

U.S.A.	 $44.99
Canada $51.99

[Recommended]

Software Engineering/Testing

ISBN: 978-0-7356-2425-2

H
O

W
 W

E TEST SO
FTW

ARE
AT M

ICRO
SO

FT
H

O
W

 W
E TEST SO

FTW
ARE

AT M
ICRO

SO
FT

It may surprise you to learn that Microsoft employs as many software testers as developers. Less surprising
is the emphasis the company places on the testing discipline—and its role in managing
quality across a diverse, 150+ product portfolio.

This book—written by three of Microsoft’s most prominent test professionals—shares the best practices,
tools, and systems used by the company’s 9,000-strong corps of testers. Learn how your colleagues at
Microsoft design and manage testing, their approach to training and career
development, and what challenges they see ahead. Most important, you’ll
get practical insights you can apply for better results in your organization.

Discover how to:

	 	 Design effective tests and run them throughout the product lifecycle
	 	 Minimize cost and risk with functional tests, and know when to
		 apply structural techniques
	 	 Measure code complexity to identify bugs and potential 			
		 maintenance issues
	 	 Use models to generate test cases, surface unexpected application 	
		 behavior, and manage risk
	 	 Know when to employ automated tests, design them for long-term 	
		 use, and plug into an automation infrastructure
	 	 Review the hallmarks of great testers—and the tools they use to 		
	 	 run tests, probe systems, and track progress efficiently
	 	 Explore the challenges of testing services vs. shrink-wrapped software

About the Authors
Alan Page is Director of
Test Excellence where he
oversees technical training
and provides consulting

for Microsoft testers. He’s one of
Microsoft’s first Test Architects and has
worked on various versions
of Windows® and Windows CE.

Ken Johnston is Group
Manager for the Microsoft®
Office Internet Platform
and Operations team. He

is a former Test Lead, Test Manager,
and Director of Test Excellence.

Bj Rollison is a Test
Architect on the
Engineering Excellence
team. Rollison worked

on numerous product releases and
later became Director of Test. He’s also
a trade-journal writer and conference
speaker, and teaches testing at the
university level.

Page
Johnston
Rollison

B E S T P R A C T I C E S

“	A marvelous book—a must for everyone involved in software testing. 	
	 Find out Microsoft’s approaches to software testing and their view
	 of the future of testing.”

—Peter Zimmerer, Principal Engineer, Siemens AG

microsoft.com/mspress

BEST
PRACTICES

“	An exciting combination: Great testers telling the story of testing at a company with 		
some of the hardest testing problems in the world.”

            —James Whittaker, Author, How to Break Software

“	The value that Microsoft places on both testing and testers is astonishing. Sharing 		
	 both successes and challenges, there are great lessons for all testing organizations.”

            —Lee Copeland, Author, A Practitioner’s Guide to Software Test Design

HOW WE TEST

 AT MICROSOFT
SOFTWARE

 AT MICROSOFT
SOFTWARE
HOW WE TEST

Alan Page, Ken Johnston, Bj Rollison

9780735624252_cov_native.indd 1 5/22/14 12:18 PM

How We Test
Software at Microsoft®

Alan Page
Ken Johnston

Bj Rollison

A01T624252.indd 1 11/7/2008 4:02:24 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940534

Printed and bound in the United States of America.

ISBN: 9780735624252

Second Printing: July 2014

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Accessibility, Active Directory, ActiveX, Aero, Excel, Expression, Halo, Hotmail,
Hyper-V, Internet Explorer, Microsoft Surface, MS, MSDN, MS-DOS, MSN, OneNote, Outlook, PowerPoint, SharePoint,
SQL Server, Virtual Earth, Visio, Visual Basic, Visual Studio, Voodoo Vince, Win32, Windows, Windows Live, Windows
Media, Windows Mobile, Windows NT, Windows Server, Windows Vista, Xbox, Xbox 360, and Zune are either registered
trademarks or trademarks of the Microsoft group of companies. Other product and company names mentioned herein may
be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Lynn Finnel
Editorial Production: Waypoint Press
Cover Illustration: John Hersey

Body Part No. X14-71546

A02L624252.indd iiA02L624252.indd ii 7/14/14 11:15 AM7/14/14 11:15 AM

To my wife, Christina, and our children, Cole and Winona, who sacrificed their time with me

so I could write this book; and for my parents, Don and Arlene, for their constant support,

and for giving me a sanctuary to write.

—Alan Page

To my children, David and Grace, for allowing their dad the time to write; and to my wife,

Karen, who while I was working on a presentation for a testing conference first suggested,

“Why don’t you just call it ‘How we test at Microsoft.’” Without those words (and Alan

leading the way), we would not have started or finished this project.

—Ken Johnston

To my mother and father for their unending love, sage wisdom, and especially their patience.

I also want to thank my 6-year-old daughter Elizabeth whose incessant curiosity to learn new

things and persistent determination to conquer diverse challenges has taught me that the

only problems we cannot overcome are those for which we have not yet found a solution.

—Bj Rollison

This book is dedicated to the test engineers at Microsoft who devote themselves to the most

challenging endeavor in the software process, and who continue to mature the discipline

by breaking through traditional barriers and roles in order to help ship leading-edge, high-

quality software to our customers. For us, it is truly a privilege to mentor and work alongside

so many professional testers at Microsoft, because through our interactions with them we

also continue to learn more about software testing.

A03D624252.indd 3 11/7/2008 4:04:33 PM

A03D624252.indd 4 11/7/2008 4:04:33 PM

 v

Contents at a Glance

Part I About Microsoft
 1 Software Engineering at Microsoft . 3
 2 Software Test Engineers at Microsoft . 21
 3 Engineering Life Cycles . 41

Part II About Testing
 4 A Practical Approach to Test Case Design 61
 5 Functional Testing Techniques . 73
 6 Structural Testing Techniques . 115
 7 Analyzing Risk with Code Complexity . 145
 8 Model-Based Testing . 159

Part III Test Tools and Systems
 9 Managing Bugs and Test Cases . 187
 10 Test Automation . 219
 11 Non-Functional Testing . 249
 12 Other Tools . 273
 13 Customer Feedback Systems . 297
 14 Testing Software Plus Services . 317

Part IV About the Future
 15 Solving Tomorrow’s Problems Today . 365
 16 Building the Future . 389

A03G624252.indd 5 11/7/2008 4:03:02 PM

A03G624252.indd 6 11/7/2008 4:03:02 PM

 vii

Table of Contents
Acknowledgments . xv

Introduction . xvii

Part I About Microsoft

 1 Software Engineering at Microsoft . 3
The Microsoft Vision, Values and Why We “Love This Company!” 3

Microsoft Is a Big Software Engineering Company . 7

Developing Big and Efficient Businesses . 8

The Shared Team Model . 9

Working Small in a Big Company . 11

Employing Many Types of Engineers . 14

The Engineering Disciplines . 15

Being a Global Software Development Company . 17

Summary . 20

 2 Software Test Engineers at Microsoft . 21
What’s in a Name? . 23

Testers at Microsoft Have Not Always Been SDETs . 24

I Need More Testers and I Need Them Now! . 27

Campus Recruiting . 29

Industry Recruiting . 31

Learning How to Be a Microsoft SDET . 32

The Engineering Career at Microsoft . 33

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A04C624252.indd 7 11/11/2008 11:09:50 PM

