
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337871
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337871
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337871
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337871
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337871/Free-Sample-Chapter

Praise for Effective C#, Second Edition

“Being an effective .NET developer requires one to have a deep understanding
of the language of their choice. Wagner’s book provides the reader with that
knowledge via well-reasoned arguments and insight. Whether you’re new to
C# or you’ve been using it for years, you’ll learn something new when you read
this book.”

—Jason Bock, Principal Consultant, Magenic

“If you’re at all like me, you have collected a handful of C# language pearls that
have immediately transformed your abilities as a professional developer. What
you hold in your hands is quite possibly the best collection of these tips that
have ever been assembled. Bill has managed to exceed my wildest expectations
with the latest edition in his eponymous Effective C#.”

—Bill Craun, Principal Consultant, Ambassador Solutions

“Effective C#, Second Edition, is a must-read for anyone building high per-
formance and/or highly scalable applications. Bill has that rare and awesome
ability to take an amazingly complex problem and break it down into human,
digestible, and understandable chunks.”

—Josh Holmes, Architect Evangelist, Microsoft

“Bill has done it again. This book is a concise collection of invaluable tips for
any C# developer. Learn one tip every day, and you’ll become a much better C#
developer after fifty days!”

—Claudio Lassala, Lead Developer, EPS Software/CODE Magazine

“A fountain of knowledge and understanding of the C# language. Bill gives
insight to what happens under the covers of the .NET runtime based on what
you write in your code and teaches pragmatic practices that lead to cleaner,
easier to write, and more understandable code. A great mix of tips, tricks, and
deep understanding . . . that every C# developer should read.”

—Brian Noyes, Chief Architect, IDesign Inc. (www.idesign.net)

“Effective C# is a must-have for every C# developer. Period. Its pragmatic advice
on code design is invaluable.”

—Shawn Wildermuth, Microsoft MVP (C#), Author, Trainer, and Speaker

“In this book Bill Wagner provides practical explanations of how to use the
most important features in the C# language. His deep knowledge and sophisti-
cated communication skills illuminate the new features in C# so that you can
use them to write programs that are more concise and easier to maintain.”

—Charlie Calvert, Microsoft C# Community Program Manager

http://www.idesign.net

This page intentionally left blank

Effective C#

Third Edition

Effective C#
50 Specific Ways to Improve
Your C#

Third Edition

Bill Wagner

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales oppor-
tunities (which may include electronic versions; custom cover designs; and content
particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016953545

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-672-33787-1
ISBN-10: 0-672-33787-8

1 16

http://www.pearsoned.com/permissions/

To Marlene, who continues to provide inspiration and support for
everything we do together.

This page intentionally left blank

 ❘

 ix

Contents at a Glance

Introduction xiii

Chapter 1 C# Language Idioms 1

Chapter 2 .NET Resource Management 43

Chapter 3 Working with Generics 77

Chapter 4 Working with LINQ 133

Chapter 5 Exception Practices 221

Index 253

This page intentionally left blank

 ❘

 xi

Introduction xiii

Chapter 1 C# Language Idioms 1
Item 1: Prefer Implicitly Typed Local Variables 1

Item 2: Prefer readonly to const 7

Item 3: Prefer the is or as Operators to Casts 12

Item 4: Replace string.Format() with Interpolated Strings 19

Item 5: Prefer FormattableString for Culture-Specific Strings 23

Item 6: Avoid String-ly Typed APIs 26

Item 7: Express Callbacks with Delegates 28

Item 8: Use the Null Conditional Operator for Event Invocations 31

Item 9: Minimize Boxing and Unboxing 34

Item 10: Use the new Modifier Only to React to Base Class Updates 38

Chapter 2 .NET Resource Management 43
Item 11: Understand .NET Resource Management 43

Item 12: Prefer Member Initializers to Assignment Statements 48

Item 13: Use Proper Initialization for Static Class Members 51

Item 14: Minimize Duplicate Initialization Logic 53

Item 15: Avoid Creating Unnecessary Objects 61

Item 16: Never Call Virtual Functions in Constructors 65

Item 17: Implement the Standard Dispose Pattern 68

Chapter 3 Working with Generics 77
Item 18: Always Define Constraints That Are Minimal and Sufficient 79

Item 19: Specialize Generic Algorithms Using Runtime Type Checking 85

Item 20: Implement Ordering Relations with IComparable<T>
and IComparer<T> 92

Item 21: Always Create Generic Classes That Support Disposable Type
Parameters 98

Item 22: Support Generic Covariance and Contravariance 101

Item 23: Use Delegates to Define Method Constraints on Type
Parameters 107

Item 24: Do Not Create Generic Specialization on Base Classes
or Interfaces 112

Contents

xii ❘ Contents

Item 25: Prefer Generic Methods Unless Type Parameters Are
Instance Fields 116

Item 26: Implement Classic Interfaces in Addition to Generic Interfaces 120

Item 27: Augment Minimal Interface Contracts with Extension Methods 126

Item 28: Consider Enhancing Constructed Types with Extension
Methods 130

Chapter 4 Working with LINQ 133
Item 29: Prefer Iterator Methods to Returning Collections 133

Item 30: Prefer Query Syntax to Loops 139

Item 31: Create Composable APIs for Sequences 144

Item 32: Decouple Iterations from Actions, Predicates, and Functions 151

Item 33: Generate Sequence Items as Requested 154

Item 34: Loosen Coupling by Using Function Parameters 157

Item 35: Never Overload Extension Methods 163

Item 36: Understand How Query Expressions Map to Method Calls 167

Item 37: Prefer Lazy Evaluation to Eager Evaluation in Queries 179

Item 38: Prefer Lambda Expressions to Methods 184

Item 39: Avoid Throwing Exceptions in Functions and Actions 188

Item 40: Distinguish Early from Deferred Execution 191

Item 41: Avoid Capturing Expensive Resources 195

Item 42: Distinguish between IEnumerable and IQueryable
Data Sources 208

Item 43: Use Single() and First() to Enforce Semantic
Expectations on Queries 212

Item 44: Avoid Modifying Bound Variables 215

Chapter 5 Exception Practices 221
Item 45: Use Exceptions to Report Method Contract Failures 221

Item 46: Utilize using and try/finally for Resource Cleanup 225

Item 47: Create Complete Application-Specific Exception Classes 232

Item 48: Prefer the Strong Exception Guarantee 237

Item 49: Prefer Exception Filters to catch and re-throw 245

Item 50: Leverage Side Effects in Exception Filters 249

Index 253

 ❘

 xiii

Introduction

The C# community is very different in 2016 from what it was in 2004
when the first edition of Effective C# was published. There are many
more developers using C#. A large contingent of the C# community is
now seeing C# as their first professional language. They aren’t approaching
C# with a set of ingrained habits formed using a different language. The
community has a much broader range of experience. New graduates all
the way to professionals with decades of experience are using C#. C# now
runs on multiple platforms. You can build server applications, Web sites,
desktop applications, and mobile applications for multiple platforms in
the C# language.

I organized this third edition of Effective C# by taking into account both the
changes in the language and the changes in the C# community. Effective C#
does not take you on a historical journey through the changes in the lan-
guage. Rather, I provide advice on how to use the current C# language.
The items that have been removed from this edition are those that aren’t as
relevant in today’s C# language, or to today’s applications. The new items
cover the new language and framework features, and those practices the
community has learned from building several versions of software prod-
ucts using C#. Readers of earlier editions will note that content from the
first edition of More Effective C# is included in this edition, and a larger
number of items have been removed. With this edition, I’m reorganizing
both books, and a new edition of More Effective C# will cover other con-
cepts. Overall, these 50 items are a set of recommendations that will help
you use C# more effectively as a professional developer.

This book assumes C# 6.0, but it is not an exhaustive treatment of the
new language features. Like all books in the Effective Software Devel-
opment Series, it offers practical advice on how to use these features to
solve problems you’re likely to encounter every day. I specifically cover
C# 6.0 features where new language features introduce new and better
ways to write common idioms. Internet searches may still point to earlier
solutions that have years of history. I specifically point out older recom-
mendations and why language enhancements enable better ways.

xiv ❘ Introduction

Many of the recommendations in this book can be validated by Roslyn-
based Analyzers and Code Fixes. I maintain a repository of them here:
https://github.com/BillWagner/EffectiveCSharpAnalyzers. If you have
ideas or want to contribute, write an issue or send me a pull request.

Who Should Read This Book?

