv1.1, runtimeVersionv2.0

Matches the configured .NET run-time version of the
application pool

globalModules, isapiFilters, modules,
handlers

appPoolName=Name, appPoolName!=Name

Matches the application pool name; this precondition can
be used to selectively load a native module into a specific
application pool

globalModules, isapiFilters, modules,
handlers

managedHandler

Matches requests to handler mappings with managed
handlers

modules only

Chapter 12: Managing Web Server Modules 387
You can use the applicationPoolName precondition to selectively load/enable modules and
handler mappings in a particular application pool. An IIS 7.0 mechanism is provided to enable
specific customer scenarios primarily on shared Web hosting servers. IIS 7.0 does not use it
by default.

Finally, the managedHandler precondition enables modules to be enabled only for requests to
ASP.NET handlers. For ASP.NET Integrated mode applications, IIS 7.0 enables managed
modules to execute for all requests, whether or not they are mapped to ASP.NET handlers.
However, by default, all ASP.NET modules use the managedHandler precondition to run only
for requests to managed handlers. This also enables the ASP.NET appdomain creation to be
delayed until the first request to an ASP.NET handler is made. This precondition can be
removed from each module to allow it to run for all content types, regardless of whether they
are managed or native. For example, to allow ASP.NET Forms-based authentication to occur
for all content on the site, you need to remove the managedHandler precondition from the
“FormsAuthentication” module. You can learn more about this in the “Enabling Managed
Modules to Run for All Requests” section further in this chapter.

Preconditions solve a number of key problems in IIS 7.0. However, they can also add
management complexity, and if configured incorrectly, they can result in unintended behavior.
The largest cause of precondition-related problems is due to preconditions preventing
modules from being loaded/enabled or handler mappings from being used, resulting in missing
functionality. Though the module or handler mapping may appear present, its precondition
can be preventing it from being active. These types of problems may be hard to diagnose
because missing functionality does not always manifest in errors.

Another common problem is precondition inconsistency, where related configuration is not
preconditioned correctly and results in configuration errors. For example, if a native module
has a bitness32 load precondition, but the corresponding enablement entry in the modules
list does not, requests to 64-bit application pools will produce a “bad module” error because
the module being enabled is not loaded. Likewise, if a handler mapping refers to a module
whose enablement precondition in the modules list prevents it from being enabled, requests
that are mapped to this handler mapping will encounter an error.

To avoid these problems, remember that preconditions primarily serve to prevent a module/
handler mapping from being used in scenarios where it cannot function. Make sure that the
preconditions do not restrict the module from being available in scenarios where it’s needed.

Also keep in mind the precondition relationships between the different configuration sections
where they exist. Preconditions must get more restrictive as they go from module load
preconditions, to module enablement preconditions, and finally to the handler mapping
precondition for the module. For example, if the module load precondition in globalModules
is “bitness32”, the module enablement precondition for the corresponding entry in the
modules section must at least contain that precondition. If the module is referenced in a
handler mapping in the handlers configuration, the precondition of that entry must contain

388 Part III: Administration
at least the precondition strings from the modules entry (which in turn contains at least the
preconditions from globalModules entry).

Installing Modules for x64 Environments

When IIS 7.0 is installed on 64-bit versions of the operating system, it functions in native
64-bit mode by default. This means that all application pools create native 64-bit worker
processes and load 64-bit IIS core engine components and modules. However, by allowing
any of its application pools to use the 32-bit emulation mode called wow64, IIS 7.0 supports
hosting both native 64-bit and 32-bit applications. Unlike IIS 6.0, which also provided the
ability to use wow64, IIS 7.0 allows each application pool to configure this individually,
enabling side by side hosting of native 64-bit and 32-bit applications on the same server.

Each application pool that has the enable32BitAppOnWin64 property set to true will create
32-bit worker processes and load the 32-bit version of the IIS core and modules. This is
possible because IIS setup on 64-bit operating systems installs both 64-bit and 32-bit
versions of all IIS components and modules—the native 64-bit versions go into the standard
%windir%\System32\Inetsrv directory, and the 32-bit versions go into the %windir%\
Syswow64\Inetsrv directory. At run time, when IIS tries to load modules located in the
%windir%\System32\Inetsrv directory in a 32-bit wow64 worker process, the wow64 file
system redirection feature automatically redirects the file access to the \Syswow64 directory
where the 32-bit versions of the DLLs are located.

This mechanism enables IIS or third-party modules installed under the system32 directory
to provide 32-bit versions under the \Syswow64 directory and then automatically load
the correct version based on the “bitness” of the worker process.

However, the entire reason mixed 64-bit and 32-bit environments exist is that some function-
ality may not be available in native 64-bit flavors, requiring the worker process to operate in
32-bit mode. This is often needed for ASP applications that invoke in-process 32-bit COM
components, 32-bit only ISAPI filters, or 32-bit only native modules. Likewise, some
components may be available only in 64-bit flavors, and therefore they are not supported in
32-bit worker processes. To support such a scenario, you must be able to install native
modules, ISAPI filters, and ISAPI extensions so that IIS never attempts to load a 32-bit
component in a 64-bit worker process, and vice versa. IIS 7.0 provides this support via the
bitness preconditions (see the section titled “Understanding Module Preconditions” earlier in
this chapter), which enable native modules, ISAPI filters, and handler mappings to indicate
whether they are available only in 32-bit or 64-bit application pools.

For example, handler mappings that map requests to the 32-bit version of the ASP.NET ISAPI
use the bitness32 precondition to insure that they are used only inside 32-bit worker
processes.

<handlers accessPolicy="Read, Script">

<add name="PageHandlerFactory-ISAPI-2.0" path="*.aspx"

Chapter 12: Managing Web Server Modules 389
verb="GET,HEAD,POST,DEBUG" modules="IsapiModule"

scriptProcessor="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi

dll" preCondition="classicMode,runtimeVersionv2.0,bitness32"

responseBufferLimit="0" />

…

</handlers>

By default, the 64-bit version of the .NET Framework also registers an identical mapping to
the 64-bit version of the aspnet_isapi.dll, which uses the bitness64 precondition so that it is
selected only in 64-bit worker processes.

Using the bitness32 and bitness64 preconditions can therefore allow native modules, ISAPI
filters, and ISAPI extensions specified in the handler mapping configuration to directly target
64-bit or 32-bit application pools, without using the file system redirection mechanism to
provide both 32-bit and 64-bit flavors.

Common Module Management Tasks

Besides enabling you to choose which modules are installed on the server, IIS 7.0 enables you
to further fine-tune its functionality by selecting which modules are enabled on the server or
even for a particular application. Furthermore, you will sometimes want to tweak other
aspects of module operation, such as their relative order, or the specific scenarios in which
modules should execute. This section will illustrate some of these common module
management tasks.

Controlling What Modules Are Enabled

Despite the differences between installation procedures for native and managed modules,
the modules configuration section provides a unified view of the enabled modules. By
manipulating the module entries in the modules section, you can control which modules will
be allowed to function on the server by default or for a specific application:

■ Adding a module at the server level allows it to execute by default in all applications
on the server, except for applications that specifically remove it.

■ Removing a module at the server level prevents it from executing in all applications on
the server, except for applications that specifically add it back.

■ Adding a module at the application level allows it to execute in that specific application.

■ Removing a server-level defined module at the application level removes this module
from the specific application, while allowing other applications to use it.

In a nutshell, modules that are enabled on the server level provide a default feature set for all
applications on the server. Each application can then tweak this feature set by removing
unneeded modules and then adding additional modules in its modules section. It is
important to remember that though you can add new managed modules at the application
level, new native modules must be installed at the server level to be enabled at the application

390 Part III: Administration
level. This means that applications cannot introduce new native modules—they can only
remove existing ones that are enabled, or add back native modules that are installed but not
enabled by default at the server level.

Note You can manage the enabled modules for your application by using the IIS Manager.
After selecting your application in the tree view and opening the Modules feature, use the Add
Managed Module action to add a new managed module, the Configure Native Modules action
to enable or disable existing native modules, or the Edit or Remove actions to edit or remove
existing module entries in the list. See the section titled “Using IIS Manager to Install and
Manage Modules” later in this chapter for more information.

Note You can also use the Appcmd command line tool to manage the enabled modules.
See the section titled “Using Appcmd to Install and Manage Modules” later in this chapter for
more information.

Enabling Managed Modules to Run for All Requests

The ability to extend IIS with managed modules that execute for all content types is one of the
central breakthroughs of IIS 7.0. However, for backward compatibility reasons, all of the
built-in ASP.NET modules are configured to execute only for requests to managed (ASP.NET)
handlers. Because of this, useful ASP.NET services such as Forms Authentication are by
default available only for requests to ASP.NET content types, and they are not applied to requests
to static content or ASP pages. The ASP.NET setup does this, adding the “managedHandler”
precondition to each ASP.NET module element when it is added to the modules configuration
section. See the section titled “Understanding Module Preconditions” earlier in this chapter
for more information.

Because of this, it is necessary to remove this precondition from each ASP.NET module whose
service is desired for all application content. This can be done by using Appcmd or IIS
Manager to edit the specified modules element, or by manually removing the precondition
from the module element. When this is desired at the application level for a module element
inherited from the server level configuration, it is necessary to remove and redefine the
module element without the precondition.

<modules>

<remove name="FormsAuthentication" />

<add name="FormsAuthentication"

type="System.Web.Security.FormsAuthenticationModule" />

</modules>

This clears the default “managedHandler” value of the preCondition attribute and enables the
FormsAuthentication module to run for all requests.

Chapter 12: Managing Web Server Modules 391
When you use IIS Manager or Appcmd to edit the module element, this configuration is
automatically generated whenever you make changes at the application level.

Note New managed modules you add will not have the managedHandler precondition by
default and will run for all requests. If you want to restrict the managed module to run only for
requests to managed handlers, you need to manually add the managedHandler precondition.

Alternatively, you can configure your application to ignore all managedHandler preconditions
and effectively always execute all managed modules for all requests without needing to
remove the precondition for each one. This is done by setting the runAllManagedModules-
ForAllRequests configuration option in the modules configuration section.

<modules runAllManagedModulesForAllRequests="true" />

Controlling Module Ordering

Due to the pipeline model of module execution, module ordering is often important to ensure
that the server “behaves” as it should. For example, modules that attempt to determine the
authenticated user must execute before modules that verify access to the requested resource,
because the latter needs to know what the authenticated user is. This ordering is almost
always enforced by the stages of the request processing pipeline. By doing their work during
the right stage, modules automatically avoid ordering problems. However, in some cases, two
or more modules that perform a similar task—and therefore execute in the same stage—may
have ordering dependencies. One prominent example is built-in authentication modules.
They are run during the AuthenticateRequest stage, and to authenticate the request with the
strongest credentials available, they should be in the strongest to weakest order. To resolve
such relative ordering dependencies, the administrator can control the relative ordering of
modules by changing the order in which they are listed in the modules section.

This works because the server uses the order in the modules configuration section to order
module execution within each request processing stage. By placing module A before module
B in the list, you can allow module A to execute before module B.

This also means that when an application enables a new module (by adding a new managed
module, or enabling a native module that was not previously enabled), that module is listed
after the modules enabled by higher configuration levels due to the configuration collection
inheritance. This can sometimes be a problem if the new module should run before an exist-
ing module defined at the higher level, because the configuration system does not provide a
way to reorder inherited elements. In this case, the only solution is to clear the modules
collection and re-add all of the elements in the correct order at the application level.

<modules>

<clear/>

<add name="HttpCacheModule" />

392 Part III: Administration
…

<add name="MyNewModule" type="Modules.MyNewModule" />

…

<modules>

Note You can also use IIS Manager to perform the ordering task. After selecting your
application in the tree view and opening the Modules feature, choose the View Ordered List
action and use the Move Up and Move Down actions to adjust the sequence. If you use this
feature, the tool will use the <clear/> approach that we discussed earlier to reorder the
modules for your application.

Caution By using the <clear/> approach, you are effectively disconnecting the application’s
module configuration from the configuration at the server level. Therefore, any changes made
at the server level (removing or adding modules) will no longer affect the application and
will need to be manually propagated if necessary.

Adding Handler Mappings

Though modules typically execute for all requests so that the modules can provide a content-
independent service, some modules may opt to act as handlers. Handlers are responsible for
producing a response for a specific content type and are mapped in the IIS 7.0 handler
mapping configuration to a specific verb/extension combination. For handlers, the server is
responsible for mapping the correct handler based on the handler mapping configuration,
and they are also responsible for invoking that handler during the ExecuteRequest request
processing stage to produce the response for this request. Examples of handlers include
StaticFileModule, which serves static files; DirectoryListingModule, which displays directory
listings; and the ASP.NET PageHandler, which compiles and executes ASP.NET pages.

The main conceptual difference between modules and handlers is that the server picks the
handler to produce the response for requests to a specific resource, whereas modules typically
process all requests in a resource-independent way and typically do not produce responses.
Because of this, only the one handler mapped by the server is executed per request. If you
are familiar with IIS 6.0, this is similar to the distinction between the ISAPI extensions, which
provide processing for a specific extension, and ISAPI filters, which intercept all requests.

Traditionally, most application frameworks including ASP.NET, ASP, PHP, and ColdFusion are
implemented as handlers that process URLs with specific extensions.

You register a handler on the server by creating a handler mapping entry in the collection
located in the system.webServer/handlers configuration section. This concept is similar to
the script maps configuration in previous releases of IIS, but in IIS 7.0 it is extended to allow
for more flexibility and to accommodate more handler types. For applications using the
Integrated mode, this section also supports managed handlers that in previous IIS versions
are registered in the ASP.NET httpHandlers configuration section.

Chapter 12: Managing Web Server Modules 393
After it receives the request, the server examines the collection of handler mappings config-
ured for the request URL and selects the first handler mapping whose path mask and verb
match the request. Later, during the ExecuteRequestHandler stage, the handler mapping will
be used to invoke a module to handle the request.

Each handler mapping collection entry can specify the attributes shown in Table 12-5.

The information in the handler mapping is used as follows.

1. The precondition is first used to determine if the handler mapping is to be used in a
particular application pool. If any of the preconditions fail, the mapping is ignored.

2. The path and verb are matched against the request URL and verb. The first mapping that
matches is chosen. If no mappings matched, a “404.4 Not Found” error is generated.

3. If the accessPolicy configuration does not meet the requireAccess requirement for the
handler mapping, a “403 Access Denied” error is generated.

Table 12-5 Attributes Specified by Handler Mappings

Attribute Description

name (required) The name for the handler mapping.

path (required) The path mask that must match the request URL so that this handler
mapping can be selected.

verb (required) The verb list that must match the request verb so that this handler
mapping can be selected.

resourceType Whether the physical resource mapped to the request URL must be an
existing file, directory, either, or unspecified (if the physical resource does
not have to exist).

requireAccess The accessFlag level that is required for this handler to execute.

precondition The precondition that determines if this handler mapping is considered.

allowPathInfo Whether or not the PATH_INFO / PATH_TRANSLATED server variables
contain the path info segment; may cause security vulnerabilities in some
CGI programs or ISAPI extensions that handle path info incorrectly.

responseBufferLimit The maximum number of bytes of the response to buffer for this handler
mapping. Response buffering is new in IIS 7.0 and enables modules to
manipulate response data before it is sent to the client. The default is
4 MB, although ISAPI extensions installed with legacy APIs will have it
automatically set to 0 for backward compatibility reasons.

Modules List of modules that attempt to handle the request when this mapping is
selected.

scriptProcessor Additional information that is passed to the module to specify how the
handler mapping should behave. Used by ISAPI extension module, CGI
module, and FastCGI module.

type The managed handler type that handles the request when this mapping
is selected.

394 Part III: Administration
4. If the resourceType is set to File, Directory, or Either, the server makes sure that the
physical resource exists and is of the specified type. If not, a “404 Not Found” error is
generated. Also, check that the authenticated user is allowed to access the mapped file
system resource. If resourceType is set to Unspecified, these checks are not performed.

Note The path attribute in IIS 7.0 enables you to specify more complex path masks to
match the request URL than previous versions of IIS, which enable only * or .ext where
ext is the URL extension. IIS 7.0 enables you to use a path mask that may contain multiple
URL segments separated by / and to use wildcard characters such as * or ?.

Even though the majority of IIS 7.0 handlers are added at the server level and inherited by all
applications on the server, you can specify additional handlers at any level. Handler mappings
added at a lower level are processed first when matching handler mappings, so new handlers
may override handlers previously declared at a higher configuration level. Because of this,
if you want to remap that path/verb pair to another handler for your application, it is not
necessary to remove a handler added at a server level—simply adding that handler mapping in
your application’s configuration does the job.

Note IIS 7.0 continues to support wildcard mappings, which enable a handler to act like a
filter, processing all requests and possibly delegating request processing to another handler
by making a child request. Though the majority of such scenarios can now be implemented
with normal modules, quite a few legacy ISAPI extensions take advantage of this model
(including ASP.NET in some configurations). To create a wildcard mapping, you need to set the
path and verb attributes to *, set the requireAccess attribute to None, and set the resourceType
attribute to Either.

Types of Handler Mappings

Though it provides a standard way to map handlers to requests, the handlers configuration
also supports a number of different types of handlers, as shown in Table 12-6.

Table 12-6 Handler Types

Handler Type Configuration IIS 7.0 Examples

Native module(s)

The module must support
the ExecuteRequestHandler
event

modules specifies the list of
native modules that will handle
this request (typically just specifies
one module)

TraceVerbHandler,
OptionsVerbHandler,
StaticFileModule,
DefaultDocumentModule,
DirectoryBrowsingModule

ASP.NET handler

The application must be using
the Integrated ASP.NET mode

type specifies fully qualified .NET
type that implements ASP.NET
handler interfaces

ASP.NET PageHandlerFactory
(aspx pages), ASP.NET
WebResourceHandler

Chapter 12: Managing Web Server Modules 395
Unlike script maps in previous versions of IIS, which provide hardcoded support for ISAPI
extensions and CGI programs, IIS 7.0 hardcodes nothing—all types of handlers are implemented
on top of the standard native or managed module API. IIS 7.0 supports ISAPI extensions by
hosting them with the ISAPIModule, supports CGI programs with the CGI module, and
features new support for FastCGI programs with FastCgiModule. The IsapiModule, CgiModule,
and FastCgiModule modules are all native modules, much like StaticFileModule, except they
support interfacing with external handler frameworks to handle the request, using the ISAPI,
CGI, and FastCGI protocols respectively.

If you look at the handler mappings created by default by a full IIS 7.0 install, you will see
some of the following.

<handlers accessPolicy="Read, Script">

<add name="ASPClassic" path="*.asp" verb="GET,HEAD,POST"

modules="IsapiModule" scriptProcessor="%windir%\system32\inetsrv\asp.dll"

esourceType="File" />

<add name="ISAPI-dll" path="*.dll" verb="*"

modules="IsapiModule" resourceType="File" requireAccess="Execute"

allowPathInfo="true" />

...

<add name="PageHandlerFactory-Integrated" path="*.aspx"

verb="GET,HEAD,POST,DEBUG" type="System.Web.UI.PageHandlerFactory"

preCondition="integratedMode" />

...

<add name="PageHandlerFactory-ISAPI-2.0" path="*.aspx"

verb="GET,HEAD,POST,DEBUG" modules="IsapiModule"

scriptProcessor="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi

dll" preCondition="classicMode,runtimeVersionv2.0,bitness32"

responseBufferLimit="0" />

...

<add name="StaticFile" path="*" verb="*"

modules="StaticFileModule,DefaultDocumentModule,DirectoryListingModule"

resourceType="Either" requireAccess="Read" />

</handlers>

ISAPI extension modules specifies the
ISAPIModule; scriptProcessor
specifies the path to the ISAPI
extension DLL to load

ASP.dll (asp pages)

CGI program modules specifies the CGIModule;
scriptProcessor specifies the
path to the CGI executable

Any CGI executable

FastCGI program modules specifies the
FastCGIModule; scriptProcessor
specifies the path and arguments
for a FastCGI executable registered
in the FastCGI configuration
section

Any FastCGI executable
(such as PHP-CGI.EXE)

Table 12-6 Handler Types

Handler Type Configuration IIS 7.0 Examples

396 Part III: Administration
This configuration fragment shows a good cross-section of the kinds of handler mappings
that you can create. First is IsapiModule handler mapping, which enables ASP pages to be
executed with the ASP.dll ISAPI extension. Second is the IsapiModule mapping, which
supports direct requests to ISAPI extensions located in the application directories, which
require the Execute permission.

Then, you see two mappings for the ASP.NET PageHandlerFactory, which supports the
processing of ASPX pages. The first mapping uses the aspnet_isapi.dll ISAPI extension
to process the request, and the second uses the Integrated mode for executing ASP.NET
handlers directly. Each of these mappings uses a precondition to make sure that only one of
the mappings is active in each application pool based on the ASP.NET integration mode.
Classic mode application pools use the ISAPI mapping, and Integrated mode application
pools use the integrated mapping. You can read more about ASP.NET integration and
ASP.NET handler mappings in Chapter 11. Finally, you see the static file handler mapping,
designed to be a catch-all mapping that is mapped to all requests that do not match any of the
other handler mappings by specifying “*” for both path and verb. This is similar to previous
versions of IIS where any requests not mapped to an ISAPI extension scriptmap are handled
by the static file handler in IIS. This mapping also illustrates letting multiple modules attempt
to handle the request as part of a single handler mapping. First, StaticFileModule attempts to
serve a physical file if one is present, then DefaultDocumentModule performs the default
document redirect, and finally DirectoryBrowsingModule attempts to serve a directory listing.

Security Alert The fact that the catch-all mapping uses StaticFileModule means that
requests to resources that have not yet had a handler configured but are not listed in the
server’s MIME type configuration will result in a “404.3 Not Found” error. This error typically
indicates that either you need to add a MIME map entry for the file’s extension to the server’s
staticContent configuration section to allow the file to be downloaded, or you need to add a
handler mapping to appropriately process the file. This is an important security measure that
prevents scripts from being downloaded as source code on servers that do not yet have the
right handler mappings installed. For more information on adding MIME type entries, see
Chapter 11.

You will find out more about using IIS Manager and Appcmd to create handler mappings in
the sections titled “Using IIS Manager to Install and Manage Modules” below and “Using
Appcmd to Install and Manage Modules” later in this chapter.

Using IIS Manager to Install and Manage Modules

IIS Manager provides a powerful UI for managing modules on the server. This UI can be used
to install both native and managed modules, as well as manage enabled modules on the server
and for specific applications.

Chapter 12: Managing Web Server Modules 397
The Modules feature provides this functionality, and it can be accessed at two separate levels
for slightly different functionality:

■ By server administrators at the server level, to install native modules on the server, add
new managed modules, and configure modules that are enabled on the server by
default.

■ By server or site administrators at the application level, to add new managed modules
and configure enabled modules for the application.

At the server level, you can select the machine node in the tree view and then double-click the
modules to access the Modules feature, as shown in Figure 12-3.

Figure 12-3 The Modules feature in IIS Manager.

You will see the list of modules enabled at the server level, which corresponds to the list of
modules in the modules configuration section at the server level in ApplicationHost.config.
For each module, you will see its name. For native modules, you’ll also see the path to the
image DLL. For managed modules, you’ll also see the module type name. You will also see
three actions available on this page:

■ Add Managed Module Enables you to add a new managed module to the list of
enabled modules. In the resulting dialog box, you can specify the name of your new
module, as well as the module’s type.

398 Part III: Administration
You can select a module type from the Type drop-down list, which contains all module
types available from the assemblies located in the machine’s Global Assembly Cache
listed in the system.web/compilation/assemblies section of the .NET Framework’s root
Web.config. You can also type in your own type if it’s not yet listed. Select the Invoke
Only For Requests To ASP.NET Applications Or Managed Handlers check box if you
want your module to use the managedHandler precondition and only execute for
requests to ASP.NET handlers (see the section titled “Understanding Module Precondi-
tions” for more information about this).

■ Configure Native Modules Enables you to enable an already installed native module,
install a new native module, or uninstall an existing native module.

Here, you can enable native modules that are installed but not currently enabled by
selecting one or more of them. You can also use the Register button to install a new
native module, the Edit button to edit the name or the path for an installed module, or
the Remove button to uninstall the selected native module.

■ View Ordered List Enables you to display the list of modules in an ordered list so that
you can adjust their sequence by using the Move Up and Move Down actions. When
this is done at the server level, you can reorder the modules without resorting to clearing
the modules collection (see the section titled “Controlling Module Ordering” earlier in
this chapter for more information).

Chapter 12: Managing Web Server Modules 399
Also, when you select a module entry in the list, three additional actions become available:

1. Edit. This action enables you to edit the modules entry. For native modules, you can
directly change the native module installation information including its name and path
to native image DLL. For managed modules, you can edit the module name and the
module type.

2. Lock/Unlock. These actions enable you to lock the specific module item at the server
level, such that it cannot be removed or modified at the application level. See the section
titled “Locking Down Extensibility” later in this chapter for more information about
locking modules.

3. Remove. This action enables you to remove the module entry. For native modules, this
disables the module by default. For managed modules, this removes the module entry,
requiring you to later re-add this entry at the application level to enable it there.

To access the Modules feature at the application level, go to the tree view and select the
application you would like to administer. Then double-click the Modules feature icon. You will
be presented with the same view as before, except for the following differences:

■ You will no longer be able to add new native modules from the Configure Native
Modules dialog box. Remember, this is because native modules are installed for the
entire server, and you must have Administrative privileges to do that. Instead, you will
only be able to enable already installed native modules that are not currently enabled for
your application.

■ You will no longer be able to edit native module information or edit managed module
information for managed modules that are enabled at the server level (you can still edit
module information for managed modules added in your application).

■ You will not be able to lock/unlock modules.

■ When adding managed modules, the tool will also inspect all assemblies in the /BIN
and /App_Code source files for possible modules to add.

■ You can use the Revert To Inherited action to discard whatever changes were made to
the modules configuration section at the application level and then revert to the default
module configuration at the server level.

Despite these limitations, site administrators can still use IIS Manager to install new managed
modules or manage their applications’ module feature set without requiring Administrative
privileges on the machine. This is especially valuable given the ability of IIS Manager to enable
remote delegated administration for application owners. Of course, server administrators can
also benefit from IIS Manager for unrestricted module management.

400 Part III: Administration
Using IIS Manager to Create and Manage Handler Mappings

IIS Manager also provides a convenient interface to manage handler mappings, thus removing
some of the complexity involved with editing the handler mappings manually. This
functionality is provided by the Handler Mappings feature, which both server administrators
and site administrators can access.

After selecting the node at which you’d like to manage handler mappings, you can select the
feature by double-clicking the Handler Mappings icon. This presents the Handler Mappings
view, as shown in Figure 12-4.

Figure 12-4 The Handler Mappings feature in IIS Manager.

Here, you will see a list of handler mappings including the handler mapping name, path, and
other useful information. The Handler column provides a summary of how the handler is
implemented, showing either the modules list for native handlers or the type for managed
handlers. The Path Type indicates the resourceType of the handler mapping. The State column
indicates if this handler is enabled (this applies only to handler mappings using IsapiModule
or CgiModule) and indicates whether the ISAPI extension or CGI program specified by the
mapping is enabled in the system.webServer/security/isapiCgiRestrictions configuration
(analogous to the Web Service Restriction List in IIS 6.0).

The tool provides a number of ways to add new handler mappings, breaking them out by type
to simplify handler mapping creation:

■ Add Managed Handler This action enables you to create handler mapping to an
ASP.NET handler. This mapping is available only in application pools that are using
Integrated mode. It is shown in Figure 12-5.

Chapter 12: Managing Web Server Modules 401
Figure 12-5 Add Managed Handler dialog box.

In this dialog box, you specify the path mask for the handler mapping, as well as the
ASP.NET handler type that should provide processing for it. Much like when adding
managed modules, the tool searches for usable types in the assemblies from the Global
Assembly Cache (GAC) that are referenced in the ASP.NET compilation/assemblies
collection. It also searches for application assemblies when you’re adding the handler at
the application level. You can use the Request Restrictions dialog box to also specify the
verb list for the handler mapping (otherwise, it defaults to “*”), restrict the mapping to
physical resources such as a file or directory (the default is unspecified), and set access
level as required to execute the mapping (defaults to Script). You should indeed set
these to the strictest possible levels for added security instead of leaving them at default
values.

■ Add Script Map This action enables you to create an ISAPI extension or CGI program
handler mapping, similar to the IIS 6.0 scriptmap. This is shown in Figure 12-6.

Figure 12-6 Add Script Map dialog box.

402 Part III: Administration
This is similar to the previous dialog box, except instead of the .NET handler type, you
select the ISAPI extension, DLL, or CGI program executable on the server’s local file
system. This dialog box also prompts you to automatically create the isapiCgiRestriction
entry to allow the ISAPI extension or CGI program to execute on the server.

■ Add Wildcard Script Map This is identical to the Add Script Map dialog box, except that
it enables you to create a wildcard script map that intercepts all requests.

■ Add Module Mapping This is the most interesting action, because it enables you to
create a general handler mapping that specifies one or more native modules and option-
ally a script processor. You can use this dialog box to create ISAPI extension, CGI, and
FastCGI handler mappings in addition to simple handler mappings for native modules,
as shown in Figure 12-7.

Figure 12-7 Add Module Mapping dialog box.

The dialog box enables you to specify the Module (and it displays a list of available
native modules, although not all of them can function as handlers) and the Executable
(the script processor). It also provides special handling for IsapiModule, CgiModule,
and FastCgiModule handler mappings by prompting you to automatically create the
corresponding isapiCgiRestrictions or FastCGI configuration needed for the mapping
to work correctly.

Note It is not possible to edit preconditions via the Handler Mappings feature. Instead,
the tool automatically generates the correct preconditions for handler mappings to make it
function correctly by default. If you would like to change the preconditions, you need to edit
configuration directly by hand, with Appcmd, or with other configuration APIs.

In addition to adding new handler mappings, you can also edit or delete existing handler
mappings by clicking the item in the list and using the Edit or Delete commands that become
available. At the server level, you can also lock handler mappings to prevent them from being

Chapter 12: Managing Web Server Modules 403
removed at the lower level, although this has less effect than locking modules because handler
mappings can be overridden by adding new handler mappings for the same path/verb.

You can also use the “View Ordered List” action to order handler mappings. Keep in mind that
just as it is for modules, ordering inherited elements requires the tool to use <clear/> to clear
the handlers collection and add again all parent items into the configuration level being edited,
essentially orphaning the configuration from the parent handler mappings configuration.

If you edit handler mappings as a site administrator, you have virtually the same functionality
available to you for managing the handler mappings for your site, application, or any URL
inside your site. However, the tool will not prompt you to enable ISAPI extensions, CGI
programs, and FastCGI programs that the administrator has not already enabled at the
server level.

Using Appcmd to Install and Manage Modules

The Appcmd command line tool also provides top-level support for managing modules. To
begin with, you can always edit the IIS configuration via the Appcmd Config object to perform
all the tasks necessary to install and manage modules. However, the tool also provides a mod-
ule object, which directly supports common module management tasks. This is why Win-
dows Setup calls into Appcmd to install modules and is the reason Appcmd is often the
quickest way to install and manage modules. Appcmd is also the only tool available for man-
aging modules on Windows Server 2008 Server Core installations, which do not support IIS
Manager.

Appcmd is located in the %windir%\System32\Inetsrv directory, which is not present in the
PATH variable by default, so you need to use the full path to the tool to run it.

%windir%\system32\inetsrv\AppCmd

You must be logged in as an administrator when using Appcmd. Also, be sure to execute
Appcmd commands from an elevated command line prompt (click Start, right-click
Command Prompt, and choose Run As Administrator). You can refer to Chapter 7, “Using
Command Line Tools,” for more information about the tool. If you get lost while learning
Appcmd, be sure to check out the built-in command line help, which provides parameters and
examples.

AppCmd module /? - See all commands on the module object

AppCmd install module /? - See the usage help for the install module command

In the help output for the MODULE object, you can see that the tool supports the following
commands:

■ List Enables you to examine enabled modules at the server level or for a specific
application.

■ Install Enables you to install new native modules on the server.

404 Part III: Administration
■ Uninstall Enables you to uninstall currently installed native modules on the server.

■ Add Enables you to add a new module. You can also opt to enable an installed native
module for a specific application.

■ Delete Enables you to disable a managed module You can also opt to disable a native
module, optionally for a specific application.

■ Set Enables you to edit specific entries in the modules configuration section for
the purposes of changing the name or preconditions of a module or editing type
information for managed modules.

In the next section, we’ll provide some examples of using these commands to manage
modules with Appcmd.

Installing and Uninstalling Modules

The Install and Uninstall module commands provide support for—you guessed it—installing
and uninstalling native modules on the server.

To install native modules, you can use the following syntax.

AppCmd Install Module /name:string /image:string [/precondition:string]

[/add:bool] [/lock:bool]

This command accepts the parameters shown in Table 12-7.

The simplest case is installing a module by simply specifying its name and image path.

AppCmd install module /name:MyNativeModule /image:c:\modules\mymodule.dll

This installs and automatically enables the new module at the server level so that it’s loaded
by all IIS worker processes and enabled for all applications by default. If you wanted to install
the module but enable it selectively for specific applications only, you would include the
/add:false parameter. Then, you could use the Appcmd Add Module command later to enable
it for a specific application by using the /app.name parameter. If, on the other hand, you

Table 12-7 Appcmd Install Module Parameters

Parameter Description

name (required) Module name.

image (required) The path to the module DLL.

preCondition Optionally specifies the list of valid load preconditions for the module.
If specified, controls whether the module is loaded by the IIS worker
processes in particular application pools. The default is empty.

add Optionally specifies whether to also enable the module at the server
level. The default is TRUE.

lock Optionally specifies whether to also lock the module entry so that it
cannot be disabled by applications. This only applies if the module is
being enabled. The default is FALSE.

Chapter 12: Managing Web Server Modules 405
wanted to install and enable this module and prevent applications from disabling it, you
would include the /lock:true parameter for the install command. You could also set the
precondition parameter to one of the supported values (see the section titled “Understanding
Module Preconditions” earlier in this chapter) to control which application pools the module
is loaded and available in.

To uninstall a module, you can use the following syntax.

AppCmd Uninstall Module ModuleName

This command accepts the module’s name as the identifier.

Tip The uninstall command uses the standard Appcmd identifier pattern for specifying the
module name, as opposed to using the /name parameter that the Install command uses. This
is done so that all commands that work on specific existing instances of objects can use the
identifier format instead of using different parameter names to identify objects.

Here is an example of how you can uninstall the module you installed earlier.

AppCmd uninstall module MyNativeModule

Note This also automatically disables the module at the server level, which makes sense
because allowing this module to be enabled would result in an incorrect configuration after
the module is uninstalled. However, if for some reason you wanted to uninstall a module but
leave it enabled (this would cause request errors on the entire server if left unchanged), you
can specify the /remove:false parameter.

Enabling and Disabling Modules

You can use the Add Module and Delete Module commands to manage the modules enabled on
the server or for a particular application. You can also use the Add Module command to add
new managed modules. These commands manipulate the modules configuration section,
which contains the entries for enabled native modules and defines managed modules. There-
fore, you can perform a number of different tasks around module management.

One of the most common uses for the Add Module command is to add new managed modules.
Because native modules have to be installed on the server first before they are enabled, the
Install Module command is more appropriate for installing and automatically enabling them.
You can add a new managed module at the server level or for any particular application using
the following syntax.

AppCmd Add Module /name:string [/type:string] [/precondition:string]

[/app.name:string] [/lockItem:bool]

406 Part III: Administration
This command supports the parameters shown in Table 12-8.

For example, to add a new managed module at the server level, you can do the following.

AppCmd add module /name:MyManagedModule /type:MyModules.MyModule

This makes this module enabled by default for all applications on the server. If you wanted
to add it only to the root application in the default Web site, you would also add the
/app.name:"Default Web Site/" parameter. You could also set the preCondition parameter to
one of the supported values (see the section titled “Understanding Module Preconditions”
earlier in this chapter) to control for which application pools and requests the module is
enabled.

You can also use the lockItem parameter just like you can when creating new configuration
collection entries to lock the module entry, which prevents lower configuration levels from
removing the module configuration entry. You can leverage this when adding new managed
modules at the server level to prevent them from being disabled at the application level. This
is discussed more in the section titled “Locking Down Extensibility” later in this chapter.

Another common use of the Add Module command is to enable a native module that is
not currently enabled. For example, if you installed a native module with the /add:false
parameter, resulting in it being installed but not enabled by default, you can directly enable it.

AppCmd add module /name:MyNativeModule

You can use the /app.name parameter here to specify the application where the module
should be enabled. This only works for native modules; that is, when re-enabling managed
modules for a specific application, you always have to specify the type because this informa-
tion is not available elsewhere like it is for native modules.