viii Table of Contents

Career Paths in the Test Discipline . 34

The Test Architect . 34

The IC Tester . 35

Becoming a Manager is Not a Promotion . 36

Test Managers . 38

Summary . 39

 3 Engineering Life Cycles . 41
Software Engineering at Microsoft . 41

Traditional Software Engineering Models . 42

Milestones . 45

Agile at Microsoft . 48

Putting It All Together . 50

Process Improvement . 51

Formal Process Improvement Systems at Microsoft 52

Shipping Software from the War Room . 54

Mandatory Practices . 56

Summary: Completing the Meal . 57

Part II About Testing

 4 A Practical Approach to Test Case Design 61
Practicing Good Software Design and Test Design . 61

Using Test Patterns . 62

Estimating Test Time . 64

Starting with Testing . 65

Ask Questions . 65

Have a Test Strategy . 66

Thinking About Testability . 67

Test Design Specifications . 68

Testing the Good and the Bad . 69

Other Factors to Consider in Test Case Design . 70

Black Box, White Box, and Gray Box . 71

Exploratory Testing at Microsoft . 71

Summary . 72

A04C624252.indd 8 11/11/2008 11:09:50 PM

 Table of Contents ix

 5 Functional Testing Techniques . 73
The Need for Functional Testing . 74

Equivalence Class Partitioning . 78

Decomposing Variable Data . 80

Equivalence Class Partitioning in Action . 83

Analyzing Parameter Subsets . 84

The ECP Tests . 86

Summary of Equivalence Class Partitioning . 89

Boundary Value Analysis . 90

Defining Boundary Tests . 92

A New Formula for Boundary Value Analysis . 93

Hidden Boundaries . 97

Summary of Boundary Value Analysis . 100

Combinatorial Analysis . 100

Combinatorial Testing Approaches . 101

Combinatorial Analysis in Practice . 104

Effectiveness of Combinatorial Analysis . 111

Summary of Combinatorial Analysis . 113

Summary . 113

 6 Structural Testing Techniques . 115
Block Testing . 118

Summary of Block Testing . 126

Decision Testing . 126

Summary of Decision Testing . 128

Condition Testing . 129

Summary of Condition Testing . 132

Basis Path Testing . 132

Summary of Basis Path Testing . 142

Summary . 142

 7 Analyzing Risk with Code Complexity . 145
Risky Business . 145

A Complex Problem . 146

Counting Lines of Code . 148

Measuring Cyclomatic Complexity . 149

Halstead Metrics . 152

Object-Oriented Metrics . 153

A04C624252.indd 9 11/11/2008 11:09:50 PM

x Table of Contents

High Cyclomatic Complexity Doesn’t Necessarily Mean “Buggy” 155

What to Do with Complexity Metrics . 157

Summary . 158

 8 Model-Based Testing . 159
Modeling Basics . 160

Testing with Models . 161

Designing a Model . 161

Modeling Software . 162

Building a Finite State Model . 166

Automating Models . 166

Modeling Without Testing . 172

Bayesian Graphical Modeling . 172

Petri Nets . 173

Model-Based Testing Tools at Microsoft . 174

Spec Explorer . 174

A Language and Engine . 179

Modeling Tips . 182

Summary . 183

Recommended Reading and Tools . 183

Part III Test Tools and Systems

 9 Managing Bugs and Test Cases . 187
The Bug Workflow . 188

Bug Tracking . 188

A Bug’s Life . 189

Attributes of a Bug Tracking System . 190

Why Write a Bug Report? . 191

Anatomy of a Bug Report . 192

Bug Triage . 196

Common Mistakes in Bug Reports . 198

Using the Data . 201

How Not to Use the Data: Bugs as Performance Metrics 204

Bug Bars . 205

Test Case Management . 209

What Is a Test Case? . 209

The Value of a Test Case . 211

Anatomy of a Test Case . 212

Test Case Mistakes . 213

A04C624252.indd 10 11/11/2008 11:09:51 PM

 Table of Contents xi

Managing Test Cases . 215

Cases and Points: Counting Test Cases . 215

Tracking and Interpreting the Test Results . 217

Summary . 218

 10 Test Automation . 219
The Value of Automation . 219

To Automate or Not to Automate, That Is the Question 220

User Interface Automation . 223

What’s in a Test? . 228

SEARCH at Microsoft . 232

Setup . 232

Execution . 234

Analysis . 240

Reporting . 243

Cleanup . 243

Help . 244

Run, Automation, Run! . 245

Putting It All Together . 245

Large-Scale Test Automation . 246

Common Automation Mistakes . 247

Summary . 248

 11 Non-Functional Testing . 249
Beyond Functionality . 249

Testing the “ilities” . 250

Performance Testing . 252

How Do You Measure Performance? . 253

Stress Testing . 255

Distributed Stress Testing . 257

Distributed Stress Architecture . 258

Attributes of Multiclient Stress Tests . 260

Compatibility Testing . 261

Application Libraries . 261

Application Verifier . 262

Eating Our Dogfood . 264

Accessibility Testing . 265

Accessibility Personas . 266

Testing for Accessibility . 267

Testing Tools for Microsoft Active Accessibility . 268

A04C624252.indd 11 11/11/2008 11:09:51 PM

xii Table of Contents

Usability Testing . 269

Security Testing . 270

Threat Modeling . 271

Fuzz Testing . 271

Summary . 272

 12 Other Tools . 273
Code Churn . 273

Keeping It Under Control . 275

Tracking Changes . 275

What Changed? . 276

Why Did It Change? . 278

A Home for Source Control . 279

Build It . 281

The Daily Build . 281

Static Analysis . 288

Native Code Analysis . 288

Managed Code Analysis . 290

Just Another Tool . 291

Test Code Analysis . 292

Test Code Is Product Code . 293

Even More Tools . 294

Tools for Unique Problems . 294

Tools for Everyone . 294

Summary . 295

 13 Customer Feedback Systems . 297
Testing and Quality . 297

Testing Provides Information . 297

Quality Perception . 298

Customers to the Rescue . 299

Games, Too! . 303

Windows Error Reporting . 304

The Way We WER . 305

Filling the Buckets . 307

Emptying the Buckets . 307

Test and WER . 309

A04C624252.indd 12 11/11/2008 11:09:51 PM

 Table of Contents xiii

Smile and Microsoft Smiles with You . 309

Send a Smile Impact . 311

Connecting with Customers . 312

Summary . 315

 14 Testing Software Plus Services . 317
Two Parts: About Services and Test Techniques . 318

Part 1: About Services . 318

The Microsoft Services Strategy . 318

Shifting to Internet Services as the Focus . 319

Growing from Large Scale to Mega Scale . 320

Power Is the Bottleneck to Growth . 323

Services vs . Packaged Product . 325

Moving from Stand-Alone to Layered Services . 327

Part 2 Testing Software Plus Services . 329

Waves of Innovation . 329

Designing the Right S+S and Services Test Approach 330

Testing Techniques for S+S . 337

Several Other Critical Thoughts on S+S . 355

Continuous Quality Improvement Program . 355

Common Bugs I’ve Seen Missed . 359

Summary . 361

Part IV About the Future

 15 Solving Tomorrow’s Problems Today . 365
Automatic Failure Analysis . 365

Overcoming Analysis Paralysis . 365

The Match Game . 367

Good Logging Practices . 368

Anatomy of a Log File . 370

Integrating AFA . 371

Machine Virtualization . 372

Virtualization Benefits . 372

Virtual Machine Test Scenarios . 374

When a Failure Occurs During Testing . 377

Test Scenarios Not Recommended . 379

A04C624252.indd 13 11/11/2008 11:09:51 PM

xiv Table of Contents

Code Reviews and Inspections . 379

Types of Code Reviews . 380

Checklists . 381

Other Considerations . 381

Two Faces of Review . 384

Tools, Tools, Everywhere . 384

Reduce, Reuse, Recycle . 385

What’s the Problem? . 385

Open Development . 386

Summary . 387

 16 Building the Future . 389
The Need for Forward Thinking . 389

Thinking Forward by Moving Backward . 389

Striving for a Quality Culture . 390

Testing and Quality Assurance . 391

Who Owns Quality? . 392

The Cost of Quality . 393

A New Role for Test . 394

Test Leadership . 394

The Microsoft Test Leadership Team . 394

Test Leadership Team Chair . 395

Test Leadership in Action . 396

The Test Architect Group . 397

Test Excellence .400

Sharing . .400

Helping . 401

Communicating . 402

Keeping an Eye on the Future .404

Microsoft Director of Test Excellence .404

The Leadership Triad .404

Innovating for the Future . 405

 Index . 407

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A04C624252.indd 14 11/11/2008 11:09:51 PM

 xv

Acknowledgments
This book never would have happened without the help of every single tester at
Microsoft. Many helped directly by reviewing chapters or writing about their experi-
ences in testing. Others helped by creating the legacy of software testing at Microsoft,
or by continuing to innovate in the way we test software.

Including the names of all 9,000 testers at Microsoft would be impractical (especially
when many former employees, people from other disciplines, and even external review-
ers contributed to the completion of this book). On the other hand, we do want to call
out the names of several people who have contributed substantially to the creation of
this book.

This book grew out of the opinions, suggestions, and feedback of many current and
former Microsoft employees. Some of the most prominent contributors include Michael
Corning, Ed Triou, Amol Kher, Scott Wadsworth, Geoff Staneff, Dan Travison, Brian
Rogers, John Lambert, Sanjeev Verma, Shawn McFarland, Grant George, Tara Roth,
Karen Carter-Schwendler, Jean Hartman, James Whittaker, Irada Sadykhova, Alex Kim,
Darrin Hatakeda, Marty Riley, Venkat Narayanan, Karen Johnston, Jim Pierson, Ibrahim
El Far, Carl Tostevin, Nachi Nagappan, Keith Stobie, Mark Davis, Mike Blaylock, Wayne
Roseberry, Carole Cancler, Andy Tischaefer, Lori Ada-Kilty, Matt Heusser, Jeff Raikes,
Microsoft Research (especially Amy Stevenson), the Microsoft Test Excellence Team, the
Microsoft Test Leadership Team, and the Microsoft Test Architect Group.

We’d also like to thank Lynn Finnel, the Project Editor for this book, who continued to
give us encouragement and support throughout the creation of this book.

A05A624252.indd 15 11/11/2008 11:10:41 PM

A05A624252.indd 16 11/11/2008 11:10:41 PM

 xvii

Introduction
I still remember the morning, sometime late in the fall of 2007, when my manager at the
time, Ken Johnston, uttered these five words, “You should write a book.”

He had just come back from delivering a talk at an industry test conference (not coinciden-
tally titled, “How We Test Software at Microsoft,”) and was excited by the audience reception.
Ken loves to give presentations, but he somehow thought I should be the one to write the
book.

I humored him and said, “Sure, why not.” I went on to say that the book could cover a lot of
the things that we teach in our software testing courses, as well as a smattering of other pop-
ular test approaches used at Microsoft. It could be interesting, but there are a ton of books
on testing—I know, I’ve probably read a few dozen of them—and some of them are really
good. What value to the testing community could yet another book provide?

I was about to talk the nonsense out of Ken when I realized something critical: At Microsoft,
we have some of the best software test training in the world. The material and structure of
the courses are fantastic, but that’s not what makes it so great. The way our instructors tie in
anecdotes, success stories, and cool little bits of trivia throughout our courses is what makes
them impactful and memorable. I thought that if we could include some stories and bits of
information on how Microsoft has used some of these approaches, the book might be inter-
esting. I began to think beyond what we teach, of more test ideas and stories that would be
fun to share with testers everywhere. I realized that some of my favorite programming books
were filled with stories embedded with all of the “techie” stuff.

The next thing I knew, I was writing a proposal. An outline began to come together, and the
form of the book began to take shape, with four main themes emerging. It made sense to set
some context by talking about Microsoft’s general approaches to people and engineering.
The next two sections would focus on how we do testing inside Microsoft, and the tools we
use; and the final section would look at the future of testing inside Microsoft. I sent the pro-
posal to Microsoft Press, and although I remained excited about the potential for the book,
part of me secretly hoped that Microsoft Press would tell me the idea was silly, and that I
should go away. Alas, that didn’t happen, and shortly thereafter, I found myself staring at a
computer screen wondering what the first sentences would look like.

From the very beginning, I knew that I wanted Ken to write the first two chapters. Ken has
been a manager at Microsoft for years, and the people stuff was right up his alley. About the
time I submitted the proposal, Ken left our group to manage the Office Online group. Soon
after, it became apparent that Ken should also write the chapter on how we test Software
plus Services. He’s since become a leader at the company in defining how we test Web
 services, and it would have been silly not to have him write Chapter 14, “Testing Software

A06I624252.indd 17 11/11/2008 11:11:10 PM

xviii Introduction

Plus Services“. Later on, I approached BJ Rollison, one of Microsoft’s most prominent testers,
to write the chapters about functional and structural test techniques. Bj Rollison designed
our core software testing course, and he knows more about these areas of testing than any-
one I know. He’s also one of the only people I know who has read more books on testing
than I have. Ken, Bj and I make quite a trio of authors. We all approach the task and produce
our material quite differently, but in the end, we feel like we have a mix of both material and
writing styles that reflects the diversity of the Microsoft testing population. We often joke
that Bj is the professor, Ken tries to be the historian and storyteller, and I just absorb informa-
tion and state the facts. Although we all took the lead on several chapters, we each edited
and contributed to the others’ work, so there is definitely a melding of styles throughout
the book.

I cannot begin to describe how every little setback in life becomes gigantic when the task of
“writing a book” is always on your plate. Since starting this book, I took over Ken’s old job
as Director of Test Excellence at Microsoft. Why in the world I decided to take on a job with
entirely new challenges in the middle of writing a book I’ll never know. In hindsight, how-
ever, taking on this role forced me to gain some insight into test leadership at Microsoft that
 benefitted this book tremendously.

My biggest fear in writing this book was how much I knew I’d have to leave out. There are
over 9,000 testers at Microsoft. The test approaches discussed in this book cover what most
testers at Microsoft do, but there are tons of fantastically cool things that Microsoft tes-
ters do that couldn’t be covered in this book. On top of that, there are variations on just
about every topic covered in this book. We tried to capture as many different ideas as we
could, while telling stories about what parts of testing we think are most important. I also
have to admit that I’m slightly nervous about the title of this book. “How We Test Software
at Microsoft” could imply that everything in this book is done by every single tester at
Microsoft, and that’s simply not true. With such a large population of testers and such a
 massive product portfolio, there’s just no way to write about testing in a way that exactly
represents every single tester at Microsoft. So, we compromised. This book simply covers the
most popular testing practices, tools, and techniques used by Microsoft testers. Not every
team does everything we write about, but most do. Everything we chose to write about in
this book has been successful in testing Microsoft products, so the topics in this book are a
collection of some of the things we know work.

In the end, I think we succeeded, but as testers, we know it could be better. Sadly, it’s time
to ship, but we do have a support plan in place! If you are interested in discussing anything
from this book with the authors, you can visit our web site, www.hwtsam.com. We would all
love to hear what you think.

 —Alan Page

A06I624252.indd 18 11/11/2008 11:11:10 PM

 Introduction xix

Who This Book Is For
This book is for anyone who is interested in the role of test at Microsoft or for those who
want to know more about how Microsoft approaches testing. This book isn’t a replacement
for any of the numerous other great texts on software testing. Instead, it describes how
Microsoft applies a number of testing techniques and methods of evaluation to improve our
software.

Microsoft testers themselves will likely find the book to be interesting as it includes
 techniques and approaches used across the company. Even nontesters may find it interesting
to know about the role of test at Microsoft

What This Book Is About
This book starts by familiarizing the reader with Microsoft products, Microsoft engineers,
Microsoft testers, the role of test, and general approaches to engineering software. The
 second part of the book discusses many of the test approaches and tools commonly used
at Microsoft. The third part of the book discusses some of the tools and systems we use in
our work. The final section of the book discusses future directions in testing and quality at
Microsoft and how we intend to create that future.

Part I, “About Microsoft”

 Chapter 1, “Software Engineering at Microsoft,”

 Chapter 2, “Software Test Engineers at Microsoft”

 Chapter 3, “Engineering Life Cycles”

Part II, “About Testing”

 Chapter 4, “A Practical Approach to Test Case Design”

 Chapter 5, “Functional Testing Techniques”

 Chapter 6, “Structural Testing Techniques”

 Chapter 7, “Analyzing Risk with Code Complexity”

 Chapter 8, “Model-Based Testing”

Part III, “Test Tools and Systems”

 Chapter 9, “Managing Bugs and Test Cases”

 Chapter 10, “Test Automation”

 Chapter 11, “Non-Functional Testing”

 Chapter 12, “Other Tools”

 Chapter 13, “Customer Feedback Systems”

 Chapter 14, “Testing Software Plus Services”

A06I624252.indd 19 11/11/2008 11:11:10 PM

xx Introduction

Part IV, “About the Future”

 Chapter 15, “Solving Tomorrow’s Problems Today”

 Chapter 16, “Building the Future”

Find Additional Content Online
As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer, and is updated periodically.

More stories and tidbits about testing at Microsoft will be posted on www.hwtsam.com.

Support for This Book
If you have comments, questions, or ideas regarding the book, or questions that are not
 answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com.

Or via postal mail to

Microsoft Press
Attn: How We Test Software at Microsoft Editor
One Microsoft Way
Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through the above
addresses.

A06I624252.indd 20 11/11/2008 11:11:10 PM

C01624252.indd 2 11/19/2008 7:21:11 PM

 41

Chapter 3

Engineering Life Cycles
Alan Page

I love to cook. Something about the entire process of creating a meal, coordinating multiple
dishes, and ensuring that they all are complete at the exact same time is fun for me. My ap-
proach, learned from my highly cooking-talented mother, includes making up a lot of it as
I go along. In short, I like to “wing it.” I’ve cooked enough that I’m comfortable browsing
through the cupboard to see which ingredients seem appropriate. I use recipes as a guide-
line—as something to give me the general idea of what kinds of ingredients to use, how long
to cook things, or to give me new inspiration. There is a ton of flexibility in my approach, but
there is also some amount of risk. I might make a poor choice in substitution (for example, I
recommend that you never replace cow’s milk with soymilk when making strata).