Effective C# was written for professional developers who use C# as part
of their daily toolset. It assumes you are familiar with the C# syntax and
the language’s features. This book does not include tutorial instruction
on language features. Instead, it discusses how you can integrate all the
features of the current version of the C# language into your everyday
development.

In addition to language features, I assume you have some knowledge of
the Common Language Runtime (CLR) and Just-In-Time (JIT) compiler.

About The Content

There are language constructs you’ll use every day in almost every C#
program you write. Chapter 1, “C# Language Idioms,” covers those lan-
guage idioms you’ll use so often they should feel like well-worn tools in
your hands. These are the building blocks of every type you create and
every algorithm you implement.

Working in a managed environment doesn’t mean the environment
absolves you of all your responsibilities. You still must work with the
environment to create correct programs that satisfy the stated perfor-
mance requirements. It’s not just about performance testing and per-
formance tuning. Chapter 2, “.NET Resource Management,” teaches
you the design idioms that enable you to work with the environment to
achieve those goals before detailed optimization begins.

Generics are the enabling technology for everything else added to the
C# language since C# 2.0. Chapter 3, “Working with Generics,” covers
generics as a replacement for System.Object and casts and then moves
on to discuss advanced techniques such as constraints, generic special-
ization, method constraints, and backward compatibility. You’ll learn
several techniques in which generics will make it easier to express your
design intent.

https://github.com/BillWagner/EffectiveCSharpAnalyzers

 Introduction ❘ xv

Chapter 4, “Working with LINQ,” explains LINQ, query syntax, and
related features. You’ll see when to use extension methods to separate
contracts from implementation, how to use C# closures effectively, and
how to program with anonymous types. You’ll learn how the compiler
maps query keywords to method calls, how to distinguish between del-
egates and expression trees (and convert between them when needed),
and how to escape queries when you’re looking for scalar results.

Chapter 5, “Exception Practices,” provides guidance on managing excep-
tions and errors in modern C# programs. You’ll learn how to ensure that
errors are reported properly and how to leave program state consistent
and ideally unchanged when errors occur. You’ll learn how to provide a
better debugging experience for developers who use your code.

Code Conventions

Showing code in a book still requires making some compromises for
space and clarity. I’ve tried to distill the samples down to illustrate the
particular point of the sample. Often that means eliding other portions
of a class or a method. Sometimes that will include eliding error recovery
code for space. Public methods should validate their parameters and
other inputs, but that code is usually elided for space. Similar space con-
siderations remove validation of method calls and try/finally clauses
that would often be included in complicated algorithms.

I also usually assume most developers can find the appropriate namespace
when samples use one of the common ones. You can safely assume that every
sample implicitly includes the following using statements:

using System;

using static System.Console;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Providing Feedback

Despite my best efforts, and the efforts of the people who have reviewed
the text, errors may have crept into the text or samples. If you believe you
have found an error, please contact me at bill@thebillwagner.com, or on

xvi ❘ Introduction

Twitter @billwagner. Errata will be posted at http://thebillwagner.com/
Resources/EffectiveCS. Many of the items in this book are the result of
email and Twitter conversations with other C# developers. If you have
questions or comments about the recommendations, please contact
me. Discussions of general interest will be covered on my blog at http://
thebillwagner.com/blog.

Register your copy of Effective C#, Third Edition, at informit.com
for convenient access to downloads, updates, and corrections as they
become available. To start the registration process, go to informit.
com/register and log in or create an account. Enter the product ISBN
(9780672337871) and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

Acknowledgments

There are many people to whom I owe thanks for their contributions to
this book. I’ve been privileged to be part of an amazing C# community
over the years. Everyone on the C# Insiders mailing list (whether inside
or outside Microsoft) has contributed ideas and conversations that made
this a better book.

I must single out a few members of the C# community who directly helped
me with ideas, and with turning ideas into concrete recommendations.
Conversations with Jon Skeet, Dustin Campbell, Kevin Pilch-Bisson,
Jared Parsons, Scott Allen, and, most importantly, Mads Torgersen are
the basis for many new ideas in this edition.

I had a wonderful team of technical reviewers for this edition. Jason Bock,
Mark Michaelis, and Eric Lippert pored over the text and the samples to
ensure the quality of the book you now hold. Their reviews were thorough
and complete, which is the best anyone can hope for. Beyond that, they
added recommendations that helped me explain many of the topics
better.

The team at Addison-Wesley is a dream to work with. Trina Macdonald is
a fantastic editor, taskmaster, and the driving force behind anything that
gets done. She leans on Mark Renfro and Olivia Basegio heavily, and so
do I. Their contributions created the quality of the finished manuscript

http://thebillwagner.com/Resources/EffectiveCS
http://thebillwagner.com/Resources/EffectiveCS
http://thebillwagner.com/blog
http://thebillwagner.com/blog

 Introduction ❘ xvii

from the front cover to the back, and everything in between. Curt Johnson
continues to do an incredible job marketing technical content. No matter
what format of this book you chose, Curt has had something to do with
its existence.

It’s an honor, once again, to be part of Scott Meyers’s series. He goes over
every manuscript and offers suggestions and comments for improvement.
He is incredibly thorough, and his experience in software, although not in
C#, means he finds any areas where I haven’t explained an item clearly or
fully justified a recommendation. His feedback, as always, is invaluable.

My family gave up time with me so that I could finish this manuscript.
My wife, Marlene, gave up countless hours while I went off to write or
create samples. Without her support, I never would have finished this or any
other book. Nor would it be as satisfying to finish.

About the Author

Bill Wagner is one of the world’s foremost C# developers and a member of
the ECMA C# Standards Committee. He is president of the Humanitarian
Toolbox, has been awarded Microsoft Regional Director and .NET MVP
for 11 years, and was recently appointed to the .NET Foundation Advisory
Council. Wagner has worked with companies ranging from start-ups to
enterprises improving the software development process and growing their
software development teams. He is currently with Microsoft, working on
the .NET Core content team. He creates learning materials for developers
interested in the C# language and .NET Core. Bill earned a B.S. in com-
puter science from the University of Illinois at Champaign-Urbana.

This page intentionally left blank

2 ❘

 43

.NET Resource Management

The simple fact that .NET programs run in a managed environment has a
big impact on the kinds of designs that create effective C#. Taking advan-
tage of that environment requires changing your thinking from other
environments to the .NET Common Language Runtime (CLR). It means
understanding the .NET garbage collector (GC). It means understanding
object lifetimes. It means understanding how to control unmanaged
resources. This chapter covers the practices that help you create software
that makes the best use of the environment and its features.

Item 11: Understand .NET Resource Management

You can’t be an effective developer without understanding how the envi-
ronment handles memory and other important resources. In .NET, that
means understanding memory management and the garbage collector.

The GC controls managed memory for you. Unlike in native environ-
ments, you are not responsible for most memory leaks, dangling pointers,
uninitialized pointers, or a host of other memory-management issues.
But the garbage collector works better when you need to clean up after
yourself. You are responsible for unmanaged resources such as database
connections, GDI+ objects, COM objects, and other system objects. In
addition, you can cause objects to stay in memory longer than you’d like
because you’ve created links between them using event handlers or dele-
gates. Queries, which execute when results are requested, can also cause
objects to remain referenced longer than you would expect (see Item 41).

Here’s the good news: Because the GC controls memory, certain design
idioms are much easier to implement than when you must manage all
memory yourself. Circular references, both simple relationships and
complex webs of objects, are much easier to implement correctly than
in environments where you must manage memory. The GC’s Mark and
Compact algorithm efficiently detects these relationships and removes
unreachable webs of objects in their entirety. The GC determines whether

44 ❘ Chapter 2 .NET Resource Management

an object is reachable by walking the object tree from the application’s root
object instead of forcing each object to keep track of references to it, as in
COM. The EntitySet class provides an example of how this algorithm
simplifies object ownership decisions. An entity is a collection of objects
loaded from a database. Each entity may contain references to other entity
objects. Any of these entities may also contain links to other entities. Just
like the relational database entity sets model, these links and references
may be circular.

There are references all through the web of objects represented by differ-
ent entity sets. Releasing memory is the GC’s responsibility. Because the
.NET Framework designers did not need to free these objects, the com-
plicated web of object references did not pose a problem. No decision
needed to be made regarding the proper sequence of freeing this web of
objects; it’s the GC’s job. The GC’s design simplifies the problem of iden-
tifying this kind of web of objects as garbage. The application can stop
referencing any entity when it’s done. The garbage collector will know
if the entity is still reachable from live objects in the application. Any
objects that cannot be reached from the application are garbage.

