V|sual C# 2008

John Sharp

http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735624306
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735624306
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735624306
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735624306
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735624306/Free-Sample-Chapter

Ow 1O access
your CD files

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/624306/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007939305

Printed and bound in the United States of America.

123456789 QWT 210987

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, MSDN, SQL Server, Excel, Intellisense, Internet Explorer, Jscript,
Silverlight, Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Server, and Windows
Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental and Project Editor: Lynn Finnel

Editorial Production: Waypoint Press

Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Body Part No. X14-22686

Contents at a Glance

Part |

A U1 h WIN R

Part I
7

8

9

10
11
12
13
14

Part I
15
16
17
18
19
20
21

Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

Welcome to CH# e 3
Working with Variables, Operators, and Expressions 29
Writing Methods and Applying Scope 49
Using Decision Statements 67
Using Compound Assignment and Iteration Statements...... 85
Managing Errors and Exceptions 103

Understanding the C# Language

Creating and Managing Classes and Objects 123
Understanding Values and References 145
Creating Value Types with Enumerations and Structures. 167
Using Arrays and Collections. 185
Understanding Parameter Arrays......................... 207
Working with Inheritance 217
Creating Interfaces and Defining Abstract Classes 239
Using Garbage Collection and Resource Management. 257

Creating Components

Implementing Properties to Access Fields 275
Using Indexers.oiuiiiininii ittt i, 295
Interrupting Program Flow and Handling Events 311
Introducing Genericscoiiiiiiiin i 333
Enumerating Collections, 355
Querying In-Memory Data by Using Query Expressions 371

OperatorOverloading i, 395

Contents at a Glance

part IV Working with Windows Applications

22
23
24

PartV
25

26

Part VI
27
28
29

30

Introducing Windows Presentation Foundation 415
Working with Menus and Dialog Boxes 451
Performing Validation 473

Managing Data
Querying Information in a Database...................... 499

Displaying and Editing Data by Using Data Binding.......... 529

Building Web Applications

Introducing ASPINET i, 559
Understanding Web Forms Validation Controls............. 587
Protecting a Web Site and Accessing Data with

Web Forms. e 597
Creating and Using a Web Service........................ 623

Table of Contents

Acknowledgments. o i Xvii

INtrodUcCtiono e XiX

Part| Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

1 Welcometo C# ... oo e e e 3
Beginning Programming with the Visual Studio 2008 Environment.......... 3
Writing Your First Program. 8
Using Namespaces.o e 14
Creating a Graphical Application. 17
Chapter 1 Quick Reference. 28

2 Working with Variables, Operators, and Expressions 29
Understanding Statements. 29
Using ldentifiers 30
Identifying Keywords. 30
Using Variables. 31

Naming Variables. 32
Declaring Variables 32
Working with Primitive Data Types.t 33
Displaying Primitive Data Type Values............................. 34
Using Arithmetic Operators e 38
Operators and TYPeS. . ..ottt ittt 39
Examining Arithmetic Operators. 40
Controlling Precedence ... 43
Using Associativity to Evaluate Expressions 44
Associativity and the Assignment Operator 45

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vi Table of Contents

Incrementing and Decrementing Variables. 45
Prefix and Postfix........ ... 46
Declaring Implicitly Typed Local Variables. 47
Chapter 2 Quick Reference. 48
3 Writing Methods and Applying Scope 49
Declaring Methods 49
Specifying the Method Declaration Syntax......................... 50
Writing return Statements. 51
Calling Methods. 53
Specifying the Method Call Syntax................. 53
Applying SCOPE . ..o 56
Defining Local Scope.o 56
Defining Class SCope. o 56
Overloading Methods. 57
Writing Methods 58
Chapter 3 Quick Reference. i 66
4 Using Decision Statements oo 67
Declaring Boolean Variables. 67
Using Boolean Operators 68
Understanding Equality and Relational Operators 68
Understanding Conditional Logical Operators...................... 69
Summarizing Operator Precedence and Associativity 70
Using if Statements to Make Decisions ..., 71
Understanding if Statement Syntax............. 71
Using Blocks to Group Statements.......... i, 73
Cascading if Statements. 73
Using switch Statements i 78
Understanding switch Statement Syntax 79
Following the switch StatementRules. 80
Chapter 4 Quick Reference.o 84
5 Using Compound Assignment and Iteration Statements. 85
Using Compound Assignment Operators ...t .. 85
Writing while Statements. 87
Writing for Statements 91

Understanding for Statement Scope............... il 92

Table of Contents

Writing do Statements 93
Chapter 5 Quick Reference. o i 102
6 Managing Errors and Exceptions 103
Coping With Errors.o o 103
Trying Code and Catching Exceptions o i i, 104
Handling an Exception ... 105
Using Multiple catch Handlers o i i 106
Catching Multiple Exceptions ... 106
Using Checked and Unchecked Integer Arithmetic...................... 111
Writing Checked Statements.......... 112
Writing Checked Expressions. i 113
Throwing EXCeptions 114
Using a finally Block. 118
Chapter 6 Quick Reference. 120

Part I Understanding the C# Language

7 Creating and Managing Classes and Objects............... 123
Understanding Classification i, 123

The Purpose of Encapsulation 124
Definingand Usinga Class. ... 124
Controlling Accessibility 126

Working with Constructors. 127
Overloading Constructors 128

Understanding static Methodsand Data 136
CreatingaShared Field. 137

Creating a static Field by Using the const Keyword................ 137

Chapter 7 Quick Reference. ... 142

8 Understanding Values and References 145
Copying Value Type Variablesand Classes 145
Understanding Null Values and Nullable Types 150

Using Nullable Types. 151

Understanding the Properties of Nullable Types................... 152

Using ref and out Parameters. i, 152

Creating ref Parameters.............. . o i 153

Creating out Parameters i 154

vii

viii

Table of Contents

How Computer Memory Is Organized. 156
Using the Stack and the Heap........ ... o i i i, 157

The System.Object Class, 158
BOXING .o 159
UNbOXING . .« oo 159
Casting Data Safely o 161
The is Operator 161

The @as Operator. 162
Chapter 8 Quick Reference. ... 164
9 Creating Value Types with Enumerations and Structures. 167
Working with Enumerations. 167
Declaring an Enumeration i i i 167
Using an Enumeration. i 168
Choosing Enumeration Literal Values. 169
Choosing an Enumeration’s Underlying Type...................... 170
Working with Structures. 172
Declaring a Structure. 174
Understanding Structure and Class Differences.................... 175
Declaring Structure Variables. 176
Understanding Structure Initialization.................. 177
Copying Structure Variables. o 179
Chapter 9 Quick Reference.o 183
10 Using Arrays and Collections. 185
What Is an Array?. 185
Declaring Array Variables. i i i i 185
Creatingan Array Instance. i 186
Initializing Array Variables 187
Creating an Implicitly Typed Array 188
Accessing an Individual Array Element, 189
Iterating Through an Array. 190
COPYING ArTaysS. . oot e e 191
What Are Collection Classes?. ... 192
The Arraylist Collection Class i .. 194

The Queue Collection Class. 196

The Stack Collection Class. 197

The Hashtable Collection Class, 198

The SortedList Collection Class 199

Table of Contents

Using Collection Initializers 200
Comparing Arrays and Collections.o ... 200
Using Collection Classes to Play Cards. 201
Chapter 10 Quick Reference. ... 206
11 Understanding Parameter Arrays......................... 207
Using Array Arguments. 208
Declaring a params Array 209
Using params object[]ot 211
Using a params Array. o 212
Chapter 11 Quick Reference. 215
12 Working with Inheritance 217
What Is Inheritance? 217
Using Inheritance. 218
Base Classes and Derived Classesc..ooviiiiiineennnn.. 218
Calling Base Class Constructors.ooiiiiiiinnennnn.. 220
AssSigNiNg Classes 221
Declaring new Methods. 222
Declaring Virtual Methods. i i i i 224
Declaring override Methods 225
Understanding protected Access.....................ccoviii... 227
Understanding Extension Methods, 233
Chapter 12 Quick Reference. 237
13 Creating Interfaces and Defining Abstract Classes 239
Understanding Interfaces. 239
Interface Syntax 240
Interface Restrictions. i 241
Implementing an Interface. 241
Referencing a Class Through Its Interface......................... 243
Working with Multiple Interfaces 244
Abstract Classesttt 244
Abstract Methods 245
Sealed Classes. 246
Sealed Methods........ ... o i 246
Implementing an Extensible Framework, 247
Summarizing Keyword Combinations 255

Chapter 13 Quick Reference. 256

Table of Contents

14 Using Garbage Collection and Resource Management. 257
The Life and Timesof an Object i, 257
Writing Destructors. 258

Why Use the Garbage Collector? 260

How Does the Garbage Collector Work?. 261
Recommendations. 262
Resource Management. 262
Disposal Methods 263
Exception-Safe Disposal 263

The using Statement. 264
Calling the Dispose Method from a Destructor. 266
Making Code Exception-Safe.............. 267
Chapter 14 Quick Reference. 270

Part Il Creating Components

15 Implementing Properties to Access Fields 275
Implementing Encapsulation by Using Methods 276
What Are Properties?. 278

Using Properties. 279
Read-Only Properties 280
Write-Only Properties. 280
Property Accessibility 281
Understanding the Property Restrictions 282
Declaring Interface Properties., 284
Using Properties in a Windows Application 285
Generating Automatic Properties. ... i 287
Initializing Objects by Using Properties..................ooiiiii. ., 288
Chapter 15 Quick Reference. i 292
16 UsingIndexers..........c.ooiiiniiiiiiiiiiiiii i 295
What Isan Indexer? 295
An Example That Doesn't Use Indexers 295
The Same Example Using Indexers. 297
Understanding Indexer ACCESSOrS.t 299
Comparing Indexers and Arraysueeiiiiieeennnnnnnnnn 300
Indexers in Interfaces. 302
Using Indexers in a Windows Application.............................. 303

Chapter 16 Quick Reference.coo i 308

Table of Contents

17 Interrupting Program Flow and Handling Events 311
Declaring and Using Delegates. ..., 311
The Automated Factory Scenario, .. 312
Implementing the Factory Without Using Delegates 312
Implementing the Factory by Using a Delegate. 313
Using Delegates. 316
Lambda Expressions and Delegates, 319
Creating a Method Adapter.......... ... i, 319
Using a Lambda Expression as an Adapter........................ 320
The Form of Lambda Expressions.coovviiiiiinn. 321
Enabling Notifications with Events 323
DeclaringanBvent...... 323
SubscribingtoanBvent 324
Unsubscribing froman Event.............. 324
Raising an Event. 325
Understanding WPF User Interface Events 325
Using Bvents 327
Chapter 17 Quick Reference. 329
18 IntroducingGenerics ...ttt 333
The Problem with objects. i i 333
The Generics Solution 335
Generics vs. Generalized Classes., 337
Generics and Constraintst 338
Creatinga Generic Class oottt 338
The Theory of Binary Trees.t 338
Building a Binary Tree Class by Using Generics 341
Creating a Generic Method i i 350
Defining a Generic Method to Build a Binary Tree 351
Chapter 18 Quick Reference. 354
19 Enumerating Collections 355
Enumerating the Elements in a Collection. 355
Manually Implementing an Enumerator 357
Implementing the IEnumerable Interface 361
Implementing an Enumerator by Using an Iterator...................... 363
ASimple lterator 364
Defining an Enumerator for the Tree<TItem> Class by
Usingan lterator 366

Chapter 19 Quick Reference, 368

Xi

xii Table of Contents

20 Querying In-Memory Data by Using Query Expressions 371
What Is Language Integrated Query (LINQ)? 371
Using LINQ ina C# Application. 372

SelectingData ... 374
Filtering Data o 377
Ordering, Grouping, and Aggregating Data....................... 377
Joining Datao oo 380
Using Query Operators.ttt 381
Querying Data in Tree<Tltem> Objects.......................... 383
LINQ and Deferred Evaluation. o i, 389
Chapter 20 Quick Reference. i 392

21 OperatorOverloadingc. ... 395

Understanding Operators.ooouiuiiiinii e 395
Operator Constraints. 396
Overloaded Operators 396
Creating Symmetric Operatorso it 398

Understanding Compound Assignment ..., 400

Declaring Increment and Decrement Operators 401

Defining Operator Pairsoo oo 403

Implementing an Operator. 404

Understanding Conversion Operatorsciiieeeeena .. 406
Providing Built-In Conversions ..o 406
Implementing User-Defined Conversion Operators 407
Creating Symmetric Operators, Revisited 408
Adding an Implicit Conversion Operator.......................... 409

Chapter 21 Quick Reference. 411

Part IV Working with Windows Applications

22 Introducing Windows Presentation Foundation 415
Creating a WPF Application 415

Creating a Windows Presentation Foundation Application.......... 416

Adding Controlstothe Form. ... 430

Using WPF Controls. 430

Changing Properties Dynamically.o o i, 439

Handling Eventsina WPF Form 443

Processing Events in Windows Forms. 443

Chapter 22 Quick Reference. 449

Table of Contents

23 Working with Menus and Dialog Boxes 451
Menu Guidelinesand Style. 451

Menus and Menu Events. oo i 452

Creatinga Menu 452

Handling Menu Events i 458

Shortcut Menus . ..o 464

Creating Shortcut Menus 464

Windows Common Dialog Boxes 468

Using the SaveFileDialog Class 468

Chapter 23 Quick Reference. i 471

24 Performing Validation, 473
Validating Data.t 473

Strategies for Validating User Input 473

An Example—Customer Information Maintenance...................... 474
Performing Validation by Using Data Binding 475

Changing the Point at Which Validation Occurs 491

Chapter 24 Quick Reference. ... 495

Part V. Managing Data

25 Querying Informationina Database...................... 499
Querying a Database by Using ADO.NET, 499
The Northwind Database........... ..o .. 500
Creatingthe Database i, 500
Using ADO.NET to Query Order Information...................... 503
Querying a Database by Using DLINQ.o i, 512
Defining an Entity Class 512
Creating and Running a DLINQ Query., 514
Deferred and Immediate Fetching 516
Joining Tables and Creating Relationships 517
Deferred and Immediate Fetching Revisited. 521
Defining a Custom DataContext Class........................... 522
Using DLINQ to Query Order Information 523

Chapter 25 Quick Reference. 527

xiii

Xiv Table of Contents

26 Displaying and Editing Data by Using Data Binding......... 529
Using Data Binding with DLINQ 529

Using DLINQ to Modify Data.t 544

Updating Existing Data. 544

Handling Conflicting Updates.o i, 545

Adding and Deleting Data. ..., 548

Chapter 26 Quick Reference. 556

Part VI Building Web Applications

27 Introducing ASP.INET i 559
Understanding the Internet as an Infrastructure 560
Understanding Web Server Requests and Responses............... 560
Managing State 561
Understanding ASP.INET 561
Creating Web Applications with ASPNET, 563
Building an ASP.NET Application. 564
Understanding Server Controls. 575
Creatingand UsingaTheme.o, 582
Chapter 27 Quick Reference. 586
28 Understanding Web Forms Validation Controls............. 587
Comparing Server and Client Validations 587
Validating Data atthe Web Server......... 588
Validating Data in the Web Browser. 588
Implementing Client Validation. 589
Chapter 28 Quick Reference. i 596

29 Protecting a Web Site and Accessing Data with
Web Forms. e 597
Managing SeCUNtY. 597
Understanding Forms-Based Security 598
Implementing Forms-Based Security........... 598
Querying and Displaying Data. 605
Understanding the Web Forms GridView Control 605
Displaying Customer and Order History Information............... 606

Paging Data 611

Table of Contents

Editing Data.o 612
Updating Rows Through a GridView Control 612
Navigating Between Forms 614
Chapter 29 Quick Reference. ... 621

30 Creating and Using a Web Service........................ 623
What Isa Web Service?. ... 623

The Role of SOAP. . .. 624

What Is the Web Services Description Language?. 625
Nonfunctional Requirements of Web Services..................... 625

The Role of Windows Communication Foundation................. 627
BuildingaWeb Service. ... 627
Creating the ProductsService Web Service........................ 628

Web Services, Clients, and Proxieso ... 637
Talking SOAP: The Difficult Way 637

Talking SOAP: The Easy Way 637
Consuming the ProductsService Web Service 638

Chapter 30 Quick Reference. ... i 644
IndeX. . ..o e 645

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Xv

Acknowledgments

An old Latin proverb says “Tempora mutantur, nos et mutantur in illis,” which roughly
translates into English as “Times change, and we change with them.” This proverb has a
quaint, sedate feel and was obviously penned before the Romans had heard of Microsoft,
Windows, the .NET Framework, and C#; otherwise, they would have written something more
like “Times change, and we run like mad trying to keep up!” When | look back over the last
seven or eight years, | am absolutely flabbergasted to see how much the .NET Framework,
and the C# language in particular, has evolved. | am also very thankful, because it keeps me
in gainful employment, performing biannual updates on this book. | am not complaining
because the .NET Framework is a superb platform for building applications and services, and
| thank the visionaries in the various product groups at Microsoft who have dedicated sev-
eral millennia of person-years of effort in its development. In my opinion, C# is the greatest
vehicle for taking full advantage of the .NET Framework. | have thoroughly enjoyed watching
its development and learning the new features that each new release provides. This book is
my attempt to convey my enthusiasm for the language to other programmers who are just
starting along the C# path of discovery.