My approach to cooking, like testing, depends on the situation. For example, if guests are
coming for dinner, I might measure a bit more than normal or substitute less than I do when
cooking just for my family. I want to reduce the risk of a “defect” in the taste of my risotto,
so I put a little more formality into the way I make it. I can only imagine the chef who is in
charge of preparing a banquet for a hundred people. When cooking for such a large number
of people, measurements and proportions become much more important. In addition, with
such a wide variety of taste buds to please, the chef’s challenge is to come up with a combi-
nation of flavors that is palatable to all of the guests. Finally, of course, the entire meal needs
to be prepared and all elements of the meal need to be freshly hot and on the table exactly
on time. In this case, the “ship date” is unchangeable!

Making software has many similarities with cooking. There are benefits to following a
strict plan and other benefits that can come from a more flexible approach, and additional
 challenges can occur when creating anything for a massive number of users. This chapter
 describes a variety of methods used to create software at Microsoft.

Software Engineering at Microsoft
There is no “one model” that every product team at Microsoft uses to create software. Each
team determines, given the size and scope of the product, market conditions, team size, and
prior experiences, the best model for achieving their goals. A new product might be driven
by time to market so as to get in the game before there is a category leader. An established
product might need to be very innovative to unseat a leading competitor or to stay ahead
of the pack. Each situation requires a different approach to scoping, engineering, and ship-
ping the product. Even with the need for variation, many practices and approaches have

C03624252.indd 41 11/7/2008 4:05:48 PM

42 Part I About Microsoft

become generally adopted, while allowing for significant experimentation and innovation in
 engineering processes.

For testers, understanding the differences between common engineering models, the model
used by their team, and what part of the model their team is working in helps both in plan-
ning (knowing what will be happening) and in execution (knowing the goals of the current
phase of the model). Understanding the process and their role in the process is essential for
success.

Traditional Software Engineering Models
Many models are used to develop software. Some development models have been around
for decades, whereas others seem to pop up nearly every month. Some models are ex-
tremely formal and structured, whereas others are highly flexible. Of course, there is no
single model that will work for every software development team, but following some sort of
proven model will usually help an engineering team create a better product. Understanding
which parts of development and testing are done during which stages of the product cycle
enables teams to anticipate some types of problems and to understand sooner when design
or quality issues might affect their ability to release on time.

Waterfall Model
One of the most commonly known (and commonly abused) models for creating software
is the waterfall model. Waterfall is an approach to software development where the end of
each phase coincides with the beginning of the next phase, as shown in Figure 3-1. The work
follows steps through a specified order. The implementation of the work “flows” from one
phase to another (like a waterfall flows down a hill).

Requirements

Program Design

Implementation/
 Coding

Testing

Maintence

FigurE 3-1 Waterfall model.

C03624252.indd 42 11/7/2008 4:05:49 PM

 Chapter 3 Engineering Life Cycles 43

The advantage of this model is that when you begin a phase, everything from the previous
phase is complete. Design, for example, will never begin before the requirements are
 complete. Another potential benefit is that the model forces you to think and design as much
as possible before beginning to write code. Taken literally, waterfall is inflexible because it
doesn’t appear to allow phases to repeat. If testing, for example, finds a bug that leads back
to a design flaw, what do you do? The Design phase is “done.” This apparent inflexibility has
led to many criticisms of waterfall. Each stage has the potential to delay the entire product
cycle, and in a long product cycle, there is a good chance that at least some parts of the early
design become irrelevant during implementation.

An interesting point about waterfall is that the inventor, Winston Royce, intended for
 waterfall to be an iterative process. Royce’s original paper on the model1 discusses the need
to iterate at least twice and use the information learned during the early iterations to influ-
ence later iterations. Waterfall was invented to improve on the stage-based model in use for
decades by recognizing feedback loops between stages and providing guidelines to mini-
mize the impact of rework. Nevertheless, waterfall has become somewhat of a ridiculed pro-
cess among many software engineers—especially among Agile proponents. In many circles
of software engineering, waterfall is a term used to describe any engineering system with
strict processes.

Spiral Model
In 1988, Barry Boehm proposed the spiral model of software development.2 Spiral, as shown
in Figure 3-2, is an iterative process containing four main phases: determining objectives, risk
evaluation, engineering, and planning for the next iteration.

n Determining objectives Identify and set specific objectives for the current phase of
the project.

n Risk evaluation Identify key risks, and identify risk reduction and contingency plans.
Risks might include cost overruns or resource issues.

n Engineering In the engineering phase, the work (requirements, design, development,
testing, and so forth) occurs.

n Planning The project is reviewed, and plans for the next round of the spiral begin.

1 Winston Royce, “Managing the Development of Large Software Systems,” Proceedings of IEEE WESCON 26 (August
1970).

2 Barry Boehm, “A Spiral Model of Software Development,” IEEE 21, no. 5 (May 1988): 61–72.

C03624252.indd 43 11/7/2008 4:05:49 PM

44 Part I About Microsoft

Determine Objectives Risk Evaluation and
Contingency Plans

EngineeringPlan Next Phases

Risk Analysis

Risk Analysis

Risk Analysis

Requirements

Design & Design Validation

Implementation

Testing

Prototypes

Product Planning

Development Plans

Test Plans

Progress Through Steps

FigurE 3-2 Simplified spiral model.

Another important concept in the spiral model is the repeated use of prototypes as a means
of minimizing risk. An initial prototype is constructed based on preliminary design and ap-
proximates the characteristics of the final product. In subsequent iterations, the prototypes
help evaluate strengths, weaknesses, and risks.

Software development teams can implement spiral by initially planning, designing, and
 creating a bare-bones or prototype version of their product. The team then gathers customer
feedback on the work completed, and then analyzes the data to evaluate risk and determine
what to work on in the next iteration of the spiral. This process continues until either the
product is complete or the risk analysis shows that scrapping the project is the better (or less
risky) choice.

Agile Methodologies
By using the spiral model, teams can build software iteratively—building on the successes
(and failures) of the previous iterations. The planning and risk evaluation aspects of spiral are
essential for many large software products but are too process heavy for the needs of many
software projects. Somewhat in response to strict models such as waterfall, Agile approaches
focus on lightweight and incremental development methods.

C03624252.indd 44 11/7/2008 4:05:49 PM

 Chapter 3 Engineering Life Cycles 45

Agile methodologies are currently quite popular in the software engineering community.
Many distinct approaches fall under the Agile umbrella, but most share the following traits:

n Multiple, short iterations Agile teams strive to deliver working software frequently
and have a record of accomplishing this.

n Emphasis on face-to-face communication and collaboration Agile teams value
 interaction with each other and their customers.

n Adaptability to changing requirements Agile teams are flexible and adept in dealing
with changes in customer requirements at any point in the development cycle. Short
iterations allow them to prioritize and address changes frequently.

n Quality ownership throughout the product cycle Unit testing is prevalent among
developers on Agile teams, and many use test-driven development (TDD), a method of
unit testing where the developer writes a test before implementing the functionality
that will make it pass.

In software development, to be Agile means that teams can quickly change direction when
needed. The goal of always having working software by doing just a little work at a time can
achieve great results, and engineering teams can almost always know the status of the prod-
uct. Conversely, I can recall a project where we were “95 percent complete” for at least three
months straight. In hindsight, we had no idea how much work we had left to do because we
tried to do everything at once and went months without delivering working software. The
goal of Agile is to do a little at a time rather than everything at once.

Other Models
Dozens of models of software development exist, and many more models and variations will
continue to be popular. There isn’t a best model, but understanding the model and creating
software within the bounds of whatever model you choose can give you a better chance of
creating a quality product.

Milestones
It’s unclear if it was intentional, but most of the Microsoft products I have been involved in
used the spiral model or variations.3 When I joined the Windows 95 team at Microsoft, they
were in the early stages of “Milestone 8” (or M8 as we called it). M8, like one of its predeces-
sors, M6, ended up being a public beta. Each milestone had specific goals for product func-
tionality and quality. Every product I’ve worked on at Microsoft, and many others I’ve worked
with indirectly, have used a milestone model.

3 Since I left product development in 2005 to join the Engineering Excellence team, many teams have begun to
adopt Agile approaches.

C03624252.indd 45 11/7/2008 4:05:49 PM

46 Part I About Microsoft

The milestone schedule establishes the time line for the project release and includes key
interim project deliverables and midcycle releases (such as beta and partner releases). The
milestone schedule helps individual teams understand the overall project expectations and to
check the status of the project. An example of the milestone approach is shown in Figure 3-3.

Milestone 1 Milestone 2
(Beta 1)

Milestone 4
(Beta 2)

Milestone 6
(Release)

Milestone 3
(Partner
Release)

Milestone 5
(Partner
Release)

FigurE 3-3 Milestone model example.

The powerful part of the milestone model is that it isn’t just a date drawn on the calendar.
For a milestone to be complete, specific, predefined criteria must be satisfied. The criteria
typically include items such as the following:

n “Code complete” on key functionality Although not completely tested, the
 functionality is implemented.

n Interim test goals accomplished For example, code coverage goals or tests
 completed goals are accomplished.

n Bug goals met For example, no severity 1 bugs or no crashing bugs are known.

n Nonfunctional goals met For example, performance, stress, load testing is
 complete with no serious issues.

The criteria usually grow stricter with each milestone until the team reaches the goals
 required for final release. Table 3-1 shows the various milestones used in a sample milestone
project.

TablE 3-1 Example Milestone Exit Criteria (partial list)

Area Milestone 1 Milestone 2 Milestone 3 Release

Test case
execution

All Priority 1 test
cases run

All Priority 1 and
2 test cases run

All test cases run

Code
coverage

Code coverage
measured and
reports available

65% code
 coverage

75% code
 coverage

80% code
 coverage

Reliability Priority 1 stress
tests running
nightly

Full stress suite
running nightly
on at least 200
computers

Full stress suite
running nightly
on at least 500
computers with
no uninvestigated
issues

Full stress suite
running nightly
on at least 500
computers with
no uninvestigated
issues

Reliability Fix the top 50%
of customer-
reported crashes
from M1

Fix the top 60%
of customer-
reported crashes
from M2

Fix the top 70%
of customer-
reported crashes
from M3

C03624252.indd 46 11/7/2008 4:05:49 PM

 Chapter 3 Engineering Life Cycles 47

Area Milestone 1 Milestone 2 Milestone 3 Release

Features New UI shell in
20% of product

New UI in 50%
of product and
 usability tests
complete

New UI in 100%
of product and
usability feedback
implemented

Performance Performance
plan, including
scalability goals,
complete

Performance
baselines es-
tablished for all
primary customer
scenarios

Full performance
suite in place with
progress tracking
toward ship goals

All performance
tests passing,
and performance
goals met

Another advantage of the milestone model (or any iterative approach) is that with each
 milestone, the team gains some experience going through the steps of release. They learn
how to deal with surprises, how to ask good questions about unmet criteria points, and how
to anticipate and handle the rate of incoming bugs. An additional intent is that each mile-
stone release functions as a complete product that can be used for large-scale testing (even
if the milestone release is not an external beta release). Each milestone release is a complete
version of the product that the product team and any other team at Microsoft can use to
“kick the tires” on (even if the tires are made of cardboard).

The quality milestone
Several years ago, I was on a product team in the midst of a ship cycle. I was part of
the daily bug triage, where we reviewed, assigned, and sometimes postponed bugs to
the next release. Postponements happen for a variety of reasons and are a necessary
part of shipping software. A few months before shipping, we had some time left at the
end of the meeting, and I asked if we could take a quick look at the bugs assigned to
the next version of our product. The number was astounding. It was so large that we
started calling it the “wave.” The wave meant that after we shipped, we would be start-
ing work on the next release with a huge backlog of product bugs.

Bug backlog along with incomplete documents and flaky tests we need to fix “some-
day” are all items that add up to technical debt.4 We constantly have to make tradeoffs
when developing software, and many of those tradeoffs result in technical debt.
Technical debt is difficult to deal with, but it just doesn’t go away if we ignore it, so we
have to do something. Often, we try to deal with it while working on other things or in
the rare times when we get a bit of a lull in our schedules. This is about as effective as
bailing out a leaky boat with a leaky bucket.

Another way many Microsoft teams have been dealing with technical debt is with a
quality milestone, or MQ. This milestone, which occurs after product release but before

4 Matthew Heusser writes about technical debt often on his blog (xndev.blogspot.com). Matt doesn’t work for
Microsoft…yet.