The garbage collector compacts the managed heap each time it runs.
Compacting the heap moves each live object in the managed heap so that
the free space is located in one contiguous block of memory. Figure 2.1
shows two snapshots of the heap before and after a garbage collection. All
free memory is placed in one contiguous block after each GC operation.

Main Form
 (C, E)

B

C

D

E (F)

F
Letters in parentheses indicate owned references.

Hashed objects are visible from application.

(B, D) has been removed from memory.
Heap has been compacted.

Main Form
 (C, E)

C

E (F)

F

Figure 2.1 The garbage collector not only removes unused memory, but it also moves
other objects in memory to compact used memory and maximize free space.

 Item 11: Understand .NET Resource Management ❘ 45

As you’ve just learned, memory management (for the managed heap)
is completely the responsibility of the garbage collector. Other system
resources must be managed by developers: you and the users of your
classes. Two mechanisms help developers control the lifetimes of unman-
aged resources: finalizers and the IDisposable interface. A finalizer is
a defensive mechanism that ensures that your objects always have a way
to release unmanaged resources. Finalizers have many drawbacks, so you
also have the IDisposable interface that provides a less intrusive way to
return resources to the system in a timely manner.

Finalizers are called by the garbage collector at some time after an object
becomes garbage. You don’t know when that happens. All you know is that
in most environments it happens sometime after your object cannot be
reached. That is a big change from C++, and it has important ramifications
for your designs. Experienced C++ programmers wrote classes that allo-
cated a critical resource in its constructor and released it in its destructor:

// Good C++, bad C#:

class CriticalSection

{

 // Constructor acquires the system resource.

 public CriticalSection()

 {

 EnterCriticalSection();

 }

 // Destructor releases system resource.

 ~CriticalSection()

 {

 ExitCriticalSection();

 }

 private void ExitCriticalSection()

 {

 }

 private void EnterCriticalSection()

 {

 }

}

// usage:

void Func()

46 ❘ Chapter 2 .NET Resource Management

{

 // The lifetime of s controls access to

 // the system resource.

 CriticalSection s = new CriticalSection();

 // Do work.

 //...

 // compiler generates call to destructor.

 // code exits critical section.

}

This common C++ idiom ensures that resource deallocation is exception
proof. This doesn’t work in C#, however—at least not in the same way.
Deterministic finalization is not part of the .NET environment or the C#
language. Trying to force the C++ idiom of deterministic finalization into
the C# language won’t work well. In C#, the finalizer eventually executes
in most environments, but it doesn’t execute in a timely fashion. In the
previous example, the code eventually exits the critical section, but in C#
it doesn’t exit the critical section when the function exits. That happens at
some unknown time later. You don’t know when. You can’t know when.
Finalizers are the only way to guarantee that unmanaged resources allo-
cated by an object of a given type are eventually released. But finalizers
execute at nondeterministic times, so your design and coding practices
should minimize the need for creating finalizers, and also minimize the
need for executing the finalizers that do exist. Throughout this chapter
you’ll learn techniques to avoid creating your own finalizer, and how to
minimize the negative impact of having one when it must be present.

Relying on finalizers also introduces performance penalties. Objects
that require finalization put a performance drag on the garbage collector.
When the GC finds that an object is garbage but also requires finaliza-
tion, it cannot remove that item from memory just yet. First, it calls the
finalizer. Finalizers are not executed by the same thread that collects
garbage. Instead, the GC places each object that is ready for finalization
in a queue and executes all the finalizers for those objects. It continues
with its business, removing other garbage from memory. On the next
GC cycle, those objects that have been finalized are removed from memory.
Figure 2.2 shows three different GC operations and the difference in mem-
ory usage. Notice that the objects that require finalizers stay in memory
for extra cycles.

 Item 11: Understand .NET Resource Management ❘ 47

This might lead you to believe that an object that requires finalization lives
in memory for one GC cycle more than necessary. But I simplified things.
It’s more complicated than that because of another GC design decision. The
.NET garbage collector defines generations to optimize its work. Gener-
ations help the GC identify the likeliest garbage candidates more quickly.
Any object created since the last garbage collection operation is a generation
0 object. Any object that has survived one GC operation is a generation 1
object. Any object that has survived two or more GC operations is a gener-
ation 2 object. The purpose of generations is to separate short-lived objects
from objects that stay around for the life of the application. Generation 0
objects are mostly those short-lived object variables. Member variables and
global variables quickly enter generation 1 and eventually enter generation 2.

The GC optimizes its work by limiting how often it examines first- and
second-generation objects. Every GC cycle examines generation 0 objects.
Roughly one GC out of ten examines the generation 0 and 1 objects.
Roughly one GC cycle out of 100 examines all objects. Think about final-
ization and its cost again: An object that requires finalization might stay
in memory for nine GC cycles more than it would if it did not require
finalization. If it still has not been finalized, it moves to generation 2. In
generation 2, an object lives for an extra 100 GC cycles until the next gen-
eration 2 collection.

Main Form
 (C, E)

B

C

D

E (F)

F

Letters in parentheses indicate owned references.
Hashed objects are visible from application.

Dark gray objects require finalization.

D has been removed.
Heap has been compacted.

B’s finalizer has been called asynchronously.

Main Form
 (C, E)

C

E (F)

F

B

Main Form
 (C, E)

C

E (F)

F (B) removed from memory.
Heap has been compacted.

Figure 2.2 This sequence shows the effect of finalizers on the garbage collector.
Objects stay in memory longer, and an extra thread needs to be spawned
to run the garbage collector.

48 ❘ Chapter 2 .NET Resource Management

I’ve spent some time explaining why finalizers are not a good solution.
Yet you still need to free resources. You address these issues using the
IDisposable interface and the standard dispose pattern (see Item 17
later in this chapter).

To close, remember that a managed environment, where the garbage col-
lector takes the responsibility for memory management, is a big plus:
Memory leaks and a host of other pointer-related problems are no longer
your problem. Nonmemory resources force you to create finalizers to
ensure proper cleanup of those nonmemory resources. Finalizers can
have a serious impact on the performance of your program, but you
must write them to avoid resource leaks. Implementing and using the
IDisposable interface avoids the performance drain on the garbage
collector that finalizers introduce. The next item describes the specific
techniques that will help you create programs that use this environment
more effectively.

Item 12: Prefer Member Initializers to Assignment Statements

Classes often have more than one constructor. Over time, it’s easy for
the member variables and the constructors to get out of sync. The best
way to make sure this doesn’t happen is to initialize variables where you
declare them instead of in the body of every constructor. You should use
the initializer syntax for both static and instance variables.

Constructing a member variable when you declare that variable is natural
in C#. Just initialize the variable when you declare it:

public class MyClass

{

 // declare the collection, and initialize it.

 private List<string> labels = new List<string>();

}

Regardless of the number of constructors you eventually add to the
MyClass type, labels will be initialized properly. The compiler generates
code at the beginning of each constructor to execute all the initializers you
have defined for your instance member variables. When you add a new
constructor, labels get initialized. Similarly, if you add a new member vari-
able, you do not need to add initialization code to every constructor; ini-
tializing the variable where you define it is sufficient. Equally important,

 Item 12: Prefer Member Initializers to Assignment Statements ❘ 49

the initializers are added to the compiler-generated default constructor.
The C# compiler creates a default constructor for your types whenever
you don’t explicitly define any constructors.

Initializers are more than a convenient shortcut for statements in a con-
structor body. The statements generated by initializers are placed in
object code before the body of your constructors. Initializers execute
before the base class constructor for your type executes, and they are
executed in the order in which the variables are declared in your class.

Using initializers is the simplest way to avoid uninitialized variables in
your types, but it’s not perfect. In three cases, you should not use the
initializer syntax. The first is when you are initializing the object to 0,
or null. The default system initialization sets everything to 0 for you
before any of your code executes. The system-generated 0 initialization
is done at a very low level using the CPU instructions to set the entire
block of memory to 0. Any extra 0 initialization on your part is superfluous.
The C# compiler dutifully adds the extra instructions to set memory to 0
again. It’s not wrong—but it can create brittle code.

public struct MyValType

{

 // elided

}

MyValType myVal1; // initialized to 0

MyValType myVal2 = new MyValType(); // also 0

Both statements initialize the variable to all 0s. The first does so by setting
the memory containing myVal1 to 0. The second uses the IL instruction
initobj, which causes both a box and an unbox operation on the myVal2
variable. This takes quite a bit of extra time (see Item 9).