As with all projects of this type, writing a book is a group effort. The team | have had
the pleasure of working with at Microsoft Press is second to none. In particular, | would
like to single out Lynn Finnel who has kept the faith in me over several editions of this
book, Christina Palaia and Jennifer Harris for their thorough editing of my manuscripts,
and Stephen Sagman who has worked like a Trojan keeping us all in order and on sched-
ule. | must pay special thanks to Kurt Meyer for his sterling efforts in reviewing my work,
correcting my mistakes, and suggesting modifications, and of course to Jon Jagger who
coauthored the first edition of this book with me back in 2001.

My long-suffering family have been wonderful, as they always are. Diana is now familiar
with terms such as “DLINQ" and “lambda expression” and throws them into conversation
with effortless aplomb. (For example, “Will you ever stop talking about DLINQ and lambda
expressions?”) James is still convinced that | spend my life playing computer games rather
than working. Francesca has developed a frowning nod that says, “I have no idea what you
are talking about, but | will nod anyway in the hope that you might stop.” And Ginger, my
arch-competitor for the chair in my study, has tried her best to completely distract me and
delay my efforts in the ways that only a cat can.

As ever, “"Up the Gills!”

—John Sharp

xvii

Introduction

Microsoft Visual C# is a powerful but simple language aimed primarily at developers creating
applications by using the Microsoft .NET Framework. It inherits many of the best features of
C++ and Microsoft Visual Basic but few of the inconsistencies and anachronisms, resulting in
a cleaner and more logical language. With the advent of C# 2.0 in 2005, several important
new features were added to the language, including generics, iterators, and anonymous
methods. C# 3.0, available as part of Microsoft Visual Studio 2008, adds further features,
such as extension methods, lambda expressions, and, most famously of all, the Language
Integrated Query facility, or LINQ. The development environment provided by Visual Studio
2008 makes these powerful features easy to use, and the many new wizards and enhance-
ments included in Visual Studio 2008 can greatly improve your productivity as a developer.

Who This Book Is For

The aim of this book is to teach you the fundamentals of programming with C# by using
Visual Studio 2008 and the .NET Framework version 3.5. You will learn the features of the C#
language, and then use them to build applications running on the Microsoft Windows oper-
ating system. By the time you complete this book, you will have a thorough understanding
of C# and will have used it to build Windows Presentation Foundation (WPF) applications,
access Microsoft SQL Server databases, develop ASP.NET Web applications, and build and
consume a Windows Communication Foundation service.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. You can use

this book if you are new to programming or if you are switching from another programming
language such as C, C++, Sun Microsystems Java, or Visual Basic. Use the following table to
find your best starting point.

Xix

XX Introduction

If you are

Follow these steps

New to object-oriented 1. Install the practice files as described in the next section,
programming “Installing and Using the Practice Files.”
2. Work through the chapters in Parts |, II, and Il sequentially.
3. Complete Parts IV, V, and VI as your level of experience and
interest dictates.
Familiar with procedural 1. Install the practice files as described in the next section,
programming languages such “Installing and Using the Practice Files.” Skim the first five
as C, but new to C# chapters to get an overview of C# and Visual Studio 2008, and
then concentrate on Chapters 6 through 21.
2. Complete Parts IV, V, and VI as your level of experience and

interest dictates.

Migrating from an object-
oriented language such as C++
or Java

Install the practice files as described in the next section,
“Installing and Using the Practice Files.”

. Skim the first seven chapters to get an overview of C# and

Visual Studio 2008, and then concentrate on Chapters 8
through 21.

For information about building Windows-based applications
and using a database, read Parts IV and V.

For information about building Web applications and Web
services, read Part VI.

Switching from Visual Basic 6

Install the practice files as described in the next section,
"Installing and Using the Practice Files.”

Work through the chapters in Parts |, Il, and Ill sequentially.

. For information about building Windows-based applications,

read Part IV.
For information about accessing a database, read Part V.

For information about creating Web applications and Web
services, read Part VI.

Read the Quick Reference sections at the end of the chapters

for information about specific C# and Visual Studio 2008 con-
structs.

Referencing the book after
working through the exercises

. Use the index or the table of contents to find information

about particular subjects.

Read the Quick Reference sections at the end of each chapter
to find a brief review of the syntax and techniques presented
in the chapter.

Introduction xxi

Conventions and Features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow. Before you start, read the following list, which explains
conventions you'll see throughout the book and points out helpful features that you
might want to use.

Conventions

B Each exercise is a series of tasks. Each task is presented as a series of numbered steps
(1, 2, and so on). A round bullet (+) indicates an exercise that has only one step.

B Notes labeled “tip” provide additional information or alternative methods for
completing a step successfully.

B Notes labeled “important” alert you to information you need to check before
continuing.

B Text that you type appears in bold.

B A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

Other Features

B Sidebars throughout the book provide more in-depth information about the exercise.
The sidebars might contain background information, design tips, or features related to
the information being discussed.

B Each chapter ends with a Quick Reference section. The Quick Reference section
contains quick reminders of how to perform the tasks you learned in the chapter.

System Requirements

You'll need the following hardware and software to complete the practice exercises in
this book:

® Windows Vista Home Premium Edition, Windows Vista Business Edition, or Windows
Vista Ultimate Edition. The exercises will also run using Microsoft Windows XP
Professional Edition with Service Pack 2

xxii Introduction

W Important If you are using Windows XP, some of the dialog boxes and screen shots described
in this book might look a little different from those that you see. This is because of differences in
the user interface in the Windows Vista operating system and the way in which Windows Vista
manages security.

B Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008
Express Edition

B Microsoft SQL Server 2005 Express Edition, Service Pack 2

B 1.6-GHz Pentium lll+ processor, or faster

B 1 GB of available, physical RAM

B Video (800 x 600 or higher resolution) monitor with at least 256 colors
B CD-ROM or DVD-ROM drive

B Microsoft mouse or compatible pointing device

You will also need to have Administrator access to your computer to configure SQL
Server 2005 Express Edition and to perform the exercises.

Code Samples

The companion CD inside this book contains the code samples that you'll use as you perform
the exercises. By using the code samples, you won't waste time creating files that aren't rel-
evant to the exercise. The files and the step-by-step instructions in the lessons also let you
learn by doing, which is an easy and effective way to acquire and remember new skills.

Installing the Code Samples

Follow these steps to install the code samples and required software on your computer so
that you can use them with the exercises.

1. Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive.

Note An end-user license agreement should open automatically. If this agreement does not
appear, open My Computer on the desktop or Start menu, double-click the icon for your
CD-ROM drive, and then double-click StartCD.exe.

Introduction xxiii

2. Review the end-user license agreement. If you accept the terms, select the accept
option, and then click Next.

A menu will appear with options related to the book.

3. Click Install Code Samples.

4. Follow the instructions that appear.

The code samples are installed to the following location on your computer:

Documents\Microsoft Press\Visual CSharp Step By Step

Using the Code Samples

Each chapter in this book explains when and how to use any code samples for that chapter.
When it's time to use a code sample, the book will list the instructions for how to open

the files.

Important The code samples have been tested by using an account that is a member of the
local Administrators group. It is recommended that you perform the exercises by using an
account that has Administrator rights.

For those of you who like to know all the details, here’s a list of the code sample Visual
Studio 2008 projects and solutions, grouped by the folders where you can find them.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of a
simple program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using Windows
Presentation Foundation.

Chapter 2

PrimitiveDataTypes

MathsOperators

This project demonstrates how to declare variables by using each of
the primitive types, how to assign values to these variables, and how
to display their values in a window.

This program introduces the arithmetic operators (+ - * / %).

Introduction

Project Description

Chapter 3

Methods In this project, you'll reexamine the code in the previous project and
investigate how it uses methods to structure the code.

DailyRate This project walks you through writing your own methods, running
the methods, and stepping through the method calls by using the
Visual Studio 2008 debugger.

Chapter 4

Selection This project shows how to use a cascading if statement to

SwitchStatement

implement complex logic, such as comparing the equivalence of
two dates.

This simple program uses a switch statement to convert characters
into their XML representations.

Chapter 5

WhileStatement

This project uses a while statement to read the contents of a source
file one line at a time and display each line in a text box on a form.

DoStatement This project uses a do statement to convert a decimal number to its
octal representation.

Chapter 6

MathsOperators This project reexamines the MathsOperators project from Chapter 2,
"Working with Variables, Operators, and Expressions,” and causes
various unhandled exceptions to make the program fail. The try and
catch keywords then make the application more robust so that it no
longer fails.

Chapter 7

Classes This project covers the basics of defining your own classes, complete
with public constructors, methods, and private fields. It also shows
how to create class instances by using the new keyword and how to
define static methods and fields.

Chapter 8

Parameters This program investigates the difference between value parameters
and reference parameters. It demonstrates how to use the ref and
out keywords.

Chapter 9

StructsAndEnums This project defines a struct type to represent a calendar date.

Introduction XXV

Project Description

Chapter 10

Cards This project uses the ArraylList collection class to group together
playing cards in a hand.

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword to create
a single method that can accept any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes by using
inheritance. It also demonstrates how to define a virtual method.

ExtensionMethod This project shows how to create an extension method for the int
type, providing a method that converts an integer value from base
10 to a different number base.

Chapter 13

Tokenizer This project uses a hierarchy of interfaces and classes to simulate
both reading a C# source file and classifying its contents into vari-
ous kinds of tokens (identifiers, keywords, operators, and so on). As
an example of use, it also derives classes from the key interfaces to
display the tokens in a rich text box in color syntax.

Chapter 14

UsingStatement

This project revisits a small piece of code from Chapter 5, “Using
Compound Assignment and Iteration Statements,” and reveals
that it is not exception-safe. It shows you how to make the code
exception-safe with a using statement.

Chapter 15

WindowProperties

AutomaticProperties

This project presents a simple Windows application that uses
several properties to display the size of its main window. The display
updates automatically as the user resizes the window.

This project shows how to create automatic properties for a class
and use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s phone
number when given a name, and the other to look up a person'’s
name when given a phone number.

Chapter 17

Delegates This project displays the time in digital format by using delegate

callbacks. The code is then simplified by using events.

XXvi Introduction

Project Description

Chapter 18

BinaryTree This solution shows you how to use generics to build a typesafe
structure that can contain elements of any type.

BuildTree This project demonstrates how to use generics to implement a
typesafe method that can take parameters of any type.

Chapter 19

BinaryTree This project shows you how to implement the generic

IteratorBinaryTree

IEnumerator<T> interface to create an enumerator for the generic
BinaryTree class.

This solution uses an iterator to generate an enumerator for the
generic BinaryTree class.

Chapter 20
QueryBinaryTree

This project shows how to use LINQ queries to retrieve data from a
binary tree object.

Chapter 21

Operators This project builds three structs, called Hour, Minute, and Second,
that contain user-defined operators. The code is then simplified by
using a conversion operator.

Chapter 22

BellRingers This project is a Windows Presentation Foundation application
demonstrating how to define styles and use basic WPF controls.

Chapter 23

BellRingers This project is an extension of the application created in Chapter 22,
“Introducing Windows Presentation Foundation,” but with drop-
down and pop-up menus added to the user interface.

Chapter 24

CustomerDetails

This project demonstrates how to implement business rules
for validating user input in a WPF application using customer
information as an example.

Chapter 25
ReportOrders

DLINQOrders

This project shows how to access a database by using ADO.NET
code. The application retrieves information from the Orders table in
the Northwind database.

This project shows how to use DLINQ to access a database and re-
trieve information from the Orders table in the Northwind database.

Introduction XXVii

Project Description
Chapter 26
Suppliers This project demonstrates how to use data binding with a WPF

application to display and format data retrieved from a database
in controls on a WPF form. The application also enables the user
to modify information in the Products table in the Northwind

database.

Chapter 27

Litware This project creates a simple Microsoft ASP.NET Web site that
enables the user to input information about employees working for
a fictitious software development company.

Chapter 28

Litware This project is an extended version of the Litware project from the
previous chapter and shows how to validate user input in an ASP.
NET Web application.

Chapter 29

Northwind This project shows how to use Forms-based security for
authenticating the user. The application also demonstrates how to
use ADO.NET from an ASP.NET Web form, showing how to query
and update a database in a scalable manner, and how to create
applications that span multiple Web forms.

Chapter 30

NorthwindServices This project implements a Windows Communication Foundation

Web service, providing remote access across the Internet to data in
the Products table in the Northwind database.

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer.

1. In Control Panel, open Add or Remove Programs.

2. From the list of Currently Installed Programs, select Microsoft Visual C# 2008 Step
by Step.

3. Click Remove.

4. Follow the instructions that appear to remove the code samples.

xXxviii

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http.//www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion CD, or
questions that are not answered by visiting the site above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com
Or via postal mail to

Microsoft Press

Attn: Microsoft Visual C# 2008 Step by Step Series Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
above addresses.

Chapter 1
Welcome to C#

After completing this chapter, you will be able to:
B Use the Microsoft Visual Studio 2008 programming environment.
B Create a C# console application.
B Explain the purpose of namespaces.

B (Create a simple graphical C# application.

Microsoft Visual C# is Microsoft's powerful component-oriented language. C# plays an
important role in the architecture of the Microsoft .NET Framework, and some people have
drawn comparisons to the role that C played in the development of UNIX. If you already
know a language such as C, C++, or Java, you'll find the syntax of C# reassuringly familiar. If
you are used to programming in other languages, you should soon be able to pick up the
syntax and feel of C#; you just need to learn to put the braces and semicolons in the right
place. Hopefully, this is just the book to help you!

In Part I, you'll learn the fundamentals of C#. You'll discover how to declare variables and
how to use arithmetic operators such as the plus sign (+) and minus sign (-) to manipulate the
values in variables. You'll see how to write methods and pass arguments to methods. You'll
also learn how to use selection statements such as if and iteration statements such as while.
Finally, you'll understand how C# uses exceptions to handle errors in a graceful, easy-to-use
manner. These topics form the core of C#, and from this solid foundation, you'll progress to
more advanced features in Part Il through Part VI.