C03624252.indd 47 11/7/2008 4:05:49 PM

48 Part I About Microsoft

getting started on the next wave of product development, provides an opportunity for
teams to fix bugs, retool their infrastructure, and fix anything else pushed aside during
the previous drive to release. MQ is also an opportunity to implement improvements
to any of the engineering systems or to begin developing early prototypes of work and
generate new ideas.

Beginning a product cycle with the backlog of bugs eliminated, the test infrastructure
in place, improvement policies implemented, and everything else that annoyed you
during the previous release resolved is a great way to start work on a new version of a
mature product.

Agile at Microsoft
Agile methodologies are popular at Microsoft. An internal e-mail distribution list dedicated
to discussion of Agile methodologies has more than 1,500 members. In a survey sent to more
than 3,000 testers and developers at Microsoft, approximately one-third of the respondents
stated that they used some form of Agile software development.5

Feature Crews
Most Agile experts state that a team size of 10 or less collocated team members is optimal.
This is a challenge for large-scale teams with thousands or more developers. A solution com-
monly used at Microsoft to scale Agile practices to large teams is the use of feature crews.

A feature crew is a small, cross-functional group, composed of 3 to 10 individuals from dif-
ferent disciplines (usually Dev, Test, and PM), who work autonomously on the end-to-end
delivery of a functional piece of the overall system. The team structure is typically a program
manager, three to five testers, and three to five developers. They work together in short
iterations to design, implement, test, and integrate the feature into the overall product, as
shown in Figure 3-4.

The key elements of the team are the following:

n It is independent enough to define its own approach and methods.

n It can drive a component from definition, development, testing, and integration to a
point that shows value to the customer.

Teams in Office and Windows use this approach as a way to enable more ownership, more
independence, and still manage the overall ship schedule. For the Office 2007 project, there
were more than 3,000 feature crews.

5 Nachiappan Nagappan and Andrew Begel, “Usage and Perceptions of Agile Software Development in an Industrial
Context: An Exploratory Study,” 2007, http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/
proceedings/&toc=comp/proceedings/esem/2007/2886/00/2886toc.xml&DOI=10.1109/ESEM.2007.85.

C03624252.indd 48 11/7/2008 4:05:50 PM

 Chapter 3 Engineering Life Cycles 49

Project
Specifications

Feature

Specifications
broken down
into 4-week
work intervals

“Crew”
assigned
to a feature

Implementation

Verification

Ex
it

Feature crew
work on local
builds

Feature crew
checks a
feature into
main product
after it is
stable and
exit; criteria
are met

Planning

Program Manager

Developer
Tester

FigurE 3-4 Feature crew model.

Getting to Done
To deliver high-quality features at the end of each iteration, feature crews concentrate on
 defining “done” and delivering on that definition. This is most commonly accomplished
by defining quality gates for the team that ensure that features are complete and that there
is little risk of feature integration causing negative issues. Quality gates are similar to mile-
stone exit criteria. They are critical and often require a significant amount of work to satisfy.
Table 3-2 lists sample feature crew quality gates.6

TablE 3-2 Sample Feature Crew Quality gates

Quality gate Description

Testing All planned automated tests and manual tests are completed and
 passing.

Feature Bugs Closed All known bugs found in the feature are fixed or closed.

Performance Performance goals for the product are met by the new feature.

Test Plan A test plan is written that documents all planned automated and
 manual tests.

Code Review Any new code is reviewed to ensure that it meets code design
 guidelines.

Functional Specification A functional spec has been completed and approved by the crew.

Documentation Plan A plan is in place for the documentation of the feature.

Security Threat model for the feature has been written and possible security
 issues mitigated.

Code Coverage Unit tests for the new code are in place and ensure 80% code coverage
of the new feature.

Localization The feature is verified to work in multiple languages.

6 This table is based on Ade Miller and Eric Carter, “Agile and the Inconceivably Large,” IEEE (2007).

C03624252.indd 49 11/7/2008 4:05:50 PM

50 Part I About Microsoft

The feature crew writes the necessary code, publishes private releases, tests, and iterates
while the issues are fresh. When the team meets the goals of the quality gates, they mi-
grate their code to the main product source branch and move on to the next feature. I. M.
Wright’s Hard Code (Microsoft Press, 2008) contains more discussion on the feature crews at
Microsoft.

Iterations and Milestones
Agile iterations don’t entirely replace the milestone model prevalent at Microsoft. Agile prac-
tices work hand in hand with milestones—on large product teams, milestones are the perfect
opportunity to ensure that all teams can integrate their features and come together to create
a product. Although the goal on Agile teams is to have a shippable product at all times, most
Microsoft teams release to beta users and other early adopters every few months. Beta and
other early releases are almost always aligned to product milestones.

Putting It All Together
At the micro level, the smallest unit of output from developers is code. Code grows into
 functionality, and functionality grows into features. (At some point in this process, test
 becomes part of the picture to deliver quality functionality and features.)

In many cases, a large group of features becomes a project. A project has a distinct begin-
ning and end as well as checkpoints (milestones) along the way, usage scenarios, personas,
and many other items. Finally, at the top level, subsequent releases of related projects can
become a product line. For example, Microsoft Windows is a product line, the Windows Vista
operating system is a project within that product line, and hundreds of features make up that
project.

Scheduling and planning occur at every level of output, but with different context, as shown
in Figure 3-5. At the product level, planning is heavily based on long-term strategy and busi-
ness need. At the feature level, on the other hand, planning is almost purely tactical—getting
the work done in an effective and efficient manner is the goal. At the project level, plans are
often both tactical and strategic—for example, integration of features into a scenario might
be tactical work, whereas determining the length of the milestones and what work happens
when is more strategic. Classifying the work into these two buckets isn’t important, but it is
critical to integrate strategy and execution into large-scale plans.

C03624252.indd 50 11/7/2008 4:05:50 PM

 Chapter 3 Engineering Life Cycles 51

P
ro

je
ct

Test
Code

M0 M1 M2 Beta Servicing
RTM/
RTW

Quality
gate

DEFINITION SERVICINGDEVELOPMENT

ITERATION

P
ro

d
u

ct

Fe
at

u
re

Annual
strategy
review Multi-release

strategy

Prioritized
Feature

List

Product
Code

Strategy
memo

Prioritized
Feature

List

Milestone
Schedule

Vision
Doc

Release
Goals

Engineering
System

Feature
Spec

Test
Spec

Design
Doc

FigurE 3-5 Software life cycle workflow.

Process improvement
In just about anything I take seriously, I want to improve continuously. Whether I’m preparing
a meal, working on my soccer skills, or practicing a clarinet sonata, I want to get better. Good
software teams have the same goal—they reflect often on what they’re doing and think of
ways to improve.

Dr. W. Edwards Deming is widely acknowledged for his work in quality and process improve-
ment. One of his most well known contributions to quality improvement was the simple Plan,
Do, Check, Act cycle (sometimes referred to as the Shewhart cycle, or the PDCA cycle). The
following phases of the PDCA cycle are shown in Figure 3-6:

n Plan Plan ahead, analyze, establish processes, and predict the results.

n Do Execute on the plan and processes.

C03624252.indd 51 11/7/2008 4:05:50 PM

52 Part I About Microsoft

n Check Analyze the results (note that Deming later changed the name of this stage to
“Study” to be more clear).

n Act Review all steps and take action to improve the process.

Plan

Do

Check

Act

FigurE 3-6 Deming’s PDCA cycle.

For many people, the cycle seems so simple that they see it as not much more than com-
mon sense. Regardless, this is a powerful model because of its simplicity. The model is the
basis of the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) model, the ADDIE
(Analyze, Design, Develop, Implement, Evaluate) instructional design model, and many other
improvement models from a variety of industries.

Numerous examples of applications of this model can be found in software. For example,
consider a team who noticed that many of the bugs found by testers during the last
 milestone could have been found during code review.

 1. First, the team plans a process around code reviews—perhaps requiring peer code
 review for all code changes. They also might perform some deeper analysis on the bugs
and come up with an accurate measure of how many of the bugs found during the
 previous milestone could potentially have been found through code review.

 2. The group then performs code reviews during the next milestone.

 3. Over the course of the next milestone, the group monitors the relevant bug metrics.

 4. Finally, they review the entire process, metrics, and results and determine whether they
need to make any changes to improve the overall process.

Formal Process Improvement Systems at Microsoft
Process improvement programs are prevalent in the software industry. ISO 9000, Six Sigma,
Capability Maturity Model Integrated (CMMI), Lean, and many other initiatives all exist to
help organizations improve and meet new goals and objectives. The different programs all
focus on process improvement, but details and implementation vary slightly. Table 3-3 briefly
describes some of these programs.

C03624252.indd 52 11/7/2008 4:05:50 PM

 Chapter 3 Engineering Life Cycles 53

TablE 3-3 Formal Process improvement Programs

Process Concept

ISO 9000 A system focused on achieving customer satisfaction through satisfying quality
requirements, monitoring processes, and achieving continuous improvement.

Six Sigma Developed by Motorola. Uses statistical tools and the DMAIC (Define, Measure,
Analyze, Implement, Control) process to measure and improves processes.

CMMI Five-level maturity model focused on project management, software engineer-
ing, and process management practices. CMMI focuses on the organization
rather than the project.

Lean Focuses on eliminating waste (for example, defects, delay, and unnecessary work)
from the engineering process.

Although Microsoft hasn’t wholeheartedly adopted any of these programs for widespread
use, process improvement (either formal or ad hoc) is still commonplace. Microsoft contin-
ues to take process improvement programs seriously and often will “test” programs to get a
better understanding of how the process would work on Microsoft products. For example,
Microsoft has piloted several projects over the past few years using approaches based on
Six Sigma and Lean. The strategy in using these approaches to greatest advantage is to un-
derstand how best to achieve a balance between the desire for quick results and the rigor of
Lean and Six Sigma.

Microsoft and ISO 9000
Companies that are ISO 9000 certified have proved to an auditor that their processes and
their adherence to those processes are conformant to the ISO standards. This certification
can give customers a sense of protection or confidence in knowing that quality processes
were integral in the development of the product.

At Microsoft, we have seen customers ask about our conformance to ISO quality standards
because generally they want to know if we uphold quality standards that adhere to the ISO
expectations in the development of our products.

Our response to questions such as this is that our development process, the documentation
of our steps along the way, the support our management team has for quality processes, and
the institutionalization of our development process in documented and repeatable processes
(as well as document results) are all elements of the core ISO standards and that, in most
cases, we meet or exceed these.

This doesn’t mean, of course, that Microsoft doesn’t value ISO 9000, and neither does it
mean that Microsoft will never have ISO 9000–certified products. What it does mean at the
time of this writing is that in most cases we feel our processes and standards fit the needs of
our engineers and customers as well as ISO 9000 would. Of course, that could change next
week, too.

C03624252.indd 53 11/7/2008 4:05:50 PM

54 Part I About Microsoft

Shipping Software from the War room
Whether it’s the short product cycle of a Web service or the multiyear product cycle of
Windows or Office, at some point, the software needs to ship and be available for customers
to use. The decisions that must be made to determine whether a product is ready to release,
as well as the decisions and analysis to ensure that the product is on the right track, occur in
the war room or ship room. The war team meets throughout the product cycle and acts as a
ship-quality oversight committee. As a name, “war team” has stuck for many years—the term
describes what goes on in the meeting: “conflict between opposing forces or principles.”

As the group making the day-to-day decisions for the product, the war team needs a holistic
view of all components and systems in the entire product. Determining which bugs get fixed,
which features get cut, which parts of the team need more resources, or whether to move
the release date are all critical decisions with potentially serious repercussions that the war
team is responsible for making.

Typically, the war team is made up of one representative (usually a manager) from each area
of the product. If the representative is not able to attend, that person nominates someone
from his or her team to attend instead so that consistent decision making and stakeholder
buy-in can occur, especially for items considered plan-of-record for the project.

The frequency of war team meetings can vary from once a week during the earliest part of
the ship cycle to daily, or even two or three times a day in the days leading up to ship day.

War, What Is It Good For?
The war room is the pulse of the product team. If the war team is effective, everyone on the
team remains focused on accomplishing the right work and understands why and how deci-
sions are made. If the war team is unorganized or inefficient, the pulse of the team is also
weak—causing the myriad of problems that come with lack of direction and poor leadership.

Some considerations that lead to a successful war team and war room meetings are the
following:

n Ensure that the right people are in the room. Missing representation is bad, but too
many people can be just as bad.

n Don’t try to solve every problem in the meeting. If an issue comes up that needs more
investigation, assign it to someone for follow-up and move on.

n Clearly identify action items, owners, and due dates.

n Have clear issue tracking—and address issues consistently. Over time, people will
 anticipate the flow and be more prepared.