The second inefficiency comes when you create multiple initializations
for the same object. You should use the initializer syntax only for vari-
ables that receive the same initialization in all constructors. This version
of MyClass has a path that creates two different List objects as part of
its construction:

public class MyClass2

 {

 // declare the collection, and initialize it.

 private List<string> labels = new List<string>();

50 ❘ Chapter 2 .NET Resource Management

 MyClass2()

 {

 }

 MyClass2(int size)

 {

 labels = new List<string>(size);

 }

 }

When you create a new MyClass2, specifying the size of the collection,
you create two array lists. One is immediately garbage. The variable ini-
tializer executes before every constructor. The constructor body creates
the second array list. The compiler creates this version of MyClass2,
which you would never code by hand. (For the proper way to handle this
situation, see Item 14 later in this chapter.)

public class MyClass2

{

 // declare the collection, and initialize it.

 private List<string> labels;

 MyClass2()

 {

 labels = new List<string>();

 }

 MyClass2(int size)

 {

 labels = new List<string>();

 labels = new List<string>(size);

 }

}

You can run into the same situation whenever you use implicit prop-
erties. For those data elements where implicit properties are the right
choice, Item 14 shows how to minimize any duplication when you ini-
tialize data held in implicit properties.

The final reason to move initialization into the body of a constructor
is to facilitate exception handling. You cannot wrap the initializers in
a try block. Any exceptions that might be generated during the con-
struction of your member variables get propagated outside your object. You

 Item 13: Use Proper Initialization for Static Class Members ❘ 51

cannot attempt any recovery inside your class. You should move that ini-
tialization code into the body of your constructors so that you imple-
ment the proper recovery code to create your type and gracefully handle
the exception (see Item 47).

Member initializers are the simplest way to ensure that the member
variables in your type are initialized regardless of which constructor is
called. The initializers are executed before each constructor you make
for your type. Using this syntax means that you cannot forget to add
the proper initialization when you add new constructors for a future
release. Use initializers when all constructors create the member variable
the same way; it’s simpler to read and easier to maintain.

Item 13: Use Proper Initialization for Static Class Members

You know that you should initialize static member variables in a type
before you create any instances of that type. C# lets you use static ini-
tializers and a static constructor for this purpose. A static constructor is
a special function that executes before any other methods, variables, or
properties defined in that class are accessed for the first time. You use
this function to initialize static variables, enforce the singleton pattern,
or perform any other necessary work before a class is usable. You should
not use your instance constructors, some special private function, or
any other idiom to initialize static variables. For static fields that require
complex or expensive initialization, consider using Lazy<T> to execute
the initialization when a field is first accessed.

As with instance initialization, you can use the initializer syntax as an
alternative to the static constructor. If you simply need to allocate a static
member, use the initializer syntax. When you have more complicated
logic to initialize static member variables, create a static constructor.

Implementing the singleton pattern in C# is the most frequent use of a
static constructor. Make your instance constructor private, and add an
initializer:

public class MySingleton

{

 private static readonly MySingleton theOneAndOnly =

 new MySingleton();

52 ❘ Chapter 2 .NET Resource Management

 public static MySingleton TheOnly

 {

 get { return theOneAndOnly; }

 }

 private MySingleton()

 {

 }

 // remainder elided

}

The singleton pattern can just as easily be written this way, in case you
have more complicated logic to initialize the singleton:

public class MySingleton2

{

 private static readonly MySingleton2 theOneAndOnly;

 static MySingleton2()

 {

 theOneAndOnly = new MySingleton2();

 }

 public static MySingleton2 TheOnly

 {

 get { return theOneAndOnly; }

 }

 private MySingleton2()

 {

 }

 // remainder elided

}

Like instance initializers, the static initializers are executed before any
static constructors are called. And, yes, your static initializers may execute
before the base class’s static constructor.

The CLR calls your static constructor automatically before your type
is first accessed in an application space (an AppDomain). You can
define only one static constructor, and it must not take any arguments.
Because static constructors are called by the CLR, you must be care-
ful about exceptions generated in them. If you let an exception escape a

 Item 14: Minimize Duplicate Initialization Logic ❘ 53

static constructor, the CLR will terminate your program by throwing a
 TypeInitializationException. The situation where the caller catches
the exception is even more insidious. Code that tries to create the type will
fail until that AppDomain is unloaded. The CLR could not initialize the
type by executing the static constructor. It won’t try again, and yet the
type did not get initialized correctly. An object of that type (or any type
derived from it) would not be well defined. Therefore, it is not allowed.

Exceptions are the most common reason to use the static constructor
instead of static initializers. If you use static initializers, you cannot catch
the exceptions yourself. With a static constructor, you can (see Item 47):

static MySingleton2()

{

 try

 {

 theOneAndOnly = new MySingleton2();

 }

 catch

 {

 // Attempt recovery here.

 }

}

Static initializers and static constructors provide the cleanest, clearest way
to initialize static members of your class. They are easy to read and easy
to get correct. They were added to the language to specifically address the
difficulties involved with initializing static members in other languages.

Item 14: Minimize Duplicate Initialization Logic

Writing constructors is often a repetitive task. Many developers write the
first constructor and then copy and paste the code into other construc-
tors to satisfy the multiple overrides defined in the class interface. Ideally,
you’re not one of those. If you are, stop it. Veteran C++ programmers
would factor the common algorithms into a private helper method. Stop
that, too. When you find that multiple constructors contain the same logic,
factor that logic into a common constructor instead. You’ll get the benefits
of avoiding code duplication, and constructor initializers generate much
more efficient object code. The C# compiler recognizes the constructor
initializer as special syntax and removes the duplicated variable initializers
and the duplicated base class constructor calls. The result is that your final

54 ❘ Chapter 2 .NET Resource Management

object executes the minimum amount of code to properly initialize the
object. You also write the least amount of code by delegating responsibil-
ities to a common constructor.

Constructor initializers allow one constructor to call another constructor.
This example shows a simple usage:

public class MyClass

{

 // collection of data

 private List<ImportantData> coll;

 // Name of the instance:

 private string name;

 public MyClass() :

 this(0, "")

 {

 }

 public MyClass(int initialCount) :

 this(initialCount, string.Empty)

 {

 }

 public MyClass(int initialCount, string name)

 {

 coll = (initialCount > 0) ?

 new List<ImportantData>(initialCount) :

 new List<ImportantData>();

 this.name = name;

 }

}

C# 4.0 added default parameters, which you can use to minimize the
duplicated code in constructors. You could replace all the different con-
structors for MyClass with one constructor that specifies default values
for all or many of the values:

public class MyClass

{

 // collection of data

 private List<ImportantData> coll;

 Item 14: Minimize Duplicate Initialization Logic ❘ 55

 // Name of the instance:

 private string name;

 // Needed to satisfy the new() constraint.

 public MyClass() :

 this(0, string.Empty)

 {

 }

 public MyClass(int initialCount = 0, string name = "")

 {

 coll = (initialCount > 0) ?

 new List<ImportantData>(initialCount) :

 new List<ImportantData>();

 this.name = name;

 }

}

There are tradeoffs in choosing default parameters over using multiple
overloads. Default parameters create more options for your users. This
version of MyClass specifies the default value for both parameters. Users
could specify different values for either or both parameters. Producing
all the permutations using overloaded constructors would require four
different constructor overloads: a parameterless constructor, one that
asks for the initial count, one that asks for the name, and one that asks
for both parameters. Add more members to your class, and the number
of potential overloads grows as the number of permutations of all the
parameters grows. That complexity makes default parameters a very
powerful mechanism to minimize the number of potential overloads
that you need to create.

Defining default values for all parameters to your type’s constructor
means that user code will be valid when you call the new MyClass().
When you intend to support this concept, you should create an explicit
parameterless constructor in that type, as shown in the example code
above. While most code would default all parameters, generic classes
that use the new() constraint will not accept a constructor with parameters
that have default values. To satisfy the new() constraint, a class must
have an explicit parameterless constructor. Therefore, you should create
one so that clients can use your type in generic classes or methods that
enforce the new() constraint. That’s not to say that every type needs a

56 ❘ Chapter 2 .NET Resource Management

parameterless constructor. However, if you support one, make sure to
add the code so that the parameterless constructor works in all cases,
even when called from a generic class with a new() constraint.

You’ll note that the second constructor specifies "" for the default value
on the name parameter, rather than the more customary string.Empty.
That’s because string.Empty is not a compile-time constant. It is a static
property defined in the string class. Because it is not a compile-time
constant, you cannot use it for the default value for a parameter.

