For Web Developers

Microsoft® ASP.NET 3.5 Step by Step
George Shepherd
ISBN 9780735624269
Teach yourself ASP.NET 3.5—one step at a time. Ideal for developers with fundamental programming skills but new to ASP.NET, this practical tutorial delivers hands-on guidance for developing Web applications in the Microsoft Visual Studio® 2008 environment.

Eric Griffin
ISBN 9780735626065
Your hands guide to learning fundamental Web-development skills. This tutorial steps you through an end-to-end example, helping build essential skills logically and sequentially. By the end of the book, you’ll have a working Web site, plus the fundamental skills needed for the next level—ASP.NET.

Introducing Microsoft Silverlight™ 2, Second Edition
Laurence Moroney
ISBN 9780735625280
Get a head start with Silverlight 2—the cross-platform, cross-browser plug-in for rich interactive applications and the next-generation user experience. Featuring advance insights from inside the Silverlight team, this book delivers the practical, approachable guidance and code to inspire your next solutions.

Programming Microsoft ASP.NET 3.5
Dino Esposito
ISBN 9780735625273
The definitive guide to ASP.NET 3.5. Led by well-known ASP.NET expert Dino Esposito, you’ll delve into the core topics for creating innovative Web applications, including Dynamic Data; LINQ; state, application, and session management; Web forms and requests; security strategies; AJAX; Silverlight; and more.

JavaScript Step by Step
Steve Suehring
ISBN 9780735624498
Build on your fundamental programming skills, and get hands-on guidance for creating Web applications with JavaScript. Learn to work with the six JavaScript data types, the Document Object Model, Web forms, CSS styles, AJAX, and other essentials—one step at a time.

Programming Microsoft LINQ
Paolo Pialorsi and Marco Russo
ISBN 9780735624009
With LINQ, you can query data—no matter what the source—directly from Microsoft Visual Basic® or C#. Guided by two data-access experts who’ve worked with LINQ in depth, you’ll learn how Microsoft .NET Framework 3.5 implements LINQ, and how to exploit it. Study and adapt the book’s examples for faster, leaner code.

ALSO SEE
Developing Service-Oriented AJAX Applications on the Microsoft Platform
ISBN 9780735625914
Microsoft ASP.NET 2.0 Step by Step
ISBN 9780735622012
Programming Microsoft ASP.NET 2.0
ISBN 9780735625273
Programming Microsoft ASP.NET 2.0 Applications: Advanced Topics
ISBN 9780735621770
Contents at a Glance

Part I Getting Started with Integration Services
1. Introduction to SQL Server Integration Services 3
2. Building Your First Package .. 13

Part II Designing Packages
3. Extracting and Loading Data .. 35
4. Using Data Flow Transformations ... 67
5. Managing Control Flow ... 113
6. Scripting Tasks ... 139
7. Debugging Packages .. 175
8. Managing Package Execution .. 201

Part III Managing Packages
9. Detecting and Handling Processing Errors 237
10. Securing and Deploying SSIS Packages ... 287
11. Optimizing SSIS Packages .. 309

Part IV Applying SSIS to Data Warehousing
12. Data Warehouse Concepts ... 341
13. Populating Data Warehouse Structures ... 367
14. SSIS General Principles ... 413
Table of Contents

Introduction ... xv
Finding Your Best Starting Point .. xv
About the Companion CD-ROM .. xvii
System Requirements .. xvii
Installing and Using the Sample Files xvi
Conventions and Features in This Book xviii

Part I Getting Started with Integration Services

1 *Introduction to SQL Server Integration Services* 3
 - Common SSIS Applications ... 4
 - SSIS Objects and Process Control Components 4
 - SSIS Process Control ... 5
 - SSIS Control Flow .. 6
 - SSIS Data Flow .. 6
 - SSIS Data Pipeline .. 6
 - SSIS Event Handler .. 7
 - SSIS Components ... 8
 - SSIS Development Studio ... 8
 - SSIS Runtime Services ... 9
 - SSIS Package Deployment ... 9
 - SQL Server 2000 DTS Migration 10
 - Chapter 1 Quick Reference ... 10

2 *Building Your First Package* ... 13
 - Exploring Business Intelligence Development Studio 13
 - Solution Explorer ... 15
 - Docking Utility Windows .. 16
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exploring an SSIS Project in BIDS</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Using the SSIS Import and Export Wizard</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Creating Tables in a New Database</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Reviewing Package Elements</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Reviewing a Package Created Using the Import and Export Wizard</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Testing a Package</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Executing the Package in the Designer</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Chapter 2 Quick Reference</td>
<td>32</td>
</tr>
<tr>
<td>Part II</td>
<td>Designing Packages</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Extracting and Loading Data</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Connection Managers</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Connection Manager Types</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Creating a New Integration Services Project</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Adding Connection Managers</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Creating a Data Flow</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Adding Data Adapters</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Executing the Package</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Using Data Sources and Data Source Views</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Creating a Data Source</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Creating a Data Source View</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Creating a New Named Query</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Copying Data from a Named Query to a Flat File</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Executing the Package</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Chapter 3 Quick Reference</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Using Data Flow Transformations</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Creating Data Flow in a Package</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Data Flow Sources</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Data Flow Transformations</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Data Flow Destinations</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Data Source Connections</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>SSIS Transformations</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Row Transformations</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Rowset Transformations</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Split and Join Transformations</td>
<td>71</td>
</tr>
</tbody>
</table>
Table of Contents

Data Quality Transformations .. 71
Data-Mining Transformations ... 72
Other Transformations ... 72
Synchronous and Asynchronous Transformations 73
Using Expressions in Packages ... 73
Expression Usage in SSIS .. 73
Expressions Elements .. 74
Building Expressions ... 75
Using Data Flow Transformations 75
Opening and Exploring the SSIS Project 75
Creating the Data Flow Task .. 78
Using a Flat File Source .. 80
Adding a Connection Manager .. 82
Adding a Conditional Split Transformation 85
Adding a Derived Column Transformation 88
Viewing the Properties of the Derived Column Transformation 91
Adding a Flat File Destination Data Adapter and Executing the Package ... 92
Sending Output to Different Destinations 95
Configuring Error Output ... 102
Types of Errors ... 102
Error Options .. 102
Exploring the LookupGeography Package 102
Creating a Task .. 104
Creating and Naming a Flat File Source 104
Adding a Data Conversion Transformation 105
Adding a Lookup Transformation 106
Adding a Flat File Destination for Lookup Errors 108
Adding a Flat File Destination for Successful Lookups 109
Executing the Package and Checking the Results 110
Chapter 4 Quick Reference ... 112

5 Managing Control Flow ... 113

Control Flow Elements .. 113
Control Flow Components .. 114
Using Containers .. 119
Adding a Fuzzy Lookup Transformation 125
Adding a Foreach Loop Container 130
Table of Contents

Applying Precedence Constraints .. 132
Chapter 5 Quick Reference .. 137

6 Scripting Tasks ... 139
 Understanding Scripting Tasks .. 139
 Implementing a Script Task ... 141
 Creating a New Script Task and Initiating Code 141
 Handling Errors .. 145
 Providing a Message to the Progress Tab 148
 Providing Verbose Information to the Log File 152
 Using Variables .. 156
 Modifying a Variable at Run Time .. 159
 Understanding the Script Component ... 161
 Implementing the Script Component .. 162
 Reviewing a Sample Project ... 162
 Understanding an ActiveX Script Task 169
 Implementing an ActiveX Script Task 169
Chapter 6 Quick Reference .. 173

7 Debugging Packages ... 175
 Debugging Control Flow ... 175
 Understanding Breakpoints .. 176
 Reviewing Debug Windows ... 181
 Understanding Progress Messages .. 183
 Executing a Package Partially .. 185
 Debugging Data Flow .. 186
 Browsing Data By Using Data Viewers 186
 Understanding Other Options .. 190
 Debugging Script Task .. 190
 Walk Through Code by Using Breakpoints 190
 Reviewing State by Using VSA Features 194
Chapter 7 Quick Reference .. 198

8 Managing Package Execution .. 201
 Understanding Package Configurations 201
 Configuration Benefits ... 201
 Configuration Types ... 202
 Understanding the XML Configuration File 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifying a New XML Configuration File Location</td>
<td>202</td>
</tr>
<tr>
<td>Creating and Editing an XML Configuration File</td>
<td>203</td>
</tr>
<tr>
<td>Opening the SSIS Project and Executing the Package</td>
<td>203</td>
</tr>
<tr>
<td>Creating an XML Configuration File</td>
<td>204</td>
</tr>
<tr>
<td>Editing the XML Configuration File</td>
<td>207</td>
</tr>
<tr>
<td>Testing the Package with the New Configuration</td>
<td>208</td>
</tr>
<tr>
<td>Multiple Configuration Files</td>
<td>208</td>
</tr>
<tr>
<td>Environment Variable</td>
<td>208</td>
</tr>
<tr>
<td>Registry Entry</td>
<td>209</td>
</tr>
<tr>
<td>Parent Package Variables</td>
<td>209</td>
</tr>
<tr>
<td>SQL Server Tables</td>
<td>209</td>
</tr>
<tr>
<td>Direct and Indirect Configurations</td>
<td>209</td>
</tr>
<tr>
<td>Using Configuration Files</td>
<td>209</td>
</tr>
<tr>
<td>Determining Configuration Order</td>
<td>210</td>
</tr>
<tr>
<td>Evaluating Configuration Failure</td>
<td>210</td>
</tr>
<tr>
<td>Using Multiple Configurations</td>
<td>210</td>
</tr>
<tr>
<td>Creating Multiple Configuration Files</td>
<td>210</td>
</tr>
<tr>
<td>Creating the Database and the OLE DB Connection Manager</td>
<td>210</td>
</tr>
<tr>
<td>Creating the Environment Variable</td>
<td>212</td>
</tr>
<tr>
<td>Creating the Environment Variable Configuration</td>
<td>213</td>
</tr>
<tr>
<td>Creating the SQL Server Configuration</td>
<td>215</td>
</tr>
<tr>
<td>Testing the Package with the New Configuration</td>
<td>217</td>
</tr>
<tr>
<td>Exploring the Parent Package</td>
<td>218</td>
</tr>
<tr>
<td>Creating the Parent Package Variable Configuration</td>
<td>219</td>
</tr>
<tr>
<td>Exploring Package Execution Options</td>
<td>221</td>
</tr>
<tr>
<td>Using the SQL Server Import and Export Wizard to Execute Packages</td>
<td>221</td>
</tr>
<tr>
<td>Using DTExecUI to Execute Packages</td>
<td>222</td>
</tr>
<tr>
<td>Using DTExec to Execute Packages</td>
<td>222</td>
</tr>
<tr>
<td>Using SQL Server Management Studio to Execute a Package</td>
<td>223</td>
</tr>
<tr>
<td>Extending Package Execution Options</td>
<td>224</td>
</tr>
<tr>
<td>Using SQL Server Agent</td>
<td>224</td>
</tr>
<tr>
<td>Using the Execute Package Utility</td>
<td>226</td>
</tr>
<tr>
<td>Understanding Package Logging</td>
<td>229</td>
</tr>
<tr>
<td>Implementing Package Logging</td>
<td>230</td>
</tr>
<tr>
<td>Configuring Package Logging</td>
<td>230</td>
</tr>
<tr>
<td>Executing the Package and Viewing the Logs</td>
<td>232</td>
</tr>
<tr>
<td>Chapter 8 Quick Reference</td>
<td>234</td>
</tr>
</tbody>
</table>
Part III Managing Packages

9 Detecting and Handling Processing Errors 237

- Basic Error Detection and Handling .. 237
- Understanding Metadata Lineage ... 238
- Understanding Validation .. 238
- Understanding Precedence Constraints 238
- Understanding Data Flow Transformations 239
- Understanding Event Handlers .. 239
 - Using Event Handlers to Perform Tasks 240
 - Triggering an Event Handler ... 240
 - Using the Event Handlers Provided by SSIS 241
- Creating Event Handlers .. 241
 - Accessing the SSIS Design Environment 242
- Creating an `OnPostExecute` Event Handler 243
- Adding a Task to an Event Handler .. 244
- Configuring the Task ... 245
- Mapping SSIS Variables to SQL Statement Parameters 247
- Creating a Log Finish Event Handler .. 248
- Creating a Log Error Event Handler .. 250
- Executing the Package .. 251
- Testing the Package with Invalid Data 253
- Creating an Event Handler to Fix the Problem 255
- Creating a Task to Move the File with Invalid Data 256
- Setting Connection Manager Settings .. 257
- Preventing Events from Escalating to Containers and Packages 259
- Changing Error Count Properties .. 260
- Executing the Package .. 261
- Maintaining Data Consistency with Transactions 263
 - Configuring Transactions ... 263
- Using Checkpoint Restarts .. 263
 - Understanding the Benefits of Checkpoints 263
 - Configuring Packages for Checkpoints 264
- Using Checkpoints and Transactions .. 264
 - Preparing to Use Checkpoints and Transactions to Fix the Error 264
 - Becoming Familiar with the LoadDimProd Package 267
<table>
<thead>
<tr>
<th>Chapter 10 Quick Reference</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Securing and Deploying SSIS Packages</td>
<td>287</td>
</tr>
<tr>
<td>Creating a Deployment Utility</td>
<td>288</td>
</tr>
<tr>
<td>Using the Package Installation Wizard</td>
<td>288</td>
</tr>
<tr>
<td>Securing a Package</td>
<td>290</td>
</tr>
<tr>
<td>Package Encryption</td>
<td>290</td>
</tr>
<tr>
<td>Password Protection</td>
<td>291</td>
</tr>
<tr>
<td>ProtectionLevel Property</td>
<td>291</td>
</tr>
<tr>
<td>Role-Based Security</td>
<td>291</td>
</tr>
<tr>
<td>Applying Security</td>
<td>292</td>
</tr>
<tr>
<td>Deployment Options</td>
<td>294</td>
</tr>
<tr>
<td>Push Deployment</td>
<td>294</td>
</tr>
<tr>
<td>Pull Deployment</td>
<td>295</td>
</tr>
<tr>
<td>Managing Packages on the SSIS Server</td>
<td>295</td>
</tr>
<tr>
<td>Creating and Applying a Configuration</td>
<td>297</td>
</tr>
<tr>
<td>Adding a Configuration to the Project</td>
<td>297</td>
</tr>
<tr>
<td>Executing a Deployed Package</td>
<td>298</td>
</tr>
<tr>
<td>Monitoring Package Execution and Event Logs</td>
<td>300</td>
</tr>
<tr>
<td>Applying a Configuration</td>
<td>301</td>
</tr>
<tr>
<td>Chapter 10 Quick Reference</td>
<td>307</td>
</tr>
<tr>
<td>11 Optimizing SSIS Packages</td>
<td>309</td>
</tr>
<tr>
<td>SSIS Engine Overview</td>
<td>310</td>
</tr>
<tr>
<td>Runtime Engine</td>
<td>310</td>
</tr>
<tr>
<td>Data Pipeline Engine</td>
<td>310</td>
</tr>
<tr>
<td>Memory Buffer Architecture</td>
<td>310</td>
</tr>
<tr>
<td>Buffer Usage</td>
<td>311</td>
</tr>
<tr>
<td>Execution Trees</td>
<td>312</td>
</tr>
<tr>
<td>Synchronous and Asynchronous Processing</td>
<td>312</td>
</tr>
<tr>
<td>Data Blocking</td>
<td>313</td>
</tr>
<tr>
<td>Blocking Transformations</td>
<td>313</td>
</tr>
<tr>
<td>Partially Blocking Transformations</td>
<td>313</td>
</tr>
<tr>
<td>Row Transformations</td>
<td>314</td>
</tr>
<tr>
<td>Non-blocking Transformations</td>
<td>314</td>
</tr>
<tr>
<td>Sources</td>
<td>315</td>
</tr>
</tbody>
</table>
Table of Contents

