
James W. Newkirk
Alexei A. Vorontsov

MICROSOFT PROFESSIONALMICROSOFT PROFESSIONAL

Test-Driven
Development in
Microsoft .NET

Test-Driven
Development in
Microsoft .NET®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2004 by James W. Newkirk and Alexei A. Vorontsov

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/learning/. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, Visual Basic, Visual C#, and Visual Studio are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editors: Devon Musgrave and Kathleen Atkins
Indexer: Virginia Bess

Body Part No. X10-25670

This book is dedicated to my father,

William A. Newkirk

Practical wisdom is only to be learned in the school of experience. Precepts

and instruction are useful so far as they go, but, without the discipline of

real life, they remain of the nature of theory only — Samuel Smiles

JWN

This book is dedicated to my mother,

Larisa L. Vorontsova

A thousand-mile journey begins with the first step and can only be taken

one step at a time. — An old saying

AAV

v

Contents at a Glance
Part I Test-Driven Development Primer

1 Test-Driven Development Practices 3
2 Test-Driven Development in .NET—By Example 9
3 Refactoring—By Example 35

Part II Test-Driven Development Example
4 The Media Library Example 63
5 Programmer Tests: Using TDD with ADO.NET 69
6 Programmer Tests: Using TDD with ASP.NET Web Services 105
7 Customer Tests: Completing the First Feature 127
8 Driving Development with Customer Tests 147
9 Driving Development with Customer Tests:

Exposing a Failure Condition 163
10 Programmer Tests: Using Transactions 181
11 Service Layer Refactoring 205
12 Implementing a Web Client 213

Part III Appendixes
A NUnit Primer 233
B Transactions in ADO.NET 253
C Bibliography 259

vii

Contents
Foreword xiii

Acknowledgments xv

Introduction xvii

Part I Test-Driven Development Primer
1 Test-Driven Development Practices 3

What Is Test-Driven Development? 3
Test Types 4
Simple Design 5
Refactoring 6

Process 6
Test List 6
Red/Green/Refactor 7

Summary 8

2 Test-Driven Development in .NET—By Example 9
The Task 9
Test List 10

Choosing the First Test 11
Red/Green/Refactor 12

Test 1: Create a Stack and verify that IsEmpty is true. 12
Test 2: Push a single object on the Stack and verify that
IsEmpty is false. 14
Test 3: Push a single object, Pop the object, and verify
that IsEmpty is true. 16
Test 4: Push a single object, remembering what it is;
Pop the object, and verify that the two objects are equal. 17
Test 5: Push three objects, remembering what they are;
Pop each one, and verify that they are correct. 20
Test 6: Pop a Stack that has no elements. 22
Test 7: Push a single object and then call Top. Verify that
IsEmpty returns false. 24

viii Table of Contents

Test 8: Push a single object, remembering what it is; and
then call Top. Verify that the object that is returned is equal
to the one that was pushed. 24
Test 9: Push multiple objects, remembering what they are;
call Top, and verify that the last item pushed is equal to the
one returned by Top. 25
Test 10: Push one object and call Top repeatedly, comparing
what is returned to what was pushed. 26
Test 11: Call Top on a Stack that has no elements. 26
Test 12: Push null onto the Stack and verify that IsEmpty is false. 27
Test 13: Push null onto the Stack, Pop the Stack, and verify
that the value returned is null. 28
Test 14: Push null onto the Stack, call Top, and verify that
the value returned is null. 28

Summary 29

3 Refactoring—By Example 35
The Sieve 36

Before Refactoring the Code: Make Sure It All Works 41
Refactoring 0: Remove Unneeded Code 41
Refactoring 1: Rename Method 42
Refactoring 2: Add a Test 43
Refactoring 3: Hide Method 44
Refactoring 4: Replace Nested Conditional with Guard Clauses 45
Refactoring 5: Inline Method 46
Refactoring 6: Rename Variable 47
Refactoring 7: Collapse Loops 49
Refactoring 8: Remove Dead Code 49
Refactoring 9: Collapse Loops (Again) 50
Refactoring 10: Reduce Local Variable Scope 52
Refactoring 11: Replace Temp with Query 52
Refactoring 12: Remove Dead Code 53
Refactoring 13: Extract Method 53
Refactoring 14: Extract Method (Again) 54
Refactoring 15: Reduce Local Variable Scope 56
Refactoring 16: Convert Procedural Design to Objects 56
Refactoring 17: Keep the Data Close to Where It Is Used 58

Summary 59

Table of Contents ix

Part II Test-Driven Development Example
4 The Media Library Example 63

The Skinny 63
Existing Database 64

The First Feature 66
Additional Features 67

5 Programmer Tests: Using TDD with ADO.NET 69
Testing the Database Access Layer 69
The Task 71

Connecting to the Database 72
Individual Entities in Isolation 75

Testing Relationships Between Entities 92
Track-Recording Relationship 94

Retrieve a Recording 97
Test Organization 101
Summary 102

6 Programmer Tests: Using TDD with ASP.NET Web Services 105
The Task 105

Test List 106
Data Transformation 107

Data Transfer Object 108
Database Catalog Service 117
Web Service Tests 120

Web Service Producer and Consumer Infrastructure 121
Almost Done 124
Summary 126

Emerging Architecture 126

7 Customer Tests: Completing the First Feature 127
Are We Done? 127

Customer Tests 128
Customer Tests for Recording Retrieval 129

Script 1. Retrieve an existing recording and verify its content 129
Script 2. Retrieve a nonexistent recording 130

x Table of Contents

Automating Customer Tests 131
FIT Overview 131
Connecting FIT to the Implementation 132
Automation with FIT 133

Reconciling Viewpoints 143
Track Duration 144
Recording Duration 145

Summary 146

8 Driving Development with Customer Tests 147
The FIT Script 147

Add a review to an existing recording 148
Implementing Add/Delete Review 151

Summary 162

9 Driving Development with Customer Tests:
Exposing a Failure Condition 163

Programmer Tests 164
Implementing a SOAP Fault 168

Summary 179

10 Programmer Tests: Using Transactions 181
Programmer Tests 182

Transaction Manager 183
Programmer Tests: Catalog Class 193
Summary 203

11 Service Layer Refactoring 205
The Problem 205

What’s Wrong? 207
The Solution 208

Summary 211

12 Implementing a Web Client 213
Testing User Interfaces 213
The Task 214

Table of Contents xi

Implementing Search 215
Implementing the Search Service 215
Implementing the Search Page 216
Binding the Results to a Repeater Web Control 218
Enough of This Stub 226

Summary 230

Part III Appendixes
A NUnit Primer 233

NUnit Quick Start 233
Step 1. Create Visual Studio Project for your test code. 233
Step 2. Add a reference to the NUnit Framework. 234
Step 3. Add a class to the project. 235
Step 4. Set up your Visual Studio Project to use the NUnit-Gui test runner. 236
Step 5. Compile and run your test. 237
Step 6. Become familiar with the NUnit-Gui layout. 237

NUnit Core Concepts 240
Test Case 240

Other NUnit Capabilities 244
Using SetUp/TearDown Attributes 244
Using ExpectedException 246
Using the Ignore Attribute 246
Using TestFixtureSetUp/TestFixtureTearDown 247
Test Life-Cycle Contract 248

Using the Visual Studio .NET Debugger with NUnit-Gui 250

B Transactions in ADO.NET 253
Transaction Management 253

Manual Transaction Management 254
Automatic Transaction Management 255

Transaction Participation 256

C Bibliography 259

Index 261

xiii

Foreword

I enjoyed reading this book because it stretches the boundaries of Test-Driven
Development (TDD). My original TDD book demonstrated TDD in an ideal sit-
uation, in which the programmer is just typing in code and doesn’t have to
worry about external systems or user interfaces. After you get into the messy
realities of widgets and databases, you need new techniques to continue prac-
ticing TDD and reaping its benefits, among which is confidence in cleaner code
written faster.

With this book, the pieces missing from my book are included. If you want
to test drive code that includes a Web interface and a database, you will learn
how to do that in these pages. Even if you aren’t using the Microsoft technology,
you will find ideas you can carry to your application server or database.

The strength of this book is its concreteness. The extensive examples
show you exactly how expert programmers use test-driven development with
realistic tasks. Following the examples will show you the techniques used and,
more important, the flow between the techniques. Technique can be learned
from a book, but to understand the rhythm of development, you usually need
to sit down with a programmer who understands it. As you read, paying careful
attention to the way the techniques fit together in this book will teach you les-
sons about the rhythm of programming.

I think TDD is a really valuable tool. It’s inexpensive, it’s easy to adopt,
and it brings immediate improvement. TDD has led to fewer defects, less
debugging, more confidence, better design, and higher productivity in my pro-
gramming practice. More important, I sleep better at night knowing that my
code works in every circumstance I can think of, and I can prove it at the push
of a button. This book gives you the practical advice you need to gain the ben-
efits of TDD.

Kent Beck

xiii

Acknowledgments

We would like to thank our technical reviewers, Martin Fowler, Lee Holmes,
and Eric Gunnerson. The feedback and guidance that they provided during the
writing process was invaluable. In addition to the technical reviews, we also
received much needed feedback and criticism from the following individuals:
Charlie Poole, Paul Karsten, Peter Provost, Gregor Hohpe, Dragos Manolescu,
Michael Two, Kent Beck, Ron Jeffries, Jonathan Wanagel, Scott Densmore,
Naveen Yajaman, David Astels, Ward Cunningham, Benjamin Mitchell, Chris
Colleran, David Trowbridge, Srinath Vasireddy, and Andrew Slocum. Their
input has greatly influenced the content of the book. It is a pleasure for us to
acknowledge their contributions and express our appreciation for their efforts.
We would also like to thank the following people at Microsoft Press: Linda
Engelman for her help getting us started and everything she did to get the book
completed as soon as possible; Robin Van Steenburgh for taking over Linda’s
big job; Devon Musgrave for his advice on the first draft; Kathleen Atkins for her
help in getting the book completed; and Nancy Sixsmith for converting what
we wrote into English.

Every book is an activity that always takes more time than you think. I
(James) need to thank my wife, Beth, and my children, Erin and Grant, for
allowing me the time that I needed to work on the book. In fact, I owe them for
all the nights and weekends that they have given up while I worked on my lat-
est “scheme.” Thank you. In addition, I would like to thank my coauthor Alexei.
I thoroughly enjoyed the many hours we worked together trying to cobble
together the thoughts and ideas first into a sample program and then into the
text that became this book.

Writing this book took a great deal more time than can be explained, jus-
tified, or even be considered reasonable, but, without a doubt, it has been the
most rewarding experience for me. I (Alexei) owe James a great deal of grati-
tude for giving me this opportunity. I have learned much in the process of
working on the book. I would also like to thank my mentor and manager,
Regan Stern, for recognizing the importance of my working on this book and
supporting me in this effort.

xv

xvii

Introduction

Many people think that Test-Driven Development (TDD) is all about testing
software. In fact, test-driven development’s main goal is not testing software,
but aiding the programmer and customer during the development process with
unambiguous requirements. The requirements are expressed in the form of
tests, which are a support mechanism (scaffolding, you might say) that stands
firmly under the participants as they undertake the hazards of software devel-
opment. However, that is not the only purpose of testing. As you will see, the
tests, once written, are valuable resources in their own right.