However, using default parameters instead of overloads creates tighter
coupling between your class and all the clients that use it. In particular, the
formal parameter name becomes part of the public interface, as does the
current default value. Changing parameter values requires a recompile of
all client code in order to pick up those changes. That makes overloaded
constructors more resilient in the face of potential future changes. You
can add new constructors, or change the default behavior for those con-
structors that don’t specify values, without breaking client code.

Default parameters are the preferred solution to this problem. However,
some APIs use reflection to create objects and rely on a parameterless
constructor. A constructor with defaults supplied for all arguments is
not the same as a parameterless constructor. You may need to write sepa-
rate constructors that you support as a separate function. With construc-
tors, that can mean a lot of duplicated code. Use constructor chaining,
by having one constructor invoke another constructor declared in the
same class, instead of creating a common utility routine. Several ineffi-
ciencies are present in this alternative method of factoring out common
constructor logic:

public class MyClass

{

 private List<ImportantData> coll;

 private string name;

 public MyClass()

 {

 commonConstructor(0, "");

 }

 Item 14: Minimize Duplicate Initialization Logic ❘ 57

 public MyClass(int initialCount)

 {

 commonConstructor(initialCount, "");

 }

 public MyClass(int initialCount, string Name)

 {

 commonConstructor(initialCount, Name);

 }

 private void commonConstructor(int count,

 string name)

 {

 coll = (count > 0) ?

 new List<ImportantData>(count) :

 new List<ImportantData>();

 this.name = name;

 }

}

That version looks the same, but it generates far-less-efficient object
code. The compiler adds code to perform several functions on your
behalf in constructors. It adds statements for all variable initializers (see
Item 12 earlier in this chapter). It calls the base class constructor. When
you write your own common utility function, the compiler cannot factor
out this duplicated code. The IL for the second version is the same as if
you’d written this:

public class MyClass

{

 private List<ImportantData> coll;

 private string name;

 public MyClass()

 {

 // Instance Initializers would go here.

 object(); // Not legal, illustrative only.

 commonConstructor(0, "");

 }

58 ❘ Chapter 2 .NET Resource Management

 public MyClass(int initialCount)

 {

 // Instance Initializers would go here.

 object(); // Not legal, illustrative only.

 commonConstructor(initialCount, "");

 }

 public MyClass(int initialCount, string Name)

 {

 // Instance Initializers would go here.

 object(); // Not legal, illustrative only.

 commonConstructor(initialCount, Name);

 }

 private void commonConstructor(int count,

 string name)

 {

 coll = (count > 0) ?

 new List<ImportantData>(count) :

 new List<ImportantData>();

 this.name = name;

 }

}

If you could write the construction code for the first version the way the
compiler sees it, you’d write this:

// Not legal, illustrates IL generated:

public class MyClass

{

 private List<ImportantData> coll;

 private string name;

 public MyClass()

 {

 // No variable initializers here.

 // Call the third constructor, shown below.

 this(0, ""); // Not legal, illustrative only.

 }

 Item 14: Minimize Duplicate Initialization Logic ❘ 59

 public MyClass(int initialCount)

 {

 // No variable initializers here.

 // Call the third constructor, shown below.

 this(initialCount, "");

 }

 public MyClass(int initialCount, string Name)

 {

 // Instance Initializers would go here.

 //object(); // Not legal, illustrative only.

 coll = (initialCount > 0) ?

 new List<ImportantData>(initialCount) :

 new List<ImportantData>();

 name = Name;

 }

}

The difference is that the compiler does not generate multiple calls to
the base class constructor, nor does it copy the instance variable ini-
tializers into each constructor body. The fact that the base class con-
structor is called only from the last constructor is also significant: You
cannot include more than one constructor initializer in a constructor
definition. You can delegate to another constructor in this class using
this(), or you can call a base class constructor using base(). You can-
not do both.

Still don’t buy the case for constructor initializers? Then think about
read-only constants. In this example, the name of the object should not
change during its lifetime. This means that you should make it read-only.
That causes the common utility function to generate compiler errors:

public class MyClass

{

 // collection of data

 private List<ImportantData> coll;

 // Number for this instance

 private int counter;

 // Name of the instance:

 private readonly string name;

60 ❘ Chapter 2 .NET Resource Management

 public MyClass()

 {

 commonConstructor(0, string.Empty);

 }

 public MyClass(int initialCount)

 {

 commonConstructor(initialCount, string.Empty);

 }

 public MyClass(int initialCount, string Name)

 {

 commonConstructor(initialCount, Name);

 }

 private void commonConstructor(int count,

 string name)

 {

 coll = (count > 0) ?

 new List<ImportantData>(count) :

 new List<ImportantData>();

 // ERROR changing the name outside of a constructor.

 //this.name = name;

 }

}

The compiler enforces the read-only nature of this.name and will not
allow any code not in a constructor to modify it. C#’s constructor ini-
tializers provide the alternative. All but the most trivial classes contain
more than one constructor. Their job is to initialize all the members of
an object. By their very nature, these functions have similar or, ideally,
shared logic. Use the C# constructor initializer to factor out those common
algorithms so that you write them once and they execute once.

Both default parameters and overloads have their place. In general, you
should prefer default values to overloaded constructors. After all, if you are
letting client developers specify parameter values at all, your constructor
must be capable of handling any values that users specify. Your original
default values should always be reasonable and shouldn’t generate excep-
tions. Therefore, even though changing the default parameter values is
technically a breaking change, it shouldn’t be observable to your clients.
Their code will still use the original values, and those original values

 Item 15: Avoid Creating Unnecessary Objects ❘ 61

should still produce reasonable behavior. That minimizes the potential
hazards of using default values.

This is the last item about object initialization in C#. That makes it a
good time to review the entire sequence of events for constructing an
instance of a type. You should understand both the order of operations
and the default initialization of an object. You should strive to initialize
every member variable exactly once during construction. The best way
for you to accomplish this is to initialize values as early as possible. Here
is the order of operations for constructing the first instance of a type:

1. Static variable storage is set to 0.
2. Static variable initializers execute.
3. Static constructors for the base class execute.
4. The static constructor executes.
5. Instance variable storage is set to 0.
6. Instance variable initializers execute.
7. The appropriate base class instance constructor executes.
8. The instance constructor executes.

Subsequent instances of the same type start at step 5 because the class ini-
tializers execute only once. Also, steps 6 and 7 are optimized so that con-
structor initializers cause the compiler to remove duplicate instructions.

The C# language compiler guarantees that everything gets initialized in
some way when an object is created. At a minimum, you are guaranteed
that all memory your object uses has been set to 0 when an instance
is created. This is true for both static members and instance members.
Your goal is to make sure that you initialize all the values the way you
want and execute that initialization code only once. Use initializers to
initialize simple resources. Use constructors to initialize members that
require more sophisticated logic. Also factor calls to other constructors
to minimize duplication.

Item 15: Avoid Creating Unnecessary Objects

The garbage collector does an excellent job of managing memory for
you, and it removes unused objects in a very efficient manner. But no
matter how you look at it, allocating and destroying a heap-based object
takes more processor time than not allocating and not destroying a
heap-based object. You can introduce serious performance drains on
your program by creating an excessive number of reference objects that
are local to your methods.

62 ❘ Chapter 2 .NET Resource Management

So don’t overwork the garbage collector. You can follow some simple
techniques to minimize the amount of work that the GC needs to do
on your program’s behalf. All reference types, even local variables, create
memory allocations. These objects become garbage when no root is
keeping them alive. For local variables, that is typically when the method
in which they are declared is no longer active. One very common bad
practice is to allocate GDI objects in a Windows paint handler:

protected override void OnPaint(PaintEventArgs e)

{

 // Bad. Created the same font every paint event.

 using (Font MyFont = new Font("Arial", 10.0f))

 {

 e.Graphics.DrawString(DateTime.Now.ToString(),

 MyFont, Brushes.Black, new PointF(0, 0));

 }

 base.OnPaint(e);

}

OnPaint() gets called frequently. Every time it gets called, you create
another Font object that contains the exact same settings. The garbage
collector needs to clean those up for you. Among the conditions that
the GC uses to determine when to run are the amount of memory allo-
cated and the frequency of memory allocations. More allocations mean
more pressure on the GC, causing it to run more often. That’s incredibly
inefficient.

