
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337888
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337888
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337888
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337888
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337888/Free-Sample-Chapter

More Effective C#

Second Edition

Wagner_Book.indb iWagner_Book.indb i 7/18/17 11:55 AM7/18/17 11:55 AM

More Effective C#
50 Specific Ways to Improve
Your C#

Second Edition

Bill Wagner

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Wagner_Book.indb iiiWagner_Book.indb iii 7/18/17 11:55 AM7/18/17 11:55 AM

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales oppor-
tunities (which may include electronic versions; custom cover designs; and content
particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017942600

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is pro-
tected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-672-33788-8
ISBN-10: 0-672-33788-6

1 17

Wagner_Book.indb ivWagner_Book.indb iv 7/18/17 11:55 AM7/18/17 11:55 AM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To Marlene, Lara, Sarah, and Scott, who provide the
inspiration for everything I do.

Wagner_Book.indb vWagner_Book.indb v 7/18/17 11:55 AM7/18/17 11:55 AM

This page intentionally left blank

 

 vii

Contents at a Glance

Introduction xi

Chapter 1 Working with Data Types 1

Chapter 2 API Design 61

Chapter 3 Task-Based Asynchronous Programming 139

Chapter 4 Parallel Processing 177

Chapter 5 Dynamic Programming 229

Chapter 6 Participate in the Global C# Community 267

Index 273

Wagner_Book.indb viiWagner_Book.indb vii 7/18/17 11:55 AM7/18/17 11:55 AM

This page intentionally left blank

 

 ix

Contents

Introduction xi

Chapter 1 Working with Data Types 1
Item 1: Use Properties Instead of Accessible Data Members 1
Item 2: Prefer Implicit Properties for Mutable Data 8
Item 3: Prefer Immutability for Value Types 12
Item 4: Distinguish Between Value Types and Reference Types 18
Item 5: Ensure That 0 Is a Valid State for Value Types 24
Item 6: Ensure That Properties Behave Like Data 28
Item 7: Limit Type Scope by Using Tuples 34
Item 8: Define Local Functions on Anonymous Types 39
Item 9: Understand the Relationships Among the Many Different

 Concepts of Equality 45
Item 10: Understand the Pitfalls of GetHashCode() 54

Chapter 2 API Design 61
Item 11: Avoid Conversion Operators in Your APIs 61
Item 12: Use Optional Parameters to Minimize Method Overloads 65
Item 13: Limit Visibility of Your Types 69
Item 14: Prefer Defining and Implementing Interfaces to Inheritance 73
Item 15: Understand How Interface Methods Differ from Virtual

Methods 82
Item 16: Implement the Event Pattern for Notifications 86
Item 17: Avoid Returning References to Internal Class Objects 93
Item 18: Prefer Overrides to Event Handlers 97
Item 19: Avoid Overloading Methods Defined in Base Classes 100
Item 20: Understand How Events Increase Runtime Coupling

Among Objects 104
Item 21: Declare Only Nonvirtual Events 107
Item 22: Create Method Groups That Are Clear, Minimal,

and Complete 113
Item 23: Give Partial Classes Partial Methods for Constructors,

Mutators, and Event Handlers 120
Item 24: Avoid ICloneable Because It Limits Your Design Choices 125
Item 25: Limit Array Parameters to params Arrays 129
Item 26: Enable Immediate Error Reporting in Iterators and

Async Methods Using Local Functions 134

Wagner_Book.indb ixWagner_Book.indb ix 7/18/17 11:55 AM7/18/17 11:55 AM

x  Contents

Chapter 3 Task-Based Asynchronous Programming 139
Item 27: Use Async Methods for Async Work 139
Item 28: Never Write async void Methods 143
Item 29: Avoid Composing Synchronous and Asynchronous Methods 149
Item 30: Use Async Methods to Avoid Thread Allocations and

Context Switches 154
Item 31: Avoid Marshalling Context Unnecessarily 156
Item 32: Compose Asynchronous Work Using Task Objects 160
Item 33: Consider Implementing the Task Cancellation Protocol 166
Item 34: Cache Generalized Async Return Types 173

Chapter 4 Parallel Processing 177
Item 35: Learn How PLINQ Implements Parallel Algorithms 177
Item 36: Construct Parallel Algorithms with Exceptions in Mind 189
Item 37: Use the Thread Pool Instead of Creating Threads 195
Item 38: Use BackgroundWorker for Cross-Thread Communication 201
Item 39: Understand Cross-Thread Calls in XAML Environments 205
Item 40: Use lock() as Your First Choice for Synchronization 214
Item 41: Use the Smallest Possible Scope for Lock Handles 221
Item 42: Avoid Calling Unknown Code in Locked Sections 225

Chapter 5 Dynamic Programming 229
Item 43: Understand the Pros and Cons of Dynamic Typing 229
Item 44: Use Dynamic Typing to Leverage the Runtime Type

of Generic Type Parameters 238
Item 45: Use DynamicObject or IDynamicMetaObjectProvider

for Data-Driven Dynamic Types 242
Item 46: Understand How to Use the Expression API 253
Item 47: Minimize Dynamic Objects in Public APIs 259

Chapter 6 Participate in the Global C# Community 267
Item 48: Seek the Best Answer, Not the Most Popular Answer 267
Item 49: Participate in Specs and Code 269
Item 50: Consider Automating Practices with Analyzers 271

Index 273

Wagner_Book.indb xWagner_Book.indb x 7/18/17 11:55 AM7/18/17 11:55 AM

 

 xi

Introduction

C# continues to evolve and change. As it does so, the community sur-
rounding it is also changing. More developers are now approaching
the C# language as their first professional programming language.
These members of our community don’t have the preconceptions com-
mon among those of us who started using C# after years of experience
with another C-based language. Even for those developers who have
been using C# for years, the recent pace of change has brought the
need to adopt many new habits. The C# language has especially seen
an increased pace of innovation since the compiler became open source.
The review of proposed features to the C# language now includes the
entire community, rather than just a small set of language experts. The
community can also participate in the design of the new features.

Changes in recommended architectures and deployments are also chang-
ing the language idioms we use as C# developers. Building applications by
composing microservices, distributed programs, and data separation from
algorithms are all part of modern application development. The C# lan-
guage has begun taking steps toward embracing these different idioms.

I organized this second edition of More Effective C# by taking into
account both the changes in the language and the changes in
the C# community. More Effective C# does not take you on a historical
journey through the changes in the language, but rather provides advice
on how to use the current C# language. The items that have been
removed from this edition are those that aren’t as relevant in today’s
C# language, or to today’s applications. The new items cover the new
language and framework features, and those practices the community
has learned from building several versions of software products using C#.
Readers of earlier editions will note that content from the previous edi-
tion of Effective C# is included in this edition, and that a larger number
of items have been removed. With the current editions, I’ve reorganized
both books. Overall, these 50 items are a set of recommendations that
will help you use C# more effectively as a professional developer.

Wagner_Book.indb xiWagner_Book.indb xi 7/18/17 11:55 AM7/18/17 11:55 AM

xii  Introduction

This book assumes you are using C# 7, but it is not an exhaustive
treatment of the new language features. Like all books in the Effective
Software Development Series, it offers practical advice on how to use
these features to solve problems that you’re likely to encounter every day.
It specifically covers C# 7 features when new language features intro-
duce new and better ways to write common idioms. Internet searches
may still turn up earlier solutions that have years of history. This book
specifically points out these older recommendations and explains why
language enhancements enable better ways.

Many of the recommendations in this book can be validated by Roslyn-
based analyzers and code fixes. I maintain a repository of these resources
here: https://github.com/BillWagner/MoreEffectiveCSharpAnalyzers. If
you have ideas or want to contribute this repository, write an issue or
send me a pull request.

Who Should Read This Book?

More Effective C# was written for professional developers for whom
C# is their primary programming language. It assumes you are famil-
iar with the C# syntax and the language’s features, and are generally
proficient in C#. This book does not include tutorial instruction on
language features. Instead, it discusses how you can integrate all the
features of the current version of the C# language into your everyday
development.

In addition to familiarity with the C# language features, this book
assumes you have some knowledge of the Common Language Runtime
(CLR) and just-in-time (JIT) compiler.

About the Content

In today’s world, data is ubiquitous. An object-oriented approach treats data
and code as part of a type and its responsibilities. A functional approach
treats methods as data. Service-oriented approaches separate data from the
code that manipulates it. C# has evolved to contain language idioms that
are common in all these paradigms—which can complicate your design
choices. Chapter 1 discusses these choices and provides guidance on when
to pick different language idioms for different uses.

Wagner_Book.indb xiiWagner_Book.indb xii 7/18/17 11:55 AM7/18/17 11:55 AM

https://github.com/BillWagner/MoreEffectiveCSharpAnalyzers

 Introduction  xiii

Programming is essentially API design. It’s how you communicate to
your users your expectations about using your code. It also speaks volumes
about your understanding of other developers’ needs and expectations.
In Chapter 2, you’ll learn the best way to express your intent using the
rich palette of C# language features. You’ll see how to leverage lazy
evaluation, create composable interfaces, and avoid confusion among
the various language elements in your public interfaces.

Task-based asynchronous programming provides new idioms for com-
posing applications from asynchronous building blocks. Mastering these
features means you can create APIs for asynchronous operations that
clearly reflect how that code will execute, and are easy to use. In Chapter 3,
you’ll learn how to use the task-based asynchronous language support to
express how your code executes across multiple services and using dif-
ferent resources.

Chapter 4 looks at one specific subset of asynchronous programming:
multithreaded parallel execution. You’ll see how PLINQ enables eas-
ier decomposition of complex algorithms across multiple cores and
multiple CPUs.

Chapter 5 discusses the use of C# as a dynamic language. C# is a strongly
typed, statically typed language. Today, however, an increasing number
of programs contain both dynamic and static typing. C# provides ways
for you to leverage dynamic programming idioms without losing the ben-
efits of static typing throughout your entire program. In Chapter 5, you’ll
learn how to use dynamic features and how to avoid having dynamic
types leak through your entire program.

Chapter 6 closes the book with suggestions on how to get involved in
the global C# community. There are many ways to participate in this
community and to help shape the language you use every day.

Code Conventions

Showing code in a book still requires making some compromises for
space and clarity. I’ve tried to distill the samples down to illustrate the
particular point of the sample. Often that means eliding other portions
of a class or a method. Sometimes it means include eliding error recov-
ery code for space. Public methods should validate their parameters

Wagner_Book.indb xiiiWagner_Book.indb xiii 7/18/17 11:55 AM7/18/17 11:55 AM

xiv  Introduction

and other inputs, but that code is usually elided here owing to space
constraints. Similar space considerations have prompted the removal of
validation of method calls and try/finally clauses that would often be
included in complicated algorithms.

I also usually assume that most developers can find the appropriate
namespace when examples use one of the common namespaces. You can
safely assume that every sample implicitly includes the following using
statements:

using System;
using static System.Console;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Providing Feedback

Despite my best efforts, and the efforts of the people who have reviewed
the text, errors may have crept into the text or examples. If you believe you
have found an error, please contact me at bill@thebillwagner.com, or on
Twitter @billwagner. Errata will be posted at http://thebillwagner.com/
Resources/MoreEffectiveCS. Many of the items in this book were
inspired by email and Twitter conversations with other C# developers.
If you have questions or comments about the recommendations, please
contact me. Discussions of general interest will be covered on my blog
at http://thebillwagner.com/blog.

Register your copy of More Effective C#, Second Edition, on the
InformIT site for convenient access to updates and corrections
as they become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the
product ISBN (9780672337888) and click Submit. Look on the Reg-
istered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus mate-
rials. If you would like to be notified of exclusive offers on new
editions and updates, please check the box to receive email from us.

Wagner_Book.indb xivWagner_Book.indb xiv 7/18/17 11:55 AM7/18/17 11:55 AM

mailto:bill@thebillwagner.com
http://thebillwagner.com/Resources/MoreEffectiveCS
http://thebillwagner.com/Resources/MoreEffectiveCS
http://thebillwagner.com/blog
http://informit.com/register

 Introduction  xv

Acknowledgments

There are many people to whom I owe thanks for their contributions
to this book. I’ve been privileged to be part of an amazing C# commu-
nity over the years. Everyone on the C# Insiders mailing list (whether
inside or outside Microsoft) has contributed ideas and conversations
that made this a better book.

I must single out a few members of the C# community who directly
helped me with ideas, and with turning ideas into concrete recommen-
dations. Conversations with Jon Skeet, Dustin Campbell, Kevin Pilch,
Jared Parsons, Scott Allen, and, most importantly, Mads Torgersen are
the basis for many new ideas in this edition.

I had a wonderful team of technical reviewers for this edition. Jason
Bock, Mark Michaelis, and Eric Lippert pored over the text and the
examples and greatly improved the quality of the book you now hold.
Their reviews were thorough and complete, which is the best anyone
can hope for. Beyond that, they added recommendations that helped
me explain many of the topics better.

The team at Addison-Wesley is a dream to work with. Trina Macdonald
is a fantastic editor, taskmaster, and the driving force behind anything
that gets done. She leans on Mark Renfrow and Olivia Basegio heavily,
and so do I. Their contributions ensured the finished manuscript was a
high-quality endeavor from the front cover to the back cover, and every-
thing in between. Curt Johnson continues to do an incredible job mar-
keting technical content. No matter which format you chose, Curt has
had something to do with its existence for this book.

It’s an honor, once again, to be part of Scott Meyers’s series. He goes over
every manuscript and offers suggestions and comments for improvement.
Scott is incredibly thorough, and his experience in software, although
not in C#, means he finds any areas where I haven’t explained an item
clearly or fully justified a recommendation. His feedback, as always, has
been invaluable in the preparation of this edition.

As always, my family gave up time with me so that I could finish this man-
uscript. My wife, Marlene, waited patiently for countless hours while I
went off to write or create samples. Without her support, I never would
have finished this or any other book, nor would it be as satisfying to com-
plete these projects.

Wagner_Book.indb xvWagner_Book.indb xv 7/18/17 11:55 AM7/18/17 11:55 AM

xvi  Introduction

About the Author

Bill Wagner is one of the world’s foremost C# developers and a member of
the ECMA C# Standards Committee. He is President of the Human-
itarian Toolbox, has been awarded Microsoft Regional Director and
.NET MVP for 11 years, and was recently appointed to the .NET
Foundation Advisory Council. Bill has worked with companies rang-
ing from start-ups to enterprises improving the software development
process and growing their software development teams. He is currently
with Microsoft, working on the .NET Core content team. He creates
learning materials for developers interested in the C# language and
.NET Core. Bill earned a B.S. in computer science from the University
of Illinois at Champaign-Urbana.

Wagner_Book.indb xviWagner_Book.indb xvi 7/18/17 11:55 AM7/18/17 11:55 AM

2 

 61

API Design

You communicate with your users when you design the APIs you create
for your types. The constructors, properties, and methods you expose
publicly should make it easier for developers who want to use your
types to do so correctly. Robust API design takes into account many
aspects of the types you create. It includes how developers can create
instances of a type. It includes how you choose to expose the type’s
capabilities through methods and properties. It includes how an object
reports changes through events or outbound method calls. Finally, it
includes how you express commonality among different types.

Item 11: Avoid Conversion Operators in Your APIs

Conversion operators introduce a kind of substitutability between
classes. Substitutability means that one class can be substituted for
another. This flexibility can be a benefit: An object of a derived class
can be substituted for an object of its base class, as in the classic exam-
ple of the shape hierarchy. Suppose you create a Shape base class and
derive a variety of customizations: Rectangle, Ellipse, Circle, and so on.
You can substitute a Circle anywhere a Shape is expected—that’s using
polymorphism for substitutability. This substitution works because a
Circle is a specific type of a Shape.

When you create a class, certain conversions are allowed automatically.
Any object can be substituted for an instance of System.Object, the
root of the .NET class hierarchy. In the same fashion, any object of a
class that you create will be substituted implicitly for an interface that
it implements, any of its base interfaces, or any of its base classes. The
C# language also supports a variety of numeric conversions.

When you define a conversion operator for your type, you tell the com-
piler that your type may be substituted for the target type. These sub-
stitutions often result in subtle errors because your type probably isn’t a
perfect substitute for the target type. Side effects that modify the state

Wagner_Book.indb 61Wagner_Book.indb 61 7/18/17 11:55 AM7/18/17 11:55 AM

62  Chapter 2 API Design

of the target type won’t have the same effect on your type. Even worse,
if your conversion operator returns a temporary object, the side effects
will modify the temporary object and be lost forever to the garbage
collector. Finally, the rules for invoking conversion operators are based
on the compile-time type of an object, rather than the runtime type of
an object. As a consequence, users of your type might need to perform
multiple casts to invoke the conversion operators—a practice that leads
to unmaintainable code.

If you want to convert another type into your type, use a constructor. This
practice more clearly reflects the action of creating a new object. Con-
version operators can introduce hard-to-find problems in your code.
Suppose that you inherit the code for a library shown in Figure 2.1.
Both the Circle class and the Ellipse class are derived from the Shape
class. You decide to leave that hierarchy in place because, although the
Circle and the Ellipse are related, you don’t want to have nonabstract
leaf classes in your hierarchy, and several implementation problems can
occur when you try to derive the Circle class from the Ellipse class.
However, you realize that, in the world of geometry, every circle could
be an ellipse. In addition, some ellipses could be substituted for circles.

That realization leads you to add two conversion operators. Every circle
is an ellipse, so you add an implicit conversion to create a new Ellipse
object from a Circle. An implicit conversion operator will be called
whenever one type needs to be converted to another type. By contrast,

Reference Type Container
(The Box)

Allocated on the Heap

Value Type
Contained in the Box

System.Object
Interface

Mirror Value Type InterfacePass Through

Figure 2.1 Basic shape hierarchy

Wagner_Book.indb 62Wagner_Book.indb 62 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 11: Avoid Conversion Operators in Your APIs  63

an explicit conversion will be called only when the programmer puts a
cast operator in the source code.

public class Circle : Shape
{
 private Point center;
 private double radius;

 public Circle() :
 this(new Point(), 0)
 {
 }

 public Circle(Point c, double r)
 {
 center = c;
 radius = r;
 }

 public override void Draw()
 {
 //...
 }

 static public implicit operator Ellipse(Circle c)
 {
 return new Ellipse(c.center, c.center,
 c.radius, c.radius);
 }
}

Now that you’ve got the implicit conversion operator, you can use a
Circle anywhere an Ellipse is expected. Furthermore, the conversion
happens automatically:

public static double ComputeArea(Ellipse e) =>
 e.R1 * e.R2 * Math.PI;

// Call it:
Circle c1 = new Circle(new Point(3.0, 0), 5.0f);
ComputeArea(c1);

Wagner_Book.indb 63Wagner_Book.indb 63 7/18/17 11:55 AM7/18/17 11:55 AM

64  Chapter 2 API Design

This example shows what we mean by substitutability: A circle has
been substituted for an ellipse. The ComputeArea function works even
with the substitution. You got lucky. But consider this function:

public static void Flatten(Ellipse e)
{
 e.R1 /= 2;
 e.R2 *= 2;
}

// Call it using a circle:
Circle c = new Circle(new Point(3.0, 0), 5.0);
Flatten(c);

This won’t work. The Flatten() method takes an ellipse as an argument,
so the compiler must somehow convert a circle to an ellipse. You’ve cre-
ated an implicit conversion that does exactly that. Your conversion gets
called, and the Flatten() function receives as its parameter—that is, the
ellipse created by your implicit conversion. This temporary object is mod-
ified by the Flatten() function and immediately becomes garbage. The
side effects expected from your Flatten() function occur, but only on a
temporary object. The end result is that nothing happens to the circle, c.

