

Agile Project Management
with Scrum

Ken Schwaber

M

A01T61993x.fm Page 1 Friday, January 9, 2004 2:29 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2004 by Ken Schwaber

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Schwaber, Ken.

Agile Project Management with Scrum / Ken Schwaber.
p. cm.

Includes index.
ISBN 0-7356-1993-X
1. Computer software--Development. 2. Project management. 3. Scrum (Computer

software development) I. Title.

QA76.76.D47S32 2003
005.1--dc22 2003065178

ISBN: 978-0-7356-1993-7

Printed and bound in the United States of America.

19 20 21 22 23 24 25 26 27 LSI 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and Microsoft Press are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Other product and company names mentioned herein may be the trade-
marks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editor: Kathleen Atkins
Indexer: Bill Meyers

Body Part No. X10-25679 [2013-03-08]

Dedicated to ScrumMasters

A03D61993x.fm Page 1 Friday, January 9, 2004 2:32 PM

A03D61993x.fm Page 2 Friday, January 9, 2004 2:32 PM

v

Contents
Foreword: Mike Cohn ix

Foreword: Mary Poppendieck xi

Acknowledgments xv

Introduction xvii

1 Backdrop: The Science of Scrum 1
Empirical Process Control 2
Complex Software Development 4
The Skeleton and Heart of Scrum 5
Scrum Roles 6
Scrum Flow 7
Scrum Artifacts 9

Product Backlog 10
Sprint Backlog 12
Increment of Potentially Shippable Product Functionality 12

2 New Management Responsibilities 15
The ScrumMaster at MetaEco 16

The Situation at MetaEco 16
The ScrumMaster in Action 16
The ScrumMaster’s Value 17

The Product Owner at MegaEnergy 18
The Situation at MegaEnergy 18
The Product Owner in Action 19
The Product Owner’s Value 20

The Team at Service1st 21
The Situation at Service1st 21
The Team in Action 22
The Team’s Value 23

3 The ScrumMaster 25
The Untrained ScrumMaster at Trey Research 26

What Was Wrong 27
Lessons Learned 28

A04T61993x.fm Page v Friday, January 9, 2004 2:32 PM

vi Contents

The Untrained ScrumMaster at Litware 29
What Was Wrong 29
Lessons Learned 30

Overzealous at Contoso.com 31
Being Right Isn’t Everything 31
Lessons Learned 32

Wolves at MegaFund 33
The Wolves Strike 34
Lessons Learned 35

4 Bringing Order from Chaos 37
The Situation at Service1st 38

Application of Scrum 39
Lessons Learned 41

The Situation at Tree Business Publishing 42
Application of Scrum 44
Lessons Learned 45

The Situation at Lapsec 46
Application of Scrum 48
Lessons Learned 50

5 The Product Owner 53
Customer and Team Collaboration 54
Getting Service1st’s Management Back in Action 55

Sprint Review Meeting 56
Lessons Learned 57

Fixing the Problem of XFlow at MegaFund 57
Addressing the Problem 58
Lessons Learned 60

Company Goals at TechCore 60
How Scrum Helped TechCore 61
Lessons Learned 63

Company Goals at MegaBank Funds Transfer System 63
How Scrum Helped FTS 64
Lessons Learned 64

A04T61993x.fm Page vi Friday, January 9, 2004 2:32 PM

Contents vii

6 Planning a Scrum Project 67
Managing Cash at MegaBank 69

The Two-Day Sprint Planning Meeting 69
Lessons Learned 73

Certified ScrumMasters Take on Return on Investment (ROI) 74
MLBTix 74
How the Teams Respond to This Exercise 78
Lessons Learned 80

7 Project Reporting—Keeping Everything Visible 83
New Project Reporting at the MegaEnergy Title Project 84

Solving the Problem 86
Lessons Learned 91

Getting More Information at MegaBank 92
Solving the Problem 93
Lessons Learned 94

Not Everything Is Visible at Service1st 95
The Reality 96
Lessons Learned 98

8 The Team 101
Team Formation at Service1st 102

Learning Who’s the Boss: The Transition 104
Learning to Engineer Better: The Transition 105
Learning to Self-Organize: The Transition 107
Estimating Workload: The Transition 110
Learning to Have Fun While Working: The Transition 114

Giving the Team a Chance at WebNewSite 116
Background 116
Lessons Learned 117

9 Scaling Projects Using Scrum 119
Scaling at MegaFund 120

Approach 120
Lessons Learned 121

A04T61993x.fm Page vii Friday, January 9, 2004 2:32 PM

viii Contents

Scrum Scaling 122
Scaling at Medcinsoft 124

Approach 126
Bug Fixing 130
Lessons Learned 131

A Rules 133
Sprint Planning Meeting 133
Daily Scrum Meeting 135
Sprint 136
Sprint Review Meeting 137
Sprint Retrospective Meeting 138

B Definitions 141

C Resources 145

D Fixed-Price, Fixed-Date Contracts 147
How to Gain Competitive Advantage 148
How to Ignore Competitive Advantage 149

E Capability Maturity Model (CMM) 151
CMM at MegaFund 151
SEI, CMM, and Scrum 152

Index 155

A04T61993x.fm Page viii Friday, January 9, 2004 2:32 PM

ix

Foreword

My new boss wasn’t being a jerk, but it seemed like it at the time. We were writ-
ing new software for use in the company’s high-volume call centers. Instead
of the 12 months I told him we’d probably need, he had agreed to give me
4 months. We wouldn’t necessarily start using the new software in 4 months,
but from that point on, all my boss could give me was 30 days’ notice of a go-live
date. After the first 4 months, I would have to keep the software within 30 days
of releasable. My boss understood that not all functionality would be there after
4 months. He just wanted as much as he could get, as fast as he could get it. I
needed to find a process that would let us do this. I scoured everything I could
find on software development processes, which led me to Scrum and to Ken
Schwaber’s early writings on it.

In the years since my first Scrum project, I have used Scrum on commercial
products, software for internal use, consulting projects, projects with ISO 9001
requirements, and others. Each of these projects was unique, but what they had
in common was urgency and criticality. Scrum excels on urgent projects that are
critical to an organization. Scrum excels when requirements are unknown,
unknowable, or changing. Scrum excels by helping teams excel.

In this book, Ken Schwaber correctly points out that Scrum is hard. It’s not
hard because of the things you do; it’s hard because of the things you don’t do.
If you’re a project manager, you might find some of your conventional tools
missing. There are no Gantt charts in Scrum, there’s no time reporting, and you
don’t assign tasks to programmers. Instead you’ll learn the few simple rules of
Scrum and how to use its frequent inspect-and-adapt cycles to create more
valuable software faster.

Ken was there at the beginning of Scrum. Ken, along with Jeff Sutherland,
was the original creator of Scrum and has always been its most vocal propo-
nent. In this book, we get to read about many of the Scrum projects Ken has
participated in. Ken is a frequent and popular speaker at industry conferences,
and if you’ve ever heard him speak, you know he doesn’t pull any punches.
This book is the same way: Ken presents both the successes and the failures of
past Scrum projects. His goal is to teach us how to make our projects successful,
and so he presents examples we can emulate and counterexamples for us
to avoid.

A05F61993x.fm Page ix Friday, January 9, 2004 2:33 PM

x Foreword

This book clearly reflects Ken’s experience mentoring Scrum Teams and
teaching Certified ScrumMaster courses around the world. Through the many
stories in this book, Ken shares with us dozens of the lessons he’s learned. This
book is an excellent guide for anyone looking to improve how he or she deliv-
ers software, and I recommend it highly.

—Mike Cohn
Certified ScrumMaster
Director, Agile Alliance

A05F61993x.fm Page x Friday, January 9, 2004 2:33 PM

xi

Foreword: Why Scrum Works

Suppose I’m traveling from Chicago to Boston by airplane. Before and during the
flight, the pilot gets instructions from air traffic control. We take off on command and
follow the prescribed route. Once we are in the air, computers predict almost to the
minute when we will land in Boston. If things change—say the air is bumpy—
the pilot must get permission to move to a different altitude. As we approach the
airport, the pilot is told what runway to land on and what gate to go to.