Instead, promote the Font object from a local variable to a member variable.
Reuse the same font each time you paint the window:

private readonly Font myFont =

 new Font("Arial", 10.0f);

protected override void OnPaint(PaintEventArgs e)

{

 e.Graphics.DrawString(DateTime.Now.ToString(),

 myFont, Brushes.Black, new PointF(0, 0));

 base.OnPaint(e);

}

Your program no longer creates garbage with every paint event. The
garbage collector does less work. Your program runs just a little faster.
When you elevate a local variable that implements IDisposable to a

 Item 15: Avoid Creating Unnecessary Objects ❘ 63

member variable, such as the font in this example, you need to implement
IDisposable in your class. Item 17 explains how to properly do just that.

You should promote local variables to member variables when they are ref-
erence types (value types don’t matter) and they will be used in routines
that are called frequently. The font in the paint routine is an excellent exam-
ple. Only local variables in routines that are frequently accessed are good
candidates. Infrequently called routines are not. You’re trying to avoid creat-
ing the same objects repeatedly, not turn every local variable into a member
variable.

The static property Brushes.Black used earlier illustrates another tech-
nique that you should use to avoid repeatedly allocating similar objects.
Create static member variables for commonly used instances of the
reference types you need. Consider the black brush used earlier as an
example. Every time you need to draw something in your window using
the color black, you need a black brush. If you allocate a new one every
time you draw anything, you create and destroy a huge number of black
brushes during the course of a program. The first approach of creating
a black brush as a member of each of your types helps, but it doesn’t go
far enough. Programs might create dozens of windows and controls and
would create dozens of black brushes. The .NET Framework designers
anticipated this and created a single black brush for you to reuse when-
ever you need it. The Brushes class contains a number of static Brush
objects, each with a different common color. Internally, the Brushes
class uses a lazy evaluation algorithm to create only those brushes you
request. A simplified implementation looks like this:

private static Brush blackBrush;

public static Brush Black

{

 get

 {

 if (blackBrush == null)

 blackBrush = new SolidBrush(Color.Black);

 return blackBrush;

 }

}

The first time you request a black brush, the Brushes class creates it. The
Brushes class keeps a reference to the single black brush and returns that
same handle whenever you request it again. The end result is that you create
one black brush and reuse it forever. Furthermore, if your application does

64 ❘ Chapter 2 .NET Resource Management

not need a particular resource—say, the lime green brush—it never gets
created. The framework provides a way to limit the objects created to the
minimum set you need to accomplish your goals. Consider that technique in
your programs. On the positive side, you create fewer objects. On the minus
side, this may cause objects to be in memory for longer than necessary. It can
even mean not being able to dispose of unmanaged resources because you
can’t know when to call the Dispose() method.

You’ve learned two techniques to minimize the number of allocations
your program performs as it goes about its business. You can promote
often-used local variables to member variables. You can use dependency
injection to create and reuse objects that represent common instances
of a given type. The last technique involves building the final value for
immutable types. The System.String class is immutable: After you con-
struct a string, the contents of that string cannot be modified. Whenever
you write code that appears to modify the contents of a string, you are
actually creating a new string object and leaving the old string object as
garbage. This seemingly innocent practice:

string msg = "Hello, ";

msg += thisUser.Name;

msg += ". Today is ";

msg += System.DateTime.Now.ToString();

is just as inefficient as if you had written this:

string msg = "Hello, ";

// Not legal, for illustration only:

string tmp1 = new String(msg + thisUser.Name);

msg = tmp1; // "Hello " is garbage.

string tmp2 = new String(msg + ". Today is ");

msg = tmp2; // "Hello <user>" is garbage.

string tmp3 = new String(msg + DateTime.Now.ToString());

msg = tmp3; // "Hello <user>. Today is " is garbage.

The strings tmp1, tmp2, and tmp3 and the originally constructed
msg ("Hello") are all garbage. The += operator on the string class
creates a new string object and returns that string. It does not modify the
existing string by concatenating the characters to the original storage.
For simple constructs such as the previous one, you should use interpo-
lated strings:

string msg = string.Format("Hello, {0}. Today is {1}",

 thisUser.Name, DateTime.Now.ToString());

 Item 16: Never Call Virtual Functions in Constructors ❘ 65

For more complicated string operations, you can use the StringBuilder
class:

StringBuilder msg = new StringBuilder("Hello, ");

msg.Append(thisUser.Name);

msg.Append(". Today is ");

msg.Append(DateTime.Now.ToString());

string finalMsg = msg.ToString();

The example above is simple enough that you’d use string interpolation
(see Item 4). Use StringBuilder when the logic needed to build the
final string is too complex for string interpolation. StringBuilder is
the mutable string class used to build an immutable string object. It pro-
vides facilities for mutable strings that let you create and modify text data
before you construct an immutable string object. Use StringBuilder to
create the final version of a string object. More importantly, learn from
that design idiom. When your designs call for immutable types, consider
creating builder objects to facilitate the multiphase construction of the
final object. That provides a way for users of your class to construct an
object in steps, yet maintain the immutability of your type.

The garbage collector does an efficient job of managing the memory that
your application uses. But remember that creating and destroying heap
objects still takes time. Avoid creating excessive objects; don’t create what
you don’t need. Also avoid creating multiple objects of reference types in
local functions. Instead, consider promoting local variables to member vari-
ables, or create static objects of the most common instances of your types.
Finally, consider creating mutable builder classes for immutable types.

Item 16: Never Call Virtual Functions in Constructors

Virtual functions exhibit strange behaviors during the construction of
an object. An object is not completely created until all constructors have
executed. In the meantime, virtual functions may not behave the way
you’d like or expect. Examine the following simple program:

class B

{

 protected B()

 {

 VFunc();

 }

66 ❘ Chapter 2 .NET Resource Management

 protected virtual void VFunc()

 {

 Console.WriteLine("VFunc in B");

 }

}

class Derived : B

{

 private readonly string msg = "Set by initializer";

 public Derived(string msg)

 {

 this.msg = msg;

 }

 protected override void VFunc()

 {

 Console.WriteLine(msg);

 }

 public static void Main()

 {

 var d = new Derived("Constructed in main");

 }

}

What do you suppose gets printed—“Constructed in main,” “VFunc
in B,” or “Set by initializer”? Experienced C++ programmers would say,
“VFunc in B.” Some C# programmers would say, “Constructed in main.”
But the correct answer is “Set by initializer.”

The base class constructor calls a virtual function that is defined in its
class but overridden in the derived class. At runtime, the derived class
version gets called. After all, the object’s runtime type is Derived. The
C# language definition considers the derived object completely available,
because all the member variables have been initialized by the time any
constructor body is entered. After all, all the variable initializers have
executed. You had your chance to initialize all variables. But this doesn’t
mean that you have necessarily initialized all your member variables to
the value you want. Only the variable initializers have executed; none of
the code in any derived class constructor body has had the chance to do
its work.

 Item 16: Never Call Virtual Functions in Constructors ❘ 67

No matter what, some inconsistency occurs when you call virtual func-
tions while constructing an object. The C++ language designers decided
that virtual functions should resolve to the runtime type of the object
being constructed. They decided that an object’s runtime type should be
determined as soon as the object is created.

There is logic behind this. For one thing, the object being created is a
Derived object; every function should call the correct override for a
Derived object. The rules for C++ are different here: The runtime type of
an object changes as each class’s constructor begins execution. Second, this
C# language feature avoids the problem of having a null method pointer in
the underlying implementation of virtual methods when the current type
is an abstract base class. Consider this variant base class:

abstract class B

{

 protected B()

 {

 VFunc();

 }

 protected abstract void VFunc();

}

class Derived : B

{

 private readonly string msg = "Set by initializer";

 public Derived(string msg)

 {

 this.msg = msg;

 }

 protected override void VFunc()

 {

 Console.WriteLine(msg);

 }

 public static void Main()

 {

 var d = new Derived("Constructed in main");

 }

}

68 ❘ Chapter 2 .NET Resource Management

The sample compiles, because B objects aren’t created, and any concrete
derived object must supply an implementation for VFunc(). The C#
strategy of calling the version of VFunc() matching the actual runtime
type is the only possibility of getting anything except a runtime exception
when an abstract function is called in a constructor. Experienced C++
programmers will recognize the potential runtime error if you use the
same construct in that language. In C++, the call to VFunc() in the B
constructor would crash.