C03624252.indd 54 11/7/2008 4:05:51 PM

 Chapter 3 Engineering Life Cycles 55

n Be clear about what you want. Most ship rooms are focused and crisp. Some want to be
more collaborative. Make sure everyone is on the same page. If you want it short and
sweet, don’t let discussions go into design questions, and if it’s more informal, don’t try
to cut people off.

n Focus on the facts rather than speculation. Words like “I think,” “It might,” “It could” are
red flags. Status is like pregnancy—you either are or you aren’t; there’s no in between.

n Everyone’s voice is important. A phrase heard in many war rooms is “Don’t listen to the
HiPPO”—where HiPPO is an acronym for highest-paid person’s opinion.

n Set up exit criteria in advance at the beginning of the milestone, and hold to them. Set
the expectation that quality goals are to be adhered to.

n One person runs the meeting and keeps it moving in an orderly manner.

n It’s OK to have fun.

Defining the Release—Microspeak
Much of the terminology used in the room might confuse an observer in a ship team meet-
ing. Random phrases and three-letter acronyms (TLAs) flow throughout the conversation.
Some of the most commonly used terms include the following:

n LKG “Last Known Good” release that meets a specific quality bar. Typically, this is
 similar to self-host.

n Self-host A self-host build is one that is of sufficient quality to be used for day-to-day
work. The Windows team, for example, uses internal prerelease versions of Windows
throughout the product cycle.

n Self-toast This is a build that completely ruins, or "toasts,” your ability to do day-to-
day work. Also known as self-hosed.

n Self-test A build of the product that works well enough for most testing but has one
or more blocking issues keeping it from reaching self-host status.

n Visual freeze Point or milestone in product development cycle when visual/UI
 changes are locked and will not change before release.

n Debug/checked build A build with a number of features that facilitate debugging
and testing enabled.

n Release/free build A build optimized for release.

n Alpha release A very early release of a product to get preliminary feedback about the
feature set and usability.

n Beta release A prerelease version of a product that is sent to customers and partners
for evaluation and feedback.

C03624252.indd 55 11/7/2008 4:05:51 PM

56 Part I About Microsoft

Mandatory Practices
Microsoft executive management doesn’t dictate how divisions, groups, or teams develop
and test software. Teams are free to experiment, use tried-and-true techniques, or a com-
bination of both. They are also free to create their own mandatory practices on the team or
division level as the context dictates. Office, for example, has several criteria that every part
of Office must satisfy to ship, but those same criteria might not make sense in a small team
shipping a Web service. The freedom in development processes enables teams to innovate in
product development and make their own choices. There are, however, a select few required
practices and policies that every team at Microsoft must follow.

These mandatory requirements have little to do with the details of shipping software. The
policies are about making sure that several critical steps are complete prior to shipping a
product.

There are few mandatory engineering policies, but products that fail to adhere to these
 policies are not allowed to ship. Some examples of areas included in mandatory policies in-
clude planning for privacy issues, licenses for third-party components, geopolitical review,
virus scanning, and security review.

Expected vs. Mandatory
Mandatory practices, if not done in a consistent and systematic way, create unacceptable risk
to customers and Microsoft.

Expected practices are effective practices that every product group should use (unless there
is a technical limitation). The biggest example of this is the use of static analysis tools. (See
Chapter 11, “Non-functional Testing.”) When we first developed C#, for example, we did not
have static code analysis tools for that language. It wasn’t long after the language shipped,
however, before teams developed static analysis tools for C#.

One-Stop Shopping
Usually, one person on a product team is responsible for release management. Included in
that person’s duties is the task of making sure all of the mandatory obligations have been
met. To ensure that everyone understands mandatory policies and applies them consistently,
every policy, along with associated tools and detailed explanations, is located on a single
internal Web portal so that Microsoft can keep the number of mandatory policies as low as
possible and supply a consistent toolset for teams to satisfy the requirements with as little
pain as possible.

C03624252.indd 56 11/7/2008 4:05:51 PM

 Chapter 3 Engineering Life Cycles 57

Summary: Completing the Meal
Like creating a meal, there is much to consider when creating software—especially as the
meal (or software) grows in size and complexity. Add to that the possibility of creating a
menu for an entire week—or multiple releases of a software program—and the list of factors
to consider can quickly grow enormous.

Considering how software is made can give great insights into what, where, and when the
“ingredients” of software need to be added to the application soup that software engi-
neering teams put together. A plan, recipe, or menu can help in many situations, but as
Eisenhower said, “In preparing for battle I have always found that plans are useless, but
planning is indispensable.” The point to remember is that putting some effort into thinking
through everything from the implementation details to the vision of the product can help
achieve results. There isn’t a best way to make software, but there are several good ways. The
good teams I’ve worked with don’t worry nearly as much about the actual process as they do
about successfully executing whatever process they are using.

C03624252.indd 57 11/7/2008 4:05:51 PM

C03624252.indd 58 11/7/2008 4:05:51 PM

C16624252.indd 406 11/7/2008 4:20:54 PM

 407

Index

A
Abort result (automated tests), 242
access (external) to bug tracking system, 191
accessibility testing, 265–268. See also usability

testing
Accessible Event Watcher (AccEvent) tool, 268
Accessible Explorer tool, 268
accountability for quality, 368
accuracy of test automation, 221
Act phase (PDCA cycle), 52
action simulation, in UI automation, 224
active (bug status), 193
Active Accessibility software development kit,

268
activities of code reviews, monitoring, 382
ad hoc approach, combinatorial testing, 101
ADDIE model, 52
“Adopt an App” program, 261
AFA (automatic failure analysis), 365–371
Agile methodologies, 44, 48–50
all states path (graph theory), 167
all transitions path (graph theory), 167
alpha release, defined, 55
analysis (test pattern attribute), 63
analysis phase (SEARCH test automation), 229,

240–242
analysis tools. See static analysis
analytical problem solving competency, 28
anticipating. See planning
API testing with models, 168, 171
application compatibility testing, 261–263
application libraries, 261, 385
application usage data, collecting, 300
Application Verifier tool, 262
approving big fixes. See triage for managing

bugs
asking questions

performance measurement, 253–255
test design, 65

assignment of bugs
automated notification of, 191
limits on, 205–209
specified in bug reports, 193

assumptions about test case readers, 211

audio features, accessibility of, 268
authentication with WLID, 334
Automate Everything attribute (BVTs), 283
automated service deployment, 337
automated tests, 213. See also test automation

as invalid testing solution, 231
test code analysis, 292
tracking changes in, 275

automatic failure analysis (AFA), 365–371
automating models, 166–171
automation (test case attribute), 213
AutomationElement elements, 226
awareness, interpersonal (competency), 29

B
backlog of bugs, 47
Ball, Tom, 36
Ballmer, Steve, 3
base choice (BC) approach, combinatorial

testing, 102
insufficiency of, 111

baseline performance, establishing, 253
basic control flow diagrams (CFDs), 122
basis path testing, 117–142
BATs (build acceptance tests), 283
Bayesian Graphical Modeling (BGM), 172
BC (base choice) approach, combinatorial

testing, 102
insufficiency of, 111

behavioral testing. See non-functional testing
Beizer, Boris, 75
Bergman, Mark, 229
best guess approach, combinatorial testing,

101
beta release

defined, 55
identifying product as, 336

BGM (Bayesian Graphical Modeling), 172
bias in white box testing, 116
Big Challenges (company value), 4
big company, Microsoft as, 7

working small in a big company, 11–14
big-picture performance considerations, 253
Binder, Robert, 29, 62

Z01I624252.indd 407 11/11/2008 10:22:54 PM

408

BIOS clocks, 85
black box testing, 71
Block result (automated tests), 242, 243
block testing, 118–126
Boehm, Barry, 43
bottlenecks, anticipating, 254. See also

performance testing
boundary condition tests, 202
boundary value analysis (BVA), 90–100

defining boundary values, 90
hidden boundaries, 97
using ECP tables with, 88, 93

Boundary Value Analysis Test Pattern
(example), 63

branching control flow, testing. See decision
testing

breadth of Microsoft portfolio, 7
breaking builds, 284
broken window theory, 289
browser-based service performance metrics,

351–356
brute-force UI automation, 227
buckets for errors, 307, 358
bug backlog, 47
bug bars (limits on bugs assigned), 205–209
bug lifecycle, 189–190
bug metrics, 201

churn metrics and, 274
bug morphing, 199
bug notification system, 191
bug reports, 188, 192–197

examples of, 190
bug type (bug report field), 195
bug workflow, 188
bugs. See managing bugs
bugs, specific

“Adopt an App” program, 261
“disallow server cascading” failure, 361
Friday the 13th bug, 85
love bug, 208
milk carton bug, 207
tsunami effect, 361
USB cart of death, 257

bugs vs. features, 197
build acceptance tests (BATs), 283
build labs, 282
build process, 281–287

breaking builds, 284
testing daily builds, 374

build verification tests (BVTs), 283

building services on servers, 331
built-in accessibility features, 265
BUMs (business unit managers), 12
Business Division. See MBD
business goals, in test time estimation, 65
business unit managers. See BUMs
BVA (boundary value analysis), 90–100

defining boundary values, 90
hidden boundaries, 97
using ECP tables with, 88, 93

BVA Test Pattern (example), 63
BVTs (build verification tests), 283
by design (bug resolution value), 195, 197

C
C# development, 236
calculating code complexity. See code

complexity
call center data, collecting, 357
campus recruiting, 29–31
capacity testing, 256
Carbon Allocation Model (CarBAM), 324
career stages, 33
careers at Microsoft, 33–38

recruiting. See recruiting testers
in Test, 34–38

Catlett, David, 68
CBO metric, 154
CEIP (Customer Experience Improvement Plan),

299–304
CER (Corporate Error Reporting), 307
CFDs (control flow diagrams), 122
chair of test leadership team, 370
changes in code

number of (code churn), 273–275
tracking. See source control

Check phase (PDCA cycle), 52
check-in systems, 286
checklists for code reviews, 381
churn, 273–275
CIS (Cloud Infrastructure Services), 320
CK metrics, 153
class-based complexity metrics, 153
classic Microsoft bugs, 207–209
ClassSetup attribute, 237
ClassTeardown attribute, 237
clean machines, 254
cleanup phase (SEARCH test automation), 229,

243

BIOS clocks

Z01I624252.indd 408 11/11/2008 10:22:54 PM

 409

closed (bug status), 193
cloud services, 320
CLR (Common Language Runtime), 179
CMMI (Capability Maturity Model Integrated),

53
code analysis. See static analysis
code churn, 273–275
code complexity

in automated tests, 247
cyclomatic complexity, 133

measuring, 63, 149–152, 155
estimating (code smell), 147
estimating test time, 65
Halstead metrics, 152–153
how to use metrics for, 157
lines of code (LOC), 147–148
object-oriented metrics, 153
quantifying, 146–148
risk from, 145–158

code coverage
analysis tools for, 293
behavioral and exploratory testing, 117
combinatorial analysis and, 112
with functional testing, 77
milestone criteria, 46
quality gates, 49
scripted tests, 117
statement vs. block coverage, 118

code reuse, 385–387
code reviews, 379–384

collateral data with, 384
measuring effectiveness of, 381–384

code smell, 147
code snapshots, 275, 374, 378
CodeBox portal, 386
Cole, David, 261
collaboration. See communication
collecting data from customers. See CEIP

(Customer Experience Improvement Plan)
combination tests, 102
combinatorial analysis

effectiveness of, 111
tools for, in practice, 104–111

communication, 380
cross-boundary collaboration (competency),

28
company values at Microsoft, 4
comparing documents, 276
compatibility testing, 261–263

dogfooding (being users), 264, 350

competencies, 27
compilation errors, 284, 285
complexity of code

in automated tests, 247
cyclomatic complexity, 133

measuring, 63, 149–152, 155
estimating (code smell), 147
estimating test time, 65
Halstead metrics, 152–153
how to use metrics for, 157
lines of code (LOC), 147–148
object-oriented metrics, 153
quantifying, 146–148
risk from, 145–158

complexity of test automation, 221
compound conditional clauses, testing, 129
compressibility (metric), 352, 353
computer-assisted testing, 230
computing innovations, waves of, 329
condition testing, 129–132
conditional clauses, testing. See condition

testing; decision testing
conditions (test case attribute), 212
confidence (competency), 28

with functional testing, 77
configurability of bug tracking system, 191
configuration data, collecting, 300
configurations (test case attribute), 212
conformance, in test time estimation, 65
Connect site, 312
container-based datacenters (container SKUs),