Table 12-8 Appcmd Add Module Parameters

name (required) Module name.

type (required) The fully qualified .NET type of the module. If the module is being added
at the server level, the type must be in an assembly registered with the
machine’s Global Assembly Cache. If it’s being added for a specific
application, then it can also be deployed with the application. Refer to
the section titled “Deploying Assemblies Containing Managed Modules”
for more information.

preCondition Optionally specifies the list of valid enablement preconditions for the
module. If specified, controls whether the module is enabled in specific
application pools and for specific requests. The default is empty.

app.name Optionally specifies the application path for the modules to be added
to. The default is empty, meaning the server level.

lockItem Optionally specifies whether or not to lock the module entry against re-
moval at lower configuration levels.

Chapter 12: Managing Web Server Modules 407
You can use the Delete Module command to do the opposite—to disable a module that is cur-
rently enabled. You can also use this command to disable native module or managed modules
at the server level, or for a specific application, using the following syntax.

AppCmd Delete Module ModuleName [/app.name:string]

Tip The delete command uses the standard Appcmd identifier pattern for specifying the
module name, as opposed to using the /name parameter that the add command uses. This
syntax exists so that all commands that work on specific existing instances of objects can use
the identifier format instead of using different parameter names to identify objects.

For example, to disable a module that is enabled at the server level, you can do the following.

AppCmd delete module MyModule

This works for both managed and native modules, with a slight caveat: if you disable a native
module, you can re-enable it simply by using the Add Module /name:ModuleName command.
However, if you disable a managed module, you will need to specify its full type to re-enable it.
If you delete a managed module at the level where it’s defined for the first time, you may lose
the type information in case you need to re-add it later.

Examining Enabled Modules

In addition to installing/uninstalling and enabling/disabling modules, Appcmd supports
examining the enabled modules with the LIST command. This can prove valuable when
diagnosing module-related issues by enabling you to quickly determine which modules are
enabled for a specific application, or if a specific module is enabled.

The List Module command, much like the LIST commands for other Appcmd objects,
enables you to display all modules as well as query for modules that satisfy a specific query. In
the simplest use, it enables you to quickly list the modules that are enabled at the server level.

AppCmd list modules

To see which modules are enabled for a specific application, use the /app.name:AppPath
parameter to specify the application path for which the enabled modules should be displayed.

Note Because applications can remove certain modules or add new ones, their module set
can often be different from that of the server itself. Be sure to check the module list for the
application you’re interested in when you’re investigating problems with that application.

408 Part III: Administration
You can also specify queries for one or more of the module attributes, including precondition
and type, to find modules that have that attribute. For example, to find all managed modules
that have the managedHandler precondition set, you can use the following code.

AppCmd list modules "/type:$<>" "/precondition:$=*managedHandler*"

You can also look for specific modules by using the module name as the identifier.

AppCmd list module DefaultDocumentModule

Creating and Managing Handler Mappings

Though Appcmd provides a top-level Module object for managing modules, it does not
provide a top-level view of the handler mappings configuration. However, you can always use
the CONFIG object to directly manage the system.webServer/handlers configuration section
to accomplish any needed handler mapping management task.

Discussing the full collection editing syntax of the CONFIG object is out of scope for this
section (see Chapter 7), but here are some examples for using it to do basic handler mapping
management tasks.

Adding a Handler Mapping

To add a handler mapping to a native module, run the following command on one line.

AppCmd set config /section:handlers "/+[name='TestHandler',path='*test',

verb='GET,POST,HEAD',modules='TestModule']"

Note Long commands are sometimes shown formatted on multiple lines to fit on the
printed page.

This adds a server-level handler mapping that maps GET, POST, and HEAD requests to *.test
URLs to the “TestModule” native module. Though only the name, path, and verb attributes
are required (and the modules attribute should be set for the native module handler
mapping), you can also specify any of the other attributes that apply. You can also specify
the configuration path at which this mapping should be added instead of adding it at the
server level, as shown in the next example.

To add a handler mapping to a managed handler type, run the following command on
one line.

AppCmd set config "Default Web Site/" /section:handlers

"/+[name='ASPNHandler',path='*.aspn',verb='*',

type='MyHandlers.ASPNHandler',precondition='integratedMode']"

This adds a handler mapping for the root of the “Default Web Site” Web site, which maps all
requests to *.aspn URLs to the .NET MyHandlers.ASPNHandler handler type. Notice that

Chapter 12: Managing Web Server Modules 409
the handler mapping is also preconditioned to be used only in application pools running
in Integrated mode. This is required for handler mappings to managed types, because only
Integrated mode supports adding managed handler types directly into IIS handler mappings.

Editing a Handler Mapping

To edit a handler mapping, use the following code.

AppCmd set config /section:handlers /[name='TestHandler'].verb:GET

This sets the verb attribute of the handler mapping identified by the name TestHandler to
the new value of GET. Note that the name attribute serves as the unique collection key for the
handlers configuration section.

You can use this syntax to edit any of the handler mapping attributes. You can also edit the
handler mapping you created at the Default Web Site/ level by specifying that path after
the SET CONFIG command.

Deleting a Handler Mapping

To delete a handler mapping, you can use the /- prefix for deleting configuration collection
elements.

AppCmd set config /section:handlers /-[name='TestHandler']

This deletes the handler mapping you created earlier, identified by the name TestHandler. You
can also delete the handler mapping you created at the “Default Web Site/” level by specifying
that path after the SET CONFIG command.

Adding Entries to the ISAPI CGI Restriction List (Formerly Web Service
Restriction List)

When creating handler mappings that use CgiModule or IsapiModule to support CGI
programs or ISAPI extensions respectively, you also need to allow the specific CGI program or
ISAPI extension by adding it to the ISAPI CGI Restriction List. In IIS 6.0, this is known as
the Web Service Restriction List and is a key security measure to control the execution of
third-party code on the server.

For example, to add an ISAPI extension DLL to the system.webServer/security/isapiCgi-
Restriction list, use the following command.

appcmd set config /section:isapiCgiRestriction /+[path='c:\myisapi.dll',

allowed='true']

To allow (or disallow) an existing entry in the list, use the following command.

appcmd set config /section:isapiCgiRestriction

/[path='c:\myisapi.dll'].allowed:true

410 Part III: Administration
To delete an entry in the list, use the following command.

appcmd set config /section:isapiCgiRestriction /-[path='c:\myisapi.dll']

You can specify both CGI programs (executables) and ISAPI extensions (DLLs) in this list.

Note FastCGI program executables are not added to the isapiCgiRestriction list. Instead,
they must be registered in the system.webServer/fastCGI configuration section to allow
FastCGI application pools to be created for this executable.

Securing Web Server Modules

The extensibility architecture in IIS 7.0 is in many ways the recognition of the fact that it’s
not really the server but rather the application that runs on it that makes all the difference.
Unfortunately, history shows that it is also the application that is most commonly the cause of
security vulnerabilities. The lockdown approach to security that IIS 6.0 provides—restricting
the ability to run new code on the server and reducing the privilege of that code—has been
immensely successful in reducing Web server exploits. Now, with IIS 7.0, server administra-
tors must strike a balance between the functionality afforded by the new extensibility model
and server security. Therefore, it is now more important than ever to understand the security
impact of hosting server extensibility and to know how to properly lock it down to avoid
weakening the security of your server.

When it comes to securing the server, one of the biggest problems administrators face today is
dealing with system complexity and being able to properly apply key security best practices
rather than being bogged down in the details. This approach, though not a replacement for
proper security threat modeling and penetration testing at the application level, enables you
to significantly reduce the general security risk to the server. Basically, you need to be able to
answer the following question: Assuming you cannot trust the code running on your server to
be completely foolproof, how can you control what it can and cannot do, and at the same time
prevent your server from being compromised if this code is exploited?

The best answer to this question is to approach it in the following stages. First, you need to know
how to reduce the server’s surface area to a minimum, removing all functionality that is not
essential to its operation. Second, you need to understand the privilege of code that executes on
the server and then reduce it as much as possible. Finally, you need to maintain control over the
extensibility that is allowed on the server, preventing undesired functionality from being added
or desired functionality from being removed. You should also apply the best practices listed in
Chapter 14, “Implementing Security Strategies,” to secure individual features.

Taking Advantage of Componentization to Reduce the Security Surface
Area of the Server

To completely secure a Web server, you would need to disconnect it from the network, unplug
it, and bury it in a thick slab of concrete. This would guarantee its security by removing the

Chapter 12: Managing Web Server Modules 411
possibility of any malicious interactions with the system. However, because this will also make
the Web server useless, you have to find other ways to apply the security principle of
reducing the attack surface area.

Direct from the Source: The Most Secure Web Server in the World
My first demo for the IIS 7.0 breakout session at the conference TechEd 2005 was to
showcase the componentization capabilities of IIS 7.0 by showing off the “most secure
Web server in the world.”

As part of the demo, I showed editing the configuration in the ApplicationHost.config
file, removing all of the modules, and removing handler mappings. After saving the file,
the IIS worker process automatically picked up the changes and restarted, loading
absolutely no modules. After making a request to the default Web site, I got back a swift
empty 200 response (this configuration currently returns a “401 Unauthorized” error
because no authentication modules are present). The server performed virtually no
processing of the request and returned no content, thus becoming the “most secure
Web server in the world.” After a pause, I commented that though secure, the server was
also fairly useless. Then I segued into adding back the functionality that we needed for
our specific application.

I have done this demo before for internal audiences to much acclaim, but I will always
remember the audience reaction during the TechEd presentation. The people in the
audience went wild, some breaking out into a standing ovation. This was a resounding
confirmation of our efforts to give administrators the ability to start from nothing,
building up the server with an absolutely minimal set of features to produce the most
simple-to-manage, low-surface-area Web server possible.

Mike Volodarsky

Program Manager, IIS 7.0

The ability of IIS 7.0 to remove virtually all features of the Web server is fundamental here,
enabling us to eliminate the threat of any known or unknown attack vectors that may exist in
those features. In addition, removing extra functionality reduces management complexity and
reduces the chance of your server being forced offline if a patch affects the removed features.
You can leverage this ability by doing the following:

1. Determine the set of features that you need for your server/application.

2. Install only the required IIS 7.0 features by using Windows Setup.

3. Manually remove any modules that your application does not need.

At the end of step 2, you should have the minimum required set of functionality installed
globally for your server. You can then further reduce the surface area by disabling the modules

412 Part III: Administration
you do not need in each of your applications, in the case where each application requires
slightly different server functionality.

In some other cases, you may need to disable modules for the entire server if the setup
packaging is not granular enough. This is often the case with ASP.NET, which installs all of the
ASP.NET modules and handlers whether or not they are all necessary in your application.

Sounds simple, right? Unfortunately, the biggest challenge lies in step 1, determining the set
of features your application needs. Doing this requires knowing which functionality can be
safely removed without negatively affecting your application’s functionality or compromising
its security. That’s right—you can actually end up making your server a lot less secure if you
remove a security-sensitive feature. For example, if you remove an authorization module that
is responsible for validating access to an administration page in your application, you may
end up allowing anonymous users to take administrative action on your server! Likewise,
removing certain features may contribute to decreased performance or reduced stability.
Or removing these features may simply break your application.

Caution It is possible to have IIS configuration that configures an IIS feature to perform a
certain function and yet to not have this function be performed by the server if the module
that is responsible for this function is not enabled. This can happen if someone disables the
module or configures its preconditions to prevent it from running in a specific application
pool. Because of this, you need to make sure that the required modules are present and are
correctly preconditioned to insure the correct operation of your application.

Therefore, it is important to understand what features your application requires, and which
it does not. To help with this, you can consult Table 12-9, which illustrates the function played
by each built-in IIS 7.0 module whose removal may have a security impact on the server.

Table 12-9 Function of Built-In Modules with Security Implications

Module Purpose and Removal Effect

Anonymous
Authentication
Module

Purpose: Authenticates the request with an anonymous user if no other
authentication mechanism is present.

If removed: Access to resources will be denied for anonymous requests.

Basic Authentication
Module

Purpose: Supports basic authentication.

If removed: Clients will not be able to authenticate with basic
authentication.

Certificate Mapping
Authentication
Module

Purpose: Supports client certificate authentication.

If removed: Clients will not be able to authenticate with client certificates.

Configuration
Validation Module

Purpose: Validates ASP.NET configuration in integrated mode

If removed: Strong warning—ASP.NET applications that define modules
and handlers using legacy configuration will silently run in integrated
mode, but the modules will not be loaded. This may result in unexpected
application behavior and security vulnerabilities for unmigrated ASP.NET
applications.

Chapter 12: Managing Web Server Modules 413
CustomError Module Purpose: Detailed error messages will not be generated for IIS errors.

If removed: Strong warning—Sensitive application error information may
be sent to remote clients.

Default
Authentication

Purpose: Supports the ASP.NET DefaultAuthentication_OnAuthenticate
event.

When ASP.NET is configured to use the Forms Authentication mode,
removing this module may lead to errors in other ASP.NET modules during
anonymous requests.

If removed: Warning—The DefaultAuthentication_OnAuthenticate event
will not be raised, so any custom authentication code depending on this
event will not run. This is not common.

Digest Authentication
Module

Purpose: Supports digest authentication.

If removed: Clients will not be able to use digest authentication to
authenticate.

File Authorization Purpose: Verifies that the authenticated client has access to physical
resources.

If removed: Strong warning—Access may be granted to resources that
deny access to the authenticated user.

Forms Authentication Purpose: Supports forms-based authentication.

If removed: Clients will not be able to use forms authentication to
authenticate.

HttpCache Module Purpose: Supports IIS output caching and kernel caching of responses.

If removed: Warning—Response output caching will not occur, possibly
resulting in increased load on the server and in the worst case Denial of
Service (DoS) conditions.

HttpLogging Module Purpose: Supports request logging.

If removed: Warning—Requests may not be logged.

IISCertificate Map-
ping Authentication
Module

Purpose: Supports IIS configuration–based client certificate authentication.

If removed: Clients may not be able to authenticate with client certificates
against IIS configuration.

HttpRedirection Mod-
ule

Purpose: Supports configuration-based redirection rules.

If removed: Warning—If the application depends on redirection rules for
restricting access to content, removing this module may make otherwise
protected resources available.

IsapiFilter Module Purpose: Supports ISAPI filters.

If removed: Strong warning—ISAPI filters that enforce access or have
other security functionality will not run.

OutputCache Purpose: Supports ASP.NET response output caching.

If removed: Warning—ASP.NET response output caching will not occur,
possibly resulting in increased load on the server and in the worst case
Denial of Service (DoS) conditions.

Table 12-9 Function of Built-In Modules with Security Implications

Module Purpose and Removal Effect

414 Part III: Administration
You should always verify that the application does indeed have all of the required modules
enabled after deployment. In addition, you should always test the application whenever the
module configuration changes to insure its correct operation with the new module set. Armed
with the knowledge of which modules can be safely removed, you can take advantage of IIS
7.0’s modularity to significantly reduce the surface area of your server, without accidentally
reducing its security.

Understanding and Reducing the Privilege of Code that Runs on
Your Server

Now that you have reduced the surface area of your server to the acceptable minimum, you
need to secure the remaining functionality. This is typically done in two ways: by restricting

RequestFiltering
Module

Purpose: Enforces various request restrictions and protects hidden content.

If removed: Strong warning—Removing this module may result in
protected content being served. It may also lead to nonspecific security
vulnerabilities resulting from allowing unrestricted request input into the
application.

RoleManager Purpose: Supports the ASP.NET roles functionality.

If removed: Strong warning—Roles for the authenticated user may not be
available, which may cause authorization decisions to be affected. Typically,
this will only restrict access, but in some cases where access is denied based
on roles, this may grant access to otherwise unauthorized users.

Static Compression
Module

Purpose: Supports compression of static resources.

If removed: Warning—Removing this module may result in significantly
higher bandwidth for the site, because compression of static resources will
be disabled.

Url Authorization Purpose: Supports declarative access rules.

If removed: Strong warning—URL authorization access rules will be
ignored, and access may be granted to unauthorized users.

Url Authorization
Module

Purpose: Supports declarative ASP.NET access rules.

If removed: Strong warning—ASP.NET url authorization access rules will
be ignored, and access may be granted to unauthorized users.

Windows
Authentication

Purpose: Supports NTLM and Kerberos authentication.

If removed: Clients will be unable to authenticate with NTLM or Kerberos
Windows authentication.

Windows
Authentication
Module

Purpose: Supports raising the ASP.NET
WindowsAuthentication_OnAuthentication event.

If removed: Warning—WindowsAuthentication_OnAuthentication event
will not be raised, so any custom ASP.NET authentication code dependent
on this event will not run. Note that this module is not required for Windows
authentication.

Table 12-9 Function of Built-In Modules with Security Implications

Module Purpose and Removal Effect

Chapter 12: Managing Web Server Modules 415
the inputs to the application as much as possible by using security features such as authoriza-
tion and request filtering (IIS 7.0’s version of UrlScan) and by reducing the privilege with
which the code in the application executes so that even if it is compromised, it is limited in the
amount of harm it can do. You can learn more about both of these approaches in Chapter 14.

The former approach is an extension of reducing the surface area approach you took earlier,
attempting to block as many of the attack vectors as possible by constraining the input to the
server. The latter approach uses the principle of least privilege and focuses on what happens
if the functionality on the server is compromised. With an understanding of how the extensi-
bility code executes in the context of IIS, you can do much to reduce its privilege, which often
makes compromising the server a lot harder or impossible. Also, this knowledge helps you
understand the trust requirements for adding features or application components to the
server.

Table 12-10 illustrates the privilege with which IIS Web server modules execute on the server.

The majority of IIS extensibility is hosted within a long-running IIS worker process (every-
thing except CGI and FastCGI programs that execute out of process), which executes under
the configured application pool identity (Network Service by default). This includes native
modules as well as ISAPI extensions and filters (managed modules and handlers are also
included, but they provide an additional constrained execution model that is discussed later
in this chapter). This code, therefore, can do everything that the application pool identity is
allowed to do, based on the privileges granted to the identity by the system and rights granted
by ACLs on Windows resources. Reducing the privilege of this identity from Local System in

Table 12-10 Module Privileges

Feature Execution Scope Privilege Level Who Can Add

Native modules IIS worker process Application pool identity Administrator

Managed modules
and handlers

ASP.NET appdomain Application pool identity (default)

OR

Authenticated user

AND

Limited by ASP.NET trust level

Application owner

ISAPI filters IIS worker process Application pool identity Administrator

ISAPI extensions IIS worker process Authenticated user (default)

OR

Application pool identity

Administrator

CGI programs CGI program process
(single-request)

Authenticated user (default)

OR

Application pool identity

Administrator

FastCGI programs FastCGI program
process

Application pool identity Administrator

416 Part III: Administration
IIS 5.1 to Network Service in IIS 6.0 was one of the fundamental security improvements that
enabled IIS 6.0 to achieve its stellar security record. You can learn how to take advantage of
reducing the privilege of the IIS application pools in Chapter 14.

Remember that despite all other constraining measures that may be in place, including
ASP.NET Code Access Security, the privileges and rights granted to worker process that
contains the code define what code in the process may or may not do (when impersonating,
you also need to consider the rights and privileges assigned to the impersonated identity).
In other words, when you add code to the server, even if it is application code, assume that it
can do everything that your worker process is allowed to do. By maintaining least privilege
application pools, you can significantly reduce the damage to the server in the case of an appli-
cation compromise.

The story is slightly different when it comes to managed (ASP.NET) module and handler
components. These components are hosted within the ASP.NET application, and in addition
to being limited by the IIS worker process, they are also limited by the .NET Code Access
Security (CAS) policy configured for the ASP.NET appdomain. This means that managed
modules and handlers can execute with a lower privilege than the one granted by the IIS
worker process identity.

By default, ASP.NET applications are configured to execute with Full trust, which means that
they are not additionally constrained. By configuring the application to execute with lower
trust levels via the system.web/trust configuration section, you can create an additional limi-
tation on the execution of .NET code that precludes managed modules from performing cer-
tain actions and accessing resources outside of those located in their subdirectories. You can
learn more about the built-in trust levels in Chapter 14.

Note You can also use IIS Manager to configure the default trust level for ASP.NET
applications or the trust level for a particular application on your server.

The recommended trust level is Medium. At this trust level, the application cannot access
resources that do not belong to it, though it can still use most ASP.NET features and execute
code that affects its own operation. At this trust level, multiple applications running within a
single application pool are largely isolated from each other, making this level the correct one
to use for shared hosting (although it is preferable to host each customer in a separate fully
isolated application pool), where hosted applications are allowed to upload code to the server.

You should take advantage of the Medium trust level where possible to further reduce the
privilege of the managed components of your application. Be aware that some ASP.NET
applications or modules may not function in Medium trust, due to the use of .NET APIs that
required a higher trust level. The number of these applications is getting smaller, due to both
API improvements in .NET Framework 2.0+ and application improvements to facilitate
operation in partial trust environments. Also, the ASP.NET run time may experience reduced

Chapter 12: Managing Web Server Modules 417
performance in a partial trust. This needs to be evaluated in each specific case to determine
whether it is a significant enough factor to warrant using higher trust levels.

Note Though ASP.NET trust levels provide an additional way to constrained the execution
of managed code on your server, they should not be used as a substitute for reducing the
privilege of the hosting IIS worker process.

CGI and FastCGI programs are not hosted inside the IIS worker process, but instead execute
inside their own processes that are spawned by the IIS worker process. CGI programs by
default execute under the identity of the authenticated user, although you can configure them
to execute with the identity of the worker process. Therefore, when using CGI programs, be
aware that the code has the privilege of the invoking user. If that user is an administrator on
the server, the code can perform administrative tasks that can lead to complete server compro-
mise if the code is successfully exploited.

Note When using anonymous authentication while impersonating, the new IIS_IUSR
account will be used to execute the CGI, FastCGI, and ISAPI extension–based applications
(unless the server is configured to use the process identity instead). Unless you are using the
IIS_IUSR account to use lower privilege for the executing code than the one provided by
the worker process identity, you should consider using the worker process identity instead
to manage one less account. You can do this by setting the userName attribute of the
anonymousAuthentication section to “”.

FastCGI programs always execute with the identity of the IIS worker process, so they have the
same privilege as code in the IIS worker process. FastCGI does provide a way for the FastCGI
program to impersonate the authenticated user, which can be done by PHP in FastCGI mode.
In this case, the same warning applies to code running in the worker process as when running
CGI programs.

Important In a number of cases, server code impersonates the authenticated user. This is
done by default for all ISAPI extensions, ASP pages, PHP pages running in CGI, ISAPI or FastCGI
mode, and ASP.NET applications that enable impersonation. If impersonation is used, be aware
that the code will execute with very high privileges when the request is made by a user who
has administrative privileges on this machine. You should strongly consider disallowing
administrative users from using your application except when necessary.

All that said, the bottom line is that you must trust the source of the code running on your
server as far as the privilege level under which this code executes. If you do not trust the code,
you must insure that it runs with a low privilege level by constraining it with a very low
privilege application pool identity. If the code is native, that is the best you can do. If the code

418 Part III: Administration
is managed, you can use ASP.NET’s partial trust levels to further constrain it, which provides
a foundation for allowing third-party application code to run on your server.

If you do trust the code, you can harden it against unforeseen exploits by reducing its privilege
as much as possible using the techniques described earlier in this chapter. Though you can
never be completely sure that a piece of code is foolproof against attacks, using the least
privilege principle can significantly limit or eliminate damages.

Locking Down Extensibility

Now that you have built a minimal surface area Web server that runs with least privilege, you
need to make sure it stays that way. If you are running a dedicated server, this is less of an
issue because you are the one who controls the configuration that defines which components
are enabled and how they execute. However, if you delegate application management to
someone else, as is the case with shared hosting servers and sometimes departmental servers,
things are different.

To understand this, let’s first look at the difference in extensibility delegation between IIS 6.0
and IIS 7.0. In IIS 6.0, the administrator in the metabase controls the server functionality. If
a user wants to serve .php3 pages with the PHP scripting engine, they need to contact the
administrator to create a handler mapping for their application. The same is the case for
adding or removing an ISAPI filter. In IIS 7.0, the delegated configuration system enables
applications to remove or add new functionality in some cases, without requiring administra-
tor level changes. This is nice for allowing xcopy deployment of applications that define
their own configuration and functionality, and reducing total cost of ownership. However,
in some cases, this may be undesired from a security perspective, and so the administrator
has a fine degree of control over what changes are allowed at the application level. This is
done by controlling configuration delegation for the system.webServer/handlers and
system.webServer/modules configuration sections via configuration locking.

In the default IIS 7.0 installation, both of these sections are locked at the server level. This
means that application A cannot add new modules or create new handler mappings, and
application B cannot remove or change existing modules or handler mappings.

This is a very restrictive state that prevents many ASP.NET applications from working
correctly, because ASP.NET applications often need to declare new modules and create new
handler mappings. In general, it prevents IIS applications from defining their handler
mappings and modules in their configuration. Because of this, when the “.NET Extensibility”
or the “ASP.NET” role service is installed on the server, these sections are unlocked. This
allows applications to specify a configuration that does the following:

1. Enable/add new managed modules.

2. Disable/remove existing modules.

3. Add new handler mappings.

4. Override/remove existing handler mappings.

Chapter 12: Managing Web Server Modules 419
Because adding new native modules requires installing them at the server level, and adding
new ISAPI filters/extensions and CGI/FastCGI programs also requires configuration changes
at the server level (the isapiCgiRestrictions and fastCgi sections), applications cannot intro-
duce new native code. However, they can introduce new managed modules and handlers.
Because of this, in shared environments where the application is not trusted by the adminis-
trator, server administrators must do one of the following:

■ Prevent new managed modules/handlers from being added by locking the modules and
handlers sections. This will break many applications (especially ASP.NET applications
running in Integrated mode).

■ Reduce the trust level of the application to Medium trust to constrain the execution of
managed code.

■ Use a low-privilege application pool to host the application.

The application can also by default disable any of the modules defined at the server level. This
can be a problem if the server administrator wants to mandate the presence of a particular
module, such as a bandwidth monitor module or logging module that tracks the operation of
the application. To counteract that, the server administrator can lock each module that should
not be removable at the server level, preventing it from being removed by the application. This
can be done by adding a lockItem = “true” attribute to each module element in the modules
configuration section at the server level. In fact, when the modules section is unlocked,
ASP.NET setup automatically locks each native module that is installed against removal (in
some cases, you may want to unlock some of these modules if you do not mind them being
disabled by the application).

Because the application can also create new handler mappings, the application can override
mappings defined at the server level. The locking approach does not work here because new
mappings take precedence over earlier mappings, so it is not necessary to remove existing
mappings to redirect them to other handler types. However, the ability to remap requests in
the application to another handler is not a security concern outside of the ability to execute
the code, which is already controlled by the application trust level and/or the application pool
identity. The handlers section does expose the accessPolicy attribute, which controls what
access levels are granted to the handlers. This attribute is by default locked at the server level,
so the application cannot modify it.

The trust level configuration for the application is also something that should be locked at the
server level. By default, it isn’t—so the application can elevate its own trust level to Full to
remove the constraint on the execution of the .NET code. Server administrators should always
lock this configuration in the framework’s root Web.config file to prevent it from being
overridden when they are relying on the partial trust security model for applications. For
convenience, you can do this using the following Appcmd command.

AppCmd lock config /section:trust /commit:MACHINE/WEBROOT

420 Part III: Administration
This prevents applications from overriding the trust level setting in the framework root
Web.config.

On the Disc Browse the CD for additional tools and resources.

Summary
The modular architecture of IIS 7.0 Web server provides the foundation for many key
production scenarios, enabling you to build low-footprint specialized servers and leverage
rich add-on functionality provided by end-to-end extensibility. Though traditionally the
domain of developers, managing Web server extensibility becomes a central IT theme in IIS
7.0, providing both opportunities and challenges for the administrator. Armed with the right
know-how, you can effectively leverage the modularity of the server to achieve your business
goals today with built-in IIS 7.0 features and when you take advantage of Microsoft or third-
party modules to enhance your server in the future.

In the next two chapters, we will cover the extensibility model exposed by the configuration
system, the administration stack, and IIS Manager, which complete the end-to-end
extensibility picture for the server.

Additional Resources
These resources contain additional information and tools related to this chapter:

■ Chapter 11, “Hosting Application Development Frameworks,” for information on
enabling and hosting common application framework technologies on IIS 7.0.

■ Chapter 14, “Implementing Security Strategies,” for information on locking down the
server.

■ The blog at http://www.mvolo.com for in-depth coverage of many IIS 7.0 extensibility
and module management topics.

■ The Web site http://www.iis.net for articles on extending IIS 7.0.

■ The IIS 7.0 Operations Guide, available at http://technet2.microsoft.com/
windowsserver2008/en/library/d0de9475-0439-4ec1-8337-2bcedacd15c71033.mspx.

Chapter 14

Implementing Security
Strategies

In this chapter:

Security Changes in IIS 7.0 . 448

Configuring Applications for Least Privilege. 465

Implementing Access Control . 474

Securing Communications with Secure Socket Layer (SSL) 511

Securing Configuration. 515

Summary . 530

Additional Resources. 531

On the Disc Browse the CD for additional tools and resources.

The predecessor of Internet Information Services (IIS) 7.0—IIS 6.0—established a high bar for
providing a secure Web server platform. IIS 7.0 builds on much of the IIS 6.0 feature codebase
and secure practices formulated during the IIS 6.0 development life cycle. It also builds on
many of the design principles that contributed to the excellent security track record of IIS 6.0,
taking them further to improve the security of the Web server and applications that run on
it. This includes the secure by default design and an emphasis on reducing the surface area
and using least privilege to minimize the risk of exposed application vulnerabilities being
successfully exploited by an attacker. IIS 7.0 makes it easier than ever before to apply these
crucial security principles by offering modularity that enables you to build minimal surface
area Web servers and running your applications in an isolated environment.

Many of the security features in IIS 6.0 remain applicable in IIS 7.0. In this chapter, we will
start by reviewing the changes to the security features as well as the new features that IIS 7.0
introduces to help improve the Web server and application security. Then, we will look at
applying the general security principles of reducing the surface area and using least privilege
to further strengthen the security of the Web server. Finally, we will take a detailed look at
using the security features in IIS 7.0, including the authentication and authorization features,
securing network communications with Transport Layer Security (TLS), and safeguarding
the configuration.
447

448 Part III: Administration
Security Changes in IIS 7.0
IIS 7.0 builds on the security focus established in its predecessor, IIS 6.0. As a result, the
overwhelming majority of the core security principles and features established in IIS 6.0 are
still in use today. However, IIS 7.0 does introduce improvements to help enhance the security
of the Web server:

■ The anonymous user configured by default for anonymous authentication is the new built-
in IUSR account. This account is built in and does not require a password that needs to
be renewed and synchronized between servers. Additionally, permissions set for IUSR
accounts are effective when copied to another IIS 7.0 server because the IUSR account
has a well-known Security Identifier (SID) that is the same on every computer. For more
information, see the section titled “Anonymous Authentication” later in this chapter.

■ The IIS_WPG group has been replaced with the built-in IIS_IUSRS group. This group is
built in and enables permissions set for IIS_IUSRS to remain effective when copied to
another IIS 7.0 server because it has a well-known Security Identifier (SID). In addition,
this SID is automatically injected into the worker process token for each IIS worker
process, eliminating the need for manual group membership for any custom application
pool identities. For more information, see the section titled “Set NTFS Permissions to
Grant Minimal Access” later in this chapter.

■ Anonymous authentication can be configured to use the application pool identity. This
enables the content to require permissions only for the application pool identity
when using anonymous authentication, simplifying permission management. For more
information, see the section titled “Set NTFS Permissions to Grant Minimal Access”
later in this chapter.

■ IIS worker processes automatically receive a unique application pool Security Identifier
(SID) that you can use to grant access to the specific application pool to enable application
isolation. For more information, see the section titled “Isolating Applications” later in
this chapter.

■ Configuration isolation automatically isolates server-level configuration for each applica-
tion pool. The global server-level configuration contained in applicationHost.config
is automatically isolated by creating filtered copies of this configuration for each
application pool and preventing other applications pools from being able to read this
configuration. For more information, see the section titled “Understanding Configura-
tion Isolation” later in this chapter.

■ Virtual directories can specify fixed credentials regardless of whether they point to
Universal Naming Convention (UNC) shares or a local file system. Unlike IIS 6.0, which
supports fixed credentials for specifying access to UNC shares only, IIS 7.0 enables
fixed credentials to be used for any virtual directory.

■ Windows Authentication is performed in the kernel by default. This improves the
configurability of the Kerberos protocol on the server. It also improves the performance

Chapter 14: Implementing Security Strategies 449
of Windows Authentication. However, it may affect some applications that have custom
clients that presend authentication credentials on the first request. This behavior can
be turned off in the configuration. For more information, see the section titled
“Windows Authentication” later in this chapter.

■ The new Request Filtering feature provides extended URL Scan functionality. You can
use the new Request Filtering feature to protect your Web server against nonstandard or
malicious request patterns and additionally protect specific resources and directories
from being accessed. For more information, see the section titled “Request Filtering”
later in this chapter.

■ The new URL Authorization feature enables applications to control access to resources
through configuration-based rules. The new URL Authorization feature provides
flexible configuration-based rules to control access to application resources in terms of
users and roles, and it supports the use of the ASP.NET Roles service. For more
information, see the section titled “URL Authorization” later in this chapter.

Additionally, IIS 7.0 introduces several changes to existing security features and removes
several deprecated security features that could impact your application. These changes to
security-related features are listed here:

■ IIS 6.0 Digest Authentication is no longer supported. It is being replaced by Advanced
Digest Authentication (now simply referred to as Digest Authentication), which does not
require the application pool to run with LocalSystem privileges. See the section titled
“Digest Authentication” later in this chapter for more information.

■ .NET Passport Authentication is no longer supported. The .NET Passport Authentica-
tion support is not included in Windows Vista and Windows Server 2008, and therefore
IIS 7.0 does not support it.

■ IIS 6.0 URL Authorization is no longer supported. The IIS 6.0 URL Authorization was
overly complex and not often used. It has been replaced by the new configuration-based
URL Authorization feature. See the section titled “URL Authorization” later in this
chapter for more information.

■ IIS 6.0 Sub-Authentication is no longer supported. The Sub-Authentication feature
enabled IIS 6.0 Digest Authentication (which has been removed) and synchronized
anonymous account passwords (the anonymous account now uses the new built-in
IUSR account that does not have a password). It is no longer needed in IIS 7.0 and there-
fore has been retired.

■ IIS Manager no longer provides support for configuring IIS Client Certificate Mapping
Authentication. You can edit the configuration directly, use Appcmd from the
command line, or use another configuration application programming interface (API)
to configure this feature. For more information, see the section titled “IIS Client Certifi-
cate Mapping Authentication” later in this chapter.

450 Part III: Administration
■ Several authentication and impersonation differences exist in ASP.NET applications when
running in the default Integrated mode. This includes an inability to use both Forms
authentication and an IIS authentication method simultaneously, and an inability to
impersonate the authenticated user in certain stages of request processing. For more
information on security changes impacting ASP.NET applications, see the list of breaking
changes at http://mvolo.com/blogs/serverside/archive/2007/12/08/IIS-7.0-Breaking-
Changes-ASP.NET-2.0-applications-Integrated-mode.aspx.

■ Metabase access control lists (ACLs) are no longer supported. With the new configura-
tion system, you cannot set permissions on individual configuration settings. IIS 7.0
provides built-in support for delegating configuration settings to Web site and applica-
tion owners, replacing metabase ACLs as a mechanism for configuration delegation.
For more information, see the section titled “Controlling Configuration Delegation”
later in this chapter.

■ Metabase auditing is no longer supported. The ability to audit changes to specific
configuration settings is not supported out of the box. This is a consequence of IIS 7.0
not supporting metabase ACLs.

Reducing Attack Surface Area

Reducing the attack surface area of the Web server is a key strategy in reducing the risk of a
security vulnerability being successfully exploited by an attacker. The principle of attack
surface area reduction is not exclusive to Web servers—it is generally accepted as one of the
most direct ways to improve the security of any software system. When applied to IIS 7.0, it
provides the following benefits:

■ It directly reduces the number of features and services exposed by the Web server to
outside clients, minimizing the amount of code available for an attacker to exploit.

■ It reduces complexity, which makes it easier to configure the Web server in a secure
manner.

■ If a vulnerability is exposed, the uptime of the Web server is not affected as much,
because if the component affected by the vulnerability is not installed, it is not necessary
to take the Web server offline or patch it immediately.

IIS 7.0 gives you an unparalleled ability to reduce the attack surface area of the Web server
through its modular architecture by enabling you to remove all functionality other than
what is absolutely necessary to host your application. By leveraging this ability, you can
deploy low-footprint Web servers with minimal possible surface area.

After installing the minimal set of features, you can further reduce the surface area of the Web
server by configuring your application to operate with the minimal functionality, for example,
configuring which application resources should be served.