What Are the Benefits of Using Tests?
It is important during development that problems are discovered early and cor-
rected when they are found. Often, the biggest problems occur when there is a
misunderstanding of a requirement between the consumers of the software
(customers) and the producers (programmers). These types of problems could
be avoided if there were a way to specify these requirements unambiguously
before development begins. Enter tests. The tests specify requirements in a way
that does not require human interpretation to indicate success or failure. If there
is a sufficient number of tests and they are present prior to development, simply
running the tests and indicating success or failure helps solve the old problem
of software development, “Are We Done?” The answer is no longer an interpre-
tation; the code either passes all the tests or it does not. After it passes, it’s done.

Solving this problem alone may be justification enough, but is there more?
The tests that are written during development can be run and enhanced by
Quality Assurance (QA) with tests of their own. Due to the code being written
with testing as a primary motivation, the resulting code should be easier to test.
Having a base of existing tests and code that is easier to test should allow QA
to shift from a reactive mode into a more proactive mode.

The tests themselves are useful not only in the initial development of the
software; if they are maintained along with the production code, they can be
used in the ongoing development of the software. For example, if a problem is
discovered in the production code, the first step should be to write a test to
clearly identify the problem and then, after you have a failing test, correct the

xviii Introduction

problem. This new test specifies a scenario that was not identified during the
prior development. If you do this consistently, the tests will evolve into how the
program is used in real life, which increases their value exponentially. When
adding new features, you could run this suite of tests to ensure that the new
code does not break any of the existing tests. If the test coverage is sufficient;
running the tests and getting a successful result should reduce your fear of mov-
ing forward. Fear of breaking existing functionality can cause you to become
overly cautious, which slows you down. Think of the tests as a way of covering
your back.

An Example
Let’s look at an example to demonstrate how tests can describe a requirement
more clearly than words can. Consider the following description of a Stack. “A
Stack is a data structure in which you can access only the item at the top. With
a computer, Stack just like a stack of dishes—you add items to the top and
remove them from the top” (http://www.developersdomain.com/vb/articles/
stack.htm). This is not a bad description, but it does not specify method names
and it uses an analogy that might not resonate with people. In short, it leaves a
great deal open to interpretation, and you would get many implementations
that could satisfy this definition.

Now look at a test that specifies the same thing:

[Test]
public void PushPop()
{

string name = “Name";
Stack stack = new Stack();
stack.Push(name);
Assert.AreEqual(name, stack.Pop());

}

This code specifies the names of methods, how they are called, and what
they should return. It also specifies a sequence that yields a successful result.
Finally, the test is executable, meaning that you can run it on the production
code, and it will inform you if your implementation passes the test. The only
thing that is open to interpretation is how you should implement the Stack,
which is exactly what you want if you are a programmer. If your job was to
implement a Stack, would you rather have your specification described as a
series of tests or as a written specification?

Introduction xix

Organization
This book is organized into two sections, followed by three appendixes.

■ Part I: Test-Driven Development Overview This section
describes the concepts of test-driven development. It begins with
Kent Beck’s rules, provides some additional detail about how to use
and apply these rules, defines terminology that we use throughout
the book, and defines a process for doing test-driven development.
In addition to the definitions, we also demonstrate how to apply
them by example. The focus in these early chapters is on complete-
ness and following the principles and practices as written.

■ Part II: The Test-Driven Development Example This section
demonstrates how to do Test-Driven Development on a realistic n-
tier application. The application, a media library, is specified in
Chapter 4, “The Media Library Example.” As well as implementing
the expected functionality, we also investigate important real-world
application areas that are typically avoided in sample applications.
For example, we demonstrate the use of TDD with concepts such as
exception handling and database connectivity. By the end of the
sample, you’ll have a good grounding in the techniques needed to
use TDD in your own enterprise projects.

■ Appendix A: NUnit Primer This appendix contains an introduc-
tion to the tool, NUnit.

■ Appendix B: Transactions in ADO.NET This appendix provides
an overview of transaction support in the .NET Framework.

■ Appendix C: Bibliography The bibliography lists the works by
other people that we have used ourselves and referred readers to
throughout this book.

How to Use This Book
This book is written primarily for experienced programmers. You will get more
value from this book if you are familiar with C# syntax and understand object-
oriented programming. However, even if your primary development language
is not C#, you should be able to port the example to other .NET languages, such
as Microsoft Visual Basic .NET. The more complicated concepts do have over-
view material and pointers to additional sources of information.

xx Introduction

If You Have Never Used NUnit Before
Read Chapter 1, “Test-Driven Development Practices.” Then read Appendix A,
“NUnit Primer,” which describes the tool that is used for technology facing or
programmer tests in the text. Then you can proceed with the rest of the content.

If You Are a Manager or Business Analyst
Read Chapter 1, which introduces the concepts and the process. Then read
Chapter 7, “Customer Tests: Completing the First Feature,” in which we discuss
ways to use tests without having to write them in C#. We use a tool named FIT
(http://fit.c2.com) to implement the business-facing or customer tests.

Small Steps—A Personal Story
Sometimes, people ask me (James) how I got started doing test-driven develop-
ment. I want to relate this story because as a result of this experience, I finally
believed that a series of small steps, verified each time by tests, could actually
lead to a better solution. Up until this point, I knew the rules but not how to
apply them.

It was December of 1999. I was at Object Mentor, and we were in the
midst of the first XP immersion class. Kent Beck, Ron Jeffries, Martin Fowler,
Robert C. Martin, Michael Hill, Fred George, Alan Francis, and others were my
companions. Needless to say, it was an incredible week, not so much from the
perspective of a class, but from being around such an awesome array of talent
all focused on this thing called Extreme Programming. Besides participating in
the class, I was working on a new Java class that I would be presenting the fol-
lowing January. I was trying to incorporate aspects of refactoring and test-first
programming using JUnit (http://www.junit.org) into the class. My thought was
to write an awful program and then use it to teach the concepts of refactoring.
(That same awful program, implemented in C#, is the basis for Chapter 3,
“Refactoring—By Example.”)

I was working alone, and the staging of the example was not working
well because it turns out that my refactoring steps were much too large. Kent
came over and asked what I was doing after noticing me working on code by
myself; I told him that I was trying to work out an example of refactoring for my
upcoming class. After looking at what I did, he told me he thought I should start
over. Instead of walking away, he offered to sit down and help me. During the
next hour or so, the whole idea of the small incremental changes leading to a
better solution became a reality. This awful code was transformed into some-
thing that was very clear and easily understandable.

Introduction xxi

It is only after I spent that time working with Kent directly that I began to
understand just how small the steps were that Kent, Ron, and Martin were talk-
ing about. In fact, we thought that this in itself would be a useful activity for the
whole class to see the following day. So, Robert Martin went home that night
and constructed some UML diagrams around the code and came up with a
slightly different implementation of the same algorithm that Kent and I refac-
tored in front of the class the next day. For a couple of hours, we walked step-
by-step through the code—making the smallest of changes and then running
the tests to make sure that we did not break anything. When we were finished,
someone said that we had made 40 separate changes to the code. The code was
so much clearer that it was remarkable. Alexei and I have used the same prob-
lem that taught me so much during the class as the sample in Chapter 3 so that
you can also benefit from that experience.

Companion Web Site
Many of the code samples in this book were too long to print without interrup-
tion by explanatory text. If you prefer to see the complete code samples from
the early chapters and the sample application in its entirety, you can go to http:
//workspaces.gotdotnet.com/tdd.

35

Refactoring—By Example
In Chapters 1 and 2, we briefly touched on the subject of refactoring. This chap-
ter gives a detailed treatment of this topic because refactoring is one of the fun-
damental aspects of test-driven development and a very useful practice in its
own right.

Refactoring is an activity aimed at improving the internal structure of exist-
ing code without making externally visible changes to the functionality. Why
would such changes be useful? (After all, there is an age-old engineering adage:
“If it ain’t broke, don’t fix it.”) Are we suggesting fixing a problem that does not
exist? Is refactoring just another way to waste your time and money? The simple
answer is no.

Note Refactoring is a long-term, cost-efficient, and responsible
approach to software ownership.

We argue that refactoring is the way to make your long-term software
ownership less painful. Through refactoring, design intent becomes clearer as
the code evolves. Without refactoring, the code’s clarity will degrade over time,
eventually becoming unintelligible.

Let’s look at some code to clarify the point. We will demonstrate the basic
ideas behind refactoring on a simple piece of code that is in need of some
maintenance.

36 Part I Test-Driven Development Primer

More Info For additional reading on this topic, read Martin Fowler’s
book: Refactoring: Improving the Design of Existing Code (Addison-
Wesley, 1999). This book is the source of the refactoring names that
are used in this chapter. As a side note, the examples in Martin’s book
are in Java but are straightforward enough to follow if you know C#.

The Sieve
The code we will refactor implements an algorithm to generate small prime
numbers (say up to 10,000,000). The algorithm is called the Sieve of Era-
tosthenes. Make a list of all the integers less than or equal to n (and greater than
one). Strike out the multiples of all primes less than or equal to the square root
of n; the numbers that are left are the primes (http://primes.utm.edu/glossary/
page.php?sort=SieveOfEratosthenes).

The existing implementation is shown here:

using System;
using System.Collections;

public class Primes
{

public static ArrayList Generate(int maxValue)
{

ArrayList result = new ArrayList();

int[] primes = GenerateArray(maxValue);
for(int i = 0; i < primes.Length; ++i)

result.Add(primes[i]);

return result;
}

[Obsolete(“This method is obsolete, use Generate instead”)]
public static int[] GenerateArray(int maxValue)
{

if(maxValue >= 2)
{

// declarations
int s = maxValue + 1; // size of array
bool[] f = new bool[s];
int i;

Chapter 3 Refactoring—By Example 37

// initialize the array to true
for(i=0; i<s; i++)

f[i] = true;

// get rid of known nonprimes
f[0] = f[1] = false;

// sieve
int j;
for(i=2; i<Math.Sqrt(s)+1; i++)
{

for(j=2*i; j<s; j+=i)
f[j] = false; // multiple is not prime

}

// how many primes are there?
int count = 0;
for(i=0; i<s; i++)

if(f[i]) // if prime
count++; // bump count

int[] primes = new int[count];

// move the primes into the result
for(i=0, j=0; i<s; i++)
{

if(f[i]) // if prime
primes[j++] = i;

}

return primes;
} // maxValue >= 2
else

return new int[0]; // return null array
}

}

As you can see from the code, there are two methods defined to generate
prime numbers. The first method, Generate, returns the prime numbers in an
ArrayList. The second method, GenerateArray, was written to return an array of
integers. The GenerateArray method is also marked with the Obsolete attribute,
which is usually an indicator that the code will be removed when possible. It
turns out that today is the day we will remove this function because the Gener-
ateArray method is no longer called by the application code but it is still called
by the Generate method. It looks like we won’t be able to just delete it. Luckily,
the code has a set of tests written using NUnit for it:

38 Part I Test-Driven Development Primer

using System;
using System.Collections;
using NUnit.Framework;

[TestFixture]
public class PrimesFixture
{

private int[] knownPrimes = new int[]
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

[Test]
public void Zero()
{

int[] primes = Primes.GenerateArray(0);
Assert.AreEqual(0, primes.Length);

}

[Test]
public void ListZero()
{

ArrayList primes = Primes.Generate(0);
Assert.AreEqual(0, primes.Count);

}

[Test]
public void Single()
{

int[] primes = Primes.GenerateArray(2);
Assert.AreEqual(1, primes.Length);
Assert.AreEqual(2, primes[0]);

}

[Test]
public void ListSingle()
{

ArrayList primes = Primes.Generate(2);
Assert.AreEqual(1, primes.Count);
Assert.IsTrue(primes.Contains(2));

}

[Test]
public void Prime()
{

int[] centArray = Primes.GenerateArray(100);
Assert.AreEqual(25, centArray.Length);
Assert.AreEqual(97, centArray[24]);

}

Chapter 3 Refactoring—By Example 39

[Test]
public void ListPrime()
{

ArrayList centList = Primes.Generate(100);
Assert.AreEqual(25, centList.Count);
Assert.AreEqual(97, centList[24]);

}

[Test]
public void Basic()
{

int[] primes =
Primes.GenerateArray(knownPrimes[knownPrimes.Length-1]);

Assert.AreEqual(knownPrimes.Length, primes.Length);

int i = 0;
foreach(int prime in primes)

Assert.AreEqual(knownPrimes[i++], prime);
}

[Test]
public void ListBasic()
{

ArrayList primes =
Primes.Generate(knownPrimes[knownPrimes.Length-1]);

Assert.AreEqual(knownPrimes.Length, primes.Count);

int i = 0;
foreach(int prime in primes)

Assert.AreEqual(knownPrimes[i++], prime);
}

[Test]
public void Lots()
{

int bound = 10101;
int[] primes = Primes.GenerateArray(bound);

foreach(int prime in primes)
Assert.IsTrue(IsPrime(prime), “is prime”);

foreach(int prime in primes)
{

if(IsPrime(prime))
Assert.IsTrue(Contains(prime, primes),

 “contains primes”);
else

40 Part I Test-Driven Development Primer

Assert.IsFalse(Contains(prime, primes),
 “doesn’t contain composites”);

}
}

[Test]
public void ListLots()
{

int bound = 10101;
ArrayList primes = Primes.Generate(bound);
foreach(int prime in primes)

Assert.IsTrue(IsPrime(prime), “is prime”);

foreach(int prime in primes)
{

if(IsPrime(prime))
Assert.IsTrue(primes.Contains(prime),

 “contains primes”);
else

Assert.IsFalse(primes.Contains(prime),
 “doesn’t contain composites”);

}
}

private static bool IsPrime(int n)
{

if(n < 2) return false;

bool result = true;
double x = Math.Sqrt(n);
int i = 2;
while(result && i <= x)
{

result = (0 != n % i);
i += 1;

}

return result;
}

private static bool Contains(int value, int[] primes)
{

 return (Array.IndexOf(primes, value) != -1);
}

}

Chapter 3 Refactoring—By Example 41

Before Refactoring the Code: Make Sure It All Works
It is important to remember that refactoring has to be done in conjunction with
running tests for the code being refactored. After all, refactoring is not sup-
posed to change the externally observable functionality of the code being refac-
tored. The tests are the tools needed to verify such functionality. So the first
step of the refactoring process is to run the tests before you make any code
changes.

Let’s run the tests. All of them pass, so we can begin from a known good
state.

Refactoring Cycle
The cycle we will follow is straightforward: Identify a problem, select a refac-
toring to address the problem, apply the refactoring by making the appropriate
code change; compile and run the tests; repeat. The emphasis is on the code
changes being very small—and running the tests. Why small changes? We tran-
sition the system from a known good state to the next desirable state.

Think of it as climbing a wall. If the wall is high, you might break your
neck attempting to climb it, but you could use a ladder to assist you. With a lad-
der in place if you feel tired, you can just stop and rest. The tests are your lad-
der—they are both your safety net and a climbing tool. So, before you start
climbing, what should you do? Do yourself a favor: Make sure that your ladder
is not broken. This brings us to the following rule for refactoring:

Important As you refactor your code, make sure that the tests are
up-to-date. If you need to change them to reflect the changing require-
ments, do it first.

In short, maintain your ladder. Let’s take a look at the tests.

Refactoring 0: Remove Unneeded Code
There are five test methods for the array-based version and five test methods
for the ArrayList version. Because the GenerateArray method is being removed,
it appears that we can remove the tests for that method. We can do this safely
because we are not losing any test coverage by removing the array-based tests.
The ArrayList-based tests are exact duplicates in terms of what is being tested.

After the array-based tests are removed, the following tests remain:

42 Part I Test-Driven Development Primer

■ ListZero

■ ListSingle

■ ListPrime

■ ListBasic

■ ListLots

We can also get rid of the utility method Contains because it was used
only by the array-based tests. After we finish removing the code, we compile
and run the tests. The test method count drops to five and we have a green bar,
so it is time to move on.

Refactoring 1: Rename Method
The next refactoring is still in the test code. After we remove the array-based
tests, there is no need to preface each method with the word List. We need to
implement the “Rename method” of refactoring. The reasoning is that you
should call an apple an apple; no need to call it a “green apple” unless the
greenness of the apple is of the essence. Meaningful method names are impor-
tant for code readability and in turn its overall maintainability. In short, method
names should convey their intentions.

Here is the test code after each method has been renamed; the contents of
the methods have not changed, so they are not shown here:

using System;
using System.Collections;
using NUnit.Framework;

[TestFixture]
public class PrimesFixture
{

private int[] knownPrimes = new int[]
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

[Test]
public void Zero()
{

// …
}

[Test]
public void Single()
{

// …
}

Chapter 3 Refactoring—By Example 43

[Test]
public void Prime()
{

// …
}

[Test]
public void Basic()
{

// …
}

[Test]
public void Lots()
{

// …
}

private static bool IsPrime(int n)
{

// …
}

}

In this case, the renaming of the methods is straightforward. There should
be no code calling the test methods. The more general case is a bit more com-
plicated because you might have to change the callers of the method being
renamed. Modern development environments make it easier to accomplish this
task and pretty much take care of the process of finding and replacing the
method names. If you are using a simple text editor, you might let your com-
piler tell you which classes you need to fix (which is crude, but it works). As
always, after we make the changes, we compile and run the tests. The tests
passed, so it’s time to continue.

Refactoring 2: Add a Test
The Single test method verifies that 2 is a prime number; the Zero test method
verifies that 0 is not a prime number. What about the number 1? We should also
have a test that ensures that 1 is not a prime number.

We add a new test named ZeroOne and rename the Single method to be
ZeroTwo to reflect the range of values being tested:

44 Part I Test-Driven Development Primer

[Test]
public void ZeroOne()
{

ArrayList primes = Primes.Generate(1);
Assert.AreEqual(0, primes.Count);

}

[Test]
public void ZeroTwo()
{

ArrayList primes = Primes.Generate(2);
Assert.AreEqual(1, primes.Count);
Assert.IsTrue(primes.Contains(2));

}

Now we have three methods that test the special cases of 0, 1, and 2. They
look very similar, but it is not apparent how to factor out any commonality.
When we compile and run all the tests, they succeed. We now have six tests.

When Are We Finished?
At every step of the way, an important question to ask is “Am I finished?” By the
very nature of moving from a known good state to the next state, it is possible
to stop at any time. What is there left to do? Why didn’t we stop after removing
the array-based tests? Because we immediately saw what we could not possibly
see before: the method names could be improved. Each simple refactoring we
implement opens up opportunities for further refactorings to make the code
communicate its intentions more clearly.

What makes the process interesting is that it is a process of discovery. We
probably don’t know what refactoring we’ll implement next. We also don’t cre-
ate a grand plan of 1001 refactorings that are needed to make this code better.
We let the code itself drive the process. The code tells us which refactoring is
needed at the appropriate time, and it evolves gradually into the shape it wants
to take over time. The answer for now is that we are not done. We have not
removed the array-based implementation. However, we are done with refactor-
ing the test code.

Refactoring 3: Hide Method
Let’s look at the code that generates the prime numbers. The GenerateArray
method is used internally by the Generate method. There is no need to keep it
public any more. We’ll implement the “Hide method” refactoring, which is quite
simple. In C#, it is accomplished by changing the visibility of the method from
public to private. The following code

Chapter 3 Refactoring—By Example 45

 public static int[] GenerateArray(int maxValue)

now becomes

 private static int[] GenerateArray(int maxValue)

Why did we do this refactoring? The less the code promises, the easier it
is to deliver. The GenerateArray method now becomes an implementation
detail. The code compiles and the tests pass, so let’s move on to the next step.

Refactoring 4: Replace Nested Conditional with Guard Clauses
Large monitors with high resolutions allow you to see many more lines of code
onscreen than you could a few years ago. But you won’t make many friends if
you continue to write (or tolerate) code like the GenerateArray method.

What is the biggest problem with the GenerateArray method? Let’s distill it
down to the essence:

if(maxValue >= 2)
{

pages and pages of code that won’t fit on your screen
return primes;

} // maxValue >= 2
else

return new int[0]; // return null array

The problem is that when you finally get to the else statement, the if state-
ment has probably scrolled off the screen, so you do not have the context in
which the statement is being executed. One way to correct this problem is to
use the “Replace nested conditional with a guard clause” refactoring. Employ-
ing a guard clause at the beginning of the method dispenses with the bad input
and focuses the method on processing the good input. Changing the method to
use a guard clause looks like this:

if(maxValue < 2) return new int[0];

the rest of the code here.

Those of you who subscribe to one of the major tenets of structured pro-
gramming (single entry point/single exit point) are probably jumping out of
your chair. The reason this other approach is all right in this situation is because
the guard clause identifies a rare situation that can be handled immediately.
This frees up the rest of the code to handle the typical calling scenario without
having to worry about the rare or invalid situations. In short, with the guard
clause in place, the code is easier to read. After we insert the guard clause, the
code compiles and the tests pass.

46 Part I Test-Driven Development Primer

Refactoring 5: Inline Method
Now that the only code that calls GenerateArray is the Generate method, we
can use the “Inline method” refactoring to put the method’s body into the body
of its caller and completely remove the method. This is not a license to create
huge methods. If we intended to stop refactoring after inlining this method, we
would argue to not inline the method.