If, however, I set out for Boston in a car, I can take whatever route I want,
whenever I want. I don’t know exactly when I’ll get there, and I probably
haven’t planned what route I’ll take or where I’ll stop for the night. En route, I
follow traffic laws and conventions: I stop at red lights, merge into traffic
according to the prevailing customs, and keep my speed consistent with the
flow. In an automobile, I am an independent agent, making decisions in my
own best interests framed by the rules of the game of driving.

It’s amazing to me that thousands upon thousands of people travel by car
every day, accomplishing their goals in a framework of simple traffic rules, with
no central control or dispatching service. It also amazes me that when I want
to ship a package, I can enter a pickup request on the shipper’s Web site and
a driver will arrive at my door before the time that I specify. The driver isn’t
dispatched to each house; he or she receives a continually updated list of
addresses and deadlines. It’s the driver’s job to plot a route to get all the pack-
ages picked up on time.

As complexity increases, central control and dispatching systems break
down. Some might try valiantly to make the control system work by applying
more rigor, and indeed that works for a while. But the people who prevail are
those who figure out how to change to a system of independent agents operating
under an appropriate set of rules. It might work to provide same-day delivery
with a dispatch system that plans a driver’s route at the beginning of the day.
However, it is far more difficult to preplan a pickup route when customers can
enter pickup requests at any time. Taxi companies sort things out at a central
control center. Some shipping companies send the request to the driver respon-
sible for the area and let the driver determine the best route based on current
conditions and other demands.

The more complex the system, the more likely it is that central control
systems will break down. This is the reason companies decentralize and

A06F61993x.fm Page xi Friday, January 9, 2004 2:34 PM

xii Foreword: Why Scrum Works

governments deregulate—relinquishing control to independent agents is a time-
honored approach to dealing with complexity. Scrum travels this well-trodden
path by moving control from a central scheduling and dispatching authority to
the individual teams doing the work. The more complex the project, the more
necessary it becomes to delegate decision making to independent agents who
are close to the work.

Another reason that Scrum works is that it dramatically shortens the feedback
loop between customer and developer, between wish list and implementation,
and between investment and return on investment. Again, complexity plays a
role here. When a system is simple, it’s not so hard to know in advance what
to do. But when we are dealing with a market economy that changes all the
time and with technology that won’t stand still, learning through short cycles of
discovery is the tried-and-true problem-solving approach.

We already know this. We try out various marketing campaigns and dis-
cover which approach works. We simulate vehicle behavior during car design
to discover the best slope of the hood and best distribution of weight. Virtually
all process-improvement programs use some version of the Deming cycle to
study a problem, experiment with a solution, measure the results, and adopt
proven improvements. We call this fact-based decision making, and we know
that it works a lot better than front-end-loaded predictive approaches.

Scrum is built on 30-day learning cycles that prove complete business con-
cepts. If we already know everything and have nothing to discover, perhaps we
don’t need to use Scrum. If we need to learn, however, Scrum’s insistence on
delivering complete increments of business value helps us learn rapidly and
completely. One of the reasons complete increments are important is that par-
tial answers often fool us into thinking that an approach will work, when in
reality, the approach doesn’t work upon closer examination. We know that until
software is tested, integrated, and released to production, we can’t really be
sure that it will deliver the intended business value. Scrum forces us to test and
integrate our experiments and encourages us to release them to production, so
that we have a complete learning cycle every 30 days.

Scrum doesn’t focus on delivering just any increment of business value; it
focuses on delivering the highest priority business value as defined by the cus-
tomer (Product Owner). The Product Owner and the Team confer about what
that definition is, and then the Team decides what it can do in 30 days to deliver
high-priority business value. Thus the short feedback loop becomes a business
feedback loop—Scrum tests early and often whether the system being developed
will deliver value and exactly what that value will look like. This allows the sys-
tem to be molded over time to deliver value as it is currently understood, even
as it helps to develop a better understanding of that value.

A06F61993x.fm Page xii Friday, January 9, 2004 2:34 PM

Foreword: Why Scrum Works xiii

Another reason Scrum works is that it unleashes the brainpower of
many minds on a problem. We know that when things go wrong, there are
people around who knew there was a problem, but somehow their ideas were
overlooked. For example, when the space shuttle disintegrated on reentry,
a widely reported interpretation of the causes of the disaster suggests that
there were engineers who were well aware that there could be a problem,
but they were unable to get their concerns taken seriously. What manage-
ment system can we use to leverage the experience, ideas, and concerns of the
people closest to the work to be done?

According to Gary Convis, president of Toyota Motor Manufacturing
Kentucky, the role of managers in a healthy, thriving, work environment is “to
shape the organization not through the power of will or dictate, but rather
through example, through coaching and through understanding and helping
others to achieve their goals.”1

Scrum turns small teams into managers of their own fate. We know that
when we are responsible for choosing our own driving route to Boston, we will
find a way to get there. We will detour around construction and avoid rush hour
traffic jams, making decisions on the fly, adapting to the independent decisions of
all of the other drivers out there. Similarly, Scrum Teams accept a challenge and
then figure out how to meet that challenge, detouring around roadblocks in cre-
ative ways that could not be planned by a central control and dispatching center.

If teams are of a size that encourages every member to participate, and
team members feel like they are in control of their own destiny, the experience,
ideas, and concerns of individual members will be leveraged, not squelched.
When team members share a common purpose that everyone believes in, they will
figure out how to achieve it. When teams understand and commit to delivering
business value for their customers, when they are free to figure out how to perform
tasks, and when they are given the resources they need, they will succeed.

Gary Convis notes that Toyota’s sustainable success comes from an “inter-
locking set of three underlying elements: the philosophical underpinnings, the
managerial culture and the technical tools. The philosophical underpinnings
include a joint [worker], customer-first focus, an emphasis on people first, a
commitment to continuous improvement…. The managerial culture…is rooted
in several factors, including developing and sustaining a sense of trust, a com-
mitment to involving those affected by first, teamwork, equal and fair treatment
for all, and finally, fact-based decision making and long-term thinking.”2

1. Gary Convis, “Role of Management in a Lean Manufacturing Environment,” in “Learning to Think
Lean,”August 2001, SAE International, http://www.sae.org/topics/leanjul01.htm.

2. Ibid.

A06F61993x.fm Page xiii Friday, January 9, 2004 2:34 PM

xiv Foreword: Why Scrum Works

Scrum works for all the same reasons. Its philosophical underpinnings
focus on empowering the development team and satisfying customers. Its man-
agerial culture is rooted in helping others achieve their goals. Its technical tools
are focused on making fact-based decisions through a learning process. When all
of these factors are in place, it’s hard for Scrum not to succeed.

—Mary Poppendieck
Poppendieck.LLC

A06F61993x.fm Page xiv Friday, January 9, 2004 2:34 PM

xv

Acknowledgments

Special thanks to my daughter, Carey Schwaber, whose editing turns words into
streams, and to Mike Cohn and Mary Poppendieck, for their fine help in keep-
ing this book focused.

A07A361993X.fm Page xv Friday, January 9, 2004 2:34 PM

A07A361993X.fm Page xvi Friday, January 9, 2004 2:34 PM

xvii

Introduction

I offer you Scrum, a most perplexing and paradoxical process for managing
complex projects. On one hand, Scrum is disarmingly simple. The process, its
practices, its artifacts, and its rules are few, straightforward, and easy to learn. In
2001, Mike Beedle and I wrote a short, straightforward book describing Scrum:
Agile Software Development with Scrum (Prentice Hall). On the other hand,
Scrum’s simplicity can be deceptive. Scrum is not a prescriptive process; it
doesn’t describe what to do in every circumstance. Scrum is used for complex
work in which it is impossible to predict everything that will occur. Accord-
ingly, Scrum simply offers a framework and set of practices that keep every-
thing visible. This allows Scrum’s practitioners to know exactly what’s going on
and to make on-the-spot adjustments to keep the project moving toward the
desired goals.

Common sense is a combination of experience, training, humility, wit, and
intelligence. People employing Scrum apply common sense every time they
find the work is veering off the path leading to the desired results. Yet most of
us are so used to using prescriptive processes—those that say “do this, then do
that, and then do this”—that we have learned to disregard our common sense
and instead await instructions.