Beginning Programming with the Visual Studio 2008
Environment

Visual Studio 2008 is a tool-rich programming environment containing all the functionality
you need to create large or small C# projects. You can even create projects that seamlessly
combine modules compiled using different programming languages. In the first exercise, you
start the Visual Studio 2008 programming environment and learn how to create a console
application.

Note A console application is an application that runs in a command prompt window, rather
than providing a graphical user interface.

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create a console application in Visual Studio 2008

B |f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following operations to start Visual Studio 2008:

1. On the Microsoft Windows task bar, click the Start button, point to All Programes,
and then point to the Microsoft Visual Studio 2008 program group.

2. In the Microsoft Visual Studio 2008 program group, click Microsoft Visual Studio
2008.

Visual Studio 2008 starts, like this:

[S Page - Microsart vizusl Stida. T)
File Edit View Tool: Tet Window |Help
0 - AR N R e e e -l |l - HRRREED-5
Start Page| L A

*+ Visual Studio 2

Downdaad Visual Studio 2008 Deta 2
Fri, 27 lul 2007 1821:16 GMT - See all of the impeowements that are
caming in isual Srudin 1004 with nest-qeneratian Web
dewrlnpment, integrated development far the Micrsaft Office
system, and industry-leading designers for Windaws Vista,
Unrwvrsbuad NET Framework 3.5 Bela 2
Fri, 27 Jul 2007 162331 GMT - See all of the improvenients that are
caming in Vizal Studic 2000 with net-gentratian Web
Cpen: Praject deutl intearsted devaloprent for the Micrasaft Office
Creste: Praject systerm, and industry-leading designers far Windows Viila,
Divwrdnad the Sandrastie lune CTP - Docimentation Compliers
T, 28 Fars 2007 JI5408 GMT - Ducumentation Compilers for
(| | o Class iy Sandeeste pracduces sccurs, MSON sy,

R comprehentive docurnentation by reflecling wer tie source
at's new in Visul C47

assemblies and ngtinnally inteqeating X8| Documentation
¢« Finst Apglicaban Carnments. Sandeastle enables Microsoft teams custamers t
efficiently pradusce Help dacumentatian far produscts. Sandrastie
ihips 3 3 itandalont downlosd and 3 & part of the Visual Studio
DK, The Sandeaitle engine's modular desian provides mary
axtensibdity poirts that allow wsers 1o custonnize it for different
product nesds,

Vichcasts on Yisual Studin Frtendbiy

Fri, 20 At 2007 223441 GMT - Live Webcast May U7, 2007 1LUD AN
Pacific Times Grow Your Busiriess and Reach More Developers by
Externding Visual Stadra, Live Webcast May 03, 2007 300 A0 Pacilic
Time: Grow Your Business and Arach More Dievelopers by Btending

Visunl Snudia
(EEEEETEE) | onioud iou o ode Mame “Orcas” Deta 1

Tech [d Mew Zessnd is coming! Thes, 19 Apr 2007 05:27:07 GMT - Microsoft® Wisual Studio® code
Register todiy! name "reas”is the nest qeneratian development taol for Windows

Note If this is the first time you have run Visual Studio 2008, you might see a dialog box
prompting you to choose your default development environment settings. Visual Studio
2008 can tailor itself according to your preferred development language. The various dia-
log boxes and tools in the integrated development environment (IDE) will have their de-
fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual
Studio 2008 IDE appears.

B |f you are using Visual C# 2008 Express Edition, on the Microsoft Windows task bar,
click the Start button, point to All Programs, and then click Microsoft Visual C# 2008
Express Edition.

Chapter 1 Welcome to C# 5

Visual C# 2008 Express Edition starts, like this:

5 T Wiera e Ve TR T B =
File Edit Wiew Tosls Window Help
e o i B K a0 - - 3 [|| - AEAREBI

- ¥ | Selution Bxploner - B x
Bt

ecent Projects MSDEE Visual €3 Express Edition

ANA Gamefest Conference to be Webcast
Fri, 10 &1 2007 16:44:13 BMT - Can't make it ta Gamefest this year? No
warries - watch the keynate and XNA Game Studia trmck sessions anlinel
Dream-Duild-Pey Contest Finalists Annaunced]
Fri, 10 Auq 2007 18:44:13 MT - Amanq hundseds of qame submissians,
anky 2 madde the final cut! Check cut some of the mast innovative
qame idess from aerods the world!
Visuial St Express 2008 Beta 2 Releaved
Fri, 27 Jul 2007 184413 GMT - Micrasoft has refeased Beta 2 of the Visual
Studic 1009 Express Editians. Find out what's new snd get started by

g this new release.

e Vihat's in Yhasal Studia Frpress 2008 Brta 20
Getting Started
Fri, 10 Ausg 2007 L4413 GMT - This S-part bleg series will help vou to.

Open: Praject
Create: Project

Create Your First Application naw Features will ba directly supported inside of Visual
Vides Feature Tow usdio Express J005.
LB to anything!

Fro 21 Jul 2007 18:44:13 GMT - You probiably already knuw sbout LING to
0L arad LING bo XML, but LN te Amazon, Google snd Fickill Find
it hina wxtmrible LMY readly]

Tarque X game engine now livel

Marn, 8 Jul 2007 18:44:13 GRAT - To assistyou in geblng the most out of
%NA& Garne Sudin Fapress, independent qame maker and techaolagy
pravider Garge@ames has created the Tarque X game enqine making it
eaier to desion and bud a full Featured game in managed G and the
AN Framewark,

Greal enelits fur egistered Express uers|

Tue, T Nov 2006 15:14:50 GMT - Mare goodies snd freebies sailable for
Tech [d Mew Zeslnd is coming! all registered Express users, inchuding MAKE magazine discaunts,
Register today! Irtermatic hare automation rebates, and ruch mare! Megister Today!

J

Note To avoid repetition, throughout this book, | simply state, “Start Visual Studio” when
you need to open Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional
Edition, or Visual C# 2008 Express Edition. Additionally, unless explicitly stated, all refer-
ences to Visual Studio 2008 apply to Visual Studio 2008 Standard Edition, Visual Studio
2008 Professional Edition, and Visual C# 2008 Express Edition.

B [f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following tasks to create a new console application.

1. On the File menu, point to New, and then click Project.

The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type of
application.

2. In the Project types pane, click Visual C#. In the Templates pane, click the Console
Application icon.

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

3. In the Location field, if you are using the Windows Vista operating system, type
C:\Users\YourName\Documents\Microsoft Press\Visual CSharp Step By
Step\Chapter 1. If you are using Microsoft Windows XP or Windows Server 2003,
type C:\Documents and Settings\YourName\My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1.

Replace the text YourName in these paths with your Windows user name.

Note To save space throughout the rest of this book, | will simply refer to the path “C:\
Users\YourName\Documents" or “C:\Documents and Settings\YourName\My Documents”
as your Documents folder.

@ Tip If the folder you specify does not exist, Visual Studio 2008 creates it for you.

4. In the Name field, type TextHello.

5. Ensure that the Create directory for solution check box is selected, and then click
OK.

B [f you are using Visual C# 2008 Express Edition, the New Project dialog box won't allow
you to specify the location of your project files; it defaults to the C:\Users\YourName\
AppData\Local\Temporary Projects folder. Change it by using the following procedure:

1. On the Tools menu, click Options.

2. In the Options dialog box, turn on the Show All Settings check box, and then click
Projects and Solutions in the tree view in the left pane.

3. In the right pane, in the Visual Studio projects location text box, specify the
Microsoft Press\Visual CSharp Step By Step\Chapter 1 folder under your
Documents folder.

4. Click OK.

B [f you are using Visual C# 2008 Express Edition, perform the following tasks to create a
new console application.

1. On the File menu, click New Project.

2. In the New Project dialog box, click the Console Application icon.
3. In the Name field, type TextHello.

4. Click OK.

Visual Studio creates the project using the Console Application template and displays the

starter code for the project, like this:

Chapter 1 Welcome to C#

 TetHello - Microsoft Visus Studio = e)
File Edit ‘View Project [uild [Debug Dyts Tools Test Window Help
ER=R=" - I Debug = Mary LPU - | SRS RO
By e IR RIS 2|00 A5
i - Program.cs| SarPage | - [Soliion Explorer - TedHells B
= =1 | &
2 ||| @ Teartelic Program | g% Mainiseringl| arg (Y Rea R
£ I~ 2using syscem: || = Sobution TestHella’ (L project)
using System,Collections.Gener ic: ol =
uEIng Gystem. Ling: i Gl Propertses
Lusing System. Text: s o References
&) Pragram.cs
o nameapace TexrHello
'
class Program
[
acarie void Main(aceing[] acgs)
(
)
I ' E
Y
al +
Ready

The menu bar at the top of the screen provides access to the features you'll use in the pro-
gramming environment. You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands.
The Code and Text Editor window occupying the main part of the IDE displays the contents of
source files. In a multi-file project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window. The Solution Explorer dis-
plays the names of the files associated with the project, among other items. You can also
double-click a file name in the Solution Explorer to bring that source file to the foreground in
the Code and Text Editor window.

Before writing the code, examine the files listed in the Solution Explorer, which Visual Studio
2008 has created as part of your project:

B Solution ‘TextHello’ This is the top-level solution file, of which there is one per appli-
cation. If you use Windows Explorer to look at your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1\TextHello folder, you'll see that the actual name of this
file is TextHello.sIn. Each solution file contains references to one or more project files.

8 Part | Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

B TextHello Thisis the C# project file. Each project file references one or more files con-
taining the source code and other items for the project. All the source code in a single
project must be written in the same programming language. In Windows Explorer, this
file is actually called TextHello.csproj, and it is stored in your \My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1\TextHello\TextHello folder.

B Properties This is a folder in the TextHello project. If you expand it, you will see that it
contains a file called AssemblyInfo.cs. AssemblylInfo.cs is a special file that you can use
to add attributes to a program, such as the name of the author, the date the program
was written, and so on. You can specify additional attributes to modify the way in which
the program runs. Learning how to use these attributes is outside the scope of this
book.

B References This is a folder that contains references to compiled code that your ap-
plication can use. When code is compiled, it is converted into an assembly and given
a unique name. Developers use assemblies to package useful bits of code they have
written so they can distribute it to other developers who might want to use the code in
their applications. Many of the features that you will be using when writing applications
using this book make use of assemblies provided by Microsoft with Visual Studio 2008.

B Program.cs This is a C# source file and is the one currently displayed in the Code and
Text Editor window when the project is first created. You will write your code for the
console application in this file. It also contains some code that Visual Studio 2008 pro-
vides automatically, which you will examine shortly.

Writing Your First Program

The Program.cs file defines a class called Program that contains a method called Main. All
methods must be defined inside a class. You will learn more about classes in Chapter 7,
“Creating and Managing Classes and Objects.” The Main method is special—it designates

the program’s entry point. It must be a static method. (You will look at methods in detail in
Chapter 3, “Writing Methods and Applying Scope,” and | discuss static methods in Chapter 7.)

W Important C# is a case-sensitive language. You must spell Main with a capital M.

In the following exercises, you'll write the code to display the message Hello World in the
console; you'll build and run your Hello World console application; and you'll learn how
namespaces are used to partition code elements.

Chapter 1 Welcome to C# 9

Write the code by using IntelliSense

1.

In the Code and Text Editor window displaying the Program.cs file, place the cursor in
the Main method immediately after the opening brace, {, and then press Enter to cre-
ate a new line. On the new line, type the word Console, which is the name of a built-
in class. As you type the letter C at the start of the word Console, an IntelliSense list
appears. This list contains all of the C# keywords and data types that are valid in this
context. You can either continue typing or scroll through the list and double-click the
Console item with the mouse. Alternatively, after you have typed Con, the IntelliSense
list will automatically home in on the Console item and you can press the Tab or Enter
key to select it.

Main should look like this:

static void Main(string[] args)

{

Console

}

Note Console is a built-in class that contains the methods for displaying messages on the
screen and getting input from the keyboard.

. Type a period immediately after Console. Another IntelliSense list appears, displaying

the methods, properties, and fields of the Console class.

Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you
can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then
press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main
should now look like this:

static void Main(string[] args)
{

Console.WriteLine

3

. Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is
an overloaded method, meaning that the Console class contains more than one method
named WriteLine—it actually provides 19 different versions of this method. Each ver-
sion of the WriteLine method can be used to output different types of data. (Chapter 3
describes overloaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{

Console.WriteLine(

}

10

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

¥

Tip You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

5. Type a closing parenthesis,) followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)

{

}

Console.WriteLine();

6. Move the cursor, and type the string “Hello World”, including the quotation marks,
between the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)

{

}

Console.WriteLine(“Hello World”);

Tip Get into the habit of typing matched character pairs, such as (and) and { and }, before filling
in their contents. It's easy to forget the closing character if you wait until after you've entered the

contents.

IntelliSense Icons

When you type a period after the name of a class, IntelliSense displays the name of
every member of that class. To the left of each member name is an icon that depicts
the type of member. Common icons and their types include the following:

Icon

=i

Meaning

method (discussed in Chapter 3)

Ty

property (discussed in Chapter 15)

|

class (discussed in Chapter 7)

$

struct (discussed in Chapter 9)

enum (discussed in Chapter 9)

Chapter 1 Welcome to C# 11

Icon Meaning
—e interface (discussed in Chapter 13)
@ delegate (discussed in Chapter 17)
extension method (discussed in Chapter 12)
i

You will also see other IntelliSense icons appear as you type code in different contexts.

Note You will frequently see lines of code containing two forward slashes followed by ordinary
text. These are comments. They are ignored by the compiler but are very useful for developers
because they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler will skip all text from the two slashes to the end of the line. You can also add
multiline comments that start with a forward slash followed by an asterisk (/*). The compiler will
skip everything until it finds an asterisk followed by a forward slash sequence (*/), which could
be many lines lower down. You are actively encouraged to document your code with as many
meaningful comments as necessary.

Build and run the console application

1. On the Build menu, click Build Solution.

This action compiles the C# code, resulting in a program that you can run. The Output
window appears below the Code and Text Editor window.

@ Tip If the Output window does not appear, on the View menu, click Output to display it.

In the Output window, you should see messages similar to the following indicating how
the program is being compiled.

—————— Build started: Project: TextHello, Configuration: Debug Any CPU ----
C:\Windows\Microsoft.NET\Framework\v3.5\Csc.exe /config /nowarn:1701;1702 ..
Compile complete -- 0 errors, 0 warnings

TextHello -> C:\Documents and Settings\John\My Documents\Microsoft Press\..
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window. The
following image shows what happens if you forget to type the closing quotation marks

12 Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

after the text Hello World in the WriteLine statement. Notice that a single mistake can
sometimes cause multiple compiler errors.

[TasaHiella - Microsaft visusl Studem e =]
File Edit View Project Duild Debug Dats Tools Test Window Help
@-E- Sl % @ LI F Debug = fary CPU - R - N
R LI =YY
5| Program.cs| SartPage | - % [Solution Explorer - TedHzlla SIx
E . s
2 ||| #sTeatatic program +| ¥ Maintringl| args) | [NR- R [=
2| S uning syacem: || A Sobution TeHelle' (1praject)
using System,Collections.,Generic: - T TextHello
using System.Ling: i Gl Propertses
Lusing System. Text: s o References
) Peogeamn.cs

[naweapace TexcHello
l

=} slass Progras E
i
B scatie void Main(aceing(] acga)

{

Console,Writeline ("Hello Worldis
'

[EmarList -3 x
@ 3Eevars | [0 Warnenugs || 62 1 Messnges
Deseription File Line Colurmn Project
@1 Mewline in constant Program.ci 1 n TeutHll
Do) epected Program.cs 1 a5 Texthialle
@5 egected Program.cs 1 5 TextHello

(34 Error List [Ourtpure

L Reniy
Tip You can double-click an item in the Error List window, and the cursor will be placed
on the line that caused the error. You should also notice that Visual Studio displays a wavy

red line under any lines of code that will not compile when you enter them.