The point that needs to be stressed is communication. If it makes sense to
inline a method because it communicates the intent better than it did previ-
ously, you should do it. It also decreases the surface area of the code, which
should improve its testability if you don’t have huge methods. Because the Gen-
erate method returns an ArrayList and the GenerateArray method returns an
array, we will need to slightly alter the guard clause introduced in the previous
step to return an empty ArrayList instead of an empty array. Here is the Gen-
erate method after inlining the GenerateArray method (the modified guard
clause is in boldface):

public static ArrayList Generate(int maxValue)
{

ArrayList result = new ArrayList();
if(maxValue < 2) return result;

// declarations
int s = maxValue + 1; // size of array
bool[] f = new bool[s];
int i;

// initialize the array to true
for(i=0; i<s; i++)

f[i] = true;

// get rid of known nonprimes
f[0] = f[1] = false;

// sieve
int j;
for(i=2; i<Math.Sqrt(s)+1; i++)
{

for(j=2*i; j<s; j+=i)
f[j] = false; // multiple is not prime

}

// how many primes are there?
int count = 0;
for(i=0; i<s; i++)

if(f[i]) // if prime

Chapter 3 Refactoring—By Example 47

count++; // bump count

int[] primes = new int[count];

// move the primes into the result
for(i=0, j=0; i<s; i++)
{

if(f[i]) // if prime
primes[j++] = i;

}

for(i = 0; i < primes.Length; ++i)
result.Add(primes[i]);

return result;
}

This refactoring often requires more effort due to local variable name
clashes. When performing this refactoring, you will find it useful to comment
out the method that is being inlined instead of deleting it. After the code com-
piles and the tests pass, you can safely delete the commented-out code, which
is useful to go back to in case your tests do not pass. You could also use your
source-code control system to achieve the same benefit.

The code compiles, and the tests pass. The GenerateArray function has
now been removed (or to be more exact, consumed, by the Generate method).
Remember, this was the objective of the task. We could stop right now and be
finished. However, we are still left with the legacy of the array-based imple-
mentation, which is filled with bad variable names and loops that iterate over
the list of numbers many times. We need to do some more work to get this code
in better shape.

Refactoring 6: Rename Variable
Looking at the code in the Generate method, we see several variables whose
names do not communicate much about their intended uses, so we should give
them more descriptive names. For example, what does the variable f mean?
Does f indicate that the number is prime or not prime? Let’s take a look at the
following code snippet to demonstrate the point:

if(f[i]) // if prime

Instead of having comments in the code describing what the variable f
means, it is better to give the variable a more descriptive name. In almost all
cases in the existing program, every time the variable f is used there is an asso-
ciated comment. Let’s remove the need for the comment by providing a more

48 Part I Test-Driven Development Primer

descriptive variable name. The name isPrime describes what the variable means
in the code more clearly. After the name is changed, we can remove the com-
ment because the variable name is descriptive enough:

public static ArrayList Generate(int maxValue)
{

ArrayList result = new ArrayList();

if(maxValue < 2) return result;

// declarations
int s = maxValue + 1; // size of array
bool[] isPrime = new bool[s];
int i;

for(i=0; i<s; i++)
isPrime[i] = true;

isPrime[0] = isPrime[1] = false;

// sieve
int j;
for(i=2; i<Math.Sqrt(s)+1; i++)
{

for(j=2*i; j<s; j+=i)
isPrime[j] = false; // multiple is not prime

}

// how many primes are there?
int count = 0;
for(i=0; i<s; i++)

if(isPrime[i])
count++; // bump count

int[] primes = new int[count];

// move the primes into the result
for(i=0, j=0; i<s; i++)
{

if(isPrime[i])
primes[j++] = i;

}

for(i = 0; i < primes.Length; ++i)
result.Add(primes[i]);

return result;
}

Chapter 3 Refactoring—By Example 49

The changes are made, the code compiles, and the tests pass. It does not
look as if we are finished, however. The code still has a lot of the remnants of
the array-based implementation and it still has many loops that seem as if they
all iterate over the same elements.

Refactoring 7: Collapse Loops
Looking at the last few lines of the Generate method, you can see two loops
doing almost entirely the same thing. Here is the existing code:

int[] primes = new int[count];

// move the primes into the result
for(i=0, j=0; i<s; i++)
{

if(isPrime[i])
primes[j++] = i;

}

for(i = 0; i < primes.Length; ++i)
result.Add(primes[i]);

The first loop cycles through the isPrime array to create a new array
named primes. The second loop cycles through the primes array to build the
list. This is a remnant of the array-based implementation returning an array
and the ArrayList function converting it into an ArrayList. Because we no longer
return an array, we can do this without creating the primes array, as follows:

for(i = 0; i < s; ++i)
{

if(isPrime[i])
result.Add(i);

}

After this change is made, the code compiles and the test passes.

Refactoring 8: Remove Dead Code
The array-based legacy is almost gone. Because we no longer create the primes
array, we no longer need the count variable because it was just used to size the
primes array. Therefore, we can get rid of the count variable and the loop that
calculates it. Let’s move on.

50 Part I Test-Driven Development Primer

Refactoring 9: Collapse Loops (Again)
Are we done? We could be, but it appears as if a few more changes could make
the code a lot clearer, so let’s continue for awhile longer.

Look at this loop:

for(i=2; i<Math.Sqrt(s)+1; i++)
{

for(j=2*i; j<s; j+=i)
isPrime[j] = false; // multiple is not prime

}

Can we make it better? The algorithm states that you have to remove mul-
tiples only if the number is a prime number, so the code is not as efficient as it
could be. Try this:

for(i=2; i<Math.Sqrt(s)+1; i++)
{

if(isPrime[i])
{

for(j=2*i; j<s; j+=i)
isPrime[j] = false; // multiple is not prime

}
}

We make the change, compile, and run the tests. They pass, so adding this
did not have an impact on the functionality, and the code is closer to the intent
of the algorithm.

We Can Do Some More…
Is the code faster? Probably, but because we do not have a performance test,
we do not know the answer to that. However, after we make this change, the
two loops at the bottom of the program look very similar; they have the same
if statement in them. Perhaps we can collapse the two loops together.

Here’s the existing code:

int j;
for(i = 2; i < Math.Sqrt(s)+1; i++)
{

if(isPrime[i])
{

for(j=2*i; j<s; j+=i)
isPrime[j] = false; // multiple is not prime

}
}

for(i = 0; i < s; ++i)
{

Chapter 3 Refactoring—By Example 51

if(isPrime[i])
result.Add(i);

}

The boundaries of the loops are different. The first loop iterates over the
isPrime array, beginning at 2 and continuing to Math.Sqrt(s) + 1. The second
loop iterates over the isPrime array, starting at 0 and continuing all the way to s.

Enough about symbols. Let’s look at real numbers. If s were equal to 100,
the first loop would execute 10 times, and the second loop would execute 100
times. It looks as if it would be simple to have the second loop start at 2 instead
of 0. Let’s make that change. All the tests pass, so it works and the lower bound-
ary conditions are now the same.

Now what about the upper boundary? It looks as if we could change the
first loop to continue all the way to s. This is clearly less efficient, but (as stated
previously) it is hard to say whether that is a problem because the code does
not have a performance test. Let’s change the code to the following and see
whether it works:

int j;
for(i = 2; i < s; i++)
{

if(isPrime[i])
{

for(j=2*i; j<s; j+=i)
isPrime[j] = false; // multiple is not prime

}
}

for(i = 2; i < s; i++)
{

if(isPrime[i])
result.Add(i);

}

All the tests pass, and the loops have identical boundary conditions. It is
clearer now, after looking at the code and knowing that the tests run success-
fully, that we can safely collapse the loops into a single loop.

int j;
for(i = 2; i < s; i++)
{

if(isPrime[i])
{

result.Add(i);
for(j=2*i; j<s; j+=i)

isPrime[j] = false; // multiple is not prime
}

}

52 Part I Test-Driven Development Primer

That works—the tests passed. It is difficult to say that the code is less effi-
cient because we did get rid of the second loop. And we removed a couple of
other loops that were used in the array-based implementation, so it is possible
that what we have now is more efficient than it used to be. We leave it up to
you to verify whether the code performs worse now than it did before we
started.

Refactoring 10: Reduce Local Variable Scope
Because of all the previous refactorings, the variable j is now used in only one
loop. We can now change its scope by moving its declaration into the loop
where it is used:

for(i = 2; i < s; i++)
{

if(isPrime[i])
{

result.Add(i);
for(int j = 2 * i; j < s; j += i)

isPrime[j] = false; // multiple is not prime
}

}

That works just fine, and the local variable j’s scope is diminished.

Refactoring 11: Replace Temp with Query
The next step is to replace the temporary variable s because it does not com-
municate what it actually means:

int s = maxValue + 1; // size of array

Instead of a temporary variable, we can replace the variable entirely by
using the expression isPrime.Length, which communicates what we really mean
and is already provided by the array implementation. The changes are in bold-
face as follows:

public static ArrayList Generate(int maxValue)
{

ArrayList result = new ArrayList();

if(maxValue < 2) return result;

bool[] isPrime = new bool[maxValue+1];
int i;

for(i = 0; i < isPrime.Length; i++)

Chapter 3 Refactoring—By Example 53

isPrime[i] = true;

isPrime[0] = isPrime[1] = false;

// sieve
for(i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
for(int j = 2 * i; j < isPrime.Length; j += i)

isPrime[j] = false; // multiple is not prime
}

}

return result;
}

Refactoring 12: Remove Dead Code
There still is some code that is not used any more due to the collapse of loops
done a few refactorings ago. Because the loop that does the sieve process starts
at 2 and we load the list from within that loop, we no longer need to initialize
0 and 1 to false because they are never accessed. We can safely remove the fol-
lowing line:

isPrime[0] = isPrime[1] = false;

The tests pass when we compile and run them, so it was probably safe to
assume that we could remove the line.

Refactoring 13: Extract Method
Even though the code has come a long way, there is still room for improve-
ment, especially for making the code much more explicit about what it is doing.
For example, look at the boldface code in the following snippet:

for(i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
for(int j = 2 * i; j < isPrime.Length; j += i)

isPrime[j] = false; // multiple is not prime
}

}

54 Part I Test-Driven Development Primer

What does the highlighted loop do? It is clear what the loop does; there
is a code comment explaining what it does. The comment is a good indicator
that the code does not communicate its intent directly. It needs the comment to
say what it does.

Note When you see a block of code with a comment attached to
it, it is often a good idea to extract that code into a method and
make sure that the method’s name conveys the meaning specified
by the comment.

Let’s extract the boldface code into its own method named RemoveMultiples:

private static void RemoveMultiples(int prime, bool[] isPrime)
{

for(int j = 2 * prime; j < isPrime.Length; j += prime)
isPrime[j] = false;

}

After the method is extracted, we need to modify the code to use it. Here
is the modified code:

for(i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
RemoveMultiples(i, isPrime);

}
}

Instead of needing the comment, the method name communicates exactly
what it is doing.