Still, this simple example shows the pitfalls of the C# strategy. The msg
variable is immutable. It should have the same value for the entire life of
the object. Because of the small window of opportunity when the con-
structor has not yet finished its work, you can have different values for
this variable: one set in the initializer, and one set in the body of the con-
structor. In the general case, any number of derived class variables may
remain in the default state, as set by the initializer or by the system. They
certainly don’t have the values you thought, because your derived class’s
constructor has not executed.

Calling virtual functions in constructors makes your code extremely sensi-
tive to the implementation details in derived classes. You can’t control what
derived classes do. Code that calls virtual functions in constructors is very
brittle. The derived class must initialize all instance variables properly in
variable initializers. That rules out quite a few objects: Most constructors
take some parameters that are used to set the internal state properly. So you
could say that calling a virtual function in a constructor mandates that all
derived classes define a default constructor, and no other constructor. But
that’s a heavy burden to place on all derived classes. Do you really expect
everyone who ever uses your code to play by those rules? I didn’t think so.
There is very little gain, and lots of possible future pain, from playing this
game. In fact, this situation will work so rarely that it’s included in the FxCop
and Static Code Analyzer tools bundled with Visual Studio.

Item 17: Implement the Standard Dispose Pattern

We’ve discussed the importance of disposing of objects that hold unmanaged
resources. Now it’s time to cover how to write your own resource man-
agement code when you create types that contain resources other than
memory. A standard pattern is used throughout the .NET Framework
for disposing of unmanaged resources. The users of your type will expect
you to follow this standard pattern. The standard dispose idiom frees

 Item 17: Implement the Standard Dispose Pattern ❘ 69

your unmanaged resources using the IDisposable interface when clients
remember, and it uses the finalizer defensively when clients forget. It
works with the garbage collector to ensure that your objects pay the per-
formance penalty associated with finalizers only when necessary. This is
the right way to handle unmanaged resources, so it pays to understand it
thoroughly. In practice, unmanaged resources in .NET can be accessed
through a class derived from System.Runtime.Interop.SafeHandle,
which implements the pattern described here correctly.

The root base class in the class hierarchy should do the following:

 ■ It should implement the IDisposable interface to free resources.
 ■ It should add a finalizer as a defensive mechanism if and only if your
class directly contains an unmanaged resource.

 ■ Both Dispose and the finalizer (if present) delegate the work of
 freeing resources to a virtual method that derived classes can override
for their own resource management needs.

The derived classes need to

 ■ Override the virtual method only when the derived class must free
its own resources

 ■ Implement a finalizer if and only if one of its direct member fields
is an unmanaged resource

 ■ Remember to call the base class version of the function

To begin, your class must have a finalizer if and only if it directly con-
tains unmanaged resources. You should not rely on clients to always call
the Dispose() method. You’ll leak resources when they forget. It’s their
fault for not calling Dispose, but you’ll get the blame. The only way you
can guarantee that unmanaged resources get freed properly is to create
a finalizer. So if and only if your type contains an unmanaged resource,
create a finalizer.

When the garbage collector runs, it immediately removes from memory
any garbage objects that do not have finalizers. All objects that have
finalizers remain in memory. These objects are added to a finalization
queue, and the GC runs the finalizers on those objects. After the finalizer
thread has finished its work, the garbage objects can usually be removed
from memory. They are bumped up a generation because they survived
collection. They are also marked as not needing finalization because the
finalizers have run. They will be removed from memory on the next col-
lection of that higher generation. Objects that need finalization stay in
memory for far longer than objects without a finalizer. But you have no

70 ❘ Chapter 2 .NET Resource Management

choice. If you’re going to be defensive, you must write a finalizer when
your type holds unmanaged resources. But don’t worry about perfor-
mance just yet. The next steps ensure that it’s easier for clients to avoid
the performance penalty associated with finalization.

Implementing IDisposable is the standard way to inform users and the
runtime system that your objects hold resources that must be released in
a timely manner. The IDisposable interface contains just one method:

public interface IDisposable

{

 void Dispose();

}

The implementation of your IDisposable.Dispose() method is respon-
sible for four tasks:

1. Freeing all unmanaged resources.
2. Freeing all managed resources (this includes unhooking events).
3. Setting a state flag to indicate that the object has been disposed of.

You need to check this state and throw ObjectDisposed exceptions
in your public members if any get called after disposing of an object.

4. Suppressing finalization. You call GC.SuppressFinalize(this)
to accomplish this task.

You accomplish two things by implementing IDisposable: You provide
the mechanism for clients to release all managed resources that you hold in
a timely fashion, and you give clients a standard way to release all unman-
aged resources. That’s quite an improvement. After you’ve implemented
IDisposable in your type, clients can avoid the finalization cost. Your
class is a reasonably well-behaved member of the .NET community.

But there are still holes in the mechanism you’ve created. How does
a derived class clean up its resources and still let a base class clean up
as well? If derived classes override finalize or add their own implementa-
tion of IDisposable, those methods must call the base class; otherwise,
the base class doesn’t clean up properly. Also, finalize and Dispose share
some of the same responsibilities; you have almost certainly duplicated
code between the finalize method and the Dispose method. Overriding
interface functions does not always work the way you’d expect. Interface
functions are not virtual by default. We need to do a little more work to
address these concerns. The third method in the standard dispose pat-
tern, a protected virtual helper function, factors out these common tasks
and adds a hook for derived classes to free resources they allocate. The

 Item 17: Implement the Standard Dispose Pattern ❘ 71

base class contains the code for the core interface. The virtual function
provides the hook for derived classes to clean up resources in response to
Dispose() or finalization:

protected virtual void Dispose(bool isDisposing)

This overloaded method does the work necessary to support both finalize
and Dispose, and because it is virtual, it provides an entry point for all
derived classes. Derived classes can override this method, provide the proper
implementation to clean up their resources, and call the base class version.
You clean up managed and unmanaged resources when isDisposing is
true, and you clean up only unmanaged resources when isDisposing
is false. In both cases, call the base class’s Dispose(bool) method to let it
clean up its own resources.

Here is a short sample that shows the framework of code you supply when
you implement this pattern. The MyResourceHog class shows the code to
implement IDisposable and create the virtual Dispose method:

public class MyResourceHog : IDisposable

{

 // Flag for already disposed

 private bool alreadyDisposed = false;

 // Implementation of IDisposable.

 // Call the virtual Dispose method.

 // Suppress Finalization.

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 // Virtual Dispose method

 protected virtual void Dispose(bool isDisposing)

 {

 // Don't dispose more than once.

 if (alreadyDisposed)

 return;

 if (isDisposing)

 {

 // elided: free managed resources here.

 }

72 ❘ Chapter 2 .NET Resource Management

 // elided: free unmanaged resources here.

 // Set disposed flag:

 alreadyDisposed = true;

 }

 public void ExampleMethod()

 {

 if (alreadyDisposed)

 throw new

 ObjectDisposedException("MyResourceHog",

 "Called Example Method on Disposed object");

 // remainder elided.

 }

}

If a derived class needs to perform additional cleanup, it implements the
protected Dispose method:

public class DerivedResourceHog : MyResourceHog

{

 // Have its own disposed flag.

 private bool disposed = false;

 protected override void Dispose(bool isDisposing)

 {

 // Don't dispose more than once.

 if (disposed)

 return;

 if (isDisposing)

 {

 // TODO: free managed resources here.

 }

 // TODO: free unmanaged resources here.

 // Let the base class free its resources.

 // Base class is responsible for calling

 // GC.SuppressFinalize()

 base.Dispose(isDisposing);

 // Set derived class disposed flag:

 disposed = true;

 }

}

 Item 17: Implement the Standard Dispose Pattern ❘ 73

Notice that both the base class and the derived class contain a flag for the
disposed state of the object. This is purely defensive. Duplicating the flag
encapsulates any possible mistakes made while disposing of an object to
only the one type, not all types that make up an object.

You need to write Dispose and finalizers defensively. They must be
idempotent. Dispose() may be called more than once, and the effect
should be the same as calling them exactly once. Disposing of objects can
happen in any order. You will encounter cases in which one of the mem-
ber objects in your type is already disposed of before your Dispose()
method gets called. You should not view that as a problem because the
Dispose() method can be called multiple times. Note that Dispose()
is the exception to the rule of throwing an ObjectDisposedException
when public methods are called on an object that has been disposed of.
If it’s called on an object that has already been disposed of, it does nothing.
Finalizers may run when references have been disposed of, or have never
been initialized. Any object that you reference is still in memory, so you
don’t need to check null references. However, any object that you refer-
ence might be disposed of. It might also have already been finalized.