- Buffer Settings ... 315
- Managing Parallelism .. 316
- Data Source Tuning ... 316
- Performance Management 317
 - Loops ... 318
 - Flat File Sources 319
 - Filters and Variables 320
 - Data Destination Management 321
- Performance-Tuning Exercises 322
- Working with Buffer Properties 323
- Working with a SQL Server Destination 324
- Design Considerations 326
- Performance Management 329
 - Execution Trees ... 330
 - Execution Plans ... 331
- Iterative Design Optimization 333
 - Logging an Execution Plan 334
- SSIS Log Reports ... 337
- Chapter 11 Quick Reference 337

Part IV Applying SSIS to Data Warehousing

12 Data Warehouse Concepts ... 341

- Data Warehouse Objectives 341
- Data Warehouse Characteristics 342
 - Providing Data for Business Analysis Processes 343
 - Integrating Data from Heterogeneous Source Systems . 344
 - Combining Validated Source Data 344
 - Organizing Data into Nonvolatile, Subject-Specific Groups . 345
 - Storing Data in Structures Optimized for Extraction and Queries . 345
- Data Warehouse Fundamentals 346
- Business Intelligence Solution Goals 346
 - Combining Relevant Data from Multiple Sources 347
 - Providing Fast and Easy Access 347
- Focus on Decisions .. 348
- Data Granularity ... 349
Table of Contents

Supporting Business Decisions 350
Update Frequency and Persistence 350
Historical Data .. 351
Changing Dimensions 352
Surrogate Keys .. 352
Additive Measures 353
Reviewing an Operational and Database Schema 354
 Creating a Database Diagram 355
Data Warehouse System Components 359
 Fact and Dimension Tables 359
 Dimension Table Characteristics 360
Reviewing and Comparing a Data Warehouse Database Schema 362
 Creating a Database Diagram 363
Data Warehouse in Summary 365
Chapter 12 Quick Reference 366

13 Populating Data Warehouse Structures 367
 Data Warehouse Characteristics 368
 Implementing Staging Tables 369
 Types of Staging Schemes 370
 Staging Data from Multiple Sources 370
 Staggered Staging 371
 Persisted Staging 371
 Accumulated Staging 372
 Chunked Accumulated Staging 373
 Other Destination Considerations 373
 Managing Dimension Tables Part 1 374
 Loading Dimension Tables by Using a Left Outer Join 375
 Managing Dimension Tables Part 2 380
 Loading Dimension Tables Part 2 380
 Slowly Changing Dimensions 384
 Managing Slowly Changing Dimensions 385
 Managing Fact Tables 397
 Aggregating Data in Fact Tables 398
 Loading Fact Tables 398
Chapter 13 Quick Reference 411
Table of Contents

14 SSIS General Principles ... 413
 Designing SSIS Packages .. 414
 OVAL Principles of SSIS Package Design 414
 Using SSIS Components in Your Design 417
 Create a Master–Child Package ... 424
 Organizing Package Components 430
 Managing SSIS Application Deployment 434
 Chapter 14 Quick Reference .. 437

Index .. 439
Introduction

A complete database solution requires data to be integrated from a variety of sources. One of the greatest challenges facing business today is that important business information exists in multiple locations and in different formats. As an industry, we have empowered business leaders and information workers with access to corporate data and powerful analysis tools. With access to so much information, decision makers need one indisputable version of data. A reliable ETL (extract, transform, and load) process is the backbone of business-critical data consolidation and business intelligence (BI) services used to lead and support business direction. Microsoft SQL Server 2005 Integration Services (SSIS) provides a foundation to design and perform effective ETL processes.

The goal of this book is to help you design and implement ETL solutions as quickly as possible, both in concept and in practice. You will learn and understand the core principles and concepts of effective data transformation. Through simple hands-on exercises, you will quickly learn to design Integration Services packages used to transform data between files and relational databases; handle conditional logic; and to alter, split, match, merge, combine, and join data in a data flow. After completing these exercises, you will know how to use the appropriate tasks, transformations, connection managers, and data source and destination adapters in concert to form SSIS packages. You will learn to deploy, configure, and optimize packages to run on production servers.

This book is written to address the requirements of professionals with different needs. Database administrators and application developers need to transform data to support specific applications. BI system architects require data to be consolidated from multiple source systems to a central data warehouse or data mart. A scheduled ETL package must be flexible enough to handle errors and data anomalies. Whether you need to run a package to perform a quick, one-time data import or you need a scheduled process to populate the corporate data warehouse every night, you will learn to design an Integration Services solution to meet that need.

Finding Your Best Starting Point

Although the range of topics addressed in this book is comprehensive, this book also caters to readers with varying skills who are involved in one or more stages of the data transformation life cycle. Accordingly, you can choose to read only the chapters that apply to the activities for which you are responsible and skip the remaining chapters. If you choose to take this approach, we recommend that you at least review the chapters that apply to other roles in order to obtain a broad exposure to the product. To find the best place to start, use the following table.
<table>
<thead>
<tr>
<th>If you are</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| An information worker who needs to import or export data | 1. Install the sample files as described in “Installing and Using the Sample Files.”
2. Read Chapter 1, “Introduction to Integration Services,” to learn the concepts of data transformation.
| An information worker or application developer who needs to build an ETL solution | 1. Install the sample files as described in “Installing and Using the Sample Files.”
2. Read Chapter 1 to learn the concepts of data transformation.
3. Work through or review Chapters 2, 3, 4, and 5 to learn the core components of package design.
5. Work through or review Chapter 11, “Optimizing SSIS Packages,” to learn how to optimize package design and execution.
6. Work through Chapter 14 to understand package design best practices. |
| A BI architect or solution designer | 1. Install the sample files as described in “Installing and Using the Sample Files.”
2. Read Chapter 1 to learn the concepts of data transformation.
3. Work through or review Chapters 2, 3, 4, and 5 to learn the core components of package design.
4. Work through Chapters 6, 7, 8, and 9 to learn how to design advanced packages with error handling.
5. Work through or review Chapter 11 to learn how to optimize package design and execution.
7. Work through Chapter 14 to understand package design best practices. |
| A system or database administrator who needs to configure and optimize a solution | 1. Install the sample files as described in “Installing and Using the Sample Files.”
2. Work through Chapters 10, “Securing and Deploying SSIS Packages,” and 11 to learn how to secure, deploy, and optimize packages.
3. Review other chapters as needed to understand design elements and best practices. |
About the Companion CD-ROM

The CD that accompanies this book contains the sample files that you need to follow the step-by-step exercises throughout the book. For each chapter, use the Microsoft Visual Studio solution files that have projects or packages created for you as starting points in preparation for adding other features to the projects or packages. These sample files allow you to build on what you’ve learned rather than spend time setting up the prerequisites for an exercise. The exercises for each chapter are separate and may be used independently.

System Requirements

To install Integration Services and to use the samples provided on the companion CD, your computer configuration will need to meet the following requirements:

The step-by-step exercises in this book and the accompanying practice files were tested using Windows XP Professional, Service Pack 2, and Microsoft SQL Server 2005 Developer and Enterprise Editions with Service Pack 1. If you are using another version of the operating system or a different edition of either application, you might notice some slight differences.

Installing and Using the Sample Files

The sample solution and database files require approximately 300 MB of disk space on your computer. To install and prepare the sample files for use with the exercises in this book, follow these steps:

1. Insert the companion CD into your CD-ROM drive.

 Note If the presence of the CD-ROM is automatically detected and a Start window is displayed, you can skip to step 3.

2. Click the Start button, click Run, and then type D:\startcd in the Open box, replacing the drive letter with the correct letter for your CD-ROM drive if necessary.

3. Click Install Sample Files to launch the Setup program, and then follow the directions on the screen.
The sample files will be copied from the CD-ROM to your local hard drive. The default installation folder is C:\Documents and Settings\<username>\My Documents\Microsoft Press\is2005sbs, where <username> is the logon name you use to operate your computer. You can change this installation folder to a different location and reference the new location when working through the exercises. For each chapter that uses sample files, you will find a corresponding folder in the is2005sbs folder. You’ll be instructed where to find the appropriate sample files when an exercise requires the use of an existing file.

Tip In the My Documents\Microsoft Press\is2005sbs\Answers folder, you will find a separate folder for each chapter in which you make changes to the sample files. The files in these folders are sample projects in their completed state. You can refer to these files if you want to preview the results of an exercise after the steps have been completed. Because the project files are modified as you work through the chapter exercises, if you ever wish to begin an exercise over again, you will need to restore a backup of the project folder or manually copy and replace these files from the CD.

4. Remove the CD-ROM from the drive when installation is complete.
5. Use Windows Explorer to open My Documents\Microsoft Press\is2005sbs\Setup\Query and double-click to launch the attach_databases.bat file. This will attach three SQL Server 2005 databases used throughout the book.

This step attaches the SQL Server databases that are the data sources used in packages you will create and use throughout this book.

Note The attach_databases.bat script will work only if these databases are not previously attached, SQL Server 2005 is running as a local default instance, and the user account you’re logged in with has administrative rights on your database server. The student files must also be installed to the default My Documents path in order for this script to run correctly. If any of these conditions don’t apply to your environment, you should use SQL Server Management Studio to manually attach all three databases located in the \Setup\Database folder.

You’re now ready to get started!

Conventions and Features in This Book

To use your time effectively, be sure that you understand the stylistic conventions that are used throughout this book. The following list explains these conventions:

- Hands-on exercises for you to follow are presented as lists of numbered steps (1, 2, and so on).
- Text that you are to type appears in bold type.
■ Properties that you need to set in Visual Studio are sometimes displayed in a table as you work through steps.

■ Pressing two keys at the same time is indicated by a plus sign between the two key names, such as Alt + Tab when you need to hold down the Alt key while pressing the Tab key.

■ A note that is labeled NOTE gives you more information about a specific topic.

■ A note that is labeled IMPORTANT points out information that can help you avoid a problem.

■ A note that is labeled TIP conveys advice that you might find useful when using Integration Services.
Chapter 1

Introduction to SQL Server Integration Services

After completing this chapter, you will be able to:

■ Understand the purpose of SSIS with data integration applications.
■ Understand SSIS objects used to create SSIS applications.
■ Understand SSIS performance processing architecture.
■ Understand SSIS development, administration, and run-time components.

Microsoft SQL Server 2005 Integration Services (SSIS) is the toolset used to help you implement data integration process applications among your business application system’s files and databases. SSIS is much more than a simple extract, transform, and load (ETL) process. SSIS enables database administrators and application developers to design, implement, and manage complex, high-performance ETL applications. Using SSIS, you can select data from one or more sources and standardize, join, merge, cleanse, augment, derive, calculate, and perform just about any other function and operation required for your data integration applications. SSIS also provides procedures to automate many of the administrative functions for SQL Server databases, tables, On-Line Analytical Processing (OLAP) Cubes, and many other functions for components of SQL Server 2005.

The ETL phase of data warehousing, data migration, application integration, and business intelligence projects are commonly from 60 percent to as much as 80 percent of the work effort. Effective deployment of technology such as SQL Server 2005 Integration Services can significantly reduce the time, effort, and cost for this phase. This book is designed to show you how to use the features of SSIS and how best to implement these SSIS features and capabilities with data integration projects for your own application systems environments. Through a series of step-by-step demonstrations and exercises, you will work with common, practical, real-world examples to build SSIS applications. These exercises will show how to work with relational and non-relational data sources, manage referential integrity, handle slowly changing dimensions and other data warehousing and business intelligence challenges, and implement complex transformations. You will also learn how to use the debugging and error-handling features in SSIS to detect, troubleshoot, and recover from errors that might occur during data integration process execution. This book will also show you how to manage SSIS applications as well as provide you with best practices and disciplines for building and maintaining SSIS applications within your business application systems environments.
Common SSIS Applications

One common use for SSIS is to move data from one data source to another. The reasons for moving data are too numerous to count. Some common business reasons for using SSIS include migrating business data from one application to another, extracting data for distribution to external entities, integrating data from external entities, creating sample test data sources for development environments, and extracting and loading data into business intelligence (BI) application systems.

SSIS works extremely well in SQL Server environments, but it can also be used with many non-SQL Server database file types and many of the other database management systems deployed within your Information Technology (IT) environment. SSIS has the ability to read data from other Microsoft products, such as Microsoft Office Excel spreadsheets, as well as text, Extensible Markup Language (XML), and other flat-file types.