Refactoring 14: Extract Method (Again)
The code is getting smaller and smaller with more explicitly named methods
and variables; in fact, we can now see that there are two stages in the algorithm:
initialization and elimination. Let’s extract the elimination portion into a method
called Sieve using the “Extract method” refactoring (the changes are boldface):

public static ArrayList Generate(int maxValue)
{

ArrayList result = new ArrayList();

Chapter 3 Refactoring—By Example 55

if(maxValue < 2) return result;

bool[] isPrime = new bool[maxValue+1];
int i;

for(i = 0; i < isPrime.Length; i++)
isPrime[i] = true;

Sieve(isPrime, result);

return result;
}

private static void Sieve(bool[] isPrime, ArrayList result)
{

for(int i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
RemoveMultiples(i, isPrime);

}
}

}

private static void RemoveMultiples(int prime, bool[] isPrime)
{

for(int j = 2 * prime; j < isPrime.Length; j += prime)
isPrime[j] = false;

}

The code is much more explicit. Before we go on, however, let’s make
one more change. The Sieve function can return the ArrayList instead of getting
it passed to it; as you see here:

public static ArrayList Generate(int maxValue)
{

if(maxValue < 2) return new ArrayList();

bool[] isPrime = new bool[maxValue+1];
int i;

for(i = 0; i < isPrime.Length; i++)
isPrime[i] = true;

return Sieve(isPrime);
}

56 Part I Test-Driven Development Primer

private static ArrayList Sieve(bool[] isPrime)
{

ArrayList result = new ArrayList();

for(int i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
RemoveMultiples(i, isPrime);

}
}

return result;
}

private static void RemoveMultiples(int prime, bool[] isPrime)
{

for(int j = 2 * prime; j < isPrime.Length; j += prime)
isPrime[j] = false;

}

Refactoring 15: Reduce Local Variable Scope
Because we extracted a method that used the variable i, we can reduce the
scope of the variable in the Generate method. The following code

int i;
for(i=0; i < isPrime.Length; i++)

isPrime[i] = true;

now becomes

for(int i=0; i < isPrime.Length; i++)
isPrime[i] = true;

Even though the step is small, it is still important to compile the code and
run the tests. If you don’t, you could have a failure a couple of steps ahead and
not know exactly what was changed.

Refactoring 16: Convert Procedural Design to Objects
We previously discussed the two steps in the algorithm: initialization and elim-
ination. There is also a variable, isPrime, that is shared between the two stages.
So we have the following:

Chapter 3 Refactoring—By Example 57

■ State (isPrime)

■ Logic to initialize the state

■ Logic to operate on the state

This set of conditions sounds as if we need an object to hold this state, a
constructor to initialize the state, and a method to manipulate this state. Meet
the next refactoring: “Convert procedural design to objects.” This step is a little
bit larger, so it probably makes sense to comment out the existing code first so
that we have something to fall back on if we fail. Another alternative is to check
the file into your source code control system and then make the change. If you
fail, you can easily roll back to the previous version. The code after the refac-
toring looks like this:

public static ArrayList Generate(int maxValue)
{

if(maxValue < 2) return new ArrayList();

Primes primes = new Primes(maxValue);
return primes.Sieve();

}

private bool[] isPrime;

private Primes(int maxValue)
{

isPrime = new bool[maxValue+1];

for(int i = 0; i < isPrime.Length; i++)
isPrime[i] = true;

}

private ArrayList Sieve()
{

ArrayList result = new ArrayList();

for(int i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);
RemoveMultiples(i, isPrime);

}
}

return result;
}

58 Part I Test-Driven Development Primer

private void RemoveMultiples(int prime, bool[] isPrime)
{

for(int j = 2 * prime; j < isPrime.Length; j += prime)
isPrime[j] = false;

}

We really did not write a lot of new code; we just moved what we had
around a bit. After we compiled and ran the tests, they did pass the first time.
We then went back and removed the commented-out code. We are definitely
getting close to a point of diminishing returns, but let’s move on.

Refactoring 17: Keep the Data Close to Where It Is Used
For the first time, the code actually looks like object-oriented code. What a
departure from what we had! Now that we have an object, we can see that the
Sieve method could do a bit more, and the Generate method might do a bit less.
The guard clause from the Generate method can be tucked away into the Sieve
method to fully encapsulate the algorithm. Here is the code after applying this
refactoring:

public static ArrayList Generate(int maxValue)
{

Primes primes = new Primes(maxValue);
return primes.Sieve();

}

private bool[] isPrime;

private Primes(int maxValue)
{

isPrime = new bool[maxValue+1];

for(int i = 0; i < isPrime.Length; i++)
isPrime[i] = true;

}

private ArrayList Sieve()
{

if(isPrime.Length < 2) return new ArrayList();

ArrayList result = new ArrayList();
for(int i = 2; i < isPrime.Length; i++)
{

if(isPrime[i])
{

result.Add(i);

Chapter 3 Refactoring—By Example 59

RemoveMultiples(i, isPrime);
}

}

return result;
}

private void RemoveMultiples(int prime, bool[] isPrime)
{

for(int j = 2 * prime; j < isPrime.Length; j += prime)
isPrime[j] = false;

}

After scanning the code, there really isn’t much left to do, so we are fin-
ished.

Summary

In this chapter, we demonstrated the following points:

■ Refactoring allows the design of the code to improve by following a
series of simple steps. For example, in this chapter we went from
bad procedural code to a cleaner object-oriented implementation—
while staying close to the green bar and without a large-scale
rewrite. When you write your code, we expect you will refactor as
you discover the need for it (not when it’s too late and the code is so
messed-up that it is more appealing just to throw it away and write
it anew). The more “paranoid” you are about all the little problems in
the code, the more proactive you will be in correcting them when
you notice them rather than waiting until you have a big job on your
hands.

■ There was no mention of a debugger. Due to the small steps and the
ability to verify them with the tests, you will not have to spend as
much time debugging the software because changes can easily be
rolled back to the previous state.

■ The ability to do refactoring is a benefit that you receive from your
investment in tests. The tests provide the safety net that enables the
routine maintenance of the program. These tests allow you to alter
the code without worrying about whether or not you have broken it.

60 Part I Test-Driven Development Primer

Without the tests, you would not be able to move as quickly or as
incrementally through this problem. In fact, you probably would
have scrapped the whole thing and rewritten it.

■ You should not turn your “pragmatic paranoia” into a “morbid obses-
sion.” Your goal, after all, is to write software efficiently and not get
stuck tweaking existing code into unattainable “perfection.” When
do you stop refactoring? There is no simple and fast rule here that we
can offer. The general rule of thumb is that you need to refactor
whatever code duplication you discover and move toward code that
clearly communicates your intentions. And if you have some amount
of code duplication that serves the goal of clearly communicating
your intentions, it is all right to keep it.

■ Last, the order in which we did the refactorings is only an example.
There are many other ways this code could be refactored and many
other possible implementations. The main point driven home by the
series of steps is that the code is the primary feedback mechanism
for possible future refactorings.

261

Index

A
ActionFixture class, automating customer tests with FIT,

133–143
check action command, 134
enter action command, 133
start command, 133

Add Web Reference Wizard, 122
AddReview method

Catalog class, 155–156
modifications, 172–173

AddReviewAdapter, add/delete review functionality,
162

AddReviewToRecording method (CatalogService class),
158

AddSecondReview test, 169–171
AddTwoNumbers method, 250
ADO.NET transactions, 253–257

automatic management, 253–256
manual management, 253–255
participation, 256–257

algorithms, Sieve of Eratosthenes, 36–41
adding tests, 43–44
applying refactoring, 58–59
collapse loops, 49–52
converting procedural design to objects, 56–58
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
reducing variable scope, 52, 56
removing dead code, 49, 53
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guarded clauses,

45
replacing temporary variables, 52–53

application packages, 206–208
Data Access, 206
Data Model, 206–207
Service Interface, 207–208

appSettings section (configuration file), 74
ArgumentOutOfRangeException, 23
arrays, isPrime, 48–51
Artist entity (media library application), 65

Artist Gateway, defining DataSet for Recording
database, 77–86, 189

ArtistFixture.cs, 79–86
primary key management, 78–86

ArtistFixture class
ArtistFixture.cs, 79–86
modification to work with DatabaseFixture class,

187–189
ArtistName method (CatalogAdapter class), 136
ASP.NET

programmer tests, user interfaces, 213
Web service programmer tests, 105–126

data transformation, 107–117
database catalog service, 117–120
tasks, 105–106

assemblers, RecordingDto, mapping relationships,
113–117

assertions, 243–244
attributes

codegen:typedName="Id", 77
codegen:typedName="Review", 76
genreId, 66
minOccurs="0", 77
NUnit

ExpectedException, 246
Ignore, 246–247
SetUp, 244–246
TearDown, 244–246
TextFixtureSetUp, 247–250
TextFixtureTearDown, 247–250

Obsolete, 37
SetUp, 74
trackId, 66
TransactionOption.Required, 256

automatic transaction management, 253–256
automation, customer tests (FIT)

ActionFixture class, 133–143
bridging FIT and software, 132–133
CatalogAdapter class, 134–138
FileRunner class, 135–136
invalid ID script, 143
verifying review information, 142–143
verifying track information, 138–141

averageRating field (RecordingDto), 109

262

B
Beck, Kent, 3, 217
binding search results with repeater Web controls,

218–226
bridging FIT and software, 132–133

C
Catalog class, 97

implementing add/delete review functionality,
152–156

AddReview method, 155–156
DeleteReview method, 155–156

programmer tests, 193–203
CatalogFixture class, 193
FindByRecordingId method, 193–195, 201–203
refactoring Catalog class, 195–203

CatalogAdapter class
ArtistName method, 136
automating customer tests with FIT, 134–138
Duration method, 136
FindByRecordingId method, 133
Found method, 134
LabelName method, 136
ReleaseDate method, 136

Catalog.AddReview function, modifying to throw an
exception, 166–167

CatalogFixture class, 193
CatalogGateway class

proxy class, 122
SOAP faults, 168–169

CatalogService base class, 118
CatalogService class, 207–209, 215

AddReviewToRecording method, 158
DeleteReviewFromRecording method, 158
implementing add/delete review functionality,

156–159
Search method, 215

CatalogServiceGateway class, 221, 226–230
CatalogServiceImplementation class, 229
CatalogServiceInterface class, 121–122, 207

updating, 161–162
CatalogServiceStub class, 216–218, 226–230
CatalogServiceStubFixture, 113
check action command (ActionFixture class), 134
CheckId test, 118–120, 122
CheckTitle test, verifying title field, 112
classes

ActionFixture, automating customer tests with FIT,
133–143

ArtistFixture, modification to work with
DatabaseFixture class, 187–189

ArtistGateway, 189
Catalog, 97

implementing add/delete review functionality,
152–156

programmer tests, 193–203
CatalogAdapter

ArtistName method, 136
automating customer tests with FIT, 134–138
Duration method, 136
FindByRecordingId method, 133
Found method, 134
LabelName method, 136
ReleaseDate method, 136

CatalogFixture, 193
CatalogGateway, 122, 168–169
CatalogService, 118, 207–209, 215

AddReviewToRecording method, 158
DeleteReviewFromRecording method, 158
implementing add/delete review functionality,

156–159
Search method, 215

CatalogServiceGateway, 221, 226–230
CatalogServiceImplementation, 229
CatalogServiceInterface, 121–122, 207
CatalogServiceStub, 216–218, 226–230
CommandExecutor, refactoring Catalog class,

