Jeffrey Aven

SamsTeachYourself

Hadoop

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Hadoop™ in 24 Hours

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33852-6

ISBN-10: 0-672-33852-1

Library of Congress Control Number: 2017935714

Printed in the United States of America

117

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intics@pearsoned.com.

Editor in Chief
Greg Wiegand

Acquisitions Editor
Trina MacDonald

Development Editor
Chris Zahn

Technical Editor
Adam Shook
Managing Editor
Sandra Schroeder

Project Editor
Lori Lyons

Project Manager
Dhayanidhi

Copy Editor
Abigail Manheim

Indexer
Cheryl Lenser

Proofreader
Sathya Ravi

Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Contents at a Glance

Preface
About the Author

Acknowledgments

Part I: Getting Started with Hadoop

HOUR 1
2

» g h ®

Introducing Hadoop

Understanding the Hadoop Cluster Architecture
Deploying Hadoop

Understanding the Hadoop Distributed File System (HDES)
Getting Data into Hadoop

Understanding Data Processing in Hadoop

Part II: Using Hadoop

HOUR 7
8

9

10

11

12

13

14

15

Programming MapReduce Applications
Analyzing Data in HDES Using Apache Pig
Using Advanced Pig

Analyzing Data Using Apache Hive

Using Advanced Hive

Using SQL-on-Hadoop Solutions
Introducing Apache Spark

Using the Hadoop User Environment (HUE)
Introducing NoSQL

Part 1ll: Managing Hadoop

HOUR 16
17
18
19

Managing YARN

Working with the Hadoop Ecosystem
Using Cluster Management Utilities
Scaling Hadoop

Xii
Xiv

Xv

11
23
45
63
81

103
125
141
165
185
207
221
243
263

279
301
329
355

Sams Teach Yourself Hadoop in 24 Hours

20
21
22
23
24

Understanding Cluster Configuration

Understanding Advanced HDFS

Securing Hadoop

Administering, Monitoring, and Troubleshooting Hadoop
Integrating Hadoop into the Enterprise

Index

367
387
405
421
443

453

Table of Contents

Preface
About the Author
Acknowledgments

Part I: Getting Started with Hadoop

HOUR 1: Introducing Hadoop
Hadoop and a Brief History of Big Data
Hadoop Explained
The Commercial Hadoop Landscape
Typical Hadoop Use Cases
Summary
Q&A
Workshop

HOUR 2: Understanding the Hadoop Cluster Architecture
HDFS Cluster Processes
YARN Cluster Processes
Hadoop Cluster Architecture and Deployment Modes
Summary
Q&A
Workshop

HOUR 3: Deploying Hadoop
Installation Platforms and Prerequisites
Installing Hadoop
Deploying Hadoop in the Cloud
Summary
Q&A
Workshop

Xii
Xiv
XV

O 0 00 O »n N = P

11
11
14
17
20
21
21

23
23
26
38
41
42
42

vi Sams Teach Yourself Hadoop in 24 Hours

HOUR 4: Understanding the Hadoop Distributed File System (HDFS) 45
HDES Overview 45
Review of the HDFS Roles 48
NameNode Metadata 52
SecondaryNameNode Role 55
Interacting with HDFS 56
Summary 59
Q&A 60
Workshop 60

HOUR 5: Getting Data into Hadoop 63
Data Ingestion Using Apache Flume 63
Ingesting Data from a Database using Sqoop 70
Data Ingestion Using HDFS RESTful Interfaces 74
Data Ingestion Considerations 77
Summary 78
Q&A 79
Workshop 79

HOUR 6: Understanding Data Processing in Hadoop 81
Introduction to MapReduce 81
MapReduce Explained 83
Word Count: The “Hello, World” of MapReduce 92
MapReduce in Hadoop 95
Summary 99
Q&A 100
Workshop 100

Part II: Using Hadoop

HOUR 7: Programming MapReduce Applications 103
Introducing the Java MapReduce API 103
Writing a MapReduce Program in Java 109

Table of Contents vii

Advanced MapReduce API Concepts 117
Using the MapReduce Streaming API 120
Summary 122
Q&A 123
Workshop 123
HOUR 8: Analyzing Data in HDFS Using Apache Pig 125
Introducing Pig 125
Pig Latin Basics 126
Loading Data into Pig 131
Filtering, Projecting, and Sorting Data using Pig 133
Built-in Functions in Pig 136
Summary 139
Q&A 139
Workshop 140
HOUR 9: Using Advanced Pig 141
Grouping Data in Pig 141
Multiple Dataset Processing in Pig 144
User-Defined Functions in Pig 156
Automating Pig Using Macros and Variables 159
Summary 161
Q&A 162
Workshop 162
HOUR 10: Analyzing Data Using Apache Hive 165
Introducing Hive 165
Creating Hive Obijects 171
Analyzing Data with Hive 175
Data Output with Hive 180
Summary 181
Q&A 181

Workshop 182

viii Sams Teach Yourself Hadoop in 24 Hours

HOUR 11: Using Advanced Hive 185
Automating Hive 185
Complex Datatypes in Hive 187
Text Processing Using Hive 190
Optimizing and Managing Queries in Hive 199
Summary 204
Q&A 204
Workshop 205

HOUR 12: Using SQL-on-Hadoop Solutions 207
What Is SQL on Hadoop? 207
Columnar Storage in Hadoop 208
Introduction to Impala 211
Introduction to Tez 214
Introduction to HAWQ and Drill 216
Summary 217
Q&A 218
Workshop 218

HOUR 13: Introducing Apache Spark 221
Introducing Spark 221
Spark Architecture 225
Resilient Distributed Datasets in Spark 227
Transformations and Actions in Spark 231
Extensions to Spark 234
Summary 240
Q&A 241
Workshop 241

HOUR 14: Using the Hadoop User Environment (HUE) 243
Introducing HUE 243
Installing, Configuring, and Using HUE 251

Summary 260

Table of Contents ix

Q&A 260
Workshop 261
HOUR 15: Introducing NoSQL 263
Introduction to NoSQL 263
Introducing HBase 265
Introducing Apache Cassandra 273
Other NoSQL Implementations and the Future of NoSQL 275
Summary 276
Q&A 276
Workshop 277

Part 1ll: Managing Hadoop

HOUR 16: Managing YARN 279
YARN Revisited 279
Administering YARN 285
Application Scheduling in YARN 293
Summary 299
Q&A 299
Workshop 300

HOUR 17: Working with the Hadoop Ecosystem 301
Hadoop Ecosystem Overview 301
Introduction to Oozie 306
Stream Processing and Messaging in Hadoop 311
Infrastructure and Security Projects 315
Machine Learning, Visualization, and More Data Analysis Tools 319
Summary 325
Q&A 326
Workshop 326

HOUR 18: Using Cluster Management Utilities 329
Cluster Management Overview 329

Deploying Clusters and Services Using Management Tools 337

Sams Teach Yourself Hadoop in 24 Hours

Configuration and Service Management Using Management Tools 340
Monitoring, Troubleshooting, and Securing Hadoop Clusters
Using Cluster Management Utilities 347
Getting Started with the Cluster Management Utilities 351
Summary 352
Q&A 353
Workshop 353
HOUR 19: Scaling Hadoop 355
Linear Scalability with Hadoop 355
Adding Nodes to your Hadoop Cluster 356
Decommissioning Nodes from your Cluster 359
Rebalancing a Hadoop Cluster 361
Benchmarking Hadoop 362
Summary 365
Q&A 365
Workshop 366
HOUR 20: Understanding Cluster Configuration 367
Configuration in Hadoop 367
HDFS Configuration Parameters 372
YARN Configuration Parameters 377
Ecosystem Component Configuration 381
Summary 383
Q&A 384
Workshop 385
HOUR 21: Understanding Advanced HDFS 387
HDFS Rack Awareness 387
HDFS High Availability 390
HDFS Federation 398
HDFS Caching, Snapshotting, and Archiving 401
Summary 403
Q&A 403

Workshop 404

Table of Contents Xi

HOUR 22: Securing Hadoop 405
Hadoop Security Basics 405
Securing Hadoop with Kerberos 411
Perimeter Security Using Apache Knox 414
Role-Based Access Control Using Ranger and Sentry 416
Summary 418
Q&A 419
Workshop 419

HOUR 23: Administering, Monitoring, and Troubleshooting Hadoop 421
Administering Hadoop 421
Troubleshooting Hadoop 426
System and Application Monitoring in Hadoop 432
Best Practices and Other Information Sources 439
Summary 441
Q&A 441
Workshop 442

HOUR 24: Integrating Hadoop into the Enterprise 443
Hadoop and the Data Center 443
Use Case: Data Warehouse/ETL Offload 445
Use Case: Event Storage and Processing 447
Use Case: Predictive Analytics 448
Summary 450
Q&A 451
Workshop 451

Index 453

Preface

Hadoop is synonymous with Big Data, and the two are inexorably linked together. Although
there have been many books written about Hadoop before this one, many of these books
have been focused on one particular area of Hadoop, or required some prior experience with
Hadoop. This book is different as it explores all areas of Hadoop and the Hadoop ecosystem,
as well as providing an understanding and background to the genesis of Hadoop and the
big data movement.

This book is also useful if you have had some exposure to Hadoop as it explores adjacent
technologies such as Spark, HBase, Cassandra, and more. The book includes many
diagrams, code snippets, hands-on exercises, quizzes, and Q&As, which will help you in
distilling key concepts.

I have dedicated the past several years of my career to this subject area, teaching courses
and consulting to clients on analytics and big data. I have seen the emergence and maturity
of the big data and open source movements, and been part of its assimilation into the
enterprise. I have tried to synthesize my personal learning journey over this time into

this book.

I hope this book launches or assists in your journey to becoming a big data practitioner.

How This Book Is Organized

This book starts by establishing some of the basic concepts behind Hadoop, which are
covered in Part I, “Getting Started with Hadoop.” I also cover deployment of Hadoop both
locally and in the cloud in Part I.

Part II, “Using Hadoop,” is focused on the programming and data interfaces available with
Hadoop, which include MapReduce, Pig, Hive, Spark, and more, as well as introductions to
SQL-on-Hadoop and NoSQL using HBase.

Part 111, “Managing Hadoop,” covers scaling, management, and administration of
Hadoop and its various related technologies, including advanced configuration, securing,
monitoring, and troubleshooting Hadoop.

Data Used in the Exercises

Data for the Try it Yourself exercises can be downloaded from the book’s Amazon Web
Services (AWS) S3 bucket. If you are not familiar with AWS, don’t worry—I cover this topic
in the book as well.

Preface xiii

Conventions Used in This Book

Each hour begins with “What You'll Learn in This Hour,” which provides a list of bullet
points highlighting the topics covered in that hour. Each hour concludes with a “Summary”
page summarizing the main points covered in the hour, as well as “Q&A” and “Quiz”
sections to help you consolidate your learning from that hour.

Key topics being introduced for the first time are typically italicized by convention. Most
hours also include programming examples in numbered code listings. Where functions,
commands, classes, or objects are referred to in text, they appear in monospace type.

Other asides in this book include the following:

NOTE
Content not integral to the subject matter but worth noting or being aware of.

TIP

TIP Subtitle
A hint or tip relating to the current topic that could be useful.

CAUTION

Caution Subtitle
Something related to the current topic that could lead to issues if not addressed.

TRY IT YOURSELF V¥

Exercise Title

An exercise related to the current topic including a step-by-step guide and descriptions of
expected outputs.

About the Author

Jeffrey Aven is a big data, open source software, and cloud computing consultant and
instructor based in Melbourne, Australia. Jeff has several years’ experience with Hadoop,
NoSQL, Spark, and related technologies, and has been involved in key roles with several
major big data implementations in Australia. Jeffrey is the author of SAMS Teach Yourself
Apache Spark and was awarded Cloudera Hadoop Instructor of the Year for APAC in 2013.