Chapter 14: Implementing Security Strategies 451
In the rest of this section, we will review the cumulative process for reducing the surface area
of the Web server and your application. This process includes the following steps:

1. Reduce the surface area of the Web server.

a. Install the minimal required set of Web server features.

b. Enable only the required Internet Server Application Programming Interface
(ISAPI) filters.

c. Enable only the required ISAPI extensions.

d. Enable only the required Common Gateway Interface (CGI) applications.

e. Enable only the required FastCGI applications.

2. Reduce the surface area of the application.

a. Enable only the required modules.

b. Configure the minimal set of application handler mappings.

c. Set Web site permissions.

d. Configure a minimal set of MIME types.

The modular architecture of IIS 7.0 gives you the ability to install only the Web server features
required for the correct operation of your Web server. This forms the foundation of the surface
area reduction strategy.

In addition, you can continue to control what extensions that do not use the IIS 7.0 modular
extensibility model can execute on the server. This includes ISAPI extensions and filters and
CGI and FastCGI programs.

Installing the Minimal Required Set of Web Server Features

The IIS 7.0 modular feature set comprises more than 40 individual Web server modules that
provide various request processing and application services. The Web server core engine
retains only the minimal set of functionality needed to receive the request and dispatch its
processing to modules. You can leverage this architecture to deploy minimal surface area Web
servers by installing only the modules that are required for the Web server’s operation.

The modular feature set provided in IIS 7.0 is fully integrated with Windows Setup. This
means that you can install or uninstall most of the IIS 7.0 modules by installing IIS 7.0 features
directly from the Turn Windows Features On Or Off page in Windows Vista, or the Web
Server (IIS) role in Server Manager on Windows Server 2008 as shown in Figure 14-1. Each
feature typically corresponds to one module (or in some cases several modules) and installs
any corresponding configuration information as well as feature dependencies.

The default installation of IIS 7.0 includes only the features necessary for IIS 7.0 to function as
a static file Web server. In many cases, this may not be sufficient to properly host your

452 Part III: Administration
application, so you will need to install additional features, including support for hosting
dynamic application technologies. When you do this, you will be prompted to install any
dependencies of the feature you are installing and configure the proper default configuration
for that feature.

Figure 14-1 Installing IIS 7.0 using the Add Roles Wizard.

Caution Do not install all the IIS 7.0 features if you are unsure of what you need. Doing so
can unnecessarily increase the surface area of the Web server.

By ensuring that only the required modules are installed, you can significantly reduce the
surface area of the Web server. This provides the following benefits:

■ Removes the potential for an attacker to exploit known or future threats in features that
are not installed.

■ Reduces management complexity, making it easier to configure the server in a secure
manner.

■ Reduces the downtime and costs associated with reacting to a vulnerability or applying
patches. If the patched component is not installed, you do not need to take the server

Chapter 14: Implementing Security Strategies 453
offline to perform the patch. You can also perform patching on your own schedule
instead of being forced to perform it immediately if a vulnerability is found.

Note When you apply a patch to a component of a Web server feature that is not installed,
it is stored in the operating system installation cache. This way, when you install the feature
in the future, it will use the patched version automatically. Therefore, be sure to continue
installing all operating system updates, even if the corresponding features are not currently
being used on the server.

To reduce the surface area of the Web server, you should take the following steps:

1. Determine the set of features your applications need. In the majority of cases, you
should be able to tell what features are required by your application by reviewing the
list of setup components and comparing it with your application’s requirements. As a
guide, you can often use the recommended set of modules for specific application
workloads. You can find more information on recommended installation workloads at
http://www.iis.net/articles/view.aspx/IIS7/Deploy-an-IIS7-Server/Installing-IIS7/Install-
Typical-IIS-Workloads?Page=2. You should exercise caution when removing Web server
features that are security sensitive, because doing so may have a negative impact on your
server’s security. To review the list of modules that have a security impact, see the
section titled “Taking Advantage of Componentization to Reduce the Security Surface
Area of the Server” in Chapter 12, “Managing Web Server Modules.”

2. Install only the required features. After you have determined the required features, you
should install them using the roles or features wizards. For more information on the
options for installing IIS 7.0 features, see Chapter 5, “Installing IIS 7.0.” When in doubt,
do not install all features, because doing so will result in an unnecessary surface area
increase.

3. Install only the required third-party modules. IIS 7.0 applications may require third-
party modules to be installed to add additional functionality or replace a built-in IIS 7.0
feature. You should exercise caution when installing any module on the Web server
and make sure that you trust its source. Installing untrusted or buggy modules can
compromise the security of the Web server or negatively affect its reliability and perfor-
mance. For information about installing third-party modules, see Chapter 12.

4. Test your application. You should always test your application to ensure that it
operates correctly given the installed feature set. Your application may experience errors
if a required module is not installed. The symptoms of this error will depend on the
service provided by the missing module. If your testing shows an error and you believe
that it is due to a missing feature, make sure that the error is removed or changed by
installing that specific feature. If the error remains, uninstall the feature and try again.
Never blindly install multiple or all features to get the application to work.

454 Part III: Administration
When you run multiple applications on the same Web server, you will need to install the
superset of the modules required by each application. You can then further reduce the surface
area of each application by controlling which modules are enabled at the application level.
We will review how to do this in the section titled “Enabling Only the Required Modules” later
in this chapter.

For more information on using the roles or features wizards to install IIS 7.0 features and
other available features, see Chapter 5. For more information on installing and enabling
modules, including third-party modules, see Chapter 12.

Enabling Only the Required ISAPI Filters

IIS 6.0 provides support for ISAPI filters, to allow third parties to extend IIS request
processing. IIS 7.0 replaces ISAPI filters with IIS 7.0 modules as the preferred mechanism
for extending the Web server. However, IIS 7.0 continues to support ISAPI filters for
backward compatibility reasons.

Note To enable ISAPI filters to work on IIS 7.0, the ISAPI Filters role service must be installed.
This role service installs the IsapiFilterModule module, which provides support for hosting
ISAPI filters. If this module is removed, ISAPI filters will not be loaded. This role service is not
enabled by default; it is however enabled when the ASP.NET role service is installed.

If your Web server uses ISAPI filters, to minimize the Web server surface area you should
ensure that only the required ISAPI filters are enabled.

Note You must be a server administrator to enable ISAPI filters.

To properly configure ISAPI filters, you should take the following steps:

1. If your Web server uses ISAPI filters, install the ISAPI Filters role service. Without
this role service, the ISAPI filters will not be loaded and therefore may create a security
risk if they are responsible for security-sensitive functionality.

2. If your Web server does not use ISAPI filters, do not install the ISAPI Filters role
service. This eliminates the possibility of unwanted ISAPI filters being configured on
your server.

3. Determine the ISAPI filters that your application requires. In the majority of cases,
your Web server should not require any ISAPI filters (with the exception of the ASP.NET
ISAPI filter; see the note later in this section). Therefore, you will typically need to
configure ISAPI filters only if you are migrating an existing application from previous
versions of IIS that require specific ISAPI filters, or if you are installing a new third-party
ISAPI filter.

Chapter 14: Implementing Security Strategies 455
4. Enable the required ISAPI filters. You can control which ISAPI filters are enabled on
your server, and for a specific Web site, by using IIS Manager.

To use IIS Manager to configure the ISAPI filters, click the Web server node or Web site node
in the tree view and then double-click ISAPI Filters, as shown in Figure 14-2. Exercise extreme
caution when installing third-party ISAPI filters and be sure you trust their source. Installing
untrusted or buggy ISAPI filters can compromise the security of the Web server or negatively
affect its reliability.

Figure 14-2 Using IIS Manager to configure ISAPI filters.

Note IIS 7.0 does not install any ISAPI filters by default. However, ASP.NET 1.1 and ASP.NET 2.0
will install an ISAPI filter named ASP.NET_2.0.50727.0. This filter is required for cookie-less ASP.NET
features to work properly. You should not remove this filter.

You can also control which filters are enabled for the Web server or for a specific Web site by
editing the system.webServer/isapiFilters configuration section directly, with the Appcmd
command line tool, or with another configuration API.

Enabling Only the Required ISAPI Extensions

IIS 6.0 provides support for ISAPI extensions, which allows third parties to extend IIS request
processing by returning responses for specific content types. IIS 7.0 replaces ISAPI extensions
with IIS 7.0 modules as a preferred mechanism for extending IIS. However, IIS 7.0 continues
to support ISAPI extensions for backward compatibility reasons.

456 Part III: Administration
Note To enable ISAPI extensions to work on IIS 7.0, the ISAPI Extensions role service must
be installed. This role service installs the IsapiModule module, which provides support for
hosting ISAPI extensions. If this module is removed, ISAPI extensions will not be loaded. This
role service is not enabled by default, but it is enabled when ASP.NET is installed.

Today, dynamic application framework technologies frequently use ISAPI extensions to
interface with IIS. Therefore, it is likely that if you are using dynamic application technologies,
you will need to use ISAPI extensions. For example, both ASP.NET (for Classic mode applica-
tions) and ASP are implemented as ISAPI extensions.

If your Web server uses ISAPI extensions, to minimize the Web server surface area you should
ensure that only the required ISAPI extensions are enabled.

Note You must be a server administrator to enable ISAPI extensions.

To properly configure ISAPI extensions, you should take the following steps:

1. If your Web server uses ISAPI extensions, install the ISAPI Extensions role service.
Without this role service, the ISAPI extensions will not be loaded, and requests to
resources mapped to ISAPI extensions will return errors.

2. If your Web server does not use ISAPI extensions, do not install the ISAPI Extensions
role service. This eliminates the possibility of unwanted ISAPI extensions being
configured on your server.

3. Configure the allowed ISAPI extensions. Each ISAPI extension must be allowed to
execute on the server before it can be used. You can use IIS Manager to configure all
ISAPI extensions that are allowed to execute on the server. Doing so is explained in
more detail later in this section. Exercise extreme caution when allowing third-party
ISAPI extensions and be sure you trust their source. Installing untrusted or buggy ISAPI
extensions can compromise the security of the Web server or negatively affect its reliability.

4. Configure the desired handler mappings. To use ISAPI extensions, you need to create
handler mappings that map allowed ISAPI extensions to specific content types in your
application. For more information on creating handler mappings for ISAPI extensions,
see Chapter 12. We will discuss securing handler mappings in the section titled “Con-
figuring the Minimal Set of Handler Mappings” later in this chapter.

You must explicitly allow any ISAPI extension that has to execute on your server. When you
allow a specific ISAPI extension path, any application on the server can load this extension,
if the server configures a handler mapping to this extension. Table 14-1 specifies the common
ISAPI extensions and when they are installed.

Chapter 14: Implementing Security Strategies 457
On IIS 6.0, you have to explicitly allow the ISAPI extensions corresponding to ASP and
ASP.NET 2.0. On IIS 7.0, these ISAPI extensions are automatically allowed when you install
the corresponding role services. In addition, only ASP.NET applications running in Classic
mode use the ASP.NET 2.0 ISAPI extension. It is a more reliable practice to use the roles or
features wizards to control the availability of these features, instead of allowing or not
allowing them in the ISAPI and CGI Restrictions. However, you still need to manually enable
the ISAPI extension for ASP.NET v1.1.

On IIS 6.0, you can allow an ISAPI extension in the Web Service Extension Restriction List.
On IIS 7.0, you can use IIS Manager to do this by clicking the Web server node in the tree view
and then double-clicking ISAPI And CGI Restrictions to open the feature shown in Figure 14-3.
To add a new ISAPI extension, click Add in the Actions pane and then enter the exact path
of the ISAPI extension. If you would like to allow the ISAPI extension to execute, check the
Allow Extension Path To Execute check box. You can also allow or deny existing extensions.

Figure 14-3 Allowing ISAPI extensions in the ISAPI and CGI Restrictions by using IIS Manager.

In addition to using IIS Manager, you can also edit the system.webServer/security/isapiCgi-
Restriction configuration section directly by using the Appcmd command line tool or
with another configuration API. For more information about configuring enabled ISAPI

Table 14-1 Common ISAPI Extensions

ISAPI Extension Default State When Installed

Active Server Pages Allowed ASP role service is installed

ASP.NET v1.1.4322 Not Allowed .NET Framework v1.1 SP1 is installed

ASP.NET v2.0.50727 Allowed ASP.NET role service is installed

458 Part III: Administration
extensions, see the section titled “Adding Entries to the ISAPI CGI Restriction List (Formerly
Web Service Restriction List)” in Chapter 12.

Enabling Only the Required CGI Programs

IIS 7.0 continues to support CGI programs as one of the ways to extend the functionality of
the Web server.

Note To enable CGI programs to work on IIS 7.0, the CGI role service must be installed.
This role service installs the CgiModule module, which provides support for launching CGI
programs. If this module is removed, CGI programs will not be usable. This role service is not
enabled by default.

By default, IIS 7.0 does not provide any CGI programs, so they should be used only if your
application uses third-party CGI programs. If it does, you should ensure that only the
required CGI programs are allowed to minimize the Web server surface area.

Note You must be a server administrator to allow CGI programs.

To properly configure CGI programs, you should take the following steps:

1. If your Web server uses CGI programs, install the CGI role service. Without this role
service, the CGI programs will not be created, and requests to resources mapped to
CGI programs will return errors.

2. If your Web server does not use CGI programs, do not install the CGI role service.
This eliminates the possibility of unwanted CGI programs being configured on your
server.

3. Configure the allowed CGI programs. Each CGI program must be allowed to execute
on the server before it can be used. You can use IIS Manager to configure all CGI
programs that are allowed to execute on the server. This is explained in more detail later
in this section. Exercise extreme caution when allowing third-party CGI programs and
be sure you trust their source. Installing untrusted or buggy CGI programs can
compromise the security of the Web server or negatively affect its reliability.

4. Configure the desired handler mappings. To use CGI programs, you need to create
handler mappings that map allowed CGI programs to specific content types in your
application. For more information on creating handler mappings for CGI programs,
see Chapter 12. We will discuss securing handler mappings in the section titled
“Configuring the Minimal Set of Handler Mappings” later in this chapter.

Chapter 14: Implementing Security Strategies 459
Similar to ISAPI extensions, you must explicitly allow any CGI program that has to execute on
your server. When you allow a specific CGI program path, this CGI program can now be
launched by any application on the server that configures a handler mapping to this CGI
program. To be allowed, each allowed CGI program entry must specify the full path and
arguments exactly the same way they are specified in each handler mapping. CGI programs
are allowed in the ISAPI and CGI Restrictions feature, similar to the process described in the
section titled “Enabling Only the Required ISAPI Extensions” earlier in this chapter.

Enabling Only the Required FastCGI Programs

IIS 7.0 supports hosting FastCGI programs by using the FastCGI feature, which provides a
more reliable way to host many application frameworks than CGI does.

Note To enable FastCGI programs to work on IIS 7.0, the CGI role service must be installed.
This role service installs the FastCgiModule module, which provides support for launching
FastCGI programs. If this module is removed, FastCGI programs will not be usable. This role
service is not enabled by default.

By default, IIS 7.0 does not provide any FastCGI programs, so they should be used only if your
application uses third-party FastCGI programs. If so, to minimize the Web server surface area,
you should ensure that only the required FastCGI programs are allowed.

Note You must be a server administrator to allow FastCGI programs.

To properly configure FastCGI programs, you should take the following steps:

1. If your Web server uses FastCGI programs, install the CGI role service. Without this
role service, the FastCGI programs will not be usable, and requests to resources
mapped to FastCGI programs will return errors.

2. If your Web server does not use FastCGI programs, do not install the CGI role
service. This eliminates the possibility of unwanted FastCGI programs being
configured on your server.

3. Configure the allowed FastCGI programs. Each FastCGI program must be allowed to
execute on the server before it can be used. Though there is no IIS Manager support
for configuring FastCGI programs that are allowed to execute on the server, you can do
this by editing the system.webServer/fastCgi configuration section. For more information
on configuring FastCGI programs, see Chapter 11, “Hosting Application Development
Frameworks.” Exercise extreme caution when allowing third-party FastCGI programs
and be sure you trust their source. Installing untrusted or buggy FastCGI programs can
compromise the security of the Web server or negatively affect its reliability.

460 Part III: Administration
4. Configure the desired handler mappings. To use FastCGI programs, you need to
create handler mappings that map allowed FastCGI programs to specific content types
in your application. For more information on creating handler mappings for FastCGI
programs, see Chapter 12. We will discuss securing handler mappings in the section
titled “Configuring the Minimal Set of Handler Mappings” later in this chapter.

Unlike ISAPI extensions and CGI programs, FastCGI programs are not allowed through the
ISAPI and CGI Restriction feature. Instead, in the system.webServer/fastCgi configuration
section, you need to create an entry for each allowed FastCGI program. For more information
on configuring FastCGI programs, see Chapter 11.

Reducing the Application’s Surface Area

Installing only the required Web server features and locking down the enabled ISAPI exten-
sions, ISAPI filters, and CGI and FastCGI programs is a great way to reduce the surface area of
the Web server as a whole. You can take it a step further by reducing the set of functionality
available at the application level, by limiting the modules enabled in each application, and by
constraining the set of resources that the application is configured to serve.

Enabling Only the Required Modules

When your Web server is configured to run a single dedicated application, you should install
only the modules necessary to host this application. However, if your Web server hosts
multiple applications, you may need to install a superset of all IIS features and third-party
modules that each application requires. In this case, you can further reduce the surface area of
each application by disabling at the application level any modules that the application does
not need.

To do this, you can configure the set of enabled IIS modules (managed or native) for each
application. You can do this by using IIS Manager: select your application node in the tree
view, double-click Modules, and remove any modules that are not needed in the application.
You can learn more about the process for removing modules in Chapter 12.

Caution Exercise caution when removing modules because removing security-sensitive
modules that perform tasks—for example, those that perform authorization—can result in
weakening application security. See the section titled “Securing Web Server Modules” in
Chapter 12 for information about removing modules and which built-in IIS modules may be
security-sensitive.

If you are operating a Web server on which third parties are able to publish application
content, be aware that they can by default enable new managed modules that are included
with their application to process requests to their application. Likewise, they can disable any
module that is installed and enabled at the server level, as long as it is not locked by default.

Chapter 14: Implementing Security Strategies 461
If this is not what you want, you should consider locking the system.webServer/modules
configuration section or using fine-grain configuration locking to lock specific modules
against being removed. For more information on locking down modules, see the section titled
“Locking Down Extensibility” in Chapter 12.

Note It is not possible to add new native modules at the application level. Similarly, it is not
possible to remove native modules associated with IIS features at the application level by
default because IIS setup locks them at the server level.

Configuring the Minimal Set of Handler Mappings

Handler mappings directly determine what resource types the Web server is configured to
serve. They do this by mapping extensions or URL paths to modules or ASP.NET handlers
that provide processing for the corresponding resource type. Similar to modules, handler
mappings are typically installed at the server level when IIS features or third-party application
frameworks are installed. This is done to enable all applications on the server to serve the
associated content.

If your application does not serve specific content types or does not use specific application
framework technologies installed on the Web server, you should remove the associated
handler mapping entries in the system.webServer/handlers configuration section at the application
level to prevent the Web server from attempting to use them to satisfy requests to your
application. This reduces the risk of unintended script functionality executing in your
application, or an application framework specific vulnerability being exploited. Note that the
latter may occur even if your application does not contain any resources or scripts for a
particular application framework, if the application framework contains a vulnerability that
manifests before it attempts to locate the requested script.

Use the following techniques to configure the minimal set of handler mappings for your
application:

■ Review the handler mappings to understand what resource types can be processed in your
application. Keep in mind that the Web server will attempt to satisfy each incoming
request with the first handler mapping that matches the URL path and verb of the
incoming request. Typically, the StaticFileModule will process all requests that have not
matched other handler mappings, thus serving the requested resource as a static file
if its extension is listed in the application’s MIME type configuration. For more informa-
tion on how handler mappings are selected, see the section titled “Adding Handler
Mappings” in Chapter 12.

■ Remove any unused handler mappings in your application. You can do this by removing
the specific handler mappings. If possible, remove all handler mappings by clearing
the system.webServer/handlers configuration section and re-adding only the handler
mappings that your application uses.

462 Part III: Administration
■ Be aware of preconditions. Because preconditions can be set on handler mappings to
disable the use of these mappings in some application pools, some handler mappings
may be ignored, resulting in the request being served using another matching handler
mapping. To avoid security problems, do not create multiple handler mappings that rely
on order to match similar requests.

■ Add applicable restrictions to handler mappings. When adding new handler mappings,
make use of the resource type restrictions to restrict the handler mappings only to
requests that map to existing physical files or directories in your application. This can
help stop malicious requests to resources that do not exist in your application. Addition-
ally, make use of the access restrictions as described in the section titled “Setting Web
Site Permissions” later in this chapter.

See Chapter 12 to learn more about creating handler mappings, how preconditions affect
them, and using the resource type and access restrictions.

If you are operating a Web server on which third parties can publish application content, be
aware that they can modify the handler mappings in any way to control how requests to their
applications are processed. They can add new handler mappings to any enabled module,
remove any of the existing handler mappings, or map requests to other handlers. If you do not
want this to happen, you should consider locking the system.webServer/handlers configuration
section. For more information on locking down the handler mappings, see the section titled
“Locking Down Extensibility” in Chapter 12.

Note Handler mappings that map requests to ISAPI extensions (IsapiModule), CGI programs
(CgiModule), and FastCGI programs (FastCgiModule) are further limited by the ISAPI and CGI
Restrictions and FastCGI program configuration at the Web server level, which can be set only
by the administrator.

Setting Web Site Permissions

Web site permissions are an additional restriction that can be placed on a Web site, applica-
tion, or URL in configuration to control what requests IIS is allowed to serve. These permis-
sions are implemented at two levels. First, each handler mapping specifies the required
permission level by using the requireAccess attribute. If the request that matches this handler
mapping is made and the required permission is not granted for the requested URL, IIS will
reject the request with a 403.X response status code. Second, some IIS components have
hard-coded requirements for certain permissions, and they will reject the request if they are
processing a request to a URL that does not have this permission.

Note Web site permissions control what functionality is enabled to be used at a particular
URL. They do not consider the identity of the requesting user and therefore cannot be used
to replace IIS authorization schemes when implementing access control.

Chapter 14: Implementing Security Strategies 463
Table 14-2 indicates the permission types that can be granted for a particular URL.

In IIS Manager, you can set the permission granted for a particular Web site, application, or
URL by selecting the appropriate node in the tree view and then clicking Handler Mappings.
There, you can set the Read, Script, and Execute permissions by clicking Edit Permissions
in the Actions pane. Doing this also automatically shows the handlers that require a permis-
sion that is not granted as disabled, to let you know that requests to these handlers will be
rejected.

You can set the permissions directly in configuration by editing the accessPolicy attribute of
the system.web/handlers configuration section or by using Appcmd or other configuration
APIs to do it. For example, to grant only the Read permission to the /files subfolder of the
Default Web Site, you can use the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config "Default Web Site/files"

/section:handlers /accessPolicy:Read

Table 14-2 Permission Types Granted for URLs

Permission Description

None No permissions are granted.

Read Read access to files and directories is enabled.

In particular, this enables the following: static file handler serving static
files, directory listings, and default documents.

Script Script processing is enabled.

In particular, this enables the following: ISAPI extensions, CGI
programs, FastCGI programs, and ASP.NET handlers. ISAPI
extensions and CGI programs must specify a fixed script processor.

Execute Running executables is enabled.

In particular, this enables the following: ISAPI extensions and CGI
programs with no script processor set (that execute the file provided in
the request path). If granted, this permission will by default lead to IIS
trying to execute EXE files as CGI applications and load DLL files as ISAPI
extensions instead of downloading them.

Source In previous versions of IIS, this permission enables WebDav requests to
access the source of script files. No special handling of this permission is
present in IIS 7.0.

Write In previous versions of IIS, this permission enables WebDav requests to
write files. No special handling of this permission is present in IIS 7.0.

NoRemoteRead Prevents remote requests from using the Read permission.

NoRemoteScript Prevents remote requests from using the Script permission.

NoRemoteExecute Prevents remote requests from using the Execute permission.

NoRemoteWrite Prevents remote requests from using the Write permission.

464 Part III: Administration
Note When you specify a configuration path to apply configuration to a specific Web site
or URL, you may get an error indicating that the configuration is locked. This is because
most security configuration sections, including all authentication sections, are locked at the
Web server level to prevent delegated configuration. You can unlock these sections to allow
delegated configuration, or you can persist the configuration to applicationHost.config by
using the /commit:apphost parameter with your Appcmd commands.

Use the following guidelines when setting Web site permissions:

■ Remove unnecessary permissions for URLs that do not require them. By default, Read
and Script permissions are granted. For URLs that do not require the ability to execute
dynamic application technologies, remove the Script permission. Do not grant addi-
tional permissions such as Execute unless necessary.

■ Keep in mind that applications can configure handler mappings that do not require
permissions. By default, applications can change existing handler mappings or create
new handler mappings to not require permissions. Because of this, do not rely on Web
site permissions for controlling which handler mappings can or cannot be created by
applications that use delegated configuration. The permissions are only guaranteed for
built-in IIS features including the static file handler, IsapiModule, CgiModule, and
ASP.NET handlers, which hardcode the permission requirements. In other cases, the
permissions are guaranteed only if the system.webServer/handlers configuration section
is locked and prevents changes to the handler mappings set by the Web server adminis-
trator. For more information about locking down the handlers configuration section, see
the section titled “Locking Down Extensibility” in Chapter 12.

Note Unlike in IIS 6.0, wildcard handler mappings no longer ignore Web site permissions. In
IIS 7.0, they require the same level of permissions as they would when mapped with nonwild-
card handler mappings. Because of this, configurations in which a wildcard-mapped ISAPI
extension is used for URLs that do not allow the Script permission will now be broken and
require the Script permission to be granted.

Configuring Minimal Sets of MIME Types

By default, to serve the corresponding physical file to the client, IIS handler mappings are
preconfigured to direct all requests not mapped to other modules to the StaticFileModule
(if the file does not exist, a 404 error response code is returned).

Note In IIS 7.0, the MIME types configured by default have been upgraded to contain many
of the new common file extensions.

For security reasons, the StaticFileModule will serve only files whose extensions are listed in
the MIME type configuration. This behavior is extremely important, because otherwise

Chapter 14: Implementing Security Strategies 465
applications that contain scripts and other content that is processed by application frame-
work technologies may end up serving these resources directly if the appropriate application
framework handler mappings are not installed or become removed. In this situation, the
MIME type configuration protects these resources from being served to the client and results
in a 404.3 error returned to the client.

Note You can learn about configuring MIME types in the section titled “Enabling New Static
File Extensions to Be Served” in Chapter 11.

The default list of MIME types in IIS 7.0 should be safe for most applications. You can further
configure the MIME types at the server level—or for a Web site, application, or URL—to
mandate which file extensions are servable by the StaticFileModule. By reducing this list to
only the extensions of the files known to be safe to serve, you can avoid accidentally serving
files that are part of an application and are not meant to be downloaded.

Caution MIME type configuration prevents only unlisted files from being downloaded
directly through the StaticFileModule. It does not protect the resources from being accessed
through the application, nor does it protect them from being downloaded if they are mapped
to custom handlers. To protect application resources that are not meant to be accessed, you
should forbid their extensions or use Request Filtering to place the content in a directory that
is configured as a hidden segment. For more information, see the section titled “Request Filter-
ing” later in this chapter.

You should use the following guidelines to securely configure the MIME types list:

■ Do not add file extensions to the MIME types configuration that are not meant to be down-
loaded directly. This refers to any of the file types that are used by the application, such
as ASP, ASPX, or MDB.

■ Configure a minimal set of MIME types for each application. If possible, configure the
MIME types for each application to contain only the minimal set of extensions. This can
help prevent accidental serving of new files when they are added to the application. For
example, if your application uses XML files to store internal data, you should make sure
that your application does not include xml in its MIME type configuration even though
the .xml extension is listed there by default when IIS is installed.

Configuring Applications for Least Privilege
Next to reducing its surface area, the most effective strategy to reduce the risk of a successful
attack on your Web server is to configure your applications to run with the least privilege pos-
sible. Doing this minimizes the amount of damage that results if an attacker successfully
exploits any known or future vulnerability. Similar to reducing the surface area, this technique

466 Part III: Administration
is not limited to blocking specific threats—it works well for any threat that may be present in
your application today or that may be found in the future.

The key to reducing the privilege of the application code in the IIS environment is to under-
stand the identity under which the code executes, select the identity with the minimal num-
ber of privileges required, and limit the rights of the identity to access server resources. To
help achieve least privilege, we will review these techniques:

■ Use a low privilege application pool identity

■ Set NTFS file system (NTFS) permissions to grant minimal access

■ Reduce trust of ASP.NET applications

■ Isolate applications

These techniques are discussed next in this section.

Use a Low Privilege Application Pool Identity

The majority of code executed as part of a Web application is executed in the context of the IIS
worker process and typically runs under the identity configured for the application pool.
Therefore, using a least privilege application pool identity is the primary way to constrain the
privileges and rights granted to the application code.

By default, IIS application pools are configured to run using the built-in Network Service
account, which has limited rights on the Web server. When each IIS worker process is started,
it also automatically receives membership in the IIS_IUSRS group. This group replaces the
IIS_WPG group used in IIS 6.0 as the required group identifying all IIS worker processes on
the computer. IIS setup may still create the IIS_WPG group for backward-compatibility rea-
sons, in which case IIS_IUSRS will be made a member of this group.

In addition, certain code in your application may execute with the identity of the authenti-
cated user associated with each request. Table 14-3 summarizes the identities that may be
used in your application.

Table 14-3 Application Identities

Identity Type Used When… Identities

Application pool identity ■ Accessing all files
necessary for the
execution of the IIS
worker process

■ Accessing web.config
files

■ Running FastCGI
applications (by default)

■ Running ASP.NET
applications (by default)

■ Network Service by
default; otherwise
configured application
pool identity

■ IIS_IUSRS group

■ Application Pool SID
(IIS APPPOOL\
<ApppoolName>)

Chapter 14: Implementing Security Strategies 467
When using authentication schemes that produce Windows tokens, such as Windows
Authentication or Basic Authentication, be aware that when highly privileged users access
your application, it will execute with higher privileges than intended. Therefore, it is recom-
mended that you do not allow users that have administrative privileges on the server to access
your application. For more information on what identity each application framework executes
under, see Chapter 11.

Caution When using authentication schemes that produce Windows identities, your appli-
cations may execute with the identity of the authenticated user.

Also, when using anonymous authentication, you may opt for configuring the anonymous
user to be the application pool identity, to ensure that all code always executes under the
application pool identity. This makes it significantly easier to manage the access rights of the
worker process. You can learn about configuring this in the section titled “Anonymous
Authentication” later in this chapter.

Note To simplify access management, configure the anonymous authentication user to be
the application pool identity.

When selecting the application pool identity for your applications, use the following guide-
lines to maintain or improve the security of your Web server:

■ Ensure that the application pool identity is not granted sensitive privileges or unnecessary
rights to access resources. Often, in the face of “access denied” errors, administrators
tend to grant the application pool identity full or otherwise unnecessary access to
resources. This increases the privilege of the worker process and increases the risk of a

Authenticated user ■ Accessing static files

■ Running ISAPI extensions

■ Running CGI programs
(by default)

■ Running FastCGI
applications (if imperson-
ation is enabled)

■ Running ASP.NET
applications (if imperson-
ation is enabled)

■ IUSR by default when
using anonymous
authentication; otherwise
configured anonymous
user or application pool
identity

■ Authenticated user if
Windows token
authentication methods
are used

Virtual directory fixed
credentials (when configured)

■ Accessing all application
content

■ The configured virtual
directory credentials

Table 14-3 Application Identities

Identity Type Used When… Identities

468 Part III: Administration
serious compromise if the code in the worker process is compromised. Only grant the
worker process the minimal access needed for the application to work. If this minimal
access involves privileges or rights typically associated with administrative users, you
need to re-evaluate your application’s design.

■ Do not use highly privileged or administrative identities for IIS application pools. Never
use LocalSystem, Administrator, or any other highly privileged account as an applica-
tion pool identity. Just say no!

■ Consider using a lower privilege identity. If your application allows it, consider using
a custom low privilege account for the IIS worker process. Unlike IIS 6.0, IIS 7.0
automatically injects the new IIS_IUSRS group into the worker process, eliminating the
need for you to make the new identity a member of any group.

■ Separate code with different privilege requirements into different application pools. If
your server has multiple applications that require different levels of privilege (for
example, one requires the privilege to write to the Web application, and the other one
doesn’t), separate them into two different application pools.

■ When using anonymous authentication, configure the anonymous user to be the applica-
tion pool identity. This significantly simplifies configuring access rights for your appli-
cation by making the application code always execute with the application pool identity.

■ Grant minimal access. When granting access to the application pool identity, grant the
minimal access necessary. You can use this in conjunction with separating applications
into different application pools to maintain least privilege for your applications. To grant
access to a resource for all IIS application pools, grant it to the IIS_IUSRS group. To
grant access to a resource for a specific application pool, use the unique application pool
identity. Alternatively, use the automatic Application Pool SID that is named IIS APP-
POOL\<ApppoolName> (the latter does not work for UNC content, only local content).
Do not grant access rights to Network Service because it grants access to all services
running on the server under the Network Service identity.

Set NTFS Permissions to Grant Minimal Access

By default, all files required for IIS worker processes to function grant access to the IIS_IUSRS
group, which ensures that IIS worker processes can function regardless of the selected
application pool identity. However, it is up to you to grant access to the application content so
that the Web server and the application can successfully access its resources. Additionally, it
is up to you to grant access to the additional resources the IIS worker process uses, such as
ISAPI extensions, CGI programs, or custom directories configured for logging or failed
request tracing.

Table 14-4 indicates the level of access the Web server typically requires for different kinds of
resources.

Chapter 14: Implementing Security Strategies 469
When granting access to content directories, you can use one of the following techniques:

■ Grant access to IIS_IUSRS. This enables all IIS worker processes to access the content
when using the application pool identity, or when using anonymous authentication.
However, this does not enable you to isolate multiple application pools. If using a
Windows-based authentication scheme, you also will need to grant access to all of the
authenticated users that use your application.

■ Grant access to the identity of the application’s application pool. This will enable only
the IIS worker processes running in the application pool with the configured identity to
access the content. If using anonymous authentication, you additionally need to set
the anonymous user to be the application pool identity. If using a Windows-based
authentication scheme, you also will need to grant access to all of the authenticated
users that use your application. This approach is the basis for application pool isolation.
For more information, see the section titled “Isolating Applications” later in this chapter.

■ Configure fixed credentials for the application’s virtual directory and grant access to these
credentials. This will prompt the IIS worker process to access the content by using the
fixed credentials, regardless of the authenticated user identity. This option is often used
when granting access to remote UNC shares to avoid the difficulties of ensuring that
authenticated user identities can be delegated to access the remote network share. It can
also be an efficient way to manage access to the content for a single identity regardless of
the authenticated user (which can be set to the application pool identity when using
custom application pool identities). Finally, it can be used to control access to the
application when you host multiple applications inside the same application pool.

Table 14-4 Access Levels for Web Server Resources

Resource Type Identity Required Access

Content (virtual directory
physical path and below)

■ Fixed credentials set on the
virtual directory (if set)

OR

■ Authenticated users

■ IIS worker process identity
(application pool identity)

■ Read

■ Write, if your application
requires being able to
write files in the virtual
directory (granting Write
is not recommended)

Additional resources IIS
features use: CGI programs,
ISAPI extensions, native
module dynamic-link
libraries (DLLs), compression
directory, failed request
tracing directory, logging
directory, and more

■ IIS worker process identity
(application pool identity)

■ Read

■ Execute, for CGI programs

■ Write, for compression or
logging directories, or
whenever the Web server
needs to write data

470 Part III: Administration
Note If you are using IIS Manager to administer the application remotely, you will also need
to grant Read access to the NT Service\WMSvc account. For more information, see Chapter 8,
“Remote Administration.”

If you are using an authentication scheme (other than anonymous authentication) that
produces Windows identities for authentication users, such as most of the IIS authentication
schemes, you will also need to make sure that all authenticated users that require the use of
your application have access to its content. This is because the Web server will use the authen-
ticated user identity to access application content. Also, many application frameworks will by
default impersonate the authenticated user when executing application code and accessing
application resources.

When you need to allow multiple Windows users to use the application, you should add
all of these users to a specific group and grant this group access to the application content.
Alternatively, when using the fixed credentials model, you do not have to grant access to
the authenticated users. Instead, IIS and application code will always impersonate the fixed
virtual directory credentials. For more information on setting up the fixed credentials model,
see the section titled “Managing Remote Content” in Chapter 9, “Managing Web Sites.”

When your content is on a UNC share, you will likely need to use the fixed credentials model
because most IIS authentication schemes do not produce Windows tokens that can be used
for remote network shares (with the exception of basic authentication and IIS client certificate
mapping authentication). Alternatively, you can configure your Web server for Constrained
Delegation and Protocol Transition to allow the authenticated user tokens to be used against
the remote share. However, using the fixed credentials for virtual directories on UNC shares is
significantly easier to configure, so it is recommended over setting up delegation. For more
information, see the section titled “UNC Authentication” later in this chapter.