If you have followed the previous instructions carefully, there should be no errors or
warnings, and the program should build successfully.

@ Tip There is no need to save the file explicitly before building because the Build Solution
command automatically saves the file. If you are using Visual Studio 2008 Standard Edition
or Visual Studio 2008 Professional Edition, the project is saved in the location specified
when you created it. If you are using Visual C# 2008 Express Edition, the project is saved in
a temporary location and is copied to the folder you specified in the Options dialog box

only when you explicitly save the project by using the Save All command on the File menu
or when you close Visual C# 2008 Express Edition.

An asterisk after the file name in the tab above the Code and Text Editor window indicates
that the file has been changed since it was last saved.

2.

3.

Chapter 1 Welcome to C# 13
On the Debug menu, click Start Without Debugging.

A command window opens, and the program runs. The message Hello World appears,
and then the program waits for you to press any key, as shown in the following graphic:

B Chindowshsystem3diemd,exe

Hello World
Press any key to continue . . .

Note The prompt “Press any key to continue . .." is generated by Visual Studio; you did
not write any code to do this. If you run the program by using the Start Debugging com-
mand on the Debug menu, the application runs, but the command window closes immedi-
ately without waiting for you to press a key.

Ensure that the command window displaying the program'’s output has the focus, and
then press Enter.

The command window closes, and you return to the Visual Studio 2008 programming
environment.

In Solution Explorer, click the TextHello project (not the solution), and then click the
Show All Files toolbar button on the Solution Explorer toolbar—this is the second
button from the left on the toolbar in the Solution Explorer window.

Entries named bin and obj appear above the Program.cs file. These entries correspond
directly to folders named bin and obj in the project folder (Microsoft Press\Visual
CSharp Step by Step\Chapter 1\TextHello\TextHello). Visual Studio creates these folders
when you build your application, and they contain the executable version of the pro-
gram together with some other files used to build and debug the application.

In Solution Explorer, click the plus sign (+) to the left of the bin entry.

Another folder named Debug appears.

Note You may also see a folder called Release.

14 Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
6. In Solution Explorer, click the plus sign (+) to the left of the Debug folder.

Four more items named TextHello.exe, TextHello.pdb, TextHello.vshost.exe, and
TextHello.vshost.exe.manifest appear, like this:

Show All Files

Solutiof Explorer - TextHello 3 X

=l ﬁ 5?4'.
_j Solution TextHello' (1 project)

w- [Properties
- [:9l References
B i bin
5 L Debug
3 TextHello.exe
wo 3 TetHellopdb
wo 3 TetHellowshostexe
- ¥ TestHellowshast.exe.manifest
e 7 ob
. t£] Prograrn.cs

= Note If you are using Visual C# 2008 Express Edition, you might not see all of these files.

The file TextHello.exe is the compiled program, and it is this file that runs when you
click Start Without Debugging on the Debug menu. The other files contain information
that is used by Visual Studio 2008 if you run your program in Debug mode (when you
click Start Debugging on the Debug menu).

Using Namespaces

The example you have seen so far is a very small program. However, small programs can soon
grow into much bigger programs. As a program grows, two issues arise. First, it is harder to
understand and maintain big programs than it is to understand and maintain smaller pro-
grams. Second, more code usually means more names, more methods, and more classes. As
the number of names increases, so does the likelihood of the project build failing because
two or more names clash (especially when a program also uses third-party libraries written by
developers who have also used a variety of names).

In the past, programmers tried to solve the name-clashing problem by prefixing names with
some sort of qualifier (or set of qualifiers). This solution is not a good one because it's not
scalable; names become longer, and you spend less time writing software and more time
typing (there is a difference) and reading and rereading incomprehensibly long names.

Chapter 1 Welcome to C# 15

Namespaces help solve this problem by creating a named container for other identifiers, such
as classes. Two classes with the same name will not be confused with each other if they live

in different namespaces. You can create a class named Greeting inside the namespace named
TextHello, like this:

namespace TextHello

{
class Greeting
{
}

}

You can then refer to the Greeting class as TextHello.Greeting in your programs. If another
developer also creates a Greeting class in a different namespace, such as NewNamespace, and
installs it on your computer, your programs will still work as expected because they are using
the TextHello.Greeting class. If you want to refer to the other developer’s Greeting class, you
must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2008 en-
vironment follows this recommendation by using the name of your project as the top-level
namespace. The .NET Framework software development kit (SDK) also adheres to this rec-
ommendation; every class in the .NET Framework lives inside a namespace. For example,
the Console class lives inside the System namespace. This means that its full name is actually
System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation
would be no better than prefixing qualifiers or even just naming the class with some glob-
ally unique name such SystemConsole and not bothering with a namespace. Fortunately, you
can solve this problem with a using directive in your programs. If you return to the TextHello
program in Visual Studio 2008 and look at the file Program.cs in the Code and Text Editor
window, you will notice the following statements at the top of the file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

A using statement brings a namespace into scope. In subsequent code in the same file,

you no longer have to explicitly qualify objects with the namespace to which they belong.
The four namespaces shown contain classes that are used so often that Visual Studio 2008
automatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file.

The following exercise demonstrates the concept of namespaces in more depth.

16

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Try longhand names

1. In the Code and Text Editor window displaying the Program.cs file, comment out the
first using directive at the top of the file, like this:
//using System;

2. On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.
3. In the Error List window, double-click the error message.
The identifier that caused the error is selected in the Program.cs source file.

4. In the Code and Text Editor window, edit the Main method to use the fully qualified
name System.Console.

Main should look like this:

static void Main(string[] args)
{

System.Console.WriteLine(“Hello World”);
}

Note When you type System. the names of all the items in the System namespace are
displayed by IntelliSense.

5. On the Build menu, click Build Solution.

The build should succeed this time. If it doesn’t, make sure that Main is exactly as it ap-
pears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on
the Debug menu.

Namespaces and Assemblies

A using statement simply brings the items in a namespace into scope and frees you
from having to fully qualify the names of classes in your code. Classes are compiled into
assemblies. An assembly is a file that usually has the .dll file name extension, although
strictly speaking, executable programs with the .exe file name extension are also
assemblies.

Chapter 1 Welcome to C# 17

An assembly can contain many classes. The classes that the .NET Framework class
library comprises, such as System.Console, are provided in assemblies that are installed
on your computer together with Visual Studio. You will find that the .NET Framework
class library contains many thousands of classes. If they were all held in the same
assembly, the assembly would be huge and difficult to maintain. (If Microsoft updated
a single method in a single class, it would have to distribute the entire class library to all
developers!)

For this reason, the .NET Framework class library is split into a number of assemblies,
partitioned by the functional area to which the classes they contain relate. For example,
there is a "core” assembly that contains all the common classes, such as System.Console,
and there are further assemblies that contain classes for manipulating databases, ac-
cessing Web services, building graphical user interfaces, and so on. If you want to make
use of a class in an assembly, you must add to your project a reference to that assem-
bly. You can then add using statements to your code that bring the items in namespac-
es in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly
and a namespace; a single assembly can contain classes for multiple namespaces, and a
single namespace can span multiple assemblies. This all sounds very confusing at first,
but you will soon get used to it.

When you use Visual Studio to create an application, the template you select auto-
matically includes references to the appropriate assemblies. For example, in Solution
Explorer for the TextHello project, click the plus sign (+) to the left of the References
folder. You will see that a Console application automatically includes references to as-
semblies called System, System.Core, System.Data, and System.Xml. You can add refer-
ences for additional assemblies to a project by right-clicking the References folder and
clicking Add Reference—you will practice performing this task in later exercises.

Creating a Graphical Application

So far, you have used Visual Studio 2008 to create and run a basic Console application. The
Visual Studio 2008 programming environment also contains everything you need to create
graphical Windows-based applications. You can design the form-based user interface of a
Windows-based application interactively. Visual Studio 2008 then generates the program
statements to implement the user interface you've designed.

Visual Studio 2008 provides you with two views of a graphical application: the design view
and the code view. You use the Code and Text Editor window to modify and maintain the

18

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

code and logic for a graphical application, and you use the Design View window to lay out
your user interface. You can switch between the two views whenever you want.

In the following set of exercises, you'll learn how to create a graphical application by using
Visual Studio 2008. This program will display a simple form containing a text box where you
can enter your name and a button that displays a personalized greeting in a message box
when you click the button.

Note Visual Studio 2008 provides two templates for building graphical applications—the
Windows Forms Application template and the WPF Application template. Windows Forms is a
technology that first appeared with the .NET Framework version 1.0. WPF, or Windows
Presentation Foundation, is an enhanced technology that first appeared with the .NET
Framework version 3.0. It provides many additional features and capabilities over Windows
Forms, and you should consider using it in preference to Windows Forms for all new
development.

Create a graphical application in Visual Studio 2008

B |f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following operations to create a new graphical application:

1.

7.

On the File menu, point to New, and then click Project.
The New Project dialog box opens.

In the Project Types pane, click Visual C#.

In the Templates pane, click the WPF Application icon.

Ensure that the Location field refers to your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1 folder.

In the Name field, type WPFHello.
In the Solution field, ensure that Create new solution is selected.

This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TextHello solution.

Click OK.

B |f you are using Visual C# 2008 Express Edition, perform the following tasks to create a
new graphical application.

1.
2.

On the File menu, click New Project.

If the New Project message box appears, click Save to save your changes to
the TextHello project. In the Save Project dialog box, verify that the Location
field is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your
Documents folder, and then click Save.

¥

Chapter 1 Welcome to C# 19
3. In the New Project dialog box, click the WPF Application icon.
4. In the Name field, type WPFHello.
5. Click OK.

Visual Studio 2008 closes your current application and creates the new WPF application. It
displays an empty WPF form in the Design View window, together with another window con-
taining an XAML description of the form, as shown in the following graphic:

Tip Close the Output and Error List windows to provide more space for displaying the Design
View window.

[WRPHATS < Wierosare sl i [E=E=E]
File Edit ‘iew Project [uild [Debug Dot Formet Tools Tet Window |elp
ER=R A" - N b0 - - - b Debuy = fary CPU - | SRS RO
1 R, a=|IRER| S 2 = e = vl
5:| - WindowLxaml | Windowdoamics | FarPags | - % [Talution Explorer - WRFHelo I %
2 o | @ F| E E
z A Sebution "WFFHella' (1 project)
= (T WiFHHello
9 Properises
s References
s e Appaami
- = WindowLiaml
G Desingn ot EWAML mE®
b <Hindom ¥:Clasa="UPFHello. Windowl™
amlns="https// schemas mictosolt, com/ winfx/ 2006/ xaml/ presentat ion”
Emins:x="hLip://schemas.nicrosolt.com’ vinlx/ 2006/ xaml "
Titles"Windowl™ Meight="J00" Width="I00":>
<Grids
</ Gxide
</ Wandows
'
) Widaw Window /s
Ready

XAML stands for Extensible Application Markup Language and is an XML-like language used
by WPF applications to define the layout of a form and its contents. If you have knowledge of
XML, XAML should look familiar. You can actually define a WPF form completely by writing
an XAML description if you don't like using the Design View window of Visual Studio or if you
don't have access to Visual Studio; Microsoft provides an XAML editor called XMLPad that
you can download free of charge from the MSDN Web site.

In the following exercise, you'll use the Design View window to add three controls to the
Windows form and examine some of the C# code automatically generated by Visual Studio
2008 to implement these controls.

20 Part |

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create the user interface

1.

Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displaying the various com-
ponents and controls that you can place on a Windows form. The Common section
displays a list of controls that are used by most WPF applications. The Controls section
displays a more extensive list of controls.

. In the Common section, click Label, and then click the visible part of the form.

A label control is added to the form (you will move it to its correct location in a mo-
ment), and the Toolbox disappears from view.

Tip If you want the Toolbox to remain visible but not to hide any part of the form, click
the Auto Hide button to the right in the Toolbox title bar (it looks like a pin). The Toolbox
appears permanently on the left side of the Visual Studio 2008 window, and the Design
View window shrinks to accommodate it. (You may lose a lot of space if you have a low-
resolution screen.) Clicking the Auto Hide button once more causes the Toolbox to disap-
pear again.

. The label control on the form is probably not exactly where you want it. You can click

and drag the controls you have added to a form to reposition them. Using this tech-
nigue, move the label control so that it is positioned toward the upper-left corner of
the form. (The exact placement is not critical for this application.)

Note The XAML description of the form in the lower pane now includes the label control,
together with properties such as its location on the form, governed by the Margin prop-
erty. The Margin property consists of four numbers indicating the distance of each edge of
the label from the edges of the form. If you move the control around the form, the value
of the Margin property changes. If the form is resized, the controls anchored to the form'’s
edges that move are resized to preserve their margin values. You can prevent this by set-
ting the Margin values to zero. You learn more about the Margin and also the Height and
Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation
Foundation.”

On the View menu, click Properties Window.

The Properties window appears on the lower-right side of the screen, under Solution
Explorer (if it was not already displayed). The Properties window provides another way
for you to modify the properties for items on a form, as well as other items in a project.
It is context sensitive in that it displays the properties for the currently selected item.

If you click the title bar of the form displayed in the Design View window, you can see
that the Properties window displays the properties for the form itself. If you click the
label control, the window displays the properties for the label instead. If you click any-
where else on the form, the Properties window displays the properties for a mysterious

Chapter 1 Welcome to C# 21

item called a grid. A grid acts as a container for items on a WPF form, and you can use

the grid, among other things, to indicate how items on the form should be aligned and
grouped together.

. Click the label control on the form. In the Properties window, locate the Text section.

By using the properties in this section, you can specify the font and font size for the
label but not the actual text that the label displays.

Change the FontSize property to 20, and then click the title bar of the form.

The size of the text in the label changes, although the label is no longer big enough to
display the text. Change the FontSize property back to 12.

Note The text displayed in the label might not resize itself immediately in the Design
View window. It will correct itself when you build and run the application, or if you close
and open the form in the Design View window.

Scroll the XAML description of the form in the lower pane to the right, and examine the
properties of the label control.

The label control consists of a <Label> tag containing property values, followed by the
text for the label itself (“Label”), followed by a closing </Label> tag.

Change the text Label (just before the closing tag) to Please enter your name, as
shown in the following image.

% WRFHell - Microsoft Visual Studio =]
File Edit View Project Build Debug Dats Tosls Tem Window Help
P-E- S | % 9 - -] b Debug - Aty CPU - |1 HE-E T o e
D% s RS S |03 RS
»i| WindawLaaml * | Windowdaml.cs | Start Page | - x [Talition Explover - WRFHe Lo %
. =R EIEmE
g 1 Sabution WETHel' (1 project)
- (T WiFHHelle
Wl Properises
s References
Blesse enter vour name s [Appaaml
5 = Windgwliaml
Froperties Tix
Systaen indws Window

Hame:

SystemWndors Contn -
QDesinn Ttk @AMl MES| | cuesar
] T‘ Dstalontest
6/xaml/presentat ion”
OO/ Kaaml fesn =
Istnatied v
T ResizeMode Carflesize
Eeighe="23% Yerricallligrmenc="Top" FoncSize="1193Please eacer your name</Labels P ¥
SizeTeCantent Manual
Titie Viirclerw]
Tl oo
= '
4 Window Window /s Toprmost .
Wik Manual 1

Ru&- Lnl Col 2 Chi N5

22

Part |

11.

13.
14.

15.

16.

WV

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Notice that the text displayed in the label on the form changes, although the label is
still too small to display it correctly.

Click the form in the Design View window, and then display the Toolbox again.