196–203
ConfigurationSettings, reading connection string from

configuration file, 73
DatabaseCatalogService, 207–208
DatabaseFixture

modified ArtistFixture class, 187–189
transaction test pattern, 187

ExistingReviewException, 165–166, 210
ExistingReviewMapper, 176–179, 210
FileRunner, automating customer tests with FIT,

135–136
GenreFixture, 189
GenreGateway, 189
IdGenerator, 189
InMemoryRecordingBuilder, 113, 157
LabelFixture, 189
LabelGateway, 189
NumbersFixture, adding to projects (NUnit), 235
RecordingAssembler, 113, 144, 207
RecordingBuilder, 94
RecordingDisplayAdapter, 218–220
RecordingDto, 207
RecordingFixture, 95
RecordingGateway, 190–192
RecordingGatewayFixture, 190–192

Beck, Kent

263

ReviewAdapter
adding and deleting reviews, 149–150
ExistingReviewId method, 174–176
modifying to throw an exception, 167

ReviewerFixture, 189
ReviewerGateway, 189
ReviewFixture, 189
ReviewGateway, 189
SearchPage.aspx.cs, 229
SearchPageHelper, 224–226
ServicedComponent, 256
SqlTransaction, 186
StackFixture, 15
StubCatalogService, 208
StubCatalogServiceFixture, 208
TrackDisplay, 139–141
TrackDisplayAdapter, 144
TrackFixture, 189
TrackGateway, 189
TransactionCheckCommand, 197
TransactionManager, 183–192

clients, Web clients
Search page, 214

binding search results with repeater Web controls,
218–226

CatalogServiceGateway class, 226–230
creating, 221–226
implementing, 215–230

testing user interfaces, 213–214
Close option (NUnit-Gui File menu), 238
code refactoring, 6, 35–60

applications, 58–59
Catalog class, 195–203

CommandExecutor class, 196–203
writing proxy classes, 196

code, Web services, 124–125
collapse loops, 49–52
converting procedural design to objects, 56–58
cycle, 41
defined, 35
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
Red/Green/Refactor, 7, 12–22

creating empty Stacks, 12–14
pushing multiple objects on Stacks, 20–22
pushing single objects on Stacks, 14–20

reducing variable scope, 52, 56
removing dead code, 49, 53
removing unneeded code, 41–42
Rename method, 42–43
rename variables, 47–49

replacing nested conditionals with guarded clauses,
45

replacing temporary variables, 52–53
ServiceLayer, 205–211
SetUp, 84
Sieve of Eratosthenes, 36–59

adding tests, 43–44
applying refactoring, 58–59
collapse loops, 49–52
converting procedural design to objects, 56–58
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
reducing variable scope, 52, 56
removing dead code, 49, 53
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guard clauses,

45
replacing temporary variables, 52–53

testing known good state, 41
tests, 43–44

codegen:typedName="Id" attribute, 77
codegen:typedName="Review" attribute, 76
Collapse All option (NUnit-Gui View menu), 239
Collapse Fixtures option (NUnit-Gui View menu), 239
collapse loops, refactoring, 49–52
Collapse option (NUnit-Gui View menu), 239
Command interface (CommandExecutor class), 197
CommandExecutor class, refactoring Catalog class,

196–203
Command interface, 197
Execute method, 199–200

commands (ActionFixture class)
check action, 134
enter action, 133
start, 133

completion, customer tests, 127–129
conditionals, nested, replacing with guarded clauses, 45
configuration files

appSettings section, 74
reading connection strings from

ConfigurationSettings class, 73
separating tests, 74–75

ConfigurationSettings class, reading connection string
from configuration file, 73

ConnectionFixture.cs, 90–91
ConnectionState enumerations, 72
consistency, testing database access layer, 70
consumer infrastructure, Web service tests, 122
customer tests, 4, 127–167

adding reviews to recordings, FIT script, 147–162

customer tests

264

customer tests (continued)
automation, FIT, 131–143
determining completion, 127–129
exposing failure conditions, 163–164, 167
reconciling viewpoints, 143–145

recording duration, 145
track duration, 144–145

recording retrieval, test scripts, 129–131

D
Data Access package, 206
Data Model package, 206–207
data models, media library application, 65
data structures, stacks, 9–12, 22–29

calling Top on, 26–27
creating, 9–10
popping, 22–23
pushing multiple objects, 25–26
pushing null on, 27–29
pushing single objects, 24–26
test list, 10–12
unbounded, 9

data transfer object. See DTO (data transfer object), data
transformation

data transformation, ASP.NET Web service programmer
tests, 105–120

database catalog service, 117–120
tasks, 105–106

database access layer, testing, 69–102
connecting to databases, 72–75
isolating individual entities, 75–92
listing tests needed for completion, 71–72
relationships between entities, 92–97
retrieving recordings, 97–101
test organization, 101–102

database catalog service, CheckId test, 118–120
DatabaseCatalogService class, 207–208
DatabaseCatalogService subclass (CatalogService class),

157–161
DatabaseCatalogServiceFixture, 118
DatabaseFixture class

modified ArtistFixture class, 187–189
transactions test pattern, 187

databases, media library application, 64–66
DataSets, defining typed DataSets for Recording

databases, 75–90
Artist Gateway, 77–86
Genre Gateway, 86–90

debuggers (Visual Studio .NET), NUnit-Gui, 250–251
declarative transaction management. See automatic

transaction management
Delete method (ArtistFixture.cs), 83

DeleteReview method (Catalog class), 155–156
DeleteReviewFromRecording method (CatalogService

class), 158
design, simple, 5–6
Detail property, SoapException, 171
direct security context propagation, Web services

security, 123
division, NUnit, 246–247
DTO (data transfer object), data transformation,

105–117
RecordingDto, 108–117

Duration method (CatalogAdapter class), 136

E
enter action command (ActionFixture class), 133
entities

Label entity (media library application), 65
media library application, 65–66
testing database access layer

isolated entities, 75–92
relationships between entities, 92–97
test organization, 101

enumerations, ConnectionState, 72
Eratosthenes, Sieve of, 36–59

adding tests, 43–44
applying refactoring, 58–59
collapse loops, 49–52
converting procedural design to objects, 56–58
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
reducing variable scope, 52, 56
removing dead code, 49, 53
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guard clauses, 45
replacing temporary variables, 52–53

Errors and Failures window (NUnit-Gui), 239
exceptions

ArgumentOutOfRangeException, 23
propagating, 168

Execute method (CommandExecutor class), 199–200
ExistingReviewException class, 165–166, 210
ExistingReviewId method (ReviewAdapter class), 164,

174–176
ExistingReviewMapper class, 176–179, 210
Exit option (NUnit-Gui File menu), 239
Expand All option (NUnit-Gui View menu), 239
Expand Fixtures option (NUnit-Gui View menu), 239
Expand option (NUnit-Gui View menu), 239
ExpectedException attribute (NUnit), 246

Data Access package

265

explicit transaction management. See manual
transaction management

eXtensible Schema Definition schema file. See XSD
(eXtensible Schema Definition) schema file

Extract method, refactoring, 53–55
Extreme Programming Explored, 7
Extreme Programming Installed, 5

F
failures

adding and deleting reviews, 150–151
exposing with customer tests, 163–164
exposing with programmer tests, 164–179

defining ExistingReviewException class, 165–166
modifying Catalog.AddReview function, 166
propagating exceptions, 168
searching for an exception after second review,

164–165
SOAP faults, 168–179

Failures panel (NUnit-Gui), 238
fields

RecordingDto, 109
recordingId, 222
totalRunTime, 116

File menu (NUnit-Gui)
Close option, 238
Exit option, 239
New Project option, 238
Open option, 238
Recent Files option, 239
Reload option, 238
Save As option, 238
Save option, 238

FileRunner class, automating customer tests with FIT,
135–136

FindById method, 82, 119
FindByRecordingId method

CatalogAdapter class, 133
RecordingDto, 112
retrieving recordings, 97

FindByRecordingId method (Catalog class), 193–195,
201–203

FindByRecordingId WebMethod, 121–122
FIT (Framework for Integrated Test), 4

adding reviews to recordings, 147–162
failures, 150–151
implementing with programmer tests, 151–162
removing reviews, 149
ReviewAdapter, 149–150
verifying contents of review, 149

automating customer tests, 131–143
ActionFixture class, 133–143
bridging FIT and software, 132–133
CatalogAdapter class, 134–138
FileRunner class, 135–136
invalid ID script, 143
verifying review information, 142–143
verifying track information, 138–141

FKx (foreign key), 66
Found method (CatalogAdapter class), 134
Fowler, Martin, 6, 36
Framework for Integrated Test (FIT)

adding reviews to recordings, 147–162
failures, 150–151
implementing with programmer tests, 151–162
removing reviews, 149
ReviewAdapter, 149–150
verifying contents of review, 149

automating customer tests, 131–143
ActionFixture class, 133–143
bridging FIT and software, 132–133
CatalogAdapter class, 134–138
FileRunner class, 135–136
invalid ID script, 143
verifying review information, 142–143
verifying track information, 138–141

functional tests, user interfaces, 213
functions. See also methods

AddReview
Catalog class, 155–156
modifications, 172–173

AddReviewToRecording (CatalogService class), 158
AddTwoNumbers, 250
ArtistName (CatalogAdapter class), 136
Delete (ArtistFixture.cs), 83
DeleteReview (Catalog class), 155–156
DeleteReviewFromRecording (CatalogService class),

158
Duration (CatalogAdapter class), 136
Execute (CommandExecutor class), 199–200
ExistingReviewId (ReviewAdapter), 164
ExistingReviewId (ReviewAdapter class), 174–176
Extract, refactoring, 53–55
FindById, 119

ArtistFixture.cs, 82
FindByRecordingId

CatalogAdapter class, 133
RecordingDto, 112
retrieving recordings, 97

FindByRecordingId (Catalog class), 193–195, 201–203
Found (CatalogAdapter class), 134
Generate (Sieve of Eratosthenes), 37

functions

266

functions (continued)
GenerateArray (Sieve of Eratosthenes), 37, 45
GetDtos, 227
GetNextId

ArtistFixture.cs, 82
GenreFixture.cs, 88

Hide, refactoring, 44–45
inlining, 46–47
Insert (ArtistFixture.cs), 82
InvalidOperationException, 26
IsEmpty, 9–11

verifying false value, 14–16, 24–29
verifying true value, 12–17

LabelName (CatalogAdapter class), 136
PushOne, 14
PushPopContentCheck, 17, 20
PushPopMultipleElements, 20
ReleaseDate (CatalogAdapter class), 136
Rename, refactoring, 42–43
RetrieveConnectionString, 74
RunATransaction, 255
Search (CatalogService class), 215
SearchButtonClick, 222, 226
SetUp, 183, 187

ArtistFixture.cs, 84
TearDown, 183, 187

ArtistFixture.cs, 84
Update (ArtistFixture.cs), 86
WriteDto, 114
WriteTotalRunTime, 116
WriteTrack, 114, 144

G
Generate method (Sieve of Eratosthenes), 37
GenerateArray method (Sieve of Eratosthenes), 37, 45
Genre entity (media library application), 65
Genre Gateway, defining DataSet for Recording

database, 86–90
GenreFixture class, 189
GenreFixture.cs, 86–90
GenreGateway class, 189
genreId attribute, 66
GetDtos method, 227
GetNextId method