One common IT demand in the past few decades has been the need to provide business information to a wider audience within an organization. Business intelligence is a relatively new term, but it is certainly not a new concept. The idea is simply to use information already available in your company to help decision makers across the company make decisions better and faster. BI systems can be custom developed or deployed through a variety of packaged reporting and analytic tools. The common component among the various BI systems is the underlying data that drives the information and analysis.

When you need to provide fast-response BI applications for many purposes throughout a large organization, the data that drives such systems most often comes from multiple sources. SSIS provides you with the ability to design and execute data integration operations as simple as moving data between application databases or as complex as consolidating large volumes of data from multiple data sources in different formats, while at the same time applying rules to standardize, modify, and cleanse data content prior to loading into BI data warehouses designed for reporting and analytical applications. You will learn more about data warehouse application characteristics and the role of SSIS within BI and data warehouse applications in Chapter 12, “Data Warehouse Concepts,” and Chapter 13, “Populating Data Warehouse Structures,” later in this book.

Even if you’re not responsible for creating and maintaining a data warehouse, a reporting operational data store, OLAP cubes, or other BI applications, you’ll find the features in SSIS quite useful for routine database administrative tasks and many other activities in which you need to move, transform, and load data in any form.

SSIS Objects and Process Control Components

Before you begin learning how to create SSIS applications, it is important to familiarize yourself first with the SSIS process control components and the objects used to create SSIS applications. The first object to note within SSIS is the **package**.
An SSIS package is the highest-level object within an SSIS application. A package is a discrete unit of work that you define for ETL operations or SQL Server Services administration operations or both. It is a collection of SSIS process control components and their objects that define the operations, process dependencies, and sequence flow of activities and operations required for a data integration application. Package objects include containers, tasks, precedence constraints, variables, data sources, data destinations, SQL Server administration functions, and custom tasks that you can create to address unique requirements for your applications. Package objects are applied to package process control components that include the control flow, data flow, and event handler.

To control the sequence of activities and operations within a package, you apply the precedence constraint object. Precedence constraints are defined between your package objects and are used to specify the order sequence of operations processing and to control processing branching among optional process flows, dependent data values, and conditions or error conditions.

Another useful object of a package is the container. A container is the package object used to group other objects and other containers. Common uses of containers are for performing iterative processing such as looping through a dataset or processing a set of data files within a directory. Although the container object is within a package, you can consider the SSIS package itself as a special high-level container.

SSIS objects also include a comprehensive set of transformation tasks that are important for data integration and BI solutions. These tasks are designed for merging or aggregating data and for converting and transforming data formats and types. Some new tasks have been provided for handling specialized BI operations such as managing slowly changing dimension data. You can also extend SSIS with your own custom tasks and transformations to handle unique requirements within your business application systems environment.

Perhaps best of all, you will find that with all the SSIS objects available to you for package creation, you can create robust, high-performance ETL and data integration applications with no programming code required. By simply dragging and dropping containers, sources, destinations, transformations, and other objects, the SSIS designer automatically creates all the package executable code for you. Throughout the next several chapters, you will learn more about package objects and control components and practice with many of the objects available to design and develop SSIS packages.

SSIS Process Control

A significant advancement to SSIS is the package architecture design for its process control management. You’ve already learned that the SSIS process control architecture includes the control flow, data flow, and event handler components. Each of these process control components includes common and unique sets of objects for you to use when designing and creating your packages.
SSIS Control Flow

SSIS package objects (containers, data flow tasks, administration tasks, precedence constraints, and variables) are elements of the control flow component of the process control architecture. The control flow is the highest-level control process. It allows you to orchestrate and manage the run-time process activities of data flow and other processes within a package. In fact, you can design a control flow by using an Execute Package task to manage the sequence of processing for a set of existing packages in a Master Package concept. This capability allows you to combine individual packages into a highly manageable workflow process. Use precedence constraints to set the process rules and to specify sequence within the control flow. An SSIS package consists of a control flow and one or more objects. Data flow and event handler process control components are optional.

SSIS Data Flow

When you want to extract, transform, and load data within a package, you add an SSIS data flow task to the package control flow. Each data flow task creates its own data flow process control component for processing at run time. You configure each data flow to manage data sources, data destinations, and optional data transformations for any kind of data manipulation your packages might require. You can have as many data flow components within a package as you need to handle all the kinds of data sources and destinations you might have.

The SSIS data flow component provides a comprehensive set of pre-defined data sources and destination objects to enable you to design and develop packages easily for most of the databases and data source files you might have within your IT environment. You can add custom data sources if you need them. Data destinations allow you to deliver data from a data flow process in a variety of formats. An SSIS package can even provide data directly to an application by storing it in an ASP.NET DataReader destination object. Using this destination-type object, you don’t have to place the data in a persistent data store, and you can design application integrations, enabling near real-time data delivery.

A set of data transformation task objects is provided within SSIS data flow. These transformation tasks have been designed to meet most, if not all, of the kinds of data conversion, manipulation, standardization, merging, splitting, fuzzy matching, and other types of transformations without having to write complicated programming code. You will learn about many of these transformation tasks, data sources, and destination objects later, in Part II of this book, “Designing Packages.”

SSIS Data Pipeline

The SSIS data flow process control component and its tasks are processed by the data flow engine within SSIS. A key feature of the SSIS data flow engine is the data pipeline, shown in Figure 1-1, which uses memory buffers to improve processing performance. The data pipeline enables parallel data processing options and reduces or eliminates multiple passes of
reading and writing of the data during package execution and processing. This level of efficiency means you can process significantly more data in shorter periods of time than is possible if you rely simply on stored procedures for your ETL processes.

Figure 1-1 The SSIS data flow data pipeline

Maximum data processing performance for SSIS packages is achieved because the data pipeline uses buffers to manipulate data in memory. Source data, whether it’s relational, structured as XML data, or stored in flat files like spreadsheets or comma-delimited text files, is converted into table-like structures containing columns and rows and loaded directly into memory buffers without the need of staging the data first in temporary tables. Transformations within a data flow operate on the in-memory buffered data as well as on sorting, merging, modifying, and enhancing the data before sending it to the next transformation or on to its final destination. By avoiding the overhead of re-reading from and writing to disk, the processes required to move and manipulate data can operate at optimal speed.

SSIS Event Handler

The event handler process control, unlike the data flow process control, is not managed by the control flow. When you want to control processing at specific occurrences of events during package execution, you use the SSIS event handler process control component. An event handler runs in response to an event raised by the package or by a task or container within the package. Typically, event handlers are created in a package to perform special processing as a result of data anomalies, to trigger other programs, or to launch other packages based upon the event state within the running package. For example, you can create an event handler to send an e-mail alert notification in the event of a task or package for either a success or a failure or simply for a completion state.
You will learn more about SSIS package architecture and its objects and process control components later, in Part II of this book.

SSIS Components

So far, you've learned about SSIS objects and process control architecture. Now you will learn about the SSIS components that you use to design, test, deploy, manage, schedule, and execute SSIS packages. Some of the SSIS components reside on the SSIS server, whereas other components reside on your desktop workstation. A sample configuration scenario is shown in Figure 1-2.

SSIS Development Studio

The Business Intelligence Development Studio (BIDS) is the desktop workstation component you use to design, develop, and test SSIS packages. BIDS provides you with a totally graphical-oriented development environment, allowing you to copy, maintain, and create new packages by using a menu and toolbox drag-and-drop method for development. BIDS is a comprehensive development platform that supports collaboration with source code management and version control; provides debugging tools such as breakpoints, variable watches, and data viewers; and includes the SQL Server Import and Export Wizard to jump-start package development.

Within BIDS, the SQL Server Import and Export Wizard allows you to generate SSIS packages to copy data from one location to another quickly and easily. The Import and Export Wizard guides you through a series of configuration editor pages that allow you to select the source
data, select your target destination, and map source to target data elements. You might find this wizard helpful for creating a starting point for a package. Once a package is generated by the wizard, you can then further enhance the package by using BIDS. You will learn how to use BIDS in Chapter 2, “Building Your First Package.”

SSIS Runtime Services

SSIS Runtime Services manages storage of packages in .dtsx (SSIS package system file format) files or in the MSDB database and manages and monitors their execution. SSIS Runtime Services saves your package layout, applies configurations, executes packages, manages data source and destination connection strings and security, and supports logging for tracking and debugging. SSIS Runtime Services executables include the package and all its containers, tasks, custom tasks, and event handlers.

After you design, develop, and complete your testing of SSIS packages from your desktop BIDS, you will want to deploy and implement the packages for scheduled or on-demand processing to the SSIS Runtime Services server. In some companies, the deployment of finished packages is oftentimes performed by a production administrator or other authorized group. At other times, packages can be deployed by the developer. Either way, you can use the graphical interface or a command-line utility to configure and complete the package deployment.

SSIS Package Deployment

The SQL Server Management Studio (SSMS) is a desktop workstation component for the deployment and management of packages into production environments. SSMS connects directly to SSIS Runtime Services and provides access to the Execute Package utility, is used to import and export packages to and from available storage modes (MSDB database or SSIS Package Store), and allows you to view and monitor running packages.

There are also two command-line utilities that you can use to manage, deploy, and execute SSIS packages. Use Dtexec.exe to run a package at the command prompt. An alternative to SSMS, Dtutil.exe, provides package management functionality at the command prompt to copy, move, or delete packages or to confirm that a package exists. You will learn all about the roles of these services and other SSIS application deployment procedures later, in Part III of this book, “Managing Packages.”

Finally, a more advanced feature is the Integration Services Object Model that includes application programming interfaces (APIs) for customizing run-time and data flow operations and automating package maintenance and execution by loading, modifying, or executing new or existing packages programmatically from within your business applications.
SQL Server 2000 DTS Migration

SSIS is the next generation of the former Microsoft Data Transformation Services (DTS) that is included within the previous versions of SQL Server. SSIS has been designed with a new, high-performance, and advanced underlying architecture. The good news is that if you already have an inventory of SQL Server Data Transformation Services (DTS) packages, all of these packages will continue to run in SSIS environments without any changes. In addition, SSIS provides the Package Migration Wizard that you can use to convert SQL Server 2000 DTS packages to SSIS packages. Because of some of the significant improvements, such as the SSIS control flow and data pipeline architectures, as well as many of the new and enhanced tasks and transformations, DTS package conversion might not always be complete and could require some final manual enhancements. You might also want to redesign some of your existing DTS packages to take advantage of the performance improvements and additional task functionality that is now available within SSIS.

Chapter 1 Quick Reference

<table>
<thead>
<tr>
<th>This term</th>
<th>Means this</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIS package</td>
<td>A discrete executable unit of work composed of a collection of control flow and other objects, including data sources, transformations, process sequence, and rules, error and event handling, and data destinations.</td>
</tr>
<tr>
<td>Containers</td>
<td>Package objects that provide structure to packages and special services to tasks. Containers are used to support repeating control flows in packages and to group tasks. Containers can include other containers in addition to tasks.</td>
</tr>
<tr>
<td>Tasks</td>
<td>Package elements that define activities and processes, including data sources, destinations, transformations, and others.</td>
</tr>
<tr>
<td>Precedence constraints</td>
<td>Constraints that link executables, containers, and tasks within the package control flow and specify conditions that determine the sequence and conditions for determining whether executables run.</td>
</tr>
<tr>
<td>Variables</td>
<td>Storage for values that an SSIS package and its containers, tasks, and event handlers can use at run time. The scripts in the Script task and the Script component can also use variables.</td>
</tr>
<tr>
<td>Control flow</td>
<td>An SSIS package process control component used to control flow elements: the containers that provide structure in packages and services to tasks, tasks that provide functionality in packages, and precedence constraints that connect containers and tasks.</td>
</tr>
<tr>
<td>Data flow</td>
<td>An SSIS package data process control component defined from within package control flow that loads data from sources, transforms and routes it through transformations, and saves it to destinations.</td>
</tr>
<tr>
<td>Event handler</td>
<td>An SSIS package process control component used to define the process activities to be performed at the time of a specific event state for the package or for any of its tasks or containers.</td>
</tr>
<tr>
<td>This term</td>
<td>Means this</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Data Pipeline</td>
<td>The memory-based, multithreaded, buffered transformation process flow of data through an SSIS data flow task during package execution.</td>
</tr>
<tr>
<td>BIDS</td>
<td>SQL Server Business Intelligence Development Studio. Provides the Integration Services project in which you create packages, their data sources, and data source views.</td>
</tr>
<tr>
<td>SSMS</td>
<td>SQL Server Management Studio. Provides the Integration Services service that you use to manage packages and monitor running packages.</td>
</tr>
</tbody>
</table>
Chapter 3

Extracting and Loading Data

After completing this chapter, you will be able to:

- Understand and create connection managers.
- Extract and load data from different data sources to different destinations.
- Use data sources and data source views to extend the functionality of a regular connection manager.

In Chapter 2, “Building Your First Package,” you learned about how to build your first package, and you explored SQL Server Business Intelligence Development Studio (BIDS) and its basic components. In this chapter, you’ll learn how to set up a new Microsoft SQL Server Integration Services (SSIS) project, add a data flow task to extract data from a source, and load the results into a destination. Specifically, you’ll learn how to create and configure a connection manager for Microsoft Office Excel, SQL DB, and flat files. You will also learn how to use BIDS data sources and data source views to extend the functionality of a regular connection manager.

Connection Managers

A connection manager is an SSIS object that contains the information required to create a physical connection to data stores as well as the metadata describing the structure of the data. In the case of a flat file, a connection manager contains the file path, file name, and metadata identifying rows and columns. A connection manager for a relational data source contains the name of the server, the name of the database, and the credentials for authenticating access to the data. Connection managers are the bridge between package objects and physical data structures. They are used by tasks that require a connection (such as the Execute SQL task), by data adapters that define sources and destinations, and by transformations that perform lookups to a reference table.