Changing the conversion from implicit to explicit merely forces users to
add a cast to the call:

Circle c = new Circle(new Point(3.0, 0), 5.0);
Flatten((Ellipse)c);

The original problem remains—you just forced your users to add a
cast to cause the problem. You still create a temporary object, flatten
the temporary object, and throw it away. The circle, c, is not modified
at all. Instead, if you create a constructor to convert the Circle to an
Ellipse, the actions are clearer:

Circle c = new Circle(new Point(3.0, 0), 5.0);
Flatten(new Ellipse(c));

Most programmers would see the previous two lines and immediately
realize that any modifications to the ellipse passed to Flatten() will be
lost. They would fix the problem by keeping track of the new object:

Circle c = new Circle(new Point(3.0, 0), 5.0);
Flatten(c);

Wagner_Book.indb 64Wagner_Book.indb 64 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 12: Use Optional Parameters to Minimize Method Overloads  65

// Work with the circle.
// ...

// Convert to an ellipse.
Ellipse e = new Ellipse(c);
Flatten(e);

The variable e holds the flattened ellipse. By replacing the conver-
sion operator with a constructor, you haven’t lost any functionality;
you’ve merely made it clearer when new objects are created. (Veteran
C++ programmers should note that C# does not call constructors for
implicit or explicit conversions. You create new objects only when you
explicitly use the new operator, and at no other time. There is no need
for the explicit keyword on constructors in C#.)

Conversion operators that return fields inside your objects will not
exhibit this behavior, but they have other problems. With this approach,
you’ve poked a serious hole in the encapsulation of your class. By cast-
ing your type to some other object, clients of your class can access an
internal variable. That possibility is best avoided for all the reasons dis-
cussed in Item 17.

Conversion operators introduce a form of substitutability that causes
problems in your code. Their use signals that, in all cases, users can
reasonably expect that another class can be used in place of the one you
created. When this substituted object is accessed, clients will work with
temporary objects or internal fields in place of the class you created. In
that case, they modify temporary objects and discard the results. These
subtle bugs are difficult to find because the compiler generates code to
convert these objects. Avoid conversion operators in your APIs.

Item 12: Use Optional Parameters to Minimize Method Overloads

C# enables you to specify method arguments by position or by name.
In turn, the names of formal parameters are part of the public interface
for your type. Changing the name of a public parameter could break
calling code. To avoid this problem, you should avoid using named
parameters in many situations, and you should avoid changing the
names of the formal parameters for public or protected methods.

Of course, no language designer adds features just to make your life
difficult. Named parameters were added for a reason, and they have

Wagner_Book.indb 65Wagner_Book.indb 65 7/18/17 11:55 AM7/18/17 11:55 AM

66  Chapter 2 API Design

positive uses. Named parameters work with optional parameters to limit
the noisiness around many APIs, especially COM APIs for Microsoft
Office. The following snippet of code creates a Word document and
inserts a small amount of text, using the classic COM methods:

var wasted = Type.Missing;
var wordApp = new
 Microsoft.Office.Interop.Word.Application();
wordApp.Visible = true;
Documents docs = wordApp.Documents;

Document doc = docs.Add(ref wasted,
 ref wasted, ref wasted, ref wasted);

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

This small—and arguably useless—snippet uses the Type.Missing object
four times. Any Office interop application will use a much larger number
of Type.Missing objects in the application. Those instances clutter up
your application and hide the actual logic of the software you’re building.

That extra noise was the primary driver behind adding optional and
named parameters in the C# language. By using optional parameters,
the Office APIs can create default values for all those locations where
Type.Missing would be used. That simplifies even this small snippet and
greatly improves its readability:

var wordApp = new
 Microsoft.Office.Interop.Word.Application();
wordApp.Visible = true;
Documents docs = wordApp.Documents;

Document doc = docs.Add();

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

Of course, you may not always want to use all the defaults, but you also may
not want to add all the Type.Missing parameters in the middle. Suppose you
wanted to create a new Web page instead of a new Word document. That

Wagner_Book.indb 66Wagner_Book.indb 66 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 12: Use Optional Parameters to Minimize Method Overloads  67

choice is made with the last of the four parameters in the Add() method.
Using named parameters, you can specify just that last parameter:

var wordApp = new
 Microsoft.Office.Interop.Word.Application();
wordApp.Visible = true;
Documents docs = wordApp.Documents;

object docType = WdNewDocumentType.wdNewWebPage;
Document doc = docs.Add(DocumentType: ref docType);

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

Named parameters mean that in any API with default parameters, you
need to specify only those parameters you intend to use. This approach
is much simpler than working with multiple overloads. In fact, with four
different parameters, you would need to create 16 different overloads of
the Add() method to achieve the same level of flexibility that the named
and optional parameters provide. Given that some of the Office APIs
have as many as 16 parameters, optional and named parameters are a
big help in simplifying their use.

The preceding example included the ref decorator in the parameter list,
but another change in C# 4.0 makes that optional in COM scenarios.
In fact, the Range() call passes the values (0, 0) by reference. The ref
modifier is omitted there in the example, because that would be clearly
misleading. In fact, in most production code, the ref modifier should
not be included in the call to Add(). (It was included in the example just
so you could see the actual API signature.)

The justification for named and optional parameters was COM and
the Office APIs in our examples, but you shouldn’t limit their use to
Office interop applications. In fact, you can’t. Developers calling your
API can decorate calling locations using named parameters whether
you want them to or not.

For example, the method

private void SetName(string lastName, string firstName)
{
 // Elided
}

Wagner_Book.indb 67Wagner_Book.indb 67 7/18/17 11:55 AM7/18/17 11:55 AM

68  Chapter 2 API Design

can be called using named parameters to avoid any confusion about the
order of the names:

SetName(lastName: "Wagner", firstName: "Bill");

Annotating the names of the parameters ensures that people reading this
code later won’t wonder if the parameters appear in the right order.
Developers tend to use named parameters whenever adding the names
will increase the clarity of the code that someone is trying to read.
Whenever you use methods that contain multiple parameters of the
same type, naming the parameters at the callsite will make your code
more readable.

Changes in parameter names are breaking changes. The parameter
names are stored in the MSIL only at the method definition, not where
the method is called. You can change parameter names and release the
component without breaking any users of that component in the field.
The developers who use your component will see a breaking change
when they compile their assemblies against the updated version, but
any earlier client assemblies will continue to run correctly—so at least
you won’t break existing applications in the field. The developers who
use your work will still be upset, but they won’t blame you for problems
in the field. For example, suppose you modify SetName() by changing
the parameter names:

public void SetName(string last, string first)

You could compile and release this assembly as a patch into the field.
Any assemblies that called this method would then continue to run,
even if they contain calls to SetName() that specify named parameters.
However, when client developers try to build updates to their assem-
blies, any code like this will no longer compile:

SetName(lastName: "Wagner", firstName: "Bill");

The parameter names have changed.

Changing the default value also requires callers to recompile their
code so as to pick up those changes. If you compile your assembly and
release it as a patch, all existing callers would continue to use the previ-
ous default parameter.

Of course, you don’t really want to upset the developers who use your
components. For that reason, you must consider the names of your

Wagner_Book.indb 68Wagner_Book.indb 68 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 13: Limit Visibility of Your Types  69

parameters to be part of the public interface to your component. Chang-
ing the names of parameters will break client code at compile time.

In addition, adding parameters (even if they have default values) will
cause code to break at runtime. Optional parameters are implemented
in a similar fashion to named parameters. The callsite will contain
annotations in the MSIL that reflect whether the default values exist,
and what those default values are. The calling site substitutes those values
for any optional parameters the caller did not explicitly specify.

Thus, adding parameters, even if they are optional parameters, is a
breaking change at runtime. If those parameters have default values,
it’s not a breaking change at compile time.

After this explanation, the guidance in this item’s title should be clearer.
For your initial release, use optional and named parameters to create
whatever combination of overloads your users may want to use. How-
ever, once you start creating future releases, you must create over-
loads for additional parameters. That way, existing client applications
will still function. Furthermore, in any future release, avoid changing
parameter names, because they are now part of your public interface.

Item 13: Limit Visibility of Your Types

Everyone doesn’t always need to see everything; that is, not every type
you create needs to be public. You should give each type the least visi-
bility necessary to accomplish your purpose. That’s often less visibility
than you think. Internal or private classes can implement public inter-
faces. All clients can access the functionality defined in the public interfaces
declared in a private type.

It’s just too easy to create public types, and it’s often expedient to do
just that. Many stand-alone classes that you create should be internal.
You can further limit visibility by creating protected or private classes
nested inside your original class. The less visibility there is, the less the
entire system changes when you make updates later. The fewer places
that can access a piece of code, the fewer places you must change when
you modify it.

Expose only what needs to be exposed. Try implementing pub-
lic interfaces with less visible classes. You’ll find examples using the

Wagner_Book.indb 69Wagner_Book.indb 69 7/18/17 11:55 AM7/18/17 11:55 AM

70  Chapter 2 API Design

Enumerator pattern throughout the .NET Framework library. System
.Collections.Generic.List<T> contains a private class, Enumerator<T>,
that implements the IEnumerator<T> interface:

// For illustration; not the complete source
public class List<T> : IEnumerable<T>
{
 public struct Enumerator : IEnumerator<T>
 {
 // Contains specific implementation of
 // MoveNext(), Reset(), and Current

 public Enumerator(List<T> storage)
 {
 // Elided
 }
 }

 public Enumerator GetEnumerator()
 {
 return new Enumerator(this);
 }

 // Other List members
}

Client code, written by you, never needs to know about the struct
Enumerator<T>. All you need to know is that you get an object that imple-
ments the IEnumerator<T> interface when you call the GetEnumerator
function on a List<T> object. The specific type is an implementation detail.
The .NET Framework designers followed this same pattern with the
other collection classes: Dictionary<T> contains DictionaryEnumerator,
Queue<T> contains QueueEnumerator, and so on.

Keeping the enumerator class private offers many advantages. First, the
List<T> class can completely replace the type implementing IEnumerator<T>,
and you’d be none the wiser, because nothing breaks. You can use the
enumerator because you know that it follows a contract, not because
you have detailed knowledge about the type that implements it. The
types that implement these interfaces in the framework are public
structs for performance reasons, not because you need to work directly
with the type.

Wagner_Book.indb 70Wagner_Book.indb 70 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 13: Limit Visibility of Your Types  71

Creating internal classes is an often-overlooked method of limiting the scope
of types. Most programmers create public classes by default, without giving
any thought to the alternatives. Instead of unthinkingly following this rou-
tine, you should give careful thought to where your new type will be used. Is
it useful to all clients, or is it primarily used internally in this one assembly?

Exposing your functionality using interfaces enables you to more easily cre-
ate internal classes without limiting their usefulness outside the assembly
(see Item 17). Does the type need to be public, or is an aggregation of inter-
faces a better way to describe its functionality? Internal classes allow you to
replace the class with a different version, as long as it implements the same
interfaces. As an example, consider a class that validates phone numbers:

public class PhoneValidator
{
 public bool ValidateNumber(PhoneNumber ph)
 {
 // Perform validation.
 // Check for valid area code and exchange.
 return true;
 }
}

Months pass, and this class works well—at least until you get a request
to handle international phone numbers. Now PhoneValidator fails,
because it was coded to handle only U.S. phone numbers. You still need
the U.S. phone validator, but you also need to include an international
version of the phone validator in one installation. Rather than stick the
extra functionality in this one class, you would be better advised to
reduce the coupling between the different items. You create an interface
to validate any phone number:

public interface IPhoneValidator
{
 bool ValidateNumber(PhoneNumber ph);
}

Next, change the existing phone validator to implement that interface,
and make it an internal class:

internal class USPhoneValidator : IPhoneValidator
{
 public bool ValidateNumber(PhoneNumber ph)
 {

Wagner_Book.indb 71Wagner_Book.indb 71 7/18/17 11:55 AM7/18/17 11:55 AM

72  Chapter 2 API Design

 // Perform validation.
 // Check for valid area code and exchange.
 return true;
 }
}

Finally, create a class for international phone validators:

internal class InternationalPhoneValidator : IPhoneValidator
{
 public bool ValidateNumber(PhoneNumber ph)
 {
 // Perform validation.
 // Check international code.
 // Check specific phone number rules.
 return true;
 }
}

To finish this implementation, you need to create the proper class based
on the type of the phone number. You can use the factory pattern for
this purpose. Outside the assembly, only the interface is visible. The
classes, which are specific for different regions in the world, are visible
only inside the assembly. You can add different validation classes for
different regions without disturbing any other assemblies in the system.
By limiting the scope of the classes, you have limited the code you need
to change to update and extend the entire system.

public static IPhoneValidator CreateValidator(PhoneTypes type)
{
 switch (type)
 {
 case PhoneTypes.UnitedStates:
 return new USPhoneValidator();
 case PhoneTypes.UnitedKingdom:
 return new UKPhoneValidator();
 case PhoneTypes.Unknown:
 default:
 return new InternationalPhoneValidator();
 }
}

Wagner_Book.indb 72Wagner_Book.indb 72 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 14: Prefer Defining and Implementing Interfaces to Inheritance  73

You could also create a public abstract base class for PhoneValidator,
which could contain common implementation algorithms. The con-
sumers could access the public functionality through the accessible
base class. In this example, the implementation using public interfaces
is an excellent choice because there is little, if any, shared functionality.
Other uses would be better served with public abstract base classes.
With either option, fewer classes are publicly accessible.

If there are fewer public types, there are fewer publicly accessible meth-
ods for which you need to create tests. Also, if more of the public APIs
are exposed through interfaces, you have automatically created a sys-
tem whereby you can replace those types using mock-ups or stubs for
unit test purposes.

Those classes and interfaces that you expose publicly to the outside
world are your contract: You must live up to them. The more cluttered
that public contract is, the more constrained your future direction
is. The fewer public types you expose, the more options you have to
extend and modify any implementation in the future.

Item 14: Prefer Defining and Implementing Interfaces to
Inheritance

Abstract base classes provide a common ancestor for a class hierarchy.
An interface describes related methods comprising functionality that
can be implemented by a type. Each of these strategies has its place, but
it is a different place. Interfaces offer a way to declare the signature of a
design contract: A type that implements an interface must supply an imple-
mentation for expected methods. Abstract base classes provide a common
abstraction for a set of related types. It’s a cliché, but it’s one that works:
Inheritance means “is a,” whereas interface means “behaves like.”
These clichés have lived so long because they provide a means to
describe the differences in both constructs: Base classes describe what
an object is; interfaces describe one way in which an object behaves.

Interfaces describe a set of functionality, which represents a contract. You
can create placeholders for anything in an interface: methods, properties,
indexers, and events. Any non-abstract type that implements the inter-
face must supply concrete implementations of all elements defined in the
interface. You must implement all methods, supply any and all property
accessors and indexers, and define all events defined in the interface. You

Wagner_Book.indb 73Wagner_Book.indb 73 7/18/17 11:55 AM7/18/17 11:55 AM

74  Chapter 2 API Design

can identify and factor reusable behavior into interfaces. You can also use
interfaces as parameters and return values. In addition, interfaces offer
more opportunities to reuse code because unrelated types can implement
interfaces. What’s more, it’s easier for other developers to implement an
interface than it is to derive types from a base class you’ve created.

What you can’t do in an interface is provide implementation for any
of these members. Interfaces contain no implementation whatsoever,
and they cannot contain any concrete data members. With an interface,
you declare the binary contract that must be supported by all types
that implement the interface. If you like, you can then create extension
methods on those interfaces to give the illusion of an implementation
for interfaces. For example, the System.Linq.Enumerable class contains
more than 30 extension methods declared on IEnumerable<T>. Those
methods appear to be part of any type that implements IEnumerable<T>
by virtue of being extension methods (see Item 27 in Effective C#,
Third Edition):

public static class Extensions
{
 public static void ForAll<T>(
 this IEnumerable<T> sequence,
 Action<T> action)
 {
 foreach (T item in sequence)
 action(item);
 }
}
// Usage
foo.ForAll((n) => Console.WriteLine(n.ToString()));

Abstract base classes can supply some implementation for derived
types, in addition to describing the common behavior. You can specify
data members, concrete methods, implementation for virtual methods,
properties, events, and indexers. A base class can provide implementa-
tion for some of the methods, thereby providing common implementa-
tion reuse. Any of the elements can be virtual, abstract, or nonvirtual.
An abstract base class can provide an implementation for any concrete
behavior; interfaces cannot.

This implementation reuse provides another benefit: If you add a
method to the base class, all derived classes are automatically and

Wagner_Book.indb 74Wagner_Book.indb 74 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 14: Prefer Defining and Implementing Interfaces to Inheritance  75

implicitly enhanced. In that sense, base classes provide a way to extend
the behavior of several types efficiently over time. When you add and
implement functionality in the base class, all derived classes immedi-
ately incorporate that behavior. Adding a member to an interface, how-
ever, breaks all the classes that implement that interface. They will not
contain the new method and will no longer compile. Each implementer
must update that type to include the new member. Alternatively, if you
need to add functionality to an interface without breaking the existing
code, you can create a new interface and have it inherit from the exist-
ing interface.

Choosing between an abstract base class and an interface is a question
of how best to support your abstractions over time. Interfaces are fixed:
You release an interface as a contract for a set of functionality that
any type can implement. In contrast, base classes can be extended over
time, and those extensions then become part of every derived class.

The two models can be mixed to reuse implementation code while sup-
porting multiple interfaces. One obvious example in the .NET Framework
is the IEnumerable<T> interface and the System.Linq.Enumerable class.
The System.Linq.Enumerable class contains a large number of extension
methods defined on the System.Collections.Generic.IEnumerable<T>
interface. That separation enables very important benefits. Any class
that implements IEnumerable<T> appears to include all those extension
methods, but those additional methods are not formally defined in the
IEnumerable<T> interface. As a consequence, class developers do not
need to create their own implementation of all those methods.

As an example, consider the following class, which implements
IEnumerable<T> for weather observations:

public enum Direction
{
 North,
 NorthEast,
 East,
 SouthEast,
 South,
 SouthWest,
 West,
 NorthWest
}

Wagner_Book.indb 75Wagner_Book.indb 75 7/18/17 11:55 AM7/18/17 11:55 AM

76  Chapter 2 API Design

public class WeatherData
{
 public WeatherData(double temp, int speed,
 Direction direction)
 {
 Temperature = temp;
 WindSpeed = speed;
 WindDirection = direction;
 }
 public double Temperature { get; }
 public int WindSpeed { get; }
 public Direction WindDirection { get; }
 public override string ToString() =>
 @$"Temperature = {Temperature}, Wind is {WindSpeed}
mph from the {WindDirection}";
}

public class WeatherDataStream : IEnumerable<WeatherData>
{
 private Random generator = new Random();

 public WeatherDataStream(string location)
 {
 // Elided
 }

 private IEnumerator<WeatherData> getElements()
 {
 // Real implementation would read from
 // a weather station.
 for (int i = 0; i < 100; i++)
 yield return new WeatherData(
 temp: generator.NextDouble() * 90,
 speed: generator.Next(70),
 direction: (Direction)generator.Next(7)
);
 }

 public IEnumerator<WeatherData> GetEnumerator() =>
 getElements();

Wagner_Book.indb 76Wagner_Book.indb 76 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 14: Prefer Defining and Implementing Interfaces to Inheritance  77

 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator() =>
 getElements();
}

To model a sequence of weather observations, the WeatherStream
class implements IEnumerable<WeatherData>. That means creating two
methods: the GetEnumerator<T> method and the classic GetEnumerator
method. The latter interface is explicitly implemented so that client
code will naturally be drawn to the generic interface rather than the
version typed as System.Object.