Note Unlike in IIS 6.0, in which the authenticated user having access to the content
directory is typically sufficient (except for ASP.NET applications), IIS 7.0 also requires the IIS
worker process identity to have access to the content directories before they can read the
web.config configuration files. This happens before IIS determines the authenticated user.

Reduce Trust of ASP.NET Applications

In addition to constraining the execution rights of the application by using a low privilege
application pool identity, you can further sandbox the .NET parts of your application by using
the ASP.NET trust levels. The ASP.NET parts of the application include the ASP.NET
applications themselves, as well as managed modules that provide services for any application
in ASP.NET Integrated mode applications.

Chapter 14: Implementing Security Strategies 471
ASP.NET trust levels use the Code Access Security (CAS) infrastructure in the .NET Frame-
work to limit the execution of the application code, by defining a set of code permissions
that control what application code can and cannot do. By default, ASP.NET applications and
managed modules execute using the Full trust level, which does not limit their execution.
In this trust level, the application can perform any action that is allowed by the Windows
privileges and resource access rights.

You can reduce the trust level of ASP.NET applications to limit their execution further. This
can be an effective way to achieve lower privilege for your application. By default, you have
options described in Table 14-5, which are defined by the ASP.NET trust policy files.

It is recommended that you run ASP.NET applications by using the Medium trust level. In this
trust level, the application is not able to access resources outside of itself and cannot perform
operations that can compromise the security of the Web server overall. However, if you do
this, you should test the application to make sure that it does not experience any security
exceptions due to the lack of required permissions. You may also want to performance test the
application to make sure that using the reduced trust level does not negatively impact your
application’s performance.

Note The Medium trust level is the recommended trust level to constrain the execution of
ASP.NET applications and managed modules, and to host multiple applications on a shared
Web server.

Table 14-5 Default Trust Level Options

.NET Trust Level Execution Limits Rights

Full (internal) None All

High
(web_hightrust.config)

None/.NET Can do anything except call native
code

Medium
(web_mediumtrust.config)

Application is trusted within its
own scope, but should not be
able to affect other applications
or the rest of the machine

■ Access files in the application
root

■ Connect to SQL and OLEDB
databases

■ Connect to Web services on
the local machine

■ Manipulate threads and
execution for its own requests

Low (web_lowtrust.config) Application is not highly trusted;
meant for applications that can
use built-in ASP.NET features
but do not run custom code

Only read access within application
root

Minimal
(web_minimaltrust.config)

Application is untrusted; ability
to use built-in ASP.NET features
is extremely restricted

Minimal permissions for executing
code

472 Part III: Administration
You can use IIS Manager to configure the trust level used for ASP.NET applications and
managed modules by double-clicking .NET Trust Levels. You can do this for the entire Web
server—or for a specific application—by selecting that application node prior to using the .NET
Trust Levels feature. You can also set the trust level directly by changing the level attribute in
the system.web/trust configuration section.

Caution The system.web/trust configuration section is not locked by default, which
means that any application can configure its own trust level. If you don’t want this, lock the
configuration section at the server level.

Isolating Applications

Application pools provide a great way to isolate multiple applications running on the same
machine, both in terms of availability and security. This provides the following benefits:

■ Failures, instability, and performance degradation experienced in one application do
not affect the applications in a different application pool.

■ Applications running in a different application pool can restrict access to their resources
to that application pool only, preventing other applications from being able to access
their resources.

The recommended way to configure applications for isolation is to place each application into
a separate application pool. When you do this, IIS 7.0 makes it easy to isolate applications
by automatically injecting a unique application pool security identifier, called the application
pool SID, into the IIS worker process of each application pool. Each application pool SID is
generated based on the application pool name and has the name IIS APPPOOL\ <Apppool-
Name>. The application pool SID makes it possible to quickly isolate applications by placing
NTFS permissions on their content to grant access only to the application pool SID of the
application’s application pool.

Note You can quickly isolate applications by setting permissions on their content to allow
only the Application Pool SID of the corresponding application pool.

To make Application Pool SID–based isolation effective, you need to do the following:

1. Configure anonymous authentication to use the application pool identity.

2. Grant access to the application content for the IIS APPPOOL\ <ApppoolName> SID.

3. Do not grant access to the application content to IIS_IUSRS, IIS_WPG or any other
application pool identity that may be used by another application pool.

Chapter 14: Implementing Security Strategies 473
4. Configure separate locations for all temporary and utility directories that IIS and the
application use for each application or application pool, and set permissions on them to
allow access only for the IIS APPPOOL\ <ApppoolName> SID.

Table 14-6 shows some of the common directories that IIS and ASP.NET applications use. The
directories must be configured for isolation for each Web site or application and receive the
appropriate permissions to enable access only by the associated application pool.

Note The Application Pool SIDs can be used only for isolating local content. If you are using
content located on a UNC share, you need to either use a custom application pool identity or
configure fixed credentials for each virtual directory. Then you should use that identity to grant
access to the network share.

IIS 7.0 provides automatic isolation of the server-level configuration by using configuration
isolation. No action is necessary to enable this, because it is done by default. For more
information about configuration isolation, see the section titled “Understanding Configura-
tion Isolation” later in this chapter.

Table 14-6 Common Directories Used by IIS and ASP.NET Applications

Directory Configured In…

Content directories Virtual directory physical path

Windows TEMP directory (%TEMP% or
%TMP%): used by Windows components

Set the loadUserProfile attribute to true in the
processModel element of each application pool. This
causes the TEMP directory to point to
%SystemDrive%\Users\%UserName%\
AppData\Local\Temp.

Web site log file directory directory attribute of the logFile element for each site.
The default is %SystemDrive%\Inetpub\Logs\LogFiles.

Web site Failed Requests Logs directory directory attribute of the traceFailedRequestsLogging
element of each site. The default is %System-
Drive%\Inetpub\Logs\FailedReqLogFiles.

IIS Static Compression directory Isolated automatically by creating a subdirectory
for each application pool and applying ACLs to each
directory for the Application Pool SID.

ASP.NET Temp directory: used by ASP.NET
compilation system

tempDirectory attribute in system.web/compilation
section for each application. The default is
%SystemRoot%\Microsoft.NET\Framework\<version>\
Temporary ASP.NET Files.

ASP Template Disk Cache directory Isolated automatically by applying ACLs to each file
for the Application Pool SID.

474 Part III: Administration
Note The server-level configuration in applicationHost.config is isolated automatically
using configuration isolation.

However, .NET Framework configuration in the machine.config and root web.config files—as
well as the configuration in the distributed web.config files that are part of the Web site’s
directory structure—are not isolated. To properly isolate the distributed web.config files, set
the appropriate permissions on the content directories, as described earlier in this section.

Implementing Access Control
Web applications require the ability to restrict access to their content, to protect sensitive
resources, or to authorize access to resources to specific users. IIS 7.0 provides an extensive set
of features that you can use to control the access to application content. These features are
logically divided into two categories, based on the role they play in the process of determining
access to the request resource:

■ Authentication Authentication features serve to determine the identity of the client
making the request, which can be used in determining whether this client should be
granted access.

■ Authorization Authorization features use the authenticated identity on the request or
other applicable information to determine whether or not the client should be granted
access to the requested resource. Authorization features typically depend on the pres-
ence of authentication features to determine the authenticated identity. However, some
authorization features determine access based on other aspects of the request or the
resource being requested, such as Request Filtering.

IIS 7.0 supports most of the authentication and authorization features available in IIS 6.0, and
it introduces several additional features. These features (role services) are listed here in the
order in which they apply during the processing of the request:

1. IP and Domain Restrictions. Used to restrict access to requests clients make from
specific IP address ranges or domain names. The default install does not use this feature.

2. Request Filtering. Similar to UrlScan in previous versions of IIS, request filtering is used
to restrict access to requests that meet established limits and do not contain known
malicious patterns. In addition, Request Filtering is used to restrict access to known
application content that is not meant to be served to remote clients. Request filtering is
part of the default IIS 7.0 install and is configured to filter requests by default.

3. Authentication features. IIS 7.0 offers multiple authentication features that you can use
to determine the identity of the client making the request. These include Basic Authen-
tication, Digest Authentication, Windows Authentication (NTLM and Kerberos), and

Chapter 14: Implementing Security Strategies 475
many others. The Anonymous Authentication feature is part of the default IIS install and
is enabled by default.

4. Authorization features. IIS 7.0 provides a new URL Authorization feature that you can
use to create declarative access control rules in configuration to grant access to specific
users or roles. In addition, it continues to support NTFS ACL-based authorization for
authentication schemes that yield Windows user identities. IIS uses NTFS ACL-based
authorization by default.

Note In IIS 7.0, all of these role services are available as Web server modules that can be
individually installed and uninstalled and optionally disabled and enabled for each application.
Be careful when removing authentication, authorization, and other access control modules,
because you may unintentionally open access to unauthorized users or make your application
vulnerable to malicious requests. To review the list of security-sensitive modules that ship with
IIS 7.0, and considerations when removing them, see the section titled “Securing Web Server
Modules” in Chapter 12.

You should leverage access control features to ensure that only users with the right to access
those resources can access them. To do this, you need to configure the right authentication
and authorization features for your application.

In addition, you should take advantage of Request Filtering to limit usage of the application as
much as is possible, by creating restrictions on content types, URLs, and other request param-
eters. Doing so enables you to preemptively protect the application from unexpected usage
and unknown exploits in the future.

IP and Domain Restrictions

The IP and Domain Restrictions role service enables you to restrict access to your application
to clients making requests from a specific IP address range or to clients associated with a
specific domain name. This feature is largely unchanged from IIS 6.0.

Note The IP and Domain Restrictions role service is not part of the default IIS install. You can
manually install it from the IIS \ Security feature category in Windows Setup on Windows Vista,
or from the Security category of the Web Server (IIS) role in Server Manager on Windows
Server 2008. See Chapter 12 for more information about installing and enabling modules.

You can use this feature to allow or deny access to a specific range of IP addresses, or to a
specific domain name. The IP and Domain Restrictions role service will attempt to match the
source IP address of each incoming request to the configured rules, in the order in which
rules are specified in configuration. If a matching rule is found, and the rule is denied access
to the request, the request will be rejected with a 403.6 HTTP error code. If the rule allows
access, the request will continue processing (all additional rules will be ignored).

476 Part III: Administration
You can specify any number of allow or deny rules and indicate whether access should be
granted or denied if no rules match. The common strategies for using IP Address and Domain
Restrictions rules include:

■ Denying access by default and creating an Allow rule to grant access only to a specific
IPv4 address range, such as the local subnet. You can do this to grant access only to
clients on the local network or to a specific remote IP address.

■ Allowing access by default and creating a Deny rule to deny access to a specific IP
address or IPv4 address range. You can do this to deny access to a specific IP address
that you know is malicious.

Caution Allowing access by default and denying access for specific IP address ranges is not
a secure technique, because attackers can and often will use different IP addresses to access
your application. Also, clients that use IPv6 addresses instead of the IP addresses will not match
a Deny rule that uses an IPv4 address range.

If you are looking to restrict access to your application to clients on the local network, you may
be able to implement an additional defense measure by specifying that your site binding
should listen only on the IP address associated with the private network. For servers that have
both private and public IP addresses, this can restrict requests to your site to the private
network only. You should use this in conjunction with IP and Domain Restrictions where
possible. For more information on creating Web site bindings, see Chapter 9.

Though you can create rules that use a domain name instead of specifying an IP address, we
don’t recommend that you do so. This is because domain name-based restrictions require a
reverse Domain Name System (DNS) lookup of the client IP address for each request, which
can have a significant negative performance impact on your server. By default, the feature does
not enable the use of domain name–based rules.

To configure the IP and Domain Restrictions rules, you will need to perform the following
steps:

1. Use IIS Manager to configure the rules by selecting the Server node, a Site node, or any
node under the site in the tree view. Then double-click the IP Address And Domain
Restrictions feature, which is shown in Figure 14-4.

2. Use the Add Allow Entry or the Add Deny Entry command in the Actions pane to create
allow or deny rules.

3. You can also use the Edit Feature Settings command to configure the default access
(allow or deny) and whether or not domain name–based rules are allowed.

Chapter 14: Implementing Security Strategies 477
Figure 14-4 Configuring IP and Domain Restrictions using IIS Manager.

Note Although the IP and Domain Restrictions feature enables you to use IPv6 addresses,
you cannot configure addresses that use IPv6 rules using IIS Manager. Also, requests that are
made over IPv6 connections do not match rules using IPv4 addresses. Likewise, requests made
over IPv4 connections do not match rules that specify IPv6 addresses.

Note By default, the ipSecurity configuration section is locked at the server level. You can
unlock this section by using the Appcmd Unlock Config command to specify IP and Domain
Restriction rules in web.config files at the site, application, or URL level.

You can also configure the IP and Domain Restrictions configuration by using Appcmd or
configuration APIs to edit the system.webServer/security/ipSecurity configuration section.

Request Filtering

The Request Filtering feature is an improved version of the UrlScan tool available for previous
versions of IIS. The Request Filtering feature enforces limitations on the format of the request
URL and its contents to protect the application from possible exploits that may arise from
exceeding these limits. With IIS 6.0 and previous versions of IIS, these limits have thwarted
the majority of known Web application exploits, such as application-specific buffer overruns
resulting from long malicious URLs and query strings. Though the Web server itself, starting
with IIS 6.0, has been engineered to not be vulnerable to these attacks, these limits remain

478 Part III: Administration
valuable in preventing both known and unknown future exploits for the Web server and
applications running on it.

In addition to enforcing request limits, the Request Filtering feature also serves to deny access
to certain application resources that are not meant to be served to Web clients, but are located
in the servable namespace for an application. These files include the web.config configuration
files for IIS and ASP.NET, as well as contents of the /BIN and /App_Code directories for
ASP.NET applications.

You can use Request Filtering to do the following:

■ Set request limits Configure limits on the length and encoding of the URL, the length
of the query string, the length of the request POST entity body, allowed request verbs,
and maximum lengths of individual request headers.

■ Configure allowed extensions Configure which file extensions are allowed or rejected,
regardless of the selected handler mapping.

■ Configure hidden URL segments Configure which URL segments are not served, to
hide parts of your URL hierarchy.

■ Configure denied URL sequences Configure which URL patterns are not allowed, possi-
bly to prevent known exploits that use specific URL patterns.

IIS 7.0 depends on request filtering by default to reject requests that may contain malicious
payloads and to protect certain content from being served by the Web server. You can also use
it to further restrict the input to your application, or to protect additional URLs, directories,
and files or file extensions from being served by the Web server.

Caution Request filtering is a critical security component and should not be removed
unless it is absolutely clear that it is not needed. Always prefer to relax request filtering limits by
setting the configuration rather than uninstalling or removing the Request Filtering module.

The request filtering configuration does not have an associated IIS Manager page, so these
settings cannot be set through IIS Manager. To set them, you can configure the system.web-
Server/security/requestFiltering configuration section directly at the command line by using
Appcmd.exe or other configuration APIs. The requestFiltering section is unlocked by default,
so you can set request filtering configuration in web.config files at the site, application, or URL
level.

The remainder of this section will illustrate how to modify common request filtering configu-
ration tasks.

Setting Request Limits

You can use Request Filtering to configure even tighter request limits if allowable in your
application’s usage to further reduce attackers’ ability to exploit your application with

Chapter 14: Implementing Security Strategies 479
malicious input. At other times, you may need to relax the default request limits to allow your
application to function correctly, for example, if your application uses long query strings
that may exceed the default limit of 2048 characters.

You may need to modify request limits applied by request filtering if any of the default limits
interfere with your application usage.

You can use Appcmd to set request filtering limits as follows.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

[/allowDoubleEscaping:bool] [/allowHighBitCharacters:bool]

[/requestLimits.maxAllowedContentLength:uint] [/requestLimits.maxUrl:uint]

[/requestLimits.maxQueryString:uint]

This command uses the parameters in Table 14-7.

Note You can also configure the request header length limits for each header by adding
header limits in the headerLimits collection in the system.webServer/security/requestFiltering
section. If the request exceeds a configured header limit, it will be rejected with a 404.10
response status code. Additionally, you can configure which verbs are allowed by adding those
verbs to the verbs collection. If the request specifies a verb that is not allowed, it is rejected with
a 404.6 response status code.

Table 14-7 Parameters for Requesting Filtering Limits

Parameter Description

ConfigurationPath The configuration path at which to set this configuration.

allowDoubleEscaping Whether or not request URLs that contain double-encoded
characters are allowed. Attackers sometimes use double-
encoded URLs to exploit canonicalization vulnerabilities in
authorization code. After two normalization attempts, if the
URL is not the same as it was after one, the request is rejected
with the 404.11 response status code. The default is false.

allowHighBitCharacters Whether or not non-ASCII characters are allowed in the URL. If
a high bit character is encountered in the URL, the request is re-
jected with the 404.12 response status code. The default is true.

requestLimits.maxAllowed-
ContentLength

The maximum length of the request entity body (in bytes). If
this limit is exceeded, the request is rejected with the 404.13
response status code. The default is 30000000 bytes (approxi-
mately 28 megabytes).

requestLimits.maxUrl The maximum length of the request URL’s absolute path (in
characters). If this limit is exceeded, the request is rejected with
the 404.14 response status code. The default is 4096 characters.

requestLimits.maxQueryString The maximum length of the query string (in characters). If
this limit is exceeded, the request is rejected with the 404.15
response status code. The default is 2048 characters.

480 Part III: Administration
Configuring Allowed Extensions

By default, the Web server will process only extensions for which a handler mapping exists.
By default, StaticFileModule processes all unmapped extensions. StaticFileModule serves
only extensions listed in the system.webServer/staticContent configuration section (known as
Mimemaps in IIS 6.0 and previous versions of IIS). Therefore, the handler mapping configu-
ration and the static content configuration serves as the two-level mechanism for controlling
which extensions can be served for a particular URL.

However, as a defense in depth measure, you may still want to use Request Filtering to deny
requests to a particular extension, after making sure that it is not configured in the IIS handler
mappings and the static content list. This makes sure that requests to this extension are
rejected very early in the request processing pipeline, much before they otherwise would be
rejected by the configuration mentioned earlier.

To add a prohibited or explicitly allowed extension by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/+fileExtensions.[fileExtension='string',allowed='bool']

The fileExtension string is in the format of .extension.

To delete a prohibited extension by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/-fileExtensions.[fileExtension='string']

These commands use the parameters in Table 14-8.

You can set this configuration for a particular site, application, or URL by specifying the
configuration path with commands shown earlier in this section.

Note Alternatively, you can configure the fileExtensions collection to deny all unlisted
extensions, explicitly enabling the extensions that are allowed. This may be a more effective
practice for reducing surface area than prohibiting specific extensions. However, it requires you
to know and maintain the exhaustive list of all allowed extensions necessary for your applica-
tion. To do this, set the allowUnlisted attribute on the fileExtensions collection at the desired
configuration path to false.

Table 14-8 Parameters for Deleting Prohibited Extension

Parameter Description

ConfigurationPath The configuration path at which to set this configuration.

fileExtension The extension, in the format of .extension, that should be al-
lowed or denied.

allowed Whether or not the extension is allowed or denied.

Chapter 14: Implementing Security Strategies 481
Configuring Hidden URL Segments

You may also want to prohibit a URL segment from being servable. ASP.NET uses this tech-
nique to prohibit requests to the /BIN, /App_Code, and other special /App_xxx directories
that contain ASP.NET application resources that the application is not to serve. You can create
your own special directories that contain nonservable content and protect them with URL
segments. For example, to prevent content from being served from all directories named data,
you can create a hidden segment named data.

Direct from the Source: Protecting ASP.NET Special Directories
The debate on how to protect special directories containing application content not
meant to be served directly, such as the ASP.NET /BIN directory, dates back to IIS 5.0
days. The ASP.NET team has gone through multiple attempts at achieving this, starting
with the explicit removal of Read permissions from the /BIN directory on IIS 5.0 during
ASP.NET application startup, to adding the code that prohibited requests containing the
/BIN segment to the ASP.NET ISAPI filter.

During the development of ASP.NET 2.0, I had the opportunity to guide the solution
to this problem for the several new directories introduced by ASP.NET 2.0, such as
the new App_Code directory. Unfortunately, removing the Read permissions from
these directories was no longer an option, because on IIS 6.0, ASP.NET no longer had
Write access to the IIS metabase. In the absence of a general Web server feature to
protect special directories, we had no better option than to add blocking support for
all new directories to the ISAPI filter. Arguably, the most painful part of the project
was the decision to ask the community for the preferred naming of these special direc-
tories, which resulted in much debate and the changing of the directory names from
Application_Code, to App$_Code, and finally to App_Code. At the end, we were so fed
up with changing the names that the development manager ordered hats for all of us
that were printed with “App$.”

IIS 7.0 finally provides a general solution for protecting special directories, a solution
that ASP.NET leverages to protect its special directories when installed. Therefore, it no
longer relies on the ISAPI filter for this support. Additionally, hidden URL segments
provide a general mechanism for anyone to configure protected directories as appropri-
ate for their applications, without writing special code to perform the blocking.

Mike Volodarsky

IIS Core Program Manager, Microsoft

482 Part III: Administration
To add a hidden URL segment by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/+hiddenSegments.[segment='string']

The segment string is the segment to protect.

To delete a hidden URL segment by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/-hiddenSegments.[segment='string']

Note Unlike file extensions, there is no way to prohibit all segments other than the ones
configured. You can only deny specific segments by adding them using the preceding command.

You can target configuration for a particular site, application, or URL by specifying the config-
uration path with the preceding commands.

Configuring Denied URL Sequences

In some cases, you may want to reject requests that contain specific sequences in the URL,
whether or not they are a complete segment. If it is not possible to fix the application itself,
this may be an effective way to protect an application from certain URL patterns that are
known to cause issues.

To add a denied URL sequence by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/+denyURLSequences.[sequence='string']

The sequence string is the sequence to reject.

To delete a denied URL sequence by using Appcmd, use the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/requestFiltering

/-denyURLSequences.[sequence='string']

Note Unlike file extensions, there is no way to prohibit all URL sequences other than the
ones configured. You can only deny specific sequences by adding them using the preceding
command.

You can set this configuration for a particular site, application, or URL by specifying the
configuration path with the preceding commands.

Chapter 14: Implementing Security Strategies 483
Authorization

As mentioned earlier, authorization is the second phase in the process of determining
whether or not a client has the right to issue a particular request. Authorization refers
to determining if the user identity determined during the authentication phase is allowed to
access the requested resource.

IIS 7.0 provides several authorization mechanisms that can be leveraged to control access to
resources:

■ NTFS ACL-based authorization By default, IIS 7.0 verifies that the authenticated user
identity has the right to access the physical file or folder corresponding to the requested
URL. This check is performed only for requests that map to physical files or directories
and use authentication methods that produce Windows tokens. This authorization
mechanism has multiple usage limitations that are discussed in detail later in this sec-
tion.

■ URL Authorization The new IIS 7.0 URL Authorization role service enables applications
to create declarative configuration-based rules to determine which authenticated users
and/or roles have the right to access the Web site or specific URLs therein. This feature
replaces the IIS 6.0 URL Authorization feature, which is no longer supported.

■ ASP.NET URL Authorization The ASP.NET URL Authorization feature, available since
ASP.NET 1.0, is similar to IIS URL Authorization, with a slightly different configuration
syntax and rule processing behavior. ASP.NET applications that use this feature today
can configure it to control access to all Web site content when they run using ASP.NET
integrated mode.

In addition, developers can provide custom authorization features by developing modules by
using the IIS 7.0 native module APIs or the ASP.NET APIs for applications using ASP.NET
Integrated mode. In fact, you can use most existing ASP.NET authorization modules immedi-
ately in applications that are using ASP.NET Integrated mode. This makes it significantly
easier to develop custom authorization features that implement business authorization rules
and can leverage the powerful ASP.NET membership and role infrastructures. For more
information on installing and leveraging custom modules, see Chapter 12.

Caution Exercise extreme caution when configuring or removing authorization modules. If
you remove an authorization module that is used to restrict access to the application, parts of
the application may become exposed to unauthorized users. See the section titled “Securing
Web Server Modules” in Chapter 12 for more information about removing security-sensitive
modules.

In the remainder of this section, we will review the authorization features in detail.

484 Part III: Administration
NTFS ACL-based Authorization

The IIS 7.0 server engine (rather than a module) automatically performs NTFS ACL-based
authorization. During this authorization, the Web server checks that the authenticated user
identity has the rights to access the physical file or folder being requested.

Note NTFS ACL-based Authorization is part of the IIS Web server core and therefore is
always installed when the Web server is installed. Though it cannot be uninstalled or disabled,
you can remove one of the requirements in the following list to configure your application to
not use it.

This authorization occurs automatically when all of the following conditions are met:

■ The authenticated user identity must have a Windows token. If the request is authenti-
cated using an authentication method that does not provide Windows tokens, for
example Forms Authentication, this authorization is not performed.

■ The selected handler mapping for the request specifies a resource type of File, Directory,
or Either. Some mappings use the resource type of Unspecified to enable requests to
virtual URLs that do not have a corresponding physical resource on disk. For these
handler mappings, this authorization is not performed.

Note Most ASP.NET handler mappings are marked as Unspecified by default.
However, ASP.NET includes additional functionality that ensures that if the URL maps to
a physical file or folder, the access check is performed (with the exception of content
located in a virtual directory that stores its files on a UNC path).

■ The request URL maps to a physical file or folder that exists on disk. If the file or
directory does not exist, IIS does not perform the check.

■ The virtual directory corresponding to the request being made does not specify fixed
access credentials. If the virtual directory specifies fixed credentials, they will be used
to access all content for the virtual directory, and therefore IIS does not use the authen-
ticated user to check access.

In addition, for you to successfully use NTFS ACL-based authorization, the following
conditions must also be true:

■ The physical resources have ACLs configured to properly grant or deny access to each
authenticated user. This is typically done by placing all of the allowed users in a group,
and granting this group access to the content.

■ If the virtual directory corresponding to the request refers to a remote UNC share and
does not specify fixed UNC credentials, the authenticated user identity must be able to

Chapter 14: Implementing Security Strategies 485
delegate to the remote server. This requires basic authentication, or requires
Constrained Delegation or Protocol Transition to be configured. For more information,
see the section titled “UNC Authentication” later in this chapter.

Because of the aforementioned limitations and the overhead of managing NTFS ACL
permissions for multiple users, NTFS ACL-based authorization is not recommended as a
generic mechanism for restricting access to IIS resources. Use it only if your application meets
the preceding requirements and you would like to use ACLs as an authorization mechanism
(for example, if you are sharing static resources for users with domain or local machine
accounts, and the resources already have the right permissions configured).

Because this authorization happens automatically for physical resources, you must configure
all required resources to grant access to the authenticated identities that need to use your
application. See the section titled “Set NTFS Permissions to Grant Minimal Access” in this
chapter for more information on properly configuring NTFS ACLs for use with NTFS ACL
authorization.

URL Authorization

The IIS 7.0 URL Authorization feature is new in IIS 7.0. It provides a way to configure declar-
ative access control rules that grant or deny access to resources based on the authenticated
user and its role membership.

Note URL Authentication is not part of the default IIS install. You can manually install it from
the Windows Features IIS feature category through Windows Features on Windows Vista or
from the Security role service category of the Web Server (IIS) role in Server Manager on
Windows Server 2008. See Chapter 12 for more information about installing and enabling
modules.

Unlike NTFS ACL-based authorization, URL Authorization has the following advantages:

■ It is not tied to authentication schemes that produce Windows identities. It can be used
with any authentication schemes, including Forms Authentication, which produces
custom authenticated user identities.

■ It enables rules to be configured for specific URLs, not underlying files or directories.
Therefore, it is not tied to specific resource types and does not require files or directories
to exist.

■ It stores authorization rules in the configuration, instead of NTFS ACLs. These rules are
easier to create and manage, and they can be specified in distributed web.config files
that travel with the application when it is deployed or copied between servers.

■ It integrates with the ASP.NET Membership and Roles services, which enables custom
authentication and role management modules to provide the authenticated users and

486 Part III: Administration
their roles. You can use ASP.NET Forms Authentication with Membership and Roles to
quickly deploy a data-driven user and roles credential store for your application.

Note The IIS 7.0 URL Authorization feature is new. It is not related to the similarly named IIS
6.0 URL Authorization feature, which is overly complex, difficult to configure, and not widely
used. The IIS 6.0 URL Authorization feature is not included with IIS 7.0.

The ASP.NET URL Authorization feature inspired the new URL Authorization feature, which
implements similar functionality. However, some key differences exist in how rules are
configured and processed. We’ll discuss these differences later in this section.

Using URL Authorization to Restrict Access

To use URL Authorization to restrict access to your application, you need to configure one
or more URL Authorization rules. These rules can be configured at the Web server level.
Alternatively, you can configure them for a specific Web site, application, or URL. This makes
it very easy to use URL Authorization to quickly restrict access to any part of your Web site
to a specific set of users or roles.

These rules can be one of the following types:

■ Allow An allow rule grants access to the resource being requested and allows request
processing to proceed.

■ Deny A deny rule denies access to the resource being requested, rejecting the request.

Both types of rules can specify a set of users, roles, and/or verbs that URL Authorization uses
to match each rule to the request. As soon as a rule matches, the corresponding action (Allow
or Deny) is taken. If the request is denied, URL Authorization will abort request processing
with a 401 unauthorized response status code. If no rules matched, the request will also be
denied.

Unlike ASP.NET URL Authorization, the deny rules are always processed before allow rules.
This means that the relative order between deny and allow rules does not matter. In addition,
the order between rules defined by parent configuration levels and the current configuration
level does not matter, because all deny rules from all levels are always processed first, followed
by all allow rules. Finally, the default behavior when no rules match is to deny the request.

By default, URL Authorization has a single rule configured at the Web server level that
provides access to all users. You can restrict access to your Web site or a part of it by creating
authorization rules by using the following techniques:

■ Remove the default allow rule for all users and create explicit allow rules only for users
and roles that should have access to the current URL level. This way, by default, all
requests will be denied unless the authenticated user or role matches the configured

Chapter 14: Implementing Security Strategies 487
allow rule. This is the recommended practice, because it ensures that only the config-
ured users and roles have access to the resource, and it denies access to everyone else.

■ Create explicit deny rules for users and roles that should not have access to the current
URL level. This may be appropriate to prevent access for only the specific users and
roles. However, it is not generally a secure practice, because the set of users and roles is
typically unbounded. The exception to this rule is the technique of creating a deny all
anonymous users rule to restrict access only to authenticated users.

Note When designing the access control rules for your application, prefer to grant access to
roles instead of specific users. This makes it easier to manage authorization rules as more users
are added.

See the following section titled “Creating URL Authorization Rules” for information on
configuring URL Authorization rules.

Creating URL Authorization Rules

You can use IIS Manager to configure URL Authorization rules by selecting the desired node
in the tree view and double-clicking Authorization Rules. In the resulting window shown in
Figure 14-5, you can see the list of rules currently in effect at the level you selected, which
will include both the rules configured at higher configuration levels and the rules configured
at the current configuration level.

Figure 14-5 Configuring URL authorization rules.

488 Part III: Administration
You can remove existing authorization rules (including parent authorization rules that are not
locked) by selecting them in the list and clicking Remove in the Actions pane. You can add
an allow or deny rule by clicking Add Allow Rule or Add Deny Rule in the Actions pane.
Figure 14-6 shows an allow rule that can be used to allow access to all users or specific users
or roles.

Figure 14-6 Adding an Allow URL authorization rule.

You can also edit URL Authorization rules by configuring them directly in the system.web-
Server/security/authorization configuration section, by using Appcmd from the command line,
or by using configuration APIs. This configuration section is unlocked by default to facilitate
storing URL authorization rules in your application’s web.config files, which enables them
to travel with the corresponding application content when deploying the application to
another Web server.

To add a URL authorization rule with Appcmd, you can use the following syntax.

%systemroot%\system32\inetsrv\Appcmd.exe set config [ConfigurationPath]

/section:system.webServer/security/authorization

"/+[users='string',roles='string',verbs='string',accessType=’enum’]"

To delete a URL authorization rule with Appcmd, you can use the following syntax.

%systemroot%\system32\inetsrv\Appcmd.exe set config [ConfigurationPath]

/section:system.webServer/security/authorization

"/-[users='string',roles='string',verbs='string']"

The parameters to these commands are shown in Table 14-9.

Chapter 14: Implementing Security Strategies 489
Using ASP.NET Roles with URL Authorization

In applications using the ASP.NET Integrated mode, it is possible to configure the ASP.NET
Roles feature to provide application-specific roles for each authenticated user. IIS 7.0 URL
Authorization rules can specify access rules that use roles provided by the .NET Roles feature
or another ASP.NET module to implement application-specific authorization schemes, much
like the original ASP.NET URL Authorization feature. You can learn about setting up the
ASP.NET Roles feature at http://msdn2.microsoft.com/en-us/library/9ab2fxh0.aspx.

When the .NET Roles feature is enabled, and a role provider is configured for your applica-
tion, you can begin configuring URL Authorization rules that rely on these roles in your
application. To make sure that the roles are available for requests to non-ASP.NET content
types, be sure to remove the managedHandler precondition from the RoleManager module.
For information about enabling managed modules to run for all requests by removing the
managedHandler precondition, see the section titled “Enabling Managed Modules to Run for
All Requests” in Chapter 12.

You can also create roles directly using IIS Manager by selecting the application node in the
tree view and then clicking.NET Roles. In the resulting page, you can manage existing
roles, create new roles using the configured Role provider for the application, and associate
application users with roles.

Table 14-9 Parameters for Adding URL Authorization Rule

Parameter Description

ConfigurationPath The configuration path at which this configuration is set.

users The comma-separated list of user names that this rule allows or denies.
Each user name is matched with the user name of the authenticated
user set for the request, and the rule matches as soon as a single user
matches (or a role matches). For Windows identities that represent
domain accounts, use the domain qualified user name format of
“domain\user” rather than the fully qualified domain name format of
“user@domain.com”. Use “*” to refer to all users and “?” to refer to
anonymous users. The default is “”.

roles The comma-separated list of roles that this rule allows or denies. Role
membership for each role is tested for the authenticated user set for the
request, and the rule matches as soon as a single role matches (or user
matches). The default is “”.

verbs The comma-separated list of verbs (case-sensitive) that matches the
request verb. If specified, one of the verbs must match the request verb
for the rule to apply. The default is “”.

accessType Whether the rule should allow or deny access. Accepted values are
Allow and Deny. This parameter must be specified to add a rule.

490 Part III: Administration
Authentication

Authentication is the process of determining the identity of the user making the request to the
Web server. Authorization features can then use this identity to allow or reject the request
to specific resources or parts of the application. In some cases, the Web server or the applica-
tion can impersonate it to access resources. Finally, the application can use the identity to
personalize the application experience for the requesting user.

IIS 7.0 includes the following authentication features:

■ Anonymous Authentication This authentication method provides a configured
Windows identity for all anonymous users of the application without the need to
provide any client credentials. It is used to allow anonymous (unauthenticated) access.

■ Basic Authentication This authentication method enables the client to provide the user
name and password to the Web server in clear text. Basic Authentication is defined in
RFC 2617, and virtually all browsers support it.

■ Digest Authentication This authentication method is a more secure version of Basic
Authentication, and it enables the client to provide user credentials via a hash of the
user name and password. Digest Authentication is defined in RFC 2617, and most
browsers support it. The implementation used in IIS 7.0 was known as the Advanced
Digest Authentication method in IIS 6.0.

■ Windows Authentication This authentication method supports the NT LAN Manager
(NTLM) or Kerberos Windows authentication protocols.

■ Client Certificate Mapping Authentication This authentication method enables client
SSL certificates to be mapped to Windows accounts by using Active Directory directory
services.

■ IIS Client Certificate Mapping Authentication This authentication method enables
client SSL certificates to be mapped to Windows accounts via one-to-one or many-to-one
mappings stored in IIS configuration.

■ UNC Authentication Though this is not a true authentication method in the sense that
it does not help to establish the identity of the requesting client, IIS 7.0 uses UNC
Authentication to establish an identity to access remote content located on a UNC share.

In addition, IIS 7.0 applications using ASP.NET Integrated mode use a unified authentication
model between IIS and ASP.NET. This enables existing ASP.NET authentication modules or
new managed authentication modules developed with ASP.NET APIs to be used for all con-
tent in the application. When ASP.NET is installed, the following authentication methods are
also available:

■ Forms Authentication This ASP.NET authentication method supports forms-based
authentication against pluggable credentials stores via the ASP.NET Membership
service. For more information on using ASP.NET Forms Authentication to protect all

Chapter 14: Implementing Security Strategies 491
Web site content, see http://www.iis.net/articles/view.aspx/IIS7/Extending-IIS7/
Getting-Started/How-to-Take-Advantage-of-the-IIS7-Integrated-Pipel.