Acknowledgments

I would like to acknowledge the team at Pearson who work hard behind the scenes on all
of these projects. I would also like to acknowledge Adam Shook for his help as a technical
editor for this project.

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

HOUR 3

Deploying Hadoop

What You’ll Learn in This Hour:

» Installation platforms and prerequisites

» How to install Hadoop from Apache releases

» How to deploy Hadoop using commercial distributions
» How to deploy Hadoop in the cloud using AWS

Now that you have been introduced to Hadoop and learned about its core components, HDFS
and YARN and their related processes, as well as different deployment modes for Hadoop, let’s
look at the different options for getting a functioning Hadoop cluster up and running. By the
end of this hour you will have set up a working Hadoop cluster that we will use throughout the
remainder of the book.

Installation Platforms and Prerequisites

Before you install Hadoop there are a few installation requirements, prerequisites, and
recommendations of which you should be aware.

Operating System Requirements

The vast majority of Hadoop implementations are platformed on Linux hosts. This is due to a
number of reasons:

» The Hadoop project, although cross-platform in principle, was originally targeted at Linux.
It was several years after the initial release that a Windows-compatible distribution was
introduced.

» Many of the commercial vendors only support Linux.

» Many other projects in the open source and Hadoop ecosystem have compatibility issues
with non-Linux platforms.

24 HOUR 3: Deploying Hadoop

That said there are options for installing Hadoop on Windows, should this be your platform
of choice. We will use Linux for all of our exercises and examples in this book, but consult the
documentation for your preferred Hadoop distribution for Windows installation and support
information if required.

If you are using Linux, choose a distribution you are comfortable with. All major distributions
are supported (Red Hat, Centos, Ubuntu, SLES, etc.). You can even mix distributions if
appropriate; for instance, master nodes running Red Hat and slave nodes running Ubuntu.

CAUTION

Don’t Use Logical Volume Manager (LVM) in Linux

If you are using Linux to deploy Hadoop nodes, master or slaves, it is strongly recommended that
you not use LVM in Linux. This will restrict performance, especially on slave nodes.

Hardware Requirements

Although there are no hard and fast requirements, there are some general heuristics used in
sizing instances, or hosts, appropriately for roles within a Hadoop cluster. First, you need to
distinguish between master and slave node instances, and their requirements.

Master Nodes

A Hadoop cluster relies on its master nodes, which host the NameNode and ResourceManager, to
operate, although you can implement high availability for each subsystem as I discussed in the
last hour. Failure and failover of these components is not desired. Furthermore, the master node
processes, particularly the NameNode, require a large amount of memory to operate efficiently,
as you will appreciate in the next hour when we dive into the internals of HDFS. Therefore, when
specifying hardware requirements the following guidelines can be used for medium to large-scale
production Hadoop implementations:

> 16 or more CPU cores (preferably 32)

» 128GB or more RAM (preferably 256GB)

» RAID Hard Drive Configuration (preferably with hot-swappable drives)
» Redundant power supplies

» Bonded Gigabit Ethernet or 10Gigabit Ethernet

This is only a guide, and as technology moves on quickly, these recommendations will change
as well. The bottom line is that you need carrier class hardware with as much CPU and memory
capacity as you can get!

Installation Platforms and Prerequisites 25

Slave Nodes

Slave nodes do the actual work in Hadoop, both for processing and storage so they will benefit
from more CPU and memory—physical memory, not virtual memory. That said, slave nodes
are designed with the expectation of failure, which is one of the reasons blocks are replicated in
HDEFS. Slave nodes can also be scaled out linearly. For instance, you can simply add more nodes
to add more aggregate storage or processing capacity to the cluster, which you cannot do with
master nodes. With this in mind, economic scalability is the objective when it comes to slave
nodes. The following is a guide for slave nodes for a well-subscribed, computationally intensive
Hadoop cluster; for instance, a cluster hosting machine learning and in memory processing
using Spark.

» 16-32 CPU cores
> 64-512 GB of RAM

> 12-24 1-4 TB hard disks in a JBOD Configuration

NOTE
JBOD

JBOD is an acronym for just a bunch of disks, meaning directly attached storage that is not in a RAID
configuration, where each disk operates independently of the other disks. RAID is not recommended
for block storage on slave nodes as the access speed is limited by the slowest disk in the array,
unlike JBOD where the average speed can be greater than that of the slowest disk. JBOD has been
proven to outperform RAID O for block storage by 30% to 50% in benchmarks conducted at Yahoo!.

CAUTION

Storing Too Much Data on Any Slave Node May Cause Issues

As slave nodes typically host the blocks in a Hadoop filesystem, and as storage costs, particularly
for JBOD configurations, are relatively inexpensive, it may be tempting to allocate excess block
storage capacity to each slave node. However, as you will learn in the next hour on HDFS, you need
to consider the network impact of a failed node, which will trigger re-replication of all blocks that
were stored on the slave node.

Slave nodes are designed to be deployed on commodity-class hardware, and yet while they still
need ample processing power in the form of CPU cores and memory, as they will be executing
computational and data transformation tasks, they don’t require the same degree of fault
tolerance that master nodes do.

26 HOUR 3: Deploying Hadoop

Networking Considerations

Fully distributed Hadoop clusters are very chatty, with control messages, status updates and
heartbeats, block reports, data shuffling, and block replication, and there is often heavy
network utilization between nodes of the cluster. If you are deploying Hadoop on-premise,
you should always deploy Hadoop clusters on private subnets with dedicated switches. If you
are using multiple racks for your Hadoop cluster (you will learn more about this in Hour 21,
“Understanding Advanced HDFS”), you should consider redundant core and “top of rack”
switches.

Hostname resolution is essential between nodes of a Hadoop cluster, so both forward and reverse
DNS lookups must work correctly between each node (master-slave and slave-slave) for Hadoop
to function. Either DNS or a hosts files can be used for resolution. IPv6 should also be disabled
on all hosts in the cluster.

Time synchronization between nodes of the cluster is essential as well, as some components, such
as Kerberos, which is discussed in Hour 22, “Securing Hadoop,” rely on this being the case. It is
recommended you use ntp (Network Time Protocol) to keep clocks synchronized between all
nodes.

Software Requirements

As discussed, Hadoop is almost entirely written in Java and compiled to run in a Java Runtime
Environment (JRE); therefore Java is a prerequisite to installing Hadoop. Current prerequisites
include:

» Java Runtime Envrionment (JRE) 1.7 or above

» Java Development Kit (JDK) 1.7 or above—required if you will be compiling Java classes
such as MapReduce applications

Other ecosystem projects will have their specific prerequisites; for instance, Apache Spark
requires Scala and Python as well, so you should always refer to the documentation for these
specific projects.

Installing Hadoop

You have numerous options for installing Hadoop and setting up Hadoop clusters. As Hadoop
is a top-level Apache Software Foundation (ASF) open source project, one method is to install
directly from the Apache builds on http://hadoop.apache.org/. To do this you first need

one or more hosts, depending upon the mode you wish to use, with appropriate hardware
specifications, an appropriate operating system, and a Java runtime environment available
(all of the prerequisites and considerations discussed in the previous section).

Installing Hadoop 27

Once you have this, it is simply a matter of downloading and unpacking the desired release.
There may be some additional configuration to be done afterwards, but then you simply start
the relevant services (master and slave node daemons) on their designated hosts and you are up
and running.

Non-Commercial Hadoop

Let’s deploy a Hadoop cluster using the latest Apache release now.

TRY IT YOURSELF V¥

Installing Hadoop Using the Apache Release

In this exercise we will install a pseudo-distributed mode Hadoop cluster using the latest Hadoop
release downloaded from hadoop.apache.org.

As this is a test cluster the following specifications will be used in our example:

» Red Hat Enterprise Linux 7.2 (The installation steps would be similar using other Linux
distributions such as Ubuntu)

» 2 CPU cores

» 8GB RAM

» 30GB HDD

» hostname: hadoopnodeO

1. Disable SELinux (this is known to cause issues with Hadoop):

$ sudo sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' \
/etc/selinux/config

2. Disable IPv6 (this is also known to cause issues with Hadoop):

$ sudo sed -1 "\Sanet.ipv6.conf.all.disable ipve = 1" \
/etc/sysctl.conf

$ sudo sed -i "\Sanet.ipvé6.conf.default.disable ipvé = 1" \
/etc/sysctl.conf

$ sudo sysctl -p

3. Reboot

4. Run the sestatus command to ensure SELinux is not enabled:

S sestatus

28

M -

10.

HOUR 3: Deploying Hadoop

Install Java. We will install the OpenJDK, which will install both a JDK and JRE:

$ sudo yum install java-1.7.0-openjdk-devel

a. Test that Java has been successfully installed by running the following command:

$ java -version

If Java has been installed correctly you should see output similar to the following:

java version "1.7.0_101"
OpenJDK Runtime Environment (rhel-2.6.6.1.el7 2-x86 64..)
OpendDK 64-Bit Server VM (build 24.95-b01, mixed mode)

Note that depending upon which operating system you are deploying on, you may have a
version of Java and a JDK installed already. In these cases it may not be necessary to
install the JDK, or you may need to set up alternatives so you do not have conflicting Java
versions.

Locate the installation path for Java, and set the JAVA_HOME environment variable:

$ export JAVA HOME=/usr/lib/jvm/REPLACE WITH YOUR PATH/

Download Hadoop from your nearest Apache download mirror. You can obtain the link by
selecting the binary option for the version of your choice at http://hadoop.apache.org/
releases.html. We will use Hadoop version 2.7.2 for our example.

$ wget http://REPLACE WITH YOUR MIRROR/hadoop-2.7.2.tar.gz

Unpack the Hadoop release, move it into a system directory, and set an environment
variable from the Hadoop home directory:

$ tar -xvf hadoop-2.7.2.tar.gz

$ mv hadoop-2.7.2 hadoop

$ sudo mv hadoop/ /usr/share/

$ export HADOOP HOME=/usr/share/hadoop

Create a directory which we will use as an alternative to the Hadoop configuration directory:

$ sudo mkdir -p /etc/hadoop/conf

Create a mapred-site.xml file (I will discuss this later) in the Hadoop configuration
directory:

$ sudo cp SHADOOP HOME/etc/hadoop/mapred-site.xml.template \
SHADOOP_HOME/etc/hadoop/mapred-site.xml

11.

12.

13.

14.

15.

16.

Installing Hadoop 29

Add JAVA_HOME environment variable to hadoop-env. sh (file used to source environment n
variables for Hadoop processes):

$ sed -i "\Saexport JAVA_HOME:/REPLACE_WITH_YOUR_JDK;PATH/" \
SHADOOP_HOME/etc/hadoop/hadoop-env. sh

Substitute the correct path to your Java home directory as defined in Step 6.
Create a symbolic link between the Hadoop configuration directory and the /etc/hadoop
/conf directory created in Step 10:

$ sudo 1ln -s SHADOOP HOME/etc/hadoop/* \
/etc/hadoop/conf/

Create a logs directory for Hadoop:

$ mkdir $HADOOP_ HOME/logs

Create users and groups for HDFS and YARN:

$ sudo groupadd hadoop
$ sudo useradd -g hadoop hdfs
$ sudo useradd -g hadoop yarn

Change the group and permissions for the Hadoop release files:

$ sudo chgrp -R hadoop /usr/share/hadoop
$ sudo chmod -R 777 /usr/share/hadoop

Run the built in Pi Estimator example included with the Hadoop release.

$ cd $SHADOOP HOME

$ sudo -u hdfs bin/hadoop jar \
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar \
pi 16 1000

As we have not started any daemons or initialized HDFS, this program runs in

LocalJobRunner mode (recall that | discussed this in Hour 2, “Understanding the Hadoop
Cluster Architecture”). If this runs correctly you should see output similar to the following:

Job Finished in 2.571 seconds
Estimated value of Pi is 3.14250000000000000000

Now let’s configure a pseudo-distributed mode Hadoop cluster from your installation.