I wrote this book to help people understand how to use Scrum as they
work on complex problems. Instead of further describing the framework and
practices of Scrum, I offer a number of case studies in which people use Scrum
to solve complex problems and perform complex work. In some of these case
studies, people use Scrum correctly and the project in question ends up achieving
their goals. In other case studies, people struggle with Scrum and their projects
are less successful. These are people to whom Scrum is not intuitive. I’ve
worked to understand how this can be possible. After all, Scrum is a very simple
process for managing complex projects. Compared to many traditional appro-
aches to project management, Scrum is almost effortless. Or at least I used to
think it was.

Most people responsible for managing projects have been taught a
deterministic approach to project management that uses detailed plans, Gantt
charts, and work schedules. Scrum is the exact opposite. Unlike these tools,
which practically fight against a project’s natural momentum, Scrum shows

A08I61993x.fm Page xvii Friday, January 9, 2004 2:35 PM

xviii Introduction

management how to guide a project along its optimal course, which unfolds
as the project proceeds. I’ve heard that traveling along a learning curve starts
from a point where you have to think everything through step by step and
ends at a point where you can perform the work in question unconsciously.
This is particularly true of Scrum because those steeped in traditional manage-
ment practices have to unlearn many of them.

I recently helped a software development company adopt Scrum. Initially,
the company had planned for two releases over the next 12 months. Because of
its success in using Scrum, however, most of the functionality from the two
releases was ready within 5 months. But when I visited the engineering organi-
zation, the staff was working weekends and nights to put even more function-
ality into the release. Even though the engineers had been wildly successful,
marketing still was berating them for not delivering enough and living up to
“commitments.” The engineers were feeling guilty for not doing everything that
marketing said was necessary, and they were ruining their personal lives to try
to do everything marketing requested. This pathology had persisted despite the
fact that the engineers had already accomplished the work involved in two
releases in the time usually allotted for one. Old habits die hard.

Another change that Scrum engenders can best be described by thinking
of how a house is built. The buyer of the house cannot move into the house
until the entire house is completed. Suppose that there were an incremental,
iterative approach for home construction. Suppose that using this approach,
houses were built room by room. The plumbing, electrical, and infrastructure
would be built in the first room and then extended to each room as it was con-
structed. Buyers could move in as soon as they had decided that enough rooms
had been completed. Then additional rooms could be constructed depending
on the needs of the buyer. Scrum lets buyers have software built in this fashion.
While the infrastructure is deployed, pieces of functionality are delivered to
buyers so that their organizations can start using parts of the system early in the
development cycle. As the system is experienced, the buyer can determine
which parts of the system will be constructed in what order and use these parts
as they are completed. Buyers might even choose not to have the entire system
built if they are satisfied with only a subset of the total functionality they’d ini-
tially envisioned.

I used to teach people the theory, practices, and rules of Scrum. Now I
teach them what Scrum feels like as it is implemented. I teach them how to rec-
ognize when things are going right and when they are going wrong. I provide
exercises and discussions that let them experience the epiphanies so that they
know what Scrum should feel like. Just as you don’t really know what it’s like
to be someone else until you’ve walked however many miles in his or her

A08I61993x.fm Page xviii Friday, January 9, 2004 2:35 PM

Introduction xix

shoes, you might not fully understand Scrum until you implement it yourself.
But as you read this book, you will begin to understand what Scrum feels like
and how you might feel using Scrum in your organization.

How should you read this book, which is in essence a book of case studies
about Scrum? I’ve provided some of the background for each story, described
how Scrum was used in that situation, and presented some of the lessons that
can be learned from the way Scrum was used. The case studies are organized
into topical chapters, through which you should feel free to browse. The chapter
topics are Chapter 1, “Backdrop: The Science of Scrum; Chapter 2, “New
Management Responsibilities”; Chapter 3, “The ScrumMaster”; Chapter 4,
“Bringing Order from Chaos”; Chapter 5, “The Product Owner”; Chapter 6,
“Planning a Scrum Project”; Chapter 7, “Project Reporting”; Chapter 8, “The
Team”; and Chapter 9, “Scaling Projects Using Scrum.” Sometimes I indicate that
the background for a story has been provided in a previous chapter.

Appendix A, “Rules,” lists the rules that are used in various Scrum prac-
tices and meetings. These rules hold Scrum together. If you are familiar with
Scrum but you come across terms that you do not fully understand, you should
look them up in Appendix B, “Definitions.” If you are unfamiliar with Scrum,
you should read Chapter 1, “Backdrop: The Science of Scrum,” for a recap of
Scrum theory, flow, practices, artifacts, roles, and meetings. Appendix C,
“Resources,” provides a list of resources that you might want to access to get a
deeper understanding of Scrum.

Appendix D, “Fixed-Price, Fixed-Date Contracts,” and Appendix E, “Capa-
bility Maturity Model,” are the odd ducks of this book. They contain material
that might help you use Scrum in rather unique circumstances that aren’t
described in the case studies that constitute the body of this book.

A08I61993x.fm Page xix Friday, January 9, 2004 2:35 PM

A08I61993x.fm Page xx Friday, January 9, 2004 2:35 PM

CH0261993x.fm Page 24 Friday, January 9, 2004 2:52 PM

25

The ScrumMaster
Why did I choose a strange name like “ScrumMaster” for the person who facil-
itates Scrum projects? Why didn’t I continue to use the standard title “project
manager”? I wanted to highlight the extent to which the responsibilities of the
ScrumMaster are different from those of a traditional project manager. This dif-
ference in terminology is symbolic of a drastic change managers must make to
their approach if they are to effectively manage Scrum projects.

The authority of the ScrumMaster is largely indirect; it springs mainly from
the ScrumMaster’s knowledge of Scrum rules and practices and his or her work
to ensure that they are followed. The ScrumMaster is responsible for the success
of the project, and he or she helps increase the probability of success by helping
the Product Owner select the most valuable Product Backlog and by helping the
Team turn that backlog into functionality. The ScrumMaster earns no awards or
medals because the ScrumMaster is only a facilitator.

Learning basic ScrumMaster practices is easy for most, but some people
have difficulty learning the art of being a ScrumMaster. I’ve encountered some
misguided Scrum implementations that don’t have as much of an impact as they
might have had because the ScrumMaster doesn’t understand the philosophy
underlying the Scrum methodology. Some ScrumMasters just don’t get it, no
matter how much they’ve read about Scrum. Scrum is a simple, straightforward
set of practices, rules, and roles, as introduced in Chapter 1 and further
described in the Appendixes of this book. But the philosophy behind Scrum is
somewhat less simple and can sometimes be difficult to understand. Learning
Scrum is a little like learning to ride a bike: after a little bit of time, you just get
it—and your muscles get it—and from then on, it’s as easy as pie. But until
then, you’d better not go riding on major roads. ScrumMasters who don’t fully
understand Scrum are like novice bicyclists riding down major highways.

CH0361993x.fm Page 25 Friday, January 9, 2004 2:53 PM

26 Agile Project Management with Scrum

As Scrum spreads, I’ve become more concerned about ensuring that there
is an adequate supply of qualified ScrumMasters. I recently received a call from
a manager of a production team developing semiconductors for a large com-
pany in Texas. He wanted to know about “this Scrum stuff.” I asked him what
had piqued his interest, and he responded that four months earlier the manager
of the design team in Germany had called and said to him, “We’ve adopted
Scrum to manage our design process, so don’t expect the usual reports.” Yesterday,
the same individual had called to tell the Texas manager that the design team
had slipped and was three weeks behind schedule. The Texas manager wanted
to know, “Is this Scrum?”

This kind of call is all too familiar to me. In another instance, a manager
from Brazil came up to me after a class at a recent conference. He was quite
excited about the idea of Daily Scrums. He told me he had been using Scrum
for more than six months, and he thought implementing a Daily Scrum would
really help communications within the team. I couldn’t believe that he had read
about Scrum but not understood how critical the Daily Scrum is for socialization
and synchronization.

These examples show how easy it is for people to misunderstand Scrum.
People tend to interpret Scrum within the context of their current project man-
agement methodologies. They apply Scrum rules and practices without fully
understanding the underlying principles of self-organization, emergence, and
visibility and the inspection/adaptation cycle. They don’t understand that Scrum
involves a paradigm shift from control to empowerment, from contracts to col-
laboration, and from documentation to code.