The implementation of those two methods means that the WeatherStream
class supports all the extension methods defined in System.Linq.Enumerable.
That means WeatherStream can be a source for LINQ queries:

var warmDays = from item in
 new WeatherDataStream("Ann Arbor")
 where item.Temperature > 80
 select item;

LINQ query syntax compiles to method calls. For example, the preced-
ing query translates to the following calls:

var warmDays2 = new WeatherDataStream("Ann Arbor").
 Where(item => item.Temperature > 80);

In this code, the Where and Select calls might seem to belong to
IEnumerable<WeatherData>, but they do not. That is, those methods
appear to belong to IEnumerable<WeatherData> because they are extension
methods, but they are actually static methods in System.Linq.Enumerable.
The compiler translates those calls into the following static calls:

// Don't write this; presented for explanatory purposes only
var warmDays3 = Enumerable.Select(
 Enumerable.Where(
 new WeatherDataStream("Ann Arbor"),
 item => item.Temperature > 80),
 item => item);

The preceding code illustrates that interfaces really can’t contain imple-
mentation. You can emulate that state by using extension methods.
LINQ does so by creating several extension methods on IEnumerable<T>
in the class.

Wagner_Book.indb 77Wagner_Book.indb 77 7/18/17 11:55 AM7/18/17 11:55 AM

78  Chapter 2 API Design

That brings us to the topic of using interfaces as parameters and return
values. An interface can be implemented by any number of unrelated
types. Coding to interfaces provides greater flexibility for other devel-
opers than coding to base class types. That’s important because of the
single inheritance hierarchy enforced by the .NET type system.

The following three methods perform the same task:

public static void PrintCollection<T>(
 IEnumerable<T> collection)
{
 foreach (T o in collection)
 Console.WriteLine($"Collection contains {o}");
}

public static void PrintCollection(
 System.Collections.IEnumerable collection)
{
 foreach (object o in collection)
 Console.WriteLine($"Collection contains {o}");
}

public static void PrintCollection(
 WeatherDataStream collection)
{
 foreach (object o in collection)
 Console.WriteLine($"Collection contains {o}");
}

The first method is most reusable. Any type that supports IEnumerable<T>
can use that method. In addition to WeatherDataStream, you can use
List<T>, SortedList<T>, any array, and the results of any LINQ query. The
second method will also work with many types, but uses the less preferable
nongeneric IEnumerable. The third method is far less reusable; it cannot
be used with Arrays, ArrayLists, DataTables, Hashtables, ImageLists, or
many other collection classes. Coding the method using interfaces as its
parameter types is far more generic and far easier to reuse.

Using interfaces to define the APIs for a class also provides greater flexibility.
The WeatherDataStream class could implement a method that returned a
collection of WeatherData objects. That would look something like this:

public List<WeatherData> DataSequence => sequence;
private List<WeatherData> sequence = new List<WeatherData>();

Wagner_Book.indb 78Wagner_Book.indb 78 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 14: Prefer Defining and Implementing Interfaces to Inheritance  79

Unfortunately, this code leaves you vulnerable to future problems. At
some point, you might change from using a List<WeatherData> to
exposing an array, a SortedList<T>. Any of those changes will break
the code. Sure, you can change the parameter type, but that’s changing
the public interface to your class. Changing the public interface to a
class causes you to make many more changes to a large system; you
would need to change all the locations where the public property was
accessed.

Another problem with this code is more immediate and more troubling: The
List<T> class provides numerous methods to change the data it contains.
Users of your class could delete, modify, or even replace every object in
the sequence—which is almost certainly not your intent. Luckily, you
can limit the capabilities of the users of your class. Instead of returning
a reference to some internal object, you should return the interface that
you intend clients to use—in this case, IEnumerable<WeatherData>.

When your type exposes properties as class types, it exposes the entire
interface to that class. Using interfaces, you can choose to expose only
those methods and properties you want clients to use. The class used
to implement the interface is an implementation detail that can change
over time (see Item 17).

Furthermore, unrelated types can implement the same interface. Sup-
pose you’re building an application that manages employees, customers,
and vendors. Those entities are unrelated, at least in terms of the class
hierarchy. Nevertheless, they share some common functionality. They
all have names, and you will likely display those names in controls in
your applications.

public class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public string Name => $"{LastName}, {FirstName}";
 // Other details elided
}

public class Customer
{
 public string Name => customerName;

Wagner_Book.indb 79Wagner_Book.indb 79 7/18/17 11:55 AM7/18/17 11:55 AM

80  Chapter 2 API Design

 // Other details elided
 private string customerName;
}

public class Vendor
{
 public string Name => vendorName;

 // Other details elided
 private string vendorName;
}

The Employee, Customer, and Vendor classes should not share a com-
mon base class, but they do share some properties: names (as shown
earlier), addresses, and contact phone numbers. You could factor out
those properties into an interface:

public interface IContactInfo
{
 string Name { get; }
 PhoneNumber PrimaryContact { get; }
 PhoneNumber Fax { get; }
 Address PrimaryAddress { get; }
}

public class Employee : IContactInfo
{
 // Implementation elided
}

This new interface can simplify your programming tasks by letting you
build common routines for unrelated types:

public void PrintMailingLabel(IContactInfo ic)
{
 // Implementation deleted
}

This single routine works for all entities that implement the IContactInfo
interface. Now Customer, Employee, and Vendor all use the same routine—
but only because you factored them into interfaces.

Wagner_Book.indb 80Wagner_Book.indb 80 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 14: Prefer Defining and Implementing Interfaces to Inheritance  81

Using interfaces also means that you can occasionally save an unboxing pen-
alty for structs. When you place a struct in a box, the box supports
all interfaces that the struct supports. When you access the struct
through the interface reference, you don’t have to unbox the struct to
access that object. To illustrate, imagine this struct that defines a link
and a description:

public struct URLInfo : IComparable<URLInfo>, IComparable
{
 private Uri URL;
 private string description;

 // Compare the string representation of
 // the URL:
 public int CompareTo(URLInfo other) =>
 URL.ToString().CompareTo(other.URL.ToString());

 int IComparable.CompareTo(object obj) =>
 (obj is URLInfo other) ?
 CompareTo(other) :
 throw new ArgumentException(
 message: "Compared object is not URLInfo",
 paramName: nameof(obj));
}

This example makes use of two new features in C# 7. The initial condi-
tion is a pattern-matching expression. It tests whether obj is a URLInfo;
if it is, it assigns obj to the variable other. The other new feature is
a throw expression. In cases where obj is not a URLInfo, an excep-
tion is thrown. The throw expression no longer needs to be a separate
statement.

You can create a sorted list of URLInfo objects easily because URLInfo
implements IComparable<T> and IComparable. Even code that relies
on the classic IComparable will need boxing and unboxing less often
because the client can call IComparable.CompareTo() without unboxing
the object.

Base classes describe and implement common behaviors across related
concrete types. Interfaces describe atomic pieces of functionality that
unrelated concrete types can implement. Both have their place. Classes

Wagner_Book.indb 81Wagner_Book.indb 81 7/18/17 11:55 AM7/18/17 11:55 AM

82  Chapter 2 API Design

define the types you create; interfaces describe the behavior of those
types as pieces of functionality. When you understand the differences,
you can create more expressive designs that are more resilient in the
face of change. Use class hierarchies to define related types. Expose
functionality using interfaces implemented across those types.

Item 15: Understand How Interface Methods Differ from Virtual
Methods

At first glance, implementing an interface might seem to be the same
as overriding an abstract function; that is, in both cases you provide a
definition for a member that has been declared in another type. That
first glance is very deceiving, however: Implementing an interface is
very different from overriding a virtual function. An implementation
of an abstract (or virtual) base class member is required to be virtual;
an implementation of an interface member is not. The implementation
of an interface member may be, and often is, virtual. Interfaces can be
explicitly implemented, which hides them from a class’s public interface.
In short, implementing an interface and overriding a virtual function
are different concepts with different uses.

Even so, you can implement interfaces in such a way that derived classes
can modify your implementation. You just have to create hooks for
derived classes.

To illustrate the differences, examine a simple interface and implemen-
tation of it in one class:

interface IMessage
{
 void Message();
}

public class MyClass : IMessage
{
 public void Message() =>
 WriteLine(nameof(MyClass));
}

The Message() method is part of MyClass’s public interface. Message
can also be accessed through the IMessage point that is part of the
MyClass type. Now let’s complicate the situation a little by adding a
derived class:

Wagner_Book.indb 82Wagner_Book.indb 82 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 15: Understand How Interface Methods Differ from Virtual Methods  83

public class MyDerivedClass : MyClass
{
 public new void Message() =>
 WriteLine(nameof(MyDerivedClass));
}

Notice that the new keyword was added to the definition of the previ-
ous Message method (see Item 10 in Effective C#, Third Edition).
MyClass.Message() is not virtual. Derived classes cannot provide an
overridden version of Message. The MyDerived class creates a new
Message method, but that method does not override MyClass.Message;
instead, it hides it. Furthermore, MyClass.Message is still available
through the IMsg reference:

MyDerivedClass d = new MyDerivedClass();
d.Message(); // Prints "MyDerivedClass"
IMsg m = d as IMsg;
m.Message(); // Prints "MyClass"

When you implement an interface, you are declaring a concrete imple-
mentation of a particular contract in that type. You, as the class author,
decide whether that method is virtual.

Let’s review the C# language rules for implementing interfaces. When a
class declaration contains interfaces in its base types, the compiler deter-
mines which member of the class corresponds to each member of the
interface. An explicit interface implementation is a better match than an
implicit implementation. If an interface member cannot be found in that
class definition, accessible members of base types are considered. Recall
that virtual and abstract members are considered to be members of the
type that declares them, not the type that overrides them.

In many cases, you will want to create interfaces, implement them in
base classes, and modify the behavior in derived classes. You can, and
you have two options for doing so. If you do not have access to the base
class, you can reimplement the interface in the derived class:

public class MyDerivedClass : MyClass
{
 public new void Message() =>
 WriteLine("MyDerivedClass");
}

Wagner_Book.indb 83Wagner_Book.indb 83 7/18/17 11:55 AM7/18/17 11:55 AM

84  Chapter 2 API Design

The addition of the IMessage interface changes the behavior of your
derived class so that IMessage.Message() now uses the derived class
version:

MyDerivedClass d = new MyDerivedClass();
d.Message(); // Prints "MyDerivedClass"
IMessagem = d as IMessage;
m.Message(); // Prints " MyDerivedClass "

You still need the new keyword in the definition of the MyDerivedClass
.Message() method. That’s your clue that there are still problems (see
Item 33). The base class version is still accessible through a reference to
the base class:

MyDerivedClass d = new MyDerivedClass();
d.Message(); // Prints "MyDerivedClass"
IMessagem = d as IM IMessagesg;
m.Message(); // Prints "MyDerivedClass"
MyClass b = d;
b.Message(); // Prints "MyClass"

One way to fix this problem is to modify the base class, declaring that
the interface methods should be virtual:

public class MyClass : IMessage
{
 public virtual void Message() =>
 WriteLine(nameof(MyClass));
}

public class MyDerivedClass : MyClass
{
 public override void Message() =>
 WriteLine(nameof(MyDerivedClass));
}

MyDerivedClass—and all classes derived from MyClass—can declare
their own methods for Message(). The overridden version will be called
every time: through the MyDerivedClass reference, through the IMsg
reference, and through the MyClass reference.

If you dislike the concept of impure virtual functions, just make one
small change to the definition of MyClass:

Wagner_Book.indb 84Wagner_Book.indb 84 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 15: Understand How Interface Methods Differ from Virtual Methods  85

public abstract class MyClass : IMessage
{
 public abstract void Message();
}

Yes, you can implement an interface without actually implementing the
methods in that interface. By declaring abstract versions of the methods
in the interface, you declare that all concrete types derived from your type
must override those interface members and define their own implementa-
tions. The IMessage interface is part of the declaration of MyClass, but
defining the methods is deferred to each concrete derived class.

Another partial solution is to implement the interface, and include a
call to a virtual method that enables derived classes to participate in the
interface contract. You would do that in MyClass as follows:

public class MyClass : IMessage
{
 protected virtual void OnMessage()
 {
 }

 public void Message()
 {
 OnMessage();
 WriteLine(nameof(MyClass));
 }
}

Any derived class can override OnMessage() and add its own work to
the Message() method declared in MyClass. You’ve seen this pattern
elsewhere, when classes implement IDisposable (see Item 26).

Explicit interface implementation (see Item 26 in Effective C#, Third
Edition) enables you to implement an interface, yet hide its members
from the public interface of your type. Its use throws a few other twists
into the relationships between implementing interfaces and overrid-
ing virtual functions. Explicit interface implementation allows you
to prevent client code from using the interface methods when a more
appropriate version is available. The IComparable idiom in Item 20 in
Effective C#, Third Edition, shows this behavior in detail.

Wagner_Book.indb 85Wagner_Book.indb 85 7/18/17 11:55 AM7/18/17 11:55 AM

86  Chapter 2 API Design

There is one last wrinkle when you’re working with interfaces and base
classes: A base class can provide a default implementation for methods
in an interface, and a derived class can then declare that it implements
this interface. The derived class will inherit the implementation from
the base class, as the next example shows:

public class DefaultMessageGenerator
{
 public void Message() =>
 WriteLine("This is a default message");
}

public class AnotherMessageGenerator :
 DefaultMessageGenerator, IMessage
{
 // No explicit Message() method needed
}

Notice that the derived class can declare the interface as part of its con-
tract, because its base class provides an implementation. As long as it
has a publicly accessible method with the proper signature, the inter-
face contract is satisfied.

Implementing interfaces provides more options than just creating and
overriding virtual functions. You can create sealed implementations,
virtual implementations, or abstract contracts for class hierarchies. You
can also create a sealed implementation and include virtual method
calls in the methods that implement interfaces. You can decide exactly
how and when derived classes can modify the default behavior of mem-
bers of any interface that your class implements. Interface methods are
not virtual methods, but rather a separate contract.

Item 16: Implement the Event Pattern for Notifications

The .NET Event Pattern is nothing more than syntax conventions on
the Observer Pattern (see Design Patterns by Gamma, Helm, Johnson, and
Vlissides, pp. 293–303). Events define the notifications for your type.
They are built on delegates to provide type-safe function signatures for
event handlers. Add to this the fact that most examples that use dele-
gates are events, and it is not surprising that developers start thinking

Wagner_Book.indb 86Wagner_Book.indb 86 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 16: Implement the Event Pattern for Notifications  87

that events and delegates are the same things. Item 7 in Effective C#,
Third Edition, offers examples of when you can use delegates without
defining events. You should raise events when your type must commu-
nicate with multiple clients to inform them of actions in the system.
Events are how objects notify observers.

Consider a simple example. Suppose you’re building a log class that
acts as a dispatcher of all messages in an application. It will accept
all messages from sources in your application and will dispatch those
messages to any interested listeners. These listeners might be attached
to the console, a database, the system log, or some other mechanism.
You define the class as follows, to raise one event whenever a message
arrives:

public class Logger
{
 static Logger()
 {
 Singleton = new Logger();
 }

 private Logger()
 {
 }

 public static Logger Singleton { get; }

 // Define the event:
 public event EventHandler<LoggerEventArgs> Log;

 // Add a message, and log it.
 public void AddMsg(int priority, string msg) =>
 Log?.Invoke(this, new LoggerEventArgs(priority, msg));
}

The AddMsg method shows the proper way to raise events. The ?. oper-
ator ensures that the event is raised only when listeners are attached to
the event.

In the preceding example, LoggerEventArgs holds the priority of an
event and the message. The delegate defines the signature for the event

Wagner_Book.indb 87Wagner_Book.indb 87 7/18/17 11:55 AM7/18/17 11:55 AM

88  Chapter 2 API Design

handler. Inside the Logger class, the event field defines the event han-
dler. The compiler sees the public event field definition and creates the
add and remove operators for you. The generated code is similar to the
following:

public class Logger
{
 private EventHandler<LoggerEventArgs> log;

 public event EventHandler<LoggerEventArgs> Log
 {
 add { log = log + value; }
 remove { log = log - value; }
 }

 public void AddMsg(int priority, string msg) =>
 log?.Invoke(this, new LoggerEventArgs(priority, msg));
}

The versions of the add and remove accessors that the C# compiler
creates for the event use a different add and assign construct that is
guaranteed to be thread safe. In general, the public event declaration
language is more concise and easier to read and maintain than the
add/remove syntax. When you create events in your class, you should
declare public events and let the compiler automatically create the add
and remove properties for you. Writing your own add and remove han-
dlers lets you do more work in the add and remove handlers.

Events do not need to have any knowledge about the potential listeners.
The following class automatically routes all messages to the Standard
Error console:

class ConsoleLogger
{
 static ConsoleLogger() =>
 Logger.Singleton.Log += (sender, msg) =>
 Console.Error.WriteLine("{0}:\t{1}",
 msg.Priority.ToString(),
 msg.Message);
}

Wagner_Book.indb 88Wagner_Book.indb 88 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 16: Implement the Event Pattern for Notifications  89

Another class could direct output to the system event log:

class EventLogger
{
 private static Logger logger = Logger.Singleton;
 private static string eventSource;
 private static EventLog logDest;

 static EventLogger() =>
 logger.Log += (sender, msg) =>
 {
 logDest?.WriteEntry(msg.Message,
 EventLogEntryType.Information,
 msg.Priority);
 };

 public static string EventSource
 {
 get { return eventSource; }

 set
 {
 eventSource = value;
 if (!EventLog.SourceExists(eventSource))
 EventLog.CreateEventSource(eventSource,
 "ApplicationEventLogger");

 logDest?.Dispose();
 logDest = new EventLog();
 logDest.Source = eventSource;
 }
 }
}

Events notify any number of interested clients that something hap-
pened. The Logger class does not need any prior knowledge of which
objects are interested in logging events.

The Logger class contains only one event, but some other classes (mostly
Windows controls) have very large numbers of events. In those cases,
the idea of using one field per event might be unacceptable. Sometimes,

Wagner_Book.indb 89Wagner_Book.indb 89 7/18/17 11:55 AM7/18/17 11:55 AM

90  Chapter 2 API Design

only a small number of the defined events are actually used in any one
application. If you encounter that situation, you can modify the design
to create the event objects only when they are needed at runtime.

The core framework contains examples of how to achieve this goal in
the Windows control subsystem. To do so in our example, you would
add subsystems to the Logger class, then create an event for each sub-
system. Clients would subsequently register on the event that is pertinent
to their subsystems.

The extended Logger class has a System.ComponentModel.EventHandler-
List container that stores all the event objects that should be raised
for a given system. The updated AddMsg() method now takes a string
parameter specifying the subsystem that generated the log message. If
the subsystem has any listeners, the event is raised. Also, if an event lis-
tener has registered an interest in all messages, its event is raised:

public sealed class Logger
{
 private static EventHandlerList
 Handlers = new EventHandlerList();

 static public void AddLogger(
 string system, EventHandler<LoggerEventArgs> ev) =>
 Handlers.AddHandler(system, ev);

 static public void RemoveLogger(string system,
 EventHandler<LoggerEventArgs> ev) =>
 Handlers.RemoveHandler(system, ev);

 static public void AddMsg(string system,
 int priority, string msg)
 {
 if (!string.IsNullOrEmpty(system))
 {
 EventHandler<LoggerEventArgs> handler =
 Handlers[system] as
 EventHandler<LoggerEventArgs>;

 LoggerEventArgs args = new LoggerEventArgs(
 priority, msg);
 handler?.Invoke(null, args);

Wagner_Book.indb 90Wagner_Book.indb 90 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 16: Implement the Event Pattern for Notifications  91

 // The empty string means receive all messages:
 l = Handlers[""] as
 EventHandler<LoggerEventArgs>;
 handler?.Invoke(null, args);
 }
 }
}

The preceding code stores the individual event handlers in the
EventHandlerList collection. Sadly, there is no generic version of
Event HandlerList, so you’ll see a lot more casts and conversions in this
block of code than you’ll see in many of the samples in this book. In the
example, client code attaches to a specific subsystem, and a new event
object is created. Subsequent requests for the same subsystem retrieve
the same event object.