ArtistFixture.cs, 82
GenreFixture.cs, 88

Green (NUnit-Gui progress bar), 237

H–I
Hide method, refactoring, 44–45
IDbConnection interface, 254–255
IDbTransaction interface, 254–255
IdGenerator class, 189

IdGeneratorFixture.cs, 91–92
Ignore attribute (NUnit), 246–247
inlining methods, 46–47
InMemoryRecordingBuilder class, 113, 157
Insert method (ArtistFixture.cs), 82
interfaces

IDbConnection, 254–255
IDbTransaction, 254–255
user interfaces, testing, 213–214

invalid ID script, automating customer tests, 143
InvalidId test, 108
InvalidOperationException method, 26
IsEmpty function, 9–11

verifying false value, 14–16, 24–29
verifying true value, 12–17

isolated entities, testing database access layer, 75–101
isolated entities, 75–92
relationships between entities, 92–97
test organization, 101

isPrime array, 48–51

J–L
Jeffries, Ron, 5
Label entity (media library application), 65
LabelFixture class, 189
LabelGateway class, 189
LabelName method (CatalogAdapter class), 136
Layout, NUnit-Gui, 237–240
loops, collapse, 49–52

M
management, transactions (ADO.NET)

automatic, 253–256
manual, 253–255

manual refactoring of code, Web services, 124–125
manual transaction management, 253–255
mapped security contexts, Web services security, 123
mapping relationships (assemblers), RecordingDto,

114–117
media library application, 63–67

ASP.NET Web services, 66
existing databases, 64–66
recordings data model, 65

menus
File (NUnit-Gui)

Close option, 238
Exit option, 239
New Project option, 238
Open option, 238
Recent Files option, 239
Reload option, 238
Save As option, 238
Save option, 238

Generate method (Sieve of Eratosthenes)

267

Tools (NUnit-Gui)
Options option, 239
Save Results as XML option, 239

View (NUnit-Gui)
Collapse All option, 239
Collapse Fixtures option, 239
Collapse option, 239
Expand All option, 239
Expand Fixtures option, 239
Expand option, 239
Properties option, 239

methods. See also functions
AddReview

Catalog class, 155–156
modifications, 172–173

AddReviewToRecording (CatalogService class), 158
AddTwoNumbers, 250
ArtistName (CatalogAdapter class), 136
Delete (ArtistFixture.cs), 83
DeleteReview (Catalog class), 155–156
DeleteReviewFromRecording (CatalogService class),

158
Duration (CatalogAdapter class), 136
Execute (CommandExecutor class), 199–200
ExistingReviewId (ReviewAdapter), 164
ExistingReviewId (ReviewAdapter class), 174–176
Extract, refactoring, 53–55
FindById, 119

ArtistFixture.cs, 82
FindByRecordingId

CatalogAdapter class, 133
RecordingDto, 112
retrieving recordings, 97

FindByRecordingId (Catalog class), 193–195, 201–203
Found (CatalogAdapter class), 134
Generate (Sieve of Eratosthenes), 37
GenerateArray (Sieve of Eratosthenes), 37, 45
GetDtos, 227
GetNextId

ArtistFixture.cs, 82
GenreFixture.cs, 88

Hide, refactoring, 44–45
inlining, 46–47
Insert (ArtistFixture.cs), 82
InvalidOperationException, 26
LabelName (CatalogAdapter class), 136
PushOne, 14
PushPopContentCheck, 17, 20
PushPopMultipleElements, 20
ReleaseDate (CatalogAdapter class), 136
Rename, refactoring, 42–43

RetrieveConnectionString, 74
RunATransaction, 255
Search (CatalogService class), 215
SearchButtonClick, 222, 226
SetUp, 183, 187

ArtistFixture.cs, 84
TearDown, 183, 187

ArtistFixture.cs, 84
Update (ArtistFixture.cs), 86
WriteDto, 114
WriteTotalRunTime, 116
WriteTrack, 114, 144

minOccurs="0" attribute, 77
multiplication, NUnit, 244–246

N
nested conditionals, replacing with guarded clauses, 45
New Project option (NUnit-Gui File menu), 238
Nnunit (NUnit-Gui), Visual Studio .NET debugger,

250–251
null, pushing on Stacks, 27–29
NumbersFixture class, adding to projects (NUnit), 235
NUnit, 37, 233–251

attributes
ExpectedException, 246
Ignore, 246–247
SetUp, 244–246
TearDown, 244–246
TextFixtureSetUp, 247–250
TextFixtureTearDown, 247–250

NumbersFixture class, adding to projects, 235
nunit.framework.dll, adding references to, 234
NUnit-Gui test runner

layout, 237–240
running tests, 237
setup, 236

projects, 233–234
Test case, 240–244

assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

Web site, 233
NUnit-Gui

layout, 237–240
running tests, 237
setup, 236
Visual Studio .NET debugger, 250–251

NUnit-Gui

268

O
objects

converting procedural design to (refactoring), 56–58
RecordingDto (CatalogService class), 217–218
SqlConnection, 72

Obsolete attribute, 37
Open option (NUnit-Gui File menu), 238
Options option (NUnit-Gui Tools menu), 239
organization, testing database access layer, 101–102

entities, 101
relationships, 101
utilities, 102

P
packages (application), 206–207

Data Access, 206
Data Model, 206–207
Service Interface, 207–208
structure, Web services, 124–125

panels, NUnit-Gui
Failures, 238
Status, 238
Test Cases, 238
Tests Run, 238
Time, 238

PK (primary key), 66
Pop operation, 10

objects, 16–22
Stacks, 22–23

primary key (PK), 66, 78–86
producer infrastructure, Web service tests, 121–122
production database, testing database access layer, 70
programmer tests, 4

add review functionality, 151–162
AddReviewAdapter modification, 162
changing Catalog class, 152–156
changing CatalogService class, 156–159
test list, 152
updating CatalogServiceInterface, 161–162
updating DatabaseCatalogService subclass, 159–161

ASP.NET Web services, 105–126
data transformation, 107–117
database catalog service, 117–120
tasks, 105–106
Web service tests, 120–125

exposing failure conditions, 164–179
defining ExistingReviewException class, 165–166
modifying Catalog.AddReview function, 166–167
propagating exceptions, 168

searching for an exception after second review,
164–165

SOAP faults, 168–179
synchronizing with customer tests, 143–145

recording duration, 145
track duration, 144–145

Test case (NUnit), 240–244
assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

transactions, 182–203
Catalog class, 193–203
TransactionManager class, 183–192

user interfaces, 213
progress bar (NUnit-Gui), 237
projects

adding NumbersFixture class to, 235
creating in NUnit, 233–234
NUnit-Gui

layout, 237–240
running tests, 237
setup, 236

Properties option (NUnit-Gui View menu), 239
publications

Extreme Programming Explored, 7
Extreme Programming Installed, 5
Refactoring: Improving the Design of Existing Code,

6, 36
Test-Driven Development, 217
Test-Driven Development: By Example, 3

Push operation, 10
multiple objects on Stacks, 20–22, 25–26
single objects on Stacks, 14–20, 24–26

PushOne method, 14
PushPopContentCheck method, 17, 20
PushPopMultipleElements method, 20

R
Recent Files option (NUnit-Gui File menu), 239
recording duration, synchronizing customer and

programmer tests, 145
Recording entity, testing database access layer, 71–92

connecting to databases, 72–75
defining typed DataSets, 75–77

recording retrieval, customer tests, test scripts, 129–131
RecordingAssembler class, 113, 207

WriteTrack method, 144
RecordingAssemblerFixture, 114
RecordingBuilder class, 94
RecordingDisplayAdapter class, 218–220

objects

269

RecordingDto, 108–117, 207
building assemblers, 113–117
fields, 109
objects, CatalogService class, 217–218
verifying title field, 112
XML Schema, 109–112

RecordingFixture class, 95
RecordingGateway class, 190–192
RecordingGatewayFixture class, 190–192
recordingId field, 222
recordings

adding reviews to, FIT script, 147–162
retrieving, testing database access layer, 97–101

recordings data model (media library application), 65
recursive descent, 5
Red (NUnit-Gui progress bar), 237
Red/Green/Refactor, 7, 12–22

creating empty Stacks, 12–14
pushing multiple objects on Stacks, 20–22
pushing single objects on Stacks, 14–20

refactoring, 6, 35–60
applications, 58–59
Catalog class, 195–203

CommandExecutor class, 196–203
writing proxy classes, 196

code, Web services, 124–125
collapse loops, 49–52
converting procedural design to objects, 56–58
cycle, 41
defined, 35
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
Red/Green/Refactor, 7, 12–22

creating empty Stacks, 12–14
pushing multiple objects on Stacks, 20–22
pushing single objects on Stacks, 14–20

reducing variable scope, 52, 56
removing dead code, 49, 53
removing unneeded code, 41–42
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guarded clauses,

45
replacing temporary variables, 52–53
ServiceLayer, 205–211
SetUp, 84
Sieve of Eratosthenes, 36–59

adding tests, 43–44
applying refactoring, 58–59
collapse loops, 49–52
converting procedural design to objects, 56–58
Extract method, 53–55

Hide method, 44–45
inlining methods, 46–47
reducing variable scope, 52, 56
removing dead code, 49, 53
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guard clauses,

45
replacing temporary variables, 52–53

testing known good state, 41
tests, 43–44

Refactoring: Improving the Design of Existing Code, 6,
36

references, adding to NUnit nunit.framework.dll, 234
relationships

entities, 66, 92–97
Review and Reviewer entities, 92–94
Track-Recording relationship, 94–97

testing database access layer, test organization, 101
ReleaseDate method (CatalogAdapter class), 136
Reload option (NUnit-Gui File menu), 238
removing

code, refactoring, 41–42
dead code, 49, 53

Rename method, refactoring, 42–43
rename variables, refactoring, 47–49
repeater Web controls, binding search results, 218–226
responsibility (tests), testing database access layer, 70
RetrieveConnectionString method, 74
retrieving recordings

customer tests, test scripts, 129–131
testing database access layer, 97–101

Review entity
media library application, 65
testing relationship to Reviewer entity, 92–94

ReviewAdapter
adding and deleting reviews, 149–150
ExistingReviewId method, 164, 174–176
modifying to throw an exception, 167

Reviewer entity, testing relationship to Review entity,
92–94

ReviewerFixture class, 189
ReviewerGateway class, 189
ReviewFixture class, 189
ReviewGateway class, 189
ReviewReviewerFixture.cs, 92–93
reviews, adding to recordings (FIT script), 147–162
RowFixture (FIT)

verifying review information, 142–143
verifying track information, 138–141

RunATransaction method, 255

RunATransaction method

270

S
Save As option (NUnit-Gui File menu), 238
Save option (NUnit-Gui File menu), 238
Save Results as XML option (NUnit-Gui Tools menu),