Note If you don't click the form in the Design View window, the Toolbox displays the
message “There are no usable controls in this group.”

. In the Toolbox, click TextBox, and then click the form. A text box control is added to the

form. Move the text box control so that it is directly underneath the label control.

Tip When you drag a control on a form, alignment indicators appear automatically when
the control becomes aligned vertically or horizontally with other controls. This gives you a
quick visual cue for making sure that controls are lined up neatly.

While the text box control is selected, in the Properties window, change the value of the
Name property displayed at the top of the window to userName.

Note You will learn more about naming conventions for controls and variables in
Chapter 2, "Working with Variables, Operators, and Expressions.”

Display the Toolbox again, click Button, and then click the form. Drag the button con-
trol to the right of the text box control on the form so that the bottom of the button is
aligned horizontally with the bottom of the text box.

Using the Properties window, change the Name property of the button control to ok.

In the XAML description of the form, scroll the text to the right to display the caption
displayed by the button, and change it from Button to OK. Verify that the caption of
the button control on the form changes.

Click the title bar of the Windowl.xaml form in the Design View window. In the
Properties window, change the Title property to Hello.

In the Design View window, notice that a resize handle (a small square) appears on the
lower right-hand corner of the form when it is selected. Move the mouse pointer over
the resize handle. When the pointer changes to a diagonal double-headed arrow, click
and drag the pointer to resize the form. Stop dragging and release the mouse button

when the spacing around the controls is roughly equal.

Important Click the title bar of the form and not the outline of the grid inside the form
before resizing it. If you select the grid, you will modify the layout of the controls on the
form but not the size of the form itself.

17. On the Build menu, click Build Solution, and verify that the project builds successfully.
18. On the Debug menu, click Start Without Debugging.

19. Click the Close button (the X in the upper-right corner of the form) to close the form

Note If you make the form narrower, the OK button remains a fixed distance from the
right-hand edge of the form, determined by its Margin property. If you make the form too
narrow, the OK button will overwrite the text box control. The right-hand margin of the
label is also fixed, and the text for the label will start to disappear when the label shrinks as

the form becomes narrower.

The form should now look similar to this:

Chapter 1 Welcome to C#

[WPl - Mieraroft Vsl o =l =
File Edit Yiew Project DBuild Debug Dyts Forvat Took Test Window Help
WH-E-EGdd o B B 0 < b Debuy = fary CRU L8 RS =ARED-C
5 - | iR RS 2 - ud
| owLaml.ca | StartPage | + 3 [Tolution Explorer - WIFHERg TR
2 | g E | E @
] = Sobution "WPTHelEs' (1 project)
= (T WiFHHello
B Fropertes
sl References
2w Appaaml
W = Windowlianl
Prease enter vuur name
ok |
Properties -0 x
Syvtem Windows Window
Harme
QDesinn T TG wAML e RessMede CanResize
£l <HindoE »:Clana="@PFEello.Vindowl™ — ShowinTaskbar 4
amlns="http:// schemas .miccosolt, com/ uindx/ 2008/ xaml/ presentation” SizeToCortent Maausd
HEUHLLpE/SChemas . BiCEOBOLL . Gom WANLRS £ 006/ saml " Hella F
~Hello"” Heighte™160™ Vidthe=325%»
Towilm
«Lahe 20, 135,07 Name="lahel1¥ Heighr="23" Verriecallkligrmerne="Tr Topmast
<TextBox H 1" Margin="20,54,138,0" Ner=="usecName" Verticalkligoment ViindawStartupl... Marual
“buston leight="2d* Margin=",50,23,0 Hame=“ok" VersicalAlignment=Top" Uc Windowstane Normnal
<fGeid>
r.”l1\'\i—-|: Mare Properties =
S + Focusable o
40 Windaw Window /3 IsHitTestvisle 4
Ready nl Col Chi

23

The application should run and display your form. You can type your name in the text
box and click OK, but nothing happens yet. You need to add some code to process the
Click event for the OK button, which is what you will do next.

and return to Visual Stu

dio.

You have managed to create a graphical application without writing a single line of C# code.

It does not do much yet (you will have to write some code soon), but Visual Studio actually

generates a lot of code for you that handles routine tasks that all graphical applications must
perform, such as starting up and displaying a form. Before adding your own code to the ap-

plication, it helps to have an understanding of what Visual Studio has generated for you.

24

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

In Solution Explorer, click the plus sign (+) beside the file Window1.xaml. The file Window1.
xaml.cs appears. Double-click the file Window1.xaml.cs. The code for the form is displayed in
the Code and Text Editor window. It looks like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFHello

{
/// <summary>
/// Interaction logic for Windowl.xaml

/// </summary>

public partial class Windowl : Window

{

public Windowl(Q)
{

InitializeComponent();

}

}

Apart from a good number of using statements bringing into scope some namespaces that
most WPF applications use, the file contains the definition of a class called Window1 but not
much else. There is a little bit of code for the Window1 class known as a constructor that calls
a method called InitializeComponent, but that is all. (A constructor is a special method with
the same name as the class. It is executed when an instance of the class is created and can
contain code to initialize the instance. You will learn about constructors in Chapter 7.) In fact,
the application contains a lot more code, but most of it is generated automatically based

on the XAML description of the form, and it is hidden from you. This hidden code performs
operations such as creating and displaying the form, and creating and positioning the various
controls on the form.

The purpose of the code that you can see in this class is so that you can add your own
methods to handle the logic for your application, such as what happens when the user clicks
the OK button.

¥

Chapter 1 Welcome to C# 25

Tip You can also display the C# code file for a WPF form by right-clicking anywhere in the

Design View window and then clicking View Code.

At this point you might well be wondering where the Main method is and how the form gets
displayed when the application runs; remember that Main defines the point at which the pro-
gram starts. In Solution Explorer, you should notice another source file called App.xaml. If you
double-click this file, the Design View window displays the message “Intentionally Left Blank,”
but the file has an XAML description. One property in the XAML code is called StartupUri,

and it refers to the Windowl.xaml file as shown here:

[WREHalla - Microsaft Visual Studio.
File Edit View Project Duild Debug Dats Tool: Test Window Help
WH-E-EGdd

{ B 4

== L0 B Debuy = Pary CPU

Appaen]) 1| Windewlamlca) Stact Page |

[wnniong 34

i intentionally Left Blank
The docunent roat element is nat supparted by the visual designer,

Qbesinn 1 @aamL
E €Applisation ¥:Clana=rUpFHello. Apph

zmins«*http://schemas . microsoft.com/vinfx/2006/ xaml/ presentation”

"HELR://Fthemas . iCLOBOLE . Go WANLRS SO0/ xaml "
Stastuplri="Vandowl, xeml >

=] tApplication. Reacureeas

<fApplication, Resources>

-</Application>

(17 Applcation Agpkcation />

=T
b Be o AN I B

- [Tolution Explorer - Tobution WRFHeNo' || = I 3¢
| @ E | Em
= Sobution "WPTHelEs' (1 project)
(T WPHHelle
il Fropertses
sl References
s) Appaaml
B = WindowLam!
2] WindowLiamil.cs

Properties

e

T X

Sysern Windows Apphcabon
Hame:

CnlastWindoallase

Windowlxaml|

Ruzf

If you click the plus sign (+) adjacent to App.xaml in Solution Explorer, you will see that there
is also an Application.xaml.cs file. If you double-click this file, you will find it contains the

following code:

using System;

using System
using System
using System
using System
using System

.Collections.Generic;
.Configuration;
.Data;

.Ling;

.Windows;

26

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

namespace WPFHello

{
/// <summary>
/// Interaction Tlogic for App.xaml
/// </summary>

pubTlic partial class App : Application
{

3
}

Once again, there are a number of using statements, but not a lot else, not even a Main

method. In fact, Main is there, but it is also hidden. The code for Main is generated based on
the settings in the App.xaml file; in particular, Main will create and display the form specified
by the StartupUri property. If you want to display a different form, you edit the App.xaml file.

The time has come to write some code for yourself!

Write the code for the OK button

1. Click the Windowl.xaml tab above the Code and Text Editor window to display
Windowl in the Design View window.

2. Double-click the OK button on the form.

The Windowl.xaml.cs file appears in the Code and Text Editor window, but a new
method has been added called ok_Click. Visual Studio automatically generates code to
call this method whenever the user clicks the OK button. This is an example of an event,
and you will learn much more about how events work as you progress through this
book.

3. Add the code shown in bold type to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)
{

MessageBox.Show(“Hello “ + userName.Text);

}

This is the code that will run when the user clicks the OK button. Do not worry too
much about the syntax of this code just yet (just make sure you copy it exactly as
shown) because you will learn all about methods in Chapter 3. The interesting part is
the MessageBox.Show statement. This statement displays a message box containing
the text "Hello” with whatever name the user typed into the username text box on the
appended form.

4. Click the Windowl.xaml tab above the Code and Text Editor window to display
Windowl in the Design View window again.

Chapter 1 Welcome to C# 27

. In the lower pane displaying the XAML description of the form, examine the Button
element, but be careful not to change anything. Notice that it contains an element
called Click that refers to the ok_Click method:

<Button Height="23" .. Click="0k_Click”>0K</Button>

. On the Debug menu, click Start Without Debugging.

. When the form appears, type your name in the text box, and then click OK. A message
box appears, welcoming you by name.

] Hello E=EEE]
Please enter your name Hella lahn
Jomn

. Click OK in the message box.

The message box closes.

. Close the form.

B |f you want to continue to the next chapter
Keep Visual Studio 2008 running, and turn to Chapter 2.
B |f you want to exit Visual Studio 2008 now

On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using
Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and
save the project.

28 Part |

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Chapter 1 Quick Reference

To

Create a new console application
using Visual Studio 2008
Standard or Professional Edition

Do this

On the File menu, point to New, and then click
Project to open the New Project dialog box.
For the project type, select Visual C#. For the
template, select Console Application. Select a
directory for the project files in the Location
box. Choose a name for the project. Click OK.

Key combination

Create a new console application
using Visual C# 2008 Express
Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the
Visual Studio projects location box, specify a
directory for the project files.

On the File menu, click New Project to open the
New Project dialog box. For the template, select
Console Application. Choose a name for the
project. Click OK.

Create a new graphical application
using Visual Studio 2008 Standard
or Professional Edition

On the File menu, point to New, and then click
Project to open the New Project dialog box. For
the project type, select Visual C#. For the template,
select WPF Application. Select a directory for the
project files in the Location box. Choose a name for
the project. Click OK.

Create a new graphical application
using Visual C# 2008 Express
Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the
Visual Studio projects location box, specify a
directory for the project files.

On the File menu, click New Project to open the
New Project dialog box. For the template, select
WPF Application. Choose a name for the project.
Click OK.

Build the application

On the Build menu, click Build Solution.

F6

Run the application

On the Debug menu, click Start Without
Debugging.

Ctrl+F5

Chapter 25
Querying Information in a Database

WV

After completing this chapter, you will be able to:

B Fetch and display data from a Microsoft SQL Server database by using
Microsoft ADO.NET.

B Define entity classes for holding data retrieved from a database.
B Use DLINQ to query a database and populate instances of entity classes.

B Create a custom DataContext class for accessing a database in a typesafe manner.

In Part IV of this book, "Working with Windows Applications,” you learned how to use
Microsoft Visual C# to build user interfaces and present and validate information. In Part

V, you will learn about managing data by using the data access functionality available in
Microsoft Visual Studio 2008 and the Microsoft .NET Framework. The chapters in this part

of the book describe ADO.NET, a library of objects specifically designed to make it easy to
write applications that use databases. In this chapter, you will also learn how to query data by
using DLINQ—extensions to LINQ based on ADO.NET that are designed for retrieving data
from a database. In Chapter 26, “Displaying and Editing Data by Using Data Binding,” you will
learn more about using ADO.NET and DLINQ for updating data.

Important To perform the exercises in this chapter, you must have installed Microsoft SQL
Server 2005 Express Edition, Service Pack 2. This software is available on the retail DVD with
Microsoft Visual Studio 2008 and Visual C# 2008 Express Edition and is installed by default.

Important It is recommended that you use an account that has Administrator privileges to
perform the exercises in this chapter and the remainder of this book.

Querying a Database by Using ADO.NET

The ADO.NET class library contains a comprehensive framework for building applications
that need to retrieve and update data held in a relational database. The model defined by
ADO.NET is based on the notion of data providers. Each database management system (such
as SQL Server, Oracle, IBM DB2, and so on) has its own data provider that implements an
abstraction of the mechanisms for connecting to a database, issuing queries, and updating
data. By using these abstractions, you can write portable code that is independent of the

499

500

Part V. Managing Data

underlying database management system. In this chapter, you will connect to a database
managed by SQL Server 2005 Express Edition, but the techniques that you will learn are
equally applicable when using a different database management system.

The Northwind Database

Northwind Traders is a fictitious company that sells edible goods with exotic names.

The Northwind database contains several tables with information about the goods that
Northwind Traders sells, the customers they sell to, orders placed by customers, suppliers
from whom Northwind Traders obtains goods to resell, shippers that they use to send goods
to customers, and employees who work for Northwind Traders. Figure 25-1 shows all the
tables in the Northwind database and how they are related to one another. The tables that
you will be using in this chapter are Orders and Products.

Customers g
(==E

i E:::p“;":;;zme CustomerCustomerDemo CustomerDemographics Employees
— @ |customerID 2 | CustomerTypelD G |EmployesD -
|| Cenkacthlame E‘ Customer TypelD H CustamerDesc | |Lastiiame j
| contactTitle | Firstivame
| ddress —riee
Lt || TitleofCourtesy
|_|Redion | |Bithoate
| |Postaicade —|HireDate
Country —
: Phone DOrders — Eij’ess
L |Fax | | OrderiD iI region
— C“ﬁlm”m | |Postaicads
EmplaysslD —
[|orderDate [L_|Country Bl
Shippers RequiredDate
| B[shipperin [|ShippedDate
|| Companyhiame [| shipvia
_|Phone [|Freiatt
[| shiphtame
[| shipaddress
5 [| shipGity
Suppliers || shipregion |
| 8 |supplieri — —
|| CompanyMame EmployeeTerritories Tormtories
| |Contactiame Products Order Details [::m;\'uyee]D | Terrtory10
| |contactTite g Productin 3] OrderiD l TerritoryID Terrtory Description
| |Address Producthiame =] | ProductiD RegioniD
| |city SupplierID UritPrice
| |region CategaryID Quantity
| |PostalCode QuantityPerUnit Discaunt
|| country UritPrice
L Ehune UnitslnStnck T
| |Fax UnitsOnOrder 7 [CateqoryiD Region
| |HomePage ReorderLewvel e % |RegiontD
CategaryMame g
Discontinued Description H RegionDsscription
Picture

Creating the Database

Before proceeding further, you need to create the Northwind database.

Chapter 25 Querying Information in a Database 501

Granting Permissions for Creating a SQL Server 2005 Database

You must have administrative rights for SQL Server 2005 Express before you can cre-
ate a database. By default, if you are using the Windows Vista operating system, the
computer Administrator account and members of the Administrators group do not have

these rights. You can easily grant these permissions by using the SQL Server 2005 User
Provisioning Tool for Vista, as follows:

1. Log on to your computer as an account that has administrator access.

2. Run the sglprov.exe program, located in the folder C:\Program Files\Microsoft
SQL Server\90\Shared.

3. In the User Account Control dialog box, click Continue. A console window briefly
appears, and then the SQL Server User Provisioning on Vista window is displayed.

4. In the User to provision text box, type the name of the account you are using to

perform the exercises. (Replace YourComputer\YourAccount with the name of your
computer and your account.)

5. In the Available privileges box, click Member of SQL Server SysAdmin role on
SQLEXPRESS, and then click the >> button.