Let’s look at the experiences of ScrumMasters with differing levels of
experience with Scrum. These examples should help us understand how
important it is to have a well-qualified ScrumMaster herding the team.

The Untrained ScrumMaster at Trey Research
A consultant is sometimes defined as someone who gives advice more than
100 miles from where he or she lives. I know why this is the case. My neighbors
know my lawn has patches and crabgrass in it, just as their lawns do. The police
in my town know I sometimes speed. The librarians know I sometimes have
overdue books, and they know I have a taste for daring mystery stories. In short,
the other residents of my town know I am a regular person with both strengths
and shortcomings—I’m not at every moment an expert on all questions.

People often hire consultants because they want to get a different per-
spective on their situations. This new perspective is often perceived as some-
how better than the native view of things. This would be enough of a reason for

CH0361993x.fm Page 26 Friday, January 9, 2004 2:53 PM

Chapter 3 The ScrumMaster 27

clients to think twice before hiring a local consultant. So you can imagine how
excited I was when a company in the town where my family has lived for the last
23 years called. The CIO had implemented Scrum and wanted me to check it out.

The company in question was Trey Research, a start-up company that
acquires tissue cultures from healthcare organizations and resells them to phar-
maceutical companies. Trey Research adds value to the cultures by inventory-
ing and identifying the demographics, illness, and stage of illness represented
by each sample. Overloaded with new systems to build and implement, the
Trey Research CIO had implemented Scrum. He wanted me to evaluate how
Scrum was working at his company and suggest how his implementation might
be improved.

What Was Wrong
At the beginning of my visit, I met with the CIO’s management team and pro-
vided them with an overview of Scrum. We then discussed the various projects
under way at Trey Research and how they were using Scrum. Each team had
sprinted several times, and everyone was pleased with the changes that had
been effected and the progress that had been made.

The ScrumMaster who had been using Scrum the most invited me to
attend “his Daily Scrum.” The moment I heard this, an alarm bell went off in my
head. Why was it “his Daily Scrum” and not “the team’s Daily Scrum”? I decided
to hold my tongue and wait to find out. He led me to a large room in the base-
ment of the old mansion that was Trey Research headquarters. Nine developers
were working at their workstations—five clustered in the center of the room
and a pair at each end of the room. From a structural point of view, this was
good news: an open work area like this enables the high-bandwidth communi-
cation essential for successful teamwork.

At this meeting, the ScrumMaster kicked things off by pulling out a list.
Reading from the list, he proceeded to go around the room, asking each per-
son present whether he or she had completed the tasks he had written by that
person’s name. He asked questions like, “Mary, did you finish designing the
screen I gave you yesterday? Are you ready to start on the dialog boxes in it
today?” Once he had exhausted his list and spoken to everyone in the room,
he asked whether the team needed any help from him. The team members
were all silent.

I wasn’t sure how to tell him what I thought of his methods. On one hand,
work in my hometown was certainly convenient. But how could he have so
completely misunderstood all that I had written about Scrum? How had I failed
to convey the spirit of Scrum? He turned to me and somewhat proudly asked

CH0361993x.fm Page 27 Friday, January 9, 2004 2:53 PM

28 Agile Project Management with Scrum

what I thought. I paused and then complimented him on the open arrangement
of the team room and the general spirit of the team. I then asked him how he
knew what the team was working on. He started to say he knew because they
were working on what he had told them to work on, but before the entire sen-
tence got out, a look of shock passed over his face. In just a moment of reflec-
tion, he had identified the key element of Scrum that he had forgotten to
implement.

Lessons Learned
The project manager had read the book on Scrum and learned the mechanics of
the Daily Scrum. He had read that team members are supposed to answer three
questions at each Daily Scrum:

■ What have I done since the last Daily Scrum?

■ What am I going to do between now and the next Daily Scrum?

■ What is preventing me from doing my work?

However, he was a longtime practitioner of traditional project management
techniques. He’d spent years planning tasks and ensuring that teams completed
them. Consequently, he had interpreted what he’d read as

■ He would check on whether the team members had done what he
told them to do since the last Daily Scrum.

■ He would tell each member what they should do between now and
the next Daily Scrum.

■ He would check to see whether he could do anything to help the
team accomplish its goals.

To save time, he had shortened the last question into a general inquiry.
The shift from project manager to ScrumMaster had eluded him. He

believed that Scrum was merely a series of practices and techniques for imple-
menting iterative, incremental development. He missed the subtle but critical
shift from controlling to facilitating, from bossing to coaching. Just as he missed
out on these changes, he also missed out on the importance of a self-organizing
team. He and the team had committed to a Sprint goal, but the team never self-
organized or truly committed to the Scrum goal. The productivity that emerges
when a team figures out the best way to accomplish its goals hadn’t been real-
ized. Neither did team members have the deep personal commitment that
emerges when people puzzle their way through their work on their own. The
team’s ability to tackle its problems and solve them is the heart of Scrum and

CH0361993x.fm Page 28 Friday, January 9, 2004 2:53 PM

Chapter 3 The ScrumMaster 29

the basis of the Scrum team’s extraordinary productivity. Once I pointed this
out to the project manager, he immediately saw the error of his ways. “Oh, of
course!” he exclaimed. Some people are so embedded in their familiar ways
that they have trouble seeing what they have to change, no matter how many
articles and books they read and agree with.

The Untrained ScrumMaster at Litware
Litware is a medium-size vendor of planning software. A project management
office consisting of one manager, John Chen, and three project managers
planned all of the company’s releases. After each release was planned, the
work was broken down into tasks and organized on PERT charts. These tasks
were then divided among the various analysts, designers, programmers, testers,
and documenters. The approach was very “waterfall” and very defined. As the
complexity of the releases increased and the customer base grew, the release
planning phase grew and grew until it was simply unacceptable. The results of
each release planning phase were also unsatisfactory: the plans were difficult to
adapt to the complexities that the team encountered and to the changes that
sales and customers requested.

The company’s frustrated managers asked John to work with me to switch
the release management over to Scrum. After assessing the situation, John and
I set a Scrum start date several weeks out. At this point, we would convert the
plans to Product Backlog, provide Scrum training, and then conduct several
Sprint planning meetings.

What Was Wrong
During those several weeks, I held a Certified ScrumMaster class and invited
John to attend. This was his chance to learn Scrum before he implemented it at
Litware. The class prepares people who will be ScrumMasters for projects. As
usual, the class was well attended. Unfortunately, there was one conspicuous
no-show: John. I kept checking during the day, but he was definitely not there.
Later that day, I e-mailed John to find out what had happened. John responded
that other priorities at work had precluded his attendance but that we would
nonetheless start the Scrum implementation as we’d planned.

I showed up on the appointed day, and we spent the morning laying
out the Product Backlog for two teams. In the afternoon, the Litware managers
asked me to give an overview of Scrum to the entire development organization.
The managers wanted everyone to understand Scrum and what was planned for
the two teams. I introduced Scrum and entertained many questions. Everyone

CH0361993x.fm Page 29 Friday, January 9, 2004 2:53 PM

30 Agile Project Management with Scrum

wanted to know where Scrum had been used before, how it worked, and what
everyone’s new roles would be. They were particularly intrigued by the con-
cept of self-organization because they weren’t big fans of task-driven work
assigned to them by a project manager. I spent quite a bit of time discussing the
shift from project manager to ScrumMaster. I compared the ScrumMaster to a
sheepdog who would do anything to protect its flock, or team. We discussed
how the team’s welfare was the ScrumMaster’s highest responsibility and how
the ScrumMaster would do anything in his or her power to help the team be
productive. At the end of the training session, John and I confirmed the start
time with the teams that we were beginning to work with the next day.

I was setting up for the Sprint planning meeting the next morning when
Elsa Leavitt, a member of John’s staff, arrived to let me know that John had
called her and said he would be at an offsite meeting instead of at the Sprint
planning meeting. He had sent Elsa along in his stead. John hadn’t gotten it: a
sheepdog never gets distracted from the flock. John didn’t understand that the
team would be relying on him. Worse, he had sent a message that Scrum and
the team were unimportant to him. He had indicated that he valued offsite
meetings more than building software—even though it was the software that
was critical to the success of Litware.