30 HOUR 3: Deploying Hadoop

n 17. Use the vi editor to update the core-site.xml file, which contains important information
about the cluster, specifically the location of the namenode:

$ sudo vi /etc/hadoop/conf/core-site.xml

add the following config between the <configurations>
and </configurations> tags:

<property>

<name>fs.defaul tFS</name>
<value>hdfs://hadoopnodel:8020</value>

</property>

Note that the value for the fs.defaultFs configuration parameter needs to be set
to hdfs://HOSTNAME: 8020, where the HOSTNAME is the name of the NameNode host,
which happens to be the localhost in this case.

18. Adapt the instructions in Step 17 to similarly update the hdfs-site.xml file, which
contains information specific to HDFS, including the replication factor, which is set to 1 in
this case as it is a pseudo-distributed mode cluster:

sudo vi /etc/hadoop/conf/hdfs-site.xml

add the following config between the <configurations>
and </configurations> tags:

<property>

<name>dfs.replication</name>

<values>l</value>

</property>

19. Adapt the instructions in Step 17 to similarly update the yarn-site.xml file, which
contains information specific to YARN. Importantly, this configuration file contains the
address of the resourcemanager for the cluster—in this case it happens to be the
localhost, as we are using pseudo-distributed mode:

$ sudo vi /etc/hadoop/conf/yarn-site.xml

add the following config between the <configuration>
and </configuration> tags:

<property>
<namesyarn.resourcemanager.hostname</name >
<value>hadoopnodeO</value>

</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<Value>mapreduce_shuffle</value>
</property>

20. Adapt the instructions in Step 17 to similarly update the mapred-site.xml file, which
contains information specific to running MapReduce applications using YARN:

$ sudo vi /etc/hadoop/conf/mapred-site.xml

add the following config between the <configurations

21.

22.

23.

24,

25.

26.

Installing Hadoop

and </configuration> tags:
<propertys>

<name>mapreduce. framework.name</name>
<valuesyarn</value>

</property>

Format HDFS on the NameNode:

$ sudo -u hdfs bin/hdfs namenode -format

Enter [Y] to re-format if prompted.

Start the NameNode and DataNode (HDFS) daemons:

$ sudo -u hdfs sbin/hadoop-daemon.sh start namenode
$ sudo -u hdfs sbin/hadoop-daemon.sh start datanode

Start the ResourceManager and NodeManager (YARN) daemons:

$ sudo -u yarn sbin/yarn-daemon.sh start resourcemanager
$ sudo -u yarn sbin/yarn-daemon.sh start nodemanager

Use the jps command included with the Java JDK to see the Java processes that are

running;:

$ sudo jps

You should see output similar to the following:

2374 DataNode

2835 Jps

2280 NameNode

2485 ResourceManager
2737 NodeManager

Create user directories and a tmp directory in HDFS and set the appropriate permissions

and ownership:

$ sudo -u hdfs bin/hadoop fs -mkdir -p /user/<your user>

31

$ sudo -u hdfs bin/hadoop fs -chown <your users:<your user> /user/<your users

$ sudo -u hdfs bin/hadoop fs -mkdir /tmp
$ sudo -u hdfs bin/hadoop fs -chmod 777 /tmp

Now run the same Pi Estimator example you ran in Step 16. This will now run in pseudo-

distributed mode:

$ bin/hadoop jar \
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar \
pi 16 1000

32 HOUR 3: Deploying Hadoop

The output you will see in the console will be similar to that in Step 16. Open a browser
and go to localhost:8088. You will see the YARN ResourceManager Web Ul (which
| discuss in Hour 6, “Understanding Data Processing in Hadoop”) (Figure 3.1):

[=I
[) RUNNING Applications X

€ - € [hadoopnod Qf7e 0 =

G hERbED RUNNING Applications "

< Cluster Cluster Metrics
About Apps Apps | Apps Apps | Containers | Memory | Memory Memory | VCores VCores VCores | Active | Decommissioned Lost | Unhealthy = Rebooted
Nodes Submited Pending Running Completed Running | Used | Total | Reserved = Used | Total Reserved = Nodes Nodes o Nodes Nodes
0 1 268 868 08 1 8 0 1 [[[[

! 1 0

Applications Scheduler Metrics
NEW savma Scheduler Type Scheduiing Resource Type Minimum Allocation Maximum Allocation
SUBNITTED Capacity Scheduler [MEMORY] <memory: 1024, vCores: 1> <memory:8192. vCores 8>
Accepten
RUNNIN Show 20 + entries searcn

EINISHED

FAILED D

application, 54975790 0001 ec2- iMonteCarlo MAPREDUCE default SunJul24 NA RUNNING UNDEFINED ApplicationMaster 0
heduler user 202235

. User 5 Applicaion Queue | StartTime FinishTime , Fnaistatus Blacklisted
i st]} s s o et ¢ Nodes ¢

Progress ¢ Tracking Ul ¢

+1000
» Tools 2016

Showing 1o 1 of 1 entries

FIGURE 3.1
YARN ResourceManager Web Ul.

Congratulations! You have just set up your first pseudo-distributed mode Hadoop cluster. We will
use this cluster in other exercises in the book, so keep it available if you can.

Using a Commercial Hadoop Distribution

As I had discussed in Hour 1, “Introducing Hadoop,” the commercial Hadoop landscape is well
established. With the advent of the ODPi (the Open Data Platform initiative), a once-numerous
array of vendors and derivative distributions has been consolidated to a much simpler landscape
which includes three primary pure-play Hadoop vendors:

» Cloudera
» Hortonworks

» MapR

Importantly, enterprise support agreements and subscriptions can be purchased from the various
Hadoop vendors for their distributions. Each vendor also supplies a suite of management utilities
to help you deploy and manage Hadoop clusters. Let’s look at each of the three major pure play
Hadoop vendors and their respective distributions.

Installing Hadoop

Cloudera

Cloudera was the first mover in the commercial Hadoop space, establishing their first
commercial release in 2008. Cloudera provides a Hadoop distribution called CDH (Cloudera
Distribution of Hadoop), which includes the Hadoop core and many ecosystem projects. CDH
is entirely open source.

Cloudera also provides a management utility called Cloudera Manager (which is not open
source). Cloudera Manager provides a management console and framework enabling the
deployment, management, and monitoring of Hadoop clusters, and which makes many
administrative tasks such as setting up high availability or security much easier. The mix of
open source and proprietary software is often referred to as open core. A screenshot showing
Cloudera Manager is pictured in Figure 3.2.

& cloudera-quickstart-vm-5.7.0-0-vmware - VMware Player (Non-commercial use only) - o X

Payer v | I v & H & <«
«% Applications Places System @ & @ Thujul 21, 2:10PM) & cloudera
) Home - Cloudera Manager - Mozilla Firefox T

[3 Home - Cloudera Ma... x | 4k

€ @ quickstart.cloudera:7180/cmf/home ¢ | |Q search “Bs 9 3 A O =

Cloudera @Hue [EJHadoopv [EJHBasev [EJimpalav [ESparkv Solr @ Oozie Cloudera Manager « Getting Started

cloudera manage

Clusters Hosts Diagnostics Audits Charts Backup Administration

Home 30 minutes preceding July 21, 2016, 2:09 PM PDT
Status All Health Issues [T§] Configuration ~ Al Recent Commands Add Cluster

@ Cloudera QuickStart (CDH5.7.0... - Charts 30m th 2h 6h 12h 1d 7d 30d &~

= Hosts Cluster CPU Cloudera QuickStart

1 HBase - 100° w Total Disk By
@ HDFS - w

@ Hive -

) Hue -

=Cloudera QuickStart, Host CPU Usage A... 84.2% =Total Disk Byt... 665Kis w=Total Disk Byt... 191Kis
4 Impala -

@ Oozie -
£ Solr ~
49 NO DATA
{1 Spark - 49Kis

@ Sqoop 1 Client -

@ Sqoop 2 - =Total Bytes R... 68.3b/s = Total Bytes Tr... 41.9b/s

@
(C]
(C]
@
(C]
@ 3% Key-Value Store... - Cluster Network 10 HDFS 10
(C]
(O]
@
[]
(C]
a

A\t VADN /MRD Innl - E]

FIGURE 3.2

Cloudera Manager.

As mentioned, Cloudera Manager can be used to deploy Hadoop clusters, including master
nodes, slave nodes, and ecosystem technologies. Cloudera Manager distributes installation

33

packages for Hadoop components through a mechanism called parcels. As Hadoop installations

are typically isolated from public networks, Cloudera Manager, which is technically not part
of the cluster and will often have access to the Internet, will download parcels and distribute

34 HOUR 3: Deploying Hadoop

these to new target hosts nominated to perform roles in a Hadoop cluster or to existing hosts to
upgrade components.

Deploying a fully distributed CDH cluster using Cloudera Manager would involve the following
steps at a high level:

1. Install Cloudera Manager on a host that has access to other hosts targeted for roles in the
cluster.

2. Specify target hosts for the cluster using Cloudera Manager.

3. Use Cloudera Manager to provision Hadoop services, including master and slave nodes.

Cloudera also provides a Quickstart virtual machine, which is a pre-configured pseudo-
distributed Hadoop cluster with the entire CDH stack, including core and ecosystem components,
as well as a Cloudera Manager installation. This virtual machine is available for VirtualBox,
VMware, and KVM, and works with the free editions of each of the virtualization platforms.

The Cloudera Quickstart VM is pictured in Figure 3.3.

@ qui - y i - o x
(P~ | 11> B H D S
% Applications Places System @ & @ Thujul 21,12:56PM) & cloudera

I

cloudera

FIGURE 3.3
Cloudera Quickstart VM.

The Quickstart VM is a great way to get started with the Cloudera Hadoop offering. To find out
more, go to http://www.cloudera.com/downloads.html.

More information about Cloudera is available at http://www.cloudera.com/.

Installing Hadoop 35

Hortonworks

Hortonworks provides pure open source Hadoop distribution and a founding member of the
open data platform initiative (ODPi) discussed in Hour 1. Hortonworks delivers a distribution
called HDP (Hortonworks Data Platform), which is a complete Hadoop stack including the
Hadoop core and selected ecosystem components. Hortonworks uses the Apache Ambari project
to provide its deployment configuration management and cluster monitoring facilities. A
screenshot of Ambari is shown in Figure 3.4.

- o X
@ Ambari - Sandbox x
€ - C [127.0.0.1:8080/#/main/dashboard/metrics . ¢
@ Ambari Sandbox il EEE TSN covices Hosts Alerts 5
& HOFS Metrics ~ Heatmaps Config History
OfMapRedices Metric Actions ~ || Last 1 hour ~
© YARN
= HDF'S Disk Usage DataNodes Live RPC Heap HDFS Links
® Hive NameNode
N N
& HBase 32% 1/1 0.50 ms 29% Secondary NameNode
1 DataNodes
2 Pig
More... v
2 sqoop
© Oozie
NameNode Uptime YARN Memory Live
© ZooKeeper Uptime Heap
@ Faicon . . \
A 20.3 min 0% 1M 17.7 min 2%
torm
© Flume
@ Ambari Metrics
© Atlas Memory Usage YARN Links Network Usage HBase Links Cluster Load
@ Kafka No Data Available ResourceManager No Data Available No Active Master No Data Available
@ Knox 1 NodeManagers. 1RegionServers
© Ranger e na
o Siider Mors >

Ambari console.

The simplest method to deploy a Hortonworks Hadoop cluster would involve the following steps:
1. Install Ambari using the Hortonworks installer on a selected host.
2. Add hosts to the cluster using Ambari.

3. Deploy Hadoop services (such as HDFS and YARN) using Ambari.

Hortonworks provides a fully functional, pseudo-distributed HDP cluster with the complete
Hortonworks application stack in a virtual machine called the Hortonworks Sandbox.