Connection Manager Types

A connection manager is a logical representation of a connection. At design time, the properties of a connection manager describe the physical connection that Integration Services creates when the package runs. For example, a connection manager includes the Connection-String property that is set at design time; at run time, a physical connection is created, using the value in the ConnectionString property.
Many tasks use connections. For example, an Execute SQL task (that runs SQL statements) requires a connection to a relational database. The sources and destinations in package data flows use connections to extract and load data. Some transformations also require connections to do their work. For example, the Lookup transformation uses a connection to access a reference table to look up and retrieve values. The following is the list of connection managers available in SSIS:

<table>
<thead>
<tr>
<th>ADO</th>
<th>HTTP</th>
<th>ODBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO.NET</td>
<td>MSMQ</td>
<td>SMOServer</td>
</tr>
<tr>
<td>Excel</td>
<td>MSOLAP90</td>
<td>SMTP</td>
</tr>
<tr>
<td>File</td>
<td>MultiFile</td>
<td>SQLMobile</td>
</tr>
<tr>
<td>FlatFile</td>
<td>MultiFlatFile</td>
<td>WMI</td>
</tr>
<tr>
<td>FTP</td>
<td>OLEDB</td>
<td></td>
</tr>
</tbody>
</table>

This list represents the typical connection managers. However, SSIS gives developers the ability to write source components that can connect to custom data sources and supply data from those sources to other components in a data flow task.

Creating a New Integration Services Project

The process of creating a SQL Server Integration Services project consists of several steps. The first step is to define a name and location for your project and solution. You can also define a new name for the default package that SSIS creates as part of this initial step. The second step in building an SSIS project is to create connection managers for data source and data destinations. You need to know where your data is stored, what the server name that hosts the data is, and which database or file stores the data. Verify that you have all the required credentials to retrieve that data and store the new data in a destination database or file. The third step in creating your new SSIS project is the creation of at least one data flow, for instance, to extract and load data. To create a data flow task to extract and load data, you will need to specify data adapters linked to the source and destination connection managers you define. You can create more than one data flow in a control flow and, indeed, you can connect them in a logical sequence. You will learn more about how to manage a set of data flows in Chapter 5, “Managing Control Flow.”

Now you will create a new Integration Services project to which you will add a data flow task. You will create a new package to extract data from a source table and load the data to an Office Excel file. These transformation processes simulate data-delivering routines that you might perform when working in a data warehouse or enterprise environment.
Create a new Integration Services project

1. Start SQL Server Business Intelligence Development Studio. Your screen should look similar to this:

2. On the File menu, point to New, and then click Project.

3. Make sure that the Project Type is set to Business Intelligence Projects, and then click the Integration Services Project template.

4. Type a name for the project: Chap03

 Note Notice that the text in the Solution Name box changes automatically to match the project name. You can change the name of the solution, especially when you have a solution with several projects. For now, leave it as Chap03.

5. Change the location for the project to C:\Documents and Settings\<username>\My Documents\Microsoft Press\is2005sbs\Chap03 and confirm that the Create Directory For Solution check box is selected. The New Project dialog box should look like this:
6. Click OK to continue.

7. In Solution Explorer, right-click the package and choose Rename to change the package name to CopyTable.dtsx. Click Yes when prompted.

8. Click Yes to rename the package object as well. Now you should see this:
Chapter 3 Extracting and Loading Data

Adding Connection Managers

The second step in building an SSIS project is to create connection managers for data source and data destinations. As described before, connection managers are logical representations of a connection. Connection managers you can add include connections to Oracle, FTP, and HTTP sites; Analysis Services databases; flat files; and more. Each connection manager has its own configuration, depending on the type of connection you want to set.

In the next two procedures, you’ll add a connection manager for a SQL Server 2005 database and another connection manager for Office Excel.

Add an OLE DB connection manager for the is2005sbs database

1. Right-click anywhere in the Connection Managers pane at the bottom of the Control Flow tab and click New OLE DB Connection.

2. Click New to define a new connection, click the Provider drop-down list to review available providers, and then click Cancel to keep default: Native OLE DB\SQL Native Client.

3. Type localhost for the Server Name.

5. Choose is2005sbs as the database.
6. Click the Test Connection button. The following window will appear:

7. Click OK twice.

Add an Office Excel connection manager to the Employee.xls file

1. Create a new folder called Data in C:\Documents and Settings\<username>\My Documents\Microsoft Press\is2005sbs\Chap03.
2. Right-click anywhere in the Connection Managers pane at the bottom of the Control Flow tab and click New Connection.
3. In the Add SSIS Connection Manager dialog box, click EXCEL (connection manager for Excel files) and click Add.
4. Browse to C:\Documents and Settings\<username>\My Documents\Microsoft Press\is2005sbs\Chap03\Data\.

5. Type **Employee** in the File Name box, click Open, and then click OK.

6. Right-click Excel connection manager, select Rename, and rename the connection **Employee**.

Creating a Data Flow

An SSIS package needs at least one component in a control flow. This component could be a data flow task or any component from Control Flow Items or Maintenance Plan Tasks in the Microsoft Visual Studio Toolbox. Basically, you build a control flow by adding tasks or control flow components to the Control Flow tab.

The third step in creating your new SSIS project is the creation of at least one data flow, for instance, to extract and load data. To create a data flow task to extract and load data, you will need to specify data adapters linked to the source and destination connection managers you define. There are different ways to create data flows in a control flow. In this procedure, you’ll create a data flow task.

Create a data flow task

1. Click the Data Flow tab.

 Click the message link in the center of the page to add a task.
Tip If you go to the Data Flow tab right after creating a package, you see a message that no data flow tasks have been added to the package. Clicking the message link adds a new task that you can also access from the Control Flow page.

2. In the Properties pane, change the Name property to Data Flow Task – Copy Employee.

Tip If the Property panel is not active, press F4 to activate it.
Adding Data Adapters

Now you are ready to add data adapters to your data flow task. The term data adapter refers to a set of objects that provide the ability to connect to, and interact with, databases, files, and other resources that provide data storage. Data adapters are used to read, insert, modify, and delete data from these various data storage devices. Within a data flow task, data sources and data destinations are specific implementation types of data adapters.

A data adapter is an object that can be used only in the data flow task and requires a connection manager to be established.

In this procedure, you’ll add and map source and destination data adapters.

Add an OLE DB source data adapter

1. Open the Toolbox and review the available objects.

 Note Note that the Toolbox changes. Objects are organized into three main groups in the Toolbox when you are designing a Data Flow: Data Flow Sources, Transformations, and Destinations.

2. Drag OLE DB Source from the Toolbox to the grid.

3. In the Properties pane, change the Name property to OLE DB Source - Employee.
4. On this step, you’ll add the connection manager to the source adapter.

Add the localhost.is2005sbs Connection Manager to the OLE DB Source data adapter

1. Double-click the OLE DB Source – Employee data adapter to open the OLE DB Source Editor and click the OLE DB Connection Manager drop-down list.

2. In the drop-down list, select localhost.is2005sbs, and then click OK.

3. Click the Data Access Mode drop-down list to see the different access mode.

4. Select Table Or View.

5. In the Name Of The Table Or The View drop-down list, select the [dbo].[Employee] table.
6. Click the Preview button to see sample data of employees, and then click Close.

Map the connection manager to the data adapter

1. Click Columns from the left panel of the Editor. This action maps columns from the connection manager to output columns of the adapter.

Note Mapping between the external column (from the connection manager) and the output column (from the data adapter) is generated automatically when you open this page.
Part II Designing Packages

Now you have a data adapter that has been associated with a connection manager and is now ready to be used in a transformation.

2. Click OK.

Note Notice that the small red circle on this data adapter has disappeared.

Add an Excel Destination data adapter

1. Open the Toolbox and expand the Data Flow destinations.
2. Drag Excel Destination from the Toolbox to the grid.
3. In the Properties pane, change the Name property to **Excel Destination – Employee**.

Note Notice the small red circle with an x inside of it on this data adapter. Integration Services adds an indicator to the object to let you know that it needs a connection manager.
Add the Employee connection manager to the Excel Destination data adapter

1. Double-click the Excel Destination – Employee data adapter.

 Important Note that a warning is displayed. This component has no available input columns. You need to connect the source and the destination.

2. Click No.

3. Click the OLE DB Source – Employee adapter and connect it to the Excel Destination adapter by dragging the green arrow from OLE DB Source – Employee to Excel Destination – Employee.

4. Double-click the Excel Destination – Employee data adapter to open the Excel Destination Editor and verify that Employee is selected in the OLE DB Connection Manager drop-down list.

5. In the Name Of The Excel Sheet drop-down list, click New.

6. Change the name of the sheet to **Employee** by replacing the current name, Excel Destination, next to the CREATE TABLE statement. Keep the quotation marks and change the size of the LoginID column to NVARCHAR(50).

 Note The Excel connection manager will not allow creation of long columns.
7. Click OK.

8. Click Preview and see that the new table is empty, and then click Close.

9. Click Mappings in the left panel of the Editor.

Note Mapping between the input column and the destination column (from the Excel data adapter) is generated automatically when you open this page.
10. Click OK.

Note Notice the warning icon on the Excel Destination – Employee adapter. Integration Services warns that a Truncation might occur in the LoginID column because the length of the source LoginID column is 256. In this case, it is not a problem because that column has no data larger than 50 characters.

Executing the Package

Once you have created a new SSIS project with connection managers for sources and destinations, created a data flow task with source and destination data adapters, and mapped the columns that you want to transfer from your source table to your destination Office Excel file, you are ready to run this package.

When you execute a package, Integration Services validates the package and executes the tasks defined in the control flow. You can change certain properties to optimize the processing time. You can learn more about optimization in Chapter 11, “Optimizing SSIS Packages.” In this procedure, you’ll execute the package you have built.

Execute the package

1. Right-click the CopyTable.dtsx package and choose Execute Package.

2. Click the Stop Debugging button on the Debug toolbar.
3. Using Windows Explorer, navigate to the C:\Documents and Settings\<username>\My Documents\Microsoft Press\IS2005sbs\Chap03\Data\ folder.

4. Open the Employee.xls file to confirm that data appears in the file.

5. Click the Employee tab, and data should appear.

Using Data Sources and Data Source Views

A data source is a connection that represents a simple connection to a data store; it includes all tables and views in the data store. A data source has project scope, which means that a data source created in an Integration Services project is available to all the packages in the project. A data source can be defined and then referenced by connection managers in multiple packages. This makes it easy to update all connection managers that use that data source. A project can have multiple data sources, just as it can have multiple connection managers.

Although a data source includes all tables and views, a data source view selects specific database objects (such as tables and views) or adds new relationships between objects. You can extend a data source view by adding calculated columns that are populated by custom expressions, adding new relationships between tables, replacing tables in the data source view with queries, and adding related tables. You can also apply a filter to a data source view to specify a subset of the data selected.

The objective of the next exercise is to load data from a new table, Products, to a flat file. You will create the product's table by defining a named query in a data source view. In addition, you will create a new data source, as source for the data source view, in the connection manager.

Note Use the previous project as the source.

Creating a Data Source

In this step, you make your decision about how to define the connection string for your data source. You can create a new connection, a data source based on an existing connection, a data source based on another object, such as an existing data source in your solution, or an Analysis Services project.

In this procedure, you’ll create a data source based on a new connection.

Create a data source

1. In Solution Explorer, right-click the Data Sources folder, and then click New Data Source.

2. On the Welcome To The Data Source Wizard page, click Next.
3. On the Select How To Define the Connection page, verify that Create A Data Source Based On An Existing Or New Connection is selected, and then click New.

4. The connection manager dialog box appears with Native OLE DB\SQL Native Client selected in the Provider drop-down list.

5. Leave the Native OLE DB\SQL Native Client provider selected.

6. Type localhost in the Server Name box.

7. Select Use Windows Authentication.

8. Select is2005sbs as the database from the drop-down list. Your screen looks like this:

![Connection Manager Dialog Box](image)

9. Click the Test Connection button and verify that it is successful. Then click OK twice.

10. Click Next. The Completing The Wizard page will appear, and a default data source name is displayed in the Data Source Name box.

11. Click Finish. The new data source will appear in the Data Sources folder in Solution Explorer.
Creating a Data Source View

In this step, you select objects from the relational database to be included in the data source view. You can also include system objects or select one table and automatically add related tables to that one.

In this procedure, you'll specify a data source and select tables to define a new data source view.

Create a data source view

1. In Solution Explorer, right-click the Data Source Views folder, and then click New Data Source View.
2. On the Welcome To The Data Source View Wizard page, click Next.
3. On the Select A Data Source page, in the Relational Data Sources list, click the existing data source Is2005sbs as the primary data source for the data source view. The properties of the selected data source appear in the Data Source Properties pane.
4. Click Next.
5. On the Select Tables And Views page, select:
 - dbo.Product.
 - dbo.ProductCategory.
 - dbo.ProductSubCategory.
6. Click the right arrow to include them in the Included Objects.
7. Click Next. Leave Is2005sbs as a name for this data source view. This is the default data source view name, which is the name of the data source for which you are creating the data source view. The Preview pane displays a tree view of the objects in your new data source view.

Creating a New Named Query

A named query is a table based on a SQL Expression. In this SQL Expression, you can specify columns and rows from more than one table even from different data sources. You can expand a relational schema by using named queries without modifying the original data source. You can split tables or join tables into a single data source views table.

Note You cannot base a named query on a table that contains a named calculation.
Create a named query

1. In Solution Explorer, expand the Data Source Views folder, and then open the .dsv file in Data Source View Designer by doing one of the following:
 a. Double-click the .dsv file.
 b. Right-click the .dsv file and click Open.
 c. Select the .dsv file, and then, on the View menu, click Open.

2. In the Tables pane, right-click an open area, and then click New Named Query.

3. In the Create Named Query dialog box, do the following:
 a. In the Name text box, type **Products**.
 b. In the Data Source drop-down list, verify that Is2005sbs (primary) is selected.
 c. Type or copy the next query in the bottom pane. Replace the current statement.

   ```sql
   SELECT * FROM Product
   INNER JOIN ProductSubCategory ON Product.ProductSubCategoryID = ProductSubCategory.ProductSubCategoryID
   INNER JOIN ProductCategory ON ProductSubCategory.ProductCategoryID = ProductCategory.ProductCategoryID
   ```
4. Under Query Definition, click the Run icon.
5. Click OK.