322
Content discipline, 15
context, bug, 194
continuous improvement. See process

improvement
contrast, display, 268
control flow diagrams (CFDs), 122
control flow graphs, 149
control flow modeling, 118, 122
control flow testing. See structural testing
control testability, 67
Corporate Error Reporting (CER), 307
cost of quality, 369
cost of test automation, 220
count of changes (churn metric), 273
counters (performance), 254
counting bugs, 200, 204
counting test cases, 215–216, 217
coupling, services, 333–335, 346

coupling, services

Z01I624252.indd 409 11/11/2008 10:22:54 PM

410

coupling between object classes (metric), 154
coverage method (WER), 308
Creative discipline, 16
credit card processing, 335
criteria for milestones, 46

quality gates as, 49
Critical attribute (BVTs), 283
cross-boundary collaboration (competency), 28
cross-referencing test cases with automation

scripts, 246
culture of quality, 366
Customer Experience Improvement Plan (CEIP),

299–304
customer feedback systems, 297–315

connecting with customers, 312–315
emotional response, 309–312
for services, 357
testing vs. quality, 297–299
watching customers. See CEIP (Customer

Experience Improvement Plan)
Windows Error Reporting, 304–309

customer impact of bugs, 194
customer-driven testing, 303
customer-focused innovation, 28
Cutter, David, 33
cyclomatic complexity, 133

measuring, 149–152, 155
practical interpretations, 63

Czerwonka, Jacek, 111

D
daily builds, 281–287

testing with virtualization, 374
data coverage. See code coverage; equivalence

class partitioning (ECP)
data sanitization, 351
DDE (defect detection effectiveness), 111
debug/checked builds, 55
Debuggable and Maintainable attribute (BVTs),

283
debuggers, exploratory testing with, 66
debugging after automated tests, 247
debugging scope, 277
decision testing, 126–129. See also condition

testing
decisions in programs, counting. See cyclomatic

complexity, measuring
decomposing variable data (ECP), 80–82

dedicated teams for non-functional testing,
251

defect detection effectiveness (DDE), 111
defect removal efficiency (DRE), 191
Deming, W. Edwards, 51
dependencies, services, 333
dependency errors, 285
deploying services with automation, 337
deployment test clusters (services), 344, 345
depth of inheritance tree (metric), 153
descriptions for test patterns, 63
descriptions of bugs (in bug reports), 192
design (test pattern attribute), 63
design, importance of, 61
design patterns, 62, 309
designing models, 161

finite state models, 166
designing test cases, 61–72

best practices, 61
estimating test time, 64
getting started, 65–67
practical considerations, 70–72
testability, 67–69
testing good and bad, 69
using test patterns, 62–64

DeVaan, Jon, 33
Development (SDE) discipline, 15
development models, 42–45
devices. See hardware
dï¿½jï¿½ vu heuristic, 99
Difficulty metric (Halstead), 152
diff utilities, 276
Director, Software Development Engineer in

Test title, 37
Director of Test, 38
Director of Test Excellence, 381
“disallow server cascading” failure, 361
disciplines, product engineering, 15, 21
display contrast (accessibility), 268
distributed stress testing, 257
DIT metric, 153
diversity of Microsoft portfolio, 7
divisions at Microsoft, 5
DMAIC model, 52
Do phase (PDCA cycle), 51
document comparison tools, 276
documentation of test cases. See entries at log;

test cases
documenting code changes. See source control
dogfooding, 264, 350

coupling between object classes (metric)

Z01I624252.indd 410 11/11/2008 10:22:54 PM

 411

“done,” defining, 49
down-level browser experience, 326
DRE (defect removal efficiency), 191
Drotter, Stephen, 33
duplicate (bug resolution value), 195
duplicate bugs, 200

E
E&D (Entertainment and Devices Division), 5
each choice (EC) approach, combinatorial

testing, 102
ease of use, bug tracking system, 190
“eating our dogfood”, 264, 350
ECP (equivalence class partitioning), 78–90

analyzing parameter subsets, 84–86
boundary condition tests, 88
boundary value analysis with, 88, 93
decomposing variable data, 80–82
example of, 83

edges (control node graphs), 150
education strategy, 66, 67
EE (Engineering Excellence) group, 32
effectiveness of code reviews, measuring,

381–384
effort of test automation, determining, 220
80:20 rule, 145
Elop, Stephen, 5
e-mail discussions in bug reports, 199
emotional response from customers, 309–312
employee orientation, 32
emulating services, 346
ending state (model), 160
engineering career at Microsoft, 33
engineering disciplines, 15, 21
Engineering Excellence (EE) group, 32
Engineering Excellence (EE) team, 378
Engineering Excellence Forum, 379, 381
engineering life cycles, 41–57

Agile methodologies, 44, 48–50
milestones, 45–48
process improvement, 51–53

formal systems for, 52
shipping software, 54–56
software development models, 42–45

Engineering Management discipline, 16
engineering organizational models, 8
engineering workforce (Microsoft), size of, 27

campus recruiting, 29–31
engineers, types of, 14–17
Entertainment and Devices Division. See E&D

environment, bug, 194
environmental sensitivity of automated tests,

292
equivalence class partitioning (ECP), 78–90

analyzing parameter subsets, 84–86
boundary condition tests, 88
boundary value analysis with, 88, 93
decomposing variable data, 80–82
example of, 83

estimation of test time, 64
ET. See exploratory testing
Euler, Leonhard, 166
examples for test patterns, 63
exception handling, block testing for, 124
execution phase (SEARCH test automation),

229, 233–240
exit criteria for milestones, 46

quality gates as, 49
expected practices, 56
experience quality, 298
expiration date set (metric), 352, 354
exploratory testing, 116
exploratory testing (ET), 65, 71, 74
exporting virtual machines, 378
external user access, bug tracking system, 191

F
facilitating testing, team for, 379
Fagan inspections, 380
Fail Perfectly attribute (BVTs), 283
Fail result (automated tests), 242
failure analysis, automatic, 365–371
failure count (test case metric), 217
failure criteria in test cases, 213
failure databases, 367
failure matching, 367
false alarms (metric), 357
false negatives, with automated testing, 221
false positives, 157, 247

with automated testing, 221
falsification tests, 69
fan-in and fan-out measurements, 154
fast rollbacks with services, 339
feature area, bug, 193
feature crews (Agile methodologies), 48
features

bugs vs., 197
in milestone criteria, 47
of services, 336

features

Z01I624252.indd 411 11/11/2008 10:22:54 PM

412

feedback systems. See customer feedback
systems

Fiddler tool, 352, 354
field replaceable units (FRUs), 321
film industry, product development as, 11
finite state machines (FSMs), 161
finite state models, building, 166
fix if time (bug priority), 198
fix number method (WER), 308
fixed (bug resolution value), 195
fixed-constant values, 91
fixed-variable values, 91
font size (accessibility), 268
forgotten steps in test cases, 213
formal code reviews, 380
forums, Microsoft, 312
forward thinking in testing, 365–370
foundation (platform) services, 333
frequency of release, services, 336
frequency of testing

performance testing, 253
as test case attribute, 212

Friday the 13th bug, 85
Frink, Lloyd, 21
frowny icon (Send a Smile), 310
FRUs (field replaceable units), 321
FSMs (finite state machines), 161
full automated service deployments, 337
fully automated tests. See automated tests
functional testing, 73–114

boundary value analysis (BVA), 90–100
defining boundary values, 90
hidden boundaries, 97
using ECP tables with, 88, 93

combinatorial analysis
effectiveness of, 111
tools for, in practice, 104–111

equivalence class partitioning (ECP), 78–90
analyzing parameter subsets, 84–86
boundary condition tests, 88
boundary value analysis with, 88, 93
decomposing variable data, 80–82
example of, 83

need for, 74–78
vs. non-functional testing, 249
structural testing vs., 115

functions, testing. See structural testing
future of testing, 365–382
fuzz testing, 271
fuzzy matching, 221
FxCop utility, 290

G
game data, collecting, 303
gatekeeper (check-in system), 287
Gates, Bill, 5, 11, 22, 319
gauntlet (check-in system), 287
General Manager of Test, 38
George, Grant, 25
getting to done (Agile methodologies), 49
gimmicks, test techniques as, 78
glass box testing, 71
global company, Microsoft as, 17
goals

for milestones, 46, 49
for performance testing, 253
for usability testing, 270

grammar models, 170
graph theory, 166
gray box testing, 71
Group Test Managers, 38
grouping bugs in bug reports, 199
groups of variables in ECP, 82

H
Halo 2 game, 303
Halo 3 game, 8
Halstead metrics, 152–153
happy path, testing, 69
hard-coded paths in tests, 247
hardware

accessible technology tools, 266
device simulation framework, 234
USB cart of death, 257

help phase (SEARCH test automation), 229, 244
helping testers, team for, 379
heuristics for equivalence class partitioning, 82
hidden boundary conditions, 97, 142
high-contrast mode, 268
hiring testers at Microsoft, 27

campus recruiting, 29–31
learning to be SDETs, 32

historical data, in test time estimation, 64
historical reference, test case as, 211
hotfixes, 155
how found (bug report field), 195
humorous bugs, 207–209
Hutcheson, Marnie, 117
Hyper-V, 375

feedback systems

Z01I624252.indd 412 11/11/2008 10:22:54 PM

 413

I
IAccessible interface, 226
IC Testers, 35
ICs (individual contributors), 33
identification number validation, 139
ilities, list of, 250. See also non-functional

testing
imaging technology, 233
impact, 5
impact (competency), 28, 31
impact of bug on customer, 194
importing virtual machines, 378
incubation, 11–14
industry recruiting, 31
influence (competency), 28, 31
informal code reviews, 380
initial build process, about, 282
initiation phase (stress testing), 258
innovation

customer focus, 28. See also customer
feedback systems

incubation, 11–14
in testing, 382

innovation in PC computing, 329
inputs (test cases), 212

fuzz testing, 271
Inspect Objects tool, 268
installation testing, 233
INT environment, 343–344, 345
integrated services test environment, 343–344,

345
integration testing (services), 346
interactions within systems, 30
International Project Engineering (IPE), 16
internationalization, 17
Internet memo, 319
Internet services as Microsoft focus, 319
Internet Services Business Unit (ISBU), 12
interoperability of bug tracking system, 191
interpersonal awareness (competency), 29
interpreting test case results, 217
interviewing for tester positions, 29
introduction (test strategy attribute), 66
invalid class data (ECP), 81
involvement with test automation, 220
IPE (International Project Engineering), 16
ISBU (Internet Services Business Unit), 12
ISO 9000 program, 53
issue type (bug report field), 195
iterations, Agile methodologies, 50

J
jargon in test cases, 213
JIT debuggers, 259
job titles for software test engineers, 23

moving from SDEs to SDETs, 24–27
SDET IC, 35
Test Architect, 34, 373–377
in test management, 36
Test Manager, 38

Jorgensen’s formula, 92
Juran, Joseph, 366
just-in-time (JIT) debuggers, 259

K
key scenario (test strategy attributes), 66
keyboard accessibility. See accessibility testing
keystrokes, simulating, 224
Kï¿½nigsberg problem, 166
knowledge testability, 67

L
large-scale test automation, 246
Last Known Good (LKG) release, 55
layered services, 327, 332
Lead Software Development Engineering in

Test title, 37
leadership, 370
Leads. See SDET Leads
Lean program, 53
learning how to be SDETs, 32
legacy client bugs, 360
legal defense, bug reports as, 192
Length metric (Halstead), 152
length of program (lines of code), 147–148
libraries, 294
libraries of applications for compatibility

testing, 261, 385
lifecycle, bugs, 189–190
lifetime of automated tests, 220
limitations of test patterns, 63
line metrics (churn metrics), 273
linearly independent basic paths, 133
lines of code (LOC), 147–148
Live Mail service, 8, 326
Live Mesh, 320
LKG (Last Known Good) release, 55
load tests, 252, 256. See also performance

testing; stress testing
Office Online, 347

load tests

Z01I624252.indd 413 11/11/2008 10:22:54 PM

414

LOC (lines of code), 147–148
Localization (IPE) discipline, 16
log file parsers, 243, 370
log files generated with test automation, 238,

243
using for failure matching, 368

long-haul tests, 252
look-and-feel testing, 115, 116
loop structures

boundary testing of, 97, 99
structural testing of, 128

loosely coupled services, 333–335, 346
love bug, 208
low-resource testing, 256
Luhn formula, 139

M
machine roles, 341
machine virtualization, 372–379

managing failures during tests, 377
test scenarios, 374–377, 379

maintainability testing, 250
testability, 67–69

maintainability of source code, complexity and,
156

managed code analysis, 290
managed code test attributes, 237
management career paths, 33

test management, 36
managing bugs, 187–209

attributes of tracking systems, 190
bug bars (limits on bugs assigned), 205–209
bug lifecycle, 189–190
bug reports, 192–197

common mistakes in, 198–201
using data effectively, 201–205

bug workflow, 188
classic Microsoft bugs, 207–209
false positives, 157, 247

with automated testing, 221
triage, 196–198

managing test cases. See test cases
mandatory practices, 56
manual testing, 71, 213. See also exploratory

testing
mashups, 328, 349
matching failures, 367
MBD (Microsoft Business Division), 5
MBT. See model-based testing