I filled in the vice president of development on the situation. He under-
stood the significance of John’s absence. He immediately promoted Elsa and
appointed her to be the team’s ScrumMaster. When the team members arrived
for the Sprint planning session, they found that Elsa was their ScrumMaster. She
took care of them just as a good sheepdog would.

Lessons Learned
John didn’t understand that ScrumMasters have to make a personal commitment
to their teams. A ScrumMaster would no more delegate his responsibilities than
a sheepdog would lie down for a nap while herding the flock. The team needs
to sense that someone is deeply invested in its work and will protect and help
it no matter what. The ScrumMaster’s attitude should reflect the importance of
the project; instead, John’s attitude told the team that things at Litware were still
business as usual.

I believe that John didn’t want to understand the role of ScrumMaster. The
behavior of the ScrumMaster is dramatically different from that of people staffing
a formal project management office that assigns work and controls its comple-
tion. The shift from having authority to being a facilitator was too much for John.
Not only is the ScrumMaster role one without authority, but it also potentially
represented a career change that John didn’t want to make. The ScrumMaster is
a leader, not a manager. The ScrumMaster earns the team’s respect because he or

CH0361993x.fm Page 30 Friday, January 9, 2004 2:53 PM

Chapter 3 The ScrumMaster 31

she fulfills the duties of the role and not simply because he or she was assigned
the role in the first place.

The shift from delegating to being personally responsible is difficult for
some people to accept. The “hands-on” aspect of Scrum scares some people.
John deselected himself from Scrum by failing to show up for the job. The vice
president of development made the right move by reassigning the role of
ScrumMaster to someone who recognized its importance.

Overzealous at Contoso.com
Contoso is a software vendor that provides administrative, clinical, and radiology
software to healthcare providers. In the late 1990s, a number of dot-com com-
panies were funded to initiate Web-based alternatives to Contoso’s products.
These new competitors intended to encroach on Contoso by initially offering
patient-to-physician portals. These portals would facilitate patient and physi-
cian healthcare interactions, including prescription services, healthcare queries,
appointments, and online medical advisories. Contoso viewed the portals as
Trojan horses through which these competitors would later start offering
administrative and billing services as Application Service Providers to Contoso’s
customers.

To counter this threat, Contoso formed a dot-com subsidiary, Contoso.com.
This subsidiary would offer its own patient-to-physician portal, with the differ-
ence that its portal would be linked to existing Contoso systems. Several projects
were quickly initiated, including development projects, marketing projects, and a
public relations project. I was the ScrumMaster for several of these projects,
including the public relations project. The public relations project’s goal was
to increase the marketplace’s awareness of Contoso’s new strategy and to get
current and potential customers to see Contoso.com as an alternative to the other
new dot-coms.

Being Right Isn’t Everything
The public relations project was very aggressive. In its first Sprint, a public rela-
tions firm was hired and a public relations plan conceived and approved. In its
second Sprint, Contoso.com and the public relations firm began executing
the plan, a key element of which was to make various analyst firms aware that
Contoso.com was alive in the Internet space and was a purveyor of Web services.
Several analysts had issued reports on this space and not mentioned Contoso in
any of them. Many of Contoso’s customers were interested in these services but
weren’t aware that their own vendor was a potential provider.

CH0361993x.fm Page 31 Friday, January 9, 2004 2:53 PM

32 Agile Project Management with Scrum

After considerable effort, the public relations firm was able to set up an
all-day session with Contoso.com management and some key analysts. We
were to present our plan, our offerings, and our timetable. Our hope was that
by the end of the day, these analysts thought of Contoso when they thought of
Internet healthcare and healthcare portals.

At the Daily Scrum the day prior to the analyst meeting, one of the team
members reported an impediment. I could tell it was going to be a big one from
the looks on the faces of all the team members. The vice president in charge of
Contoso.com had called for a mandatory offsite meeting the next day. All hands
were to be on deck, and all prior commitments were to be canceled. I was incred-
ulous. What could be more important than our Sprint goal, to get Contoso.com
visible as a viable alternative to the other dot-coms? The team told me what was
more important: the vice president was concerned about morale at Contoso.com
and was holding a picnic to improve everyone’s mood.

I knew that this was a mistake. The offsite was an impediment to the
Sprint. Ironically, it was more likely to hurt team morale than help it. I was cer-
tain that the vice president was unaware of the analyst meeting. Otherwise,
why would she have insisted on everyone’s attendance? To my everlasting
amazement, it turned out that she was well aware of the analyst meeting. She
even went so far as to ask me to call the analysts and cancel it. She required
complete participation at the offsite out of concern that allowing anyone to be
absent would encourage everyone to skip out. Unfortunately, I got pretty
heated as I was expressing my opinion of this policy. She refused to let the analyst
meeting proceed and showed me out of her office.

I was seeing red. I was the sheepdog, and a wolf had attacked the flock.
I quickly escalated this impediment to the senior managers. I was sure that they
would see the fallacy of the decision and advise the vice president to recon-
sider. I hadn’t anticipated that they would view teamwork as more important
than progress and that they would see the sheepdog as an impediment. I was
let go shortly thereafter.

Lessons Learned
The ScrumMaster’s job is to protect the team from impediments during the
Sprint. However, the ScrumMaster has to operate within the culture of the orga-
nization. My mistake lay in failing to recognize the value of teamwork to this
organization. I had been a consultant for so long that I’d forgotten how much
some large organizations cared about not rocking the boat and keeping the
corporate family together.

The ScrumMaster walks a fine line between the organization’s need to
make changes as quickly as possible and its limited tolerance for change.

CH0361993x.fm Page 32 Friday, January 9, 2004 2:53 PM

Chapter 3 The ScrumMaster 33

Whenever possible, the ScrumMaster makes a case and pushes the necessary
changes through. The results are often greater productivity and greater return
on investment (ROI). However, sometimes these changes are culturally unac-
ceptable and the ScrumMaster must acquiesce. Remember that Scrum is the art
of the possible. A dead sheepdog is a useless sheepdog.

Wolves at MegaFund
MegaFund is one of the largest fund management companies in the world. Its
innovative funds attracted investors more than the funds at any other organi-
zation. However, by 1997, Charles Schwab, eTrade, and other financial compa-
nies had revolutionized stock trading. Customers could now manage their own
fund accounts, buy and sell stocks, and play the margins without personal
assistance from professional stock brokers. The Internet and mobile technol-
ogy had enabled Web, PDA, cell-phone, and voice-response unit functionality.
Unfortunately, MegaFund had fallen behind this revolution. Its technology
organization was large, bureaucratic, and cumbersome. To make matters
worse, it had implemented Capability Maturity Model Level 3 practices over
the last year. If incorrectly implemented, these practices can increase bureau-
cracy, as they had at MegaFund. MegaFund was now so bureaucratic that it
was hard to get anything done.

MegaFund explored ways to enable new technologies that could access the
legacy databases where all customer account and trade information was stored.
After several false starts, MegaFund managers decided to do it the right way.
Usually when managers say that they’re going to do a project “the right way,”
that project ends up dying from excess overhead. Sure enough, after nine
months the project was stalled while battles raged over what sort of technology
to use. Should it be Solaris, Microsoft Windows NT 4.0, or AIX? Should Mega-
Fund standardize on Intel technology? Were Sun servers more scalable than
IBM servers? Was COM the way of the future, or was CORBA the way to go?
While these wars were being waged, the competition surged ahead.

MegaFund finally decided to bring in Scrum to break the logjam and get
the project moving. Terry Adams, who had been the project manager, had a
strong technical background and an intuitive understanding of his new role as
ScrumMaster. During the Daily Scrum, he listened carefully to each team mem-
ber’s report. When someone had a problem with his or her equipment, Terry
lent a hand. When people were stuck, Terry helped them access expertise
external to the project. When purchase orders didn’t go through, Terry helped
expedite them. He was able to remove impediments without ruffling feathers
and without endangering his job.

CH0361993x.fm Page 33 Friday, January 9, 2004 2:53 PM

34 Agile Project Management with Scrum

The Wolves Strike
The team started a Sprint, and within two weeks it had made an impressive
amount of progress. The team had selected and begun to use its tools and was
implementing the first transactions. By the end of the Sprint, the team would
demonstrate an approach to solving MegaFund’s technology problems and
implementing a suite of competitive solutions.