If you develop a class that contains a large number of events in its inter-
face, you should consider using this collection of event handlers. You
create event members when clients attach to the event handler of their
choice. Inside the .NET Framework, the System.Windows.Forms.Control
class uses a more complicated variation of this implementation to hide
the complexity of its event fields. Each event field internally accesses a
collection of objects to add and remove the particular handlers. You can
find more information about this idiom in the C# language specification.

The EventHandlerList class is one of the classes that have not been
updated with a new generic version. It’s not hard to construct your own
from the Dictionary class:

public sealed class Logger
{
 private static Dictionary<string,
 EventHandler<LoggerEventArgs>>
 Handlers = new Dictionary<string,
 EventHandler<LoggerEventArgs>>();

 static public void AddLogger(
 string system, EventHandler<LoggerEventArgs> ev)
 {
 if (Handlers.ContainsKey(system))
 Handlers[system] += ev;

Wagner_Book.indb 91Wagner_Book.indb 91 7/18/17 11:55 AM7/18/17 11:55 AM

92  Chapter 2 API Design

 else
 Handlers.Add(system, ev);
 }

 // Will throw an exception if the system
 // does not contain a handler.
 static public void RemoveLogger(string system,
 EventHandler<LoggerEventArgs> ev) =>
 Handlers[system] -= ev;

 static public void AddMsg(string system,
 int priority, string msg)
 {
 if (string.IsNullOrEmpty(system))
 {
 EventHandler<LoggerEventArgs> handler = null;
 Handlers.TryGetValue(system, out l);

 LoggerEventArgs args = new LoggerEventArgs(
 priority, msg);
 handler?.Invoke(null, args);

 // The empty string means receive all messages:
 handler = Handlers[""] as
 EventHandler<LoggerEventArgs>;
 handler?.Invoke(null, args);
 }
 }
}

The generic version trades casts and type conversions for increased
code to handle event maps. You might prefer the generic version, but
it’s a close tradeoff.

Events provide a standard syntax for notifying listeners. The .NET
Event Pattern follows the event syntax to implement the Observer Pat-
tern. Any number of clients can attach handlers to the events and pro-
cess them, and those clients need not be known at compile time. Events
don’t need subscribers for the system to function properly. Using events
in C# decouples the sender and the possible receivers of notifications.

Wagner_Book.indb 92Wagner_Book.indb 92 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 17: Avoid Returning References to Internal Class Objects  93

The sender can be developed completely independently of any receivers.
Events are the standard way to broadcast information about actions
that your type has taken.

Item 17: Avoid Returning References to Internal Class Objects

You’d like to think that a read-only property is read-only and that callers
can’t modify it. Unfortunately, that’s not always the way it works. If
you create a property that returns a reference type, the caller can access
any public member of that object, including those that modify the state
of the property. For example:

public class MyBusinessObject
{
 public MyBusinessObject()
 {
 // Read-only property providing access to a
 // private data member:
 Data = new BindingList<ImportantData>();
 }

 public BindingList<ImportantData> Data { get; }
 // Other details elided
}
// Access the collection:
BindingList<ImportantData> stuff = bizObj.Data;
// Not intended, but allowed:
stuff.Clear(); // Deletes all data.

Any public client of MyBusinessObject can modify your internal data
set. You created properties to hide your internal data structures, and
you provided methods to let clients manipulate the data only through
known methods, so your class can manage any changes to internal
state. And then a read-only property opens a gaping hole in your class
encapsulation! It’s not even a read-write property, for which you would
routinely consider these issues, but a true read-only property.

Welcome to the wonderful world of reference-based systems. Any mem-
ber that returns a reference type returns a handle to that object. You gave
the caller a handle to your internal structures, so the caller no longer
needs to go through your object to modify that contained reference.

Wagner_Book.indb 93Wagner_Book.indb 93 7/18/17 11:55 AM7/18/17 11:55 AM

94  Chapter 2 API Design

Clearly, you want to prevent this kind of behavior. You built the inter-
face to your class, and you want users to follow it. You don’t want users
to access or modify the internal state of your objects without your
knowledge. Naïve developers may innocently misuse your APIs and
create bugs for which they later blame you. More sinister developers
may maliciously probe your libraries for ways to exploit them. Don’t
provide functionality that you did not intend to offer. It won’t be tested
or hardened against malicious use.

Four different strategies can be used to protect your internal data struc-
tures from unintended modifications: value types, immutable types,
interfaces, and wrappers.

Value types are copied when clients access them through a property.
Any changes to the copy retrieved by the clients of your class do not
affect your object’s internal state. Clients can change these copies as
much as necessary to achieve their purposes, and their changes will not
affect your internal state.

Immutable types, such as System.String, are also safe (see Item 2).
You can return strings, or any immutable type, while remaining safe in
the knowledge that no client of your class can modify the string. Your
internal state is safe.

Another option is to define interfaces that allow clients to access a subset
of your internal member’s functionality (see Item 14). When you create
your own classes, you can create sets of interfaces that support subsets
of the functionality of your class. By exposing the functionality through
those interfaces, you minimize the possibility that your internal data
will change in ways you did not intend. Clients can access the internal
object through the interface you supplied, which will not include the
full functionality of the class. Exposing the IEnumerable<T> interface
reference in the List<T> is one example of this strategy. Machiavellian
programmers may be able to defeat that strategy by using debugger tools
or simply calling GetType() on a returned object to learn the type of
the object that implements the interface and using a cast. Even so, you
should take any steps that you can to make it harder for these develop-
ers to misuse your work to exploit end users.

Note that one strange twist in the BindingList class may cause some
problems. A generic version of IBindingList isn’t available, so you
may want to create two different API methods for accessing the data:

Wagner_Book.indb 94Wagner_Book.indb 94 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 17: Avoid Returning References to Internal Class Objects  95

one that supports data binding via the IBindingList interface, and
one that supports programming through ICollection<T> or a similar
interface.

public class MyBusinessObject
{
 // Read-only property providing access to a
 // private data member:
 private BindingList<ImportantData> listOfData = new
 BindingList<ImportantData>();
 public IBindingList BindingData =>
 listOfData;

 public ICollection<ImportantData> CollectionOfData =>
 listOfData;
 // Other details elided
}

Before we talk about how to create a completely read-only view of the
data, let’s briefly consider how you can respond to changes in your
data when you allow public clients to modify it. This point is import-
ant because you’ll often want to export an IBindingList to UI controls
so that the user can edit the data. At some point, you’ve undoubtedly
used Windows forms data binding to provide the means for your users
to edit private data in your objects. The BindingList<T> class supports
the IBindingList interface so that you can respond to any additions,
updates, or deletions of items in the collection being shown to the user.

You can generalize this technique whenever you want to expose inter-
nal data elements for modification by public clients, but you need to
validate and respond to those clients’ changes. Your class subscribes to
events generated by your internal data structure. Event handlers validate
changes or respond to those changes by updating other internal state
(see Item 16).

Returning to the original problem, you want to let clients view
your data but not make any changes. When your data is stored in a
 BindingList<T>, you can enforce that constraint by setting various prop-
erties on the BindingList object (e.g., AddEdit, AllowNew, AllowRemove).
The values of these properties are honored by UI controls; that is, the
UI controls enable and disable different actions based on the values.

Wagner_Book.indb 95Wagner_Book.indb 95 7/18/17 11:55 AM7/18/17 11:55 AM

96  Chapter 2 API Design

Because these properties are public, you can use them to modify the
behavior of your collection. Of course, that also means you should not
expose the BindingList<T> object as a public property. If you did, cli-
ents could modify those properties and circumvent your intent to create
a read-only binding collection. Once again, exposing the internal stor-
age through an interface type rather than the class type will limit what
client code can do with that object.

The final choice for protecting your internal data structures from modifica-
tion is to provide a wrapper object and export an instance of the wrapper,
which minimizes access to the contained object. The .NET Framework
immutable collections provide different collection types that support this
approach. The System.Collections.ObjectModel.ReadOnlyCollection<T>
type is the standard way to wrap a collection and export a read-only
version of that data:

public class MyBusinessObject
{
 // Read-only property providing access to a
 // private data member:
 private BindingList<ImportantData> listOfData = new
 BindingList<ImportantData>();

 public IBindingList BindingData =>
 listOfData;
 public ReadOnlyCollection<ImportantData> CollectionOfData
=>
 new ReadOnlyCollection<ImportantData>(listOfData);
 // Other details elided
}

Exposing reference types through your public interface allows users
of your object to modify its internal content without going through
the methods and properties you’ve defined. That seems counterintu-
itive, which leads to a common mistake. You need to modify your
class’s interfaces to account for the fact that you are exporting ref-
erences rather than values. If you simply return internal data, you’ve
given access to those contained members. Your clients can then call
any method that is available in your members. To limit that access,
you should expose private internal data using interfaces, wrapper
objects, or value types.

Wagner_Book.indb 96Wagner_Book.indb 96 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 18: Prefer Overrides to Event Handlers  97

Item 18: Prefer Overrides to Event Handlers

Many .NET classes provide two different ways to handle events from
the system: by attaching an event handler or by overriding a virtual
function in the base class. Why provide two ways of doing the same
thing? Because different situations call for different methods. Inside
derived classes, you should always override the virtual function.
Event handlers should be used only to respond to events in unrelated
objects.

Suppose you write a nifty Windows Presentation Foundation (WPF)
application that needs to respond to mouse down events. In your form
class, you can choose to override the OnMouseDown() method:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 protected override void OnMouseDown(MouseButtonEventArgs e)
 {
 DoMouseThings(e);
 base.OnMouseDown(e);
 }
}

Alternatively, you could attach an event handler (which requires both
C# and XAML):

<!-- XAML Description -->
 <Window x:Class="WpfApp1.MainWindow"
 xmlns:local="clr-namespace:WpfApp1"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525"
 MouseDown="OnMouseDownHandler">
 <Grid >

 </Grid>
</Window>

Wagner_Book.indb 97Wagner_Book.indb 97 7/18/17 11:55 AM7/18/17 11:55 AM

98  Chapter 2 API Design

// C# file
public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void OnMouseDownHandler(object sender,
 MouseButtonEventArgs e)
 {
 DoMouseThings(e);
 }
}

You should prefer the first solution. This preference might seem surprising
given the emphasis on declarative code in WPF applications. Even so,
if the logic must be implemented in code, you should use the virtual
method. If an event handler throws an exception, no other handlers in
the chain for that event will be called (see Item 7 in Effective C#, Third
Edition, and Item 16 earlier in this chapter). Some other ill-formed code
may prevent the system from calling your event handler. By overriding
the protected virtual function, you ensure that your handler is called
first. The base class version of the virtual function is responsible for
calling any event handlers attached to the particular event. Thus, if
you want to call the event handlers (and you almost always do), you
must call the base class. In some rare cases, you will want to replace
the default behavior instead of calling the base class version so that
the event handlers aren’t called. You can’t guarantee that all the event
handlers will be called—because some ill-formed event handler might
throw an exception—but you can guarantee that your derived class’s
behavior is correct.

If that explanation doesn’t convince you of the superiority of the vir-
tual function, examine the first listing in this item again and compare
it to the second listing. Which is clearer? Overriding a virtual function
means that there is only one function to examine and modify if you
need to maintain the form. By comparison, the event mechanism has
two points to maintain: the event handler function and the code that
wires up the event. Either of these could be the point of failure. One
function is simpler.

Wagner_Book.indb 98Wagner_Book.indb 98 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 18: Prefer Overrides to Event Handlers  99

Of course, the .NET Framework designers must have added events
for a reason, right? Yes, they did. Like the rest of us, they’re too busy
to write code that no one uses. The overrides are intended for derived
classes; every other class must use the event mechanism. That also
means declarative actions defined in the XAML file will be accessed
through the event handlers.

In our example, the designer may want certain actions to occur on a
mouse down event. The designer will create XAML declarations for those
behaviors, and the behaviors will be accessed using events on the form.
You could redefine all that behavior in your code, but that’s far too much
work to handle one event. In addition, it just moves the problem from
the designer’s hands to yours. Clearly, you would prefer that designers
do the design work instead of you. The obvious way to handle this sit-
uation is to create an event and access the XAML declarations created
by a design tool. In the end, you will have created a new class to send
an event to the form class. It would be simpler to just attach the form’s
event handler to the form in the first place. After all, that’s why the
.NET Framework designers put those events in the forms.

Another reason for using the event mechanism is that events are wired
up at runtime. As a consequence, events offer more flexibility. You can
wire up different event handlers, depending on the circumstances of the
program. As an example, suppose that you write a drawing program.
Depending on the state of the program, a mouse down event might start
drawing a line, or it might select an object. When the user switches
modes, you can switch event handlers. Different classes, with different
event handlers, can handle the event in different ways depending on the
state of the application.

Finally, with events, you can hook up multiple event handlers to the
same event. Imagine the same drawing program again. Multiple event
handlers might be hooked up on the mouse down event. The first might
perform the particular action. The second might update the status bar
or update the accessibility of different commands. In this way, you can
ensure that multiple actions take place in response to the same event.

When one function handles one event in a derived class, an override is
the better approach. It is easier to maintain, more likely to remain cor-
rect over time, and more efficient. Reserve the event handlers for other
uses. Prefer overriding the base class implementation to attaching an
event handler.

Wagner_Book.indb 99Wagner_Book.indb 99 7/18/17 11:55 AM7/18/17 11:55 AM

100  Chapter 2 API Design

Item 19: Avoid Overloading Methods Defined in Base Classes

When a base class chooses the name of a member, it assigns the semantics
to that name. Under no circumstances may the derived class use the
same name for different purposes. Yet, there are many other reasons
why a derived class may want to use the same name. For example, it
may want to implement the same semantics in a different way, or with
different parameters. Sometimes that’s naturally supported by the lan-
guage: Class designers declare virtual functions so that derived classes
can implement semantics differently. Item 10 in Effective C#, Third
Edition, explains why using the new modifier can lead to hard-to-find
bugs in your code. In this item, you’ll learn why creating overloads of
methods that are defined in a base class leads to similar issues. You
should not overload methods declared in a base class.

The rules for overload resolution are necessarily complicated. Possible
candidate methods might be declared in the target class, any of its base
classes, any extension method using the class, and interfaces it implements.
Add generic methods and generic extension methods, and it gets very
complicated. Throw in optional parameters, and you might not know
exactly what the results will be. Do you really want to add more complex-
ity to this situation? Creating overloads for methods declared in your
base class adds more possibilities to the best overload match, which in
turn increases the chance of ambiguity. It also increases the chance that
your interpretation of the specification will differ from the compiler’s
interpretations, and it will certainly confuse your users. The solution is
simple: Pick a different method name. It’s your class, and you certainly
have enough brilliance to come up with a different name for a method,
especially if the alternative is confusion for everyone using your types.

The guidance here is straightforward, yet people question whether it
really needs to be so strict. Perhaps that’s because overloading sounds
very much like overriding. Overriding virtual methods is a core prin-
ciple of C-based object-oriented languages; that’s obviously not what
is meant here. Overloading means creating multiple methods with the
same name and different parameter lists. Does overloading base class
methods dramatically affect overload resolution? To explore this ques-
tion, let’s look at the different ways in which overloading methods in
the base class can cause issues.

Wagner_Book.indb 100Wagner_Book.indb 100 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 19: Avoid Overloading Methods Defined in Base Classes  101

This problem has a lot of permutations, so let’s start simple. The interplay
between overloads in base classes reflects the base and derived classes used
for parameters. The examples use this class hierarchy for parameters:

public class Fruit { }
public class Apple : Fruit { }

Here’s a class with one method, using the derived parameter (Apple):

public class Animal
{
 public void Foo(Apple parm) =>
 WriteLine("In Animal.Foo");
}

Obviously, this snippet of code writes “In Animal.Foo”:

var obj1 = new Animal();
obj1.Foo(new Apple());

Now let’s add a new derived class with an overloaded method:

public class Tiger : Animal
{
 public void Foo(Fruit parm) =>
 WriteLine("In Fruit.Foo");
}

What happens when you execute this code?

var obj2 = new Timer();
obj2.Foo(new Apple());
obj2.Foo(new Fruit());

Both lines print “in Tiger.Foo.” You always call the method in the
derived class. Any number of developers would figure that the first call
would print “in Animal.Foo,” but even the simple overload rules can be
surprising. Both calls resolve to Tiger.Foo because, when a candidate
method appears in the most derived compile-time type, that method is
the better method. That’s still true when an even better match is found
in a base class. The principle at work is that the derived class author has
more knowledge about the specific scenario. The argument that is most
heavily weighted in overload resolution is the receiver, this. What do
you suppose the following code snippet does?

Wagner_Book.indb 101Wagner_Book.indb 101 7/18/17 11:55 AM7/18/17 11:55 AM

102  Chapter 2 API Design

Animal obj3 = new Tiger();
obj3.Foo(new Apple());

In this snippet, obj3 has the compile-time type of Animal (the base class),
even though the runtime type is Tiger (the derived class). Foo isn’t vir-
tual; therefore, obj3.Foo() must resolve to Animal.Foo.

If your perplexed users actually want to get the resolution rules they
might expect, they will need to use casts:

var obj4 = new Tiger();
((Animal)obj4).Foo(new Apple());
obj4.Foo(new Fruit());

If your API forces this kind of construct on your poor users, you’ve
failed. In fact, you can easily add a bit more confusion. Add one method
to your base class, B:

public class Animal
{
 public void Foo(Apple parm) =>
 WriteLine("In Animal.Foo");

 public void Bar(Fruit parm) =>
 WriteLine("In Animal.Bar");
}

Clearly, the following code prints “In Animal.Bar”:

var obj1 = new Tiger();
obj1.Bar(new Apple());

Now add a different overload, and include an optional parameter:

public class Tiger : Animal
{
 public void Foo(Apple parm) =>
 WriteLine("In Tiger.Foo");

 public void Bar(Fruit parm1, Fruit parm2 = null) =>
 WriteLine("In Tiger.Bar");
}

You’ve already seen what will happen here. The same snippet of code
now prints “In Tiger.Bar” (you’re calling your derived class again):

Wagner_Book.indb 102Wagner_Book.indb 102 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 19: Avoid Overloading Methods Defined in Base Classes  103

var obj1 = new Tiger();
obj1.Bar(new Apple());

The only way to get at the method in the base class (again) is to provide
a cast in the calling code.

These examples illustrate the kinds of problems you can encounter
with a single parameter method. The issues become increasingly more
confusing as you add parameters based on generics. Suppose you add
this method:

public class Animal
{
 public void Foo(Apple parm) =>
 WriteLine("In Animal.Foo");

 public void Bar(Fruit parm) =>
 WriteLine("In Animal.Bar");

 public void Baz(IEnumerable<Apple> parm) =>
 WriteLine("In Animal.Foo2");
}

Now provide a different overload in the derived class:

public class Tiger : Animal
{
 public void Foo(Fruit parm) =>
 WriteLine("In Tiger.Foo");

 public void Bar(Fruit parm1, Fruit parm2 = null) =>
 WriteLine("In Tiger.Bar");

 public void Baz(IEnumerable<Fruit> parm) =>
 WriteLine("In Tiger.Foo2");
}

Call Baz in a manner similar to the earlier calls:

var sequence = new List<Apple> { new Apple(), new Apple() };
var obj2 = new Tiger();

obj2.Baz(sequence);

Wagner_Book.indb 103Wagner_Book.indb 103 7/18/17 11:55 AM7/18/17 11:55 AM

104  Chapter 2 API Design

What do you suppose is printed this time? If you’ve been paying attention,
you might assume that “In Tiger.Foo2” is printed. That answer gets you
partial credit, because that output is what happens in C# 4.0. In C# 4.0
and later, generic interfaces support covariance and contravariance, which
means Tiger.Foo2 is a candidate method for an IEnumerable<Apple>
when its formal parameter type is an IEnumerable<Apple>. In contrast,
earlier versions of C# do not support generic variance; that is, generic
parameters are invariant. In those versions, Tiger.Foo2 is not a candidate
method when the parameter is an IEnumerable<Apple>. The only candi-
date method is Animal.Foo2, which is the correct answer in those versions.