The following IIS 6.0 authentication methods are no longer supported:

■ IIS 6.0 Digest Authentication IIS 7.0 Advanced Digest Authentication method is now
provided as the only digest authentication method.

■ .NET Passport Authentication The Passport support is not included in Windows Server
2008, and therefore this method is also no longer supported.

Developers can also provide custom authentication features developed with the new IIS 7.0
native module API or with ASP.NET APIs for applications using the Integrated mode. In fact,
applications running in Integrated mode can use most existing custom ASP.NET authentica-
tion modules immediately to provide site-wide authentication. For more information on
installing and leveraging custom modules, see Chapter 12.

You can configure one or more authentication methods for your Web site, application, or part
thereof to protect it with user-based authorization, enable impersonation for resource access,
or allow for application personalization.

Note IIS 7.0 requires that each request is authenticated. Because of this, at least one authen-
tication method must be enabled and be able to provide an authenticated user for each
request.

In the remainder of this section, we will review each of the authentication methods.

Anonymous Authentication

Anonymous authentication enables clients to access public areas of your Web site without
requiring the client to provide any credentials. Anonymous authentication is the default
authentication method enabled in IIS 7.0.

Note Anonymous authentication is part of the default IIS install and is enabled by
default. You can manually install or uninstall it by installing or uninstalling the Anonymous-
AuthnenticationModule module. See Chapter 12 for more information about installing and
enabling modules.

Anonymous authentication applies for all requests that do not have an authenticated user
identity determined by other authentication methods. It works by setting the authenticated
user identity for such requests to be a Windows identity corresponding to the configured
anonymous user account.

492 Part III: Administration
Caution Be sure to disable anonymous authentication for parts of your Web site that you
do not want to be accessed by anonymous users. You must do this even if you have other
authentication methods enabled.

By default, anonymous authentication is configured to use the new built-in IUSR account. It
no longer uses the custom IUSR_ComputerName account that is used by default with
anonymous authentication in IIS 6.0. Because IUSR is a built-in account, it does not have a
password that must be periodically changed or synchronized between multiple servers. In
addition, because it is built in, the IUSR account has the same SID on all machines. Therefore,
ACLs that reference it remain valid when copied from one IIS 7.0 server to another.

When using anonymous authentication, you have the following options:

■ Use the built-in IUSR account. This is the default.

■ Use a custom account. You can configure a custom account that should be used for
anonymous requests instead of the IUSR account.

■ Use the application pool identity. You can configure anonymous authentication to use
the identity of the IIS worker process (application pool identity) instead of a separate
anonymous account.

You can use the application pool identity option to simplify resource access management. This
ensures that that resource access is always made under the application pool identity, both
when the Web server accesses application resources using the application pool identity and
when the Web server or application access resources while impersonating the authenticated
user. This way, you only need to manage access rights for a single identity. See the section
titled “Set NTFS Permissions to Grant Minimal Access” earlier in this chapter for more infor-
mation about setting permissions.

You can use IIS Manager to enable or disable anonymous authentication and set the
anonymous user options. Select the desired node in the tree view and double-click Authenti-
cation. Then, select Anonymous Authentication in the list and use the Enable, Disable, and
Edit commands in the Actions pane to configure it.

You can also set anonymous authentication configuration directly; use Appcmd.exe from
the command line, or use configuration APIs to configure the system.webServer/security/
anonymousAuthentication section. You do this with Appcmd by using the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/anonymousAuthentication [/enabled:bool]

[/username:string] [/password:string] [/logonMethod:enum]

The parameters of this command are shown in Table 14-10.

Chapter 14: Implementing Security Strategies 493
Basic Authentication

Basic authentication implements the Basic Authentication protocol, a standard HTTP
authentication scheme defined in RFC 2617 and supported by most HTTP client software.
It enables the client to pass both the user name and the password in clear text, and it
uses these credentials to log on locally at the Web server or the Web server’s domain. The
credentials, therefore, must correspond to a valid local or domain account, and they result
in the request being authenticated with a Windows token corresponding to this account.

Note Basic authentication is not part of the default IIS install. You can manually install it
from the Security feature category through Windows Features On And Off on Windows Vista.
You can also install it from the Security role service category of the Web Server (IIS) role in
Server Manager on Windows Server 2008. See Chapter 12 for more information about install-
ing and enabling modules.

Basic authentication is a challenge-based authentication scheme. When a client makes the
initial request to a resource that requires authentication, and basic authentication is enabled,
the request will be rejected with a 401 unauthorized status that will include a “WWW-Authen-
ticate: basic” response header. If the client supports basic authentication, it will usually
prompt the user for credentials and then reissue the request with the credentials included.
The basic authentication module will see that credentials are present on the subsequent
request and attempt to authenticate the request by logging on with those credentials. The
client will typically send these credentials again on every request to the same URL or any URL
that is below the URL included in the initial authenticated request.

Table 14-10 Parameters to Set Anonymous Authentication and Anonymous User
Options

Parameter Description

ConfigurationPath The configuration path at which to set the specified configuration. If you
specify this parameter, you may also need to specify the /commit:apphost
parameter to avoid locking errors when applying configuration to Web
site or URL levels.

enabled Whether to enable or disable anonymous authentication.

username The user name to use for anonymous authentication. Set to “” to use the
application pool identity. Default is IUSR.

password The password to use when specifying a custom account for anonymous
authentication.

logonMethod The logon method to use for the anonymous user. Allowed values are
Interactive, Batch, Network, ClearText. Default is ClearText. See
http://msdn2.microsoft.com/en-us/library/aa378184.aspx for more
information about logon types.

494 Part III: Administration
Caution Just enabling basic authentication does not mean that authentication is required
for your application. You must either disable anonymous authentication and/or configure URL
authorization rules or NTFS permissions that deny access to the anonymous user.

Basic authentication is not secure because it passes the credentials in clear text, and therefore
may enable an attacker to steal them by eavesdropping on the request packets at the network
level. This can be mitigated by using SSL to secure the communication channel between the
client and the server. If SSL is used to protect all requests that include the credentials, basic
authentication may be a secure option. For more information on configuring secure commu-
nication with SSL, see the section titled “Securing Communications with Secure Socket Layer
(SSL)” later in this chapter.

Caution Basic authentication may enable user credentials to be leaked because it sends
them to the Web server in an unencrypted form. When using basic authentication, use SSL to
secure the Web site.

Because basic authentication performs the logon locally at the Web server, the resulting
Windows token can be used to access resources on a remote server without configuring
delegation or Protocol Transition. See the section titled “Understanding Authentication
Delegation” later in this chapter for more information.

By default, basic authentication caches the logon token for the corresponding user name and
password in the token cache. During this time, the token may be available inside that process.
If the worker process is compromised, malicious code can use this token to elevate privileges
if the token represents a user with high privileges. If you do not trust the code in the process,
you can either disable token caching by uninstalling the token cache module or reduce the
amount of time the tokens are cached by setting the HKLM\SYSTEM\CurrentControlSet\
Services\InetInfo\Parameters\UserTokenTTL value to the number of seconds to cache tokens for.

You can use IIS Manager to enable or disable basic authentication and set the logon method
options. Select the desired node in the tree view and double-click Authentication. Then, select
Basic Authentication from the list and use the Enable, Disable, and Edit commands in the
Actions pane to configure it.

You can also set basic authentication configuration directly; use Appcmd.exe from the
command line, or use configuration APIs to configure the system.webServer/security/basic-
Authentication section. You do this with Appcmd by using the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/basicAuthentication [/enabled:bool]

[/realm:string] [/defaultLogonDomain:string] [/logonMethod:enum]

The parameters of this command are shown in Table 14-11.

Chapter 14: Implementing Security Strategies 495
Digest Authentication

The Digest Authentication feature implements the Digest Authentication protocol, a standard
HTTP authentication scheme defined in RFC 2617 and supported by some HTTP client
software. Unlike basic authentication, the client sends an MD5 hash of the user name and the
password to the server so that the real credentials are not sent over the network. The Digest
Authentication scheme in IIS 7.0 was known as the Advanced Digest Authentication in IIS 6.0
(IIS 7.0 no longer supports the IIS 6.0 Digest Authentication). If successful, Digest Authentica-
tion authenticates the request with a Windows token corresponding to the user’s Active
Directory account.

Note Digest authentication is not part of the default IIS install. You can manually install it
from the Security feature category through Windows Features On And Off on Windows Vista.
You can also install it through the Security role service category of the Web Server (IIS) role
in Server Manager on Windows Server 2008. See Chapter 12 for more information about
installing and enabling modules.

Like basic authentication, digest authentication is a challenge-based authentication scheme.
When a client makes the initial request to a resource that requires authentication, and digest
authentication is enabled, the request will be rejected with a 401 unauthorized status that
includes a “WWW-Authenticate: digest” response header containing additional information
required by the Digest Authentication scheme. If the client supports digest authentication,
it will usually prompt the user for the credentials and then reissue the request with the hash
of the credentials and the nonce information in the challenge. The Digest Authentication

Table 14-11 Parameters for Setting Basic Authentication Configuration Directly

Parameter Description

ConfigurationPath The configuration path at which to set the specified configuration. If
you specify this parameter, you may also need to specify the
“/commit:apphost” parameter to avoid locking errors when applying
configuration to Web site or URL levels.

enabled Whether to enable or disable basic authentication.

realm The basic authentication realm that will be indicated to the client for
informational purposes. The Web server does not use the realm during
the logon process.

defaultLogonDomain The domain that will be used by the server to log on using the credentials
provided by the client. If the client user name specifies the domain, it will
be used instead. If empty, the computer domain is used. The default value
is “”.

logonMethod The logon method to use for the logon. Allowed values are Interactive,
Batch, Network, and ClearText. Default is ClearText. See http://msdn2.
microsoft.com/en-us/library/aa378184.aspx for more information about
logon types.

496 Part III: Administration
module will see that the hash is present on the subsequent request and attempt to authenti-
cate the hash by comparing it with the hash stored in Active Directory. The client will typically
send the hash information again on every request to the same URL or any URL below the URL
used in the initial authenticated request.

The Web server and the clients accessing it must meet the following requirements to use IIS
7.0 Digest Authentication:

■ Both the Web server and the clients using your application must be members of the
same domain, or the client must be a member of a domain trusted by the Web server.

■ The clients must use Microsoft Internet Explorer 5 or later.

■ The user must have a valid Windows user account stored in Active Directory on the
domain controller.

■ The domain controller must be using Windows Server 2003 or Windows Server 2008.

Unlike the IIS 6.0 Digest Authentication, the IIS 7.0 Digest Authentication does not require the
application pool identity to be LocalSystem. In fact, you should not ever use LocalSystem or
any other identity with Administrative privileges on the server as an application pool identity.
For more information on configuring least privilege identities for application pools, see the
section titled “Configuring Applications for Least Privilege” earlier in this chapter.

Caution Just enabling digest authentication does not mean that authentication is required
for your application. You must either disable anonymous authentication and/or configure URL
authorization rules or NTFS permissions that deny access to the anonymous user.

Unlike basic authentication, the authenticated token is not suitable for accessing remote
resources, and it requires Constrained Delegation or Protocol Transition to be configured to
do so. For more information, see the section titled “Understanding Authentication Delega-
tion” later in this chapter.

You can enable or disable digest authentication by using IIS Manager. Select the desired node
in the tree view and double-click Authentication. Then, select Digest Authentication from the
list and use the Enable, Disable, and Edit commands in the Actions pane to configure it.

You can also set digest authentication configuration directly; use Appcmd.exe from the
command line, or use configuration APIs to configure the system.webServer/security/digest-
Authentication section. You do this with Appcmd by using the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/digestAuthentication [/enabled:bool]

[/realm:string]

The parameters of this command are shown in the Table 14-12.

Chapter 14: Implementing Security Strategies 497
Windows Authentication

The Windows Authentication scheme enables Windows clients to authenticate with two
Windows authentication protocols, NTLM (NT LAN Manager) and Kerberos. Both of these
schemes involve a cryptographic exchange between the client and the server to authenticate
the client.

Note Unlike Windows Server 2003, Windows Authentication is not part of the default IIS
install and is not enabled by default. You can manually install it from the Security feature
category through Turn Windows Features On And Off on Windows Vista. You can also install
it via the Security role service category of the Web Server (IIS) role in Server Manager on
Windows Server 2008. See Chapter 12 for more information about installing and enabling
modules. After the module is installed, you have to explicitly enable Windows Authentication
for it to be available.

Windows Authentication, similar to other IIS authentication methods, is challenge-based.
When a request is rejected with a 401 unauthorized response status code, Windows Authen-
tication will issue a WWW-Authenticate challenge header including one or both of
the following authentication scheme names:

■ NTLM Indicates to the client that it can use the NTLM authentication protocol to
authenticate. This is included for older clients that do not support the negotiate wrap-
per.

■ Negotiate Indicates to the client that it can use Kerberos or NTLM protocols to authen-
ticate. Negotiate is used to allow either Kerberos or NTLM authentication, depending
on what is available on the client.

Note Both Kerberos and NTLM authentication methods involve the client making several
(typically two to three) requests to the server as part of the authentication handshake. This
means that your modules may see multiple requests as part of the authentication process. By
default, authentication occurs once per connection, so it does not occur again for subsequent
requests using the same connection.

Table 14-12 Parameters for Setting Digest Authentication

Parameter Description

ConfigurationPath The configuration path at which to set the specified configuration. If
specifying this, you may also need to specify the /commit:apphost
parameter to avoid locking errors when applying configuration to Web
site or URL levels.

enabled Whether to enable or disable digest authentication.

realm The digest authentication realm that will be used as specified in the RFC
2617.

498 Part III: Administration
The client then makes the decision to use either Kerberos (if available) or NTLM and initiates
a sequence of requests to authenticate using the selected protocol. The choice of protocol is
based on whether or not the client is configured to be able to use Kerberos to authenticate
with the server, which requires a direct connection to the Key Distribution Center (KDC)
on the domain controller as well as direct access to Active Directory. NTLM can be used in a
non-domain scenario against local Windows accounts on the server or when the connection
to domain services required for Kerberos is unavailable.

Note Windows Authentication is best suited for intranet environments.

Windows Authentication is a reasonable choice for Windows-based intranet environments,
but for other environments, keep in mind the following limitations:

■ It does not work over HTTP proxies. This is because Kerberos and NTLM are connec-
tion-based, and proxies may not keep connections open or may share connections
between requests from multiple clients.

■ The Kerberos protocol requires both the client and the server to be members of the
same domain or two domains with a trust relationship and have a direct connection to
Active Directory and the KDC services located on the domain controller.

■ The Kerberos protocol requires correct Service Principal Name (SPN) registration in
Active Directory for all application pools performing Kerberos authentication.

Configuring Windows Authentication

You can enable or disable Windows Authentication by using IIS Manager. Select the desired
node in the tree view and double-click Authentication. Then, select Windows Authentication
in the list and use the Enable, Disable, and Edit commands in the Actions pane to configure it.

You can also set digest authentication configuration directly; use Appcmd.exe from the
command line, or use configuration APIs to configure the system.webServer/security/windows-
Authentication section. You do this with Appcmd by using the following syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/windowsAuthentication [/enabled:bool]

[/authPersistSingleRequest:bool] [/authPersistNonNTLM:bool]

[/useKernelMode:bool] [/useAppPoolCredentials:bool]

The parameters of this command are shown in Table 14-13.

Chapter 14: Implementing Security Strategies 499
In addition, you can also control whether the server uses NTLM or Negotiate protocols. To do
this, you can edit the providers collection in the system.webServer/security/windowsAuthentica-
tion configuration section. By default, this collection contains both NTLM and Negotiate
protocol providers. You can force the server to use only NTLM by removing the Negotiate
protocol provider. However, you cannot force the server to use only Kerberos in this configu-
ration, because the negotiate wrapper enables the client to use either NTLM or Kerberos.
There is no way to tell the client that only Kerberos is supported.

You can, however, configure the NTLM authentication level by using the Local Security Policy
console and modifying the Security Settings\Local Policies\Security Options\Network
Security: LAN Manager Authentication Level option, as shown in Figure 14-7. The default
setting is Send NTLMv2 Response Only, which enables the server to accept all levels. You can set
this setting to Send NTLMv2 Response Only. Refuse LM & NTLM for maximum security while
allowing clients that do not have the ability to use Kerberos to use the NTLMv2 scheme.

Table 14-13 Parameters for Configure Authentication

Parameter Description

ConfigurationPath The configuration path at which to set the specified configuration. If
you specify this, you may also need to specify the /commit:apphost
parameter to avoid locking errors when applying configuration to Web
site or URL levels.

enabled Whether to enable or disable Windows Authentication.

authPersistSingleRequest Whether or not to require each new request to reauthenticate. If set to
false, the client will perform the authentication handshake only once
per connection, and the server will cache the authenticated identity
for all subsequent requests. Otherwise, each request will require the
authentication handshake. Default is false.

authPersistNonNTLM Whether to require each new request to reauthenticate when using
Kerberos. If set to false, the client will perform the authentication
handshake only once per connection, and the server will cache the
authenticated identity for all subsequent requests. Otherwise, each
request will require the authentication handshake. Default is false.

useKernelMode Whether to perform Windows Authentication in the kernel. The default
is true.

useAppPoolCredentials Whether to use the application pool identity instead of LocalSystem
when performing kernel Windows Authentication. This is needed
when you are using a domain account as the application pool identity
to enable Kerberos authentication on a Web farm. The default is false.

500 Part III: Administration
Figure 14-7 Configure NTLM Authentication Level.

In IIS 6.0, to use the Kerberos authentication protocol, you have to use the Setspn.exe command
line tool to register Service Principal Names (SPNs) in Active Directory for the NetBIOS and the
Fully Qualified Domain Name (FDQN) names for each application pool account. Additionally,
you could have only one application pool account registered for each SPN, preventing multiple
application pools with different identities from using Kerberos authentication.

In IIS 7.0, kernel-based Windows Authentication (enabled by default) offers improved
functionality. Because HTTP.sys performs the authentication process in the kernel, it is done
under the LocalSystem account regardless of the application pool identity. This results in
the following improvements:

■ It should no longer be necessary to configure separate SPNs, because Kerberos will use
the default NetBIOS SPN entry created automatically when the Web server computer
is joined to the domain.

■ Application pool identity can be changed without the need to reregister the SPN with
the new account. The application pool account no longer needs to be a domain account.

■ Multiple application pools can use Kerberos authentication.

These changes make it significantly easier to deploy and use the Kerberos protocol with IIS.

Note You need to use the application pool identity and register SPNs for Kerberos authen-
tication when you are using it on a Web farm.

Chapter 14: Implementing Security Strategies 501
However, if you are using IIS on a Web farm and require the Kerberos protocol, you will
need to disable the use of the LocalSystem identity for Kerberos authentication by setting the
useAppPoolCredentials attribute in the system.webServer/security/authentication/windows-
Authentication configuration section to true. In addition, you will need to use a domain
account as an identity for the application pool. You will also be required to use Setspn.exe to
register the Web site host name using this domain account under which the application
pools are configured to run in Active Directory. For more information about registering
SPNs for Kerberos with Setspn.exe, see http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/523ae943-5e6a-4200-9103-9808baa00157.mspx?mfr=true.

Client Certificate Mapping Authentication

Client Certificate Mapping Authentication enables clients to authenticate with the Web server
by presenting client certificates over Secure Socket Layer (SSL) connections.

Note Certificate-based authentication enables clients to use client certificates to authenti-
cate with the Web server. It is not required to enable secure communication between the client
and the server.

The Client Certificate Mapping Authentication uses the Directory Services Mapper (DS Map-
per) service in Active Directory to map client certificates provided by the user to domain
accounts. IIS also provides a custom certificate mapping feature, the IIS Client Certificate
Mapping Authentication, which allows for more flexible mapping of client certificates to Win-
dows accounts. See the section titled “IIS Client Certificate Mapping Authentication” later in
this chapter for more information.

Note Client Certificate Mapping Authentication is not part of the default IIS install and is
not enabled by default. You can manually install it from the Security feature category through
Turn Windows Features On And Off on Windows Vista. You can also install it via the Security
role service category of the Web Server (IIS) role in Server Manager on Windows Server 2008.
See Chapter 12 for more information about installing and enabling modules. After the module
is installed, you have to explicitly enable Client Certificate Mapping Authentication for it to be
available.

To use Client Certificate Mapping Authentication, you need to meet the following require-
ments:

■ The Web server must be a member of a Windows domain.

■ You must issue client certificates to your users by using a Certificate Authority (CA)
trusted by the Web server.

■ You must map each client certificate to a valid domain account in Active Directory.

502 Part III: Administration
Note You do not need to use Client Certificate Mapping Authentication to require clients to
present client certificates. You can configure the server to always require client certificates to
access the server, but use another authentication scheme to authenticate the client. To do this,
see the section titled “Client Certificates” later in this chapter.

To enable Client Certificate Mapping Authentication on the Web server, you need to perform
the following steps (after installing the Certificate Mapping Authentication module).

1. Enable Client Certificate Mapping Authentication. You can do this in IIS Manager by
clicking the server node, double-clicking Authentication, selecting Active Directory
Client Certificate Authentication, and clicking Enable in the Actions pane. Note that this
can only be done at the server level when using IIS Manager, although you can enable
Client Certificate Mapping Authentication for a specific URL through configuration.

2. Configure SSL on each Web site using this authentication method. Certificate
authentication is possible only if the Web site is being accessed over an SSL connection
and therefore requires an SSL binding to be configured for the Web site. See the section
titled “Configuring SSL” later in this chapter for more details.

3. Enable DS Mapper for each Web site SSL binding. IIS Manager does this automatically
for each Web site when the Client Certificate Mapping Authentication is enabled and
you add an SSL binding for the Web site. To do this manually, use the Netsh.exe
command with the following syntax: netsh http add sslcert IP Address:Port dsmapperu-
sage=enable, where IP Address and Port are the IP address and port of the corresponding
binding.

4. Configure each Web site using this authentication method to accept client
certificates (and possibly require them). This ensures that the server accepts client
certificates when provided by the client and can also configure the server to require the
client to present a certificate to proceed with the request. See the section titled “Client
Certificates” later in this chapter for more details.

You can also enable Client Certificate Mapping Authentication by editing the system.web-
Server/security/authentication/clientCertificateMappingAuthentication configuration section
directly or by using Appcmd or other configuration APIs. You can enable this authentication
method by using the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config /section:

system.webServer/security/authentication/

clientCertificateMappingAuthentication /enabled:true

The enabled attribute specifies whether or not the Client Certificate Mapping Authentication
is enabled. You can enable this method for a specific URL. However, do note that the decision
to use the Directory Services Mapper to map certificates to Windows domain accounts is
dependent on each Web site binding having been configured to use the HTTP.sys DS Mapper
setting.

Chapter 14: Implementing Security Strategies 503
You can read more about configuring SSL and configuring the server to accept client
certificates in the section titled “Client Certificates” later in this chapter.

IIS Client Certificate Mapping Authentication

IIS Client Certificate Mapping Authentication enables clients to authenticate with the Web
server by presenting client certificates over Secure Socket Layer (SSL) connections.

Note Certificate-based authentication enables clients to use client certificates to authenti-
cate with the Web server. It is not required to enable secure communication between the client
and the server using SSL.

The IIS Client Certificate Mapping Authentication provides a more flexible mechanism for
authenticating clients based on client certificates than does the Active Directory–based Client
Certificate Mapping Authentication. Instead of relying on the Directory Services Mapper
(DS Mapper) service to map client certificates to Windows accounts, it uses the configuration
to perform the mapping. As such, it also does not require the user accounts to be domain
accounts and does not require Active Directory to operate.

Note IIS Client Certificate Mapping Authentication is not part of the default IIS install and is
not enabled by default. You can manually install it from the Security feature category through
Turn Windows Features On And Off on Windows Vista. You can also install it via the Security
role service category of the Web Server (IIS) role in Server Manager on Windows Server 2008.
See Chapter 12 for more information about installing and enabling modules. After the module
is installed, you have to explicitly enable IIS Client Certificate Mapping Authentication for it to
be available.

The IIS Client Certificate Mapping Authentication feature supports the following mapping
types:

■ One-to-one mapping Map a single client certificate to a specific Windows account. The
server will use an exact copy of the client certificate to perform the match and therefore
must possess a copy of each client certificate.

■ Many-to-one mapping Map client certificates to a Windows account by matching
wildcard expressions involving specific certificate fields, such as issuer or subject. This
does not require a copy of the client certificate.

To use IIS Client Certificate Mapping Authentication, you need to meet the following
requirements:

■ You cannot use Active Directory–based Client Certificate Mapping Authentication on
any of the sites for which you enable IIS Client Certificate Mapping Authentication.

■ You must have the passwords for all Windows accounts used to map certificates. Unlike
Client Certificate Mapping Authentication, which relies on Active Directory to generate

504 Part III: Administration
the Windows token for the account, you will need to specify both the user name and
password for each account being mapped so that IIS can generate the token.

■ To use one-to-one mappings, you must have an exact copy of each client certificate being
mapped. If you provide the certificates to users, you will have this copy. Otherwise, you
will need each user to provide you with an exported copy of the certificate. When using
many-to-one mappings, you do not need copies of the certificates.

Note You do not need to use IIS Client Certificate Mapping Authentication to require clients
to present client certificates. You can configure the server to always require client certificates to
access the server and then use another authentication scheme to authenticate the client. For
more about how to do this, see the section titled “Client Certificates” later in this chapter.

To enable IIS Client Certificate Mapping Authentication for a specific Web site or URL,
you need to perform the following steps (after installing the IIS Certificate Mapping Authen-
tication module):

1. Enable IIS Client Certificate Mapping Authentication. This option is not available in
IIS Manager. To do this, you will need to edit the system.webServer/security/authentica-
tion/iisClientCertificateMappingAuthentication section directly. Alternatively, you can use
Appcmd or another configuration API. You can enable IIS Client Certificate Mapping
Authentication with Appcmd by using the following syntax (see details on configuring
this configuration section later in this section).

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/authentication/

iisClientCertificateMappingAuthentication /enabled:true /commit:apphost

2. Configure SSL on each Web site using this authentication method. Certificate
authentication is possible only if the Web site is being accessed over an SSL connection.
Therefore, it requires an SSL binding to be configured for the Web site. See the section
titled “Configuring SSL” for more details.

3. Configure each Web site using this authentication method to accept client
certificates (and possibly require them). Doing so ensures that the server accepts client
certificates when the clients provide them. Doing so can also configure the server to
require the client to present a certificate to proceed with the request. See the section
titled “Client Certificates” for more details.

4. Configure the required one-to-one or many-to-one mappings. Create the mappings to
map certificates to Windows accounts.

Note Although you can enable the IIS Client Certificate Mapping Authentication feature
for a specific URL, the mapping configuration can only be set at the server or Web site level,
and it is ignored if it is set at a lower configuration level.

Chapter 14: Implementing Security Strategies 505
You can read more about configuring SSL and configuring the server to accept client
certificates in the section titled “Client Certificates” later in this chapter. We will describe the
process for configuring certificate mappings for IIS Client Certificate Mapping Authentication
next in the sections titled “Creating One-to-One Certificate Mappings” and “Creating Many-to-
One Certificate Mappings.”

Creating One-to-One Certificate Mappings

You can use one-to-one certificate mappings as part of a strong authentication and authoriza-
tion scheme to control access to application resources based on the exact identity of the
client. It can be used instead of a user name and password authentication scheme that
requires the user to supply credentials. To use one-to-one mappings, you need to have the
exact copy of each certificate.

IIS Manager does not provide support for configuring one-to-one mappings. You can
configure them by using the Appcmd command line tool. You can also do it by editing the
system.webServer/security/authentication/iisClientCertificateMappingAuthentication configura-
tion section directly or with other configuration APIs. You can add a one-to-one mapping by
using the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config [SiteName]

/section:system.webServer/security/authentication/

iisClientCertificateMappingAuthentication /+oneToOneMappings

[certificate='string',enabled='bool',username='string',password='string']

You can remove a one-to-one mapping by using the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config [SiteName]

/section:system.webServer/security/authentication

/iisClientCertificateMappingAuthentication /-oneToOneMappings

[certificate='string']

These commands use the parameters in Table 14-14.

Table 14-14 Parameters for Creating Certificate Mappings

Parameter Description

SiteName The site name of the Web site for which to set these settings. If omitted,
this parameter sets them for the entire Web server. If you specify these
settings for a configuration path deeper than the Web site root, these
settings will not take effect.

certificate The exact text of the certificate (not the certificate hash).

enabled Whether or not this mapping is enabled.

userName The user name for the account to which the certificate maps.

password The password for the account to which the certificate maps. This value is
stored in the encrypted form.

506 Part III: Administration
You can obtain the exact text of the certificate from an exported certificate file (containing
unencrypted certificate information) or by dumping the certificate from the local or domain
certificate store. To do the latter, you can use the following command.

certuil –encode –f CertName cert.cer

CertName is the friendly name of the certificate. You can view the certificate store and obtain
the friendly name of the installed certificates with the following command.

certuil –viewstore StoreName

StoreName is the name of the certificate store. Use MY for the personal certificate store.

Note You must specify the exact base64 encoded certificate contents for the one-to-one
mapping, with the training line feed removed. Do not use the certificate hash. If you do not
specify the certificate correctly, you will get a 401.1 status error when making requests to the
Web site. This error will show the 0x8009310b HRESULT, indicating that IIS failed to load the
certificate from the mapping entry.

Creating Many-to-One Certificate Mappings

Many-to-one mappings, unlike one-to-one mappings, are not typically used to authenticate
specific users. Instead, you can use them to authenticate a group of users by matching
fields in their certificates to a single Windows account. Therefore, authorization based on
the authenticated user produced by a many-to-one mapping is similar to role- or group-based
authorization, with the authenticated user representing a group to which multiple users
belong. For example, you can match all certificates issued by a specific organization to that
organization’s account. As such, many-to-one mappings may be less appropriate for user-
based personalization or access control than one-to-one mappings, depending on your autho-
rization strategy.

Note One-to-one mappings are always processed before many-to-one mappings.

Many-to-one mappings do not require the server to have the exact certificate for each user.
Instead, you simply configure wildcard rules based on one or more fields in the certificate that
map all certificates with matching fields to a Windows account.

IIS Manager does not provide support for configuring many-to-one mappings. You can
configure them by using the Appcmd command line, too. You can also edit the system.web-
Server/security/authentication/iisClientCertificateMappingAuthentication configuration section
directly or with other configuration APIs. You can add a one-to-one mapping by using the
following Appcmd syntax.

Chapter 14: Implementing Security Strategies 507
%systemroot%\system32\inetsrv\Appcmd set config [SiteName]

/section:system.webServer/security/authentication/

iisClientCertificateMappingAuthentication /+manyToOneMappings

[name='string',enabled='bool',permissionMode='enum',

username='string',password='string',description='string']

Then, you have to add one more matching rule to the mapping by using the following
Appcmd syntax, specifying the name of the mapping created in the command shown previ-
ously.

%systemroot%\system32\inetsrv\Appcmd set config [SiteName]

/section:system.webServer/security/authentication/

iisClientCertificateMappingAuthentication /+manyToOneMappings

[name='string'].rules.[certificateField='enum',

certificateSubField='string',matchCriteria='string',

compareCaseSensitive='bool']

You can delete a mapping by using the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config [SiteName]

/section:system.webServer/security/authentication/

iisClientCertificateMappingAuthentication /-manyToOneMappings

[name='string']

These commands use the parameters in Table 14-15.

Table 14-15 Parameters for Creating Certificate Mappings

Parameter Description

SiteName The site name of the Web site for which to set these settings. If omitted,
sets them for the entire Web server. If you specify these settings for a
configuration path deeper than the Web site root, these settings will not
take effect.

name The name of the mapping; can also be used to add rules to it or delete it.

enabled Whether or not this mapping is enabled.

permissionMode Whether to allow or deny access to the user who is given this mapping.

userName The user name for the account to which the certificate maps.

password The password for the account to which the certificate maps. This value is
stored in the encrypted form.

description The friendly description of the mapping.

certificateField The certificate field to match in the current rule. Common fields are
Issuer and Subject. For more information, get the details about the
contents of the certificate from the CA.

certificateSubField The certificate subfield to match in the current rule. For more
information on the subfields, get the details about the contents of the
certificate from the CA.

matchCriteria The match criteria. This can include * and ? wildcard matching characters.

compareCaseSensitive Whether or not the comparison should be case-sensitive.

508 Part III: Administration
UNC Authentication

The Web server core uses UNC authentication to establish an identity for accessing remote
application content inside virtual directories that reside on a UNC share. It is not a true
authentication method in the sense that it does not itself support an authentication scheme
for establishing the identity of the client. Rather, it is a mechanism for using the authenticated
user that has been established through other authentication mechanisms—and in some cases
a fixed identity set in configuration—to determine which identity should be used for remote
content access.

IIS uses UNC authentication whenever a request is made to a resource that resides in a virtual
directory whose physical path is located on a UNC share (whether or not the UNC share is
on the local computer). During UNC authentication, the Web server determines the identity
to be used for accessing remote content as follows:

1. Uses the virtual directory’s fixed credentials. In IIS 7.0, any virtual directory can
specify fixed credentials that IIS uses for all accesses to that location. This replaces the
UNCUserName and UNCPassword properties in IIS 6.0 that were used only when the
virtual directory referred to a UNC share.

2. Otherwise, uses the authenticated user if available. If the virtual directory does not
specify fixed credentials, use the authenticated user if it has already been determined
by an authentication method. This is referred to as pass-through authentication. You
cannot use this to access web.config files, because this access occurs before IIS
determines the authenticated user.

3. Otherwise, uses process identity. If IIS has not yet determined the authenticated user,
it will use the identity of the IIS worker process. The Web server uses this option to
access web.config files (if virtual directory credentials are not configured), because
configuration is read prior to the authentication stage.

Note IIS 7.0 cannot use pass-through authentication to access web.config files located on
the remote UNC share. Because of this, the virtual directory must specify fixed credentials, or
the application pool identity must have Read access to the remote UNC share.

By default, IIS cannot access remote UNC content. This is because the default anonymous
user IUSR is a local built-in account that does not have network privileges. Additionally,
because IIS is required to access web.config by using the IIS worker process identity, it has a
similar problem because the Network Service account also does not typically have the right to
access remote resources. Therefore, you typically have two options for configuring UNC
authentication to allow proper access of remote content:

■ Use pass-through authentication Pass-through authentication requires both the
application pool identity and all allowed authenticated user identities to have access to

Chapter 14: Implementing Security Strategies 509
the remote UNC share. Additionally, it requires the use of an authentication scheme
that is capable of delegating the user identity to a remote computer or configuring
Constrained Delegation and/or Protocol Transition to enable this for other authentica-
tion schemes.

■ Use virtual directory fixed credentials This is the recommended approach, because it
requires you to grant access to the share for a single identity. Also, it does not have the
requirement of ensuring that the authentication scheme can delegate its identities to
the remote UNC share, because the fixed identity is always used to access the content.
However, the fixed credential model does not enable the use of NTFS authorization
and auditing for authenticated users accessing the share, because the access is always
made under the specified credentials and not the authenticated user identity. For more
information on setting up fixed credentials for virtual directories, see the section titled
“Managing Remote Content” in Chapter 9.

Note It is highly recommended that you use the fixed credential model to configure access
to remote UNC shares. Use this in all cases when you do not rely on NTFS ACL-based access
control or auditing of remote content for your authenticated users.

If you do choose to use pass-through authentication, you will need to take the following steps:

1. Use a custom application pool identity that has access to the UNC share.

2. If using anonymous authentication, configure the anonymous user to be the application
pool identity. Alternatively, configure a custom anonymous user that has access to the
UNC share.

3. If you are using other authentication methods that produce Windows identities, ensure
that these methods can delegate identities to the UNC share. Then, ensure that all
authenticated users have access to the UNC share.

For more information about ensuring that your authentication scheme supports delegating
authenticated user identities to remote resources, see the following section titled “Under-
standing Authentication Delegation.”

Understanding Authentication Delegation

Many IIS authentication methods produce Windows identities that can be impersonated for
the purpose of accessing resources. When the resources being accessed reside on a remote
machine, the authenticated user identity needs to be transmitted to the remote machine for
authentication with the remote service. This process is referred to as delegation. It occurs
when IIS attempts to access files located on remote UNC shares, or when the application
impersonates the authenticated user identity to connect to a remote server such as SQL
Server.

510 Part III: Administration
Most IIS authentication methods do not produce authenticated identities that are suitable
for delegation. This means that when IIS is configured to use these authentication methods,
IIS and the application may fail to access resources located on remote machines when
impersonating the authenticated identity.

Note In general, the rule for remembering which authentication methods can be delegated
is to remember which authentication methods perform their logon locally on the Web server.
For example, any authentication scheme in which the user name and password are available on
the Web server—such as Basic Authentication, IIS Client Certificate Mapping Authentication,
or Anonymous Authentication—use the Web server to log on and therefore can delegate
authenticated identities.