The Hortonworks Sandbox is available for VirtualBox, VMware, and KVM. The Sandbox virtual
machine includes several demo applications and learning tools to use to explore Hadoop and
its various projects and components. The Hortonworks Sandbox welcome screen is shown in
Figure 3.5.

36 HOUR 3: Deploying Hadoop

B\, Hortonworks Sandbox wit X i;‘ _ a8

€« C | [) 127.0.0.1:8888 =% f7® &

A

Hortonworks”

» Hortonworks Sandbox

With HDP 2.4 in a few simple steps

1 get started

Develop queries for data & manage your HDP cluster

Apache Ambari is the best way to get started with your HDP journey. It provides a user driven wizard interface to interact with HDP.
Try this simple tutorial to get started with HDP

Hello HDP!

url: http://127.0.0.1:8080

username: maria_dev

password: maria_dev

View Advanced Options

FIGURE 3.5
Hortonworks Sandbox.

You can download the Hortonworks Sandbox from http://hortonworks.com/products/
sandbox/. More information about Hortonworks and HDP can be obtained from
http://hortonworks.com/.

MapR

MapR delivers a “Hadoop-derived” software platform that implements an API-compatible
distributed filesystem called MapRFS (the MapR distributed Filesystem). MapRES has been
designed to maximize performance and provide read-write capabilities not offered by native
HDFS. MapR delivers three versions of their offering called the “Converged Data Platform.”
These include:

» M3 or “Converged Community Edition” (free version)
» M5 or “Converged Enterprise Edition” (supported version)

» M7 (M5 version that includes MapR’s custom HBase-derived data store)

Like the other distributions, MapR has a demo offering called the “MapR Sandbox,” which is
available for VirtualBox or VMware. It is pictured in Figure 3.6.

Installing Hadoop

) MapR Sandbor for Hado: X

€« c

[192.168.52.130:8-

MapR-Sandbox-For-Hadoop installation finished successfully
Please go to http:,/192.168.52.130:8443/ to begin your experience
Jpen a browser on your host machine
and enter the URL in the browser’s address field
You can access the host via SSH by ssh mapr@192.168.52.138
The following credentials should be used for MCS & HUE - mapr/mapr

Log in to this virtual machine: Linux/Windows <AltsF

Developers and Analysts

If you are, a‘Hadoop-developer or an analyst looking to
gain understandifig of- Hadoop and MapR. MapR
includes training and (90[8 fo get you up to speed on the

If you arc a Hadoop administrator, MapR's Control
System (MCS), helps you better configure, monitor, and
manage your cluster

latest informatiomquickly and casily.

BB

to view sandbox futorials. g %o =8
Wiwisy

FIGURE 3.6
MapR Sandbox VM.

The MapR Sandbox can be downloaded from https://www.mapr.com/products/
mapr-sandbox-hadoop/download.

MapR’s management offering is called the MapR Control System (MCS), which offers a central

console to configure, monitor and manage MapR clusters. It is shown in Figure 3.7.

- o X
[MapR - demo.mapr.com - X
€« C' [} 192.168.52.130:8443/m. T QO 7% 0 =

dashboard?visible=1,1,1,1,1

Loggedinas mapr | Bog | Support | Help | maprcom | Log out
Cluster Name: demo.mapr.com)

Manage Lcenses v. 5103758, 27
Navigation @ | | Dashboard *
& Cluster - -
TR Dashboard Cluster Heatmap - 1 Nodes on 1 Racks Health ¥ | Sort: Rack ¥ Zoom: 4 | Custerutiization ® Sevings WA ©
(B Nodes e % Utitzed Total
[Node Heatmap ofault-) v P WA 0 Cores 2 Cores.
oo 1 nodes on /data/default-rack (1 visible) TR e Tave
& MapR-FS DiskSpace N/A none 14GB
(] MapR Tables Alarms. Yarn
(B volumes Tio Alarms Raised Running Applications)
(R Mirror Volumes Queved Applications]
(R User Disk Usage Number of Node Managers 1
[R] snapshots Used memory (MB) none
B schedules Total Memory (1) s68
5 1Es K Percent of Memory Used A
18IS setup CPU's Used 0 Cores
B VIP Assignments CPU's Total 2 Cores
B NES Nodes Percent of CPU's Used WA
- Al_lm\s Used Disks 0
(B Node Alarms Total Disks 133

B Volume Alarms
[&] user/Group Alarms
@) aterts

& system settings
@) Email Addresses
@] permissions.
@) auditing
®] Quota Defaults
(@] Balancer settings
@ srp
@] MapReduce Mode
@] metrics
@) Manage Licenses

) HBase

%) 30b Tracker

) cLog

“/ ResourceManager

7 sparkistoryServer

%) JobkistoryServer

% Nagios <

FIGURE 3.7
MapR Control System (MCS).

Percent of Disks Used

Services

Oozie
Hue
ResourceManager
Hivelleta

NFS Gateway

NodeManager

JobhistoryServer
HostStats
SparkbistoryServer
FileServer

HiveServer 2

Actv Stby Stop Fail
1. -

Total
1

37

38 HOUR 3: Deploying Hadoop

Much more information about MapR and the Converged Data Platform is available at
https://www.mapr.com/.

Deploying Hadoop in the Cloud

The rise and proliferation of cloud computing and virtualization technologies has definitely been
a game changer for the way organizations think about and deploy technology, and Hadoop

is no exception. The availability and maturity around Iaa$ (Infrastructure-as-a-Service), PaaS
(Platform-as-a-Service) and Saa$ (Software-as-a-Service) solutions makes deploying Hadoop in
the cloud not only viable but, in some cases, desirable.

There are many public cloud variants that can be used to deploy Hadoop including Google,
IBM, Rackspace, and others. Perhaps the most pervasive cloud platform to date has been AWS
(Amazon Web Services), which I will use as the basis for our discussions.

Before you learn about deployment options for Hadoop in AWS, let’s go through a quick primer
and background on some of the key AWS components. If you are familiar with AWS, feel free to
jump straight to the Try it Yourself exercise on deploying Hadoop using AWS EMR.

EC2

Elastic Compute Cloud (EC2) EC2 is Amazon'’s web service-enabled virtual computing platform.
EC2 enables users to create virtual servers and networks in the cloud. The virtual servers are
called instances. EC2 instances can be created with a variety of different instance permutations.
The Instance Type property determines the number of virtual CPUs and the amount of memory
and storage an EC2 instance has available to it. An example instance type is m4.large.

A complete list of the different EC2 instance types available can be found at https://
aws.amazon.com/ec2/instance-types/.

EC2 instances can be optimized for compute, memory, storage and mixed purposes and can
even include GPUs (Graphics Processing Units), a popular option for machine learning and deep
analytics.

There are numerous options for operating systems with EC2 instances. All of the popular Linux
distributions are supported, including Red Hat, Ubuntu, and SLES, as well various Microsoft
Windows options.

EC2 instances are created in security groups. Security groups govern network permissions and
Access Control Lists (ACLs). Instances can also be created in a Virtual Private Cloud (VPC).

A VPC is a private network, not exposed directly to the Internet. This is a popular option for
organizations looking to minimize exposure of EC2 instances to the public Internet.

EC2 instances can be provisioned with various storage options, including instance storage or
ephemeral storage, which are terms for volatile storage that is lost when an instance is stopped,

Deploying Hadoop in the Cloud 39

and Elastic Block Store (EBS), which is persistent, fault-tolerant storage. There are different
options with each, such as SSD (solid state) for instance storage, or provisioned IOPS with EBS.

Additionally, AWS offers Spot instances, which enable you to bid on spare Amazon EC2 computing
capacity, often available at a discount compared to normal on-demand EC2 instance pricing.

EC2, as well as all other AWS services, is located in an AWS region. There are currently nine
regions, which include the following:

» US East (N. Virginia)

» US West (Oregon)

» US West (N. California)
» EU (Ireland)

» EU (Frankfurt)

» Asia Pacific (Singapore)
» Asia Pacific (Sydney)

» Asia Pacific (Tokyo)

» South America (Sao Paulo)

S3

Simple Storage Service (S3) is Amazon’s cloud-based object store. An object store manages
data (such as files) as objects. These objects exist in buckets. Buckets are logical, user-created
containers with properties and permissions. S3 provides APIs for users to create and manage
buckets as well as to create, read, and delete objects from buckets.

The S3 bucket namespace is global, meaning that any buckets created must have a globally
unique name. The AWS console or APIs will let you know if you are trying to create a bucket
with a name that already exists.

S3 obijects, like files in HDFS, are immutable, meaning they are write once, read many. When
an S3 object is created and uploaded, an ETag is created, which is effectively a signature for the
object. This can be used to ensure integrity when the object is accessed (downloaded) in the future.

There are also public buckets in S3 containing public data sets. These are datasets provided

for informational or educational purposes, but they can be used for data operations such

as processing with Hadoop. Public datasets, many of which are in the tens or hundreds of
terabytes, are available, and topics range from historical weather data to census data, and from
astronomical data to genetic data.

More information about S3 is available at https://aws.amazon.com/s3/.

40 HOUR 3: Deploying Hadoop

Elastic MapReduce (EMR)

Elastic MapReduce (EMR) is Amazon’s Hadoop-as-a-Service platform. EMR clusters can be
provisioned using the AWS Management Console or via the AWS APIs. Options for creating
EMR clusters include number of nodes, node instance types, Hadoop distribution, and additional
ecosystem applications to install.

EMR clusters can read data and output results directly to and from S3. They are intended to be
provisioned on demand, run a discrete workflow, a job flow, and terminate. They do have local
storage, but they are not intended to run in perpetuity. You should only use this local storage for
transient data.

EMR is a quick and scalable deployment method for Hadoop. More information about EMR can
be found at https://aws.amazon.com/elasticmapreduce/.

AWS Pricing and Getting Started

AWS products, including EC2, S3, and EMR, are charged based upon usage. Each EC2 instance
type within each region has an instance per hour cost associated with it. The usage costs per
hour are usually relatively low and the medium- to long-term costs are quite reasonable, but the
more resources you use for a longer period of time, the more you are charged.

If you have not already signed up with AWS, you're in luck! AWS has a free tier available for
new accounts that enables you to use certain instance types and services for free for the first
year. You can find out more at https://aws.amazon.com/free/. This page walks you through
setting up an account with no ongoing obligations.

Once you are up and running with AWS, you can create an EMR cluster by navigating to the
EMR link in the AWS console as shown in Figure 3.8.

Additional Resources.

® reeavack @ Englisn

FIGURE 3.8
AWS console—EMR option.

Summary 41

Then click Create Cluster on the EMR welcome page as shown in Figure 3.9, and simply follow
the dialog prompts.

AWS Elastic MapReduce I X

& C' | @ https;//ap-southeast-2.console.aws.amazon.com/elasticmapreduce/home?region=ap-southeast-2 w8 fr=

W@ AWS v Services v AVENSOLUTIONS v Sydney v Support v

Welcome to Amazon Elastic MapReduce Additional Information

More about Elastic MapReduce
Amazon Elastic MapReduce (Amazon EMR) is a web service that enables businesses, researchers, data

analysts, and developers to easily and cost-effectively process vast amounts of data EMR overview

FAQs

Pricin
You do not appear to have any clusters. Create one now: 9

More Help Using Elastic MapReduce
o

Documentation

How Elastic MapReduce Works Developer Guide

API Reference

EMR on GitHub
Upload Create Monitor Help portal

® o A

Upload your data and processing Configure and create your cluster by Monitor the health and progress of

application to S3. specitying data inputs, outputs, your cluster. Retrieve the output in
cluster size, security settings, etc. 3,
Learn more Learn more Learn more

AWS EMR welcome screen.

You can use an EMR cluster for many of our exercises. However, be aware that leaving the cluster
up and running will incur usage charges.