The code examples illustrated that you sometimes need casts to help
the compiler pick the method you want in many complicated situa-
tions. In the real world, you’ll undoubtedly run into situations where
you need to use casts because class hierarchies, implemented interfaces,
and extension methods have conspired to decide the method you want,
rather than the compiler picking the “best” method. Of course, just
because real-world situations are occasionally ugly, that does not mean
you should add to the problem by creating more overloads yourself.

Now you can amaze your friends at programmer cocktail parties with
a more in-depth knowledge of overload resolution in C#. This can be
useful information to have, and the more you know about your chosen
language, the better you’ll be as a developer. But don’t expect your users
to have the same level of knowledge. More importantly, don’t rely on
everyone having that kind of detailed knowledge of how overload reso-
lution works as a precondition for using your API. Instead, do your users
a favor and don’t overload methods declared in a base class. It doesn’t
provide any value, and it will just lead to confusion among your users.

Item 20: Understand How Events Increase Runtime Coupling
Among Objects

Events seem to provide a way to completely decouple your class from
those types it needs to notify. Thus, you’ll often provide outgoing event
definitions. Let subscribers, whatever type they might be, subscribe to
those events. Inside your class, you raise the events. Your class knows
nothing about the subscribers, and it places no restrictions on the
classes that can implement those interfaces. Any code can be extended
to subscribe to those events and create whatever behavior they need
when those events are raised.

Wagner_Book.indb 104Wagner_Book.indb 104 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 20: Understand How Events Increase Runtime Coupling Among Objects  105

And yet, it’s not that simple. Coupling issues arise related to event-
based APIs. To begin with, some event argument types contain status
flags that direct your class to perform certain operations.

public class WorkerEngine
{
 public event EventHandler<WorkerEventArgs> OnProgress;
 public void DoLotsOfStuff()
 {
 for (int i = 0; i < 100; i++)
 {
 SomeWork();
 WorkerEventArgs args = new WorkerEventArgs();
 args.Percent = i;
 OnProgress?.Invoke(this, args);
 if (args.Cancel)
 return;
 }
 }
 private void SomeWork()
 {
 // Elided
 }
}

This code ensures that every subscriber to that event is coupled. Suppose
you have multiple subscribers on a single event. One subscriber might
submit a cancel request, and a second subscriber might reverse that
request. The foregoing definition does not guarantee that this behavior
can’t happen. Having multiple subscribers and a mutable event argu-
ment means that the last subscriber in the chain can override every
other subscriber. There’s no way to enforce having only one subscriber,
and there is no way to guarantee that you’re the last subscriber. You
could modify the event arguments to ensure that once the cancel flag is
set, no subscriber can turn it off:

public class WorkerEventArgs : EventArgs
{
 public int Percent { get; set; }
 public bool Cancel { get; private set; }

Wagner_Book.indb 105Wagner_Book.indb 105 7/18/17 11:55 AM7/18/17 11:55 AM

106  Chapter 2 API Design

 public void RequestCancel()
 {
 Cancel = true;
 }
}

Changing the public interface works correctly here, but it might not
work as intended in some other cases. If you need to ensure that there
is exactly one subscriber, you must choose another way of communicat-
ing with any interested code. For example, you can define an interface
and call that one method. Alternatively, you can ask for a delegate that
defines the outgoing method. Then your single subscriber can decide
whether it wants to support multiple subscribers and how to orches-
trate the semantics of cancel requests.

At runtime, another form of coupling exists between event sources
and event subscribers. Your event source holds a reference to the dele-
gate that represents the event subscriber. The event subscriber’s object
lifetime now will match the event source’s object lifetime. The event
source will call the subscriber’s handler whenever the event occurs.
That behavior must not continue after the event subscriber is disposed.
(Recall that the contract of IDisposable states that no other methods
should be called after an object is disposed; see Item 17 in Effective C#,
Third Edition.)

Event subscribers need to modify their implementation of the dispose
pattern to unhook event handlers as part of the Dispose() method.
Otherwise, subscriber objects will continue to live because reachable
delegates exist in the event source object. This scenario is another case in
which runtime coupling can cost you. Even though coupling appears to
be looser because the compile-time dependencies are minimized, run-
time coupling does have costs.

Event-based communication loosens the static coupling between types,
but that outcome comes at the cost of tighter runtime coupling between
the event generator and the event subscribers. The multicast nature of
events means that all subscribers must agree on a protocol for respond-
ing to the event source. The event model, in which the event source
holds a reference to all subscribers, means that all subscribers must
either (1) remove event handlers when the subscriber wants to be dis-
posed of or (2) simply cease to exist. Also, the event source must unhook

Wagner_Book.indb 106Wagner_Book.indb 106 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 21: Declare Only Nonvirtual Events  107

all event handlers when the source should cease to exist. You must fac-
tor those issues into your design decision to use events.

Item 21: Declare Only Nonvirtual Events

Like many other class members in C#, events can be declared as vir-
tual. It would be nice to think that this process is as easy as declaring any
other C# language element as virtual. Unfortunately, because you can
declare events using field-like syntax as well as the add and remove syn-
tax, it’s not that simple. It’s remarkably easy to create event handlers
across base and derived classes that don’t work the way you expect.
Even worse, you can create hard-to-diagnose crashes.

Let’s modify the worker engine from Item 20 to provide a base class
that defines the basic event mechanism:

public abstract class WorkerEngineBase
{
 public virtual event
 EventHandler<WorkerEventArgs> OnProgress;

 public void DoLotsOfStuff()
 {
 for (int i = 0; i < 100; i++)
 {
 SomeWork();
 WorkerEventArgs args = new WorkerEventArgs();
 args.Percent = i;
 OnProgress?.Invoke(this, args);
 if (args.Cancel)
 return;
 }
 }

 protected abstract void SomeWork();
}

The compiler creates a private backing field, along with public add and
remove methods.

Because that private backing field is compiler generated, you can’t write
code to access it directly. Instead, you can invoke it only through the

Wagner_Book.indb 107Wagner_Book.indb 107 7/18/17 11:55 AM7/18/17 11:55 AM

108  Chapter 2 API Design

publicly accessible event declaration. That restriction obviously applies
to derived events as well. Although you can’t manually write code that
accesses the private backing field of the base class, the compiler can
access its own generated fields; in this way, the compiler can create the
proper code to override the events in the correct manner. In effect, cre-
ating a derived event hides the event declaration in the base class. This
derived class does exactly the same work as in the original example:

public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 // Elided
 }
}

The addition of an override event breaks the code:

public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 Thread.Sleep(50);
 }
 // Broken. This hides the private event field in
 // the base class.
 public override event
 EventHandler<WorkerEventArgs> OnProgress;
}

The declaration of the overridden event means that the hidden backing
field in the base class is not assigned when user code subscribes to the
event. The user code subscribes to the derived event, and there is no code
in the derived class to raise the event.

In turn, when the base class uses a field-like event, overriding that event
definition hides the event field defined in the base class. Code in the
base class that raises the event doesn’t do anything, because all sub-
scribers have attached to the derived class. It doesn’t matter whether
the derived class uses a field-like event definition or a property-like
event definition: The derived class version hides the base class event.
No events raised in the base class code actually call a subscriber’s code.

Wagner_Book.indb 108Wagner_Book.indb 108 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 21: Declare Only Nonvirtual Events  109

Derived classes work only if they use the add and remove accessors:

public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 Thread.Sleep(50);
 }
 public override event
 EventHandler<WorkerEventArgs> OnProgress
 {
 add { base.OnProgress += value; }
 remove { base.OnProgress -= value; }
 }
 // Important: Only the base class can raise the event.
 // Derived classes cannot raise the events directly.
 // If derived classes should raise events, the base
 // class must provide a protected method to
 // raise the events.
}

You can also make this idiom work if the base class declares a property-
like event.

The base class needs to be modified so that it contains a protected event
field, and the derived class property can then modify the base class
variable:

public abstract class WorkerEngineBase
{
 protected EventHandler<WorkerEventArgs> progressEvent;

 public virtual event
 EventHandler<WorkerEventArgs> OnProgress
 {
 [MethodImpl(MethodImplOptions.Synchronized)]
 add
 {
 progressEvent += value;
 }

Wagner_Book.indb 109Wagner_Book.indb 109 7/18/17 11:55 AM7/18/17 11:55 AM

110  Chapter 2 API Design

 [MethodImpl(MethodImplOptions.Synchronized)]
 remove
 {
 progressEvent -= value;
 }
 }

 public void DoLotsOfStuff()
 {
 for (int i = 0; i < 100; i++)
 {
 SomeWork();
 WorkerEventArgs args = new WorkerEventArgs();
 args.Percent = i;
 progressEvent?.Invoke(this, args);

 if (args.Cancel)
 return;
 }
 }

 protected abstract void SomeWork();
}
public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 // Elided
 }
 // Works. Access base class event field.
 public override event
 EventHandler<WorkerEventArgs> OnProgress
 {
 [MethodImpl(MethodImplOptions.Synchronized)]
 add
 {
 progressEvent += value;
 }

Wagner_Book.indb 110Wagner_Book.indb 110 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 21: Declare Only Nonvirtual Events  111

 [MethodImpl(MethodImplOptions.Synchronized)]
 remove
 {
 progressEvent -= value;
 }
 }
}

However, this code still constrains your derived class’s implementa-
tions. The derived class cannot use the field-like event syntax:

public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 // Elided
 }
 // Broken. Private field hides the base class.
 public override event
 EventHandler<WorkerEventArgs> OnProgress;
}

You are left with two options here to fix the problem. First, whenever
you create a virtual event, don’t use field-like syntax—not in the base
class nor in any derived classes. The other solution is to create a virtual
method that raises the event whenever you create a virtual event defini-
tion. Any derived class must override the raise event method as well as
override the virtual event definition.

public abstract class WorkerEngineBase
{
 public virtual event
 EventHandler<WorkerEventArgs> OnProgress;

 protected virtual WorkerEventArgs
 RaiseEvent(WorkerEventArgs args)
 {
 OnProgress?.Invoke(this, args);
 return args;
 }

Wagner_Book.indb 111Wagner_Book.indb 111 7/18/17 11:55 AM7/18/17 11:55 AM

112  Chapter 2 API Design

 public void DoLotsOfStuff()
 {
 for (int i = 0; i < 100; i++)
 {
 SomeWork();
 WorkerEventArgs args = new WorkerEventArgs();
 args.Percent = i;
 RaiseEvent(args);
 if (args.Cancel)
 return;
 }
 }

 protected abstract void SomeWork();
}

public class WorkerEngineDerived : WorkerEngineBase
{
 protected override void SomeWork()
 {
 Thread.Sleep(50);
 }

 public override event
 EventHandler<WorkerEventArgs> OnProgress;

 protected override WorkerEventArgs
 RaiseEvent(WorkerEventArgs args)
 {
 OnProgress?.Invoke(this, args);
 return args;
 }
}

An examination of this code reveals that you really don’t gain anything
by declaring the event as virtual. The existence of the virtual method to
raise the event is all you need to customize the event-raising behavior in the
derived class. There really isn’t anything you can do by overriding
the event itself that you can’t do by overriding the method that raises the
event: You can iterate all the delegates by hand, and you can provide
different semantics for handling how event arguments are changed by
each subscriber. You can even suppress events by not raising anything.

Wagner_Book.indb 112Wagner_Book.indb 112 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 22: Create Method Groups That Are Clear, Minimal, and Complete  113

At first glance, events seem to provide a loose-coupling interface
between your class and those other pieces of code that are interested in
communicating with your class. If you’ve created virtual events, both
compile-time and runtime coupling occurs between your event sources
and those classes that subscribe to your events. The fixes you need to
add to your code to make virtual events work usually mean you don’t
need a virtual event anyway.

Item 22: Create Method Groups That Are Clear, Minimal,
and Complete

The more possible overloads you create for a method, the more often
you’ll run into ambiguity. Even worse, when you make seemingly inno-
cent changes to your code, you can cause different methods to be called
and, in turn, unexpected results to be generated.

In many cases, it’s easier to work with fewer overloaded methods than
with more overloads. Your goal should be to create precisely the right
number of overloads: enough of them that your type is easy for client
developers to use, but not so many that you complicate the API and
make it harder for the compiler to create exactly the one best method.

The more the ambiguity you create, the more difficult it is for other
developers to create code that uses new C# features such as type infer-
ence. The more ambiguous methods you have in place, the more likely
it is that the compiler cannot conclude that exactly one method is best.

The C# language specification describes all the rules that determine which
method will be interpreted as the best match. As a C# developer, you should
have some understanding of these rules. More importantly, as an API writer,
you should have a solid understanding of the rules. It is your responsibil-
ity to create an API that minimizes the risk of compilation errors caused by
the compiler’s attempt to resolve ambiguity. It’s even more important that
you don’t lead your users down the path of misunderstanding which of your
methods the compiler will choose in reasonable situations.

The C# compiler can follow quite a lengthy path as it determines
whether there is one best method to call and, if there is, what that one
best method is. When a class has only nongeneric methods, it’s reason-
ably easy to follow the logic and identify which methods will be called.
The more possible variations you add, however, the worse the situation
gets, and the more likely it is that you will create ambiguity.

Wagner_Book.indb 113Wagner_Book.indb 113 7/18/17 11:55 AM7/18/17 11:55 AM

114  Chapter 2 API Design

Several conditions may change the way the compiler resolves these
methods. Specifically, this process is affected by the number and the
type of parameters, whether generic methods are potential candi-
dates, whether any interface methods are possible, and whether any
extension methods are candidates and are imported into the current
context.

The compiler can look in numerous locations for candidate methods.
Then, after it finds all candidate methods, it must try to pick the one
best method. If there are no candidate methods or if there is no unique best
candidate among the multiple candidate methods, a compiler error is
generated. Of course, those are the easy cases: You can’t ship code that has
compiler errors. More challenging problems occur when you and the
compiler disagree about which method is best. In those cases, the com-
piler always wins, and you may get undesired behavior.

Any methods that have the same name should perform essentially the
same function. For example, two methods in the same class named
Add() should do the same thing. If the methods do semantically dif-
ferent things, then they should have different names. For example, you
should never write code like this:

public class Vector
{
 private List<double> values = new List<double>();

 // Add a value to the internal list.
 public void Add(double number) =>
 values.Add(number);

 // Add values to each item in the sequence.
 public void Add(IEnumerable<double> sequence)
 {
 int index = 0;
 foreach (double number in sequence)
 {
 if (index == values.Count)
 return;
 values[index++] += number;
 }
 }
}

Wagner_Book.indb 114Wagner_Book.indb 114 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 22: Create Method Groups That Are Clear, Minimal, and Complete  115

Either of these two Add() methods is reasonable, but there is no way
both should be part of the same class. Different overloaded methods
should provide different parameter lists—never different actions.

That rule alone limits the possible errors caused when the compiler calls
a different method from the one you expect. If both methods perform
the same action, it really shouldn’t matter which one gets called, right?

Of course, different methods with different parameter lists often have
different performance metrics. Even when multiple methods perform
the same task, you should get the method you expect. You as the class
author can make that happen by minimizing the chances for ambiguity.

Ambiguity problems arise when methods have similar arguments and
the compiler must make a choice. In the simplest case, there is only one
parameter for any of the possible overloads:

public void Scale(short scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

public void Scale(int scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

public void Scale(float scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

public void Scale(double scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

By creating all these overloads, you avoid introducing any ambiguity.
Every numeric type except decimal is listed, so the compiler always calls

Wagner_Book.indb 115Wagner_Book.indb 115 7/18/17 11:55 AM7/18/17 11:55 AM

116  Chapter 2 API Design

the version that is a correct match. (The decimal type is omitted here
because converting a value from decimal to double requires an explicit
conversion.) If you have a C++ programming background, you’re prob-
ably wondering why I haven’t recommended replacing all those over-
loads with a single generic method. The answer is C# generics don’t
support that practice in the way C++ templates do. With C# generics,
you can’t assume that arbitrary methods or operators are present in
the type parameters. You must specify your expectations using con-
straints (see Item 18 in Effective C#, Third Edition). Of course, you
might think about using delegates to define a method constraint (see
Item 7 in Effective C#, Third Edition). Unfortunately, that technique
merely moves the problem to another location in the code where both
the type parameter and the delegate are specified. You’re stuck with
some version of this code.

But suppose you left out some of the overloads:

public void Scale(float scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

public void Scale(double scaleFactor)
{
 for (int index = 0; index < values.Count; index++)
 values[index] *= scaleFactor;
}

Now it’s a bit trickier for users of the class to determine which method
will be called for the short and double cases. There are implicit conver-
sions from short to float, and from short to double. Which one will
the compiler pick? If it can’t pick one method, you’ve forced coders to
specify an explicit cast so that their code will compile. In this case, the
compiler decides that float is a better match than double. Every float
can be converted to a double, but not every double can be converted to a
float. Therefore, float must be “more specific” than double, making it
a better choice. However, most of your users may not come to the same
conclusion. Here’s how to avoid this problem: When you create multiple
overloads for a method, make sure that most developers would imme-
diately recognize which method the compiler will pick as a best match.
That’s best achieved by providing a complete set of method overloads.

Wagner_Book.indb 116Wagner_Book.indb 116 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 22: Create Method Groups That Are Clear, Minimal, and Complete  117

Single-parameter methods are rather simple, but it can be difficult
to understand methods that have multiple parameters. Here are two
methods with two sets of parameters:

public class Point
{
 public double X { get; set; }
 public double Y { get; set; }

 public void Scale(int xScale, int yScale)
 {
 X *= xScale;
 Y *= yScale;
 }

 public void Scale(double xScale, double yScale)
 {
 X *= xScale;
 Y *= yScale;
 }
}

What happens if you call the methods with int, float? Or with int, long?

Point p = new Point { X = 5, Y = 7 };
// Note that the second parameter is a long:
p.Scale(5, 7L); // Calls Scale(double,double)

In both cases, only one of the parameters is an exact match to one of
the overloaded method parameters. That method does not contain an
implicit conversion for the other parameter, so it’s not even a candidate
method. Some developers would probably guess wrong when trying to
determine which method gets called.

But wait—method lookup can get even more complicated. Let’s throw
a new wrench into the works and see what happens. What if there
appears to be a better method available in a base class than exists in a
derived class? (See Item 19 for details.)

public class Point
{
 public double X { get; set; }
 public double Y { get; set; }

Wagner_Book.indb 117Wagner_Book.indb 117 7/18/17 11:55 AM7/18/17 11:55 AM

118  Chapter 2 API Design

 // Earlier code elided
 public void Scale(int scale)
 {
 X *= scale;
 Y *= scale;
 }
}
public class Point3D : Point
{
 public double Z { get; set; }

 // Not override, not new. Different parameter type.
 public void Scale(double scale)
 {
 X *= scale;
 Y *= scale;
 Z *= scale;
 }
}

Point3D p2 = new Point3D { X = 1, Y = 2, Z = 3 };
p2.Scale(3);

There are quite a few mistakes here. Point should declare Scale() as a
virtual method if the class author intends for Scale to be overridden.
But the author of the overriding method—let’s call her Kaitlyn—made a
different mistake: By creating a new method (rather than hiding the orig-
inal), Kaitlyn has ensured that the user of her type will generate code that
calls the wrong method. The compiler finds both methods in scope and
determines (based on the type of the parameters) that Point.Scale(int)
is a better match. By creating a set of conflicting method signatures,
Kaitlyn has created this ambiguity.