6. Click OK. A new table will appear in the design pane with the name Products.

Copying Data from a Named Query to a Flat File

Once you have created a new table by defining a named query, you are ready to use it in a data flow. Then, the next steps are to create a new data flow, create source and destination data adapters, and map the flow of data.

In this next procedure, you’ll create a new data flow task, create and configure an OLE DB Source adapter using the named query created in the previous step, and create and configure a destination flat file data adapter.

Copy data from a named query products table to a flat file

1. In Solution Explorer, right-click SSIS Packages, and then select New SSIS Package.
2. Right-click Package1.dtsx, select Rename, and name the new package **Products**.
3. Click Yes to also rename the package object.
4. In the designer, drag a Data Flow Task from the Control Flow Items group of the Toolbox to the Control Flow design area.
5. In the Properties pane, change the Name property to **Data Flow Task – Copy Products**.
6. In the designer, double-click in the Data Flow Task component to open the Data Flow design area.
7. In the designer, drag an OLE DB Source from the Data Flow Sources group of the Toolbox to the Data Flow design area.
8. In the Properties pane, change the Name property to **OLE DB Source – Products**.

 Tip Note the warning icon that appears in the OLE DB Source. You can hover your mouse over it to read the text of the warning.

9. In the Connection Managers pane, right-click an open area, and then click **New Connection From Data Source**.

10. In the Select Data Source dialog box, ensure that ls2005sbs is selected, and then click **OK**.

11. Note that a new connection manager icon appears in the Connection Managers pane.
12. Double-click the OLE DB Source – Products component. Select Connection Manager, and then expand Is2005sbs from the OLE DB Connection Manager drop-down list. Select Is2005sbs Data Source View from the tree and click OK.

13. Now, in the Data Access Mode drop-down list, select Named Query. The named query products will be displayed. Click the Preview button to check the data.

14. Click the Close button, and then click OK to finish.
Connect to a flat file destination

1. In the designer, drag a Flat File Destination from the Data Flow Destinations group of the Toolbox to the Data Flow design area.

2. In the Properties pane, change the Name property to Flat File Destination – Products.

 Note Note the warning icon that appears in the Flat File Destination. You can hover your mouse over it to read the text of the warning.

3. Link OLE DB Source – Products and Flat File Destination – Products by dragging the green arrow from OLE DB Source – Products to Flat File Destination – Products.
4. Double-click Flat File Destination – Products to open the Flat File Destination Editor.

5. Ensure that Connection Manager is selected. Click the New button in the Flat File Connection Manager to open the Flat File Format window. Select Delimited and click OK.

6. In the Connection Manager Name, change the Name property to Products.

7. In the Flat File Connection Manager Editor, click the Browse button and type Products in the File Name text box. Click Open.

 Be sure that the folder is C:\Documents and Settings\<username>\My Documents \Microsoft Press\is2005sbs\Chap03\Data.

8. In the Flat File Connection Manager Editor, click OK.

 Note Note that the OK button is disabled in the Flat File Destination Editor. It is because mappings columns have not yet been set.
9. In the Flat File Destination Editor, click Mappings in the left pane. Verify that the columns are mapped correctly and click OK.
10. Now you are ready to execute your package (Products.dtsx). Your package should look like this:

![Image of the package design](image)

Executing the Package

This package is a very simple one that includes only one data flow. You have configured an OLE DB source based in a named query created in a data source view. When this package is executing, the data flow reads a buffer of data from the data source view and loads the data defined to the Named Query Products to a Products.txt file.

To execute this package, you can go to the Debug menu and select the Start Debugging button, press the F5 key, or right-click the package and choose Execute Package.

When the Data Flow is complete, all the components in the Data Flow change color from yellow to green. It means that they have all completed successfully. The last view will look like this:
Stop Debugging

1. Click the Stop Debugging button on the Debug toolbar.
2. Using Windows Explorer, navigate to the C:\Documents and Settings\<username>\My Documents\Microsoft Press\IS2005SBS\Chap03\Data\ folder.
3. Open the Products.txt file to confirm data appears in the file.
4. Save the solution.
Chapter 3 Quick Reference

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an Integration Services package</td>
<td>Start SQL Server Business Intelligence Development Studio. On the File menu, point to New, and then click Project. Make sure that the Project Type is set to Business Intelligence Projects, and then click the Integration Services Project template. Type a name for the project. Specify the location folder for the project and confirm that the Create Directory For Solution check box is selected. Click OK.</td>
</tr>
<tr>
<td>Add an OLE DB connection manager</td>
<td>Right-click anywhere in the Connection Managers pane at the bottom of the Control Flow tab and click New OLE DB Connection. Click New to define a new connection. Keep the default: Native OLE DB\SQL Server Native Client. Type localhost for the Server Name. Select Use Windows Authentication and choose the desired database.</td>
</tr>
<tr>
<td>Review available connection manager types</td>
<td>Right-click anywhere in the Connection Managers pane at the bottom of the Control Flow tab and explore the list of connections available: Flat File Connection, ADO.NET Connection, Analysis Services Connection, and so on.</td>
</tr>
<tr>
<td>Add an Excel connection manager</td>
<td>Right-click anywhere in the Connection Managers pane at the bottom of the Control Flow tab and click New Connection. In the SSIS connection manager, click EXCEL (connection manager for Excel files) and click Add. Type a name for the Excel file and specify an Office Excel file path.</td>
</tr>
<tr>
<td>Create a data flow task</td>
<td>Click the Data Flow tab. If you go to the Data Flow page right after creating a package, you will see a message stating that no data flow tasks have been added to the package. Click the message link to add a new task. You can also access it from the Control Flow page.</td>
</tr>
<tr>
<td>Add an OLE DB Source data adapter</td>
<td>Drag OLE DB Source from the Toolbox to the grid. The small red circle on this data adapter means that it needs a connection manager.</td>
</tr>
<tr>
<td>Add a connection manager to the OLE DB Source data adapter</td>
<td>Double-click the OLE DB Source data adapter to open the Editor and click OLE DB Connection Manager. In OLE DB Connection Manager, select a connection manager. In the Data Access Mode, select Table Or View and choose the desired table.</td>
</tr>
<tr>
<td>Map the connection manager to the data adapter</td>
<td>Click columns from the left panel of the OLE DB Source Editor. This action maps columns from the connection manager to output columns of the adapter.</td>
</tr>
<tr>
<td>Add an Excel Destination data adapter</td>
<td>Open the Toolbox and expand Data Flow Destinations. Drag Excel Destination from the Toolbox to the grid. The small red circle on this data adapter means that it needs a connection manager.</td>
</tr>
</tbody>
</table>
Part II Designing Packages

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add an Excel connection manager to the Excel Destination data adapter</td>
<td>Double-click the Excel Destination data adapter. This is a destination component that needs to be connected to the input source component. Click the OLE DB Source adapter and connect it to the Excel Destination adapter by dragging the green arrow from OLE DB Source to Excel Destination. Double-click the Excel Destination data adapter to open the Editor and verify that the connection manager is selected. In the Name text box of the Excel sheet, click New. Change the name of the sheet and change the size of long columns. The Excel connection manager will not allow creation of long columns. Finally, click Mapping in the left panel of the Editor.</td>
</tr>
<tr>
<td>Execute the package</td>
<td>Right-click the desired package and choose Execute Package.</td>
</tr>
<tr>
<td>Create a data source</td>
<td>In Solution Explorer, right-click the Data Sources folder, and then click New Data Source. On the Welcome To The Data Source Wizard page, click Next. On the Select How To Define The Connection page, verify that Create A Data Source Based On An Existing Or New Connection is selected, and then click New. Leave the Native OLE DB\SQL Native Client provider selected. Type localhost in the Server Name text box, select Use Windows Authentication, and select a database. Click OK, and then click Finish twice.</td>
</tr>
<tr>
<td>Create a data source view</td>
<td>In Solution Explorer, right-click the Data Source Views folder, and then click New Data Source View. Click Next on the Welcome To The Data Source View Wizard page. Select a data source and click Next. Select the objects you want to include in your data source view. Click next, and then click Finish.</td>
</tr>
<tr>
<td>Create a new Named Query</td>
<td>In Solution Explorer, expand the Data Source Views folder, and then open the data source view. In the Tables pane, right-click an open area, and then click New Named Query. Type a name for the new named query and specify a SQL statement in the bottom pane to define your named query. Click OK.</td>
</tr>
<tr>
<td>Add a connection manager from Data Source</td>
<td>In the Connection Managers pane, right-click an open area, and then click New Connection from Data Source. In Select Data Source, choose a data source that you created.</td>
</tr>
<tr>
<td>Set an OLE DB Source from a Named Query</td>
<td>In the designer, drag a Data Flow task from the Control Flow, open the Data Flow, and drag an OLE DB Source from the Data Flow Sources tab. Double-click the OLE DB Source component. Then, select and expand the data source you created from the OLE DB connection manager list. Select the data source view from the tree and click OK. In data access mode, select Named query and click OK.</td>
</tr>
</tbody>
</table>
Index

Symbols

dtsx (DST package) files, 9

A
accessing package variables, 174
accessing SSIS design environment, 242–243
accumulated staging, 372
ActiveX Script Task
creating a new package with single Active X Script task, 170–172
implementing, 169–172
implementing custom code using, 174
Script Task and, 139
adding a new package, 380–381
adding a Sequence Container control flow item, 137
adding conditional split to find new customers, 378–379
adding configurations to a project, 297–298
adding connection manager for Fuzzy Lookup input, 138
adding data adapters, 43–49
OLE DB source data adapters, 43–44
adding error-handling code in Script Task, 146–148
adding Excel connection manager, 65
adding Execute SQL task, 129, 138
adding flat file destination, 379–380, 383–384
adding Foreach Loop containers, 130–132, 138
Sequence Container – File Exists, 130–132
adding Fuzzy Lookup transformation, 138
adding Lookup task process, 381–382
adding Script Tasks, 137
adding sequence containers, 121
adding SQL Server destinations, 127–129, 138
adding tables to find new dimension members, 376–377
adding variables, 137
additive measures, 353–354
Aggregate task
adding, 399–400
applying a configuration, 301–306
adding configuration to the ImportCustomers dtsx, 302–303
deleting existing package from SSMS, 302
deploying a package, 304
executing package, 306
executing package using configuration files, 306
inspecting alternate configuration files, 304–305
running deployed packages, 305
starting Package Installation Wizard, 304
applying precedence constraints, 132–136, 138
constraint values, 132
applying security, 292–294
assigning a value to variables, 122–123
assigning reader/writer roles to a package, 293–294
asynchronous tasks
defined, 437
asynchronous transformations, 73, 312
attach_databases.bat script, 4
Audit transformation, 72
Autos window, 194

B
basic error detection and handling, 237–239
configuring transformation to fail when an error occurs, 239
configuring transformation to ignore errors, 239
configuring transformation to re-route error-causing
records, 239
data flow transformations, 239
metadata lineage, 238
precedence constraints, 238
validation, 238
BI architects
going started, 2
BI solution goals, 346–348
combining data from multiple sources, 347
providing fast and easy access, 347–348
BI solutions
choosing, 348
data granularity, 349–350
BIDS, 13–26
adding a Conditional Split transformation, 112
adding a connection manager, 112
adding a Derived Column transformation, 112
adding a Destination data adapter, 112
adding a lookup transformation, 112
adding a Multicast transformation, 112
adding conditional split transformation, 86–88
adding connections manager, 82–85
adding derived column transformation, 89–90
adding flat file destination data adapter, 92–93
adding multicast transformation, 95–96
adding SQL server destination data adapter, 97–99
creating a data adapter, 112
creating a data flow task, 112
creating a Flat File, 112
creating a task, 112
creating data adapter, 81–82
creating Data Flow task, 78–80
Data Flow designer, 69
Data Flow Task – Employee List, 19–20
defined, 32
docking utility windows, 16–17
editing an object, 112
executing CreateLists package, 24
executing package/checking results, 101, 110
executing the package, 94–95
exploring connection managers, 20–21
exploring SSIS projects in, 17–26
ImportCustomers package, 25–27
interface, 13
opening and exploring SSIS project, 76–77
opening the Derived Column – FullName task, 22
opening the Flat File Destination – Employees CSV task, 22–23
opening the OLE DB Source – Employee Query task, 21
opening the Sort – Department Shift Employee task, 22
reviewing ImportCustomers package, 25
ScrapReason data source view in the Data Source view designer, 18–19
Solution Explorer, 15–16
viewing CreateLists package in the package designer, 19
viewing customer records files, 24–25
viewing final output, 23–24
viewing properties of derived column transformation, 91

BIDS (Business Intelligence Development Studio), 8–9
defined, 11
blocking transformations, 73, 313
testing packages with, 326–329
breakpoints, 176–181
setting, 177–181
setting and walk through code, 190–194
walk through code using, 190–194
Breakpoints window, 182
breakpoints, creating, 198, 199
buffer properties, working with, 323–324
buffer settings, 315–316
BufferTempStoragePath, 315
DefaultBufferMaxRows, 316
DefaultBufferSize, 316
buffer usage, 311–312
columns, 311
Data Pipeline engine, 311
row size, 311
BufferSize Tuning, 337
adding log event to, 337
BufferTempStoragePath, 315
business intelligence, 4
Business Intelligence Development Studio, 13–26
Data Flow Task – Employee List, 19–20
defined, 32
docking utility windows, 16–17
executing CreateLists package, 24
exploring connection managers, 20–21
exploring SSIS projects in, 17–26
ImportCustomers package, 25–26
interface, 13
opening the Derived Column – FullName task, 22
opening the Flat File Destination – Employees CSV task, 22–23
opening the OLE DB Source – Employee Query task, 21
opening the Sort – Department Shift Employee task, 22
reviewing ImportCustomers package, 25
ScrapReason data source view in the Data Source view designer, 18–19
Solution Explorer, 15–16
viewing CreateLists package in the package designer, 19
viewing customer records files, 24–25
viewing final output, 23–24

Business Intelligence Development Studio (BIDS), 8–9
defined, 11
SQL Server Import and Export Settings Wizard, 8–9
business intelligence solution goals, 346–348
combining data from multiple sources, 347
providing fast and easy access, 347–348
business intelligence solutions
choosing, 348
data granularity, 349–350
dimension, 349
level of grain, 349–350
supporting business decisions, 350