Summary

In this hour you learned about the various approaches to deploying a Hadoop cluster including
the Apache releases, commercial distributions and cloud deployment options. Commercial
distributions are often the best approach to deploying Hadoop on premise in most organizations
as these distributions provide a stable, tested combination of core and ecosystem releases, as well
as typically providing a suite of management capabilities useful for deploying and managing
Hadoop clusters at scale.

You also learned how to provision Hadoop clusters in the cloud by using the Amazon Web
Services Hadoop-as-a-Service offering—Elastic MapReduce (EMR). You are encouraged to explore
all the options available to deploy Hadoop. As you progress through the book you will be
performing hands-on exercises using Hadoop, so you will need to have a functional cluster. This
could be one of the sandbox or quickstart commercial offerings or the Apache Hadoop cluster we
set up in the Try it Yourself exercise in this hour.

42 HOUR 3: Deploying Hadoop

Q&A

Q. Why do master nodes normally require a higher degree of fault tolerance than slave nodes?

A. Slave nodes are designed to be implemented on commodity hardware with the expectation
of failure, and this enables slave nodes to scale economically. The fault tolerance and
resiliency built into HDFS and YARN enables the system to recover seamlessly from a failed
slave node. Master nodes are different; they are intended to be “always on.” Although there
are high availability implementation options for master nodes, failover is not desirable.
Therefore, more local fault tolerance, such as RAID disks, dual power supplies, etc., is
preferred for master nodes.

Q. What does JBOD stand for, and what is its relevance for Hadoop?

A. JBOD is an acronym for “Just a Bunch of Disks,” which means spinning disks that operate
independently of one another, in contrast to RAID, where disks operate as an array. JBOD
is recommended for slave nodes, which are responsible for HDFS block storage. This is
because the average speed of all disks on a slave node is greater than the speed of the
slowest disk. By comparison, RAID read and write speeds are limited by the speed of the
slowest disk in the array.

Q. What are the advantages to deploying Hadoop using a commercial distribution?

A. Commercial distributions contain a “stack” of core and ecosystem components that are
tested with one another and certified for the respective distribution. The commercial
vendors typically include a management application, which is very useful for managing multi-
node Hadoop clusters at scale. The commercial vendors also offer enterprise support as an
option as well.

Workshop

The workshop contains quiz questions to help you solidify your understanding of the material
covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz
1. True or False: A Java Runtime Environment (JRE) is required on hosts that run Hadoop
services.

2. Which AWS Paa$S product is used to deploy Hadoop as a service?
A. EC2

B. EMR

C. S3

D. DynamoDB

Workshop 43

3. Slave nodes are typically deployed on what class of hardware?

4. The open source Hadoop cluster management utility used by Hortonworks is called

Answers

1. True. Hadoop services and processes are written in Java, are compiled to Java bytecode,
and run in Java Virtual Machines (JVMs), and therefore require a JRE to operate.

2. B. Elastic MapReduce (EMR).
3. Commodity.
4. Ambari.

A

access control policies, 416-418
accumulators, 436
Accumulo, 305-306

ACLs (access control lists) in
HDFS, 53-54

action nodes, 307
actions on RDDs, 231

ADD PARTITION statement
(Hive), 200

administration

of HDFS, 422-424

of Hive, 425-426

of YARN, 424-425
advanced analytics use case, 7-8
aged history offload, 445
agents (Flume), 64-65

channels, 67

sinks, 66-67

sources, 65-66
aggregating data

in Hive, 176

in Pig, 143

Index

Amazon Web Services (AWS)

deploying Hadoop clusters,
38-41

EC2, 38-39

EMR, 40

pricing, 40-41

S3, 39
Ambari. See Apache Ambari
Ambari Views, 335-336
analyzing data in Hive, 175
Apache Ambari, 333-336

Ambari Views, 335-336

architecture, 334-335

configuration management,
345-346

deploying services, 337-340
installing, 335, 351

monitoring and trouble-
shooting clusters, 347-350

securing clusters, 351

service management,
344-345

Apache Avro project, 105
Apache Cassandra. See Cassandra

Apache DataFu, 158

454 Apache Dirill

Apache Drill, 208, 216-217
Apache Flink, 208
Apache Flume, 63-70
architecture, 64-67
installing, 67-70
Apache HAWQ, 208, 216
Apache Hive. See Hive
Apache Kafka, 313-315, 447
Apache Knox, 415-416
Apache Mahout, 320, 450
Apache Parquet, 209-210
Apache Pig. See Pig
Apache Presto, 208
Apache Ranger, 417
Apache Sentry, 418

Apache Software Foundation
(ASF), 2

Apache Spark. See Spark
Apache Storm, 311-312
Apache Tez, 208, 214-216
Apache Thrift, 319

Apache Zeppelin, 323-324
appenders (Log4j), 427

ApplicationMaster, 16, 96,
281, 283

applications
log files within, 430-431
MapReduce
compiling and packaging,
114-116
components of, 106-108
counters, 434-439
writing in Java, 109-114
Pig
parameterizing, 159-160
reusing code, 160-161

Spark
planning, 226
scheduling, 226
support for, 222
YARN
killing, 288-289
running, 96-99, 281-284
scheduling, 293-298
architecture
of Apache Ambari, 334-335

of Cloudera Manager,
331-332

of Flume, 64-67
of HBase, 268-269
of Kafka, 314-315
of Oozie, 309
of Spark, 225
drivers, 226-227
executors, 227
of YARN, 279-281
archiving in HDFS, 402
ARRAY datatype, 187-188

ASF (Apache Software
Foundation), 2

asymmetry of MapReduce, 89-90
atoms (Pig Latin), 128

attribute value pairs. See key
value pairs

authentication, 54, 411
in HUE, 255
for web Uls, 407-409
authorization, 53, 411
Hive, 169-171
in HUE, 256
automating Hive

custom scripts, 186-187

parameterizing queries,
185-186

auxiliary services in YARN, 284
Avro format, 105, 318-319
AWS (Amazon Web Services)

deploying Hadoop clusters,
38-41

EC2, 38-39
EMR, 40
pricing, 40-41
S3, 39

backing up NameNodes, 423
bags (Pig Latin), 128, 133
balancer utility, 361-362
Beeline, 168
Beeswax, 168
benchmarking Hadoop, 362-365
best practices
data ingestion, 77-78
debugging, 440
big data, history of, 1-2
Bigtable, 263-264
blocks in HDFS, 12, 46-48
DataNodes, 49-50
distribution of, 47
failure recovery, 48
replication of, 47-48
blueprints (Ambari), 339-340
box classes, 104
bucketing in Hive, 201-202
built-in functions
in Hive, 175-176
in Pig, 136

C

caching in HDFS, 401
CapacityScheduler, 295-298
Cassandra, 273

CQL, 273-274

data model, 273

with Hadoop, 274-275

Cassandra Query Language (CQL),
273-274

CEP (Complex Event Processing),
447-448

channels (Flume agents), 67

classes (Java), naming
conventions, 106

CLI (command line interface)
Hive, 168-169
YARN, 289-290

client properties for HDFS,
376-377

cloud, deploying Hadoop clusters,
38-41

Cloudera, 5-6, 33-34

Cloudera Enterprise, 331

Cloudera Express, 331

Cloudera Impala, 208, 211-214

Cloudera Manager, 330-333
architecture, 331-332

configuration management,
342-344

deploying services, 340
editions, 331
installing, 332-333, 351

monitoring and trouble-
shooting clusters, 347-350

securing clusters, 351

service management,
340-342

software distribution, 332

cluster management,
329-330, 351

Apache Ambari, 333-336
Ambari Views, 335-336
architecture, 334-335

configuration management,
345-346

deploying services,
337-340
installing, 335, 351

monitoring and trouble-
shooting clusters,
347-350

securing clusters, 351

service management,
344-345

Cloudera Manager, 330-333
architecture, 331-332

configuration management,
342-344

deploying services, 340
editions, 331
installing, 332-333, 351

monitoring and trouble-
shooting clusters,
347-350

securing clusters, 351

service management,
340-342

software distribution, 332
cluster processes
HDFS, 11-14, 21
DataNodes, 49-50
NameNode, 48-49

clusters 455

SecondaryNameNode,
55, 60

YARN, 14-17, 21, 279-281
clusters, 4
adding nodes to, 356-359

decommissioning nodes from,

359-361
deploying

Apache Ambari, 337-340

in cloud, 38-41

Cloudera Manager,
33-34, 340

commercial Hadoop,
33-38, 42

Hortonworks, 35-36

MapR, 36-38

non-commercial Hadoop,
27-32

deployment modes, 18-20

Hadoop cluster architecture,
17-18

in HBase, 268-269

master-slave cluster
architecture, 12

monitoring
Apache Ambari, 347-350

Cloudera Manager,
347-350

counters, 434-439

MBeans, 432-434
rebalancing, 361-362
securing

Apache Ambari, 351

Cloudera Manager, 351

ecosystem projects,
315-318

456 clusters

starting and stopping
services, 421-422

troubleshooting
Apache Ambari, 347-350

Cloudera Manager,
347-350

COGROUP statement (Pig),
144-145

cogrouping multiple datasets in
Pig, 144-145

co-locating slave nodes, 21
column encryption with Hive, 197
columnar storage, 208-209
ORC format, 210-211
Parquet format, 209-210

Combiner functions of
MapReduce, 88-89, 117

comments in Pig Latin, 131

commercial Hadoop distributions,
5-6, 33-38, 42

common properties
for HDFS, 372-373
for YARN, 377

community function libraries in
Pig, 157-158

compiling MapReduce
applications, 114-116

complex datatypes in Hive,
187-190

Complex Event Processing (CEP),
447-448

concatenating multiple datasets
in Pig, 153

configuration, 367-368
default values, 368-369
exclude files, 359-361
hadoop-env.sh file, 371

hadoop-metrics.properties
file, 372

HBase, 383
HDFS
client properties, 376-377

common properties,
372-373

DataNode properties,
375-376

NameNode properties,
373-374

SecondaryNameNode
properties, 374-375

Hive, 169, 178-179, 381
HUE, 251-255
include files, 357-359
Job object and, 107
log4j.properties file, 371
Pig, 381-382
precedence rules, 369-370
Spark, 382
YARN, 285-286

common properties, 377

MapReduce properties,
379-380

NodeManager properties,
377-379

YARN CapacityScheduler, 298
configuration management

Apache Ambari, 345-346

Cloudera Manager, 342-344
consistency in HDFS, 54
containers, 15, 96
Context object, 112-113
CONTEXT_NGRAMS function, 195
control flow nodes, 306-307

core-site.xml properties, 372-373

counters, 434-439
counting words, 92-95

CQL (Cassandra Query Language),
273-274

CREATE TABLE statement (Hive),
172

cross joins in Pig, 154-155
CROSS statement (Pig), 154-155
custom connectors for Sqoop, 73
custom scripts in Hive, 186-187
Cutting, Doug, 1-2

daemons, 11
in HDFS, 21
log files for, 428-430
in YARN, 21, 279-281

DAGs (Directed Acyclic Graphs),
215

data
aggregating
in Hive, 176
in Pig, 143

analyzing in Hive, 175
distribution in HBase,
268-269

extracting with Regex SerDe,
191

filtering in Pig, 133, 150
grouping

in Hive, 176

in Pig, 141-142
ingesting

best practices, 77-78

with Flume, 63-70

with RESTful interfaces,
74-77

with Sqoop, 70-74
inspecting schema in Pig, 135
joining in Hive, 176-177
loading

in Hive, 174

in Pig, 131-133
multiple datasets (Pig)

cogrouping, 144-145

concatenating, 153

cross joins, 154-155

joining, 145-151

removing duplicates, 154

splitting, 155-156

subtracting tuples, 154
nested FOREACH statements

in Pig, 143-144
ordering in Pig, 134
outputting in Hive, 180-181
projecting and transforming in
Pig, 134

running queries in Pig,
136-138

data center, Hadoop integration
in, 443-444
data ingestion utilities, 301-303

Flume, 302-303. See also
Flume

Sqgoop, 302. See also Sqoop
data locality, 2-3, 8, 229
data masking in Hive, 196-199
data processing. See HBase; Hive;
MapReduce; Pig; Spark
data science. See advanced
analytics use case

data storage and exchange
formats, 318-319

data structures in Pig Latin, 128
data transport encryption, 410

data warehouse offload use case,
7, 445-446-447

databases
conventional, 167
Hive, 169
DataFrames, 234-236
DataFu, 158
DataNodes, 13, 49-50
block distribution, 359
block failure recovery, 48
properties for HDFS, 375-376
datatypes
in Hadoop, 104
in Hive, 171, 187-190
in Pig Latin, 129-130
debugging. See troubleshooting

decommissioning nodes from
clusters, 359-361

deep storage, 444

default configuration values,
368-369

deleting
directories in HDFS, 57
files in HDFS, 57
deploying
clusters
Apache Ambari, 337-340
in cloud, 38-41