Adding a generic method to catch all the missing cases, using a default
implementation, creates an even more sinister situation:

public static class Utilities
{
 // Prefer Math.Max for double:
 public static double Max(double left, double right) =>
 Math.Max(left, right);

Wagner_Book.indb 118Wagner_Book.indb 118 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 22: Create Method Groups That Are Clear, Minimal, and Complete  119

 // Note that float, int, etc., are handled here:
 public static T Max<T>(T left, T right)
 where T : IComparable<T> =>
 (left.CompareTo(right) > 0 ? left : right);
}
double a1 = Utilities.Max(1, 3);
double a2 = Utilities.Max(5.3, 12.7f);
double a3 = Utilities.Max(5, 12.7f);

The first call instantiates a generic method for Max<int>; the second
call goes to Max(double, double); and the third call goes to a generic
method for Max<float>. That result occurs because one of the types
can always be a perfect match for a generic method, and no conversion
is required. A generic method becomes the best method if the com-
piler can perform the correct type substitution for all type parameters.
Yes, even if there are obvious candidate methods that require implicit
conversions, the generic method is considered a better method match
whenever it is accessible.

But I’m not finished throwing complications at you: Extension meth-
ods can also be considered in the mix. What happens if an extension
method appears to be a better match than an accessible member function?
Thankfully, extension methods are a last resort; they are examined
only if no applicable instance method is found.

As you can see, the compiler looks for candidate methods in quite a few
places. As you put more methods in more places, you expand that list.
The larger the list, the more likely it is that the potential methods will
present an ambiguity. Even if the compiler is certain which method is
the one best method, you’ve introduced potential ambiguity into the
mix for your users. If only one in 20 developers can correctly identify
which method overload is called when he or she invokes one of a series
of overloaded methods, you’ve clearly made your API too complex.
Users should immediately know which of the possible set of accessible
overloads the compiler has chosen as the best. Anything less is obfus-
cating your library.

To provide a complete set of functionality for your users, create the
minimum set of overloads—then stop. Adding methods will just
increase your library’s complexity without enhancing its usefulness.

Wagner_Book.indb 119Wagner_Book.indb 119 7/18/17 11:55 AM7/18/17 11:55 AM

120  Chapter 2 API Design

Item 23: Give Partial Classes Partial Methods for Constructors,
Mutators, and Event Handlers

The C# language team added partial classes so that code generators
can create their part of the classes, and human developers can augment
the generated code in another file. Unfortunately, that separation is not
sufficient for sophisticated usage patterns. Often, the human develop-
ers need to add code in members created by the code generator. Those
members might include constructors, event handlers defined in the gen-
erated code, and any mutator methods defined in the generated code.

Your purpose is to free developers who use your code generator from
feeling that they should modify your generated code. If you are on the
other side, using code created by a tool, you should never modify the gen-
erated code. Doing so breaks the relationship with the code generator
tool and makes it much more difficult for you to continue to use it.

In some ways, writing partial classes is API design. You, as the human
developer or as the author of a code generation tool, are creating code
that must be used by some other developer (either the person or the
code generation tool). In other ways, it’s like having two developers
work on the same class, but with serious restrictions. The two devel-
opers can’t talk to each other, and neither developer can modify the
code written by the other. To deal with these challenges, you need to
provide plenty of hooks for those other developers. You should imple-
ment those hooks—which another developer may, or may not, need to
implement—in the form of partial methods.

Your code generator defines partial methods for those extension points.
Partial methods provide a way for you to declare methods that may be
defined in another source file in a partial class. The compiler looks at
the full class definition, and, if partial methods have been defined, it
generates calls to those methods. If no class author has written the par-
tial method, then the compiler removes any calls to it.

Because partial methods may or may not be part of the class, the lan-
guage imposes several restrictions on the method signatures of partial
methods: The return type must be void, partial methods cannot be
abstract or virtual, and they cannot implement interface methods. The
parameters cannot include any out parameters, because the compiler
cannot initialize out parameters. Nor can it create the return value if
the method body has not been defined. Implicitly, all partial methods
are private.

Wagner_Book.indb 120Wagner_Book.indb 120 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 23: Partial Classes Require Partial Method Hooks  121

For three class member types, you should add partial methods that
enable users to monitor or modify the class behavior—namely, mutator
methods, event handlers, and constructors.

Mutator methods are any methods that change the observable state of
the class. From the standpoint of partial methods and partial classes, you
should interpret that definition as involving any change in state. The other
source files that make up a partial class implementation are part of the class
and, therefore, have complete access to your class’s internal structures.

Mutator methods should provide the other class authors with two par-
tial methods. The first method should be called before the change that
provides validation hooks and before the other class author has a chance
to reject the change. The second method is called after a change in state
and allows the other class author to respond to the state change.

Your tool’s core code would look something like this:

// Consider this the portion generated by your tool
public partial class GeneratedStuff
{
 private int storage = 0;

 public void UpdateValue(int newValue) =>
 storage = newValue;
}

You should add hooks both before and after the state change. In this
way, you let other class authors modify or respond to the change:

// Consider this the portion generated by your tool
public partial class GeneratedStuff
{
 private struct ReportChange
 {
 public readonly int OldValue;
 public readonly int NewValue;

 public ReportChange(int oldValue, int newValue)
 {
 OldValue = oldValue;
 NewValue = newValue;
 }
 }

Wagner_Book.indb 121Wagner_Book.indb 121 7/18/17 11:55 AM7/18/17 11:55 AM

122  Chapter 2 API Design

 private class RequestChange
 {
 public ReportChange Values { get; set; }
 public bool Cancel { get; set; }
 }

 partial void ReportValueChanging(RequestChange args);
 partial void ReportValueChanged(ReportChange values);

 private int storage = 0;

 public void UpdateValue(int newValue)
 {
 // Precheck the change
 RequestChange updateArgs = new RequestChange
 {
 Values = new ReportChange(storage, newValue)
 };
 ReportValueChanging(updateArgs);
 if (!updateArgs.Cancel) // If OK,
 {
 storage = newValue; // change
 // and report:
 ReportValueChanged(new ReportChange(
 storage, newValue));
 }
 }
}

If no one has written bodies for either partial method, then the com-
piled version of UpdateValue() looks like this:

public void UpdateValue(int newValue)
{
 RequestChange updateArgs = new RequestChange
 {
 Values = new ReportChange(this.storage, newValue)
 };
 if (!updateArgs.Cancel)
 {
 this.storage = newValue;
 }
}

Wagner_Book.indb 122Wagner_Book.indb 122 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 23: Partial Classes Require Rartial Method Hooks  123

The hooks allow the developer to validate or respond to any change:

public partial class GeneratedStuff
{
 partial void ReportValueChanging(
 RequestChange args)
 {
 if (args.Values.NewValue < 0)
 {
 WriteLine($@"Invalid value:
 {args.Values.NewValue}, canceling");
 args.Cancel = true;
 }
 else
 WriteLine($@"Changing
 {args.Values.OldValue} to
 {args.Values.NewValue}");
 }
 partial void ReportValueChanged(
 ReportChange values)
 {
 WriteLine($@"Changed
 {values.OldValue} to {values.NewValue}");
 }
}

This example shows a protocol with a cancel flag that lets develop-
ers cancel any mutator operation. When creating your class, you might
prefer a protocol in which the user-defined code can throw an excep-
tion to cancel an operation. Throwing the exception is a better option
if the cancel operation should be propagated up to the calling code.
Otherwise, the Boolean cancel flag should be used because of its light-
weight nature.

Furthermore, notice that the RequestChange object is created in this
example even when ReportValueChanged() will not be called. You can
have any code execute in that constructor, and the compiler cannot
assume that the constructor call can be removed without changing the
semantics of the UpdateValue() method. You should strive to require
minimal work for client developers to create those extra objects needed
for validating and requesting changes.

Wagner_Book.indb 123Wagner_Book.indb 123 7/18/17 11:55 AM7/18/17 11:55 AM

124  Chapter 2 API Design

It’s fairly easy to spot all the public mutator methods in a class, but
remember to include all the public set accessors for properties. If you
forget some of them, other class authors can’t validate or respond to
property changes.

Next, you need to provide hooks for user-generated code in the con-
structors. Neither the generated code nor the user-written code can
control which constructor gets called, so your code generator must
solve this problem. It should provide a hook to call user-defined code
when one of the generated constructors gets called. Here is an extension
to the GeneratedStuff class shown earlier:

// Hook for user-defined code:
partial void Initialize();

public GeneratedStuff() :
 this(0)
{
}

public GeneratedStuff(int someValue)
{
 this.storage = someValue;
 Initialize();
}

Notice that Initialize() is the last method called during construction.
That organization enables the handwritten code to examine the cur-
rent object state and possibly make any modifications or throw excep-
tions if developers find something invalid for their problem domains.
You need to ensure that you don’t call Initialize() twice, and that this
method is called from every constructor defined in the generated code.
Human developers must not call their own Initialize() routines from
any constructors they add. Instead, they should explicitly call one of the
constructors defined in the generated class to ensure that any initializa-
tion necessary in the generated code takes place.

Finally, if the generated code subscribes to any events, you should con-
sider providing partial method hooks during the processing of that
event. This consideration is especially important if the event requests
status or cancel notifications from the generated class. The user-defined
code may want to modify the status or change the cancel flag.

Wagner_Book.indb 124Wagner_Book.indb 124 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 24: Avoid ICloneable Because It Limits Your Design Choices  125

Partial classes and partial methods provide the mechanisms you need
to completely separate generated code from user-written code in the
same class. With the extensions shown here, you should never need to
modify code generated by a tool. Most developers are probably using
code generated by Visual Studio or other tools. Before you consider
modifying any of the code written by such a tool, you must examine
the interface provided by the generated code and determine whether it
has provided partial method declarations that you can use to accom-
plish your goal. More importantly, if you are the author of the code
generator, you must provide a complete set of hooks in the form of par-
tial methods to support any desired extensions to your generated code.
Doing anything less will lead developers down a dangerous path and
will encourage them to abandon your code generator.

Item 24: Avoid ICloneable Because It Limits Your Design Choices

ICloneable sounds like a good idea: You implement the ICloneable
interface for types that support copies; if you don’t want to support
copies, don’t implement it. Of course, your type does not live in a vacuum.
Your decision to support ICloneable affects derived types as well. Once
a type supports ICloneable, all its derived types must do the same. All
its member types must also support ICloneable or have some other
mechanism to create a copy.

Moreover, supporting deep copies is very problematic when you create
designs that contain webs of objects. ICloneable finesses this problem
in its official definition: It supports either a deep copy or a shallow
copy. A shallow copy creates a new object that contains copies of all
member fields. If those member variables are reference types, the new
object refers to the same object that the original does. A deep copy cre-
ates a new object that copies all member fields as well. All reference
types are cloned recursively in the copy. In built-in types, such as inte-
gers, the deep and shallow copies produce the same results. Which one
does a type support? That depends on the type—but recognize that
mixing shallow and deep copies in the same object causes quite a few
inconsistencies.

When you go wading into the ICloneable waters, it can be hard to
escape. Most often, avoiding ICloneable altogether makes for a simpler
class. Such a class is easier to use, and it’s easier to implement.

Wagner_Book.indb 125Wagner_Book.indb 125 7/18/17 11:55 AM7/18/17 11:55 AM

126  Chapter 2 API Design

Any value type that contains only built-in types as members does not
need to support ICloneable; a simple assignment copies all the values of
the struct more efficiently than Clone(). Clone() must box its return
value so that it can be coerced into a System.Object reference. The
caller must then perform another cast to extract the value from the
box. You’ve got enough to do—don’t write a Clone() function that rep-
licates an assignment.

What about value types that contain reference types? The most obvious
case is a value type that contains a string:

 public struct ErrorMessage
 {
 private int errCode;
 private int details;
 private string msg;

 // Details elided
 }

The string type is a special case because this class is immutable. If
you assign an error message object, both the original and the newly
assigned error message objects will refer to the same string. This
does not cause any of the problems that might happen with a general
reference type. If you change the msg variable through either refer-
ence, you create a new string object (see Item 15 in Effective C#,
Third Edition).

The general case of creating a struct that contains arbitrary reference
fields is more complicated, albeit far rarer. The built-in assignment for
the struct creates a shallow copy, with both the original and the copied
structs referring to the same object. To create a deep copy, you need to
clone the contained reference type, and you need to know that the ref-
erence type supports a deep copy with its Clone() method. Even then,
that process will work only if the contained reference type also sup-
ports ICloneable, and its Clone() method creates a deep copy.

Now let’s move on to reference types. Reference types could support
the ICloneable interface to indicate that they support either shallow
or deep copying. You should add support for ICloneable judiciously,
because doing so mandates that all classes derived from your type must
also support ICloneable. Consider this small hierarchy:

Wagner_Book.indb 126Wagner_Book.indb 126 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 24: Avoid ICloneable Because It Limits Your Design Choices  127

class BaseType : ICloneable
{
 private string label = "class name";
 private int[] values = new int[10];

 public object Clone()
 {
 BaseType rVal = new BaseType();
 rVal.label = label;
 for (int i = 0; i < values.Length; i++)
 rVal.values[i] = values[i];
 return rVal;
 }
}

class Derived : BaseType
{
 private double[] dValues = new double[10];

 static void Main(string[] args)
 {
 Derived d = new Derived();
 Derived d2 = d.Clone() as Derived;

 if (d2 == null)
 Console.WriteLine("null");
 }
}

If you run this program, you will find that the value of d2 is null. The
Derived class does inherit ICloneable.Clone() from BaseType, but that
implementation is not correct for the Derived type: It clones only the base
type. BaseType.Clone() creates a BaseType object, not a Derived object.
That is why d2 is null in the test program—it’s not a Derived object. How-
ever, even if you could overcome this problem, BaseType.Clone() could not
properly copy the dValues array that was defined in Derived.

When you implement ICloneable, you force all derived classes to imple-
ment it as well. In fact, you should provide a hook function to let all
derived classes use your implementation (see Item 15). To support

Wagner_Book.indb 127Wagner_Book.indb 127 7/18/17 11:55 AM7/18/17 11:55 AM

128  Chapter 2 API Design

cloning, derived classes can add only member fields that are value types
or reference types that implement ICloneable. That is a very stringent
limitation on all derived classes. Adding ICloneable support to base
classes usually creates such a burden on derived types that you should
avoid implementing ICloneable in nonsealed classes.

When an entire hierarchy must implement ICloneable, you can create
an abstract Clone() method and force all derived classes to implement
it. In those cases, you need to define a way for the derived classes to
create copies of the base members. That’s done by defining a protected
copy constructor:

class BaseType
{
 private string label;
 private int[] values;

 protected BaseType()
 {
 label = "class name";
 values = new int[10];
 }

 // Used by derived values to clone
 protected BaseType(BaseType right)
 {
 label = right.label;
 values = right.values.Clone() as int[];
 }
}

sealed class Derived : BaseType, ICloneable
{
 private double[] dValues = new double[10];

 public Derived()
 {
 dValues = new double[10];
 }

Wagner_Book.indb 128Wagner_Book.indb 128 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 25: Limit Array Parameters to params Arrays  129

 // Construct a copy
 // using the base class copy ctor
 private Derived(Derived right) :
 base(right)
 {
 dValues = right.dValues.Clone()
 as double[];
 }

 public object Clone()
 {
 Derived rVal = new Derived(this);
 return rVal;
 }
}

Base classes do not implement ICloneable; instead, they provide a pro-
tected copy constructor that enables derived classes to copy the base class
parts. Leaf classes, which should all be sealed, implement ICloneable when
necessary. The base class does not force all derived classes to implement
ICloneable, but it does provide the necessary methods for any derived
classes that want ICloneable support.

ICloneable does have its uses, but those cases are the exception rather
than the rule. Notably, the .NET Framework did not add ICloneable<T>
when it was updated with generic support. You should never add support
for ICloneable to value types; use the assignment operation instead. You
should add support for ICloneable to leaf classes when a copy opera-
tion is truly necessary for the type. Base classes that are likely to be used
where ICloneable will be supported should create a protected copy con-
structor. In all other cases, avoid ICloneable.

Item 25: Limit Array Parameters to params Arrays

Using array parameters can expose your code to several unexpected prob-
lems. It’s much better to create method signatures that use alternative rep-
resentations to pass collections or variable-size arguments to methods.

Arrays have special properties that allow you to write methods that appear
to implement strict type checking but fail at runtime. The following small
program compiles without problems and passes all the compile-time type

Wagner_Book.indb 129Wagner_Book.indb 129 7/18/17 11:55 AM7/18/17 11:55 AM

130  Chapter 2 API Design

checking. However, it throws an ArrayTypeMismatchException when you
assign a value to the first object in the parms array in ReplaceIndices:

string[] labels = new string[] { "one", "two",
 "three", "four", "five" };

ReplaceIndices(labels);

static private void ReplaceIndices(object[] parms)
{
 for (int index = 0; index < parms.Length; index++)
 parms[index] = index;
}

This problem arises because arrays are covariant as input parameters.
You don’t have to pass the exact type of the array into the method. Further-
more, even though the array is passed by value, the contents of the array
can be references to reference types. Your method can change the mem-
bers of the array in ways that will not work with some valid types.

Of course, the foregoing example is a bit obvious, and you probably
think you’ll never write code like that. But consider this small class
hierarchy:

class B
{
 public static B Factory() => new B();

 public virtual void WriteType() => WriteLine("B");
}

class D1 : B
{
 public static new B Factory() => new D1();

 public override void WriteType() => WriteLine("D1");
}

class D2 : B
{
 public static new B Factory() => new D2();

 public override void WriteType() => WriteLine("D2");
}

Wagner_Book.indb 130Wagner_Book.indb 130 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 25: Limit Array Parameters to params Arrays  131

If you use this hierarchy correctly, everything is fine:

static private void FillArray(B[] array, Func generator)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = generator();
}

// Elsewhere:
B[]
storage = new B[10];
FillArray(storage, () => B.Factory());
FillArray(storage, () => D1.Factory());
FillArray(storage, () => D2.Factory());

Nevertheless, any mismatch between the derived types will throw the
same ArrayTypeMismatchException:

B[] storage = new D1[10];
// All three calls will throw exceptions:
FillArray(storage, () => B.Factory());
FillArray(storage, () => D1.Factory());
FillArray(storage, () => D2.Factory());

Furthermore, because arrays don’t support contravariance, when you
write array members, your code will fail to compile, even though it
should work:

static void FillArray(D1[] array)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = new D1();
}

B[] storage = new B[10];
// Generates compiler error CS1503 (argument mismatch)
// even though D objects can be placed in a B array
FillArray(storage);

Things become even more complicated if you want to pass arrays as ref
parameters. You will be able to create a derived class, but not a base
class, inside the method. However, the objects in the array can still be
the wrong type.

Wagner_Book.indb 131Wagner_Book.indb 131 7/18/17 11:55 AM7/18/17 11:55 AM

132  Chapter 2 API Design

You can avoid this kind of problem by specifying parameters as inter-
face types that create a type-safe sequence to use. Input parameters
should be specified as IEnumerable<T> for some T. This strategy ensures
that you can’t modify the input sequence, because IEnumerable<T>
does not provide any methods to modify the collection. Another alter-
native is to pass types as base classes—a practice that may also avoid
the creation of APIs that support modifying the collection. When you
write a method for which one of the arguments is an array, the caller
must expect that you may replace any or all the elements of that array.
There’s no way to limit that usage. If you don’t intend to make modifi-
cations to the collection, indicate that fact in your API signature. (See
the other items in this chapter for many examples.)

When you need to modify the sequence, it’s best to use an input param-
eter of one sequence and return the modified sequence (see Item 31 in
Effective C#, Third Edition). When you want to generate the sequence,
return the sequence as an IEnumerable<T> for some T.