To ensure that your application has access to its backed resources located on remote servers,
you generally have three options:

■ Use an authentication method that supports delegation (see Table 14-16).

■ Use fixed virtual directory credentials to create an authentication identity that can be
delegated to and can be impersonated instead of the authenticated user. For more
information, see the section titled “UNC Authentication” earlier in this chapter.

■ Configure Constrained Delegation and Protocol Transition to upgrade the authenti-
cated identity to an authenticated identity you can delegate to using the Kerberos proto-
col.

Table 14-16 lists the built-in IIS authentication schemes and the required configuration to
enable delegation of authenticated identities.

Most of the authentication schemes that do not perform the logon locally on the machine
require Constrained Delegation and Protocol Transition to be able to delegate the authenti-
cated identity to a remote machine. Constrained Delegation refers to the ability of a service to

Table 14-16 Built-In IIS Schemes and Required Configuration to Enable Delegation of
Authenticated Identities

Authentication Configuration

Anonymous Delegates when using a custom anonymous user or when
using a custom application pool identity as the anonymous
user (1 hop)

Basic Delegates by default (1 hop)

Windows (Kerberos) Requires Constrained Delegation

Windows (NTLM) Requires Constrained Delegation and Protocol Transition

Digest Requires Constrained Delegation and Protocol Transition

Client certificate mapping Requires Constrained Delegation and Protocol Transition

IIS Client certificate mapping Delegates by default (1 hop)

Chapter 14: Implementing Security Strategies 511
use a user identity obtained using the Kerberos protocol to access remote resources. Protocol
Transition, used in conjunction with Constrained Delegation, enables other authentication
schemes to obtain a Kerberos identity to be used with Constrained Delegation to access
remote resources. To learn more about setting up Constrained Delegation and Protocol
Transition, see http://technet2.microsoft.com/WindowsServer/en/library/c312ba01-318f-46ca-
990e-a597f3c294eb1033.mspx.

Securing Communications with Secure Socket Layer (SSL)
By default, all communication between the Web server and the client occurs over a clear-text
connection, which has the potential to expose the information included in the requests and
responses to an attacker able to listen to the communication at the network layer. This
includes packet sniffing at a local network, or compromising a router or a proxy server that is
located on the path between the client and the Web server. This can result in the unintended
disclosure of the response information, which may contain sensitive information, client
credentials that are sent as part of some authentication methods (such as basic authentication
or forms-based authentication methods), cookies, and more. The attacker can sometimes
successfully use this information to misrepresent the client by providing these credentials to
the Web server in a replay attack.

To prevent this from happening, you can use the Secure Socket Layer (SSL) or the newer
Transport Layer Security (TLS) protocols to secure the communication between the client and
server. TLS is a widely accepted standard that most browser technologies implement. In the
rest of this section, we will refer to both of these protocols collectively as SSL for ease of reference.

In addition to securing the communication between the client and the Web server, SSL serves
to confirm the identity of the Web server to the client. This process is widely used on the
Internet today to ensure that the client is dealing with the entity that the Web site claims to
represent. IIS can also use it to establish the identity of the client, if the client has an accept-
able certificate. Client certificates are discussed later in the section titled “Client Certificates”
later in this chapter.

Configuring SSL

To configure SSL, you must perform the following steps:

1. Obtain a server certificate from a trusted Certificate Authority. The Certificate
Authority (CA) must be a trusted root CA for all of the clients that connect to the Web
site that uses this certificate. For intranet sites, this may be a domain CA provided by
the Active Directory Certificate Services. For Internet sites, this is usually a CA that is
trusted by most client browsers by default. You can obtain the certificate by making a
certificate request using the Server Certificates feature in IIS Manager. Alternatively, you
can use a self-issued (or self-signed) certificate if you control both the Web server and
the clients, and if you intend to use this certificate for testing purposes.

512 Part III: Administration
2. Create a secure binding by using the HTTPS protocol and port 443 (or another
port), and specify the server certificate for each Web site. You can do this by creating
a binding in IIS Manager, or by adding a binding programmatically and then using the
netsh http add sslcert ipport=IPAddress:443 certstorename=MY certhash=hash appid=GUID
command to associate the certificate with the binding. You can obtain the certificate
hash from the Certificates console by viewing the certificate details and copying the
value of the Thumbprint property.

Note Unlike IIS 6.0, where certificate association information is stored in the metabase,
and the Web Publishing Service (W3SVC) is responsible for associating the site bindings with
certificates when it is started, IIS 7.0 stores the certificate information directly in the HTTP.sys
configuration. You can manipulate these associations by using IIS Manager or by using the
netsh http add sslcert command.

To be accepted by the clients, the server certificate must contain Common Name (CN) entries
for all of the host headers that the Web site used. This needs to be done when the certificate
is requested.

Note It is possible to have multiple SSL Web sites that use unique server certificates if each
Web site uses a separate IP address or port for its HTTPS binding. As in IIS 6.0, IIS 7.0 does not
support having multiple Web sites with their own server certificates if the HTTPS bindings for
those Web sites are on the same IP address/port and differentiate only by using host headers.
This is because the host header information is not available when the SSL negotiation occurs.
Because of this, the only way to have multiple Web sites on the same IP address that use host
headers is to configure all of those Web sites to use the same SSL certificate with a wildcard CN.
For more information, see http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/596b9108-b1a7-494d-885d-f8941b07554c.mspx?mfr=true.

For more information on configuring site bindings, see Chapter 9. You can also
read more about requesting certificates in the IIS 7.0 online documentation at
http://technet2.microsoft.com/windowsserver2008/en/library/d780d806-e8a8-4bc5-8d7a-
9f045d1f3e221033.mspx?mfr=true

Requiring SSL

To ensure that the communication between your Web server and clients is protected, you may
choose to require that clients request your Web site content over secure connections. This
is an effective way to protect clients’ authentication credentials or sensitive cookies issued by
the Web site over unsecure connections.

Chapter 14: Implementing Security Strategies 513
Caution If your Web site enables mixed SSL usage, such as by allowing the Web site to be
accessed over both SSL and unsecure connections, or by allowing portions of your Web site to
be accessed over unsecure connections, be aware that requests made over these connections
may leak sensitive information. For example, if your Web site uses Forms authentication to
authenticate users, uses cookie-based session state, or stores sensitive information about the
user in cookies, your clients may leak these cookies when making requests over unsecure con-
nections. Therefore, always prefer to protect your entire Web site with SSL by requiring SSL for
the entire Web site’s URL namespace. Also, configure your cookies to include the secure bit to
make sure the browser will not attempt to send them over unencrypted connections.

You can require SSL in IIS Manager by selecting the Web server, Web site, or another node
corresponding to the URL for which you’d like to require SSL. Then double-click SSL Settings.
In this feature, select the Require SSL check box to mandate SSL, as shown in Figure 14-8. You
also have the option of selecting the Require 128-Bit SSL check box.

Figure 14-8 Configuring SSL settings using IIS Manager.

Alternatively, you can require SSL by editing the system.webServer/security/access section
directly by using Appcmd or another configuration API. For example, you can set this
configuration using the following Appcmd syntax.

%systemroot%\system32\inetsrv\Appcmd set config [ConfigurationPath]

/section:system.webServer/security/access /sslFlags:enum

This command has the parameters presented in Table 14-17.

514 Part III: Administration
Client Certificates

Though SSL is typically used to confirm the identity of the Web server to the client, it can also
be used to confirm the client’s identity to the Web server if the client has certificates issued
by a CA that the Web server trusts. Client certificates can be used as part of a strong two-factor
authentication scheme that requires both a user name/password as well as a physical authen-
tication method to provide the client certificate, such as a Smart Card. Or, it can be used as
a single authentication method with one of the client certificate mapping authentication
methods that IIS supports.

To use client certificates, you must meet the following requirements:

■ The Web site must be configured to use SSL and have a valid server certificate.

■ The client must have a client certificate issued by a CA that the Web server trusts.

When a client makes a connection that uses SSL, the Web server negotiates the client certifi-
cates (if configured to do) by indicating the list of trusted CAs on the server, causing the client
to respond with the list of certificates that are available on the client and that are issued by
those CAs. The server then validates the certificates, including checking their expiration times
and making sure that they are not listed on the Certificate Revocation List (CRL) on the Web
server.

IIS supports multiple levels of using client certificates:

1. Negotiate certificates. This requests the client to provide a client certificate when the
request is made, but it does not require the certificate. If the client provides it, the server
validates the certificate, and the certificate is made available to the application. To do
this, set the sslFlags attribute of the system.webServer/security/access configuration sec-
tion to include SslNegotiateCert, as described in the section titled “Requiring SSL” earlier
in this chapter.

2. Require certificates. This requires that the client provide a client certificate when the
request is made. If the certificate is not provided, the request is rejected with a 403.7 –
Client Certificate Required error. If the certificate is not successfully validated by the

Table 14-17 Parameters for Configuring SSL Settings

Parameter Description

ConfigurationPath The configuration path for which to apply this configuration. If you
specify this, you may also need to specify the /commit:apphost parameter
to avoid locking errors when you apply configuration at Web site or URL
levels.

sslFlags A comma-separated list of one or more of the following values: None, Ssl,
Ssl128, SslNegotiateCert,SslRequireCert. Set this to Ssl to require SSL, and
Ssl,Ssl128 to require 128-bit SSL. For a description of SslNegotateCert and
SslRequireCert, see the following section titled “Client Certificates.”

Chapter 14: Implementing Security Strategies 515
server, the request will be rejected with a 403.16 – Client Certificate Is Untrusted
Or Invalid error. It could also be rejected with a 403.17 – Client Certificate Has
Expired Or Is Not Yet Valid error. To require certificates, set the sslFlags attribute of the
system.webServer/security/access configuration section to include SslNegotiateCert,Ssl-
RequireCert, as described in the section titled “Requiring SSL” earlier in this chapter. You
can require certificates to implement a strong two-factor authentication scheme.
Alternatively, you can require certificates in conjunction with a client certificate map-
ping authentication scheme as the primary authentication scheme for your Web site.
For more information, see the sections titled “Client Certificate Mapping Authentica-
tion” and “IIS Client Certificate Mapping Authentication” earlier in this chapter.

3. Authenticate users with client certificates. IIS can also be configured to authenticate
clients based on the client certificates. To learn more about using client certificate
authentication, see the sections titled “Client Certificate Mapping Authentication” and
“IIS Client Certificate Mapping Authentication” earlier in this chapter.

Securing Configuration
Previous versions of IIS have used a centralized configuration store known as the metabase.
IIS 7.0 abandons the metabase in favor of a new configuration system based on a hierarchy of
XML configuration files, in order to provide for simpler deployment and more flexible man-
agement of the Web server.

Note You can learn more about the new IIS 7.0 configuration system in Chapter 4,
“Understanding the Configuration System.”

In this section, we will take a look at the files that comprise the IIS 7.0 configuration hierarchy
and how they are accessed. We will also review security best practices for limiting access to
these files to ensure that the configuration contained therein is secure against unauthorized
information disclosure and tampering. In addition, we’ll look at isolating the configuration
between application pools that are using the new configuration isolation support.

Because the configuration is stored in plain text XML files, some of which may be taken off the
server during deployment or otherwise exposed, it is sometimes necessary to protect the
information stored therein from being discovered. The configuration system provides built-in
encryption support to protect secrets stored in configuration files against disclosure even if an
attacker is able to access the file. Later in this section, we’ll take a look at best practices for
storing secrets in configuration files and using encryption to protect them.

The configuration file hierarchy goes beyond centralized configuration and includes distrib-
uted web.config configuration files access that can be delegated to the site or application
owner. This enables sites and applications to contain required configuration as part of their
content for single-step deployment that does not require administrative rights on the server. It

516 Part III: Administration
also enables site and application owners to manage their applications remotely without
having administrative rights. In this section, we will review the best practices for securely
configuring configuration delegation.

Note For more information about enabling and securing remote delegated management,
see Chapter 8.

Restricting Access to Configuration

IIS 7.0 configuration is stored in a hierarchy of configuration files, including both server-level
configuration files and distributed web.config files that may be delegated to site and applica-
tion owners. Because these files store configurations by using plain text XML, anyone with the
ability to access them can read and/or tamper with a server configuration without using any
additional tools or APIs. Therefore, the NTFS access permissions placed on these files deter-
mine who can access server configuration and what they can do with it.

To properly secure configuration files, it is important to understand the files that comprise the
hierarchy and how they are accessed. This can help define and maintain the proper access
strategy in your environment.

Note You can learn about the configuration file hierarchy, the locations of each file, and
their role in configuring the server in Chapter 4.

The files that constitute the IIS 7.0 configuration hierarchy, and their default access
permissions, are listed in Table 14-18.

Table 14-18 Default Access Permissions for Configuration Files

File Description Default Permissions

Framework machine.config Machine-level .NET
Framework configuration

BUILTIN\IIS_IUSRS:(RX)

BUILTIN\Users:(RX)

Framework root web.config Machine-level
configuration for ASP.NET
applications

BUILTIN\IIS_IUSRS:(RX)

BUILTIN\Users:(RX)

applicationHost.config IIS machine-level
configuration

NT SERVICE\WMSvc:(R)

NT SERVICE\WMSvc:(R)

<AppoolName>.config Auto-generated version of
applicationHost.config for
each application pool

IIS APPPOOL\<ApppoolName>:(R)

Distributed web.config
(wwwroot)

Delegated configuration
files in the Web site
directory structure

BUILTIN\IIS_IUSRS:(RX)

BUILTIN\Users:(RX)

Chapter 14: Implementing Security Strategies 517
Note The default permissions for all entries in Table 14-18 also contain permissions granting
full rights to NT AUTHORITY\SYSTEM and BUILTIN\Administrators. These were removed from
this table for clarity.

Looking at the default permissions lets you see that:

■ The server-level configuration files, including Framework machine.config, Framework
root web.config, applicationHost.config, administration.config, and redirection.config
are writable only by the System and members of the Administrators group.

■ All members of the Users group and the IIS_IUSRS group Framework can read
machine.config and root web.config files. Unlike IIS server-level configuration files,
any user on the machine—as well as any application running inside the IIS worker
processes—can read the configuration in these files. This is due to the fact that these
files are used to configure the behavior of .NET Framework components in any .NET
application that runs on the machine.

■ The IIS server-level configuration files, applicationHost.config, redirection.config, and
administration.config, are only readable by the system, members of the administrators
group, and the Web Management Service (NT Service\WMSvc). Unlike .NET Frame-
work configuration files, they cannot be read by non-administrative users or even IIS
worker processes. IIS worker processes receive a subset of configuration in the
applicationHost.config file from the automatically generated ApppoolName.config files
for each application pool.

■ The Windows Process Activation Service (WAS) automatically generates the Apppool-
Name.config files for each application pool, which are readable only by the IIS worker
processes in the corresponding application pool. This is the basis of configuration
isolation explained in the section titled “Understanding Configuration Isolation” later
in this chapter.

■ The distributed web.config files located in the site directory structure are by default
readable by members of the Users group. These files typically must also grant access to
the IIS_IUSRS group to allow access to the IIS worker process (IIS setup automatically
grants this for the default Web site root located in %SystemDrive%\Inetpub\Wwwroot).

administration.config Machine-level configura-
tion file for IIS Manager

NT SERVICE\WMSvc:(R)

redirection.config Machine-level
configuration file for con-
figuring remote location of
applicationHost.config

NT SERVICE\WMSvc:(R)

Table 14-18 Default Access Permissions for Configuration Files

File Description Default Permissions

518 Part III: Administration
Setting Permissions on Configuration Files

The configuration files in the IIS hierarchy have restrictive permissions configured by default
and should typically not be changed (with the exception of distributed web.config files that
are part of your site directory structure). Changes to the permissions on these files may cause
these files to become more vulnerable to unauthorized access. Keep the following in mind to
maintain the security of these files:

■ Never grant non-administrative identities (with the exception of NT SERVICE\WMSvc)
access to applicationHost.config, redirection.config, and administration.config (either
Read or Write). This includes Network Service, IIS_IUSRS, IUSR, or any custom identity
used by IIS application pools. IIS worker processes are not meant to access any of these
files directly. See the following section titled “Understanding Configuration Isolation”
for information on how IIS worker processes get the configuration from application-
Host.config.

■ Never share out applicationHost.config, redirection.config, and administration.config on
the network. When using Shared Configuration, prefer to export applicationHost.config
to another location (see the section titled “Setting Permissions for Shared Configuration”
later in this chapter).

■ Keep in mind that all users can read .NET Framework machine.config and root
web.config files by default. Do not store sensitive information in these files if it should
be for administrator eyes only. Encrypt sensitive information that should be read by the
IIS worker processes only and not by other users on the machine.

The only exception to this rule is the distributed web.config files that are part of your Web
site’s directory structure. It is up to you to ACL these files correctly to prevent unauthorized
access to their contents. You should follow the standard guidance for setting permissions for
your Web site content provided in the section titled “Setting NTFS Permissions to Grant Min-
imal Access” earlier in this chapter, including using application pool isolation to properly
restrict access to the application pool to which the application belongs and setting required
permissions to allow remote delegated administration through IIS Manager.

Understanding Configuration Isolation

As mentioned earlier, IIS worker processes do not have Read access to applicationHost.config.
How, then, are they able to read any of the configuration set in this file?

The answer lies in the configuration isolation feature provided by IIS 7.0, which is always on
by default. Instead of enabling IIS worker processes to read applicationHost.config directly
when reading the configuration file hierarchy, IIS generates filtered copies of this file and uses
these copies as a replacement of applicationHost.config when configuration is read inside the
IIS worker process.

Chapter 14: Implementing Security Strategies 519
The reason for doing this is to prevent IIS worker processes from application pool A to be able
to read configuration information in applicationHost.config that is intended for application
pool B. Because applicationHost.config may contain sensitive information, such as the user
name and password for custom application pool identities, as well as user name and password
for virtual directories, allowing all application pools to access applicationHost.config would
break application pool isolation.

WAS is responsible for generating the temporary application pool configuration files that each
IIS worker process uses as a replacement of applicationHost.config. These files are placed by
default in the %SystemDrive%\Inetpub\Temp\Apppools directory and are named AppPool-
Name.config. As mentioned earlier, these files are configured to allow access only to the IIS
worker processes in the corresponding application pool, by using the IIS APPPOOL\AppPool-
Name Application Pool SID.

Note This process occurs automatically each time applicationHost.config is changed and
therefore does not require any manual action from the administrator outside of normal con-
figuration procedures.

Each application pool configuration file contains the configuration in applicationHost.config,
with the following information removed:

■ All application pool definitions in the system.applicationHost/applicationPools configura-
tion section. Only WAS is required to read this configuration section.

■ Any Web site definitions in the system.applicationHost/sites configuration section for
sites that do not have applications in the current application pool.

■ Any configuration in location tags for specific Web sites, applications, or URLs that do
not reside inside the applications in the current application pool.

Caution All application definitions (and their virtual directory definitions, possibly contain-
ing user name and password credentials) for any site that has at least one application in the
current application pool will be present in the application pool configuration file. To disable
this behavior and include only the application definitions for applications in the application
pool, set the IsolationWholeSiteInclude DWORD value to 0 in the HKLM\System\CurrentCon-
trolSet\Services\WAS\Parameters key and perform an IISRESET. This may break applications in
sites with applications in multiple application pools when they attempt to map physical paths
for URLs in other applications.

Keep in mind that global configuration settings set in the applicationHost.config (without
using location tags to apply them to specific Web sites, applications, or URLs) are not filtered.
Each application pool configuration file will contain all of these settings.

520 Part III: Administration
Configuration isolation is a key part of the application pool isolation strategy in IIS 7.0. It
is enabled by default to provide configuration isolation for server-level configuration in
applicationHost.config. For strategies on achieving proper application pool isolation, see
the section titled “Isolating Applications” earlier in this chapter.

Caution Configuration stored in .NET Framework machine.config and root web.config files
is not isolated. Only configuration stored in applicationHost.config is isolated.

Setting Permissions for Shared Configuration

IIS 7.0 supports sharing server configuration in the applicationHost.config configuration
file between multiple Web servers on a Web farm. Using a shared configuration requires
exporting the configuration from the source Web server, placing it on a network share, and
configuring the share so that all member Web servers have access to it. The process of doing
this is explained in Chapter 4.

To prevent unauthorized access to the shared configuration, follow these guidelines:

■ Do not grant Write access to the identity that the Web server uses to access the shared
applicationHost.config. This identity should have only Read access.

■ Use a separate identity to publish applicationHost.config to the share. Do not use this
identity for configuring access to the shared configuration on the Web servers.

■ Use a strong password when exporting the encryption keys for use with shared
configuration.

■ Maintain restricted access to the share containing the shared configuration and
encryption keys. If this share is compromised, an attacker will be able to read and write
any IIS configuration for your Web servers, redirect traffic from your Web site to mali-
cious sources, and in some cases gain control of all Web servers by loading arbitrary
code into IIS worker processes. Consider protecting this share with firewall rules and
IPsec policies to allow only the member Web servers to connect.

Warning Maintain restricted access to the share containing shared configuration. Malicious
access to this share can cause complete Web server compromise.

For more information on setting up shared configuration, see Chapter 4.

Securing Sensitive Configuration

The information in the configuration files in the IIS 7.0 configuration hierarchy is protected by
the restricted permissions specified by the NTFS ACLs on each file. These permissions should

Chapter 14: Implementing Security Strategies 521
prevent unauthorized users from being able to access these files. For more information on
maintaining secure permissions on the configuration files, see the section titled “Restricting
Access to Configuration” earlier in this chapter.

However, this alone may not provide a sufficient level of protection for especially sensitive
information stored in configuration files, such as user names and passwords of custom
application pool identities. It is essential to prevent this information from being discovered
even if an attacker manages to compromise the local Web server and gain access to the
configuration file containing the information. In addition, if someone copies the configura-
tion file off the server for archival or transport reasons, an attacker should not be able to read
the secrets stored in the configuration file. To ensure this, IIS 7.0 provides the ability to
encrypt specific information stored in configuration.

Using Configuration Encryption to Store Configuration Secrets

IIS 7.0 configuration encryption works by encrypting the contents of configuration attributes
for which encryption is enabled before storing their values in the configuration file. Therefore,
even if someone obtains access to the file, they cannot read the contents of the attribute
without decrypting it first.

Whether or not configuration encryption is used for each attribute is determined by the
attribute’s definition in the schema of the containing configuration section. You can find more
information about how encryption is configured in the configuration section schema in the
section titled “Protecting Sensitive Configuration Data” in Chapter 13, “Managing Configura-
tion and User Interface Extensions.” The schema also serves as a mechanism to select the
encryption provider used to encrypt the data for this attribute (you can learn more about
available encryption providers in the following section titled “Selecting Encryption Providers”).

When any configuration tool or API writes the value of each encrypted attribute, the configu-
ration system will automatically encrypt it using the configured encryption provider before
persisting it to the configuration file on disk. If you inspect the resulting configuration file,
you will see the encrypted value, as shown in the following code example for the password
attribute in the application pool definition inside the system.applicationHost/applicationPools
configuration section.

<applicationPools>

<add name="MyAppPool">

<processModel identityType="SpecificUser" userName="TestUser"

password="[enc:IISWASOnlyAesProvider:N8mr4dLU6PnMW5xlmCWg6914cKePgeU0fTbxew

ZppiwyTLmBQh0mZnFywQO78pQY:enc]" />

</add>

</applicationPools>

The configuration system decrypts the attribute automatically when it is accessed, provided
that the caller of the configuration system has the rights to use the encryption provider used
to perform the encryption. Therefore, the decryption and encryption process is completely

522 Part III: Administration
transparent to the administrator, while ensuring that the resulting configuration is not stored
in plain text.

Selecting Encryption Providers

IIS provides several encryption providers that can be used to encrypt configuration, in addi-
tion to several encryption providers provided by the .NET Framework. One of these providers
is used for each configuration attribute that is marked for encryption. The providers are listed
in Table 14-19.

.NET Framework creates both the RsaProtectedConfigurationProvider and the
DataProtectionConfigurationProvider providers. These providers are primarily used to
encrypt .NET configuration for ASP.NET applications using the Aspnet_regiis.exe tool.
For more information on using the .NET Framework configuration encryption, see
http://msdn2.microsoft.com/en-us/library/53tyfkaw.aspx.

Note You cannot use IIS configuration encryption to encrypt .NET configuration sections.
Likewise, you cannot use .NET configuration encryption to encrypt the contents of IIS
configuration sections with Aspnet_regiis.exe. If you attempt to read .NET configuration
sections encrypted with .NET configuration encryption by using IIS configuration APIs, you
will receive an error, because IIS does not support section-level encryption used by the .NET
Framework configuration system.

Table 14-19 Configuration Encryption Providers

Provider Use Encryption Key Access

RsaProtectedConfiguration
Provider

Encrypting .NET Framework
configuration sections using
exportable RSA encryption

RSA machine key: SYSTEM
and administrators only; grant
access using Aspnet_regiis.exe
-pa.

DataProtectionConfiguration
Provider

Encrypting .NET Framework
configuration sections using
machine-local Data Protection
API encryption

By default, everyone on the Web
server; optionally user-based
key

IISWASOnlyRsaProvider Encrypting IIS configuration
sections read by WAS using
exportable RSA encryption

RSA machine key: SYSTEM and
administrators only

IISWASOnlyAesProvider Encrypting IIS configuration
sections read by WAS using AES
encryption

Session key encrypted with
RSA machine key: SYSTEM and
administrators only

AesProvider Encrypting IIS configuration
sections read by the IIS worker
process using AES encryption

Session key encrypted with RSA
machine key:

IIS_IUSRS, NT Service\WMSvc

Chapter 14: Implementing Security Strategies 523
You can use the IIS encryption providers—IISWASOnlyRsaProvider, IISWASOnlyAesProvider,
and AesProvider—to encrypt IIS configuration sections.

IISWASOnlyRsaProvider and IISWASOnlyAesProvider are both used to encrypt configuration
sections that WAS reads, such as the system.applicationHost/applicationPools section, and do
not allow IIS worker processes to decrypt the configuration. The IISWASOnlyAesProvider
provides better performance because it uses AES encryption using an RSA encrypted session
key, instead of using full RSA encryption, and is used by default. The session key itself is
encrypted using the RSA key container used by IISWASOnlyAesProvider, so it has the same
access requirements. Configuration attributes encrypted using these providers can only be
decrypted by SYSTEM and members of the Administrators group.

The AesProvider provider is an AES provider that uses a session key encrypted using an RSA
key container that has permissions for the IIS_IUSRS group, therefore allowing IIS worker
processes to encrypt and decrypt configuration encrypted with this provider. This is the
provider used by default by all IIS configuration sections that are read by IIS worker pro-
cesses. It is also the provider you should consider using to protect your custom configuration
sections. Configuration attributes encrypted using this provider can be decrypted by any IIS
application.

Note The IIS configuration system does not support pluggable encryption providers unlike
the .NET configuration system. However, you can configure new instances of the IIS configura-
tion provider types to use different key containers for encryption purposes.

You can also create additional instances of the RSA and AES providers by creating new entries
in the configProtectedData configuration section, and configure them to use new RSA key
containers. You can create new RSA key containers by using the Aspnet_regiis.exe –pc
command, as described at http://msdn2.microsoft.com/en-us/library/2w117ede.aspx.

You can then manipulate the permissions on the RSA key to determine who can use it to
encrypt and decrypt configuration by using the Aspnet_regiis.exe –pa and Aspnet_regiis –pr
commands.

Keep in mind the following guidelines when using encryption:

■ Configuration encrypted with IISWASOnlyAesProvider can only be decrypted by
members of the Administrators group. This provider is only used to encrypt configura-
tion read exclusively by WAS.

■ Configuration encrypted using AesProvider can be decrypted by any IIS application. It
can be used to protect configuration from being disclosed outside of the Web server,
but it is not a way to protect configuration from applications running on the Web
server. It also does not protect configuration used by one application pool from
another application pool (although this protection may be afforded by proper NTFS
permissions configured for application pool isolation).

524 Part III: Administration
■ If you require to encrypt configuration for each application pool as an additional
isolation measure, you should create separate RSA keys for each application pool iden-
tity and ACL them for that application pool using the Application Pool SIDs or custom
application pool identities. Then you can create a provider for each application pool,
using the corresponding RSA keys, and encrypt the configuration for each application
pool using the corresponding provider.

■ In order to share a configuration on a Web farm or deploy an application with a
encrypted configuration to another server, you must share encryption keys and provider
definitions between the original server on which encryption was performed and the
target server. When exporting encryption key containers, be sure to use a strong pass-
word and protect these keys from being accessed by unauthorized users. You can learn
more about exporting encryption keys here: http://msdn2.microsoft.com/en-us/library/
2w117ede.aspx. In addition, you can export encryption keys by using IIS Manager when
setting up shared configuration. For more information, see Chapter 4.

Caution Changing the permissions on the RSA key containers may lead to compromise of
the encryption keys and therefore may expose your encrypted configuration. Do not change
the default permissions on the built-in IIS RSA key containers.

Limitations of Storing Secrets in Configuration

When you store secrets in configuration, the secret is protected by both the NTFS permissions
on the configuration file (see the section titled “Restricting Access to Configuration” earlier
in this chapter) and configuration encryption, if configured. However, you should be aware of
the following limitations that may impact the security of your secret:

■ NTFS permissions provide the basic level of protection for secrets in configuration files.
However, when configuration files are archived, copied off the machine, or sent over
a network, this protection is lost. Always use encryption to provide protection for secrets
in these cases.

■ Any code in the IIS worker process can decrypt any encrypted configuration data that
the IIS worker process has access to. By default, any IIS worker processes can
decrypt any configuration data encrypted using the default IIS encryption provider
(AesProvider).

■ Encryption is only as secure as the key that is used to perform the encryption.
Therefore, be sure that only the users authorized to perform decryption have access to
the key container used to perform the encryption and make sure that this key container
is not compromised if it is exported off the machine.

Chapter 14: Implementing Security Strategies 525
Limiting Access to Configuration from Managed Code in Partial
Trust Environments

When accessing IIS configuration from native code, the permissions set on the configuration
files are the basis for determining whether or not access to the configuration is granted. Native
modules and other code running in the IIS worker process can therefore read any of the con-
figuration in the configuration file hierarchy that is not hidden by application pool isolation or
encrypted with encryption keys that the IIS worker process does not have access to.

However, when managed code modules access configuration using the Microsoft.Web.
Administration API, their ability to read some configuration sections can be further
constrained through Code Access Security (CAS) policy configured for the application. This
is similar to how CAS is used to prevent managed code applications from performing other
actions that the hosting process may otherwise be allowed to perform, such as accessing files
or opening network connections.

You can leverage this mechanism to prevent ASP.NET applications running in partial trust
from being able to access information from certain configuration sections. This is done by
setting the requirePermission attribute on the section declaration to true. When this is done,
only ASP.NET applications and managed modules running with Full Trust can read the
contents of these configuration sections. For more information on setting the requirePermission
attribute as part of the section declaration process, see the section titled “Declaring Configu-
ration Sections” in Chapter 13.

Note The requirePermission attribute only prevents the application from using the
configuration APIs to read the configuration section when in partial trust. The application can
still access the file directly, if the CAS policy and file permissions allow it. Because of this,
requirePermission is only effective at preventing medium or below trust applications from
reading the contents of configuration sections specified outside of the application’s directory
structure, such as in applicationHost.config. The application can still open the distributed
web.config files in its directory structure by using file IO APIs directly.

By default, no IIS configuration sections are declared with requirePermission set to true, so
the contents of IIS configuration sections can be read by partial trust applications. So, this
technique is more applicable to new configuration sections being declared.

For more information on using ASP.NET trust levels to constrain the execution of managed
modules and ASP.NET applications, see the section titled “Reduce Trust of ASP.NET Applica-
tions” earlier in this chapter.

Controlling Configuration Delegation

One of the key management scenarios that the IIS 7.0 configuration system has in mind is
configuration delegation. Configuration delegation refers to the ability of the Web site or

526 Part III: Administration
application owner to specify the required IIS configuration for their application without being
an administrator on the Web server computer. To allow this, the IIS 7.0 configuration file
hierarchy supports specifying configuration in distributed web.config files, which can be
located anywhere in the Web site’s directory structure to override the configuration specified
at the server level. This also allows Web sites and applications to become portable by includ-
ing all of the configuration files necessary alongside their content, so they can be deployed by
simply being copied to the Web server.

If configuration delegation was an all or nothing approach, it likely wouldn’t work, because
most Web server administrators would not want to allow the Web site or application to be
able to override all of the configuration set at the server level, especially for configuration
sections that affect security, reliability, and performance of the Web server. Therefore, the IIS 7.0
configuration system provides an extensive set of controls that server administrators can use
to determine which configuration sections, and further yet, which specific configuration
attributes, can be overridden at the Web site or application level. If you manage a Web
server that allows others to publish application content, you will likely need to review the
configuration allowed for delegation, and in some cases lock or unlock specific configuration
for delegation.

Further, IIS 7.0 also provides the infrastructure for Web site and application administrators to
manage their configuration remotely through IIS Manager, without having administrative
privileges on the Web server computer. Again, as a server administrator, you have fine-grained
control over who can manage the Web sites and applications on your computer remotely,
and what management features they can use. You can learn more about configuring remote
management permissions in Chapter 8.

Controlling Which Configuration Is Delegated

The configuration section is the basic unit of configuration delegation. By default, each
configuration section is marked to initially allow or deny delegation when it is first declared,
by specifying the overrideModeDefault attribute in the section declaration (this is typically
determined by the developer based on whether the section is considered sensitive and should
not be modifiable by non-Administrators by default). If the section is marked as not delegated,
any attempt to specify the configuration for this section at any lower level in the configuration
hierarchy will lead to a configuration error when this section is accessed.

Note You can learn more about declaring configuration sections and the overrideMode-
Default attribute in the section titled “Declaring Configuration Sections” in Chapter 13.

By default, all IIS configuration sections are declared in applicationHost.config. Each section
declaration specifies whether or not this section is available for delegation, based on the
Microsoft IIS team’s criteria for whether or not the configuration section is sensitive. This
criteria includes considerations of whether the configuration section can be used to weaken

Chapter 14: Implementing Security Strategies 527
the security, reduce reliability, or significantly impact the performance of the Web server
overall, or allow the Web site or application to access information outside of its boundaries.

Note You can also manage the delegation of .NET configuration sections using the IIS
administration stack. Both IIS and .NET configuration use the same mechanism for controlling
delegation, including section-level locking and fine-grained configuration locking. For more
information, see Chapter 4.

The default delegation of IIS configuration sections is shown in Table 14-20.

Table 14-20 Default Delegation of IIS Configuration Sections

Section Default State Reason

system.applicationHost

applicationPools n/a Section can be specified only in
applicationHost.config

configHistory n/a Section can be specified only in
applicationHost.config

customMetadata n/a Section can be specified only in
applicationHost.config

listenerAdapters n/a Section can be specified only in
applicationHost.config

log n/a Section can be specified only in
applicationHost.config

sites n/a Section can be specified only in
applicationHost.config

webLimits n/a Section can be specified only in
applicationHost.config

system.webServer

asp Deny Contains security, performance, and
reliability sensitive settings for ASP
applications

caching Allow

cgi Deny Security sensitive: createProcessAsUser

defaultDocument Allow

directoryBrowse Allow

fastCgi n/a Section can be specified only in
applicationHost.config

globalModules n/a Section can be specified only in
applicationHost.config

528 Part III: Administration
handlers Deny; Allow when
.NET Extensibility is
installed

For compatibility with IIS 6.0; section is
effectively unlocked as soon as .NET
Extensibility is installed; see “Locking Down
Extensibility” section in Chapter 12

httpCompression n/a Section can only be specified in
applicationHost.config

httpErrors Deny Security sensitive: ability to specify error
pages outside of the application

httpLogging Deny Security sensitive: turning off logging can
create repudiation issues

httpProtocol Allow

httpRedirect Allow

httpTracing Deny Performance sensitive: list of ETW URLs to
trace

isapiFilters n/a Section can be specified only in
applicationHost.config

modules Deny; Allow when
.NET Extensibility is
installed

For compatibility with IIS 6.0; section is
effectively unlocked as soon as .NET
Extensibility is installed; see “Locking Down
Extensibility” section in Chapter 12

odbcLogging Deny Security sensitive: configuring logging to
external database

serverRuntime Deny Security, performance, and reliability
affecting settings for the core Web server
engine

serverSideInclude Deny Security sensitive: enabling server-side
include can allow the application to access
content outside of its boundaries

staticContent Allow

urlCompression Allow

validation Allow

system.webServer/security

access Deny Security sensitive: configure SSL
requirements

applicationDependencies n/a Section can be specified only in
applicationHost.config

authorization Allow

Table 14-20 Default Delegation of IIS Configuration Sections

Section Default State Reason

Chapter 14: Implementing Security Strategies 529
The default delegation state for IIS configuration sections is just that—a default—and may not
work for everyone. If you allow third parties to publish Web site or application configuration
on the server, you will need to review the impacts of allowing each section to be delegated
and strike a balance between application requirements for delegation and the need to protect
the Web server from unintended or malicious configuration changes. Then, you can lock
or unlock configuration sections to allow them for delegation or even use fine-grained
configuration locking to allow section delegation but lock specific configuration attributes,
elements, or collection entries.