Cloudera Manager, 33-34,
340

commercial Hadoop,
33-38, 42

Hortonworks, 35-36

directories in HDFS 457

MapR, 36-38

non-commercial Hadoop,
27-32

Hive, 169, 178-179

NameNode high availability,
393-398

deployment modes, 18-20

deprecation of property names,
368

dereferencing operator, 143
DESCRIBE FUNCTION statement
(Hive), 176

DESCRIBE statement

in Hive, 172

in Pig, 135
deserialization, 103
dfsadmin command, 422-423
dfs.blocksize property, 376

dfs.datanode.data.dir property,
375

dfs.datanode.du.reserved property,
375-376-376

dfs.namenode.checkpoint.dir
property, 374-375

dfs.namenode.checkpoint.period
property, 374-375

dfs.namenode.checkpoint.txns
property, 374-375

dfs.namenode.edits.dir property,
373-374

dfs.namenode.name.dir property,
373-374

dfs.replication property, 376

Directed Acyclic Graphs (DAGs),
215

directories in HDFS
deleting, 57

458 directories in HDFS

listing contents, 57
paths, 56
DISTINCT statement (Pig), 154

distributed computing, limitations
of, 82

DistributedCache, 118-119
document stores, 265
downloading
files in HDFS, 57
Oozie, 311
Drill, 208, 216-217
drivers

MapReduce, 106-107,
109-111

Spark, 226-227
DROP PARTITION statement
(Hive), 200
DStreams, 236-237, 312-313
DUMP statement (Pig), 138
duplicates, removing in Pig, 154

EC2 (Elastic Compute Cloud),
38-39
ecosystem projects, 4-5, 301.
See also names of specific
ecosystem projects
data ingestion utilities,
301-303

data processing utilities,
303-304

data storage and exchange
formats, 318-319

infrastructure and security,
315-318

machine learning, 319-323
NoSQL solutions, 305-306
notebook platforms, 323-325
search platforms, 306
stream processing, 311-315
workflow tools, 311

edits file, 54

Elastic Compute Cloud (EC2),
38-39

election analogy for MapReduce,
91-92

EMR (Elastic MapReduce), 40
encryption

data at rest, 411

data transport encryption, 410

enterprise integration of Hadoop,
443-444. See also use cases

environment variables for all
users, 59

event lakes, 448

event processing use case, 7,
447-449

exclude files, configuring,
359-361

executing queries in Hive,
203-204

executors, Spark, 227

EXPLAIN statement (Hive), 203

EXPLODE function, 192

extending MapReduce, 120

extensions to Spark
GraphFrames, 239-240
GraphX, 239-240
MLlib, 238-239, 450
Spark Streaming, 236-237
SparkR, 237-238
SparkSQL, 234-236

external tables, internal versus,
173

extracting data with Regex SerDe,
191

F

failover, types of, 392-393
failure recovery
HDFS blocks, 48
YARN, 283-284
FairScheduler, 293-295
fault tolerance, 12
MapReduce, 88
master and slave nodes, 42
with RDDs, 230-231
YARN, 283-284
feature engineering, 449-450
federation in HDFS, 398-401
fencing, 391-392
fields (Pig Latin), 128
FIFOScheduler, 293
file globs, 111
files in HDFS, 12, 46-48
deleting, 57
downloading, 57
ingesting, 56
reading and writing,
50-52, 60
FILTER statement (Pig), 133
filtering data in Pig, 133, 150
Flink, 208
Flume, 63-70, 302-303
architecture, 64-67
installing, 67-70

FOREACH statement (Pig), 134
built-in functions, 136
nesting, 143-144

fs.defaultFS property, 372

fsimage file, 54

full outer joins, 145

fully-distributed mode, 18

functions
built-in functions in Pig, 136

text processing in Hive,
192-193-194

UDFs. See UDFs (user-defined
functions)

future of NoSQL, 275

G

GRANT statement (Hive), 170
graph processing with Spark,
239-240
graph stores, 265
GraphFrames, 239-240
GraphX, 239-240
GROUP ALL statement (Pig), 143
GROUP statement (Pig), 141-142
grouping
data
in Hive, 176
in Pig, 141-142

multiple datasets in Pig,
144-145

grunt shell (Pig), 127-128

HDFS (Hadoop Distributed File System) 459

H,0, 321-322, 450

Hadoop
Cassandra with, 274-275
cluster architecture, 17-18
commercial distributions, 5-6
core components, 3-4, 9
deployment modes, 18-20
ecosystem projects, 4-5

enterprise integration in
data center, 443-444

explained, 2-3
HBase with, 272
history of, 1-2
installing, 26-27
in cloud, 38-41
Cloudera Manager, 33-34
commercial Hadoop,
33-38, 42
Hortonworks, 35-36
MapR, 36-38
non-commercial Hadoop,
27-32
MapReduce in, 95-96
requirements
hardware, 24-26
operating system, 23-24
software, 26
use cases, 6-8
data warehouse offload,
445-446-447
event processing,
447-449
predictive analytics,
448-450

Hadoop Distributed File System
(HDFS). See HDFS (Hadoop
Distributed File System)

Hadoop User Environment
(HUE). See HUE (Hadoop User
Environment)

hadoop-env.sh file, 371

hadoop-metrics2.properties file,
433-434

hadoop-metrics.properties file,
372

hadoop.tmp.dir property, 377
hardware requirements, 24-26

hashing functions in Hive,
196-199

HAWQ, 208, 216

HBase, 265, 305
architecture, 268-269
configuration, 383
data model, 266
data processing in, 266-268
with Hadoop, 272

HUE HBase browser
interface, 249

installing, 269-272
HDFS (Hadoop Distributed File
System), 3-4, 9

ACLs, 53-54

administration, 422-424

archiving, 402

blocks, 12, 46-48
distribution of, 47
failure recovery, 48
replication of, 47-48

caching, 401

cluster processes, 11-14, 21

460 HDFS (Hadoop Distributed File System)

DataNodes, 49-50
NameNode, 48-49

SecondaryNameNode,
55, 60

configuration
client properties, 376-377

common properties,
372-373

DataNode properties,
375-376

NameNode properties,
373-374

SecondaryNameNode
properties, 374-375

consistency, 54
daemons, 21
directories
deleting, 57
listing contents, 57
paths, 56
federation, 398-401
files, 12, 46-48
deleting, 57
downloading, 57
ingesting, 56
reading and writing,
50-52, 60

high availability, 55, 390-398
deploying, 393-398
failover types, 392-393
fencing, 391-392

HttpFsS, 76-77

interacting via HUE, 244-245

interfaces for, 56

metadata, 12, 52-53, 60

on-disk structures, 54

permissions, 53-54, 406-407

principles of, 45-46

rack awareness, 387-389

recovery, 54

replication, 46-48

safe mode, 54-55

snapshots, 401-402

Trash directory settings, 57

WebHDFS, 74-76

high availability

in HDFS, 55, 390-398
deploying, 393-398
failover types, 392-393
fencing, 391-392

for YARN Resource
Manager, 280

history
of big data, 1-2
of Hadoop, 1-2

Hive, 165-166, 303-304
administration, 425-426
authorization, 169-171
built-in functions, 175-176
CLI, 168-169
configuration, 381

conventional databases
versus, 167

creating objects, 171-173
databases, 169
datatypes
complex, 187-190
simple, 171
deploying and configuring,
169, 178-179

HUE Hive editor, 246-247
InputFormats, 173-174
metastore, 166-168
OutputFormats, 173-174
query execution, 203-204
query optimization
bucketing, 201-202
partitioning, 199-201
SerDes, 173-174
tables, 169
analyzing data, 175
grouping and aggregating
data, 176

internal versus external,
173

joining data, 176-177

loading data, 174

outputting data, 180-181
text processing

data masking and hashing,
196-199

functions for, 192-193

regular expressions,
190-192

sentiment analysis,
194-196

HiveQL, 165, 175
HiveServer 2, 168
Hortonworks, 6, 35-36
HttpFS, 76-77

HUE (Hadoop User Environment),
243-244, 258-260

advantages of, 244
authentication, 255

authorization, 256

configuring, 251-255
HBase browser interface, 249

HDFS file browser interface,
244-245

Hive editor interface, 246-247

Impala query editor, 248

installing, 251

logging in, 256-258

Oozie editor, 250, 310

Pig editor, 247-248

Solr interface, 249-250

Sqgoop interface, 251

YARN management, 245
hue.ini file, 251-255

identifiers in Pig Latin, 128-129
ILLUSTRATE statement (Pig), 135
immutability, 46

Impala, 208, 211-214, 248
IMPORT statement (Pig), 161

include files, configuring,
357-359

infrastructure projects, 315-318
ingesting
data
best practices, 77-78
with Flume, 63-70

with RESTful interfaces,
74-77

with Sqoop, 70-74
files in HDFS, 56
inner joins, 145

InputFormats, 105, 173-174

input/output types in Spark,
224-225
InputPaths, 111
INSERT statement (Hive), 181
inspecting schemas in Pig, 135
installing
Apache Ambari, 335, 351

Cloudera Manager,
332-333, 351

Flume, 67-70
Hadoop, 26-27
in cloud, 38-41
Cloudera Manager, 33-34

commercial Hadoop,

33-38, 42
Hortonworks, 35-36
MapR, 36-38
non-commercial Hadoop,

27-32

HBase, 269-272

HUE (Hadoop User
Environment), 251

Pig, 126
Spark, 232-234

internal tables, external
versus, 173

loT (Internet of Things), 448
IPython, 324

J

Java classes, naming
conventions, 106

Java Database Connectivity
(JDBC), 71, 73

key value pairs 461

Java MapReduce API
applications
compiling and packaging,
114-116
writing, 109-114
Combiner functions, 117
DistributedCache, 118-119
Hadoop datatypes, 104
InputFormats, 105
OutputFormats, 106
Partitioners, 117-118
SequenceFiles, 105
serialization, 103
Java Virtual Machine (JVM), 19