C
Call Stack window, 181
Catch . . . End Try statements, 146
CD-ROM
inserting, 3
overview, 3
changing data, 352
changing DelayValidation property, 137
changing dimensions, 352
Chart Format viewer, 186
checkpoints, 263–284
benefits of, 263
configuring packages for, 264
exercises, 264–284
implementing, 281–284
choosing business intelligence solutions, 348
chunked accumulated staging, 373
Clear DimCustomer, 177, 180, 185
setting breakpoints and, 178, 179
colors, SSIS Designer, 180
columns
compatible data types, 125
combining data from multiple sources, 347
combining validated source data, 344
command-line utility, 227–228
Conditional Split transformation, 73
conditional split transformation, 85–88
collection failure, 210
configuration files, 208–209
determining configuration order, 210
direct and indirect configurations, 209
environment variable, 208
evaluating configuration failure, 210
parent package variables, 209
registry entry, 209
SQL Server tables, 209
using multiple configurations, 210
configuration files, creating
testing new package configuration, 218
configuration files, creating multiple, 210–220
creating environment variable, 213–215
creating a database environment, 212–213
creating database and OLE DB Connection Manager, 210–212
creating environment variable, 212–213
creating environment variable configuration, 213–215
creating Parent Package variable configuration, 219–220
creating ParentProductsDestination parent package, 219–220
creating SQL Server configuration, 215–217
creating SQL Server table, 215–217
exploring parent package, 218–219
testing new package configuration, 217, 220
viewing ParentPackage.dtsx package, 218–219
configurations, 201–202
configuration benefits, 201–202
configuration types, 202
direct and indirect configuration, 202
environmental variable configuration, 202
parent package variable configuration, 202
registry entry, 202
specifying new XML configuration file location, 202
SqlConnection, 202
containers
defined, 10
containers, 119–125
adding sequence containers, 121
assigning a value to the variable, 122–123
creating a placeholder, 123–125
For Loop container, 119
For Each Loop container, 119
Sequence container, 120
Task Host container, 120
testing whether output file is found, 122
Continue command, 191
Control Flow
creating breakpoints, 198
defined, 10
implementing custom code in, 173
reviewing variable status, 198
SSIS, 6
control flow components, 114–119
DelayValidation, 115
list of, 114
Control Flow tab, 29
copying data from named query to flat file, 57
Create Table dialog box, 98
CreateLists package, 24
CreateLists package in the package designer, 19
creating a data source, 50
creating a database environment, 212–213
creating data flow, 41–42
creating data source views, 52
creating environment variable configuration, 213–215
creating environment variables, 212–213
creating Integration Services package, 65
creating named queries, 54
adding Office Excel connection manager to the Employee.xls file, 40–41
adding OLE DB connection manager for is2005sbs database, 39–40
adding OLE DB source data adapter, 43–44
creating a data flow, 41–42
creating SQL Server Integration Services project, 36–38
executing the package, 49–50
mapping to data adapter, 45–46
reviewing available types, 65
types, 35–36
connection manager settings, 285
setting, 257–258
connection manager, adding, 82–85
connection managers
creating new, 39–41
containers, 119–125
adding sequence containers, 121
assigning a value to the variable, 122–123
creating a placeholder, 123–125
For Loop container, 119
For Each Loop container, 119
Sequence container, 120
Task Host container, 120
testing whether output file is found, 122
Continue command, 191
Control Flow
creating breakpoints, 198
defined, 10
implementing custom code in, 173
reviewing variable status, 198
SSIS, 6
control flow components, 114–119
DelayValidation, 115
list of, 114
Control Flow tab, 29
copying data from named query to flat file, 57
Create Table dialog box, 98
CreateLists package, 24
CreateLists package in the package designer, 19
creating a data source, 50
creating a database environment, 212–213
creating data flow, 41–42
creating Data Flow Task, 65
creating data source views, 52
creating environment variable configuration, 213–215
creating environment variables, 212–213
creating Integration Services package, 65
creating named queries, 54
creating new databases, 211–212
creating new project for dimension table load packages, 375–376
creating new Script task and initiating code, 141–145
creating Parent Package variable configuration, 219–220
creating ParentProductsDestination parent package, 219–220
testing package with new configuration, 220
creating placeholders, 123–125
creating SQL Server configuration, 215
creating SQL Server table, 215–217
creating XML configuration file, 204–207
CurrentRecord field, 390, 391
initializing for SCD reference, 391–392
custom code
 implementing using ActiveX Script Task, 174
CustomSSISLog table, 246
 Lookup Names, 234
 Lookup Names task, 262
CustomSSISLogKey, 254

D
data adapters
 adding, 43–49
 adding OLE DB source data adapters, 43–44
 Excel Destination data adapters, 46
 mapping connection manager to, 45–46
data blocking, 313–314
 blocking transformations, 313
 partially blocking transformations, 313–314
 row transformations, 314
data buffer settings, 315–316
 BufferTempStoragePath, 315
 DefaultBufferMaxRows, 316
 DefaultBufferSize, 316
Data Conversion task
 adding, 401–403
data destination management, 321–322
 dropping/disabling indexes, 321
 locking modes, 321
 using explicit transactions, 321
data destinations, 6
data filters, 320
data flow
 creating in a package, 67–69
data source connections, 68–69
 defined, 10
data destinations, 68
 implementing custom data processing code inside, 173
 reviewing, 198
 sources, 67
 SSIS, 6
 transformations, 68
Data Flow designer, 69, 80, 81, 82, 86, 89, 90, 91, 92, 95, 97, 104, 105, 106, 112
data flow engines, 6
Data Flow tab, 29
Data Flow Task – Employee List, 19–20
Data Flow Task – Lookup Geography task, 104
Data Flow Task, creating, 65
data flow transformations, 75–101, 239
 adding conditional split transformation, 85–88
 adding connection manager, 82–85
 adding derived column transformation, 88–90
 adding flat file destination data adapter, 92–93
 adding Multicast transformation, 95–96
 adding SQL Server destination data adapter, 97–99
 configuring Flat File source, 81
 configuring transformations to fail when an error occurs, 239
 configuring transformations to ignore errors, 239
 configuring transformations to re-route error-causing records, 239
 creating data adapter, 81–82
 creating data flow task, 78–80
 deleting data from table, 99–101
 executing the package, 94–95, 101
 opening and exploring the SSIS project, 76–77
 previewing NewProducts.txt file, 77–78
 sending output to different destinations, 95–101
 using Flat File source, 80–82
data flow, creating, 41–42
data flow, debugging, 186–190
data viewers, 186–190
 Error Output, 190
 Progress Messages, 190
 Row Count, 190
 setting data viewers and browsing data, 187–190
data granularity, 349–350
dimension, 349
 level of grain, 349–350
 supporting business decisions, 350
data marts
 characteristics, 342–345
 combining validated source data, 344
 fundamentals, 346
 integrating data from heterogeneous source systems, 344
 organizing data into nonvolatile, subject-specific groups, 345
 overview, 341–342
 providing data for business analysis processes, 343
 storing data in structures optimized for extraction and queries, 345
Data Pipeline
 defined, 11
data pipeline, 6–7
Data Pipeline engine, 310, 311
data quality transformations, 71–72
fuzzy grouping, 72
fuzzy lookup, 72
data source connections, 68–69
data source tuning, 316–317
data source views, creating, 52, 66
Data Source Wizard, 50, 66
data sources, 6, 50–64, 315
connecting to flat file destination, 60
copying data from named query to flat file, 57
creating, 50, 66
creating data source view, 52
creating named query, 54
executing the package, 63–64
stop debugging, 64
data transformation, 6
data viewers, 186–190
setting data viewers and browsing data, 187–190
data warehouse
defined, 366
data warehouses
adding relationships to database, 363
additive measures, 353–354
BI solution goals, 346–348
changing dimensions, 352
characteristics, 342–345, 368
combining data from multiple sources, 347
combining validated source data, 344
compared to operational databases, 342
components, 359–360
creating diagram, 355–358
creating new diagram for is2005sbsDW database, 363–364
data granularity, 349–352
data warehouse defined, 411
dimension table characteristics, 360–362
fact and dimension tables, 359–360
fundamentals, 346
historical data, 351–352
integrating data from heterogeneous source systems, 344
organizing data into nonvolatile, subject-specific groups, 345
overview, 341–342
providing data for business analysis processes, 343
providing fast and easy access, 347–348
querying is2005sbsDW database, 364–365
relational, 345
resetting relationships for is2005sbsDW database, 365
reviewing and comparing schema, 362–365
saving diagrams, 364
snowflake schema dimensions, 362
star schema dimensions, 360–361
storing data in structures optimized for extraction and queries, 345
summary, 365–366
surrogate keys, 352–353
update frequency and persistence, 350–352
database administrators
getting started, 2
database diagramming, 354–358
creating database diagrams, 355–358
is2005sbs database, 355–356
organizing the diagram, 356–357
querying is2005sbs database, 358
saving the diagram, 358
database environment
creating, 212–213
database schema, reviewing and comparing, 362–365
adding relationships to database, 363
creating database diagrams, 363–365
creating new diagram for is2005sbsDW database, 363–364
querying is2005sbsDW database, 364–365
resetting relationships for is2005sbsDW database, 365
saving the diagram, 364
databases
creating new, 211–212
data-mining transformations, 72
data-mining query, 72
term extraction, 72
term lookup, 72
DataReader, 6
DataTip tool, 195
db_disadmin, 292
db_dislduser, 292
db_disoperator, 292
Debug Menu, 63
Debug Windows, reviewing, 181–183
Breakpoints, 182
Call Stack, 181
executing package and, 183
Locals, 182
debugging control flow, 175–185
debugging data flow, 186–190
data viewers, 186–190
Error Output, 190
Progress Messages, 190
Row Count, 190
setting data viewers and browsing data, 187–190
debugging Script component, 198
debugging Script tasks, 190–197
Continue command, 191
reviewing state using VSA, 194–197
Run To Cursor command, 191
Step Into command, 191
Step Out command, 191
Step Over command, 191
walk through code using breakpoints, 190–194
DefaultBufferMaxRows, 316, 325
changing, 337
DefaultBufferSize, 316, 325
changing, 337
DelayValidation property, 115
changing, 137
defined, 115
False value, 115
True value, 115
working with tasks and, 115–119
deployment options, 294–297
deployment utility, creating, 288–290
enabling deployment utility, 288–289
Package Installation Wizard, 288–290
DeploymentOutputPath, 288, 289, 293
Derived Column – Full Name task, 22
Derived Column task
adding, 400–401
Derived Column transformation, 74
adding, 88–90
viewing properties, 91
Derived Column Transformation Editor, 90
design considerations, 326–329
destinations considerations, 373
determining configuration order, 210
dimension tables, 359–360
adding conditional split to find new customers, 378–379
adding flat file destination, 379–380, 383–384
adding Lookup task process, 381–382
adding new package, 380–381
adding tables to find new dimension members, 376–377
characteristics, 360–362, 368
configuring a left outer join merge join task, 377–378
creating new project for dimension table load packages, 375–376
defined, 368, 411
hierarchy levels, 360
loading, 380–384
loading dimension tables using left outer join, 375–380
managing, 374–384
snowflake schema dimensions, 362
star schema dimensions, 360–361
direct and indirect configurations, 202, 209
Don't SaveSensitive, 291
dropping/disabling indexes, 321
DTExec, 222–223, 234
dtexec.exe, 9
DTExecUI, 222, 234
DT5 service
Load Dim Prod package, 274
Dts.Events object, 148, 173
Dts.Events.FireError, 149
error message with verbose error message, 150
parameters required, 149
Dts.Events.FireInformation method, 151, 152
Dts.Events.FireProgress method, 152
Dts.Log method, 152, 154, 155, 173
Dts.TaskResult = Dts.Results.Success, 142, 143
DTSGlobalVariables.Parent, 169
alternatives, 169
migration, 169
dtutil.exe, 9
E
editing XML configuration file, 207–208
Employee connection manager, 47–49
EncryptAllWithPassword, 291, 292–293
EncryptAllWithUserKey, 291
encryption, 290–291
EncryptSensitiveWithPassword, 291
EncryptSensitiveWithUserKey, 291
EnvironmentVariable property, 172, 174
environment variable, 208
configuring, 234
creating, 234
environment variable configuration
creating, 213–215
environment variables
creating, 212–213
environment variables, configuration, 202
error
no index content, 1
error count properties
changing, 260–261
Error Output, 190
error output, configuring, 102–111
adding data conversion transformation, 105–106
adding Flat File Destination for Lookup Errors, 108–109
adding Flat File Destination for successful lookups, 109–110
adding Lookup transformation, 106–108
creating a task, 104
creating/naming Flat File Source, 104–105
error options, 102
executing package/checking results, 110–111
exploring LookupGeography package, 102–103
fail component, 102
ignore failure, 102
opening/exploring package, 103
redirect row, 102
types of errors, 102
error-handling code
implementing in script, 173
ETL solutions
getting started, 2
evaluating configuration failure, 210
Event handler
defined, 10
event handler process control, 7–8
event handlers, 239–262
accessing SSIS design environment, 242–243
adding a task, 244
adding Execute SQL task, 244
adding Log Finish Execute SQL task to OnPostEvent event handler, 248–249
adding tasks to, 285
changing error count properties, 260–261
configuring the task, 245–247
connection manager settings, 257–258
creating, 241–262
creating a log to finish, 248–249
creating log error event handler, 250–251
creating task to move files with invalid data, 256–257
data flow transformations, 240
event handlers provided by SSIS, 241
Execute SQL task, 245–247
executing NewProducts.dtsx package and viewing results in Management Studio, 251–253
executing the package, 251–253, 261–262
mapping SSIS variables to SQL statement parameters, 247–248
OnError, 241
OnPostExecute, 241
OnPreExecute, 241, 243–244
OnTaskFailed, 241, 255
OnWarning, 241
preventing events from escalating to containers and packages, 259
QuickStartODS database, 242
tasks, 240
testing package with invalid data, 253–254
trigerring, 240
Excel connection manager
adding to the Employee.xls file, 40–41
Excel connection manager, adding, 65, 66
Excel Destination data adapters, 46
adding Employee connection manager, 47–49
adding Excel connection manager, 66
Excel Destination data adapters, adding, 65
Execute Package, 32, 49–50, 66
execute package and review debug windows, 183
Execute Package task, 221–229
command-line utility, 227–228
DTExec, 222–223
DTExecUI, 222
executing tasks and containers and then disabling task and executing package, 224–226
extending package execution options, 224
SQL Agent, 228–229
Execute Process task, 224
Execute SQL task
adding, 138
adding to OnPreExecute event handler, 244
configuring, 245–247
configuring to run parameterized SQL statements, 247–248
Execute SQL tasks
adding, 129
execution plans, 331–333
execution trees, 312, 330
explicit transactions, 321
Export Column transformation, 72
expressions
building, 75
elements, 74–75
using in SSIS, 73–74
expressions, using in packages, 73–75
extract, transform, and load (ETL) process, 115
Flat File Destination
adding Data Conversion task, 401–403
adding Derived Column task, 400–401
adding Multicast task and Aggregate task, 399–400
adding new data flow to load fact table from staging table, 403
adding new package for fact table load processing, 398–399
adding OLE DB destination and configuring Error Output, 405–410
adding variable and Row Count task, 403–404
aggregating data in, 398
characteristics, 368
defined, 366, 411
loading, 398–410
managing, 397–410
transaction detail values, 368
Fail Component, 102
FailPackageOnFailure property, 264
FastLoad
enabling for OLE DB destination, 337
FastLoad option, 321
FastParse, 319
setting on Flat File Source, 337
features of book, 4
file system task
creating, 285
FileStream variable, 123
Finally block
StreamWriter objects and, 146
Flat File Connection Manager Editor, 83, 85, 93, 102, 103, 108, 109, 110
Flat File Destination Lookup Errors, 108–109
F
fact tables, 359–360
adding Data Conversion task, 401–403
adding Derived Column task, 400–401
adding Multicast task and Aggregate task, 399–400
adding new data flow to load fact table from staging table, 403
adding new package for fact table load processing, 398–399
adding OLE DB destination and configuring Error Output, 405–410
adding variable and Row Count task, 403–404
aggregating data in, 398
characteristics, 368
defined, 366, 411
loading, 398–410
managing, 397–410
transaction detail values, 368
Fail Component, 102
FailPackageOnFailure property, 264
FastLoad
enabling for OLE DB destination, 337
FastLoad option, 321
FastParse, 319
setting on Flat File Source, 337
features of book, 4
Flat File Destination – Employees CSV task