510 8QL Server User Provisioning on Vista - YourComputer\Yourfccount on VSPROFESSIOMNAL 7 ==
A

I SQL Server 2005 User Provisioning Tool for Vista
- Help Protect Your SOL Server on Windows Vista

Granting administrative rights to Windows Yista user User to provision; YourComputeryY ourdcoaunt

Windows Yista users that are members of the Windows Administrators group are not automatically granted permizsion ta connect to SOL Server, and
they are not automatically granted administrative privileges.

Select the administrative privileges needed by Windaows uzer YourComputer\t ourbccount.

Ayailable privileges: Brivileges that will be granted to Y ourComputersy ourdcoount:

[] SOLEXPRESS
:[R, Member of SGOL Server Sysédmin rale on SOLEXPRESS

>

O

6. Click OK.

The permission will be granted to the specified user, and the SQL Server 2005
User Provisioning Tool for Vista will close automatically.

502

Part V. Managing Data

Create the Northwind database

1. On the Windows Start menu, click All Programs, click Accessories, and then click

Command Prompt to open a command prompt window. If you are using Windows
Vista, in the command prompt window type the following command to go to the
\Microsoft Press\Visual CSharp Step by Step\Chapter 25 folder under your Documents
folder. Replace Name with your user name.

cd “\Users\Name\Documents\Microsoft Press\Visual CSharp Step by Step\Chapter 25”

If you are using Windows XP, type the following command to go to the \Microsoft
Press\Visual CSharp Step by Step\Chapter 25 folder under your My Documents folder,
replacing Name with your user name.

cd “\Documents and Settings\Name\My Documents\Microsoft Press\Visual CSharp Step by
Step\Chapter 25”

. In the command prompt window, type the following command:

sqlecmd -S YourComputer\SQLExpress -E -iinstnwnd.sql
Replace YourComputer with the name of your computer.

This command uses the sglcmd utility to connect to your local instance of SQL Server
2005 Express and run the instnwnd.sql script. This script contains the SQL commands
that create the Northwind Traders database and the tables in the database and fills
them with some sample data.

Tip Ensure that SQL Server 2005 Express is running before you attempt to create the
Northwind database. (It is set to start automatically by default. You will simply receive an
error message if it is not started when you execute the sqglcmd command.) You can check
the status of SQL Server 2005 Express, and start it running if necessary, by using the SQL
Configuration Manager available in the Configuration Tools folder of the Microsoft SQL
Server 2005 program group.

3. When the script finishes running, close the command prompt window.

Note You can run the command you executed in step 2 at any time if you need to reset
the Northwind Traders database. The instnwnd.sql script automatically drops the database
if it exists and then rebuilds it. See Chapter 26 for additional information.

Chapter 25 Querying Information in a Database 503

Using ADO.NET to Query Order Information

In the next set of exercises, you will write code to access the Northwind database and display
information in a simple console application. The aim of the exercise is to help you learn more
about ADO.NET and understand the object model it implements. In later exercises, you will
use DLINQ to query the database. In Chapter 26, you will see how to use the wizards includ-
ed with Visual Studio 2008 to generate code that can retrieve and update data and display
data graphically in a Windows Presentation Foundation (WPF) application.

The application you are going to create first will produce a simple report displaying informa-
tion about customers’ orders. The program will prompt the user for a customer ID and then
display the orders for that customer.

Connect to the database

1.
2.

Start Visual Studio 2008 if it is not already running.

Create a new project called ReportOrders by using the Console Application template.
Save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 25 folder under your
Documents folder, and then click OK.

Note Remember, if you are using Visual C# 2008 Express Edition, you can specify the
location for saving your project by setting the Visual Studio projects location in the Projects
and Solutions section of the Options dialog box on the Tools menu.

In Solution Explorer, change the name of the file Program.cs to Report.cs. In the
Microsoft Visual Studio message, click Yes to change all references of the Program class
to Report.

In the Code and Text Editor window, add the following using statement to the list at the
top of the file:

using System.Data.SqlClient;

The System.Data.SqlClient namespace contains the SQL Server data provider classes for
ADO.NET. These classes are specialized versions of the ADO.NET classes, optimized for
working with SQL Server.

In the Main method of the Report class, add the following statement shown in bold
type, which declares a Sq/Connection object:

static void Main(string[] args)
{

SqlConnection dataConnection = new SqlConnection();

}

504

Part V. Managing Data

SqlConnection is a subclass of an ADO.NET class called Connection. It is designed to
handle connections to SQL Server databases.

. After the variable declaration, add a try/catch block to the Main method. All the code

that you will write for gaining access to the database goes inside the try part of this
block. In the catch block, add a simple handler that catches Sql/Exception exceptions.
The new code is shown in bold type here:

static void Main(string[] args)

{
try
{
// You will add your code here in a moment
}
catch(SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

A SqglException is thrown if an error occurs when accessing a SQL Server database.

. Replace the comment in the try block with the code shown in bold type here:

try
{
dataConnection.ConnectionString =
“Integrated Security=true;Initial Catalog=Northwind;” +
“Data Source=YourComputer\\SQLExpress”;
dataConnection.Open();

Important In the ConnectionString property, replace YourComputer with the name of
your computer. Make sure that you type the string on a single line.

This code attempts to create a connection to the Northwind database. The contents of
the ConnectionString property of the Sqg/Connection object contain elements that spec-
ify that the connection will use Windows Authentication to connect to the Northwind
database on your local instance of SQL Server 2005 Express Edition. This is the pre-
ferred method of access because you do not have to prompt the user for any form of
user name or password, and you are not tempted to hard-code user names and pass-
words into your application. Notice that a semicolon separates all the elements in the
ConnectionString.

You can also encode many other elements in the connection string. See the
documentation supplied with Visual Studio 2008 for details.

Chapter 25 Querying Information in a Database 505

Using SQL Server Authentication

Windows Authentication is useful for authenticating users who are all members of a
Windows domain. However, there might be occasions when the user accessing the
database does not have a Windows account, for example, if you are building an appli-
cation designed to be accessed by remote users over the Internet. In these cases, you
can use the User ID and Password parameters instead, like this:

string userName = ...;

string password = ...;
// Prompt the user for their name and password, and fill these variables

string connString = String.Format(
“User ID={0};Password={1};Initial Catalog=Northwind;” +
“Data Source=YourComputer\\SQLExpress”, username, password);

myConnection.ConnectionString = connString;

At this point, | should offer a sentence of advice: never hard-code user names and pass-
words into your applications. Anyone who obtains a copy of the source code (or who
reverse-engineers the compiled code) can see this information, and this renders the
whole point of security meaningless.

The next step is to prompt the user for a customer ID and then query the database to find all
of the orders for that customer.

Query the Orders table

1. Add the statements shown here in bold type to the try block after the dataConnection.
Open(); statement:

try
{

Console.Write(““Please enter a customer ID (5 characters): “);
string customerId = Console.ReadLine();

}

These statements prompt the user for a customer ID and read the user’s response in
the string variable customerld.

2. Type the following statements shown in bold type after the code you just entered:

try
{

Sql1Command dataCommand = new SqlCommand();
dataCommand.Connection = dataConnection;

506

Part V. Managing Data

dataCommand.CommandText =
“SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, “ +
“ShipCity, ShipCountry “ +
“FROM Orders WHERE CustomerID=’" + customerId + “’”;
Console.WriteLine(“About to execute: {0}\n\n”, dataCommand.CommandText);
}
The first statement creates a Sg/Command object. Like Sg/Connection, this is a
specialized version of an ADO.NET class, Command, that has been designed for per-
forming queries against a SQL Server database. An ADO.NET Command object is used
to execute a command against a data source. In the case of a relational database, the
text of the command is a SQL statement.

The second line of code sets the Connection property of the Sg/Command object to

the database connection you opened in the preceding exercise. The next two state-
ments populate the CommandText property with a SQL SELECT statement that retrieves
information from the Orders table for all orders that have a CustomerID that matches
the value in the customerld variable. The Console.WriteLine statement just repeats the
command about to be executed to the screen.

Important If you are an experienced database developer, you will probably be about to
e-mail me telling me that using string concatenation to build SQL queries is bad practice.
This approach renders your application vulnerable to SQL injection attacks. However, the
purpose of this code is to quickly show you how to execute queries against a SQL Server
database by using ADO.NET, so | have deliberately kept it simple. Do not write code such
as this in your production applications.

For a description of what a SQL injection attack is, how dangerous it can be, and how you
should write code to avoid such attacks, see the SQL Injection topic in SQL Server Books
Online, available at http://msdn2.microsoft.com/en-us/library/ms161953.aspx.

. Add the following statement shown in bold type after the code you just entered:

try
{

ééiDataReader dataReader = dataCommand.ExecuteReader();
3
The ExecuteReader method of a Sg/Command object constructs a Sq/DataReader object
that you can use to fetch the rows identified by the SQL statement. The Sq/DataReader
class provides the fastest mechanism available (as fast as your network allows) for
retrieving data from a SQL Server.

The next task is to iterate through all the orders (if there are any) and display them.

Chapter 25 Querying Information in a Database 507

Fetch data and display orders

1. Add the while loop shown here in bold type after the statement that creates the
SqglDataReader object:

try
{
while (dataReader.Read())
{
// Code to display the current row
}

}

The Read method of the Sq/DataReader class fetches the next row from the database. It
returns true if another row was retrieved successfully; otherwise, it returns false, usually
because there are no more rows. The while loop you have just entered keeps reading
rows from the dataReader variable and finishes when there are no more rows.

2. Add the statements shown here in bold type to the body of the while loop you created
in the preceding step:

while (dataReader.Read())
{
int orderId = dataReader.GetInt32(0);
DateTime orderDate = dataReader.GetDateTime(1);
DateTime shipDate = dataReader.GetDateTime(2);
string shipName = dataReader.GetString(3);
string shipAddress = dataReader.GetString(4);
string shipCity = dataReader.GetString(5);
string shipCountry = dataReader.GetString(6);
Console.WriteLine(
“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
“To Address: {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
shipDate, shipName, shipAddress, shipCity, shipCountry);
}

This block of code shows how you read the data from the database by using a
SglDataReader object. A Sg/DataReader object contains the most recent row retrieved
from the database. You can use the GetXXX methods to extract the information from
each column in the row—there is a GetXXX method for each common type of data. For
example, to read an int value, you use the GetInt32 method; to read a string, you use
the GetString method; and you can probably guess how to read a DateTime value. The
GetXXX methods take a parameter indicating which column to read: 0 is the first col-
umn, 1 is the second column, and so on. The preceding code reads the various columns
from the current Orders row, stores the values in a set of variables, and then prints out
the values of these variables.

508 Part V. Managing Data

Firehose Cursors

One of the major drawbacks in a multiuser database application is locked data.
Unfortunately, it is common to see applications retrieve rows from a database and keep
those rows locked to prevent another user from changing the data while the applica-
tion is using them. In some extreme circumstances, an application can even prevent
other users from reading data that it has locked. If the application retrieves a large
number of rows, it locks a large proportion of the table. If there are many users run-
ning the same application at the same time, they can end up waiting for one another to
release locks and it all leads to a slow-running and frustrating mess.

The Sg/DataReader class has been designed to remove this drawback. It fetches rows
one at a time and does not retain any locks on a row after it has been retrieved. It is
wonderful for improving concurrency in your applications. The Sqg/DataReader class is
sometimes referred to as a “firehose cursor.” (The term cursor is an acronym that stands
for “current set of rows.")

When you have finished using a database, it's good practice to close your connection and
release any resources you have been using.

Disconnect from the database, and test the application

1. Add the statement shown here in bold type after the while loop in the try block:

try
{
while(dataReader.Read())
{
}
dataReader.Close();
}

This statement closes the Sqg/DataReader object. You should always close a Sq/DataReader
object when you have finished with it because you will not able to use the current
SglConnection object to run any more commands until you do. It is also considered good
practice to do it even if all you are going to do next is close the Sq/Connection.

Note If you activate multiple active result sets (MARS) with SQL Server 2005, you can
open more than one Sq/DataReader object against the same Sq/Connection object and
process multiple sets of data. MARS is disabled by default. To learn more about MARS and
how you can activate and use it, consult SQL Server 2005 Books Online.

Chapter 25 Querying Information in a Database 509
2. After the catch block, add the following finally block:

catch(SqlException e)

{
}
finally
{
dataConnection.Close();
H

Database connections are scarce resources. You need to ensure that they are closed
when you have finished with them. Putting this statement in a finally block guarantees
that the Sq/Connection will be closed, even if an exception occurs; remember that the
code in the finally block will be executed after the catch handler has finished.

Q Tip An alternative approach to using a finally block is to wrap the code that creates the

SglDataConnection object in a using statement, as shown in the following code. At the end
of the block defined by the using statement, the Sq/Connection object is closed automati-
cally, even if an exception occurs:

using (SqlConnection dataConnection = new SqlConnection())

{
try
{
dataConnection.ConnectionString = “...”;
}
catch (SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

3. On the Debug menu, click Start Without Debugging to build and run the application.
4. At the customer ID prompt, type the customer ID VINET, and press Enter.

The SQL SELECT statement appears, followed by the orders for this customer, as shown
in the following image:

Em Chwindowssystern32hemd.exe i [=] 3
[Please enter a customer ID <5 characters»: UINET

fhout to execute: SELECT OrderID. OrderDate. ShippedDate. ShipMame. Sl\ipﬂddress.n
ShipCity, ShipCountry FROM Orders WHERE CustomerID='UINET’ .

BA: A : 0@
Shipped: 16871996 0A:00:0

: Uins et alcools Chevalier
59 rue de 1’'Abbaye
Re ims

Chevalier

Order: 18295
Placed: 02091996 BQ:00:00

510

Part V. Managing Data

You can scroll back through the console window to view all the data. Press the Enter
key to close the console window when you have finished.

5. Run the application again, and then type BONAP when prompted for the customer ID.

Some rows appear, but then an error occurs. If you are using Windows Vista, a mes-
sage box appears with the message “ReportOrders has stopped working.” Click Close
program (or Close the program if you are using Visual C# Express). If you are using

Windows XP, a message box appears with the message “ReportOrders has encountered

a problem and needs to close. We are sorry for the inconvenience.” Click Don’t Send.

An error message containing the text “Data is Null. This method or property cannot be
called on Null values” appears in the console window.

The problem is that relational databases allow some columns to contain null values.
A null value is a bit like a null variable in C#: It doesn't have a value, but if you try to
read it, you get an error. In the Orders table, the ShippedDate column can contain a
null value if the order has not yet been shipped. You should also note that this is a
SqlINullValueException and consequently is not caught by the SqlException handler.

6. Press Enter to close the console window and return to Visual Studio 2008.

Closing Connections

In many older applications, you might notice a tendency to open a connection when
the application starts and not close the connection until the application terminates. The
rationale behind this strategy was that opening and closing database connections were
expensive and time-consuming operations. This strategy had an impact on the scalabil-
ity of applications because each user running the application had a connection to the
database open while the application was running, even if the user went to lunch for a
few hours. Most databases limit the number of concurrent connections that they allow.
(Sometimes this is because of licensing, but usually it's because each connection con-
sumes resources on the database server that are not infinite.) Eventually, the database
would hit a limit on the number of users that could operate concurrently.

Most .NET Framework data providers (including the SQL Server provider) implement
connection pooling. Database connections are created and held in a pool. When an
application requires a connection, the data access provider extracts the next available
connection from the pool. When the application closes the connection, it is returned
to the pool and made available for the next application that wants a connection. This
means that opening and closing database connections are no longer expensive op-
erations. Closing a connection does not disconnect from the database; it just returns
the connection to the pool. Opening a connection is simply a matter of obtaining

an already-open connection from the pool. Therefore, you should not hold on to
connections longer than you need to—open a connection when you need it, and close
it as soon as you have finished with it.