McCabe, Thomas, 133, 149
mean time between failure (MTBF) testing, 256
measuring code complexity. See code

complexity
measuring performance, 253–255
memory usage attribute (stress tests), 260
message loops, 156
metrics

on bugs, 200
as performance metrics, 204
quota on finding, 205

for code churn, 273
code complexity

Halstead metrics, 152–153
how to use, 157
object-oriented metrics, 153

on defect detection. See DDE
on emotional response, 310
for performance, 253–255

services, 351–356
on quality, 300
for quality of services (QoS), 357
smoke alarm metrics, 155
on test cases, 217

Microsoft Active Accessibility (MSAA), 226
Microsoft Application Verifier tool, 262
Microsoft CIS (Cloud Infrastructure Services),

320
Microsoft Connect, 312
Microsoft Office, about, 8
Microsoft Office Online, 334
Microsoft OneNote customer connections, 314
Microsoft Passport parental controlled, 334
Microsoft Surface, 13
Microsoft Test Leadership Team (MSTLT), 370,

382
Microsoft Tester Center, 380
Microsoft UI Automation framework, 226
Microsoft Visual Studio 2008, Spec Explorer for,

175
Microsoft Visual Studio Team Foundation

Server (TFS), 264
microsoft.public.* newsgroups, 312
milestones, 45–48

in Agile methodologies, 50
quality milestone, 47

milk carton bug, 207
missing steps in test cases, 213
mission statements, Microsoft, 4
mistakes in test cases, 213–214

LOC (lines of code)

Z01I624252.indd 414 11/11/2008 10:22:54 PM

 415

mixed mode service upgrades, 340
mod 10 checksum algorithm, 139
model-based testing (MBT), 159–183

basics of modeling, 160
testing with model, 161–172

automating models, 166–171
designing models, 161
finite state models, 166

tips for modeling, 182
tools for, 174–182

modeling control flow, 118, 122
modeling threats, 271
modeling without testing, 172, 182
models for engineering workforce, 8
models for software development, 42–45
monitoring code changes. See source control
monitoring code changes (churn), 273–275
monitoring code review effectiveness, 381–384
monitoring performance, 254
monkey testing, 169
mouse clicks, simulating, 224
mouse target size (accessibility), 268
movie industry, product development as, 11
moving quality upstream, 366
MQ (quality milestone), 47

services, 356
MSAA (Microsoft Active Accessibility), 226
MsaaVerify tool, 268
MSN (Microsoft Network), 320
MSTLT (Microsoft Test Leadership Team), 370,

382
MTBF testing, 256
Muir, Marrin, 26
multiclient stress tests, 260
multiple bugs in single report, 199
must fix (bug priority), 198
Myers, Glenford, 82

N
names for software test positions, 23

moving from SDEs to SDETs, 24–27
SDET IC, 35
Test Architect, 34, 373–377
in test management, 36
Test Manager, 38

names for test patterns, 63
naming service releases, 336
native code analysis, 288
negative testing, 108

NEO (New Employee Orientation), 32
Net Promoter score, 357
network topology testing, 375
new employee orientation (NEO), 32
newsgroups, Microsoft, 312
nodes (control flow graphs), 150
no-known failure attribute (stress tests), 260
non-functional (behavioral) testing, 116,

249–272
automating, 223

non-functional testing
accessibility testing, 265–268
compatibility testing, 261–263

dogfooding (being users), 264, 350
dogfooding, 264, 350
performance testing, 231, 252–255

compatibility testing, 261–263
dogfooding (being users), 264, 350
how to measure performance, 253–255
Office Online, 347
in other testing situations, 254
services, metrics for, 351–356
stress testing, 257–260

security testing, 250, 270–272
stress testing, 257–260

architecture for, 258–260
Office Online newsgroups, 347

team organization, 251
usability testing, 250, 269

accessibility testing, 265–268
not repro (bug resolution value), 195
notification of bug assignment, 191
number of passes or failures (test case metric),

217
number of tests

boundary value analysis (BVA), 92
cyclomatic complexity and, 133
for performance testing, 253
reducing with data partitioning. See

equivalence class partitioning (ECP)
n-wise testing, 102

effectiveness of, 111
in practice, 104–111
sufficiency of, 111

O
object model, 224
object-oriented metrics, 153
observable testability, 67

observable testability

Z01I624252.indd 415 11/11/2008 10:22:54 PM

416

offering tester positions to candidates, 29
Office, about, 8
Office Live. See Office Online
Office Online, 334, 347
Office Shared Services (OSS) team, 9
OLSB (Online Live Small Business), 325
one-box test platform (services), 340, 345
OneNote customer connections, 314
online services. See services
open development, 386
open office space, 381
operating systems. See Windows operating

systems
Operations (Ops) discipline, 15
operators in programs, counting. See Halstead

metrics
oracle (test pattern attribute), 63
oracles, 240, 241
organization of engineering workforce, 8
orientation for new employees, 32
orthogonal arrays (OA) approach,

combinatorial testing, 102
OSS (Office Shared Services) team, 9
outdated test cases, 211
output matrix randomization (PICT tool), 111
overgeneralization of variable data, 80
ownership of quality, 368
Ozzie, Ray, 6, 319

P
packaged product vs. services, 325
page load time metrics, 351, 352
page weight (metric), 352, 353
pair programming, 380
pair testing, 72
pair-wise analysis, 102

effectiveness of, 111
insufficiency of, 111
in practice, 104–111

parameter interaction testing. See
combinatorial analysis

parental controlled with WLID, 334
Pareto, Vilfredo, 145
Pareto principle, 145
parsing automatic test logs, 243, 370
partial production upgrades, services, 338
partitioning data into classes. See decomposing

variable data (ECP)
Partner SDETs, 34

Partner Software Development Engineer in Test
titles, 35

pass count (test case metric), 217
pass rate (test case metric), 217, 243
Pass result (automated tests), 242
pass/fail criteria in test cases, 213
passion for quality (competency), 28
path testing. See basis path testing
patterns-based testing approach, 62–64
PC computing innovations, waves of, 329
PDCA cycle, 51
percentage of false alarms (metric), 357
percentage of tickets resolved (metric), 357
perception of quality, 298
perf and scale clusters, 342, 345
Perfmon.exe utility, 254
performance. See also metrics

browser-based service performance metrics,
351–356

bug data as metrics of, 204
metrics for services, 351–356
in milestone criteria, 47
quality gates, 49
services and processing power, 323

performance counters, 254
performance testing, 231, 252–255

compatibility testing, 261–263
dogfooding (being users), 264, 350
how to measure performance, 253–255
Office Online, 347
in other testing situations, 254
services, metrics for, 351–356
stress testing, 257–260

performing arts organization, Microsoft as, 10
personas for accessibility testing, 266
pesticide paradox, 77
Petri nets, 173
PICT tool, 104
pitfalls with test patterns, 63
Plan phase (PDCA cycle), 51
planning, 50

for performance bottlenecks, 254
for services testing, 329
for test automation, 232

Platform Products and Services Division. See
PSD

platform services, 332
platforms for test automation, 221
play production, shipping products as, 10
point of involvement with test automation, 220

offering tester positions to candidates

Z01I624252.indd 416 11/11/2008 10:22:54 PM

 417

portability testing, 250
postbuild testing, 287
postponed bugs, 189, 195
power, growth and, 323
practical baseline path technique, 134
prebuild testing, 287
predicted results (test case attribute), 212
predicting quality perception, 298
PREfast tool, 288
Principle SDETs, 34
Principle Software Development Engineer in

Test titles, 35
Principle Test Managers, 38
Print Verifier, 263
prioritizing bugs, 189, 196–198

bug severity, 194
Send a Smile program and, 311

proactive approach to testing, 368
problem (test pattern attribute), 63
Problem Reports and Solutions panel, 305
problem solving competency, 28
process improvement, 51–53, 281

formal systems for, 52
services, 356

processing power for services, 323
product code. See entries at code
product engineering disciplines, 15, 21
product engineering divisions at Microsoft, 5
product releases. See releases
Product Studio, 187
product support, 26
product teams, 9
Product Unit Manager (PUM) model, 8
production, testing against, 349–351
program decisions, counting. See cyclomatic

complexity, measuring
program length, measuring, 147–148
Program Management (PM) discipline, 15, 21
programmatic accessibility, 265, 268
progress tracking, 211
Project Atlas, 6
project management

bug prioritization, 198
competency in, 28

prototypes, 44
PSD (Platform Products and Services Division),

5
PUM (Product Unit Manager) model, 8
purpose (test case attribute), 212

Q
QA (quality assurance), 368
QoS (quality of service) programs, 356
quality, cost of, 369
quality, passion for (competency), 28
quality, service, 336
quality assurance (QA), 368
quality culture, 366
quality gates, 49
quality metrics, 300
quality milestone, 47

services, 356
quality of service (QoS) programs, 356
quality perception, 298
quality tests. See non-functional testing
Quests, 13
quotas for finding bugs, 205

R
rack units (rack SKUs), 321
Raikes, Jeff, 5
random model-based testing, 169
random selection, combinatorial testing, 101
random walk traversals, 165
random walk traversals (graph theory), 167
ranges of values in ECP, 82
RCA (root cause analysis), 357
reactive approach to testing, 368
reasons for code change, documenting, 278
recruiting testers

campus recruiting, 29–31
industry recruiting, 31

RedDog. See CIS (Cloud Infrastructure Services)
Redmond workforce, about, 17
regression tests, 220
regular expressions, 170
Rehabilitation Act Section 508, 265
related test patterns, identifying, 63
release/free builds, 55
releases

Microsoft-speak for, 55
responsibility for managing, 56
of services, frequency and naming of, 336

reliability of bug tracking system, 191
reliability testing, 250, 252

milestone criteria, 46
repeatability, test cases, 211
repetition testing, 256
reporting bugs. See managing bugs

reporting bugs

Z01I624252.indd 417 11/11/2008 10:22:55 PM

418

reporting phase (SEARCH test automation),
229, 243

reporting user data. See customer feedback
systems

reproduction steps (repro steps), 193
Research discipline, 16
resolution (in bug reports), 195
resolved (bug status), 193
resource utilization, 254

low-resource and capacity testing, 256
response from customers. See customer

feedback systems
responsiveness measurements, 253
result types for automated testing, 242
reusing code, 385–387
reviewing automated test results, 240
risk analysis modeling, 172
risk estimation with churn metrics, 274
risk management with services deployment,

338
risk with code complexity, 145–158
risk-based testing, 145
role of testing, 370
rolling builds, 285
rolling upgrades, services, 339
round trip analysis (metric), 352, 355
Royce, Winston, 43
Rudder, Eric, 33
run infinitely attribute (stress tests), 260

S
S+S. See Software Plus Services (S+S)
SaaS (software as a service), 326. See also

Software Plus Services (S+S)
sanitizing data before testing, 351
scalability testing, 250, 252
scale out (processing power), 343
scale up (system data), 342
scenario voting, 315
scheduling, 50

code reviews, 383
debugging scope and, 278
test automation, 221
test case design, 70

SCM. See source control
scope of debugging, 277
scope of testing, 70

automated tests, 232
scripted tests, code coverage of, 117

SDE. See Development (SDE) discipline; Test
(SDET) discipline

SDET Leads, 37
SDET Managers, 38
SDETs (Software Development Engineers in

Test), 24–27
learning how to be, 32
recruiting. See recruiting testers
using triangle simulations, 76

SEARCH acronym for test automation, 229,
232–244

analysis phase, 240–242
cleanup phase, 243
execution phase, 233–240
help phase, 244
reporting phase, 243
setup phase, 232–234

Section 508 (Rehabilitation Act), 265
security

data sanitization, 351
quality gates, 49
testing, 250, 270–272

self-host builds, 55
self-test build, 55
self-toast builds, 55
semiautomated tests, 213
Send a Smile program, 310
Senior SDET Leads, 38
Senior SDET Manager, 38
Senior SDETs, 34
Senior Software Development Engineer in Test

titles, 35
servers, building services on, 331
service groups, 321
services, 317–362

dogfooding, 350
loose vs. tight coupling, 333–335, 346
Microsoft services strategy, 318
packaged product vs., 325
performance test metrics, 351–356
platform vs. top-level, 332
processing power requirements, 323
S+S testing approaches, 329–337
S+S testing techniques, 337–356

deployment automation, 337–339
performance test metrics, 351–356
test environment, 339–345
testing against production, 349–351

stand-alone and layered services, 327
stateless vs. stateful, 335

reporting phase (SEARCH test automation)