- successful lookups, 109–110
- Flat File Destination – Employees CSV task, 22–23
- Flat File destination data adapter, 92–93
- Flat File Destination Editor, 93
 - creating and naming, 104–105
- Flat File source, 80–82
 - configuring, 81
- Execute package
 - creating data adapter, 81–82
 - delimited format text files, 80
 - fixed-width format text files, 80
 - ragged-right format text files, 80
- Flat File Source Editor, 82, 85, 104, 105
- Flat File Sources, 319
- flat files
 - connecting to flat file destinations, 60
 - copying data from named query to, 57
- For Loop container, 119
- Foreach container
 - adding to Sequence container, 138
 - preventing Lookup Names task from escalating to, 259
- Foreach containers
 - adding to Sequence Container – File Exists, 132
- Foreach Loop container, 119, 176, 177, 179
- Foreach Loop containers, 130–132
 - adding to Sequence Container – File Exists, 130
- foreign keys
 - defined, 366, 411
- Fuzzy Lookup
 - column width and, 125
- Fuzzy Lookup input
 - adding connection manager for, 138
- Fuzzy Lookup transformation
 - adding, 125–127, 138
 - adding an Execute SQL task, 129
 - adding SQL Server destination, 127–129
 - columns, 125
 - indexes and, 126
 - reference tables and, 125
- GeographyKey column, 105
- GetEmployeeData, 192, 193, 197
- getting started, 1–2
- BI architects, 2
- building ETL solution, 2
- database administrators, 2
- importing/exporting data, 2
- solution designers, 2
- system administrators, 2
- GetVariables, 123
- Grid viewer, 186, 188, 189, 190
 - as first option, 187
 - illustration of, 186
- hierarchy levels, 360
- Histogram viewer, 186
- historical data, 351–352
- Hit Count options, 177
- Hit Count Type, 177, 179, 183, 198
- IDE (Integrated Development Environment), 142
- Ignore Failure, 102
- Immediate window, 195
- implementing ActiveX Script Task, 169–172
- implementing custom code in Control Flow, 173
- implementing custom code using ActiveX Script Task, 174
- implementing custom data processing code inside Data Flow, 173
- implementing error-handling code in the script, 173
- Import Column transformation, 72
- ImportCustomers package
 - changing package protection level, 292
 - executing, 25–26
 - exporting deployed packages, 296
 - importing to file system, 295
 - reviewing, 25
 - role-based security, 293
 - running deployed packages, 305
- ImportCustomers.dtsx, 302
 - adding configurations, 302–303
 - changing package protection level, 293
 - deleting packages from SSMS, 302
 - executing file system package, 296
 - importing/exporting data
 - getting started, 2
 - indexes
 - dropping/disabling, 321
 - Fuzzy Lookup Selection and, 126
- Input Output Selection dialog box, 89, 90
- InputBuffer, 161–162
- InputFile, 131
- installing sample files, 3–4
- Integrated Development Environment (IDE), 142
- integrating data from heterogeneous source systems, 344
- Integration Services Object Model, 9
- Integration Services package, creating, 65
- Integration Services, connecting to, 290
- invalid data
 - creating task to move files, 256–257
 - testing package with, 253–254
- is2005sbs database
 - adding OLE DB connection manager, 39–40
 - reviewing with Management Studio, 27
- is2005sbsDW database
 - creating new diagram for, 355–356, 363–364
 - querying, 358, 364–365
resetting relationships for, 365, 366
iterative design optimization, 333–336
logging execution plans, 334–336

J
join
defined, 366, 411

L
LoadDim Prod package
deleting DimProd, 268
deleting staging tables, 268
DTS service, 274
loading DimProd, 268
loading staging tables, 268
LoadDimProd package, 267–278
loading dimension tables using left outer join, 375–380
adding conditional split to find new customers, 378–379
adding flat file destination, 379–380
adding tables to find new dimension members, 376–377
configuring left outer join merge join task, 377–378
creating new project for dimension table load packages,
375–376
localhost.is2005sbs Connection Manager, 44
Locals window, 182
LockForRead, 123
LockForWrite, 123
locking modes, 321
Log Error Execute SQL task
adding to OnError event handler, 250–251
log events
adding to, 337
Log Files
providing verbose information to, 152–156
Lookup Names, 254
Lookup Names task
event records, 262
preventing from escalating to Foreach Loop container, 259
Lookup transformation, 100–108
LookupGeography Package, 102–103
loops, 318–319

M
Management Studio
executing NewProducts.dtsx package and viewing results
in, 251–253
mapping connection manager to data adapter, 65
master–child packages
defined, 437
MatchedNames table, 127, 128, 129
MaxConcurrentExecutables property, 316
maximum data processing, 7
MaximumErrorCount property, 260
Mc.ComponentMetadata, 198
Mc.ComponentMetadata object, 162
Me Log, 198
Me Variables object, 162
memory buffer architecture, 310–312
buffer usage, 311–312
columns, 311
Data Pipeline engine, 311
row size, 311
metadata lineage, 238
modifying script to read variables, 158–159
MSDB database roles, 292
db_dtsadmin, 292
db_dsltduser, 292
db_dsooperator, 292
Multicast task
adding, 399–400

N
named queries, creating, 54, 66
NewProducts.dtsx package
executing, 251–253
invalid data, 253–254
non-blocking transformations, 314–315
data sources, 315

O
OLE DB connection manager, adding, 65
OLE DB destinations
enabling Fast Load, 337
OLE DB Source
setting from Named Query, 66
OLE DB Source – Employee Query task, 21
OLE DB Source data adapters, adding
quick reference, 65
OLE DB source data adapters, adding, 43–44
adding localhost.is2005sbs Connection Manager, 44
OnCustomEvent, 176
OnError, 176, 177
OnError event handler, 241
adding Log Error Execute SQL task, 250–251
OnInformation, 176
OnPostExecute event handler
adding Log Finish Execute SQL task, 248–249
OnPostExecute, 176–177
OnPostExecute event handler, 241
OnPostExecute event handler, 241
OnPostExecute event handler, 241
adding Execute SQL task to, 244
creating, 243–244, 285
OnProgress, 176
OnQueryCancel, 176
OnTaskFailed, 176
OnTaskFailed event handler, 241
executable lookup names, 255
preventing from escalating from Lookup Names task, 259
OnVariableValueChanged, 176
OnWarning, 176
OnWarning event handler, 241
Open Database Connectivity (ODBC), 68
operational databases
compared to data warehouses, 342
organizing data into nonvolatile, subject-specific groups, 345
Output window, 196
OutputBuffer, 161–162
OVAL
defined, 437

P
package configuration
creating and applying, 297–298
enabling/disabling configurations, 205
using SSIS BIDS menu to add a configuration, 297–298
Package Configuration Organizer, 209
determining configuration order, 210
environment variables, 208
package configurations, 201–202
configuration benefits, 201–202
configuration types, 202
direct and indirect configuration, 202
environmental variable configuration, 202
parent package variable configuration, 202
registry entry configuration, 202
specifying new XML configuration file location, 202
SQL Server table configuration, 202
understanding XML configuration file, 202
XML configuration, 202
package control flow architecture, 114
package execution options, 221–229
command-line utility, 227–228
DTExec, 222–223
DTEEXECUI, 222
Execute Package utility, 226–229
extending, 224
SQL Agent, 228–229
SQL Server Agent, 224–226
SQL Server Import and Export Wizard, 221–222
SQL Server Management Studio, 223
starting Server Wizard from BIDS, 221
starting Server Wizard from Management Studio, 221–222
package execution, monitoring, 300–306
adding configuration to ImportCustomers.dtsx package, 302–303
deleting existing package from SSMS, 302
deploying package, 304
executing by using configuration files, 306
executing package, 306
inspecting alternate configuration files, 304–305
Package Installation Wizard, 304
running deployed package, 305
Package Installation Wizard
building SSIS sample project, 289–290
deploying packages, 287, 288
enabling deployment utility, 288–289
monitoring package installation, 304
password options, 293
push deployment and, 294
quick reference, 307
package logging
configuration, 230–231, 234
configuring container and task logging, 232–233
executing package and viewing logs, 232–233
implementing, 230–234
understanding, 229–230
package variables
accessing, 174
PackagePassword property, 291, 292, 307
packages
data flow task, 30
executing partially, 185, 198
executing QuickStartIS.dtsx package, 31
preparation SQL task, 30
reviewing elements, 29–30
reviewing QuickStartODS database tables using SSMS, 31
stop debugging and close package designer, 31
testing, 31
packages, deploying, 294–297, 298–299
DTExec, 298–299
DTEEXECUI, 298–299
executing file system packages, 296
exporting deployed packages, 296
importing ImportCustomers package, 295
importing to MSDB, 296
managing packages on SSIS server, 295–297
monitoring running packages, 296–297
pull deployment, 295
push deployment, 294
packages, securing, 290–291
packages, using expressions in, 73–75
For Loop container, 74
precedence constraints, 74
system variables, 74
user variables, 74
parallelism, 316
parent package
exploring, 218–219
viewing ParentPackage.dtsx package, 218–219
Parent Package variable configuration, 219–220
creating ParentProductsDestination parent package, 219–220
testing package with new configuration, 220
parent package variable configuration
creating, 234
Providing fast and easy access to data, 347–348
Providing messages to Progress tab, 148–152, 173
Providing verbose information to Log File, 152–156
Pull deployment, 295
Push deployment, 294

Q
Query Designer toolbar, 306
QuickStartIS SSIS project
creating QuickStart solution to contain, 28
QuickStartODS database
creating, 242
creating the database, 242
determining whether QuickStartODS database is on your
computer, 242
CustomSSISLog table, 246
importing tables into, 28–29
QuickWatch dialog box, 194