On some occasions, you may want to pass arbitrary options in methods—
and that’s when you can reach for an array of arguments. When you do
so, make sure to use a params array. The params array allows the user
of your method to simply place those elements as other parameters.
Contrast these two methods:

// Regular array
private static void WriteOutput1(object[] stuffToWrite)
{
 foreach (object o in stuffToWrite)
 Console.WriteLine(o);
}
// params array
private static void WriteOutput2(
 params object[] stuffToWrite)
{
 foreach (object o in stuffToWrite)
 Console.WriteLine(o);
}

As you can see, there is very little difference in how you create the
method or how you test for the members of the array. However, note
the difference in the calling sequence:

Wagner_Book.indb 132Wagner_Book.indb 132 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 25: Limit Array Parameters to params Arrays  133

WriteOutput1(new string[]
 { "one", "two", "three", "four", "five" });
WriteOutput2("one", "two", "three", "four", "five");

The trouble for your users gets worse if they don’t want to specify any
of the optional parameters. The params array version can be called
with no parameters:

WriteOutput2();

The version with a regular array presents your users with some painful
options. This version won’t compile:

WriteOutput1(); // Won't compile

Trying null as the argument will throw a null exception:

WriteOutput1(null); // Throws a null argument exception

Your users are stuck with all this extra typing:

WriteOutput1(new object[] { });

This alternative is still not perfect. Even params arrays can have the
same problems with covariant argument types, although you’re less
likely to run into these difficulties. First, the compiler generates the
storage for the array passed to your method. It doesn’t make sense to
try to change the elements of a compiler-generated array, and the calling
method won’t see any of the changes anyway. Furthermore, the com-
piler automatically generates the correct type of array. To create the
exception, the developers using your code need to write truly patholog-
ical constructs. They would need to create an actual array of a different
type. Then they would have to use that array as the argument in place
of the params array. Although it is possible, the system has already done
quite a bit to protect against this kind of error.

Arrays are not always the wrong method parameters, but they can
cause two types of errors. The array’s covariance behavior can cause
runtime errors, and array aliasing can mean the callee can replace the
callers’ objects. Even when your method doesn’t exhibit those prob-
lems, the method signature implies that it might. That possibility will
raise concerns among developers using your code: Is it safe? Should they
create temporary storage? Whenever you use an array as a parameter to
a method, there is almost always a better alternative. If the parameter

Wagner_Book.indb 133Wagner_Book.indb 133 7/18/17 11:55 AM7/18/17 11:55 AM

134  Chapter 2 API Design

represents a sequence, use IEnumerable<T> or a constructed IEnumerable<T>
for the proper type. If the parameter represents a mutable collection, then
rework the signature to mutate an input sequence and create the output
sequence. If the parameter represents a set of options, use a params array.
In all those cases, you’ll end up with a better, safer interface.

Item 26: Enable Immediate Error Reporting in Iterators and
Async Methods Using Local Functions

Modern C# includes some very high-level language constructs that gen-
erate a large amount of machine code. Among these are iterator methods
and async methods. Major advantages of these constructs are less source
code and clearer source code. Of course, nothing is ever truly free: Both
iterator methods and async methods delay execution of the code you
write in those methods. This initial code often takes the form of argu-
ment checking and object validation code that should throw exceptions
immediately if a method was called incorrectly or at the wrong time.
Those outcomes won’t happen, however, because the compiler-generated
code has restructured your algorithm. Consider this example:

public IEnumerable<T> GenerateSample<T>(
 IEnumerable<T> sequence, int sampleFrequency)
{
 if (sequence == null)
 throw new ArgumentException(
 "Source sequence cannot be null",
 paramName: nameof(sequence));
 if (sampleFrequency < 1)
 throw new ArgumentException(
 "Sample frequency must be a positive integer",
 paramName: nameof(sampleFrequency));

 int index = 0;
 foreach(T item in sequence)
 {
 if (index % sampleFrequency == 0)
 yield return item;
 }
}

Wagner_Book.indb 134Wagner_Book.indb 134 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 26: Force Synchronous Exceptions Using Local Functions  135

var samples = processor.GenerateSample(fullSequence, -8);
Console.WriteLine("Exception not thrown yet!");
foreach (var item in samples) // Exception thrown here
{
 Console.WriteLine(item);
}

The argument exception is not thrown when the iterator method is
called. Instead, it’s thrown when the sequence returned by the iterator is
enumerated. In this simplified example, you can likely see where the error
is, and fix it quickly. In contrast, in large-scale programs, the code that
creates the iterator and the code that enumerates the sequence might not
be in the same method, or even in the same class. That can make it much
more difficult to find and diagnose the problem, because the exception is
thrown in code that’s unrelated to the code that actually has the problem.

The same situation happens with async methods. Consider this example:

public async Task<string> LoadMessage(string userName)
{
 if (string.IsNullOrWhiteSpace(userName))
 throw new ArgumentException(
 message: "This must be a valid user",
 paramName: nameof(userName));
 var settings = await context.LoadUser(userName);
 var message = settings.Message ?? "No message";
 return message;
}

The async modifier instructs the compiler to rearrange the code in the
method, and return a Task that manages the status of the asynchro-
nous work. The returned Task object stores the state of that asynchronous
work. Only when that Task is awaited will any exceptions thrown
during that method be observed. (See items in Chapter 3 for details.) As
with iterator methods, the exception may be thrown in code that isn’t
near the code that generated the initial problem.

Ideally, you’d like to report those errors as soon as they are found.
Developers who are using your library incorrectly should see mistakes
reported when they are made, thereby ensuring that they can fix those
mistakes more easily. The way to achieve that goal is to separate these
methods into two different methods. Let’s start with iterator methods.

Wagner_Book.indb 135Wagner_Book.indb 135 7/18/17 11:55 AM7/18/17 11:55 AM

136  Chapter 2 API Design

An iterator method is a method that uses yield return statements to
return a sequence as that sequence is enumerated. These methods must
return an IEnumerable<T> or an IEnumerable. In fact, many methods
can return those types. The technique you use to ensure that program-
ming errors are reported eagerly is to split the iterator method into
two methods: an implementation method that uses yield return, and
a wrapper method that does all the validation. You can split the first
example into two methods as follows. Here’s the wrapper method:

public IEnumerable<T> GenerateSample<T>(
 IEnumerable<T> sequence, int sampleFrequency)
{
 if (sequence == null)
 throw new ArgumentNullException(
 paramName: nameof(sequence),
 message: "Source sequence cannot be null",
);
 if (sampleFrequency < 1)
 throw new ArgumentException(
 message: "Sample frequency must be a positive integer",
 paramName: nameof(sampleFrequency));

 return generateSampleImpl();
}

This wrapper method handles all the argument validation and any
other state validation. Then, it calls the implementation method that
does the work. Here’s the implementation method as a local function
nested inside GenerateSample:

IEnumerable<T> generateSampleImpl()
{
 int index = 0;
 foreach (T item in sequence)
 {
 if (index % sampleFrequency == 0)
 yield return item;
 }
}

This second method does not have any error checking, so you should
limit its accessibility as much as possible. At a minimum, it should be a
private method. Starting with C# 7, you can make this implementation

Wagner_Book.indb 136Wagner_Book.indb 136 7/18/17 11:55 AM7/18/17 11:55 AM

 Item 26: Force Synchronous Exceptions Using Local Functions  137

method a local function, defined inside the wrapper method. This
technique offers several advantages. Here’s the full code, using a local
function for the implementation iterator method:

public IEnumerable<T> GenerateSampleFinal<T>(
 IEnumerable<T> sequence, int sampleFrequency)
{
 if (sequence == null)
 throw new ArgumentException(
 message: "Source sequence cannot be null",
 paramName: nameof(sequence));
 if (sampleFrequency < 1)
 throw new ArgumentException(
 message: "Sample frequency must be a positive integer",
 paramName: nameof(sampleFrequency));

 return generateSampleImpl();

 IEnumerable<T> generateSampleImpl()
 {
 int index = 0;
 foreach (T item in sequence)
 {
 if (index % sampleFrequency == 0)
 yield return item;
 }
 }
}

The most important advantage of using a local function in this way is
that this implementation method can be called only from the wrapper
method. Thus, there is no way to bypass the validation code and call
the implementation method directly. Notice also that the implemen-
tation method does have access to all the local variables and all the
arguments to the wrapper method. None of them need to be explicitly
passed as arguments to the implementation method.

You can use the same technique for async methods. In that case, the public
method is a Task or ValueTask returning method that does not include
the async modifier. This wrapper method does all the validation and
eagerly reports any errors. The implementation method includes the
async modifier and performs the asynchronous work.

Wagner_Book.indb 137Wagner_Book.indb 137 7/18/17 11:55 AM7/18/17 11:55 AM

138  Chapter 2 API Design

The implementation method should have the most limited scope possible.
You should use a local function whenever possible:

public Task<string> LoadMessageFinal(string userName)
{
 if (string.IsNullOrWhiteSpace(userName))
 throw new ArgumentException(
 message: "This must be a valid user",
 paramName: nameof(userName));

 return loadMessageImpl();

 async Task<string> loadMessageImpl()
 {
 var settings = await context.LoadUser(userName);
 var message = settings.Message ?? "No message";
 return message;
 }
}

The advantages are the same as those provided by the other approaches:
Programming errors in calling the method are reported eagerly, and
should be easier to fix. The implementation method is hidden inside
the wrapper method. The wrapper method’s validation code cannot be
bypassed.

Let’s make one final observation before leaving this topic: The technique
of using local functions may look very similar to using lambda functions
for the implementation method. The implementation is different, and
local functions are the better choice. The compiler must generate more
complex structures for a lambda expression than for a local function.
Lambda expressions require instantiation of a delegate object, whereas
local functions can often be implemented as private methods.

High-level constructs such as iterator methods and async methods
rearrange your code and change when errors are reported. That’s how
those methods work. You can create the behavior you want by splitting
the methods in two. When you choose this approach, make sure you
limit the accessibility of the implementation method that lacks error
checking.

Wagner_Book.indb 138Wagner_Book.indb 138 7/18/17 11:55 AM7/18/17 11:55 AM

 

 273

Index

Numbers
0 (zero), ensuring 0 is valid state for value

type, 24–28

A
Abstract base classes

inheritance and, 73
when to use inheritance vs. interfaces,

74–75

Abstract Clone() method, 128–129

Abstract properties, 4

Accessors
add/remove, 88
implicit properties supporting, 8–10
as inexpensive operation, 29–31
providing synchronized access to data,

3–4
source objects, 256
specifying, 4–5

add accessor
derived classes using, 108–109
overview of, 88

Add() method
costs of dynamic typing, 261–262
dynamic methods at runtime, 238
rewriting using lambda expressions,

231–232

Aggregate(), of Enumerable class, 232

AggregateException, handling exceptions
in parallel operations, 190–194

Algorithms
anonymous types and, 43–45
for computing square root, 197–201
constructing parallel algorithms with

exceptions in mind, 189–195
constructing using async methods,

139
PLINQ implementation of parallel

algorithms, 177–189

Amdahl’s law, 188

Analyzers, automating practices with,
271–272

Anonymous types
creating user-defined types, 34–35
defining local functions, 41–45
drawbacks of, 35–36
limiting type scope using tuples, 38–39
scope of, 36
tuples compared with, 39

API design
avoiding conversion operators, 61–65
avoiding ICloneable interface, 125–129
avoiding overloading methods defined

in base classes, 100–104
avoiding returning references to

internal class objects, 93–96
creating clear, minimal, and complete

method groups, 113–119
deadlock due to poor API design, 150
declaring only nonvirtual events,

107–113
enabling error reporting in iterators

and async methods, 134–138

Wagner_Book.indb 273Wagner_Book.indb 273 7/18/17 11:55 AM7/18/17 11:55 AM

274  Index

API design (continued)
Event Pattern use for notifications,

86–93
giving partial classes partial methods

for constructors, mutators, and event
handlers, 120–125

interface methods compared with
virtual methods, 82–86

interfaces preferred over inheritance,
73–82

limiting array parameters to params
arrays, 129–134

limiting type visibility, 69–73
overrides preferred to event handlers,

97–99
overview of, 61
parameter use in minimizing method

overloads, 65–69
understanding how events increase

runtime coupling among objects,
104–107

APIs
minimizing dynamic objects in public

APIs, 259–265
Roslyn repository, 271–272
using Expression API, 253–259

Arrays, limiting array parameters to
params arrays, 129–134

AsParallel()
adding parallel execution to queries, 178
adding to loops, 177
impact on execution model when

added to query, 182–183

Async methods
avoiding composing synchronous and

asynchronous methods, 149–154
cache generalized async return types,

173–176
download method, 190
enabling error reporting, 134–138
not using async void methods, 143–149
using, 139–143

Asynchronous programming
avoiding composing synchronous and

asynchronous methods, 149–154
avoiding marshalling context

unnecessarily, 156–160
avoiding thread allocations and

context switches, 154–156
cache generalized async return types,

173–176
composing using task objects, 160–166
exception to rule for avoiding

composing synchronous and
asynchronous methods, 152

implementing task cancellation
protocol, 166–173

not using async void methods, 143–149
overriding, 139
using async methods, 139–143

Atomic types, mutability of, 12–13

Automating practices, with analyzers,
271–272

await
flow control and, 140–141
processing methods with multiple
await expressions, 142–143

B
BackgroundWorker class, for cross-thread

communication, 201–205

Backing field
creating private, 107–108
implicit properties supporting access

specifiers, 8–10
read-only properties surrounding, 34

Base classes
abstract, 73–75
accessing methods, 103–104
avoiding overloading methods defined,

100–104
declaring property-like event, 109–111

Wagner_Book.indb 274Wagner_Book.indb 274 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  275

implementing common behavior across
related types, 81–82

implanting ICloneable interface and,
129

when to use inheritance vs. interfaces,
74–75

Bind methods, use with
DynamicDictionary, 250–252

Bugs, due to poor API design, 150

C
C# community

automating practices with analyzers,
271–272

overview of, 267
participating in specs and code,

269–270
seeking the best answer, 267–269

C++ language, C# contrasted with,
18–19

C language, overriding virtual methods
in C-based languages, 100

Callbacks, sources of unknown code, 228

CallInterface() method, 254

Cast operator
accessing methods in base class,

103–104
converting dynamic types to static, 231
for explicit conversion, 63

Cast<T>, System.Linq.Enumerable,
238–240

catch. See try/catch blocks

Chunk partitioning, in PLINQ, 179

Class hierarchies. See also Inheritance
defining related types, 82
implanting ICloneable interface and, 128
limiting array parameters to params

arrays, 130–131

Class keyword, defining value types and
reference types, 19

Class Library, .NET Framework, 48

Classes. See also by individual types
array class as reference type, 17
avoiding ICloneable interface,

125–129
avoiding overloading methods defined

in base classes, 100–104
avoiding returning references to

internal class objects, 93–96
conversion operators used for

substitutability between, 61
creating user-defined types, 34
data binding classes supporting

properties no public data fields, 2
declaring property-like event in base

class, 109–111
derived classes, 82–86, 127–128
giving partial classes partial methods

for constructors, mutators, and event
handlers, 120–125

implementing common behavior across
related types, 81–82

limiting visibility of types, 69–73
understanding how event increase

runtime coupling among objects,
104–107

when to use, 18–19
when to use inheritance vs. interfaces,

74–75

CLR (Common Language Runtime), 50

Code
code reuse, 75
improving, 268
participating in C# community,

269–270

Code Cracker library, 271

Collaboration, 269

Collection types, protecting internal data
structures using wrappers, 96

Wagner_Book.indb 275Wagner_Book.indb 275 7/18/17 11:55 AM7/18/17 11:55 AM

276  Index

COM (Component Object Model)
COM APIs using named parameters,

66–67
STA (single-threaded apartment)

model, 205–206

Common Language Runtime (CLR), 50

Community. See C# community

CompareExchange(), in locking threads,
221

Compilers
accessing methods in base class, 104
costs of dynamic typing, 261–262
creating clear, minimal, and complete

method groups, 113–119
creating user-defined types, 35
processing async methods, 141–142
runtime costs of dynamic typing and

building expressions at, 237
try/catch blocks, 143

Component Object Model (COM)
COM APIs using named parameters,

66–67
STA (single-threaded apartment)

model, 205–206

Constraints, specifying, 229–230

Constructors
giving partial classes partial methods

for, 120–125
monitoring/modifying class behavior, 121
type conversion and, 62
when to replace conversion operator

with, 65

Context, avoiding marshalling context
unnecessarily, 156–160

Context-aware code, 156–160

Context-free code, 156–160

Context switches, 154–156

Conversion operators
compiler selection of methods, 116
converting dynamic types to static, 231

converting value types to reference
types, 240

implicit vs. explicit type conversion,
62–64

side effects in type conversion, 61–62
substitutability between classes, 61
when to replace with constructor, 65

Coupling, understanding how events
increase runtime coupling among
objects, 104–107

Covariance behavior, arrays, 133

CPUs
avoiding thread allocations and

context switches, 154–156
running CPU work synchronously vs.

asynchronously, 153–154

CSharpLang repository, 269–270

CSV data, 263–265

D
Data

data-driven dynamic types, 242–252
ensuring properties behave like data,

28–34
implicit properties preferred for

mutable data, 8–12
protecting internal data structures,

94–95
providing synchronized access to data,

3–4
separating storage from manipulation, 1
storing, 21
working with CSV data, 263–265

Data binding, support for properties, 2

Data members
ensuring properties behave like data,

28–34
property use instead of accessible data

members, 4–7

Wagner_Book.indb 276Wagner_Book.indb 276 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  277

Data types
creating user-defined types, 34–35
data binding support for properties, 2
defining shape of tuple as return type,

39–41
distinguishing between value types and

reference types, 18–24
drawbacks of using anonymous types,

35–36
dynamic types. See Dynamic programming
enhancements to properties, 1
ensuring 0 is valid state for value type,

24–28
ensuring properties behave like data,

28–34
event-based communication loosening

static coupling between types,
106–107

immutable types preferred for value
types, 12–18

implicit properties preferred for
mutable data, 8–12

implicit property syntax, 4
indexers, 5–8
leveraging runtime type of generic type

parameters, 238–241
limiting type scope using tuples,

38–39
limiting type visibility, 69–73
multithreaded support implemented

via properties, 3
overview of, 1
pitfalls of GetHashCode(), 54–60
property use instead of accessible data

members, 4–7
pros/cons of dynamic typing, 229–238
scope of anonymous types, 36–38
type conversion and, 62
type safety, 231
understanding equality relationships,

45–54
virtual properties, 4

Databases, pulling data from remote,
32–33

Deadlocks
causes of, 225
due to poor API design, 150
locking strategy and, 222
problems from composing synchronous

code on top of asynchronous methods,
150–152

Debugging
difficulty of debugging expression

trees, 252
walking through code with await

expressions, 141

Deep copies, ICloneable interface
supporting, 125

Delegates. See also Events
abstract, 206–207
anonymous, 209
blocking thread until completed, 227
built on events, 86–87
caching compiled, 234–235
callbacks, 228
lambda expressions compiled into,

232–233, 255
outdated practices, 268
processing, 211–214

Derived classes
implanting ICloneable interface and,

127–128
understanding difference between

interface and virtual function, 82–86

Derived events, declaring only nonvirtual
events, 107–113

Derived types, value types not supporting, 16

Developers
C# community, 267
collaboration between, 269
forcing use of error-handling

mechanism, 144–145
giving partial classes partial methods

for constructors, mutators, and event
handlers, 120–125

meeting expectations of, 28–32

Wagner_Book.indb 277Wagner_Book.indb 277 7/18/17 11:55 AM7/18/17 11:55 AM

278  Index

Dispatcher class, WPF (Windows
Presentation Foundation), 210

Download method, async methods, 190

Dynamic programming
DynamicObject or
IDynamicMetaObjectProvider for
data-driven dynamic types, 242–252

leveraging runtime type of generic type
parameters, 238–241

minimizing dynamic objects in public
APIs, 259–265

overview of, 229
pros/cons of dynamic typing, 229–238
using Expression API, 253–259