Z01I624252.indd 418 11/11/2008 10:22:55 PM

 419

services (continued)
testing S+S

approaches for, 330–337
common bugs, 360
continuous quality improvement, 356–360

Services memo, 319
setup phase (SEARCH test automation), 229,

232–234
Seven Bridges of Kï¿½nigsberg problem, 166
severity, bug, 194
shared libraries, 294, 378
Shared Team model, 9
shared teams, 9
shared test clusters, 342, 344
sharing test tools, 294, 378, 386
Shewhart cycle, 51
ship room, shipping software from, 54–56
shipping software, 54–56
shirts, ordering new, 6
shortest path traversal (graph theory), 167
should fix (bug priority), 198
shrink-wrap software, 325
simple testability, 67
simplicity. See code complexity
simplified baseline path technique, 134
simplified control flow diagrams (CFDs), 122
single fault assumption, 89
Six Sigma program, 53
size issues (accessibility), 268
size of Microsoft engineering workforce, 27

campus recruiting, 29–31
Skip result (automated tests), 242, 243
SMEs as testers, 23
smiley icon (Send a Smile), 310
Smith, Brad, 6
smoke alarm metrics, 155
smoke tests, 283, 349
snapshots of code, 275, 374, 378
SOCK mnemonic for testability, 67
software as services. See services
software design, importance of, 61
Software Development Engineer in Test

Manager title, 37
Software Development Engineer in Test titles,

35
software engineering at Microsoft, 41–50

Agile methodologies, 44, 48–50
milestones, 45–48
traditional models, 42–45

software features
bugs vs., 197
in milestone criteria, 47

software libraries, 385
Software Plus Services (S+S), 318, 329–337. See

also services
common bugs with, 360
continuous quality improvement, 356–360
vs. SaaS (software as a service), 326
testing approaches, 330–337

client support, 331
loose vs. tight coupling, 333–335, 346
platform vs. top-level, 332
release frequency and naming, 336
server builds, 331
stateless vs. stateful, 335
time-to-market considerations, 336

testing techniques, 337–356
deployment automation, 337–339
performance test metrics, 351–356
test environment, 339–345
testing against production, 349–351

software reliability. See reliability testing
software test engineers, 21–39. See also titles

for software test engineers
career paths in Test, 34–38
engineering careers, 33
learning how to be, 32
recruiting. See recruiting testers

sound features, accessibility of, 268
source (bug report field), 195
source control, 275–281

breaking builds, 285
check-in systems, 286
reasons for code changes, 278

Spec Explorer tool, 174–178
Windows 7 and, 181

special values in ECP, 82
specifications for test design, 66, 68
spiral model, 43
SQEs (software quality engineers), 25
stand-alone applications, 234
stand-alone services, 327
stapler stress, 257
starting state (model), 160
starting the test process, 65
state-based models. See model-based testing

(MBT)
stateless vs. stateful services, 335

stateless vs. stateful services

Z01I624252.indd 419 11/11/2008 10:22:55 PM

420

statement testing, 118
static analysis, 56, 288–294

managed code analysis, 290
native code analysis, 288
test code analysis, 292

status, bug, 193
Step attribute, 237
steps in test cases, 212, 213
STEs (Software Test Engineers), 24
Stobie, Keith, 29, 36, 229
stopwatch testing, 252
strategic insight (competence), 28
strategy, test, 66
stress testing, 257–260

architecture for, 258–260
Office Online newsgroups, 347

structural testing, 115–143
basis path testing, 117–142
block testing, 118–126
condition testing, 129–132
decision testing, 126–129
functional testing vs., 115
need for, 116

subject matter experts as testers, 23
support, product, 26
support for test automation, 221
SupportFile attribute, 237
Surface, 13
switch/case statement, testing, 122
syntax elements in programs, counting. See

Halstead metrics
syntax errors, 284
systematic evaluation approaches,

combinatorial testing, 101
systems, test. See test tools and systems
systems interactions, 30
system-wide accessibility settings, 267

T
TAG (Test Architect Group), 373–377, 382
TAs. See Test Architects
TCMs (test case managers), 209, 215, 217

cross-referencing with automation scripts,
246

TDSs (test design specifications), 66, 68
Team Foundation Server (TFS), 264
teams

feature crews (Agile methodologies), 48
for non-functional testing, 251

open office space, 381
usability labs, 269
war team, 54
Windows Stress team, 260

technical excellence (competency), 28
Technical Fellows, 34
techniques as gimmicks, 78
templates for sharing test patterns, 63
Test (SDET) discipline, 15. See also SDETs

(Software Development Engineers in Test)
Test A Little attribute (BVTs), 283
test architects, 382
Test Architects (TAs), 34, 373–377
test automation, 219–248

automatic failure analysis, 365–371
developing, 30
elements of testing, 228–231
exploratory testing vs., 71
running the tests, 245–247

common mistakes with, 247
large-scale testing, 246

SEARCH acronym for test automation, 229,
232–244
analysis phase, 240–242
cleanup phase, 243
execution phase, 233–240
help phase, 244
reporting phase, 243
setup phase, 232–234

test code analysis, 292
testing, 61
tracking changes in, 275
user interface automation, 223–228
value of, 219–223

Test Broadly Not Deeply attribute (BVTs), 283
test case managers (TCMs), 209, 215, 217

cross-referencing with automation scripts,
246

test cases, 209–217, 215, 217
analysis of, 293
anatomy of, 212
common mistakes with, 213–214
counting, 215–216
cross-referencing with automation scripts,

246
defined, 209, 216
design of, 61–72

best practices, 61
estimating test time, 64
getting started, 65–67

statement testing

Z01I624252.indd 420 11/11/2008 10:22:55 PM

 421

test cases (continued)
practical considerations, 70–72
testability, 67–69
testing good and bad, 69
using test patterns, 62–64

documenting with automated testing, 244
executing automatically, 234, 246. See also

test automation
milestone criteria, 46
tracking and interpreting results (metrics), 217
tracking changes in, 275
value of, 211
workflow, 188

test cleanup, 243
test clusters, 341, 345

deployment test clusters, 344, 345
dogfood clusters, 350
shared, 342, 344

test code analysis, 292
test code snapshots, 275, 374, 378
test collateral, 246
test controllers, 246
test coverage. See code coverage
test data, creating with grammar models, 170
test deliverables (test strategy attributes), 67
test design, importance of, 61
test design specifications (TDSs), 66, 68
test environment for services, 339
test excellence, 378–382
Test Fast attribute (BVTs), 283
test flags, 346
test frequency

performance testing, 253
as test case attribute, 212

test harnesses, 235, 244
test innovation, 382
test leadership, 370–376
test logs (automated testing), 238, 243

using for failure matching, 368
test matrix for services testing, 329
test oracles, 240, 241
test pass, defined, 216, 217
test patterns, 62–64
test points, 215, 216
test run, defined, 216
test strategies, 66
test suite, defined, 216
test therapists, 380
test time, estimating, 64
test tools and systems

automation. See test automation
bug management. See managing bugs
build process, 281–287

breaking builds, 284
testing daily builds, 374

code churn, 273–275
customer feedback systems, 297–315

connecting with customers, 312–315
emotional response, 309–312
for services, 357
testing vs. quality, 297–299
watching customers. See CEIP (Customer
Experience Improvement Plan)
Windows Error Reporting, 304–309

miscellaneous, 294
non-functional testing. See non-functional

testing
source control, 275–281

breaking builds, 285
check-in systems, 286
reasons for code changes, 278

static analysis, 56, 288–294
managed code analysis, 290
native code analysis, 288
test code analysis, 292

testability, 67–69. See also maintainability
testing

TestCleanup attribute, 237
Tester Center, 380
tester DNA, 23, 25
testing, future of, 365–382
testing against production, 349–351
Testing at Microsoft for SDETs class, 32
testing coverage

analysis tools for, 293
behavioral and exploratory testing, 117
combinatorial analysis and, 112
with functional testing, 77
milestone criteria, 46
quality gates, 49
scripted tests, 117
statement vs. block coverage, 118

testing techniques as gimmicks, 78
testing the tests, 288, 292
testing with models. See model-based testing

(MBT)
TestInitialize attribute, 237
TestMethod attribute, 237
text matrix for automated testing, 232
TFS (Team Foundation Server), 264

TFS (Team Foundation Server)

Z01I624252.indd 421 11/11/2008 10:22:55 PM

422

ThinkWeek, 13
threat modeling, 271
3(BC) formula, 94, 100
threshold method (WER), 308
tickets resolved (metric), 357
tidal wave bug, 361
tightly coupled services, 333–335, 346
time for code reviews, monitoring, 383
time investment. See scheduling
time to detection (metric), 357
time to document, 211
time to market, services, 336
time to resolution (metric), 357
titles for software test engineers, 23

moving from SDEs to SDETs, 24–27
SDET IC, 35
Test Architect, 34, 373–377
in test management, 36
Test Manager, 38

titles of bugs (in bug reports), 192
tool sharing, 294, 378, 386
tools for accessibility technology, 266, 268
top-level services, 332
topology testing, 375
tracking bugs. See managing bugs
tracking code changes. See source control
tracking code review data, 384
tracking test cases, 217
tracking test progress, 211
training as SDETs, 32
training strategy in test design, 66, 67
transitions (in models), 160

Petri nets, 173
trends in test failures, analyzing, 371
triad (Test, Development, Program

Management), 16
triage for managing bugs, 189, 196–198

bug severity, 194
Send a Smile program and, 311

triangle simulation (Weinberg’s triangle), 76
Trudau, Garry, 6
Trustworthy attribute (BVTs), 283
t-shirts, ordering new, 6
tsunami effect, 361
Turner, Kevin, 6

U
UI automation, 223–228

brute force approach, 227
uncertainty, reducing with BGM, 172
unique tools for unique problems, 294
uniqueness of values in ECP, 82
unit tests, block testing for, 122
universities, recruiting from, 29
upgrading services, 338
Usability and Design discipline, 15, 21
usability testing, 250, 269

accessibility testing, 265–268
usage data, collecting. See CEIP (Customer

Experience Improvement Plan)
USB cart of death, 257
User Assistance and Education. See Content

discipline
user interface

automation of, 223–228
programmatic access to, 265, 268

users, being. See dogfooding
UX. See Usability and Design discipline

V
valid class data (ECP), 81
values, Microsoft, 4
variable data, decomposing (ECP), 80–82
venture capital teams, internal, 12
verbose, test cases as, 213
verification tests, 69
version number, bugs, 193
Vice President of Test, 38
VINCE (Verification of Initial Consumer

Experience), 303
Virtual Earth, 8
virtual teams for non-functional testing, 251
virtualization, 372–379

managing failures during tests, 377
test scenarios, 374–377, 379

visual freeze, defined, 55
Visual Round Trip Analyzer (VRTA), 352, 355
Visual Studio 2008, Spec Explorer for, 175
Visual Studio Team Foundation Server (TFS),

264
VMs. See machine virtualization

ThinkWeek

Z01I624252.indd 422 11/11/2008 10:22:55 PM

 423

voice of customer, 357
Voodoo Vince, 303
VPNs (virtual private networks), 68

W
war room, shipping software from, 54–56
Warn result (automated tests), 242
watching customers. See CEIP (Customer

Experience Improvement Plan)
waterfall model, 42
waves of innovation in PC computing, 329
Web services. See services
weighted methods per class (metric), 153
weighted traversals (graph theory), 167
Weinberg’s triangle, 76
WER (Windows Error Reporting), 304–309
White, David, 26
white box testing, 71

assumption of bias in (false), 116
structure testing as, 115

Whittaker, James, 36
Whitten, Greg, 22
Windows 7, Spec Explorer and, 181
Windows 95, supporting, 27

Windows Error Reporting (WER), 304–309
Windows Live ID (WLID), 334
Windows Live Mail service, 8, 326
Windows Mobile, about, 8
Windows operating systems

about, 8
accessibility settings, 265

Windows Powered Smart Display, 227
Windows Sustained Engineering (SE) Team, 155
WMC metric, 153
“won’t fix” bugs, 69, 147, 189
workflow for bugs, 188
workforce size at Microsoft, 27

campus recruiting, 29–31

X
Xbox 360, about, 8

Z
zero bug bounce, 198
zero bugs concept, 198

zero bugs concept

Z01I624252.indd 423 11/11/2008 10:22:55 PM

Z01I624252.indd 424 11/11/2008 10:22:55 PM

	Table of Contents
	Introduction
	Chapter 3: Engineering Life Cycles
	Index