JBOD (just a bunch of disks),
25,42

JDBC (Java Database
Connectivity), 71, 73

Job object, configuration and, 107
JOIN statement

in Hive, 176

in Pig, 149-150
joining

data in Hive, 176-177

multiple datasets in Pig,
145-151

joins, types of, 145
Jupyter, 324-325
JVM (Java Virtual Machine), 19

K

Kafka, 313-315, 447
Kerberos, 411-414
key value pairs, 83-84, 114

462 key value pairs

datatypes, 104

serialization, 103
key value stores, 265
keywords in Pig Latin, 129
killing

applications in YARN,

288-289

Hive queries, 203

Knox, 415-416

L

LATERAL VIEW clause, 193

lazy evaluation in Spark, 231-232

left outer joins, 145
LEFT SEMI JOIN statement
(Hive), 177
LEVENSHTEIN function, 196
libraries in Pig, 157-158
linear scalability, 355-356
Lisp, 84-85
listing directory contents
in HDFS, 57
listings
accessing files in
DistributedCache, 119
accessing HBase from
PySpark, 272
accessing logs for completed
applications, 430-431

accessing MRJobHistory
Server via REST, 292

accessing SparkSQL
DataFrames, 235-236

actions in Spark, 231

ADD FILE and TRANSFORM
statements, 187

ADD PARTITION statement,
200

adding files to
DistributedCache from
command line, 119

adding Hadoop environment
variables for all users, 59

adjusting daemon log
level, 429

adjusting log level
programmatically, 430
Ambari blueprints, 339-340

Apache DataFu function
library, 158

ARRAY datatype, 188
array() function, 188

assigning cluster ID when
formatting NameNode, 399

assigning HDFS object permis-
sions and ownership, 53

AvroMapper, 318-319

backing up NameNode's
fsimage file, 424

balancer utility, 362
built-in functions in Pig, 136

changing Hive database
contexts, 169

changing object permissions,
407

changing ownership of object
in HDFS, 407

COGROUP statement, 145
comments in Pig, 131

common built-in functions
included with Pig, 136

configuring CapacityScheduler,
296-297

configuring client side mount
points for HDFS federation,
400

configuring connection to
shared Hive metastore, 381

configuring FairScheduler, 295
configuring HA fencing, 392
configuring Hive

authorization, 170

configuring SSL transport
security for YARN, 287

CONTEXT_NGRAMS
function, 195

CREATE TABLE AS
SELECT, 174

CREATE TABLE statement, 172

CREATE TABLE with
bucketing, 201
CREATE TABLE with
partitioning, 199

creating and updating Java
MapReduce counters, 435

creating directory
snapshot, 402

creating Hadoop archive, 402

creating keyspace and table in
Cassandra using cqlsh, 274

creating roles in Hive, 170

creating snapshottable
directory in HDFS, 402

creating table and inserting
data in HBase, 267

CROSS statement, 155
custom Partitioner, 118

custom transform script
written in Python, 186-187

declaring Combiner in Driver
class, 117

declaring Partitioner in Driver
class, 118

defining and calling Pig macro,
160-161

DESCRIBE FUNCTION
statement, 176

DESCRIBE statement,
135, 172

dfs.blocksize configuration
property, 376

dfs.datanode.data.dir
configuration property, 375

dfs.datanode.du.reserved
configuration property, 376

dfs.namenode.name.dir
configuration property, 374

dfs.replication configuration
property, 376

DISTINCT statement, 154

DROP PARTITION
statement, 200

enabling Capacity

Scheduler, 296
enabling FairScheduler, 294
enabling log aggregation, 379
enabling rack topology

script, 389

enabling the capability to Kill
running jobs using Ul, 288

encryption and decryption in
Hive, 197

example log events, 428
EXPLAIN statement, 203
EXPLODE function, 192
file system ACLs, 406
FILTER statement, 133

final output (word count
algorithm), 95

<final> tag, 370

Flume agent channel
configuration, 67

Flume agent sink
configuration, 66

Flume agent source
configuration, 66

FOREACH statement, 134
fs.defaultFS setting, 372
GRANT statement, 170
GROUP ALL statement, 143
GROUP statement, 142
grouping and aggregating data
in Hive, 176
Hadoop configuration needed
to join cluster, 357
hadoop-metrics2.properties
file, 433-434
hadoop.tmp.dir configuration
property, 377

hbase-site.xml configuration
file, 383

Hive built-in functions, 175
hue.ini file, 252-254
ILLUSTRATE statement, 135
IMPORT statement, 161

importing all tables from
database using Sqoop, 73

input to map task, 93

INSERT statement, 181

installing ambari-server
package using EPEL, 335

intermediate data sent to
Reducer, 94

item based recommender in
Mahout, 320

listings 463

JOIN statement, 149-150,
176

killing Hive query, 203

killing YARN application using
yarn command, 290

LATERAL VIEW clause, 193

leaving safemode, 423

LEFT SEMI JOIN statement,
177

LEVENSHTEIN function, 196
LOAD statement, 174

local execution in Hive, 204
log4j.properties file, 371, 427
manual failover, 392

MAP datatype, 190

mapreduce.framework.name
configuration property, 380

mapreduce.jobhistory.address
configuration property, 380

MASK function, 197
MD5 function, 197

MSCK REPAIR TABLE
command, 201

multiple Pig parameters in text
file, 160

nested FOREACH statements,
144

NGRAMS function, 195
ORDER statement, 134
OVERWRITE option, 174

PageRank algorithm in
Spark, 240

parameterized HiveQL
query, 185

Parquet storage, 210
PARSE_URL function, 198

464

listings

PARSE_URL_TUPLE
function, 199

passing parameters to Pig
script, 160

passing Pig parameters using
text file, 160

passing shell command return
values to Pig script, 160

performing snapshot dff, 402
Pig dryrun option, 161

Pig identifiers, 129

Pig program, 126

Pig program variables sourced
from parameters, 159

Pig properties file, 382
Pig reserved keywords, 129
Pig UDF written in Jython, 157

PiggyBank function library,
158

PigStorage LOAD function,
132

POSEXPLODE function, 193
rack topology script, 389
RDDs in Spark, 228

reading MapReduce counters,
435

referencing Hive objects, 169
refreshing CapacityScheduler
configuration, 297
Regex SerDe, 191
REGEXP_EXTRACT
function, 191
REGEXP_REPLACE
function, 192
registering and using Pig
UDF, 157

REST access to HDFS using
WebHDFS, 74

RESTful HDFS access using
HttpFS, 77

REVOKE statement, 170

running Hive queries in batch
mode, 169

sample datasets, 142

sample Oozie workflow
document, 307-308

scanning HBase table, 267

schematool usage to initialize
metastore schema, 425

securing NameNode's web Ul
using HTTPS, 408

SELECT statement, 175

selecting ARRAY
elements, 188

selecting MAP values, 190

selecting STRUCT
elements, 189

SENTENCES function, 194

SET statement, 186

setting Hive variable via the
command line, 186

setting Spark configuration
properties programmatically,
382

SHOW PARTITIONS
statement, 200

SOUNDEX function, 196

Spark configuration
properties, 382

Spark MLlib, 320-321

specifying log4j.properties file
for application, 428

specifying number of Reduce
tasks from command line,
110

SPLIT function, 192

SPLIT statement, 155-156
Sqoop tools, 72-73
Sqgoop2 shell, 302

starting services in
Hadoop, 422

STREAM statement, 159
STRUCT datatype, 189

submitting Oozie workflow
using command line
client, 309

submitting Spark
application, 224
submitting streaming
MapReduce job, 122
SUBTRACT statement, 154
SUM function, 143

supplying schemas for bags in
Pig, 132-133

TABLESAMPLE operator, 202

Timeline Server
REST API, 293

ToolRunner command line
generic options, 110

training a decision tree model
with Spark MLlib, 239

transformations in Spark, 231

transport security for
intermediate data, 410

UNION statement, 153

updating cell in HBase
table, 268

updating data in Cassandra
table using Spark, 275

MapReduce Streaming API 465

valid and invalid Pig
identifiers, 129

ViewFS, 400

viewing YARN logs using yarn
command, 290-291

log aggregation in YARN,
290-291, 379

log files
within applications, 430-431
for daemons, 428-430
Logdj, 426-427
log4j.properties file, 371,

427-428

mapred-site.xml file, 379

MapReduce. See also Java
MapReduce API

applications
compiling and packaging,
114-116
components of, 106-108
writing in Java, 109-114

web log schema using RegEx
SerDe, 198

word count mapper in

Python, 121 Logdj, 426-427 asymmetry, 89-90
word count reducer in log4j.properties file, 371, Combiner functions,

Python, 121 427-428 88-89, 117
WordCount Driver class, 109 logging in to HUE, 256-258 counters, 434-439
WordCount Mapper class, 111 Lucene, 306 design goals of, 83

WordCount Reducer
class, 113

yarn command, 289

LVM (Logical Volume
Manager), 24

election analogy, 91-92
EMR, 40

extending, 120
yarn command usage to con-

trol YARN applications, 425

YARN container related con-
figuration parameters, 282

yarn.app.mapreduce.
am.staging-dir configuration
property, 380

yarn.nodemanager.aux-
services configuration
property, 378

yarn.nodemanager.local-dirs
configuration property, 378

machine learning, 319-323
with H,0, 321-322
with Mahout, 320

predictive analytics use case,
448-450

Presto, 323

with Spark, 238-239,
320-321

fault tolerance, 88

Google whitepapers on, 81

in Hadoop, 95-96

history with YARN, 291-293
key value pairs, 83-84
LocalJobRunner mode, 19-20
Map phase, 85-86, 98
Map-only applications, 90-91
motivation for, 82
Partitioners, 86-87, 117-118

programming model, 84-85
properties for YARN, 379-380
Reduce phase, 87-88, 98-99
Shuffle and Sort phase,

yarn.nodemanager.log-dirs macros in Pig, 160-161

Mahout, 320, 450
MAP datatype, 189-190

configuration property, 379
LOAD statement (Hive), 174

loading data Map phase of MapReduce, 87,98
in Hive, 174 -
s 85-86, 98 speculative execution, 89-90
in Pig, 131-133 Map-only MapReduce applications, Sqoop and, 71-72
local mode, running Hive, 90-91 .
word count algorithm, 92-95
203-204

Mappers (in MapReduce),
107-108, 111-113

MapR, 6, 36-38

MapReduce Streaming API,

LocalJobRunner mode, 19-20
120-122

466

mapreduce.framework.name
property, 380

mapreduce.jobhistory.address
property, 380

MASK function, 197

master nodes
fault tolerance, 42
hardware requirements, 24

master-slave cluster
architecture, 12

mathematical operators in Pig
Latin, 130-131

MBeans, 432-434

metadata in HDFS, 12, 52-53, 60

metastore (Hive), 166-168,
425-426

metrics framework, 432-434
MLIib, 238-239, 320-321, 450
monitoring clusters
Apache Ambari, 347-350
Cloudera Manager, 347-350
counters, 434-439
MBeans, 432-434
MRJobHistory Server, 291-292
MSCK REPAIR TABLE command
(Hive), 201
multiple datasets
cogrouping in Pig, 144-145
concatenating in Pig, 153
cross joins in Pig, 154-155
joining in Pig, 145-151
removing duplicates in Pig,
154
splitting in Pig, 155-156

subtracting tuples in Pig, 154

mapreduce.framework.name property

name value pairs. See key
value pairs

NameNodes, 12-13, 48-49
backing up, 423
federation, 398-401
high availability, 390-398
deploying, 393-398
failover types, 392-393
fencing, 391-392
metadata, 52-53, 60
properties for HDFS, 373-374
safe mode, 54-55
as single point of failure, 55
nameservices, 394
naming conventions
bags (Pig Latin), 133
Java classes, 106
in Pig Latin, 128-129, 131
nested FOREACH statements
(Pig), 143-144

networks, hardware
requirements, 26

n-grams, 156-157, 194-195
NGRAMS function, 194-195
NodeManager, 16, 96, 281

failure recovery, 283

properties for YARN, 377-379
nodes, 4

action nodes, 307

adding to cluster, 356-359

control flow nodes, 306-307

decommissioning from cluster,
359-361

master nodes
fault tolerance, 42
hardware requirements, 24
slave nodes
co-locating, 21
fault tolerance, 42
hardware requirements, 25

non-commercial Hadoop installing,
27-32

normalizing text, 195

NoSQL, 305-306. See also
Cassandra; HBase

Bigtable and, 263-264
characteristics of, 264-265
future of, 275
implementations of, 275
types of systems, 265
notebook platforms, 323-325

o

object identifiers in Pig Latin,
128-129
objects (Hive), creating, 171-173
ODPi (Open Data Platform
initiative), 6
on-disk structures in HDFS, 54
on-platform analytics, 450
Oozie
architecture, 309
downloading, 311
HUE Oozie editor, 250, 310
workflows, 306-308,
309-310
Open Data Platform initiative
(ODPi), 6

operating system requirements,
23-24

operators

mathematical operators in Pig
Latin, 130-131

relational operators in Pig
Latin, 130

optimizing
joins in Pig, 147
queries in Hive, 199-202

ORC (Optimized Row Columnar)
format for columnar storage,
210-211

ORDER statement (Pig), 134
ordering data in Pig, 134

outer joins, 145

OutputFormats, 106, 173-174
outputting data in Hive, 180-181

P

packaging MapReduce
applications, 114-116

PageRank, 240
parallel execution in Hive, 203
parameterizing
applications in Pig, 159-160
queries in Hive, 185-186