DynamicObject, for data-driven dynamic
types, 242–252

DynamicPropertyBag, creating dynamic
types, 242–244

E
Encapsulation, property use and, 1

End-of-task cycle, thread pools
managing, 196–197

Entity Framework, lazy evaluation of
queries, 182

enum
as flag, 27–28
modifying start value of 0, 24–26

Enumerable class
Aggregate(), 232
benefits of private classes in limiting

visibility, 70

Enumerator pattern, .NET Framework, 70

Equality
checking if two object references are

same, 50–52
Equals() not throwing exceptions, 49–50
ISStructuralEquality, 53–54
operator==() expression, 53

overriding Equals(), 53
specifying equality, 46–48
summary of C# options for testing, 54

Equals()
not throwing exceptions, 49–50
returning hash values from two equal

objects, 57
specifying equality, 45–49

Errors. See also Exceptions
async void methods in error recovery,

149
enabling error reporting in iterators

and async methods, 134–138
forcing use of mechanism for, 144–145

Event handlers
creating async event handlers, 146–148
event-based communication loosening

static coupling between types,
106–107

Event Pattern use for notifications,
86–93

giving partial classes partial methods
for, 120–125

monitoring/modifying class behavior,
121

overrides preferred over, 97–99

Event Pattern, 86–93

Events
declaring only nonvirtual, 107–113
Event Pattern use for notifications,

86–93
understanding how they increase

runtime coupling among objects,
104–107

Exception handling, PLINQ, 194–195

Exceptions. See also Errors
async methods handling, 143
asynchronous methods reporting

through Task object, 143–144
constructing parallel algorithms with

exceptions in mind, 189–195
Equals() not throwing, 49–50

Wagner_Book.indb 278Wagner_Book.indb 278 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  279

problems from composing synchronous
code on top of asynchronous
methods, 150–151

throwing, 123

Expression API, 253–259

Expression trees
avoiding repeated code, 232–233
difficulty of debugging, 252
Expression API, 253

Expressions
deciding when to use expressions or

dynamic typing, 235–238
for executing pseudocode, 256–258
Expression API, 253

Extension methods, creating clear, minimal,
and complete method groups, 119

F
Fixes, improving code, 268

Flag, enum as, 27–28

Flow control, await and async and, 140–141

for loops. See also Loops, 29

Functions
defining local functions on anonymous

type, 41–45
properties use instead of member

functions, 4
for specifying equality, 45
understanding difference between

interface and virtual function, 82–86

G
Generics

comparing C++ with C#, 116
generic methods, 118–119

get accessor
implicit properties supporting, 8–10
as inexpensive operation, 29–33

providing synchronized access to data,
3–4

source objects, 256
specifying accessibility modifiers, 4–5

GetHashCode()
defining hash value, 54
rules for overloading, 55–60
specific requirements for applying, 60

GetMetaObject,
IDynamicMetaObjectProvider, 249

GitHub, 269–272

Groups, method, 113–119

GUI applications
avoiding marshalling context

unnecessarily, 156–160
avoiding thread allocations and

context switches, 154–156

H
Handles, specifying smallest possible

scope for lock handles, 223–225

Hash-based collections, immutable types
used with, 12

Hash code, generating integer value, 55

Hash partitioning, in PLINQ, 180

Hashes, defining hash value, 54

Hero of Alexandria algorithm,
computing square root, 197–201

Higher-order functions, defining local
functions on anonymous type, 42

I
ICloneable interface, avoiding, 125–129

IDynamicMetaObjectProvider, for data-
driven dynamic types, 242–252

IEnumerable, LINQ queries and, 238–240

IEnumerator <string>, iteration with, 183

Wagner_Book.indb 279Wagner_Book.indb 279 7/18/17 11:55 AM7/18/17 11:55 AM

280  Index

Immutable types
adding constructors to, 15–16
creating, 16–17
difficulties of using in practice, 12–14
initializing, 18
preferred for value types, 12–18
protecting internal data structures, 94
understanding, 12

Implementation method
splitting iterator into two methods,

136–137
using with async, 137–138

Implicit properties
limitation of, 12
preferred for mutable data, 8–11

Indexers
implementing as methods, 5–8
retrieving XElement, 248

Inheritance. See also Class hierarchies
compared with interfaces, 73–74
examples, 75–82
when to use, 74–75

InnerExceptions, 190–193

Interfaces
avoiding ICloneable interface,

125–129
CallInterface(), 254
compared with inheritance, 73
creating, 83–84
examples, 75–82
implementing public interfaces with

less visible classes, 69–70
interface methods compared with

virtual methods, 82–86
limiting visibility of types, 69–73
limitations of, 74
options in describing set of

functionality (contract), 73–74
protecting internal data structures,94–95
specifying parameters as interface

types, 132
when to use, 75

Interlocked method, System.Threading
class, 220–221

Inverted enumeration, PLINQ, 181–182

Invoke, Windows Forms controls
BeginInvoke and EndInvoke, 206,

208–209, 212–214
InvokeAsync, 208–209
InvokeIfNeeded, 207–208
InvokeRequired, 206, 208–211, 214
processing UI threads, 211–212
WndProc, 213–214

IParallelEnumerable class, 178

IronPython, 260

ISStructuralEquality, 53–54

Iterator methods, enabling error
reporting, 134–138

Iterators, IEnumerator <string> and, 183

J
Java, C# contrasted with, 18–19

L
Lambda expressions

compiling into delegate, 232–233
creating lock inside, 225
implementation methods compared

with, 138
manipulating anonymous types, 45
orderby clause, 188
parameter expression, 255
returning destination objects, 258
rewriting Add method, 231–232
sources of unknown code, 228

Lazy<T> class, .NET Framework, 32

Library
Code Cracker library, 271
.NET Framework Class library, 48

Wagner_Book.indb 280Wagner_Book.indb 280 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  281

Task Parallel Library for managing
threads, 196

for working with CSV data,
263–265

LINQ
compared with PLINQ, 178
IEnumerable sequences, 238–240
issues due to errors in background

tasks, 194–195
source sequence for LINQ query,

258
support in C#, 253

LINQ to Objects
enumeration loop, 183–187
lazy evaluation of queries, 182
overview of, 177
PLINQ implementation of queries

compared with, 188

LINQ to SQL, 182, 188

LINQ to XML, 244–248

Listeners, event syntax for notifying,
92–93

lock keyword, 215

Locks, thread
avoiding calling unknown code in

locked sections, 225–228
CompareExchange(), 221
lock() for thread synchronization,

214–220
specifying smallest possible scope for

lock handles, 221–225
System.Threading.Interlocked,

220–221

Logs/logging
async void method using exception

filter, 147–148
events, 88–91

Loops
AsParallel(), 177
developer expectations and, 29
enumeration loop, 183

M
Members functions, properties use

versus, 4

MethodImpAttribute, protecting method
from deadlock, 222–223

Methods
avoiding composing synchronous and

asynchronous methods, 149–154
avoiding overloading methods defined

in base classes, 100–104
creating clear, minimal, and complete

method groups, 113–119
enabling error reporting in iterators

and async methods, 134–138
giving partial classes partial methods

for constructors, mutators, and event
handlers, 120–125

indexers implemented as, 5–6
interface methods compared with

virtual methods, 82–86
manipulating anonymous types, 45
mapping from type to type, 43–44
not using async void methods, 143–149
parameter use in minimizing method

overloads, 65–69
properties implemented as, 1–2, 28
protecting from deadlocks, 222–223
using async methods, 139–143

Microsoft Intermediate Language (MSIL)
implicit properties supporting access

specifiers, 8–9
storing parameter names, 68

Microsoft Office, 66–67

Monitor.Enter(), primitives for thread
synchronization, 215–220

Monitor.Exit(), primitives for thread
synchronization, 215–220

MSIL (Microsoft Intermediate Language)
implicit properties supporting access

specifiers, 8–9
storing parameter names, 68

Wagner_Book.indb 281Wagner_Book.indb 281 7/18/17 11:55 AM7/18/17 11:55 AM

282  Index

Multithreading, implementing via
properties, 3

Mutable types
creating companion class for

immutable type, 18
implicit properties preferred for, 8–12

Mutators
giving partial classes partial methods

for, 120–125
monitoring/modifying class behavior,

121–123

MyType
implicit conversion operator in, 239
locks, 223
storing strings with, 240–241

N
Named parameters, when to use,

65–69

.NET Framework
avoiding ICloneable, 129
Class Library, 48
code reuse, 75
collection types, 96
Color type, 18
cross-thread calls emulating

synchronous calls, 225
Enumerator pattern, 70
event handlers, 97–99
examining or creating code at runtime,

253
GetHashCode() rule, 60
hiding complexity of event fields, 91
Lazy<T> class, 32
operator==(), 53
property use for public members, 2
tools for asynchronous programming,

139
value types vs. reference types, 19
ValueTask<T> type, 173
WIN 32 API legacy behavior, 214

new keyword, creating interfaces, 83–84

Notifications, Event Pattern for, 86–93

O
Object-oriented languages, overriding

virtual methods, 100

Object.Equals(), specifying equality,
46–49

Object.ReferenceEquals(), specifying
equality, 46–48

Objects
avoiding returning references to

internal class objects, 93–96
composing using task objects, 160–166
dynamic types as System.Object with

runtime binding, 230
DynamicObject for data-driven dynamic

types, 242–252
minimizing dynamic objects in public

APIs, 259–265
understanding how event increase

runtime coupling among objects,
104–107

Observer Pattern, 86

Open source, C# as, 269–270

operator==(), 45, 53

orderby clause, lambda expressions, 188

Overloading
avoiding overloading methods defined

in base classes, 100–104
overuse creates ambiguity, 113–119
parameter use in minimizing method

overloads, 65–69

Overriding
declaring only nonvirtual events, 107–113
operator ==(), 45
overloading compared with, 100
preferred to event handlers, 97–99
understanding difference between

interface and virtual function, 82–86

Wagner_Book.indb 282Wagner_Book.indb 282 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  283

P
Parallel processing

avoiding calling unknown code in
locked sections, 225–228

BackgroundWorker for cross-thread
communication, 201–205

CompareExchange(), 221
constructing parallel algorithms with

exceptions in mind, 189–195
cross-thread calls in XAML

environment, 205–214
lock() for thread synchronization, 214–220
overview of, 177
PLINQ implementation of parallel

algorithms, 177–189
specifying smallest possible scope for

lock handles, 221–225
System.Threading.Interlocked, 220–221
thread pools in, 195–201

ParallelEnumerable class, 177,188–189

Parameters
limiting array parameters to params

arrays, 129–134
methods with multiple, 117
use in minimizing method overloads,

65–69

params array, limiting array parameters to,
129–134

Partial classes, 120–125

Partial methods, 120–125

Partitioning, in PLINQ, 179–180

Passing by value, value types vs. reference
types, 19

Pattern matching, testing objects, 81

Pipelining, PLINQ algorithms for
parallelization, 180–181

Placeholders, in interfaces, 73

PLINQ
AsParallel(), 178
comparing to LINQ to Objects,

182–188

controlling execution of parallel
queries, 189

exception handling, 194–195
implementation of parallel algorithms,

177–189
overview of, 177
parallelization algorithms, 180–182
partitioning algorithms, 179–180

Polymorphism, value types vs. reference
types, 19

Primitives, lock() for thread
synchronization, 214–221

Programming
asynchronous. See Asynchronous

programming
dynamic. See Dynamic programming

Properties
avoiding returning references to

internal class objects, 93–96
data binding support for, 2
enhancements to, 1
ensuring behave like data, 28–34
implicit properties preferred for

mutable data, 8–12
implicit syntax, 4
multithreaded support implemented via, 3
virtual properties, 4

Public types
avoiding returning references to

internal class objects, 93–96
limiting visibility of types, 69–73

Q
Queries

enumeration loop, 183–187
lazy evaluation of, 182
LINQ to Objects. See LINQ to SQL
LINQ to SQL. See LINQ to Objects
PLINQ. See PLINQ

QueueUserWorkItem, creating background
threads, 201–202, 205

Wagner_Book.indb 283Wagner_Book.indb 283 7/18/17 11:55 AM7/18/17 11:55 AM

284  Index

R
raiseProgress() method, avoiding

calling unknown code in locked
sections, 226–228

Range partitioning, in PLINQ, 179

Read-only properties, avoiding returning
references to internal class objects,
93–96

Reference types
array class as, 17
avoiding ICloneable interface, 126–127
avoiding returning references to

internal class objects, 93–96
changing data type changes its

behavior, 23
considering size of, 23–24
converting value types to, 240
defining behavior of, 21
distinguishing between value types and

reference types, 18–24

ReferenceEquals(), specifying equality,
46–48

Remove accessor, 88, 108–109

Resource consumption, problems from
composing synchronous code on top
of asynchronous methods, 150

Return types, cache generalized async
return types, 173–176

Roslyn repository, GitHub, 269–272

RunAsync(), 190–191

Runtime
costs of dynamic typing and building

expressions at, 237
dynamic types as System.Object with

runtime binding, 230
events wired at, 99
understanding how event increase

runtime coupling among objects,
104–107

S
set accessor

implicit properties supporting, 8–10
as inexpensive operation, 29–33
providing synchronized access to data,

3–4
source objects, 256
specifying accessibility modifiers, 4–5

Shallow copies, ICloneable interface, 125

Single-threaded apartment (STA) model,
COM, 205–206

Source code, constructs for minimizing
and making clear. See also Code,
134

Specs, participating in C# community,
269–270

Square roots, computing, 197–201

STA (single-threaded apartment) model,
COM, 205–206

Static types
C# as statically typed language, 265
comparing with dynamic, 229, 260

Stop and go, PLINQ algorithms for
parallelization, 181

Strings
archaic syntax, 268
IEnumerator <string>, 183
storing with MyType, 240–241

Striped partitioning, in PLINQ, 180

struct keyword, defining value types and
reference types, 19

Structs
avoiding ICloneable interface, 126
creating user-defined types, 34
preventing unboxing penalty, 81
when to use, 18–19

Synchronization primitives, lock() for
thread synchronization, 214–221

Wagner_Book.indb 284Wagner_Book.indb 284 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  285

SynchronizationContext class
implementing async methods,

141–142
throwing exceptions, 144

Synchronous methods
avoiding composing synchronous and

asynchronous methods, 149–154
compared with async methods, 139
exception to rule for avoiding

composing synchronous and
asynchronous methods, 152

System.Collection class, protecting
internal data structures using
wrappers, 96

System.Dynamic.DynamicObject class, for
data-driven dynamic types, 242–252

System.Linq.Enumerable.Cast<T>,
238–240

System.Object class
conversion operators used for

substitutability between, 61
dynamic typing, 230
hashes, 55–57
minimizing dynamic objects in public

APIs, 259–265
synchronization handle, 223–225

System.Threading class, Interlocked
method, 220–221

System.ValueType class, hashes, 55–56

System.Window.Forms.Control, 88

T
Task objects, composing objects using,

160–166

Task Parallel Library, managing threads,
196

TaskCompletion Source class,
163–164

Tasks
composing using task objects, 160–166
implementing task cancellation

protocol, 166–173
LINQ issues due to errors in

background tasks, 194–195
task-based asynchronous

programming. See Asynchronous
programming

thread pools managing end-of-task
cycle, 196–197

this keyword, declaring indexers, 6

Thread pools
Hero of Alexandria algorithm

example, 197–201
managing thread resources, 196–197
overview of, 195
using instead of creating threads, 195–201

Threads
avoiding calling unknown code in

locked sections, 225–228
avoiding thread allocations and

context switches, 154–156
BackgroundWorker for cross-thread

communication, 201–205
CompareExchange(), 221
cross-thread calls in XAML

environment, 205–214
exception handling in PLINQ,

194–195
immutable types and thread safety, 14
lock() for thread synchronization,

214–220
specifying smallest possible scope for

lock handles, 221–225
System.Threading.Interlocked, 220–221
using thread pools instead of creating,

195–201

Throw expressions
testing objects, 81
throwing exceptions, 123

Wagner_Book.indb 285Wagner_Book.indb 285 7/18/17 11:55 AM7/18/17 11:55 AM

286  Index

try/catch blocks
exception handling, 143, 148
problems from composing synchronous

code on top of asynchronous
methods, 150–151

TryGetIndex, retrieving XElement with
indexer, 248

TryGetMember, creating dynamic types, 244

TrySetMember, creating dynamic types, 244

Tuples
anonymous types compared with, 39
defining shape of tuple as return type,

39–41
limiting type scope using, 38–39

U
UI (user interface), data binding applies

to classes displayed in, 2

Updates, improving code, 268

User-defined type, 34–35

V
Validation

immutable types and, 14
implicit properties and, 11

Value types
avoiding ICloneable interface, 126
changing type changes its behavior, 23
converting to reference types, 240
derived types not supported, 16
distinguishing between value types and

reference types, 18–24
ensuring 0 is valid state for, 24–28
immutable types preferred for, 12–18
protecting internal data structures, 94
questions to ask in determining use of, 24

size of, 23–24
storing data, 21
ValueTask<T> type, 173–176

ValueTask<T> type, 173–176

Virtual events, 107, 111–112

Virtual methods
interface methods compared with,

82–86
overriding, 100
sources of unknown code, 228

Virtual properties, 4

Visibility, limiting type visibility, 69–73

void methods, not using async void
methods, 143–149

W
Web applications, avoiding marshalling

context unnecessarily, 156–160

Web Forms, 2

Web services
BackgroundWorker class for, 205
example of task cancellation, 166–173
workflow, 253

Windows controls, COM STA model,
205–206

Windows Forms
avoiding calling unknown code in

locked sections, 227
BackgroundWorker class for, 205
COM STA model, 205–206
data binding classes supporting

properties no public data fields, 2
extensions, 208–209

WPF (Windows Presentation Foundation)
data binding classes supporting

properties no public data fields, 2
Dispatcher class, 210

Wagner_Book.indb 286Wagner_Book.indb 286 7/18/17 11:55 AM7/18/17 11:55 AM

 Index  287

overrides compared with event
handlers, 97–98

thread controls, 209–210

Wrappers
protecting internal data structures,

94, 96
splitting iterator into two methods,

136

X
XAML

cross-thread calls in XAML
environment, 207–214

overrides compared with event
handlers, 97–98

XElement, retrieving with indexer, 248

XML, LINQ to XML, 244–248

Wagner_Book.indb 287Wagner_Book.indb 287 7/18/17 11:55 AM7/18/17 11:55 AM

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 2 API Design
	Item 11: Avoid Conversion Operators in Your APIs
	Item 12: Use Optional Parameters to Minimize Method Overloads
	Item 13: Limit Visibility of Your Types
	Item 14: Prefer Defining and Implementing Interfaces to Inheritance
	Item 15: Understand How Interface Methods Differ from Virtual Methods
	Item 16: Implement the Event Pattern for Notifications
	Item 17: Avoid Returning References to Internal Class Objects
	Item 18: Prefer Overrides to Event Handlers
	Item 19: Avoid Overloading Methods Defined in Base Classes
	Item 20: Understand How Events Increase Runtime Coupling Among Objects
	Item 21: Declare Only Nonvirtual Events
	Item 22: Create Method Groups That Are Clear, Minimal, and Complete
	Item 23: Give Partial Classes Partial Methods for Constructors, Mutators, and Event Handlers
	Item 24: Avoid ICloneable Because It Limits Your Design Choices
	Item 25: Limit Array Parameters to params Arrays
	Item 26: Enable Immediate Error Reporting in Iterators and Async Methods Using Local Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