Note For information about how to lock and unlock sections, and use fine-grained config-
uration locking, see the “Delegating Configuration” and “Granular Configuration Locking”
sections in Chapter 4.

ipSecurity Deny Security sensitive: determine who can access
the application

isapiCgiRestriction n/a Section can only be specified in
applicationHost.config

requestFiltering Allow Caution: delegated, but application can end
up removing basic protection configured
at server level and lessen its security

system.webServer/security/
authentication

anonymousAuthentication Deny Security sensitive: enable or disable
authentication method

basicAuthentication Deny Security sensitive: enable or disable
authentication method

clientCertificateMapping
Authentication

Deny Security sensitive: enable or disable
authentication method

digestAuthentication Deny Security sensitive: enable or disable
authentication method

iisClientCertificate Mapping-
Authentication

Deny Security sensitive: enable or disable
authentication method

windowsAuthentication Deny Security sensitive: enable or disable
authentication method

system.webServer/ tracing

traceFailedRequests Allow

traceProviderDefinitions n/a Section can only be specified in
applicationHost.config

Table 14-20 Default Delegation of IIS Configuration Sections

Section Default State Reason

530 Part III: Administration
When determining which configuration should be delegated, keep the following guidelines
in mind:

■ Err on the side of leaving configuration sections locked at the server level and unlock
specific sections as needed by the application. You can also unlock specific sections
for specific Web sites or applications only and leave them locked for others. This is an
effective method to avoid unexpected configuration changes at the application level
even if you do not delegate configuration to other parties.

■ When unlocking a specific section, you can still lock parts of it that contain sensitive
configuration or configuration you do not want to be changed. Use fine-grained config-
uration locking to lock the attributes, elements, or collection elements that you don’t
want changed while allowing other parts of the configuration section to be delegated.

Summary
IIS 7.0, much like its predecessor, comes with secure defaults that minimize the risk of
exploits against the Web server. As you deploy your applications to the Web server and change
configuration, you should familiarize yourself with the configuration and features to make
sure that you do not introduce any threats to the Web server. In this chapter, you have
reviewed the security changes and new security features in IIS 7.0 that can help you maintain
the security of the Web server.

Unfortunately, history has shown that most Web server exploits are directed at the applica-
tion running on the Web server rather than at the Web server itself. Applications are often
tested less rigorously then the Web server features and are often designed with less under-
standing of the threat vectors that exist for Web-facing applications. Because of this, it is
important to perform rigorous threat modeling and security testing at the application layer to
minimize application vulnerabilities.

In addition, it is important to take an approach to security that does not depend on specific
application threat vectors. IIS 7.0 makes it possible to apply such an approach, by reducing the
surface area of the Web server and running the application components with least privilege
possible. Together, these two techniques can both minimize the risk of any known or future
exploit and reduce the damage if such an exploit does occur. By using the best practices in this
chapter, you can successfully apply these techniques to your application to minimize the risk
of a security compromise of your Web server.

Finally, be aware that a Web server does not function in a vacuum. It depends on a variety of
Windows subsystems for its security and relies on the security of the network and other
services around it. Be sure to consider the security of the network overall and related services
when designing a secure Web farm.

Chapter 14: Implementing Security Strategies 531
Additional Resources
■ Chapter 4, “Understanding the Configuration System,” for information about configuring

IIS7.

■ Chapter 11, “Hosting Application Development Frameworks,” for information about
the execution privileges of application frameworks.

■ Chapter 12, “Managing Web Server Modules” for information about managing and
securing web server modules.

■ Improving Web Application Security: Threats and Countermeasures:
http://msdn2.microsoft.com/en-us/library/ms994921.aspx.

■ http://www.iis.net.

■ http://www.mvolo.com for frequent blog coverage of IIS 7.0, including security information.

753

Index

A
Access control lists (ACLs), 143, 307, 427,

474–482
IP and domain restrictions for, 475–477
request filtering for, 477–482
worker process identity and, 643

Access denied errors, 467
accessPolicy attribute, 419, 463
Acquire State stage, in request processing,

48, 374
Actions pane of IIS Manager, 12, 157,

174–175
Active Base Objects (ABO) mapper, 40, 82
Active Directory, 498, 500–501, 646
Active Directory Certificate Services, 511
Active Directory Domain Service

(AD DS), 543
Active Directory Service Interfaces (ADSI),

15, 117, 602
Add Roles Wizard, 132
Add verb, 191, 203–204
Address bar, 159
Admin Base Objects (ABO) Mapper, 40
Administration extensions, 436–440

actions of, 438–439
installing, 439
overview of, 436–438
securing, 439–440

Administration stack
configuration extensions and, 421–423
extensibility of, 369
for configuration delegation control, 527
in IIS architecture, 30, 39–40
tools not installed for, 602

Administration tools for IIS, 10–13. See also IIS
(Internet Information Services),
introduction to; Remote administration

Administration.config files
feature delegation and, 252
for IIS Manager, 73, 182–183, 442
post-installation, 140
sections declared by, 430

Advanced digest authentication, 449,
490–491, 495

Affinity, sessions and, 651–652
AHADMIN (Application Host

Administration) objects, 85
allowDefinition attribute, 433
allowOverrideDefault attribute,

433–434
Anonymous authentication, 6

application pool identity for, 341, 345,
448, 468

for security, 306, 491–493
IIS Manager feature for, 176
impersonation and, 417
IUSR account for, 448
module for, 128, 412
overview of, 490
worker processes and requests and, 467

Anonymous users. See IUSR accounts
Appcmd.exe command line tool,

187–222
Add verb in, 203–204
administrative extensions disabled

by, 440
Appcmd Lock Config command of, 434
as scripts replacement, 11
as Vista requirement, 552–556
avoiding pitfalls of, 201
benefits and limitations of, 188
binding setting by, 272
configuration history and, 96
connection limits and bandwidth throttling

setting by, 274
Delete verb in, 205
for application pools, 213–214,

303–304, 308
for applications, 213–214
for backing up server configuration,

95, 140
for CGI configuration, 363
for compression, 645
for configuration delegation, 102

Z12624412.fm Page 753 Tuesday, February 12, 2008 7:03 PM

754

for configuration editing, 206–213
backing up in, 213
delegation and, 434
delegation of, 212–213
List Config command in, 207–208
overview of, 85–86
security and, 457
Set Config command in, 208–212
verbs supported for, 206–207

for configuration logging, 550–552
for executing requests list, 318
for extension addition, 480
for failed request tracing, 217–222, 571
for Fast CGI applications, 360
for IIS client certificate mapping

authentication, 505–506
for locking extensibility, 419
for module management, 390,

403–408
for permission setting, 463
for recycling events logging, 313–314
for remote logging setup, 544
for troubleshooting, 586
for URL authorization editing, 488
for user profile loading, 311
for Web applications

changes in, 295
creation of, 293–294
list of, 298

for Web server modules, 214
for Web site management, 266
for worker processes and requests,

215–217, 315, 317
help system of, 194–196
List verb in, 201–203
.NET Framework version and, 84
output of, 196–198
overview of, 30, 189–191
parameters of, 199
parent paths enabled by, 344
range operators of, 200–201
Set verb in, 204–205
supported objects of, 193
syntax of, 191–193
to unlock sections

virtual directories and, 213–214
configuration of, 281
creation of, 278–279, 288
searching of, 283–284

Web site addition syntax in,
268–269

AppDomains, .NET applications running
in, 41

Application development platform, IIS as,
323–365

application frameworks and, 325–327,
353–364

ASP.NET handlers for deploying, 357
CGI and, 362–364
Fast CGI and, 358–362
ISAPI extensions for deploying, 358
native modules for deploying, 356
static file extensions and, 354–356

ASP applications and, 342–345
ASP.NET applications and, 327–342

backward compatibility for,
327–328

breaking changes in, 340–341
deploying, 334–340
installing, 332–334
integrated and classic modes of,

328–330
multiple ASP.NET versions and,

330–332
remote hosting of, 341–342

overview of, 323–325
PHP applications and, 345–352

availability of, 352
deploying, 346–350
execution identity of, 350–351
history of, 345–346
remote hosting of, 352

Application Host Administration
(AHADMIN), 229

Application Host Helper Service, 428
Application Pool Identity as Anonymous

account, 306
Application pools, 299–315

access to identity of, 469
adding, 302–305

AppDomains, .NET applications running in

Z12624412.fm Page 754 Tuesday, February 12, 2008 7:03 PM

755

advanced configuration of, 309–315
recycling events monitoring in,

312–315
user profile loading in, 309–311

anonymous authentication and, 448, 468,
492

Appcmd.exe command line tool for,
213–214

applicationPoolName precondition
of, 387

applications assigned to, 21–22
ASP.NET version and, 335–336
capacity analysis for, 301–302
classic to integrated, 113
configuration files of, 517
considerations for, 300–301
creation of, 20–21
Fully Qualified Domain Names (FQDN)

and, 500
identities of, 305–309, 378
isolation of, 41–42
isolation strategy for, 520
least privilege identity configuration for,

466–468
Microsoft.Web. Administration and,

223–224
NETWORK SERVICE and, 543
performance and, 645
request processing by, 42–55

classic pipeline mode for, 43–46
modules for, 51–53
.NET integrated pipeline mode for, 46–51
non-HTTP, 53–55
overview of, 40–43

SIDs of, 473
temporary configuration files for, 73–74
version types of, 632
Web gardens for, 299–300
Web sites and, 265–266
worker process boundaries for, 41

Application Programming Interfaces (APIs).
See also Component Object Model
(COM) API; ISAPI (Internet Server
Application Programming Interface)

for editing configuration, 85
for IIS Manager administration, 182–184

native server, 59
.NET, 4
public extensibility, 4
Run-time State and Control (RSCA),

13–14, 64
Application surface area reduction

minimum enabled modules for, 460–461
minimum handler mappings for,

461–462
minimum MIME Types for, 464–465
Web site permissions for, 462–464

ApplicationHost.config files, 38, 60
automatic isolation of, 474
backing up, 131, 140
description of, 430–431
editing, 62–63
for configuration changes, 177–178
for IIS features, 179
global configuration settings in, 519
granular configuration locking and, 107
location tags in, 80
root Web.config files versus, 178
server-level configuration in, 70–72
Sysprep and, 138
unlocking sections and, 103
virtual directory user credentials in, 282

Applications
Appcmd.exe command line tool for,

213–214
application pool assignment of, 21–22
availability of, 265

FastCGI, 361–362
load balancing for, 652
PHP, 352
requirements for, 635

compatibility of, 15
creation of, 17–18
development of, 4, 24
IIS Manager feature for, 164, 175–176
logging of, 557–558
modules specific to, 51
performance counters for, 626–631
performance of, 645–646
remote content and, 285
sandboxing of, 307
scalability in design of, 649

Applications #

Z12624412.fm Page 755 Tuesday, February 12, 2008 7:03 PM

756

Web, 291–299
creating, 292–296
listing, 297–299

Web sites and, 262–264
Web.config files and, 178
worker process failure in, 34

Arbitrary protocol listeners, 53
Architecture, 29–56. See also Modules

application pool request processing
in, 42–55

classic pipeline mode for, 43–46
modules for, 51–53
.NET integrated pipeline mode for,

46–51
non-HTTP, 53–55
overview of, 40–43

content placement and, 650
core components of, 33–42

configuration store as, 38–40
HTTP.sys as, 33–35
Windows Process Activation Service

(WAS) as, 37–38
worker process role as, 40–42
World Wide Web Publishing Service

(W3SVC) as, 35–37
for extensibility, 368–370
of IIS Manager extensions, 182–183
overview of, 29–33
shared hosting, 4

Area grouping, in features view, 167
ASCII characters, 201, 254
ASP (Active Server Pages)

applications in, 4, 342–345
for installing IIS 7.0, 121–122
for Web applications, 323
IIS Manager feature for, 176
logging, 558
script error details for, 596
Web farm session management in, 651

ASP.NET
application framework deployment

and, 357
application pool versions and, 632
applications of, 4, 327–342

backward compatibility for, 327–328
breaking changes in, 340–341

deploying, 334–340
installing, 332–334
integrated and classic modes of, 328–330
multiple ASP.NET versions and, 330–332
remote hosting of, 341–342

aspnet isapi.dll for content types of, 44–45
CGI (Common Gateway Interface) and,

7–8
Code Access Security (CAS) of, 375,

416, 439, 471
directories used by applications of, 473
extensibility model of, 59, 368
failed request tracing and, 574
for installing IIS 7.0, 120–121
for Web applications, 323
Forms authentication of, 48
handler mapping types in, 394
integrated pipeline mode of, 20, 31,

376–377
least privilege application configuration

for, 470–472
logging in, 558
Membership and Role Services of, 485, 489
migration to IIS and, 382
root Web.config files for, 179
run-time settings in, 265
server extension with, 324, 326
special directories of, 481
tracing integrated with, 576–577
unified authentication model of, 490
Unified Security Model of, 62
Web.config files for settings of, 4

ASP.NET URL authorization, 483
Aspnet_regiis.exe tool, 331–332, 334, 341
ASPX pages, 59
Attack surface area reduction, 450–460

in IIS 7.0 installation, 131
minimum CGI programs for, 458–459
minimum FastCGI programs for, 459–460
minimum ISAPI extensions for, 455–458
minimum ISAPI filters for, 454–455
modules and, 61
overview of, 4, 7
Web server installation and, 368
Web server installation for, 411–414,

451–454

Arbitrary protocol listeners

Z12624412.fm Page 756 Tuesday, February 12, 2008 7:03 PM

757

Attributes
accessPolicy, 419, 463
allowDefinition, 433
allowOverrideDefault, 433–434
as encryption level, 84, 435
configuration history, 96
configuration section, 78, 88
enabled, 105
for collection elements, 212
handler mapping-specified, 393
image, 378
List command for, 202
lock, 105–106
managedPipelineMode, 386
overrideMode, 80, 99, 102–103
overrideModeDefault, 526
path, 103, 394, 434
requiredPermission, 525
Set command for, 204
setting configuration, 209–211
state, 439

Auditing, 287
Authentication, 490–511. See also Security

access control and, 474
advanced digest, 449
anonymous

application pool identity for, 306, 345,
448, 468

description of, 491–493
impersonation and, 341, 417
in IIS 7.0 installation, 128
in IIS Manager, 176
IUSR account for, 448
worker processes and requests

and, 467
as request processing stage, 47, 374
basic, 176, 493–495
client certificate mapping, 501–503
connection, 238–240
delegation of, 509–511
digest, 176, 449, 495–497
errors in, 603
failed request tracing and, 574
Forms, 48, 65, 176

for Web sites, 324, 339
overview of, 6

root Web.config files for, 178
strong name for, 383

IIS client certificate mapping, 449,
503–507

IIS Manager feature for, 164
in ASP.NET applications, 450
in worker process, 63
membership-based, 5
modules for, 6, 58, 412–414
of user, 467
overview of, 490–491
pass-through mechanism for, 278, 286
performance and, 610–611
remote logging and, 541
server, 235
UNC, 508–509
Windows, 61

description of, 497–501
IIS Manager extensions and, 444
IIS Manager feature for, 176
Kerberos protocol and, 448

Authorization, 483–489
access control and, 474–475
declarative rules for, 287
failed request tracing and, 574
file, 413
IIS Manager feature for, 176
NTFS ACL-based, 483–485
URL, 414, 449, 485–489

Authorize Request stage, in request
processing s, 47, 374

Automatic IIS IUSRS Membership
account, 306

Availability of applications, 265
FastCGI, 361–362
load balancing for, 652
PHP, 352
requirements for, 635

B
Back button, for navigation, 159
Backing up configuration, 86, 91, 94–95,

109, 213, 384, 428
Backward compatibility. See also Metabase

Compatibility Layer
classic request pipeline mode for, 45

Backward compatibility #

Z12624412.fm Page 757 Tuesday, February 12, 2008 7:03 PM

758

for ASP.NET applications, 327–328
of configuration, 82
overview of, 10–11

Bandwidth throttling, 273–274, 613.
See also Network

Basic authentication, 61
for security, 493–495
IIS Manager feature for, 176
module for, 412
overview of, 6, 490

Begin Request stage, of request processing,
47, 374, 642

Best practices
for application performance, 646
for security, 267, 293
for Web sites, 266

Binaries, 61
Bindings

Appcmd.exe tool and, 203
collection elements as, 89
configuration of, 260, 270–273
for Web sites, 15
HTTPS protocol, 512
SSL configuration for, 611

Bit mode (64 versus 32), performance and,
631–632

Bitness32 load precondition, 387–389
Bottlenecks, memory, 617, 620, 646
Boundaries, application pool, 20, 41
Breadcrumb path, in Address bar, 159
Browsing, IIS Manager feature for, 164,

175–176

C
C++ extensibility model

administration stack and, 422
for Web server modules, 368, 372
managed versus native modules and,

375–377
module implementation and, 46
overview of, 7–8

Caching
Global Assembly Cache (GAC) for, 182,

382–383, 398, 401, 442
HTTP Cache Module for, 413
HTTP.sys, 636–640

IIS Manager feature for, 166, 177
kernel mode, 34, 621, 635–636, 649
modules for, 64
of compressed files, 643
output, 635
Output Cache Module for, 413
performance and, 614
Resolve Cache stage in request processing

and, 47
response, 34
Update Cache stage in request processing

and, 48
URL Authorization and Output Caching

for, 330
user-mode, 640–642

Capacity analysis
for application pools, 301–302
Web Capacity Analysis Tool (WCAT) for,

636–637, 647
Case sensitivity in Appcmd.exe tool, 210
Catch-all mapping, 396
Category grouping, in features view, 167–168
Centralized binary logging format, 541
Centralized configuration, 111
Certificate Authorities (CA), 234, 511
Certificate mapping authentication

client, 501–503
IIS client, 503–507
module for, 412
overview of, 490

Certificate Revocation List (CRL), 514
Certificates

for Secure Sockets Layer (SSL), 514–515
IIS Manager feature for, 166, 175, 177
in HTTP.sys, 512
trust model based on, 445
Web Management Service (WMSvc) and,

232, 234
CGI (Common Gateway Interface)

application frameworks and, 362–364
as handler mapping type, 395, 402
ASP.NET and, 7
attack surface area reduction and, 458–459
FastCGI and, 5, 459
IIS Manager feature for, 165, 176–177
ISAPI restriction list of, 409–410

Bandwidth throttling

Z12624412.fm Page 758 Tuesday, February 12, 2008 7:03 PM

759

legacy programs of, 326
module for, 64
PHP applications and, 345

Challenge-based authentication, 493,
495, 497

Child elements of configuration sections,
78, 88–89

Classic pipeline mode, 20–21
ASP.NET applications in, 328–330, 332
overview of, 31, 43–46
preconditions of, 386

Classic.NET AppPool application pool, 300
Clear verb, 206
Clear-text files, 29, 511
Client certificate mapping authentication,

490, 501–503
Client certificates for Secure Sockets Layer

(SSL), 514–515
Client-side UI module, 441–442
cmdlets, in PowerShell, 226
Code Access Security (CAS), 375, 416, 439,

471, 525
ColdFusion application framework,

4, 327
Collections, configuration section, 78

adding to, 88–89
attributes and, 88
clearing, 90
matching, 211–212
removing items from, 89–90

Command line management tools. See
Appcmd.exe command line tool;
Component Object Model (COM)
API; Microsoft.Web.Administration;
PowerShell; Windows Management
Instrumentation (WMI)

Comma-separated (CSV) files, 557, 598
Commit parameter, in Appcmd.exe

tool, 208
Common Language Run time (CLR),

265, 330
Common Name (CN) entries, 512
Compatibility. See also Backward

compatibility
application, 15
for ASP.NET applications, 327–328

Metabase Compatibility Layer for, 15, 40,
226, 333, 440

of IIS 6.0 metabase, 82–83
Compilation features, in IIS Manager,

163, 175
Component Object Model (COM) API, 13

administration and, 422, 438–439
configuration and, 85, 188–189, 227

Compression
dynamic, 58
folder, 558–559
for performance, 642–645
for scalability, 649
IIS Manager feature for, 164, 176

ConfigAccess credentials, 110
Configuration, 67–114. See also Least

privilege configuration; Remote
administration

Appcmd.exe editing of, 206–213
backing up in, 213
delegation of, 212–213
List Config command in, 207–208
Set Config command in, 208–212
verbs supported for, 206–207

backing up, 94–95
centralized logging, 538, 540–541
clear-text XML-based files for, 29
Component Object Model (COM) API

and, 227
content view and, 174
delegation of, 97–107

direct, 102–103
feature, 97–99
for remote administration, 104
granular locking of, 104–107
settings for, 99–102

disabling HTTP logging of, 539
distributed file-based, 4
editing, 85–94

errors and, 90–94
placement of, 86–87
settings of, 87–90

exporting and importing, 96–97
features view of settings of,

177–180
fine-grain locking of, 460, 464

Configuration #

Z12624412.fm Page 759 Tuesday, February 12, 2008 7:03 PM

760

for performance, 632–646
at server level, 633–634
compression in, 642–645
HTTP.sys cache in, 636–640
IIS, 634
load optimization in, 634–635
NLB (network load balancing) in, 645
of application pools, 645
of applications, 645–646
user-mode caching in, 640–642

hierarchy of, 69–74
history of, 95–96
IIS 6.0 metabase and, 81–83
IIS settings for, 8–10
logging, 547–556
Microsoft.Web. Administration and,

224–225
modules and, 59–60
.NET system of, 83–85
of application pools, 309–315
of applications, 285
of Secure Sockets Layer (SSL),

511–512
of virtual directories, 278–282
of Web Management Service (WMSvc),

232–240
of Web site bindings, 270–273
of Windows authentication, 498–501
overview of, 67–69
sandboxed, 4
security for, 515–530

by restricting access, 516–520
delegation control for, 525–530
sensitive, 520–525

server sharing of, 107–113, 166, 177
storage of, 30, 38–40
syntax of, 74–80

location tags in, 80
overview of, 74–75
section declarations in, 75–76
section elements in, 77–79
section groups in, 76–77
section schema in, 79
Web.config file size and, 75

Windows Process Activation Service
(WAS) and, 37

Configuration extensions, 421–436
administration stack and, 421–423
overview of, 423–425
schema and, 425–427
section declaration and, 428–430
section installation and, 431–432
section securing and, 432–436

Configuration names, 172
Configuration view, of Appcmd.exe output,

197–198
ConfigurationValidationModule, 65, 412
Configure Trace command, 218
Connect to Site Wizard, 161–162
Connection authentication, 238–240
Connection limits, 273–274
Connection pane, of IIS Manager, 11

content view and, 173
in application creation, 17–18
in application pool assignment, 21–22
in application pool creation, 20–21
in virtual directory creation, 19
in Web site creation, 16
overview of, 157, 159–161

Connection time-out, 274
Connections, 25, 164, 176, 180
Constrained Delegation and Protocol

Transition, 470, 496, 510
Content

in IIS 7.0 installation, 141–142
Content view, in IIS Manager workspace

description of, 157–158
details of, 173–174
overview of, 11–12

Context switching, 34
Cookie-based session state, 513
Core server, 5–8
CPU (central processing unit), performance

of, 612–617
Crashes, 602, 617
Credentials. See also Authentication;

Certificates
ConfigAccess, 110
fixed, for virtual directories, 342, 448, 467,

469–470, 473, 508–509
for remote content, 286–288
for user management, 242–243

Configuration extensions

Z12624412.fm Page 760 Tuesday, February 12, 2008 7:03 PM

761

for virtual directory access, 278
IIS Manager, 12, 238–239
Windows, 240–242

Cryptographic exchange, in authentication,
497

Currentconfig.xml file, 135
Custom Site Delegation mode,

245, 248

D
Database, SQL Server user, 63
Declarations, configuration section, 75–76,

102–103, 428–430
Declarative authorization rules, 287
Default authentication,, 413
Default Delegation mode, 245
Default Document feature

configuration section for, 426, 428
in IIS Manager, 164, 169, 176
module for, 183
performance and, 607

Delegation
feature, 97–99, 165, 180, 245–248,

252, 444
IIS Manager for, 12
of authentication, 509–511
of configuration, 97–107

controlling, 433–435
direct, 102–103
feature, 97–99
for remote administration, 104
granular locking of, 104–107
hierarchy levels of, 10
managing, 212–213
placement and, 87
security for, 525–530
settings for, 99–102
strategy for, 209
Web.config files and, 73

of failed request tracing settings, 566
to reduce cost of ownership, 4
Web.config files and, 431

Delete verb, 191, 205
Denial-of-service (DOS) attacks, 75
Dependencies, 51, 140

Design of applications, scalability and, 649
Details view of IIS Manager workspace, 169
Deterministic state machine, 372
Device driver, kernel-mode, 33, 535
Diagnostics, 13–14, 24, 30. See also Failed

Request Tracing (FRT);
Troubleshooting

Dialog pages, in features view, 170, 172
Digest authentication

for security, 449, 495–497
IIS Manager feature for, 176
module for, 413
overview of, 490

Direct configuration delegation, 102–103
Directory browsing, IIS Manager and, 164,

175–176
Directory Services Mapper (DS Mapper),

501–502
Distributed Component Object Model

(DCOM), 12
Distributed File System (DFS), 285, 541
Distributed file-based configuration

system, 4
Distributed Web.config files, 430, 517
Documentation, 87–88, 225
Documents. See Default Document feature
Domain controllers, 496, 498
Domain Name System (DNS), 476, 583
Domain restrictions, 474–477
Dynamic application technologies, 456
Dynamic compression, 58, 644, 649
Dynamic-link libraries (DLLs). See also

Modules
in server core Web edition IIS

installation, 130
in worker process, 606–607
module implementation as, 46
native modules as, 59, 372

E
ECN (Explicit Congestion Notification), 624
Editing configuration, 85–94

errors and, 90–94
placement of, 86–87
settings of, 87–90

Editing configuration #

Z12624412.fm Page 761 Tuesday, February 12, 2008 7:03 PM

762

Elements, configuration section, 77–79
enabled attribute, 105
Encryption

backing up and, 95
built-in support for, 515
configuration, 435–436, 521–522
limitations of, 524
Microsoft Advanced Encryption Standard

(AES) for, 282
of SSL in HTTP.sys, 611–612
providers of, 522–524
section-level, 84
server keys for, 97
shared server configuration and, 110–111

End Request stage, in request processing,
48, 374

Error pages feature, 176, 180
Errors. See also Failed request tracing (FRT);

Troubleshooting
access denied, 467
client certificate required, 514
configuration locking and, 464
CustomError module for, 413
features view pages for, 170
HTTP 500, 382
IIS Manager feature for, 164
in authentication, 603
in configuration editing, 90–94
log, 558
Not Found 404.3, 396
service unavailable 503, 600
tracing, 566–571

ESTATS network statistics, 624
Event Tracing for Windows (ETW),

315, 556
Event Viewer, 591–592, 648
EventLog error, 92–93
Events. See also Failed Request Tracing

(FRT); Logging
for installation troubleshooting, 144
global Web server, 379
IIS, 558
in request processing, 46–48, 372–374
modules and, 58
monitoring recycling of, 312–315
recycling options for, 557

Execute Handler stage, in request processing,
48, 374, 393

Execution identity, in PHP applications,
350–351

Exporting and importing configuration,
96–97, 109

Extensibility. See also Administration
extensions; Configuration extensions;
IIS Manager; Web server modules

for logging, 546
in installing IIS 7.0, 123–124
locking down, 371, 418–420
modules and, 59, 63–64
.NET Extensibility component and, 50
of IIS architecture, 7–8, 29
of IIS Manager, 181
of servers, 324
of user interface, 58
overview of, 4
tracing, 578

F
Failed Request Tracing (FRT), 564–576

Appcmd.exe command line tool for,
217–222

authentication errors and, 603
bottlenecks identified by, 646
enabling and configuring, 565–572
for performance monitoring, 648
for troubleshooting, 320, 592
for Web sites, 275–276
IIS Manager feature for, 165, 176
module for, 64
overview of, 4, 14
reading logs of, 572–576

Failover, clustering for, 651
Failure, 34, 36
FastCGI

application frameworks and, 324, 327,
358–362

as handler mapping type, 395, 402
attack surface area reduction and,

459–460
for installing IIS 7.0, 122–123
module for, 64
overview of, 5

Elements, configuration section

Z12624412.fm Page 762 Tuesday, February 12, 2008 7:03 PM

763

PHP applications and
availability of, 352
handler mapping for, 348–350
history of, 346–347
settings for, 348

Fastest reply option, for load balancing, 652
Fault isolation, 42
Feature configuration, 97–99, 104
Feature delegation, 97–99, 165, 180,

245–248, 252, 444
Features view, in IIS Manager workspace,

11, 162–173
configuration settings and, 177–180
content view versus, 158
details view of, 169
grouping of, 167–168
home page in, 162–166
module mapping to, 175–177
names for, 172–173
overview of, 157
page layouts for, 170–172
scope of, 180–181

File Transfer Protocol. See FTP Publishing
Service

File Version property, 136
fileExtensions collection, 480
Filters, IIS Manager feature for, 177
Fine-grained configuration locking,

460, 529
Firewalls

IIS Manager support of, 12, 154
logs for, 597
troubleshooting, 252, 600–601
Web Management Service (WMSvc) and,

232, 235
Fixed credentials

for remote content, 286–288
for virtual directories, 342, 448, 467,

469–470, 473, 508–509
Flash Server applications, 323
Folder compression, 558–559
Folders, in IIS 7.0 installation, 141–142
Forms authentication

ASP.NET, 324
for Web sites, 339
IIS Manager feature for, 176

module for, 65, 413
overview of, 6
root Web.config files for, 178
security and, 490
strong name for, 383
unsecure connections and, 513

Forward button, for navigation, 159
Fragmentation of disks, 622
Framework Machine.config files, 430
Framework root Web.config files, 430
Friendly names, 172
FTP Publishing Service

for logging, 539
for remote logging, 545
IIS 6.0 MMC snap-in and, 11
overview of, 5, 25
security accounts and, 306

Fully Qualified Domain Name (FQDN),
500

G
Get cmdlet, in PowerShell, 226
Global Assembly Cache (GAC), 182,

382–383, 398, 401, 442
Global Web server events, 379
Globalization feature, in IIS Manager,

163, 175
GlobalModules section, of

ApplicationHost.config, 60
Granular locking of configuration delegation,

104–107
Groups

configuration section, 76–77, 87
for features view, 167–168
in Windows Server 2008, 143

GUI management console, 30
Gzip tool, 559

H
Handler mappings

additions to, 392–394
for application frameworks, 326
for application surface area reduction,

461–462
for ASP.NET handler-based deployment,

357

Handler mappings #

Z12624412.fm Page 763 Tuesday, February 12, 2008 7:03 PM

764

for CGI programs, 458
for FastCGI programs, 348–350, 460
for multiple ASP.NET versions,

330, 334
for PHP applications, 348–350, 418
IIS Manager and, 165, 176, 400–403
IIS migration of, 382
installing, 381
ISAPI-based, 386, 456
management of, 408–410
module preconditions and, 385, 393
module-based, 359
permissions not required for, 464
scriptmap-based, 362
subscription-based, 358
types of, 394–396
wildcard, 464

Handlers section, of ApplicationHost
.config, 60

Hanging servers, 603
Hard disks, performance of, 621–623
Hardware upgrades, 652
headerLimits collection, 479
Health. See Diagnostics; Troubleshooting
Health model, for IIS 7.0, 591
Help system, 159, 194–196
Home button, for navigation, 159
Home page, in IIS Manager, 162–166
Host Header configuration, 260
HTTP 500 error, 382
HTTP features

in Windows Server 2008, 24
log checking in, 596–598
troubleshooting, 594–596, 598–601

HTTP proxies, 498
HTTP.sys

certificates and, 512
in IIS architecture, 30, 33–35
in request processing, 33
logging and, 535, 556–557, 559
performance and, 636–640
Secure Sockets Layer (SSL) and,

611–612
Windows Process Activation Service (WAS)

and, 37–38
HTTPCache Module, 413

HTTPLogging Module, 413, 622–623
HTTPRedirection Module, 413
HTTPS connection

binding protocols in, 270–271, 512
digest authentication and, 495
for Web site access, 16
IIS Manager support of, 12
remote administration and, 154, 230

I
IA64 (Itanium-based 64-bit) system, 631
Icons view, in features view, 169
Identifier, in Appcmd.exe tool, 191–192,

201, 205
Identities

anonymous authentication and,
448, 492

application pool, 305–309, 378
delegation of authenticated, 510
PHP application, 350–351
process, 4, 508

Idle time, 274
IETF draft RFC 4898, 624
IHTTPModule API, 7
IIS (Internet Information Services),

introduction to, 3–27. See also
Installing IIS 7.0

administration tools of, 10–13
application compatibility in, 15
basic administration tasks in, 15–22

application creation in, 17–18
application pool creation in, 20–22
virtual directory creation in, 19
Web site creation in, 15–17

configuration of, 8–10
core server in, 5–8
diagnostics of, 13–14
in Windows Server 2008 and Windows

Vista, 22–25
application development features in, 24
diagnostic features in, 24
FTP Publishing Service features in, 25
HTTP features in, 24
management tools in, 25
performance features in, 25
security features in, 24–25

Handlers section, of ApplicationHost.config

Z12624412.fm Page 764 Tuesday, February 12, 2008 7:03 PM

765

simultaneous connection limits in, 25
Windows Process Activation Service

features in, 25
overview of, 3–5
Windows Process Activation Service

of, 14
IIS 6.0 metabase, 81–83
IIS 6.0 MMC snap-in, 11
IIS client certificate mapping authentication,

413, 449, 490, 503–507
IIS IUSR accounts, 306, 469
IIS IUSRS group, 448
IIS Manager, 153–186

Actions pane of, 174–175
administration API for, 182–184
Administration.config files for, 73
connections pane of, 159–161
content view of, 158, 173–174
credentials of

for connection authentication,
238–239

for user management, 242–243
delegation settings in, 98–100
extensibility of, 440–446

actions in, 441–443
installing extensions for, 443
overview of, 181
securing extensions for, 443–446

features view of, 162–173
configuration settings and, 177–180
content view versus, 158
details view of, 169
grouping of, 167–168
home page in, 162–166
module mapping to, 175–177
names for, 172–173
page layouts for, 170–172
scope of, 180–181

for editing configuration, 85–86
for handler mapping management,

400–403
for logging, 536, 547–550
for module management, 396–399
for module ordering, 392
for Web server modules, 369
in troubleshooting, 589–591

navigation toolbar of, 159
overview of, 11–13, 30, 153–158
remote administration and,

184–185, 230
remote logging and, 542–544
shared server configuration and, 108
starting, 155–156

IISADMIN service, 40
Image attribute, 378
ImageX capture program, 138
Impersonation

anonymous authentication and, 417
in ASP.NET applications, 450
in ASP.NET handler-based deployment,

357
of PHP in FastCGI environment, 351
universal naming convention (UNC)

shares and, 341
Importing and exporting configuration,

96–97, 109
Independent software vendors (ISVs),

368, 624
Index Server service, 623
Inetinfo.exe process, 40
Inetmgr.exe tool, 154
Inetsrv directory, 190
Inspect Trace command, 221–222
Installing IIS 7.0, 117–149

ASP.NET scenario for, 120–121
auto-installs for, 139
classic ASP scenario for, 121–122
FastCGI scenario for, 122–123
IIS full install scenario for, 124–128

components of, 125–126
ServerManagerCMD update names

for, 127–128
IIS managed modules and .NET

extensibility scenario for, 123–124
overview of, 117–119
Package Manager for, 132–133
post-, 140–143
removing IIS and, 145–148
Server Core Web Edition scenario for,

128–131
Server Manager for, 131–132
ServerManagerCMD for, 133–135

Installing IIS 7.0 #

Z12624412.fm Page 765 Tuesday, February 12, 2008 7:03 PM

766

static content Web server scenario for,
119–120

Sysprep for, 138
troubleshooting, 143–145
unattended answer files for, 136–138
Window Server 2008 for, 139–140

Integrated pipeline mode, 20–21
advantages of, 339–340
ASP.NET applications in, 328–330, 332
for scalability, 649
logging and, 535
migrating to, 336–338, 382
.NET, 31, 46–51
preconditions of, 386
workings of, 376–377

Internet Explorer, 496, 594, 606
Internet Explorer enhanced security

configuration (ESC), 572
Internet Information Services. See IIS

(Internet Information Services)
Internet Protocol Security (IPsec)

policies, 600
Intranet environments, 498
IP (Internet protocol), 474–477
IPv4, 177, 237
IPv6, 262
ISAPI (Internet Server Application

Programming Interface)
application frameworks deployment and,

323, 358
ASP.NET content types and, 44
attack surface area reduction and, 454–458
bitness32 precondition and, 388
CGI restriction list of, 409–410
extensions and filters of, 15
filter preconditions for, 632
handler mappings based on, 386, 395, 402
IIS 7.0 support of, 7, 165, 177
in IIS 7.0 installation, 140
IsapiFilter module and, 413
legacy extensions of, 326–327, 342
native server APIs versus, 59
PHP applications and, 345

Isolation
application framework deployment

and, 356

configuration, 448, 518–520
for application pools, 20–21,

41–42, 73
in ASP.NET handler-based deployment,

357
of bottlenecks, 646
process memory spaces for, 265
sandboxing for, 307
shared hosting architecture and, 4
Worker Process Isolation Mode for, 328

IUSR accounts, 96–97, 143, 306, 341,
345, 448

IWAM users, 96–97

J
Java Servlets, 323

K
Kerberos authentication, 448, 490,

497–498, 500, 510, 541
Kernel mode

caching in, 34, 621, 635–636,
639–641, 649

HTTP.sys as device driver in, 33, 535
memory in, 632
request queuing in, 34
Secure Sockets Layer (SSL) in, 611

Key Distribution Center (KDC), 498

L
Latency, 617, 620, 623–624
LDAP (Lightweight Directory Application

Protocol), 646
Least privilege configuration, 465–474

in application pool identity, 466–468
in isolating applications, 472–474
in NTFS permissions, 468–470
in trust for ASP.NET applications,

470–472
Least-active option, for load

balancing, 652
Least-privileged user accounts (LUA), 131
Legacy applications, 40, 82–83, 117.