Russell Hunter, a senior vice president in MegaFund’s systems company,
was at a cocktail party about this time. After months of trouble, Russ was finally
able to brag about some progress. Russ boasted to the head of the electronic
funds retail unit, who commented that he had some significant competitive
problems that he would like to see solved by this team. Russ, spotting an
opportunity to garner some good will, offered to demonstrate a key electronic
funds retail transaction at the Sprint review. The next morning, Russ got to the
office early and approached one of the systems engineers on the team.
The engineer didn’t report to Russ. He reported to someone who reported to
someone who reported to Russ. Russ was a legend to him, someone who could
influence his career with as little as a sidelong glance. When Russ asked him to
look into implementing this transaction as part of the Sprint, the engineer
couldn’t say no.

Something strange happened during that day’s Daily Scrum. Terry was lis-
tening carefully as usual, so he immediately noticed that this particular engineer
reported progress in work that wasn’t part of the Sprint goal or selected Product
Backlog. Terry asked the engineer to meet with him after the Daily Scrum, at
which point the engineer confessed that he’d been asked to do a favor. The
engineer was accustomed to senior managers telling him to do something on
the side. But Terry knew that this practice was a violation of a fundamental
Scrum rule: the team is left alone during the Sprint to accomplish the goals to
which it initially committed.

Terry was an intuitive ScrumMaster. He went to Russ and asked about the
work that Russ had asked the engineer to do for him. Russ was immediately
defensive, knowing that he had violated one of the rules of Scrum. Russ said
that it was as though he’d seen a $20 bill on the ground and he couldn’t help
but pick it up. Instead of criticizing Russ, Terry struck a sympathetic posture. He
made it clear to Russ that he understood the importance of this opportunity.
However, he said, since Scrum was new to MegaFund, he was sure that Russ
was unaware that Scrum had mechanisms for dealing with opportunities like
this one. In a case like this, whenever an opportunity arose that was more
important than the work selected by the team for the Sprint, management could
abnormally terminate the Sprint. The Team, the Product Owner, and manage-
ment would then conduct a new Sprint planning meeting. The new opportunity
would be selected if it truly was the top-priority Product Backlog.

CH0361993x.fm Page 34 Friday, January 9, 2004 2:53 PM

Chapter 3 The ScrumMaster 35

Russ thought about it for several seconds and realized that he didn’t want to
cancel the Sprint. Everyone would know that he was responsible for halting
progress on the project for this minor opportunity. The Sprint planning meeting
would make his act highly visible and provide his peers with an opportunity to ask
why his pet project was more important than their needs. Russ thanked Terry but
demurred, saying that he would meet with the Product Owner and get on the
Product Backlog in the next Sprint planning session. Of course, he never did so.

Lessons Learned
Terry used the Scrum rules and practices to keep the project on track. Scrum
offers many opportunities to make changes and to respond to new opportuni-
ties. Scrum also keeps everything highly visible. The Product Backlog and its
prioritization are open to everyone so that they can discuss them and come to
the best way to optimize ROI. The Daily Scrum keeps all team activities visible
so that the ScrumMaster can enforce the rules and help the team stay on track.
By keeping everything in full view, the type of backroom politicking and influ-
ence swapping normal in most organizations is minimized. These mechanisms
are useful in bureaucratic organizations as a way to get particular things done.
But when Scrum is already getting things done, these behind-the-scenes pres-
sures are counterproductive.

Conclusions

At Trey Research and Litware, we saw that it’s not always easy to understand
the role of the ScrumMaster. At Contoso.com, we saw how a ScrumMaster can
self-destruct. At MegaFund, we saw a ScrumMaster both fulfill his responsibili-
ties and embed Scrum practices and rules in the organization. Something
unique happened in each situation. The ScrumMaster was aware of Scrum’s
practices and rules and responded. Sometimes the response was good for the
organization, and sometimes it wasn’t good. In each instance, the ScrumMaster
interpreted the job differently, and the results varied dramatically.

Over the last several years, I’ve wrestled with the question of how to make
the difference between project manager and ScrumMaster, between coach
and boss, more readily understood. How can I explain the shift in a way that
is easy to absorb regardless of a person’s background and inclination? When
experienced Scrum practitioners are around to mentor a new ScrumMaster, the
transition to Scrum is usually smooth. When I mentor new ScrumMasters, for

CH0361993x.fm Page 35 Friday, January 9, 2004 2:53 PM

36 Agile Project Management with Scrum

example, I can help them understand many of the consequences of failure in part
because I’ve failed so many times! I can also show them the difference between
failure and success. We first fill the role of ScrumMaster ourselves, setting an
example. Then we invite the new ScrumMaster to begin. We coach the new
ScrumMaster after every meeting and throughout the day. We point out oppor-
tunities for the ScrumMaster to help the team. We point out ways that the
ScrumMaster can tell when the team needs help. We also point out instances in
which the ScrumMaster is controlling rather than guiding and explain what the
consequences of such acts are likely to be.

The ScrumMaster is responsible for making sure that all the pieces of the
Scrum process come together and work as a whole. The Product Owner must
do his or her job. The Team must do its job. The chickens must be kept in line.
The Product Owner and the Team must collaborate appropriately and use the
Scrum meetings for inspection and adaptation.

The responsibilities of the ScrumMasters can be summarized as follows:

■ Remove the barriers between development and the Product Owner
so that the Product Owner directly drives development.

■ Teach the Product Owner how to maximize ROI and meet his or her
objectives through Scrum.

■ Improve the lives of the development team by facilitating creativity
and empowerment.

■ Improve the productivity of the development team in any way possible.

■ Improve the engineering practices and tools so that each increment
of functionality is potentially shippable.

■ Keep information about the team’s progress up-to-date and visible to
all parties.

When the ScrumMaster fulfills these responsibilities, the project usually
stays on track. These responsibilities should be enough to keep the ScrumMaster
busy; no ScrumMaster should have any time left over to act like a typical boss.
Indeed, a ScrumMaster who acts like a program manager probably isn’t fulfill-
ing all of his or her duties as a ScrumMaster.

In my experience, some people intuitively understand the ScrumMaster
role and take to it like a duck to water. Others struggle to understand Scrum
and sometimes make harmful mistakes as they learn. However, even the suc-
cessful ScrumMaster requires several Sprints to get going. When I am unclear
about how to help a Scrum project, I’ve found it useful to keep the homily “the
art of the possible” in mind. Focus on what can be done rather than be frus-
trated by what can’t be done. This thought helps guide my actions at work on
projects and in everyday life.

CH0361993x.fm Page 36 Friday, January 9, 2004 2:53 PM

Z05E61993x.fm Page 154 Friday, January 9, 2004 3:28 PM

155

Index

Numbers
80/20 rule, 149

A
abnormal termination of Sprints, 34, 136
accomplishment, generating feeling of, 41
accountability, importance of, 7. See also Pigs
adaptation, 3
Agile Manifesto, 97

B
backlogs

Product. See Product Backlogs

Sprint. See Sprint Backlogs

books on Scrum, 145–146
bossing vs. coaching, 27–29
bug fixes. See debugging
build frequency requirement, 105–106
burndown charts, 11–12, 140
Burndown reports, 89–91

C
Capability Maturity Model (CMM), 33, 151–153
Certified ScrumMaster training, 29, 65
Changes reports, 86–87
chaos

borderline case example, 46

ingredients for, 37

checking in code, 105
Chickens

Daily Scrum rules for, 136

defined, 7, 140

clean code, 105–106

CMM (Capability Maturity Model), 33, 151–153
coaching vs. bossing, 27–29
coding practices, 105–106
commitment

collective, requirement, 48

failure of, 116–118

Pigs, of, 7

competitive advantage, gaining for RFPs, 148–149
complexity

books about managing, 146

chaos from, 37

data fusion example, 47

defined, 2

estimates, effects on, 70, 112

people component, 5

planning for, 68

precision, implications of, 2

product-interaction generated, 40, 41

reducing, need for, 51

software development as, 4–5

technology component of, 4–5

Y2K scaling example, 125

consultants, 26
Contoso example, 31–33
contracts

estimates, treating as, 111

fixed-price, fixed-date, 147–149

customers
multiple, scaling for, 126–129

planning, expectations from, 67

representatives of. See Product Owners

resolving involvement problems, 53

stakeholders, as. See stakeholders

visibility for, 84

155

Z06I61993x.fm Page 155 Tuesday, January 13, 2004 3:40 PM

156

D
Daily Scrum meetings

attendance, 135

Chickens at, 136

defined, 8, 140

etiquette for, 135

facilitation vs. bossing, 27–29

Product Owner involvement, 62

project management style, interpretation of, 28

questions for team members, 28, 135

removing people from, 136

reporting rule, 135

rules of, 135–136

scheduling, 135

specificity requirement, 98

Teams, purpose for, 104, 106–107

time-boxing, 135

visibility from, 35

debugging
Backlog vagueness example, 97

clean code, component of, 105

Daily Scrum reports for, 96

sashimi rule, 96

scaling, 130–131

specificity requirement, 98

Sprints missing proper, 95

defined process control, 2
definition of Scrum, 141
Department of Defense attitude towards Scrum,