239
scope, variables, reducing, 52, 56
Search method, CatalogService class, 215
Search page, Web clients, 214–230

binding search results with repeater Web controls,
218–226

CatalogServiceGateway class implementation,
226–230

creating, 221–226
implementing search, 215–230

SearchButtonClick method, 222, 226
SearchPage.aspx.cs class, 229
SearchPageHelper class, 224–226
security, Web services, 122–124

direct security context propagation, 123
mapped security contexts, 123

self-validating tests, Test case (NUnit), 240–241
assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

Service Interface package, 207–208
ServicedComponent class, 256
ServiceLayer namespace, 209
ServiceLayer refactoring, 205–211
SetUp attribute, 74, 244–246
SetUp method, 183, 187

ArtistFixture.cs, 84
SetUp refactoring, 84
Sieve of Eratosthenes, 36–59

adding tests, 43–44
applying refactoring, 58–59
collapse loops, 49–52
converting procedural design to objects, 56–58
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
reducing variable scope, 52, 56
removing dead code, 49, 53
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guard clauses, 45
replacing temporary variables, 52–53

simple design, 5–6
SOAP (Simple Object Access Protocol), faults, 168–179

ExistingReviewMapper class, 176–179
passing id of existing review to client, 173–174

SoapException, Detail property, 171
SqlConnection objects, 72
SqlTransaction class, 186
Stack.cs, 32
StackFixture class, 15
StackFixture.cs, 12, 29–32
stacks

calling Top on, 26–27
creating, 9–14

empty Stacks, 12–14
test list, 10–12

popping, 22–23
pushing multiple objects on, 20–22, 25–26
pushing null on, 27–29
pushing single objects on, 14–20, 24–26
unbounded, 9

Standard Error window (NUnit-Gui), 240
Standard Output window (NUnit-Gui), 240
start command (ActionFixture class), 133
Status panel (NUnit-Gui), 238
StubCatalogService class, 208
StubCatalogService subclass (CatalogService class), 157
StubCatalogServiceFixture class, 208
subclasses, CatalogService

DatabaseCatalogService, 157–161
StubCatalogService, 157

synthetic primary keys, 78–86

T
Table Data Gateway, 78
tasks, ASP.NET Web service programmer tests, 105–106
TDD (Test-Driven Development), 3–6, 63

design, 5–6
process

Red/Green/Refactor, 7
test list, 6–7

refactoring, 6
tests, 4

TearDown attribute (NUnit), 244–246
TearDown method, 84, 183, 187
technology facing tests, 4

add review functionality, 151–162
AddReviewAdapter modification, 162
changing Catalog class, 152–156
changing CatalogService class, 156–159
test list, 152
updating CatalogServiceInterface, 161–162
updating DatabaseCatalogService subclass, 159–161

ASP.NET Web services, 105–126
data transformation, 107–117

Save As option (NUnit-Gui File menu)

271

database catalog service, 117–120
tasks, 105–106
Web service tests, 120–125

exposing failure conditions, 164–179
defining ExistingReviewException class, 165–166
modifying Catalog.AddReview function, 166–167
propagating exceptions, 168
searching for an exception after second review,

164–165
SOAP faults, 168–179

synchronizing with customer tests, 143–145
recording duration, 145
track duration, 144–145

Test case (NUnit), 240–244
assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

transactions, 182–203
Catalog class, 193–203
TransactionManager class, 183–192

user interfaces, 213
Test case, 240–244

assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

Test Cases panel (NUnit-Gui), 238
Test Not Run window (NUnit-Gui), 239
Test-Driven Development (TDD), 3–6, 63

design, 5–6
process

Red/Green/Refactor, 7
test list, 6–7

refactoring, 6
tests, 4

Test-Driven Development: By Example, 3
Test-Driven Development publication
tests, 4

AddSecondReview, 169–171
ASP.NET Web service programmer tests, 105–126

CheckId test, 122
consumer infrastructure, 122
data transformation, 107–117
database catalog service, 117–120
package structure, 124–125
producer infrastructure, 121–122
security, 122–124
tasks, 105–106
Web service tests, 120–125

CheckId, 118–120, 122
CheckTitle, verifying title field, 112

customer tests, 4, 127–164
adding review to recordings, 147–162
automation, 131–143
determining completion, 127–129
exposing failure conditions, 163–164
reconciling viewpoints, 143–145
recording retrieval, 129–131

database access layer, 69–102
connecting to databases, 72–75
isolating individual entities, 75–92
listing tests needed for completion, 71–72
relationships between entities, 92–97
retrieving recordings, 97–101
test organization, 101–102

fixtures, 241–242
functional, user interfaces, 213
list, 6–7
NUnit-Gui, 237
programmer, 4

add and delete review functionality, 151–162
exposing failure conditions, 164–179
synchronizing with customer tests, 143–145
transactions, 182–203
user interfaces, 213

refactoring, 41–44
applications, 58–59
Catalog class, 195–203
code, Web services, 124–125
collapse loops, 49–52
converting procedural design to objects, 56–58
cycle, 41
defined, 35
Extract method, 53–55
Hide method, 44–45
inlining methods, 46–47
Red/Green/Refactor, 7, 12–22
reducing variable scope, 52, 56
removing dead code, 49, 53
removing unneeded code, 41–42
Rename method, 42–43
rename variables, 47–49
replacing nested conditionals with guarded clauses,

45
replacing temporary variables, 52–53
ServiceLayer, 205–211
SetUp, 84
Sieve of Eratosthenes, 36–59
testing known good state, 41

runners (NUnit-Gui)
layout, 237–240
running tests, 237
setup, 236

suites, 241

tests

272

Test case (NUnit), 240–244
assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

time, testing database access layer, 69
user interfaces, 213–214

Tests Run panel (NUnit-Gui), 238
TextFixtureSetUp attribute (NUnit), 247–250
TextFixtureTearDown attribute (NUnit), 247–250
Time panel (NUnit-Gui), 238
title field, verification, CheckTitle test, 112
Tools menu (NUnit-Gui)

Options option, 239
Save Results as XML option, 239

Top operation, 10, 24–27
totalRunTime field, RecordingDto, 109, 116
track duration, synchronizing customer and

programmer tests, 144–145
TrackAssemblerFixture, 114
TrackDisplay class, 139–141
TrackDisplayAdapter class, 144
TrackFixture class, 189
TrackGateway class, 189
trackId attribute, 66
Track-Recording relationship, testing relationship

between entities, 94–97
Transaction property, 256
TransactionCheckCommand class, 197
TransactionManager class, 183–192

integration with tests, 187–192
TransactionOption.Required attribute, 256
transactions

ADO.NET, 253–257
automatic management, 253–256
manual management, 253–255
participation, 256

programmer tests, 182–192
Catalog class, 193–203
TransactionManager class, 183–192

typed DataSets, defining for Recording database, 75–77
Artist Gateway, 77–86
Genre Gateway, 86–90

U
unbounded Stacks, 9
unit tests

add review functionality, 151–162
AddReviewAdapter modification, 162
changing Catalog class, 152–156
changing CatalogService class, 156–159

test list, 152
updating CatalogServiceInterface, 161–162
updating DatabaseCatalogService subclass, 159–161

ASP.NET Web services, 105–126
data transformation, 107–117
database catalog service, 117–120
tasks, 105–106
Web service tests, 120–125

exposing failure conditions, 164–179
defining ExistingReviewException class, 165–166
modifying Catalog.AddReview function, 166–167
propagating exceptions, 168
searching for an exception after second review,

164–165
SOAP faults, 168–179

synchronizing with customer tests, 143–145
recording duration, 145
track duration, 144–145

Test case (NUnit), 240–244
assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

transactions, 182–203
Catalog class, 193–203
TransactionManager class, 183–192

user interfaces, 213
Update method (ArtistFixture.cs), 86
urn:schemas-microsoft-com:xml-msdata namespace, 77
urn:schemas-microsoft-com:xml-msprop namespace, 76
user interfaces, testing, 213–214
utilities, testing database access layer, test organization,

102

V
Validating (self) tests, Test case (NUnit), 240–241

assertions, 243–244
test fixtures, 241–242
test runners, 242
test suites, 241

variables
rename, 47–49
replacing temporary variables, 52–53
scope, reducing, 52, 56

View menu (NUnit-Gui)
Collapse All option, 239
Collapse Fixtures option, 239
Collapse option, 239
Expand All option, 239
Expand Fixtures option, 239
Expand option, 239
Properties option, 239

Tests Run panel (NUnit-Gui)

273

Visual Studio
creating Search page, 221–226
Nunit, 233–240, 250–251

adding NumbersFixture class to projects, 235
adding references to nunit.framework.dll, 234
creating projects, 233–234
debugger, 250–251
layout, 237–240
NUnit-Gui setup, 236
running tests, 237

W
Wake, William, 7
Web clients

Search page, 214
binding search results with repeater Web controls,

218–226
CatalogServiceGateway class, 226–230
creating, 221–226
implementing, 215–230

testing user interfaces, 213–214
Web controls, repeater, binding search results, 218–226
Web Reference Wizard (CatalogGateway proxy class),

122

Web services, ASP.NET
media library application, 66
programmer tests, 105–126

data transformation, 107–117
database catalog service, 117–120
tasks, 105–106
Web service tests, 120–125

Web Services Description Language (WSDL), 109
windows (NUnit-Gui)

Errors and Failures, 239
Standard Error, 240
Standard Output, 240
Test Not Run, 239

wizards, 122
WriteDto method, 114
WriteTotalRunTime method, 116
WriteTrack method, 114, 144
WSDL (Web Services Description Language), 109

X-Z
XML Schema, RecordingDto, 109–112
XSD (eXtensible Schema Definition) schema file, 76
Yellow (NUnit-Gui progress bar), 237
ZeroOne test, refactoring, 43–44

ZeroOne test, refactoring

	Cover
	Copyright page

	Dedication
	Contents at a Glance
	Contents
	Foreword
	Acknowledgments
	Introduction
	What Are the Benefits of Using Tests?
	An Example
	Organization

	How to Use This Book
	If You Have Never Used NUnit Before
	If You Are a Manager or Business Analyst

	Small Steps—A Personal Story
	Companion Web Site

	Chapter 3: Refactoring-By Example
	The Sieve
	Before Refactoring the Code: Make Sure It All Works
	Refactoring 0: Remove Unneeded Code
	Refactoring 1: Rename Method
	Refactoring 2: Add a Test
	Refactoring 3: Hide Method
	Refactoring 4: Replace Nested Conditional with Guard Clauses
	Refactoring 5: Inline Method
	Refactoring 6: Rename Variable
	Refactoring 7: Collapse Loops
	Refactoring 8: Remove Dead Code
	Refactoring 9: Collapse Loops (Again)
	Refactoring 10: Reduce Local Variable Scope
	Refactoring 11: Replace Temp with Query
	Refactoring 12: Remove Dead Code
	Refactoring 13: Extract Method
	Refactoring 14: Extract Method (Again)
	Refactoring 15: Reduce Local Variable Scope
	Refactoring 16: Convert Procedural Design to Objects
	Refactoring 17: Keep the Data Close to Where It Is Used

	Summary

	Index