See also Compatibility
lisschema.exe tool, 432

Integrated pipeline mode

Z12624412.fm Page 766 Tuesday, February 12, 2008 7:03 PM

767

List verb
for config object, 206–208
for enabled modules
for executing requests, 318–319
for failed request tracing logs, 220–221
for ordered modules, 398
for Web applications, 297–299
for worker processes, 215, 317
in Appcmd.exe syntax, 191–192
objects found by, 201–203
requests found by, 215–217
Web sites found by, 214

List view, in features view, 169–171, 174
Listener adapter interface, 37, 54
Load balancing, 107

as module precondition, 385
bitness32 load precondition and,

387–388
custom modules for, 63
for performance, 634–635
network (NLB), 645, 651–652
sticky state for, 651

Local Security Policy console, 363
Local user administrator security, 132
Localhost configuration, 179
Location tags

in configuration, 75, 80, 87
in delegation settings, 99
unlocking sections and, 103

lock attribute, 105
Lock verb, 206, 212
Lock violations, 91
lockAllAttributesExcept form, 106
lockAllElementsExcept form, 106
Locking configuration, 178–179, 460,

464, 529
lockItem directive, 106
Log Parser tool, 255–257, 559–560, 598
Log Request stage, in request processing,

48, 374
Logging, 535–561

application, 557–558
centralized configuration for, 538,

540–541
configuring IIS, 547–556
failed request tracing, 220–222, 573–574

file location for, 539
folder compression for, 558–559
HPPS.sys, 556–557
HTTP configuration disabling and, 539
HTTPLogging Module for, 413
IIS 7.0, 144
IIS Manager and, 165, 177, 536
in Web Management Service (WMSvc),

254–257
installation troubleshooting, 144
Log Parser for analyzing, 559–560
management service for, 540
operating system separate from,

622–623
Package Monitor, 145
remote, 541–547
ServerManagerCMD, 144–145
SiteDefaults configuration for, 538
status codes for, 540
UTF-8 encoding for, 539–540
Web sites, 275–276
XML-based schema for, 536–537

M
Machine key, IIS Manager feature for,

165, 177
Machine.config files, 8, 38, 70–71, 430
Maintenance overhead reduction, 61
Managed modules, 59, 123–124. See also

ASP.NET; Web server modules
ManagedEngine Module, 50, 59, 64–65,

377, 381, 385
ManagedHandler precondition,

390–391, 400
managedPipelineMode attribute, 386
Management Service feature, 177,

184–185
Map Handler stage, in request processing,

47, 374
Mapping. See also Handler mappings

ABO Mapper for, 40
modules to features view, 175–177
virtual directories as, 264

Mbschema.xml file, 140
Membership service, 63
Membership-based authentication, 5

Membership-based authentication #

Z12624412.fm Page 767 Tuesday, February 12, 2008 7:03 PM

768

Memory
dump of, 602
footprint of, 4, 7, 301, 608
overhead of, 364
performance and, 617–620
random access (RAM), 606, 614
virtual versus kernel, 632
Windows Server 2008 limits for, 632

Merge append mode, 211
Message Queuing, 118, 260
Metabase Compatibility Layer, 15, 40, 226,

333, 440
Metabase Explorer, 67
Metabase, IIS 6.0, 81–83
Metabase.xml file, 140
Microsoft Advanced Encryption Standard

(AES), 282
Microsoft Cluster, 285, 651
Microsoft Office 2007 file types, 354
Microsoft Silverlight file types, 354
Microsoft Visual Studio, 301, 342, 383
Microsoft.Web.Administration, 11, 188

administration stack and, 422
application pool creation with, 223–224
benefits and limitations of, 189
configuration section access by, 435
configuration setting with, 224–225
for editing configuration, 85–86
for Web site management, 266
IIS Manager and, 182
lisschema.exe tool and, 432
remote administration and, 229
site creation with, 222–223

Migrate verb, 206
MIME Type configuration

application surface area reduction and,
464–465

compression and, 644
for application file types, 354–356
IIS Manager feature for, 166, 177
Not Found 404.3 errors and, 396
static file extensions in, 325

Modularity, of core server, 6–7
Modules, 57–66. See also Dynamic-link

libraries (DLLs); Web server modules
Appcmd.exe command line tool and, 214

application surface area reduction and,
460–461

authorization, 483
built-in, 64–65
compression, 642–645
concepts of, 57–58
configuration and, 59–60
default document, 183
DLL implementation of, 46
extensibility benefits of, 63–64
failed request tracing and, 574
features view mapping to, 175–177
for application framework

deployment, 356
for IIS Manager extensions,

441–442
for installing IIS 7.0, 123–124
IIS Manager feature for, 166, 177
IIS Manager management of, 396–399
in ApplicationHost.config, 60
in ASP.NET integration, 50–51
in integrated pipeline mode, 339
ordering of, 391–392
overview of, 29, 51–53
performance benefits of, 63
request processing events and, 46,

48–49
security and, 61–63, 412–414
server pipeline and, 49
SQL logging, 546–547
types of, 58–59

MSDN documentation, 225

N
Named Pipes, 260
Names, for features view, 172–173
National Center for Supercomputing

Applications (NCSA), 535
Native modules, 59. See also Web server

modules
Navigation toolbar, IIS Manager, 157, 159
Nested section groups, 76
.NET Framework, 4

administration stack and, 422
application pool assignment and, 302, 304
core Web server extensions and, 7

Memory

Z12624412.fm Page 768 Tuesday, February 12, 2008 7:03 PM

769

extensibility component of, 50,
332–333, 381

for configuration, 8, 38, 83–85
for Web server modules, 372
globalization feature for, 163, 175
in installing IIS 7.0, 123–124
managed modules in, 59, 375–377
native modules in, 375–377
passport authentication of, 491
profile feature for, 163, 175
roles feature for, 164, 175
run-time settings in, 265
trust levels feature for, 164, 175
users feature for, 164, 175

NetBIOS, 500
NetMsmqActivator, 54
NetPipeActivator, 54
Netsh scripting utility, 611
Netstart tool, 582, 584
NetTcpActivator, 54
Network Attached Storage (NAS), 285
Network Monitor, 593–594
Network performance, 623–631

application-level counters for,
626–631

constraints on, 624–625
countermeasures for, 625–626
load balancing (NLB) for, 645,

651–652
monitoring, 624
pressure on, 623–624

NETWORK SERVICE, 543
New cmdlet, in PowerShell, 226
Next Generation TCP-IP stack, 623–625
Non-HTTP request processing, 38, 53–55
Nonphysical URLs, 80
Not delegated delegation setting, 99
Not Found 404.3 errors, 396
NT LAN Manager (NTLM) authentication,

490, 497–499
NT Service WMSvc, 232
NTFS ACL-based authorization, 475,

483–485
NTFS permissions, 95, 288–289, 468–470,

524, 543
NULL session for remote logging, 542–543

O
Object level, in features scope, 180
Objects in Appcmd.exe, 192

Add, 203–204
Delete, 205
help information on, 194
List, 202–203
Request, 320
Set, 204–205
site, 192
supported, 193

OS TrustedInstaller subsystem, 380
Output Cache Module, 413
Output caching, 635, 637, 639
Overhead measurement, 606–610
overrideMode attribute, 80, 99, 102–103
overrideModeDefault attribute, 526

P
Package Manager

for Installing IIS 7.0, 117–118, 121,
132–133

logs of, 145
to remove IIS, 147–148

Packet loss, 624
Packet sniffing, 511
Page layouts, for features view, 170–172
Pages and controls, IIS Manager feature for,

166, 177
Paging file, 620, 622
Parameters

for anonymous authentication, 493
for authentication configuration, 499
for basic authentication, 495
for certificate mappings, 505, 507
for CGI configuration, 363
for digest authentication, 497
for extension deletion, 480
for failed request tracing configuration, 572
for Fast CGI application definitions, 360
for request filtering limits, 479
for Secure Sockets Layer settings, 514
for URL authorization addition, 489
in Appcmd.exe tool

as output view, 197
commit, 208

Parameters #

Z12624412.fm Page 769 Tuesday, February 12, 2008 7:03 PM

770

for Configure Trace command, 218
for help output, 196
for Inspect Trace command, 221
for List requests command, 216–217
for List Trace command, 220
for module addition, 406
for module installation, 404
for Set command, 204
general, 198–199
in syntax, 192
quotation marks for, 201

MIME Type addition, 355
Parent collection items, inheritance of, 90
Parent configuration files, 78, 179
Parent paths, 344, 601
Pass-through authentication, 278, 286,

508–509
Passwords, in shared server

configuration, 111
Patching, 4, 61–62, 452–453
path attribute, 103, 394, 434
Performance, 605–653

bit mode (64 versus 32) effects on,
631–632

configuration for, 632–646
application, 645–646
application pools in, 645
compression in, 642–645
HTTP.sys cache in, 636–640
IIS, 634
load optimization in, 634–635
NLB (network load balancing) in, 645
server level, 633–634
user-mode caching in, 640–642

constrained resources impact on,
612–617

degradation of, 216
failed request tracing and, 574
hard disks and, 621–623
IIS features for, 25
memory and, 617–620
modules and, 63
monitoring of, 647–648
network and, 623–631

application-level counters for, 626–631
constraints and, 624–625

countermeasures for, 625–626
monitoring, 624
pressure on, 623–624

Reliability and Performance Monitor for,
593, 603, 612, 616, 621, 633,
647–648, 652

scalability for, 649–652
security versus, 606–612

authentication in, 610–611
overhead measurement for, 606–610
Secure Sockets Layer (SSL) in,

611–612
tracing and, 577–578
W3SVC monitoring of, 36–37

PERL application framework,
4, 323–324, 327

Permissions. See also Authentication; Security
application surface area reduction and,

462–464
backing up configuration and, 95
for CGI frameworks deployment, 362
for configuration file access, 516–518
for remote content access, 288–289
for shared configurations, 520
IIS Manager feature for, 165, 176
in user management, 241–244
NTFS, 468–470, 524, 543
requiredPermission attribute

for, 525
Web Management Service (WMSvc) and,

232, 240–245
PHP applications, 345–352

availability of, 352
deploying, 346–350
development of, 4
execution identity of, 350–351
FastCGI protocol in, 324
for Web applications, 323–324
handler mappings for, 418
history of, 345–346
privileges and, 417
remote hosting of, 352
Web.config file example for, 78

PHP Extension Community Library
(PECL), 347

Ping tool, 583

Parent collection items, inheritance of

Z12624412.fm Page 770 Tuesday, February 12, 2008 7:03 PM

771

Pipeline. See Classic pipeline mode;
Integrated pipeline mode; Request
processing pipeline

Pluggable architecture, 58
PortCheck tool, 583–584
Position qualifier, 211–212
Post events, 374
PowerShell, 11

advanced Appcmd.exe and, 555–556
for failed request tracing configuration, 571
for IIS management, 188–189, 225–226
for user and permission management,

244–245
Pre-boot Execution Environment

(PXE), 139
Preconditions

application pool, 632
application surface area reduction and, 462
applicationPoolName, 387
bitness32 load, 387–389
for Managed Engine module, 385
handler mappings as module, 385, 393
managedHandler, 387, 390–391
of classic pipeline mode, 386
of integrated pipeline mode, 386
of versions, 386
of Web server modules, 385–388

Pre-execute Handler stage, in request
processing, 48, 374

Prepend order, in collections, 89
Privileges. See also Least privilege

configuration
for administrative extensions, 440
IIS Manager extensions and, 443
in ASP.NET modules, 375–376
least-privileged user accounts (LUA)

and, 131
of code reduction, 414–418

Process identity (PID), 4, 215, 315, 508
Process Manager, 37–38
Process Monitor, 586–589
Process recycling logging, 557
Processor resources, performance and,

612–617
Profile feature, in IIS Manager, 163, 175
Progrid name, 439

Property pages, in features view, 170–171
Protocol listener, HTTP.sys as, 33–34
ProtocolSupportModule, 64
Providers, IIS Manager feature for, 166, 177
Provisioning, 240
Public extensibility APIs, 4
Publishing. See FTP Publishing Service
Python application framework, 323, 327

Q
QoS (Quality of Service), 624
Quotation marks, in Appcmd.exe tool, 201

R
Random access memory (RAM), 606, 614
Range operators of Appcmd.exe, 200–202
Rapid Fail Protection, 36, 309, 600, 613
Read Only delegation setting, 99–102
Read-Write delegation setting, 99–102
Recycling

event logs, 557
events, 312–315
limits on, 613
unexpected, 602

Redirection
configuration files for, 73, 140, 430
HTTPRedirection Module for, 413
IIS Manager feature for, 165, 176

Redundancy, 652
Redundant Array of Inexpensive Disks

(RAID), 285, 621–622
Refresh Page button, for navigation, 159
Registry, 142, 236
Release State stage, in request processing,

|48, 374
Reliability

of application pools, 301
Reliability and Performance Monitor for,

593, 603, 612, 616, 621, 633,
647–648, 652

shared hosting architecture and, 4
Remote administration, 229–257

configuration delegation for, 98, 104
IIS 6.0 MMC snap-in for, 11
IIS Manager and, 12, 154, 184–185,

230, 443

Remote administration #

Z12624412.fm Page 771 Tuesday, February 12, 2008 7:03 PM

772

of ASP.NET applications, 341–342
of PHP applications, 352
shared server configuration and, 108
Web Management Service (WMSvc) and,

230–252
configuration of, 232–240
feature delegation in, 245–248
installation of, 231–232
logging, 254–257
troubleshooting, 252–254
users and permissions in, 240–245
using, 249–252

Remote content
access to, 288–289
configuring applications for, 285
fixed credentials for, 287–288
overview of, 284–285
security for, 285–287

Remote Installation Services (RIS), 139
Remote logging, 541–547
Remove cmdlet, in PowerShell, 226
Remove Roles Wizard, 147
Request filtering, 449, 465, 474,

477–482
Request object, 320
Request processing pipeline, 6, 42–55.

See also Worker processes and
requests

actions of, 376–377
Appcmd.exe command line tool for,

215–217
ASP.NET requests and, 20–21
classic mode of, 43–46
description of, 33
failures ahead of, 592
modules for, 51–53, 58, 390–391
.NET integrated mode of, 46–51
non-HTTP, 53–55
overview of, 40–43
task ordering by, 51–53
Web server modules and, 372–375

Request queuing, kernel-mode, 34
RequestFiltering Module, 65, 414
RequestMonitorModule, 64
requiredPermission attribute, 525
Reset verb, 206

Resolve Cache stage, in request processing,
47, 374

Resources, constrained, 612–617
Response cache, 34
Response headers, IIS Manager feature for,

165, 176
Restoring configuration, 94–95, 213. See also

Backing up
Right-click properties, 158
Role Service component, 50
RoleManager Module, 414
Roles feature, in IIS Manager, 164, 175
Root applications, 17
Root element of configuration, 87
Root virtual directories, 19, 263–264, 267
Root Web.config files, 38, 70–71, 178–179
Round robin option, for load

balancing, 652
Routing table data, 34
Ruby on Rails applications framework,

4, 324, 327
Run-time container, 264–266
Run-time extensibility. See Web server

modules
Run-time information, 4
Run-time State and Control API (RSCA)

accessing, 590–591
administration extensions and, 436,

438–439
overview of, 13–14, 318
RequestMonitorModule for, 64
troubleshooting and, 589

S
Sandbox, security, 4, 41, 265, 307, 439
Sc query tool, 582
Scalability, for performance, 649–652
Schema

administration extensions and, 439
changes in, 431
collection element flexibility of, 88
configuration section, 74, 79, 425–427
encryption provider selection and, 521
for logging, 536–537, 622–623
lisschema.exe tool for, 432
state attribute from, 439

Remote content

Z12624412.fm Page 772 Tuesday, February 12, 2008 7:03 PM

773

Scripts. See also PowerShell
administration stack and, 422
application frameworks and, 326
application pool lists from, 437–438
errors in, 344
for editing configuration, 85
handler mappings based on, 362
IIS 6.0 legacy configuration, 266
Netsh scripting utility for, 611
permissions for, 362
PHP, 351
Windows Management Instrumentation

(WMI) for, 11, 15
Search verb, 206, 220–222
Searching virtual directories, 282–284
Sections, configuration, 75–79

attributes for, 88
components of, 423–424
declarations of, 75–76, 102–103,

428–430
default delegation of, 527–529
elements in, 77–79
groups in, 76–77
installation of, 431–432
schema of, 79, 425–427
securing, 432–436

Secure Sockets Layer (SSL), 511–515
client certificate mapping authentication

and, 502–503
client certificates for, 514–515
configuring, 511–512
FTP over, 5
HTTPS binding and, 271
IIS client certificate mapping

authentication and, 503–505
IIS Manager feature for, 166, 177
multiple Web sites and, 271
performance and, 606, 611–612
requiring, 512–514
Web Management Service (WMSvc)

and, 235
Security, 447–531. See also Encryption

access control for, 474–482
IP and domain restrictions for,

475–477
request filtering for, 477–482

application surface area reduction for,
460–465

minimum enabled modules for, 460–461
minimum handler mappings for,

461–462
minimum MIME Types for, 464–465
Web site permissions for, 462–464

attack surface area reduction for, 450–460
minimum CGI programs for, 458–459
minimum FastCGI programs for,

459–460
minimum ISAPI extensions for, 455–458
minimum ISAPI filters for, 454–455
overview of, 450–451
Web server minimal installation for,

451–454
authentication for, 490–511

anonymous, 491–493
basic, 493–495
client certificate mapping, 501–503
delegation of, 509–511
digest, 495–497
IIS client certificate mapping, 503–507
overview of, 490–491
UNC, 508–509
Windows, 497–501

authorization for, 483–489
NTFS ACL-based, 483–485
URL, 485–489

backing up and, 95
best practices for, 267, 293
Code Access Security (CAS) for, 375, 439
for application pools, 301, 306–307
for configuration, 515–530

by restricting access, 516–520
delegation control for, 525–530
sections of, 432–436
sensitive, 520–525

for remote content, 285–287
for Web server modules

locking down extensibility for, 418–420
overview of, 410–411
privilege of code reduction for, 414–418
surface area reduction for, 411–414

Internet Protocol Security (IPsec) policies
for, 600

Security #

Z12624412.fm Page 773 Tuesday, February 12, 2008 7:03 PM

774

least privilege configuration for, 465–474
in application pool identity, 466–468
in isolating applications, 472–474
in NTFS permissions, 468–470
in trust for ASP.NET applications,

470–472
local user administrator, 132
locking down extensibility for, 371
modules and, 58, 61–63
of administration extensions, 439–440
of IIS Manager extensions, 443–446
overview of, 447–450
performance versus, 606–612

authentication in, 610–611
overhead measurement for, 606–610

Secure Sockets Layer (SSL) in, 611–612
sandbox for, 4, 30, 265, 307
Secure Sockets Layer (SSL) for,

511–515
client certificates for, 514–515
configuring, 511–512
requiring, 512–514

user profile loading and, 309
Web.config file size and, 75

Security Identifiers (SIDs)
for application pools, 41, 306–307, 473
for IIS IUSRS group, 448
Web Management Service (WMSvc)

and, 232
selectiveLogging option, 622–623
Self-signed certificates, 234–235
Server Certificate Alert, 234
Server Core installation, 22
Server Core Web Edition scenario for

Installing IIS 7.0, 128–131
Server Manager

IIS 7.0 installation by, 117–118,
131–132, 370

Web Management Service (WMSvc)
installation by, 231

Server workload. See Installing IIS 7.0
ServerManagerCMD command line tool

IIS 7.0 installation by, 117–118,
133–135, 138

logs of, 144–145
to remove IIS, 148

update names in, 127–128
Web Management Service (WMSvc)

installation by, 231–232
Servers

Appcmd.exe command line tool and, 214
baseline for, 606–608
certificates for, 166, 175, 177
configuration sharing by, 107–113
core, 5–8
hanging by, 603
IIS Manager feature for, 177
in Web farms, 650–651
performance of, 633–634

Server-Side Include (SSI) directives, 602
Server-side module service, 441–442
Service level agreements (SLAs), 635
Service Principal Name (SPN) registration,

498, 500
Service unavailable error 503, 600
Services, in Web server role installation, 142
Session state

affinity and, 651
cookie-based, 513
for remote logging, 542–543
IIS Manager feature for, 166, 172, 177
sticky, 651
System.Web.SessionState

.SessionStateModule for, 64
Set cmdlet, in PowerShell, 226
Set verb

for application pool settings, 304
for config object, 206, 208–212
in Appcmd.exe syntax, 191
objects created by, 204–205

Setup.exe tool, 139
Shared configuration

delegation configuration storage for, 248
IIS Manager feature for, 166, 177
of servers, 80, 107–113
permissions for, 520
redirection.config for, 73

Shared hosting architecture, 4
Shockwave file types, 354
Simple Mail Transfer Protocol (SMTP), 141,

166, 539
Simultaneous connection limits, 25

Security Identifiers (SIDs)

Z12624412.fm Page 774 Tuesday, February 12, 2008 7:03 PM

775

Single parameter view, of Appcmd.exe
output, 197

Site object, in Appcmd.exe, 192
SiteDefaults configuration, 538
Sites pages, 171
Smart Cards, 514
Speed. See Performance
Spindles, 622
SQL Server

affinity and, 651
logging module of, 546–547
Management Studio of, 546
user database of, 63

Start Site command, 214, 276–277
state attribute, 439
States, delegation, 246–247
Static compression, 642–644
Static Compression Module, 414
Static content Web server scenario for

installing IIS 7.0, 119–120, 138
Static file extensions, 325, 354–356
Static IP address, 16
StaticFile Module, 58, 128, 325, 395–396,

461, 464–465
Sticky state, for load balancing,

651–652
Stop button, for navigation, 159
Stop Site command, 214, 276–277
Storage Area Network (SAN), 285
Striping technologies, 621
Strong name signature, 383
Switched networks, 623
Syntax

configuration, 74–80
location tags in, 80
overview of, 74–75
section declarations in, 75–76
section elements in, 77–79
section groups in, 76–77
section schema in, 79
Web.config file size and, 75

for Appcmd.exe
application pool configuration by, 303
application pool identity configuration

by, 308
binding setting by, 272

connection limits and bandwidth
throttling setting by, 274

overview of, 191–193, 195
recycling events logging by, 313–314
request list execution by, 318
user profile loading by, 311
virtual directory configuration by, 281
virtual directory creation by, 279
virtual directory searching by, 283
Web application changes by, 295
Web application creation by, 293–294
Web application list by, 298
Web site addition by, 268–269
worker process list by, 317

Sysocmgr.exe tool, 139
Sysprep, for installing IIS 7.0, 138
System Center Operations Manager 2007,

648
System.Web.Caching

.OutputCacheModule, 64
System.Web.Security

.FormsAuthenticationModule, 65
System.Web.SessionState

.SessionStateModule, 64
SystemEventLog, 92–93
SYSWOW64 emulation mode, 266

T
Tasklist tool, 584
Tcl application framework, 327
Tcpanalyzer.exe network analysis tool, 624
Text view, of Appcmd.exe output, 197
Throttling

bandwidth, 273–274
performance and, 613–614
value for, 273

Tiles view, in features view, 169
TokenCacheModule, 64
Top-level help, 194–195
Total cost of ownership (TCO), 4
Tracing, 563–578. See also Troubleshooting

ASP.NET integrated with, 576–577
failed request, 564–576

enabling and configuring, 565–572
reading logs of, 572–576

performance and, 577–578

Tracing #

Z12624412.fm Page 775 Tuesday, February 12, 2008 7:03 PM

776

Translation layer, for compatibility, 40
Transmission Control Protocol (TCP), 260,

583, 623–625
Transport Layer Security (TLS), 447, 511
Tree display, 159
Troubleshooting, 579–601. See also

Diagnostics; Failure; Tracing
application availability, 312
HTTP, 594–602

common problems in, 598–601
error types in, 594–596
log checking in, 596–598

installing IIS 7.0, 143–145
methodology for, 579–580
overview of, 30
request processing pipeline, 216
requests, 320
tools and utilities for, 581–594

Appcmd.exe command line tool in, 586
Event Viewer in, 591–592
failed request tracing in, 592
IIS Manager in, 589–591
netstart and sc query in, 582
Network Monitor in, 593–594
overview of, 581–582
ping in, 583
PortCheck in, 583–584
Process Monitor in, 586–589
Reliability and Performance Monitor in,

593
tasklist and netstart in, 584
WFetch 1.4 in, 584–586

Web Management Service (WMSvc),
252–254

Trust levels
configuration access and, 525
for ASP.NET applications, 416–419
IIS Manager extensions and, 443, 445
IIS Manager feature for, 164, 175
least privilege configuration for, 470–472

TrustedInstaller-only access control list
(ACL), 427

TTFB (time to first byte), 646
TTLB (time to last byte), 646
Tuning. See Performance
Two-factor authentication schemes, 514

U
Unattended answer files, 133, 136–138
Unauthorized user error message (404),

253–254
Unified Security Model, 62
Universal Naming Convention (UNC), 264

access errors in, 598–599
Access Security policy of, 342
authentication in, 490, 508–509
content based on, 650
IIS Manager credentials and, 239
remote logging and, 542
remote shares in

for ASP applications, 345
for ASP.NET applications, 341–342
for PCP applications, 352

virtual directories and, 448
Unlock verb, 206, 212
Unlocked configuration, 178–179
Update Cache stage, in request processing,

48, 374, 642
Upgrades, hardware, 652
URL Authorization and Output Caching, 330
UrlAuthorizationModule, 65
URLs (Uniform Resource Locators),

48, 60
authorization for, 414, 449, 483,

485–489
denied sequences of, 482
hidden segments of, 481–482
specific configuration for, 9

User accounts
administrative extensions and, 440
least-privileged, 131
managing, 240–245
scalability and, 649
types of, 239–240
User Account Control (UAC) for, 190

User interface. See IIS Manager
User management, IIS Manager feature for,

165, 176
User profile loading, 309–311
User-mode caching, 637–642
Users feature, IIS Manager feature for,

164, 175
UTF-8 encoding for logging, 539–540

Translation layer, for compatibility

Z12624412.fm Page 776 Tuesday, February 12, 2008 7:03 PM

777

V
Validation, 88, 143
Verbosity level, 219, 568, 571
Verbs, in Appcmd.exe, 192, 194–196, 479.

See also Add verb; Delete verb; List
verb; Set verb

Versions
application pool, 632
ASP.NET mechanism for, 330–332,

335–336
preconditions of, 386
settings for, 71, 84, 136

Virtual directories
Appcmd.exe command line tool for,

213–214
AppDomains serving, 41
applications versus, 263
configuring, 279–282
creating, 19, 277–279, 288
fixed credentials for, 342, 448, 467,

469–470, 473, 508–509
NTFS ACL-based authorization and,

484–485
searching, 282–284
splitting, 341
UNC authentication and, 508
Web sites and, 264

Vista
Appcmd.exe required for, 552–556
IIS (Internet Information Services)

features in, 22–25
for application development, 24
for health and diagnostics, 24
for performance, 25
for security, 24–25
FTP Publishing Service, 25
HTTP, 24
management tools, 25
simultaneous connection limits, 25
Windows Process Activation

Service, 25
lisschema.exe tool and, 432
ManagedEngine Module in, 50
Tcpanalyzer.exe network analysis tool

of, 624
user interface in, 145–147

user profile loading and, 310
Windows Communication Foundation

(WCF) and, 23

W
Web applications, 291–299

creating, 292–296
listing, 297–299

Web Capacity Analysis Tool (WCAT), 301,
636–637, 647

Web farms, 650–651
Web gardens, 299–300, 318, 651
Web Management Service (WMSvc), 112

access permissions of, 517
IIS Manager and, 154, 444
remote administration and, 230–252

configuration of, 232–240
feature delegation in, 245–248
installation of, 231–232
logging, 254–257
of IIS, 12
of IIS Manager, 184
troubleshooting, 252–254
users and permissions in, 240–245
using, 249–252

Web server modules, 367–420
configuration sections of, 424
extensibility in IIS 7.0 and, 367–371
run-time extensibility in, 368, 371–420

Appcmd.exe for module management
and, 403–408

deploying assemblies of managed
modules and, 382–384

handler mapping additions for,
392–394

handler mapping management in,
400–403, 408–410

handler mapping types in, 394–396
locking down, 418–420
managed module uninstalling and,

384–385
managed versus native modules and,

375–377
module management and, 396–399
module ordering and, 391–392
module preconditions and, 385–388

Web server modules

Z12624412.fm Page 777 Tuesday, February 12, 2008 7:03 PM

778

modules running for all requests and,
390–391

native module installing and, 377–380
native module uninstalling and,

380–381
privilege of code reduction and,

414–418
request processing pipeline and,

372–375
security overview and, 410–411
security surface area reduction and,

411–414
x64 environments and, 388–389

Web servers
access levels for, 468–469
minimal installation of, 451–454

Web Service Extension Restriction List, 343,
409–410, 457

Web sites, 259–290
application pools and, 265–266
application surface area reduction and,

462–464
applications and, 262–264
client certificate mapping authentication

and, 502
configuring bindings for, 270–273
creation of, 15–17
deleting, 205
IIS client certificate mapping

authentication and, 504
limiting usage of, 273–275
logging and failed request tracing for,

275–276
Microsoft.Web.Administration and,

222–223
new, 267–269
overview of, 259–262
remote content and, 284–289

access to, 288–289
configuring applications for, 285
fixed credentials for, 287–288
overview of, 284–285
security for, 285–287

root applications of, 296
starting and stopping, 276–277
unable to reach, 603

virtual directories and, 264, 277–284
configuring, 279–282
new, 277–279
searching, 282–284

Web.config files, 4, 60
applicationHost.config files versus, 178
delegated application, 431
description of, 430
distributed, 72–73, 92
for application connections, 178
for configuration, 69–70, 98, 179, 208
in PHP application example, 78
locking extensibility and, 419
Read-Write delegation setting and, 99
size limitations of, 75

Web-based Distributed Authoring and
Versioning (WebDAV), 289

WebUI, 143
WFetch 1.4 tool, 584–586, 603
Wildcard Common Name (CN) entries, 512
Wildcard handler mappings, 464
Wildcard mapping, 394, 402
Wildcards, 207
Windows authentication, 6, 61

for security, 497–501
IIS Manager extensions and, 444
IIS Manager feature for, 176
Kerberos protocol and, 448
module for, 414
overview of, 490

Windows Automated Installation Kit
(WAIK), 138

Windows Communication Foundation
(WCF), 14, 23, 53, 260–261

Windows credentials, 12, 238, 240–242
Windows Deployment Services (WDS),

138–139
Windows Explorer, 11, 572
Windows Forms applications, 11
Windows Management Instrumentation

(WMI)
administration stack and, 422
benefits and limitations of, 189
for editing configuration, 85
for failed request tracing configuration, 571
for scripting access, 11, 15

Web servers

Z12624412.fm Page 778 Tuesday, February 12, 2008 7:03 PM

779

for Web site management, 266
IIS 7.0 and, 4, 30, 117, 188, 226–227
lisschema.exe tool and, 432
remote administration and, 229

Windows Process Activation Service (WAS)
application pool configuration files and,

517, 519
configuration sections and, 428
in HTTP request processing, 33–34
in IIS architecture, 30, 37–38
in Windows Server 2008 and Vista,

23, 25
non-HTTP request processing and,

53–55
overview of, 14
security identifier creation by, 307
troubleshooting and, 582
Web sites and, 260–261
worker process performance counters

in, 608
Windows Server 2008

for installing IIS 7.0, 139–140
IIS (Internet Information Services) features

in, 22–25
for application development, 24
for health and diagnostics, 24
for performance, 25
for security, 24–25
FTP Publishing Service, 25
HTTP, 24
management tools, 25
simultaneous connection limits, 25
Windows Process Activation Service, 25

lisschema.exe tool and, 432
user interface in, 145–147

Windows Setup, 370–371
for installing modules, 377
for uninstalling modules, 380
.NET extensibility component of, 381
schema files and, 425

Windows Task Manager, 606
Windows User Account Control, 131
Worker Process Isolation Mode, 328
Worker processes and requests

administrative extensions disabled by, 440
anonymous authentication and, 467

Appcmd.exe command line tool for,
215–217

application failure in, 34
application pool SIDs for, 448
application pools and, 265, 300, 308–309
as core architecture component, 31, 40–42
authentication providers in, 63
baseline for, 606–608
configuration data security and, 436
crashes in, 592
FastCGI, 359
idle shutdown of, 313
IIS extensibility in, 415
IIS Manager feature for, 166, 177
limits on, 613
modules running for all, 390–391
monitoring, 315–320
overview of, 314–315
performance counters for, 608–610
PHP execution identity and, 350
Process Monitor for, 589
user profile loading and, 309
W3SVC health monitoring of, 36

Workload server. See Installing IIS 7.0
Workspace, in IIS Manager. See Content view;

Features view
World Wide Web Consortium (W3C), 254,

535, 541, 549
World Wide Web Publishing Service

(W3SVC)
certificates and, 512
in HTTP request processing, 33, 36
in IIS architecture, 30, 35–37
in Web site management, 260, 276
troubleshooting and, 582
Windows Process Activation Service (WAS)

and, 37
worker process monitoring by, 36, 315
worker process performance counters in,

608–610
World Wide Web server provider, 569
wow64, 388

X
x64 platform, 388–389, 631

x64 platform #

Z12624412.fm Page 779 Tuesday, February 12, 2008 7:03 PM

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	What’s New in IIS 7.0
	Overview of Book
	Document Conventions
	Reader Aids
	Sidebars
	Command Line Examples

	Companion Media
	Find Additional Content Online
	Resource Kit Support Policy

	Chapter 12: Managing Web Server Modules
	Extensibility in IIS 7.0
	IIS 7.0 Extensibility Architecture at a Glance
	Managing Extensibility

	Runtime Web Server Extensibility
	What Is a Module?
	Installing Modules
	Common Module Management Tasks
	Using IIS Manager to Install and Manage Modules
	Using IIS Manager to Create and Manage Handler Mappings
	Using Appcmd to Install and Manage Modules
	Creating and Managing Handler Mappings
	Securing Web Server Modules

	Summary
	Additional Resources

	Chapter 14: Implementing Security Strategies
	Security Changes in IIS 7.0
	Reducing Attack Surface Area
	Reducing the Application’s Surface Area

	Configuring Applications for Least Privilege
	Use a Low Privilege Application Pool Identity
	Set NTFS Permissions to Grant Minimal Access
	Reduce Trust of ASP.NET Applications
	Isolating Applications

	Implementing Access Control
	IP and Domain Restrictions
	Request Filtering
	Authorization
	NTFS ACL-based Authorization
	URL Authorization
	Authentication
	Anonymous Authentication
	Basic Authentication
	Digest Authentication
	Windows Authentication
	Client Certificate Mapping Authentication
	IIS Client Certificate Mapping Authentication
	UNC Authentication
	Understanding Authentication Delegation

	Securing Communications with Secure Socket Layer (SSL)
	Configuring SSL
	Requiring SSL
	Client Certificates

	Securing Configuration
	Restricting Access to Configuration
	Securing Sensitive Configuration
	Controlling Configuration Delegation

	Summary
	Additional Resources

	Index