R
Redirect Row, 102
Regex.IsMatch method, 167, 174
registry entry, 209
registry entry, configuration, 202
Regular Expressions, 167, 147
Relational Data Sources list, 52
relational data warehouses, 345
reviewing available connection manager types, 65
reviewing Debug Windows, 181–183
Breakpoints, 182
Call Stack, 181
extecuting package and, 183
Locals, 182
reviewing state using debug windows
step by step, 196–197
reviewing state using VSA features, 194–197
Autos window, 194
DataTip tool, 195
Immediate window, 195
Output window, 196
QuickWatch dialog box, 194
Watch window, 194
role-based security, 291–294
applying, 292–294
assigning reader/writer roles, 293–294
changing protection level, 292–293
Row Count, 190
Row Count transformation, 72
Row transformations, 70, 314
character map, 70
copy column, 70
data conversion, 70
derived column, 70
OLE DB command, 70
script component, 70
rowset transformations, 70–71
aggregate, 70
percentage sampling, 71
pivot, 71
row sampling, 71
sort, 70
unpivot, 71
Run To Cursor command, 191
Runtime engine, 310
Runtime Services, 9
dtsx (DST package) files, 9
Scatter Plot viewer, 186
SCD (slowly changing dimensions), 384–397
adding new control flow for customer dimension updates, 392–393
adding new package for designing, 386–387
adding Percentage Sampling transformation, 387–388
adding SCD transformation, 394–397
connecting to SSMS to create simple database for a new dimension table, 388–389
creating new table within a SQL server destination, 389–391
initializing CurrentRecord column for SCD reference, 391–392
managing, 385–397
Slowly Changing Dimension Wizard, 385
types, 384
ScrapReason data source view, 18–19
Script component
basic programming model, 161
implementing, 162–169
implementing validation using Transformation script component, 164–169
InputBuffer, 161–162
Me.ComponentMetadata object, 162
Me.Variables object, 162
OutputBuffer, 161–162
reviewing a sample project, 162–169
understanding, 161–162
uses, 161
Script component, debugging, 198
Script Tasks
adding, 137
adding error-handling code, 146–148
creating new Script task and initiating code, 141–145
DTS objects and, 140
handling errors, 145–148
implementing, 141–160
modifying script to fire an event, 149–152
modifying variables at run time, 159–160
providing verbose information to Log File, 152–156
ScriptMain class, 139
understanding, 139–141
using variables, 156–159
XmlDocument class, 140
Script tasks
creating breakpoints in, 199
debugging, 190–197
reviewing state using VSA, 194–197
reviewing variables, 199
step through code in, 199
suspending execution, 199
walk through code using breakpoints, 190–194
Script Transformation Editor dialog box, 165, 168, 173
ScriptMain class, 139
Sequence Container
adding, 137
Sequence Container – File Exists constraints, 136
Sequence containers, 120
ServerStorage, 291
setting breakpoints, 177–181
Show Me By tables, 360
Slowly Changing Dimension transformation, 72
Slowly Changing Dimension Wizard, 385
branches, 397
slowly changing dimensions (SCD), 384–397
adding new control flow for customer dimension updates, 392–393
adding new package for designing, 386–387
adding Percentage Sampling transformation, 387–388
adding SCD transformation, 394–397
connecting to SSMS to create simple database for a new dimension table, 388–389
creating new table within a SQL server destination, 389–391
initializing CurrentRecord column for SCD reference, 391–392
managing, 385–397
Slowly Changing Dimension Wizard, 385
types, 384
snowflake schema dimensions, 362
solution
defined, 32
solution designers
getting started, 2
Solution Explorer, 15–16, 76, 94, 101, 103, 110, 112
thumbtack icon, 17
Sort – Department Shift Employee task, 22
Sort transformation, 326
specifying new XML configuration file location, 202
split and join transformations, 71
conditional split, 71
lookup, 71
merge, 71
merge join, 71
multicast, 71
union all, 71
SQL Agent, 228–229
SQL Destination Editor, 98, 99
SQL Server Agent, 224–226
SQL Server configuration
creating, 215, 234
creating SQL Server table, 215–217
SQL Server destinations, 324–325
adding, 127–129, 138
testing DefaultBufferMaxRows and DefaultBufferSize, 325
using SQL Server connection manager, 325
SQL Server Import and Export Settings Wizard, 8
SQL Server Import and Export Wizard, 221–222
starting Server Wizard from BIDS, 221
starting Server Wizard from Management Studio, 221–222
SQL Server Integration Services project, 36–38
SQL Server Management Studio (SSMS), 9, 223
defined, 11
SQL Server table, 215–217
SQL Server tables, 209
SQL Server tables, configuration, 202
SQL statement parameters, mapping SSIS variables to, 247–248
SSIS .dtsx (DST package) files, 9
BIDS, defined, 11
common applications, 4
components, 8–9
container types, 119–120
containers, defined, 10
task control components, 114
control flow, 6
control flow elements, 114
control flow defined, 10
data flow, 6
data flow defined, 10
data pipeline, 6–7
data pipeline defined, 11
dtexec.exe, 9
dtutil.exe, 9
event handler, 7–8
event handler defined, 10
Integration Services Object Model, 9
Microsoft products and, 4
objects and process control components, 4–5
Package Migration Wizard, 10
packages, defined, 10
precedence constraints, defined, 10
process control, 5–8
SQL Server 2000 DTS migration, 10
SQL Server environments and, 4
SSIS and, 9
SSMS, defined, 11
tasks, defined, 10
validation, 115
variables, defined, 10
SSIS design environment, 242–243
SSIS Designer, 188, 189, 190
breakpoints, 186
breakpoints and, 176
color coding, 180
Data Flow Task, 180
Hit Count type, 177
package execution, 183, 185
viewer types, 186–187
SSIS Designer toolbox, 114
SSIS engines, 310
Data Pipeline engine, 310
Runtime engine, 310
SSIS Import and Export Wizard, 26–29
creating tables in new database, 26–29
creating QuickStart solution to contain QuickStartIS SSIS project, 28
defined, 32
importing tables into new QuickStartODS database with a new package, 28–29
reviewing is2005sbs database using Management Studio, 27
running wizard in BIDS, 27
SSIS log reports, 337
SSIS package defined, 10, 32
SSIS package design, 414–436
adding Data Flow tasks to child packages, 426
adding Execute Package tasks, 424–426
adding Row Count task and variable, 426–429
creating master–child package, 424–430
database snapshots, 420
designing for performance and maintenance, 420–422
defining best practices, 423
defining project folders, 433
designing for deployment, 434–435
disabling Execute Package task, 429–430
fast parse, 423
logging reports, 436
Lookup task vs. Merge Join, 419–420
managing buffers and memory, 434
managing CPU use, 434
managing multiple schemas, 435
managing performance and debugging, 433
managing SSIS application deployment, 434–436
opening project/building packages, 424
organizing package components, 430–434
OVAL principles, 414–417
using prefixes to identify package components, 430–433
using SSIS components, 417–423
using SSIS package configurations, 435
variables, 418–419
SSIS packages
storage, 14
SSIS project
creating new, 203–204, 234
SSIS Sample Solution.sln, 288, 302
SSIS transformations, 69–73
asynchronous transformations, 73
audit, 72
blocking transformations, 73
data quality transformations, 71–72
data-mining query, 72
data-mining transformations, 72
export column, 72
fuzzy grouping, 72
fuzzy lookup, 72
import column, 72
memory buffers, 69
partially blocking transformations, 73
row count, 72
row transformations, 70
rowset transformations, 70–71
slowly changing dimension, 72
split and join transformations, 71
synchronous transformations, 73
term extraction, 72
term lookup, 72
SSIS variables
mapping to SQL statement parameter, 285
SSIS variables, mapping to SQL statement parameters,
247–248
SSISDeploymentManifest file
build process and, 289
building SSIS sample project, 289
changing security levels, 293
creating deployment utility, 288
monitoring package installation, 304
Package Installation Wizard and, 307
push deployment and, 294
SSMS
defined, 11
staggered staging, 371
staging data from multiple sources, 370
staging schemes, 370–373
accumulated staging, 372
chunked accumulated staging, 373
destination considerations, 373
persisted staging, 371
staggered staging, 371
staging data from multiple sources, 370
staging tables
implementing, 369–370
uses, 369
star schema
defined, 366
star schema dimensions, 360–361
star schema model
characteristics, 368
defined, 411
dummy record members, 375
Step Into command, 191
Step Out command, 191
Step Over command, 191
Stop Debugging, 64
streaming data
validating, 174
surrogate keys, 352–353, 374
characteristics, 368
defined, 366, 411
defining dimension member rows, 374
uses, 374
synchronous and asynchronous processing, 312–313
synchronous tasks
defined, 437
synchronous transformation, 312
Synchronous transformations, 73
system administrators
going to the, 2
system requirements, 3
System.IO, 123
T
Task Host container, 120
Tasks
defined, 10
tasks
color coding, 31
defined, 114
testing new package configuration, 208, 217–218, 220
testing whether output file is found, 122
thumbtack icon, 17
TransactionOption property
Not Supported, 263
Required, 263
Supported, 263
transactions, 263
configuring, 263
exercises, 264–284
TransactionOption property, 263
transformations
asynchronous, 312
blocking, 313
data sources, 315
non-blocking, 314–315
partially blocking, 313–314
row, 314
Sort transformation, 326
streaming, 312
synchronous, 312
testing packages, 326–329
Try . . . Catch . . . Finally statements, 145–146
Catch block, 145, 146
Finally block, 145–146
StreamWriter object, 146
Try block, 145

U
understanding package configurations, 201–202
understanding XML configuration file, 202
update frequency and persistence, 350–352
historical data, 351–352
using containers, 119–125
adding sequence containers, 121
assigning a value to variables, 122–123
For Loop container, 119
Foreach Loop container, 119
Sequence container, 120
Task Host container, 120
testing whether output file is found, 122
using explicit transactions, 321
using multiple configurations, 210
using sample files, 3–4
using variables, 156–159
utility windows, 16–17

V
validating string data, 174
validation, 238
VariableDispenser, 123
VariableDispensers, 123
Variables
defined, 10
variables, 156–159, 320–321
adding, 137
assigning a value to, 122–123
configuring settings, 156–157
modifying at run time, 159–160
modifying script to read, 158–159
variable scope, 320–321
Variables collection, 320
Variables collection, 320
verbose information
providing to Log File, 152–156
writing out to log file, 173
viewing ParentPackage.dtsx package, 218–219
Visual SourceSafe
defined, 32
VSA Code Editor, 190, 191, 192, 193, 196, 197
Continue command, 191
reviewing state by using, 194–197
Run To Cursor command, 191
Step Into command, 191
Step Out command, 191
Step Over command, 191
VSA Integrated Development Environment (IDE), 142

W
Watch window, 194
working with tasks and DelayValidation, 115–119
WriteOutEmployeeData, 192, 193, 196, 197
writing out verbose information to a log file, 173

X
XML configuration file, 202
creating, 204–207, 234
creating a new SSIS project, 203–204
creating and editing, 203–208
ing, 207–208
product records, 208
specifying new location, 202
testing package with new configuration, 208
understanding, 202
XmlDocument class, 140

Z
zero keys, 375
Paul Turley

Paul Turley is an architect for Hitachi Consulting and has been managing and developing business solutions for about 14 years for many companies, such as Hewlett-Packard, Walt Disney, and Microsoft. He manages the BI Training group for Hitachi's national External Education Services. Paul has taught application development and database design courses for a number of colleges and private training facilities. He has been a Microsoft Certified Solution Developer since 1996 and holds MCDBA, MCSD, MCT, MSF, and IT Project+ certifications. Paul has presented at various conferences and industry associations, including Microsoft SQL PASS in 2004, 2006, and 2007. He has authored and co-authored several books for Wrox Press/Wiley Publishing on Reporting Services, Analysis Services, TSQL, and Access. He is the primary author of Beginning Transact-SQL for SQL Server 2000 and 2005 and was the lead author for Professional SQL Server Reporting Services (2000 and 2005). He is also a contributing author for Beginning SQL Server 2005 Administration. He lives in Vancouver, Washington, with his wife, Sherri, four kids, one dog, two cats, and a bird.

Joe Kasprzak

Joseph Kasprzak is a manager of business intelligence (BI) solutions for Hitachi Consulting in Boston. He has over 14 years of comprehensive business, technical, and managerial experience, providing consulting services for clients in the financial services, retail, telecommunications, health care, hospitality, manufacturing, and government industries. He has helped architect, integrate, develop, and manage full life cycle implementations of strategic BI analytical systems. Joe is a leader in providing BI best practices, proven BI methodologies, BI technology assessments, retail marketing analytics, business performance score cards, labor analytics, KPI executive dashboards, corporate performance management and reporting, financial analytics, and database modeling and design. Joe resides seaside in Newburyport, Massachusetts, where he and his wife, Liz, enjoy sailing and local volunteering. Joe holds a Bachelor of Science degree in mathematics/chemistry from Assumption College in Worcester, Massachusetts, and has performed post-graduate studies in computer science at MIT in Cambridge, Massachusetts.

Scott Cameron

Scott Cameron, a Senior BI Architect at Hitachi Consulting, has been developing BI solutions for nine years and has over 20 years’ data analysis experience. He has over five years’ experience working with SQL Server 2005 BI components and has taught SQL Server BI courses in the United States and Europe. He has experience in the health care, software, retail, insurance, legal, vocational rehabilitation, travel, and mining industries. He has helped several large companies perform their initial implementation of Microsoft Analysis Services 2005 and helped several independent software vendors integrate Analysis Services into their products. He holds a Bachelor of Arts degree in economics and Asian studies from Brigham Young University; his Master of Arts degree in Economics is from the University of Washington. Scott lives in the Seattle, Washington, metropolitan area with his wife, Tarya, and beagles Hunter and Si.
Satoshi Iizuka

Satoshi Iizuka, an engineer with Hitachi Ltd. in Tokyo, has over nine years of database custom development experience and significant BI development experience. He is a member of the Windows COE initiative at Hitachi Ltd., which manages and educates best practices for Microsoft products (including Microsoft .NET technologies). He programs with almost all Microsoft programming languages and Java and is proficient with Microsoft major server products and multiple software development methodologies. He is a Microsoft Certified Systems Engineer (MCSE), Microsoft Certified Database Administrator (MCDBA), and Microsoft Certified System Developer (MCSE) for .NET. Satoshi lives in Tokyo, Japan, with his wife and favorite Nikon cameras.

Pablo Guzman

Pablo Guzman, a BI consultant at Hitachi Consulting, has been developing BI solutions for over seven years. Prior to joining Hitachi Consulting, Pablo worked as a BI consultant for around a year and then worked for three years in a software-development company where he built BI tools for the banking industry. After that, he worked three years at the largest bank in Quito, Ecuador, where he was the BI program manager. He has taught SQL Server BI courses and developed SQL 2005 BI training material. He has engaged with multiple clients in business groups that include data warehousing, IT, insurance, manufacturing, and banking. He has worked in numerous projects that involved performing complex analysis on large data sets. He received an engineering degree in computer and information systems from the National Polytechnic School of Ecuador. Pablo lives in the Seattle, Washington, metropolitan area, where he has been an active volunteer participant in some nonprofit organizations and plays guitar, bass, and drums in several bands in Seattle.

Supporting Author

Anne Bockman Hansen

Anne has ten years’ project-based experience in technical writing and editing, instructional design, and project management. She is experienced in designing curriculum for a wide variety of content areas, including Microsoft Windows Server, Windows Small Business Server, Microsoft Exchange Server, SQL Server, and Microsoft Office. She is experienced in designing curriculum for a variety of learning levels, including Web developers, Microsoft Certified Solution Providers, Solution developers, technical implementers and decision makers, corporate developers, site administrators, senior support professionals, and technical consultants. Anne received a Master of Science degree in technical communication from the University of Washington College of Engineering in 1996 and a Bachelor of Science degree in cognitive psychology in 1980. Anne resides in the country in Fall City, Washington, with her husband, Barry.