Chapter 25 Querying Information in a Database 511

You should note that the ExecuteReader method of the Sg/Command class,

which creates a Sq/DataReader, is overloaded. You can specify a System.Data.
CommandBehavior parameter that automatically closes the connection used by the
SglDataReader when the Sqg/DataReader is closed, like this:

SqlDataReader dataReader =
dataCommand. ExecuteReader (System.Data.CommandBehavior.CloseConnection);

When you read the data from the Sg/DataReader object, you should check that the
data you are reading is not null. You'll see how to do this next.

Handle null database values

1. In the Main method, change the code in the body of the while loop to contain an if ...
else block, as shown here in bold type:

while (dataReader.Read())

{
int orderId = dataReader.GetInt32(0);
if (dataReader.IsDBNull(2))
{
Console.WriteLine(“Order {0} not yet shipped\n\n”, orderId);
}
else
{
DateTime orderDate = dataReader.GetDateTime(l);
DateTime shipDate = dataReader.GetDateTime(2);
string shipName = dataReader.GetString(3);
string shipAddress = dataReader.GetString(4);
string shipCity = dataReader.GetString(5);
string shipCountry = dataReader.GetString(6);
Console.WriteLine(
“Order {0}\nPlaced {1}\nShipped{2}\n” +
“To Address {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
shipDate, shipName, shipAddress, shipCity, shipCountry);
}
}

The if statement uses the IsDBNull method to determine whether the ShippedDate
column (column 2 in the table) is null. If it is null, no attempt is made to fetch it (or
any of the other columns, which should also be null if there is no ShippedDate value);
otherwise, the columns are read and printed as before.

2. Build and run the application again.
3. Type BONAP for the customer ID when prompted.

This time you do not get any errors, but you receive a list of orders that have not yet
been shipped.

4. When the application finishes, press Enter and return to Visual Studio 2008.

512 PartV Managing Data

Querying a Database by Using DLINQ

In Chapter 20, “Querying In-Memory Data by Using Query Expressions,” you saw how to

use LINQ to examine the contents of enumerable collections held in memory. LINQ pro-
vides query expressions, which use SQL-like syntax for performing queries and generating

a result set that you can then step through. It should come as no surprise that you can use

an extended form of LINQ, called DLINQ, for querying and manipulating the contents of

a database. DLINQ is built on top of ADO.NET. DLINQ provides a high level of abstraction,
removing the need for you to worry about the details of constructing an ADO.NET Command
object, iterating through a result set returned by a DataReader object, or fetching data
column by column by using the various GetXXX methods.

Defining an Entity Class

You saw in Chapter 20 that using LINQ requires the objects that you are querying be
enumerable; they must be collections that implement the /Enumerable interface. DLINQ can
create its own enumerable collections of objects based on classes you define and that map
directly to tables in a database. These classes are called entity classes. When you connect to
a database and perform a query, DLINQ can retrieve the data identified by your query and
create an instance of an entity class for each row fetched.

The best way to explain DLINQ is to see an example. The Products table in the Northwind
database contains columns that contain information about the different aspects of the vari-
ous products that Northwind Traders sells. The part of the instnwnd.sql script that you ran in
the first exercise in this chapter contains a CREATE TABLE statement that looks similar to this
(some of the columns, constraints, and other details have been omitted):

CREATE TABLE “Products” (
“ProductID” “int” NOT NULL ,
“ProductName” nvarchar (40) NOT NULL ,
“SupplierID” “int” NULL ,
“UnitPrice” “money” NULL,
CONSTRAINT “PK_Products” PRIMARY KEY CLUSTERED (“ProductID”),
CONSTRAINT “FK_Products_Suppliers” FOREIGN KEY (“SupplierID”)
REFERENCES “dbo”.”Suppliers” (“SupplierID”)
)

You can define an entity class that corresponds to the Products table like this:

[TabTe(Name = “Products”)]
public class Product

{
[CoTumn(IsPrimaryKey = true, CanBeNull = false)]
public int ProductID { get; set; }

[Column(CanBeNull = false)]
public string ProductName { get; set; }

Chapter 25 Querying Information in a Database 513

[CoTumn]
pubTlic int? SupplierID { get; set; }

[Column(DbType = “money”)]
public decimal? UnitPrice { get; set; }

3

The Product class contains a property for each of the columns in which you are interested in
the Products table. You don't have to specify every column from the underlying table, but
any columns that you omit will not be retrieved when you execute a query based on this
entity class. The important points to note are the Table and Column attributes.

The Table attribute identifies this class as an entity class. The Name parameter specifies the
name of the corresponding table in the database. If you omit the Name parameter, DLINQ
assumes that the entity class name is the same as the name of the corresponding table in the
database.

The Column attribute describes how a column in the Products table maps to a property in the
Product class. The Column attribute can take a number of parameters. The ones shown in this
example and described in the following list are the most common:

B The IsPrimaryKey parameter specifies that the property makes up part of the primary
key. (If the table has a composite primary key spanning multiple columns, you should
specify the IsPrimaryKey parameter for each corresponding property in the entity class.)

B The DbType parameter specifies the type of the underlying column in the database.
In many cases, DLINQ can detect and convert data in a column in the database to the
type of the corresponding property in the entity class, but in some situations you need
to specify the data type mapping yourself. For example, the UnitPrice column in the
Products table uses the SQL Server money type. The entity class specifies the corre-
sponding property as a decimal value.

= Note The default mapping of money data in SQL Server is to the decimal type in an entity
class, so the DbType parameter shown here is actually redundant. However, | wanted to
show you the syntax.

B The CanBeNull parameter indicates whether the column in the database can contain a
null value. The default value for the CanBeNull parameter is true. Notice that the two
properties in the Product table that correspond to columns that permit null values in
the database (SupplierlD and UnitPrice) are defined as nullable types in the entity class.

Part V. Managing Data

Note You can also use DLINQ to create new databases and tables based on the definitions of
your entity classes by using the CreateDatabase method of the DataContext object. In the cur-
rent version of DLINQ, the part of the library that creates tables uses the definition of the DbType
parameter to specify whether a column should allow null values. If you are using DLINQ to create
a new database, you should specify the nullability of each column in each table in the DbType
parameter, like this:

[CoTumn(DbType = “NVarChar(40) NOT NULL”, CanBeNull = false)]
public string ProductName { get; set; }

[CoTumn(DbType = “Int NULL”, CanBeNull = true)]
public int? SupplierID { get; set; }

Like the Table attribute, the Column attribute provides a Name parameter that you can use
to specify the name of the underlying column in the database. If you omit this parameter,
DLINQ assumes that the name of the column is the same as the name of the property in the
entity class.

Creating and Running a DLINQ Query

Having defined an entity class, you can use it to fetch and display data from the Products
table. The following code shows the basic steps for doing this:

DataContext db = new DataContext(“Integrated Security=true;” +
“Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

Table<Product> products = db.GetTable<Product>();
var productsQuery = from p in products

select p;

foreach (var product in productsQuery)

{

Console.WriteLine(“ID: {0}, Name: {1}, Supplier: {2}, Price: {3:C}”,
product.ProductID, product.ProductName,
product.SupplierID, product.UnitPrice);

}

Note Remember that the keywords from, in, and select in this context are C# identifiers. You
must type them in lowercase.

The DataContext class is responsible for managing the relationship between your entity
classes and the tables in the database. You use it to establish a connection to the database
and create collections of the entity classes. The DataContext constructor expects a connec-
tion string as a parameter, specifying the database that you want to use. This connection
string is exactly the same as the connection string that you would use when connecting

Chapter 25 Querying Information in a Database 515

through an ADO.NET Connection object. (The DataContext class actually creates an ADO.NET
connection behind the scenes.)

The generic GetTable<TEntity> method of the DataContext class expects an entity class as its
TEntity type parameter. This method constructs an enumerable collection based on this type
and returns the collection as a Table<TEntity> type. You can perform DLINQ queries over this
collection. The query shown in this example simply retrieves every object from the Products
table.

Note If you need to recap your knowledge of LINQ query expressions, turn back to Chapter 20.

The foreach statement iterates through the results of this query and displays the details of
each product. The following image shows the results of running this code. (The prices shown
are per case, not per individual item.)

B Chindowshsystem3diemd,exe

: Chai, Supplier:
H Chqng. Supplie

.0d
: Chef Anton Cajun Seasoning. ier o : E22 a8
: Chef Ant ier = £21.

: Grandma’ P r » ier E25 an

: Uncle Bobh’'s Organic Dried i 3, Pl u:e: £38.88
: Northwoods Cranherry Sau ier: 3, Price: £40.88
H Hr‘}u Kohe leu, Supplle 1]

I

-8a
Price: £38.80
Konbu,. Supplier
Tofu,. Supplie
Genen Shouyu, Supplie
Pavlova, Supplier:
Alice Mutton. H
Carnarvon Tigers. Suppl
Teatime Chuculate Biscuit

The DataContext object controls the database connection automatically; it opens the
connection immediately prior to fetching the first row of data in the foreach statement and
then closes the connection after the last row has been retrieved.

The DLINQ query shown in the preceding example retrieves every column for every row
in the Products table. In this case, you can actually iterate through the products collection
directly, like this:

Table<Product> products = db.GetTable<Product>(Q);

foreach (Product product in products)

{
}

When the foreach statement runs, the DataContext object constructs a SQL SELECT state-
ment that simply retrieves all the data from the Products table. If you want to retrieve a
single row in the Products table, you can call the Single method of the Products entity class.

516

Part V. Managing Data

Single is an extension method that itself takes a method that identifies the row you want

to find and returns this row as an instance of the entity class (as opposed to a collection of
rows in a Table collection). You can specify the method parameter as a lambda expression.
If the lambda expression does not identify exactly one row, the Single method returns an
InvalidOperationException. The following code example queries the Northwind database for
the product with the ProductID value of 27. The value returned is an instance of the Product
class, and the Console.WriteLine statement prints the name of the product. As before, the
database connection is opened and closed automatically by the DataContext object.

Product singleProduct = products.Single(p => p.ProductID == 27);
Console.WriteLine(“Name: {0}”, singleProduct.ProductName);

Deferred and Immediate Fetching

An important point to emphasize is that by default, DLINQ retrieves the data from the
database only when you request it and not when you define a DLINQ query or create a Table
collection. This is known as deferred fetching. In the example shown earlier that displays

all of the products from the Products table, the productsQuery collection is populated only
when the foreach loop runs. This mode of operation matches that of LINQ when querying
in-memory objects; you will always see the most up-to-date version of the data, even if the
data changes after you have run the statement that creates the productsQuery enumerable
collection.

When the foreach loop starts, DLINQ creates and runs a SQL SELECT statement derived from
the DLINQ query to create an ADO.NET DataReader object. Each iteration of the foreach loop
performs the necessary GetXXX methods to fetch the data for that row. After the final row
has been fetched and processed by the foreach loop, DLINQ closes the database connection.

Deferred fetching ensures that only the data an application actually uses is retrieved from
the database. However, if you are accessing a database running on a remote instance of SQL
Server, fetching data row by row does not make the best use of network bandwidth. In this
scenario, you can fetch and cache all the data in a single network request by forcing immedi-
ate evaluation of the DLINQ query. You can do this by calling the ToList or ToArray extension
methods, which fetch the data into a list or array when you define the DLINQ query, like this:

var productsQuery = from p in products.TolList()
select p;

In this code example, productsQuery is now an enumerable list, populated with information
from the Products table. When you iterate over the data, DLINQ retrieves it from this list
rather than sending fetch requests to the database.

Chapter 25 Querying Information in a Database 517

Joining Tables and Creating Relationships

DLINQ supports the join query operator for combining and retrieving related data held in
multiple tables. For example, the Products table in the Northwind database holds the ID of
the supplier for each product. If you want to know the name of each supplier, you have to
query the Suppliers table. The Suppliers table contains the CompanyName column, which
specifies the name of the supplier company, and the ContactName column, which con-
tains the name of the person in the supplier company that handles orders from Northwind
Traders. You can define an entity class containing the relevant supplier information like this
(the SupplierName column in the database is mandatory, but the ContactName allows null
values):

[Table(Name = “Suppliers”)]
public class Supplier

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int SupplierID { get; set; }

[CoTumn(CanBeNull = false)]
pubTlic string CompanyName { get; set; }

[CoTumn]
pubTlic string ContactName { get; set; }
}

You can then instantiate Table<Product> and Table<Supplier> collections and define a DLINQ
query to join these tables together, like this:

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();
Table<Supplier> suppliers = db.GetTable<Supplier>Q);
var productsAndSuppliers = from p in products
join s in suppliers
on p.SupplierID equals s.SupplierID
select new { p.ProductName, s.CompanyName, s.ContactName };

When you iterate through the productsAndSuppliers collection, DLINQ will execute a SQL
SELECT statement that joins the Products and Suppliers tables in the database over the
SupplierID column in both tables and fetches the data.

However, with DLINQ you can specify the relationships between tables as part of the
definition of the entity classes. DLINQ can then fetch the supplier information for each
product automatically without requiring that you code a potentially complex and error-prone
Join statement. Returning to the products and suppliers example, these tables have a many-
to-one relationship in the Northwind database; each product is supplied by a single supplier,
but a single supplier can supply several products. Phrasing this relationship slightly differ-
ently, a row in the Product table can reference a single row in the Suppliers table through the
SupplierID columns in both tables, but a row in the Suppliers table can reference a whole set

518

Part V. Managing Data

of rows in the Products table. DLINQ provides the EntityRef<TEntity> and EntitySet<TEntity>
generic types to model this type of relationship. Taking the Product entity class first, you
can define the “one” side of the relationship with the Supplier entity class by using the
EntityRef<Supplier> type, as shown here in bold type:

[TabTe(Name = “Products”)]
public class Product

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int ProductID { get; set; }

[CoTumn]
pubTlic int? SupplierID { get; set; }

private EntityRef<Supplier> supplier;
[Association(Storage = “supplier”, ThisKey = “SupplierID”, OtherKey = “SupplierID”)]
public Supplier Supplier

{
get { return this.supplier.Entity; }
set { this.supplier.Entity = value; }

}

The private supplier field is a reference to an instance of the Supplier entity class. The public
Supplier property provides access to this reference. The Association attribute specifies how
DLINQ locates and populates the data for this property. The Storage parameter identifies

the private field used to store the reference to the Supplier object. The ThisKey parameter
indicates which property in the Product entity class DLINQ should use to locate the Supplier
to reference for this product, and the OtherKey parameter specifies which property in the
Supplier table DLINQ should match against the value for the ThisKey parameter. In this exam-
ple, The Product and Supplier tables are joined across the SupplierlD property in both entities.

Note The Storage parameter is actually optional. If you specify it, DLINQ accesses the
corresponding data member directly when populating it rather than going through the set
accessor. The set accessor is required for applications that manually fill or change the entity
object referenced by the EntityRef<TEntity> property. Although the Storage parameter is actually
redundant in this example, it is recommended practice to include it.

The get accessor in the Supplier property returns a reference to the Supplier entity by using
the Entity property of the EntityRef<Supplier> type. The set accessor populates this property
with a reference to a Supplier entity.

Chapter 25 Querying Information in a Database 519

You can define the “many” side of the relationship in the Supplier class with the
EntitySet<Product> type, like this:

[Table(Name = “Suppliers”)]
public class Supplier

{
[CoTumn(IsPrimaryKey = true, CanBeNull = false)]
public int SupplierID { get; set; }

private EntitySet<Product> products = null;
[Association(Storage = “products”, OtherKey = “SupplierID”, ThisKey = “SupplierID”)]
public EntitySet<Product> Products

{
get { return this.products; }
set { this.products.Assign(value); }

Tip Itis conventional to use a singular noun for the name of an entity class and its properties.
The exception to this rule is that EntitySet<TEntity> properties typically take the plural form
because they represent a collection rather than a single entity.