Parquet format for columnar
storage, 209-210

parsing URLs in Hive, 198-199
Partitioners, 86-87, 117-118
partitioning in Hive, 199-201
paths for directories, 56

performance benchmarking
Hadoop, 362-365

perimeter security, 414-416

permissions in HDFS, 53-54,
406-407

persistence with RDDs, 229

persistent staging offload,
445-446

Pig, 125-126, 304
applications
parameterizing, 159-160
reusing code, 160-161
built-in functions, 136
configuration, 381-382
data
aggregating, 143
filtering, 133, 150
grouping, 141-142
inspecting schema, 135
loading, 131-133

nested FOREACH state-
ments, 143-144

ordering, 134
projecting and
transforming, 134

running queries, 136-138

grunt shell, 127-128

HUE Pig editor, 247-248

installing, 126

modes, 127

multiple datasets
cogrouping, 144-145
concatenating, 153
cross joins, 154-155
joining, 145-151
removing duplicates, 154
splitting, 155-156
subtracting tuples, 154

projecting data in Pig 467

STREAM statement, 158-159
UDFs

community function
libraries, 157-158

registering, 157
writing, 156-157
WordCount example, 151
Pig Latin, 125
comments, 131
data structures, 128

mathematical operators,
130-131

object identifiers, 128-129
program flow, 128
relational operators, 130
simple datatypes, 129-130
statements, 131
PiggyBank, 157-158
Pivotal HAWQ, 208, 216

planning applications in Spark,
226

policies, access control, 416-418
POSEXPLODE function, 193

precedence rules in configuration,
369-370

predictive analytics use case, 7-8,
448-450

preemption, 295

Presto, 208, 323

pricing AWS, 40-41

processing data. See HBase; Hive;
MapReduce; Pig; Spark

programming interfaces to Spark,
222-225

programming model of
MapReduce, 84-85

projecting data in Pig, 134

468 properties

properties

client properties for HDFS,
376-377

common properties
for HDFS, 372-373
for YARN, 377

DataNode properties for
HDFS, 375-376

MapReduce properties for
YARN, 379-380

NameNode properties for
HDFS, 373-374

NodeManager properties for
YARN, 377-379

SecondaryNameNode proper-
ties for HDFS, 374-375

property names, deprecation, 368
pseudo-distributed mode, 19
PySpark, 223

Q

queries

custom scripts in Hive,
186-187

executing in Hive, 203-204

optimizing in Hive
bucketing, 201-202
partitioning, 199-201

parameterizing in Hive,
185-186

running in Pig, 136-138

rack awareness in HDFS,
387-389

Ranger, 417

RBAC (role-based access control),
416-418

RDDs (Resilient Distributed
Datasets), 227-229

actions, 231

data locality, 229

fault tolerance, 230-231

lineage, 229-230

persistence and re-use, 229

transformations, 231
reading files in HDFS, 50-52
rebalancing clusters, 361-362

RecordReader objects,
InputFormats, 105

records in MapReduce, 83-84

recovery in HDFS, 54

Reduce phase of MapReduce,
87-88, 98-99

Reducers (in MapReduce), 108,
113-114

Regex SerDe, 191
REGEXP_EXTRACT function, 191
REGEXP_REPLACE function, 192
registering UDFs in Pig, 157

regular expressions in Hive,
190-192

relational operators in Pig
Latin, 130

relations (Pig Latin), 128
removing
duplicates in Pig, 154
tuples in Pig, 154

replication in HDFS, 46-48
requirements
hardware, 24-26
operating system, 23-24
software, 26

Resilient Distributed Datasets
(RDDs). See RDDs (Resilient
Distributed Datasets)

ResourceManager, 15, 96,
280, 284

ResourceManager Ul, 286-289

ResourceRequests, 281-283

resources for information, 440

RESTful interfaces, data ingestion
with, 74-77

re-use with RDDs, 229

reusing code in Pig, 160-161

REVOKE statement (Hive), 170

right outer joins, 145

role-based access control (RBAC),
416-418

running

applications on YARN, 96-99,
281-284

Hive in local mode, 203-204
queries in Pig, 136-138

S

S3 (Simple Storage Service), 39
safe mode in HDFS, 54-55
sbhin directory scripts, 422
Scala, 224

scaling Hadoop

adding nodes to cluster,
356-359

benchmarking, 362-365

decommissioning nodes from
cluster, 359-361

linear scalability, 355-356

rebalancing clusters, 361-362

when to scale, 356
scheduling applications

in Spark, 226

in YARN, 293-298
schema-on-read systems, 3
schema-on-write systems, 3
schemas, inspecting in Pig, 135

scripts, custom scripts in Hive,
186-187

search platforms, 306

SecondaryNameNode, 13, 55, 60,
374-375

security

Apache Ambari, 351
authentication, 411
authorization, 411
Cloudera Manager, 351
ecosystem projects, 315-318
encryption

data at rest, 411

data transport encryption,
410

HDFS permissions, 406-407
Kerberos, 411-414
perimeter security, 414-416

RBAC (role-based access
control), 416-418

for web Uls, 407-409
SELECT statement (Hive), 175
SENTENCES function, 194

sentiment analysis in Hive,
194-196

Sentry, 418
SequenceFiles, 105

SerDes (Serializer/Deserializer),
173-174, 191

serialization, 103
service management
Apache Ambari, 344-345
Cloudera Manager, 340-342
services
starting, 421-422
stopping, 421-422
set operations (Pig)
CROSS statement, 154-155
DISTINCT statement, 154
SPLIT statement, 155-156
SUBTRACT statement, 154
UNION statement, 153
SET statement (Hive), 186
severity levels (Log4j), 426
shared nothing, 3, 9
SHOW PARTITIONS statement
(Hive), 200
shuffle, 232

Shuffle and Sort phase of
MapReduce, 87, 98

simple datatypes. See datatypes
Simple Storage Service (S3), 39
single point of failure (SPOF), 55
sinks (Flume agents), 66-67
slave nodes

co-locating, 21

fault tolerance, 42

hardware requirements, 25
snapshots in HDFS, 401-402

software distribution with
Cloudera Manager, 332

SparkSQL 469

software requirements, 26
Solr, 249-250, 306
SOUNDEX function, 196
sources (Flume agents), 65-66
Spark, 279-280, 304
accumulators, 436
application support, 222
architecture, 225
drivers, 226-227
executors, 227
configuration, 382
extensions
GraphFrames, 239-240
GraphX, 239-240

MLlib, 238-239,
320-321, 450

Spark Streaming, 236-237
SparkR, 237-238
SparkSQL, 234-236
installing, 232-234
lazy evaluation, 231-232

programming interfaces,
222-225

RDDs, 227-229
actions, 231
data locality, 229
fault tolerance, 230-231
lineage, 229-230

persistence and re-use,
229

transformations, 231

Spark Streaming, 236-237,
312-313

SparkContext, 226
SparkR, 237-238
SparkSQL, 234-236

470

spark-submit command, 224

speculative execution of
MapReduce, 89-90

SPLIT function, 192
SPLIT statement (Pig), 155-156

splitting multiple datasets in Pig,
155-156

SPOF (single point of failure), 55
SQL on Hadoop, 304
Apache Drill, 216-217
Apache HAWQ, 216
explained, 207-208
Impala, 211-214
Tez, 214-216
Sqoop, 70-74, 302
custom connectors, 73
HUE Sqoop interface, 251
MapReduce and, 71-72
Sqgoop2 (Sqoop-as-a-Service),
73-74, 302
tools, 72-73
Sqoop2 (Sqoop-as-a-Service),
73-74, 302
SSL security for YARN, 287
StandbyNameNode, 13
starting services, 421-422
statements in Pig Latin, 131
stopping services, 421-422
STORE command (Pig), 138
Storm, 311-312
stream processing, 311-315
Kafka, 313-315
Spark Streaming, 312-313
Storm, 311-312

STREAM statement (Pig),
158-159

STRUCT datatype, 189

spark-submit command

SUBTRACT statement (Pig), 154
SUM function (Pig), 143

symbolic notation for
permissions, 406

T

tables (Hive), 169
analyzing data, 175
grouping and aggregating

data, 176

internal versus external, 173
joining data, 176-177
loading data, 174
outputting data, 180-181

TABLESAMPLE operator
(Hive), 202

task failure, YARN, 283
Terasort, 363-365
text processing in Hive

data masking and hashing,
196-199

functions for, 192-193-194
regular expressions, 190-192
sentiment analysis, 194-196

TextlnputFormat, 93, 94

Tez, 208, 214-216

Thrift, 319

tiered storage, 444

Timeline Server, 292-293

tokenization, 93

tools in Sqoop, 72-73

TPC (Transaction Processing

Performance Council), 363

TRANSFORM operator (Hive),
186-187

transforming

data in Pig, 134

RDDs, 231
Transparent Encryption, 411
Trash directory settings, 57
troubleshooting

best practices for, 440

clusters

Apache Ambari, 347-350

Cloudera Manager,
347-350

log files for

within applications,
430-431

daemon logs, 428-430

Log4j, 426-427

log4j.properties file,
427-428

resources for information, 440
with web Uls, 431-432
tuples (Pig Latin), 128, 154

UDFs (user-defined functions)

community function libraries in
Pig, 157-158
registering in Pig, 157
writing in Pig, 156-157
UNION statement (Pig), 153
uploading. See ingesting
URL parsing in Hive, 198-199
use cases, 6-8

data warehouse offload,
445-446-447

event processing, 447-449
predictive analytics, 448-450

user-defined functions. See UDFs
(user-defined functions)

'}

ViewFS, 400

w

web log parsing in Hive, 198-199
web Uls
security for, 407-409

troubleshooting with,
431-432

WebHDFS, 74-76
word count algorithm, 92-95
workflows
in Oozie, 306-308, 309-310
tools for, 311
Writable interface, 104

WritableComparable
interface, 104

writing

files in HDFS, 50-52, 60

MapReduce applications,
109-114

Driver code, 109-111

Mapper code, 111-113

Reducer code, 113-114
UDFs in Pig, 156-157

Y

YARN (Yet Another Resource
Negotiator), 3-4, 9
administration, 424-425

application scheduling,
293-298

CLI usage, 289-290

cluster processes, 14-17, 21,
279-281

configuration, 285-286
common properties, 377

MapReduce properties,
379-380

NodeManager properties,
377-379

daemons, 21

job management via HUE, 245

ZooKeeper 471

log aggregation, 290-291,
379
MapReduce history, 291-293

ResourceManager Ul,
286-289

running applications on,
96-99, 281-284

yarn application commands, 424

yarn rmadmin commands, 424

yarn.app.mapreduce.am.staging-
dir property, 380

yarn.nodemanager.aux-services
property, 378

yarn.nodemanager.local-dirs prop-
erty, 377-378

yarn.nodemanager.log-dirs prop-
erty, 378-379

yarn.resourcemanager.hostname
property, 377

yarn-site.xml properties, 377

y 4

Zeppelin, 323-324
ZooKeeper, 315-318

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