149
done, defined, 137, 140

E
empirical nature of Scrum, 42, 46
empirical process control

adaptation, 3

characteristics of, 3–4

code check in as example, 106

code review as example, 4

inspection, 3, 114

iteration cycle, 5–6, 8

engineering practices, improving, 105–107
estimates

actuals compared to, 113–114

complexity, effects on, 112

fixed contracts, treating as, 147–149

improvement process for, 111–113

reality of in Scrum, 111

suboptimal measurement problem, 114

Team transition to, 110–114

of work remaining, 110–114, 140

F
face-to-face talks, benefit of, 60
facilitation vs. bossing, 27–29
feature set isolation, 38
field service Product Backlogs, 127
fixed-price, fixed-date contracts, 147–149
flow overview, 7–9
fun, learning to have, 114–115
functionality

Agile Manifesto regarding, 97

clean code requirement, 105–106

increments of. See incremental delivery of

functionality

rule for review meetings, 137

fund transfer system example, 63–65
funders, planning benefits for, 67–68

G
Gantt reports

chart management, 38

methodology of, 84–85

planning, vs. Scrum, 67

Product Backlogs, basing on, 87–88

requirements reporting with, 86–91

Daily Scrum meetings

Z06I61993x.fm Page 156 Tuesday, January 13, 2004 3:40 PM

157

H
heart of Scrum, 6
help, mutual, 104–105
history of customer-team collaboration, 54

I
incremental delivery of functionality

advantages of, 42, 148–149

complexity reduction through, 51

defined, 140

purpose of, 37

rules for, 12–14

selling point, as a, 148

Sprints for, 12–14, 19

increments defined, 140
inspection

defined, 3

suboptimal measurement, 114

interference, protecting team from, 17–18, 34–35
iteration defined, 140
iteration cycle of Scrum, 5–6, 8. See also Sprints

K-L
KPAs (key practice areas), 151–153
language divide, bridging, 66
level of detail, meaningful, 99
Litware example, 29–31

M
management, Team responsibility for, 21
marketing department, conflicts with, 17
MBIT example, 92–95
measurement, suboptimal, 114
Medcinsoft example, 124–131
MegaBank example

fund transfer system, 63–65

MBIT example, 92–95

Product Owner role, 63–65

reports example, 92–95

MegaEnergy example, 84–92
MegaFund example

CMM at, 151–153

legacy databases example, 33–35

Product Owner role, 57–60

scaling example, 120–122

transaction project, 120–122

wolves example, 33–35

XFlow collaboration problem, 57–60

misinterpreting Scrum, examples of, 26
monthly meetings. See Sprint planning meetings
multiple customers coordination solution,

126–129
multiple Teams. See also scaling

example of creating, 103

functionality, grouping by, 129–130

infrastructure for scaling, 120–121

interdependencies, 132

MegaFund example, 120–122

Product Backlog development by, 45

Scrum of Scrums, 121, 132

self-management of, 109

self-organization problem, 132

Sprint review meetings, 56–57

synchronization requirement, 122

mutual aid, 104–105

N-O
NewsWeb example, 116–118
opportunities, mechanisms for unexpected, 34
outside interference, dealing with, 34–35
overzealous ScrumMasters, example of, 31–33

overzealous ScrumMasters, example of

Z06I61993x.fm Page 157 Tuesday, January 13, 2004 3:40 PM

158

P
pay, employee, 113–114
people, complexity of, 5
PERT chart management, 37, 38
Pigs, 7, 140
plain language, using, 63–65
planning

conversions to Scrum, 68

funders, working with, 67–68

meetings. See Daily Scrum meetings; planning

meetings, Sprint

minimum necessary, 68

Product Backlog component of, 68

questions resolved by, 67

stakeholder expectations, setting, 67

team’s role in, 8, 134

visions, 68

planning meetings, daily. See Daily Scrum
meetings

planning meetings, Sprint
attendees, 133

defined, 141

duration of, 8

first four hours, 133

parts, 8

Product Owner role at, 133, 134

redirection opportunities in, 17

rules of, 133–134

second four hours, 134

Teams, role at, 134

time-boxing, 134

planning software example, 29–31
precision, 2
predictability vs. estimates, 111
prioritization, benefits of, 148
process overview, 7–9
Product Backlogs

bidding process, using during, 148

bugs, adding to, 131

burndown charts, 11–12, 140

Burndown reports, 89–91

choosing items for Sprints, 133

columns in, 11

combined for multiple customers, 127

components of, 68

defined, 8, 141

example of, 10

example of constructing, 19–21

explaining simply, 64

field service, 127

Gantt reports from, 87–88

infrastructure for scaling, 120–121

items, defined, 141

listing requirements for, 49

multiple customer scaling solution, 126–129

multiple-team development of, 45, 56

planning, role in, 68

prioritizing in meetings, 8, 133

Product Owners goal for, 18

purpose of, 10

requirements management role, 153

ROI from, 18

rows in, 11

sale of company example, 61

scaling for multiple customers, 126–129

scaling, prioritizing for, 120–121

shadow creation of, 58–60

spreadsheet parts, 11

Sprints, frozen during, 136

tracking function of, 85

uncertainty, reducing with, 41

Product Owners
customers, rivalries between, 58–60

Daily Scrum involvement, 62

defined, 6, 141

pay, employee

Z06I61993x.fm Page 158 Tuesday, January 13, 2004 3:40 PM

159

financial impacts, importance of, 81

MegaBank example, 63–65

MegaFund XFlow example, 57–60

plain language, using, 63–65

planning meetings, role in, 133, 134

prioritization of business problems, 20

Product Backlog construction example, 19–21

Product Backlogs, explaining, 64

quick results, importance of, 55

responsibilities of, 74

ROI focus of, 18, 20

sale of company example, 61

scaling example, 128

ScrumMasters, relationship to, 36, 53, 65

Service 1st example, 55–57

shadow creation of Product Backlogs, 58–60

Sprint review meetings, 56–57

Teams, relation to, 65, 112

Teams, tendency to drift from, 53

TechCore example, 60–63

value of, 20–21

project managers, 16, 25, 28, 30-31, 35-36, 104.
See also ScrumMasters

project reports. See reports
public relations example, 31
purchasing components example, 62
purpose of Scrum, 1