This time, notice that the Storage parameter of the Association attribute specifies the private
EntitySet<Product> field. An EntitySet<TEntity> object holds a collection of references to en-
tities. The get accessor of the public Products property returns this collection. The set acces-
sor uses the Assign method of the EntitySet<Product> class to populate this collection.

So, by using the EntityRef<TEntity> and EntitySet<TEntity> types you can define properties
that can model a one-to-many relationship, but how do you actually fill these properties
with data? The answer is that DLINQ fills them for you when it fetches the data. The follow-
ing code creates an instance of the Table<Product> class and issues a DLINQ query to fetch
the details of all products. This code is similar to the first DLINQ example you saw earlier. The
difference is in the foreach loop that displays the data.

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>(Q);

var productsAndSuppliers = from p in products
select p;

foreach (var product in productsAndSuppliers)

{
Console.WriteLine(“Product {0} supplied by {1}”,
product.ProductName, product.Supplier.CompanyName) ;

520

Part V. Managing Data

The Console.WriteLine statement reads the value in the ProductName property of the product
entity as before, but it also accesses the Supplier entity and displays the CompanyName
property from this entity. If you run this code, the output looks like this:

Em Chwindowssystern32hemd.exe

-0l x|

Chartreuse vew supplied by Aux joyeux ecc astiques
Bos Grab Meat supplied by New England Seafood Cannery
s Mew England Clam Chowder supplied by New England Seafood Cannery
Singaporean Hokkien Fried Mee supplied by Leka Trading
Ipoh Coffee supplied by Leka Trading
Gula Malacca .,upp11e(l by Leka T1 adlng
Rogede sil hy
Spegesild d
Zaanse ki supplied by Zaan.,e Snoepfabriek
Chocolade pplied by Zaanse Snoepfabriek
Maxilaku supplied by Karkki Oy
Ualkoinen suklaa supplied hy Ral kki Oy
ManJ1mllp ried Apples supplied by G‘day Mate
supplied by G’day. Mate

supplied by G'day. Mate

lied by Ma Maison

supplied by Ma Maison
Gnocchi d1 nnnna flice supplied by Pasta Buttini s.».1.
Ravioli fAingelo supplied by Pasta Butti 1.
Escargots de Bourgogne supplied by E.,t:algn s Mouveaux
Raclette Courdavault "lll]l)lled hy Gal paturage

Product Camembert Pierrot sw

As the code fetches each Product entity, DLINQ executes a second, deferred, query to
retrieve the details of the supplier for that product so that it can populate the Supplier
property, based on the relationship specified by the Association attribute of this property in
the Product entity class.

When you have defined the Product and Supplier entities as having a one-to-many
relationship, similar logic applies if you execute a DLINQ query over the Table<Supplier>
collection, like this:

DataContext db = new DataContext(...);

Table<Supplier> suppliers = db.GetTable<Supplier>Q);

var suppliersAndProducts = from s in suppliers
select s;

foreach (var supplier in suppliersAndProducts)

{
Console.WriteLine(“Supplier name: {0}”, supplier.CompanyName);
Console.WriteLine(“Products supplied”);
foreach (var product in supplier.Products)
{
Console.WriteLine(“\t{0}”, product.ProductName);
}
Console.WriteLine();
}

In this case, when the foreach loop fetches a supplier, it runs a second query (again deferred)
to retrieve all the products for that supplier and populate the Products property. This time,
however, the property is a collection (an EntitySet<Product>), so you can code a nested

Chapter 25 Querying Information in a Database 521

foreach statement to iterate through the set, displaying the name of each product. The
output of this code looks like this:

B ChWind oweshsystern32hemd.exe B =13

Supplier name: Exotic Liguids
Products supplie

Chai

Chang

Aniseed Syrup

Supplier name: Hew Orleans Cajun Delights
Products supplie
Chef Anton’s Cajun Seasoning
Chef Anton’s Gumbo Mix
Louisiana Fiery Hot Pepper Sauce
Louwisiana Hot Spiced Okra

Supplier name: Grandma Kelly’s Homestead
Products supplied
Grandma's Boysenberry Spread
Uncle Bob's Organic Dried Pears
Northwoods Cranberry Sauce

Supplier name: Tokyo Traders
Products supplied
Mishi Kobe Miku

Ikura
Longlife Tofu

Deferred and Immediate Fetching Revisited

Earlier in this chapter, | mentioned that DLINQ defers fetching data until the data is actually
requested but that you could apply the ToList or ToArray extension method to retrieve data
immediately. This technique does not apply to data referenced as EntitySet<TEntity> or
EntityRef<TEntity> properties; even if you use TolList or ToArray, the data will still be fetched
only when accessed. If you want to force DLINQ to query and fetch referenced data immedi-
ately, you can set the LoadOptions property of the DataContext object as follows:

DataContext db = new DataContext(...);

Table<Supplier> suppliers = db.GetTable<Supplier>Q);

DatalLoadOptions loadOptions = new DatalLoadOptions();

ToadOptions.LoadWith<Supplier>(s => s.Products);

db.LoadOptions = ToadOptions;

var suppliersAndProducts = from s in suppliers
select s;

The DataloadOptions class provides the generic LoadWith method. By using this method,
you can specify whether an EntitySet<TEntity> property in an instance should be loaded
when the instance is populated. The parameter to the LoadWith method is another method,
which you can supply as a lambda expression. The example shown here causes the Products
property of each Supplier entity to be populated as soon as the data for each Product en-
tity is fetched rather than being deferred. If you specify the LoadOptions property of the
DataContext object together with the ToList or ToArray extension method of a Table collec-
tion, DLINQ will load the entire collection as well as the data for the referenced properties for
the entities in that collection into memory as soon as the DLINQ query is evaluated.

522 PartV Managing Data

Tip If you have several EntitySet<TEntity> properties, you can call the LoadWith method of the
same LoadOptions object several times, each time specifying the EntitySet<TEntity> to load.

Defining a Custom DataContext Class

The DataContext class provides functionality for managing databases and database connec-
tions, creating entity classes, and executing commands to retrieve and update data in a da-
tabase. Although you can use the raw DataContext class provided with the .NET Framework,
it is better practice to use inheritance and define your own specialized version that declares
the various Table<TEntity> collections as public members. For example, here is a special-
ized DataContext class that exposes the Products and Suppliers Table collections as public
members:

public class Northwind : DataContext

{
pubTlic Table<Product> Products;
pubTlic TabTle<Supplier> Suppliers;
public Northwind(string connectionInfo) : base(connectionInfo)
{
}
}

Notice that the Northwind class also provides a constructor that takes a connection string as
a parameter. You can create a new instance of the Northwind class and then define and run
DLINQ queries over the Table collection classes it exposes like this:

Northwind nwindDB = new Northwind(...);

var suppliersQuery = from s in nwindDB.Suppliers
select s;

foreach (var supplier in suppliersQuery)

{
3

This practice makes your code easier to maintain, especially if you are retrieving data from
multiple databases. Using an ordinary DataContext object, you can instantiate any entity class
by using the GetTable method, regardless of the database to which the DataContext object
connects. You find out that you have used the wrong DataContext object and have con-
nected to the wrong database only at run time, when you try to retrieve data. With a custom
DataContext class, you reference the Table collections through the DataContext object. (The
base DataContext constructor uses a mechanism called reflection to examine its members,
and it automatically instantiates any members that are Table collections—the details of how

Chapter 25 Querying Information in a Database 523

reflection works are outside the scope of this book.) It is obvious to which database you need
to connect to retrieve data for a specific table; if IntelliSense does not display your table
when you define the DLINQ query, you have picked the wrong DataContext class, and your
code will not compile.

Using DLINQ to Query Order Information

In the following exercise, you will write a version of the console application that you
developed in the preceding exercise that prompts the user for a customer ID and displays the
details of any orders placed by that customer. You will use DLINQ to retrieve the data. You
will then be able to compare DLINQ with the equivalent code written by using ADO.NET.

Define the Order entity class

1.

Using Visual Studio 2008, create a new project called DLINQOrders by using the
Console Application template. Save it in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 25 folder under your Documents folder, and then click OK.

In Solution Explorer, change the name of the file Program.cs to DLINQReport.cs. In the
Microsoft Visual Studio message, click Yes to change all references of the Program class
to DLINQReport.

On the Project menu, click Add Reference. In the Add Reference dialog box, click the
.NET tab, select the System.Data.Ling assembly, and then click OK.

This assembly holds the DLINQ types and attributes.

In the Code and Text Editor window, add the following using statements to the list at
the top of the file:

using System.Data.Ling;
using System.Data.Ling.Mapping;
using System.Data.SqlClient;

. Add the Order entity class to the DLINQReport.cs file after the DLINQReport class, as

follows:

[TabTe(Name = “Orders”)]

public class Order

{

}

The table is called Orders in the Northwind database. Remember that it is common
practice to use the singular noun for the name of an entity class because an entity ob-
ject represents one row from the database.

524

Part V. Managing Data

6.

Add the property shown here in bold type to the Order class:

[TabTe(Name = “Orders”)]
public class Order

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int OrderID { get; set; }

}

The OrderID column is the primary key for this table in the Northwind database.

Add the following properties shown in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order

{
[Column]
public string CustomerID { get; set; }

[Column]
public DateTime? OrderDate { get; set; }

[CoTlumn]
public DateTime? ShippedDate { get; set; }

[CoTlumn]
public string ShipName { get; set; }

[CoTlumn]
public string ShipAddress { get; set; }

[CoTlumn]
public string ShipCity { get; set; }

[CoTlumn]

public string ShipCountry { get; set; }
}
These properties hold the customer ID, order date, and shipping information for an or-
der. In the database, all of these columns allow null values, so it is important to use the
nullable version of the DateTime type for the OrderDate and ShippedDate properties
(string is a reference type that automatically allows null values). Notice that DLINQ au-
tomatically maps the SQL Server NVarChar type to the .NET Framework string type and
the SQL Server DateTime type to the .NET Framework DateTime type.

Add the following Northwind class to the DLINQReport.cs file after the Order entity
class:

public class Northwind : DataContext

{
public Table<Order> Orders;

Chapter 25 Querying Information in a Database 525

public Northwind(string connectionInfo) : base (connectionInfo)

{

3
3
The Northwind class is a DataContext class that exposes a Table property based on
the Order entity class. In the next exercise, you will use this specialized version of the

DataContext class to access the Orders table in the database.

Retrieve order information by using a DLINQ query

1. In the Main method of the DLINQReport class, add the statement shown here in bold
type, which creates a Northwind object. Be sure to replace YourComputer with the
name of your computer:

static void Main(string[] args)
{
Northwind northwindDB = new Northwind(“Integrated Security=true;” +
“Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

3

The connection string specified here is exactly the same as in the earlier exercise. The
northwindDB object uses this string to connect to the Northwind database.

2. After the variable declaration, add a try/catch block to the Main method:

static void Main(string[] args)

{
try
{
// You will add your code here in a moment
}
catch(SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

As when using ordinary ADO.NET code, DLINQ raises a Sg/Exception if an error occurs
when accessing a SQL Server database.

3. Replace the comment in the try block with the following code shown in bold type:

try

{
Console.Write(“Please enter a customer ID (5 characters): “);
string customerId = Console.ReadLine();

}

These statements prompt the user for a customer ID and save the user’s response in the
string variable customerld.

526

Part V. Managing Data

4.

Type the statement shown here in bold type after the code you just entered:

try
{

var ordersQuery = from o in northwindDB.Orders
where String.Equals(o.CustomerID, customerId)
select o;

}

This statement defines the DLINQ query that will retrieve the orders for the specified
customer.

. Add the foreach statement and if...else block shown here in bold type after the code

you added in the preceding step:

try
{
foreach (var order in ordersQuery)
{
if (order.ShippedDate == null)
{
Console.WriteLine(“Order {0} not yet shipped\n\n”, order.OrderID);
}
else
{
// Display the order details
}
}
}

The foreach statement iterates through the orders for the customer. If the value in the
ShippedDate column in the database is null, the corresponding property in the Order
entity object is also null, and then the if statement outputs a suitable message.

Replace the comment in the else part of the if statement you added in the preceding
step with the code shown here in bold type:

if (order.ShippedDate == null)
{

}

else

{

Console.WriteLine(“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +

“To Address: {3}\n{4}\n{5}\n{6}\n\n”, order.OrderID,
order.OrderDate, order.ShippedDate, order.ShipName,
order.ShipAddress, order.ShipCity,
order.ShipCountry);

Chapter 25 Querying Information in a Database 527
7. On the Debug menu, click Start Without Debugging to build and run the application.

8. In the console window displaying the message “Please enter a customer ID (5 charac-
ters):”, type VINET.

The application should display a list of orders for this customer. When the application
has finished, press Enter to return to Visual Studio 2008.

9. Run the application again. This time type BONAP when prompted for a customer ID.

The final order for this customer has not yet shipped and contains a null value for the
ShippedDate column. Verify that the application detects and handles this null value.
When the application has finished, press Enter to return to Visual Studio 2008.

You have now seen the basic elements that DLINQ provides for querying information from a
database. DLINQ has many more features that you can employ in your applications, includ-
ing the ability to modify data and update a database. You will look briefly at some of these
aspects of DLINQ in the next chapter.

B |f you want to continue to the next chapter
Keep Visual Studio 2008 running, and turn to Chapter 26.
B |f you want to exit Visual Studio 2008 now

On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using
Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save
the project.

Chapter 25 Quick Reference

To Do this

Connect to a SQL Server data- Create a Sq/Connection object, set its ConnectionString property

base by using ADO.NET with details specifying the database to use, and call the Open
method.

Create and execute a database Create a Sq/Command object. Set its Connection property to a

query by using ADO.NET valid Sg/Connection object. Set its CommandText property to a

valid SQL SELECT statement. Call the ExecuteReader method to
run the query and create a Sq/DataReader object.

Fetch data by using an ADO.NET Ensure that the data is not null by using the IsDBNull method. If
SglDataReader object the data is not null, use the appropriate GetXXX method (such
as GetString or GetInt32) to retrieve the data.

528 PartV Managing Data

Define an entity class

Create and execute a query by
using DLINQ

Define a class with public properties for each column. Prefix the
class definition with the Table attribute, specifying the name of
the table in the underlying database. Prefix each property with
the Column attribute, and specify parameters indicating the
name, type, and nullability of the corresponding column in the
database.

Create a DataContext variable, and specify a connection string
for the database. Create a Table collection variable based on
the entity class corresponding to the table you want to query.
Define a DLINQ query that identifies the data to be retrieved
from the database and returns an enumerable collection of en-
tities. Iterate through the enumerable collection to retrieve the
data for each row and process the results.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Finding Your Best Starting Point in This Book
	Conventions and Features in This Book
	Conventions
	Other Features

	System Requirements
	Code Samples
	Installing the Code Samples
	Using the Code Samples

	Support for This Book
	Questions and Comments

	Chapter 1: Welcome to C#
	Beginning Programming with the Visual Studio 2008 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Chapter 1 Quick Reference

	Chapter 25: Querying Information in a Database
	Querying a Database by Using ADO.NET
	The Northwind Database
	Creating the Database
	Using ADO.NET to Query Order Information

	Querying a Database by Using DLINQ
	Defining an Entity Class
	Creating and Running a DLINQ Query
	Deferred and Immediate Fetching
	Joining Tables and Creating Relationships
	Deferred and Immediate Fetching Revisited
	Defining a Custom DataContext Class
	Using DLINQ to Query Order Information

	Chapter 25 Quick Reference