Q
quick results, importance of, 55
Quickstart training, 22, 48

R
refactoring, 105
reports

Burndown reports, 89–91

changes, 86–87

customizing, pragmatic need for, 95

early Sprints, importance of, 94

extra frequency, 94

faking progress by ignoring debugging, 96

Gantt, 84–91

lessons for, 99–100

level of detail, meaningful, 99

MegaBank MBIT example, 92–95

MegaEnergy example, 84–92

paradigm shift from traditional, 86

Product Backlogs as, 85

purpose of, 83

reviews. See review meetings, Sprint

retrospective. See retrospective meetings, Sprint

sashimi rule for, 95

ScrumMaster role in, 86–92

self-management, role in, 99

Service 1st example, 95–99

specificity requirement, 98

technology progress, 93–94

traditional approach, 84–85

types for Scrum, 86

visibility requirement, 98

wolves demanding, 92–95

Requests For Proposals (RFPs), 148–149
requirements

listing for projects, 40

management, 152–153

product. See Product Backlogs

reporting, 86

software, complexity of, 4–5

traceability, 153

Requirements Management, 152–153
retrospective meetings, Sprint

actionable items from, 139

attendance at, 138

defined, 141

example of, 108

retrospective meetings, Sprint

Z06I61993x.fm Page 159 Tuesday, January 13, 2004 3:40 PM

160

retrospective meetings, Sprint,
purpose of, 102

rules for, 138–139

time-boxing of, 138

return on investment. See ROI (return on
investment)

review meetings, Sprint
artifacts, nonfunctional, 137

clean code requirement for, 105

defined, 9, 142

done, defined, 137, 140

estimates vs. reality, assessing, 73

functionality rule, 137

hardware for presentations, 137

polling during, 138

preparing for, 137

purpose of, 137

rules for, 137–138

scripted presentations in, 95

stakeholders role in, 138

time-boxing of, 137

RFPs (Requests For Proposals), 148–149
ROI (return on investment)

adjustment intervals, 20

importance of, 81

Product Owners, focus of, 18, 20

roles
overview of, 6–7

tasks assigned by, 39

rules of Scrum
changing, 133

Daily Scrum meetings, 135–136

Sprint planning meetings, 133–134

Sprint retrospective meetings, 138–139

Sprint review meetings, 137–138

Sprints, 136–137

S
salaries, 113–114
sashimi

defined, 55

functionality implication, 96

scripted illusions of, 95

scaling
architectural requirements, 122, 123

business functionality, 122–123

communicating Product Backlogs, 127

Daily Scrums for multiple customers, 126

debugging, 130–131

development environment requirements,

122, 123

functionality, grouping Teams by, 129–130

incremental functionality for infrastructure,

122–123

infrastructure for, 120–121

infrastructure requirements for, 122–123

Medcinsoft example, 124–131

MegaFund example, 120–122

multiple customers coordination solution,

126–129

nonfunctional requirements, 123

overview of, 119

prioritizing Product Backlogs, 120–121

Product Backlogs, 120–121, 126–127

Product Owner role example, 128

rules for, enumerated, 122

Scrum of Scrums, 121

Sprints, requirements for beginning, 123

staging, 122–123

synchronization mechanism requirement, 122

Teams, multiple. See multiple Teams

transactions example, 120–122

visibility solutions, 127

Y2K example, 124–131

return on investment

Z06I61993x.fm Page 160 Tuesday, January 13, 2004 3:40 PM

161

schedules, evening out of, 39
Scrum of Scrums. See also multiple Teams

contradiction of self-organization, 132

defined, 44

scaling, 121

Scrum skeleton, 5–7
ScrumMasters

authority, source of, 25

Certified ScrumMaster training, 29, 65

commitment to Teams, 30

Contoso example, 31–33

Daily Scrum meetings, role in, 135

defined, 1, 141

difficulty in learning art of, 25

facilitation vs. bossing, 27–29

interference, protecting team from, 17–18

limits on knowledge of, 47

limits on power of, 50

Litware example, 29–31

MegaFund example, 33–35

mentoring new, importance of, 35

missing meetings, 30

outside interference, dealing with, 34–35

overzealous, example of, 31–33

philosophy of Scrum, learning, 25

possessiveness indicator, 27

Product Owners, relationship to, 36, 53, 65

project managers, difference from, 25, 30–31,

35–36, 104

reports, role in, 86–92

responsibilities of, 16, 36

role overview, 7

rules, enforcing, 133

sheepdog analogy for, 16, 30

Teams treating as project manager, 104

Teams, relation to, 103–104, 106, 108, 110

training for, 29, 65

Trey Research example, 26–29

value of, 17–18

wolves, dealing with, 34–35

SEI (Software Engineering Institute)
certification, 151

self-management
reports, role in, 99

Teams, learning, 104–105

self-organization
collective commitment requirement, 48

communication, increasing, 114–115

complexity dependence, 132

key to Team success, 21

killing with bossing, 28

oversized Team example, 22–23

real problems needed for understanding of, 51

Scrum of Scrums contradiction, 132

Teams, transitions to, 107–110

sequential tasks problem, 39, 42
Service 1st example

Product Owners role, 55–57

reports, 95–99

team formation, 102–115

shadow Product Owner example, 57–60
sheepdog analogy for ScrumMasters, 30
skeleton of Scrum, 5–7
Software Engineering Institute (SEI)

certification, 151
Sprint Backlogs

debugging vagueness, 97

defined, 12–13, 134, 141

failing to keep up-to-date, 97

tasks, 141

Sprint Planning meetings
purpose of, 8, 17

face-to-face talks, benefit of, 60

multi-team approach to, 45

prioritizing tasks, 40

Sprint Planning meetings

Z06I61993x.fm Page 161 Tuesday, January 13, 2004 3:40 PM

162

Sprints
abnormal termination of, 34, 136

adding Backlog items during, 137

backlogs. See Sprint Backlogs

defined, 8, 64, 141

first, estimates for, 111

increments of product functionality, 12–14, 19

meetings, planning. See Sprint Planning

meetings

multiple Teams, reviewing together, 56–57

non-Team input into, 136

outside help for Teams, 136

planning meetings. See Sprint Planning meetings

Product Backlogs in, 136

report, ending. See reports

retrospectives. See retrospective meetings, Sprint

review meetings. See review meetings, Sprint

reviews as reporting mechanisms, 57

rules for, 136–137

sashimi from, 55

Team role in, 8, 137

time-boxing of, 136

staging, 122–123
stakeholders

defined, 4, 84, 142

planning, expectations set during, 67

role in review meetings, 138

visibility for, 84

suboptimal measurement, 114

T
Teams

actuals vs. estimates, 113–114

attendance at Daily Scrum meetings, 135

bandwidth, interpersonal, 114–115

clean code for functionality criteria, 105–106

commitment, failure of, 116–118

complex project integration with, 45, 46

complexity reduction by, 52

cross-functionality of personnel, 104

Daily Scrums, purpose of, 104, 106–107

defined, 7, 142

engineering practices, improving, 105–107

epiphanies, first, 101

estimating workloads, 110–114

formation example, 102–115

fun working, 114–115

goal setting, adaptation to, 113–114

help, mutual, 104–105

inspect and adapt mechanisms, 106

long-term solutions vs. iteration, 109

maximizing productivity, 101

multiple, reviewing together, 56–57

oversized, 22–23

physical environment for, 103

planning role, 8, 134, 137

Product Owners, relation to, 53, 65, 112

Quickstart training for, 22

responsibilities of, 21

role defined, 7, 142

salaries, linking to measurements, 113–114

ScrumMasters, relation to, 103, 106, 108, 110

self-management, learning, 102, 104–105

self-organization of, 21–23, 107–110

Service 1st example, 102–115

size of for maximum productivity, 118

Sprints, role in, 8, 137

suboptimal measurement effects, 114

success of, reasons for, 21

technospeak from, 65

transition to Scrum, overview of, 102

value of, 23

waterfall approach, transition from, 103

WebNewSite example, 116–118

TechCore example, 60–63
technology, complexity of, 4–5
technology progress reports, 93–94
termination of Sprints, abnormal, 34, 136

Sprints

Z06I61993x.fm Page 162 Tuesday, January 13, 2004 3:40 PM

163

time-boxing
complexity reduction through, 52

Daily Scrum meetings, 135

defined, 142

planning meetings, 134

purpose of, 37

Sprint retrospective meetings, 138

Sprint review meetings, 137

Sprints, 136

tracer bullet concept, 41
tracking, 85. See also Product Backlogs
transparency, 105. See also visibility
Trey Research example, 26–29

U-V
uncertainty, reducing, 41
visibility. See also reports

defined, 3

scaling solutions, 127

visions, 68

W
waterfall approach to management, 29, 54, 103
Web sites on Scrum, 145
WebNewSite example, 116–118
wolves, dealing with

protecting Teams from, 34–35

reports, demanding, 92–95

X-Y
xAuction example, 74
Y2K scaling example, 124–131

Y2K scaling example

Z06I61993x.fm Page 163 Tuesday, January 13, 2004 3:40 PM

	Copyright
	Contents
	Foreword
	Foreword: Why Scrum Works
	Acknowledgments
	Introduction
	Chapter 3. The ScrumMaster
	The Untrained ScrumMaster at Trey Research
	The Untrained ScrumMaster at Litware
	Overzealous at Contoso.com
	Wolves at MegaFund

	Index