You’ll notice that neither MyResourceHog nor DerivedResourceHog
contains a finalizer. The example code I wrote does not directly con-
tain any unmanaged resources. Therefore, a finalizer is not needed. That
means the example code never calls Dispose(false). That’s the correct
pattern. Unless your class directly contains unmanaged resources, you
should not implement a finalizer. Only those classes that directly contain
an unmanaged resource should implement the finalizer and add that
overhead. Even if it’s never called, the presence of a finalizer does intro-
duce a rather large performance penalty for your types. Unless your type
needs the finalizer, don’t add it. However, you should still implement
the pattern correctly so that if any derived classes do add unmanaged
resources, they can add the finalizer and implement Dispose(bool) in
such a way that unmanaged resources are handled correctly.

This brings me to the most important recommendation for any method
associated with disposal or cleanup: You should be releasing resources
only. Do not perform any other processing during a dispose method.
You can introduce serious complications to object lifetimes by perform-
ing other processing in your Dispose or finalize methods. Objects are
born when you construct them, and they die when the garbage collector
reclaims them. You can consider them comatose when your program can
no longer access them. If you can’t reach an object, you can’t call any

74 ❘ Chapter 2 .NET Resource Management

of its methods. For all intents and purposes, it is dead. But objects that
have finalizers get to breathe a last breath before they are declared dead.
Finalizers should do nothing but clean up unmanaged resources. If a final-
izer somehow makes an object reachable again, it has been resurrected. It’s
alive and not well, even though it has awoken from a comatose state. Here’s
an obvious example:

public class BadClass

{

 // Store a reference to a global object:

 private static readonly List<BadClass> finalizedList =

 new List<BadClass>();

 private string msg;

 public BadClass(string msg)

 {

 // cache the reference:

 msg = (string)msg.Clone();

 }

 ~BadClass()

 {

 // Add this object to the list.

 // This object is reachable, no

 // longer garbage. It's Back!

 finalizedList.Add(this);

 }

}

When a BadClass object executes its finalizer, it puts a reference to itself
on a global list. It has just made itself reachable. It’s alive again! The num-
ber of problems you’ve just introduced would make anyone cringe. The
object has been finalized, so the garbage collector now believes there is
no need to call its finalizer again. If you actually need to finalize a resur-
rected object, it won’t happen. Second, some of your resources might not
be available. The GC will not remove from memory any objects that are
reachable only by objects in the finalizer queue, but it might have already
finalized them. If so, they are almost certainly no longer usable. Although
the members that BadClass owns are still in memory, they will have likely
been disposed of or finalized. There is no way in the language that you can
control the order of finalization. You cannot make this kind of construct
work reliably. Don’t try.

 Item 17: Implement the Standard Dispose Pattern ❘ 75

I’ve never seen code that has resurrected objects in such an obvious fashion,
except as an academic exercise. But I have seen code in which the final-
izer attempts to do some real work and ends up bringing itself back to
life when some function that the finalizer calls saves a reference to the
object. The moral is to look very carefully at any code in a finalizer and,
by extension, both Dispose methods. If that code is doing anything
other than releasing resources, look again. Those actions likely will cause
bugs in your program in the future. Remove those actions, and make
sure that finalizers and Dispose() methods release resources and do
nothing else.

In a managed environment, you do not need to write a finalizer for every
type you create; you do it only for types that store unmanaged types or
when your type contains members that implement IDisposable. Even
if you need only the IDisposable interface, not a finalizer, implement
the entire pattern. Otherwise, you limit your derived classes by compli-
cating their implementation of the standard dispose idiom. Follow the
standard dispose idiom I’ve described. That will make life easier for you,
for the users of your class, and for those who create derived classes from
your types.

This page intentionally left blank

 ❘

 253

Index

Symbols
$ (dollar sign), interpolated strings, 20

? (question mark) operator, null conditional
operator, 33–34

{ } (curly brackets), readability of interpolated
strings, 20

< (less-than) operator, ordering relations
with IComparable, 124

Numbers
0 initialization, avoid initializer syntax in, 49

A
Abrahams, Dave, 238

Action<>, delegate form, 28

Action methods
called for every item in collection, 152
naming, 222
writing to ensure no exceptions, 189

Actions
avoid throwing exceptions in, 188–190
create new exception classes for different,

234–235
decouple iterations from, 151–157

Add() generic method, 108

AddFunc() method, generic classes, 107–108

Algorithms
create with delegate-based contracts, 109
loosen coupling with function parameters,

161–163

use runtime type checking to specialize
generic, 85–92

Allocations, minimize number of program,
61–64

Anonymous types
implicitly typed local variables

supporting, 1
in queries with SelectMany, 177

API signatures
define method constraints on type

parameters, 107
distinguish between IEnumerable/

IQueryable data sources, 208

APIs
avoid string-ly typed, 26–27
create composable (for sequences), 144–151

AppDomain, initializing static class
members, 52–53

Application-specific exception classes, 232

AreEqual() method, minimizing
constraints, 80–83

Arguments
generator method using, 135–139
nameof() operator for, 26–27

Array covariance, safety problems, 102–103

As operator
checking for equality on Name types, 123
prefer to casts, 12–19

.AsParallel() method, query syntax, 144

AsQueryable() method, 211–212

Assignment statements
prefer member initializers to, 48–51
support generic covariance/contravariance,

103

254 ❘ Index

B
Backward compatibility, IComparable for, 93

Base classes
calling constructor using base(), 59
define minimal/sufficient constraints, 80, 83
define with function parameters/generic

methods, 160–161
do not create generic specialization on, 112–116
execute static initializers before static

constructor on, 49, 52
force client code to derive from, 158
implement standard dispose pattern, 69–73
loosen coupling using, 157–160, 163
use new modifier only to react to updates

of, 38–41

BaseWidget class, 40–41

Basic guarantee, exceptions, 238

BCL. See .NET Base Class Library (BCL)

Behavior
compile-time vs. runtime constants, 8
define in interfaces with extension

methods, 126–130
IEnumerable vs.IQueryable, 208–212
nameof() operator and consistent, 26–27
when extension methods cause strange,

128–129

BindingList<T> constructor, 155–156

Bound variables
avoid capturing expensive resources,

195–197, 204–205
avoid modifying, 215–220
lifetime of, 195

Boxing operations
implement IComparable and, 92–93
minimize, 34–38

Brushes class, minimizing number of
programs, 63–64

C
C# language idioms

avoid string-ly typed APIs, 25–27
express callbacks with delegates, 28–31

minimize boxing and unboxing, 34–38
overview of, 1
prefer FormattableString for culture-

specific strings, 23–25
prefer implicitly typed local variables, 1–7
prefer is or as operators to casts, 12–19
prefer readonly to const, 7–11
replace string.format() with

interpolated strings, 19–23
use new modifier only to react to base class

updates, 38–41
use null operator for event invocations,

31–34

Callbacks, express with delegates, 28–31

Captured variables
avoid capturing expensive resources,

195–196
avoid modifying, 215–220

Cargill, Tom, 238

Casts
as alternative to constraints, 80–81
GetEnumerator(),
ReverseEnumerator<T> and, 89–90

prefer is or as operators to, 12–19
specifying constraints vs., 79
T implementing/not implementing
IDisposable, 99

Cast<T> method, converting elements,
18–19

Catch clauses
create application-specific exception classes,

232–237
exception filters with side effects and,

250–251
prefer exception filters to, 245–249

CheckEquality() method, 122–123

Circular memory, with garbage collector,
43–44

Classes
avoid extension methods for, 163–167
constraints on, 112
use generic methods for nongeneric,

116–120

Close() method, SqlConnection,
230–231

 Index ❘ 255

Closed generic type, 77–79

Closures
captured variables inside, 196–197
compiler converting lambda expressions

into, 215, 218–220
extended lifetime of captured variables in,

195

CLR (Common Language Runtime), generics
and, 77

Code conventions, used in this book, xv

Collections
avoid creating nongeneric class/generic

methods for, 120
create set of extension methods on specific,

130
inefficiencies of operating on entire, 144
prefer iterator methods to returning, 133–139
treating as covariant, 103

COMException class, exception filters for,
248

Common Language Runtime (CLR), generics
and, 77

CompareTo() method, IComparable<T>,
92–95, 98

Comparison<T> delegate, ordering
relations, 95

Compile-time constants
declaring with const keyword, 8
limited to numbers, strings, and null, 9
prefer runtime constants to, 7–8

Compiler, 3
adding generics and, 77
emitting errors on anything not defined in
System.Object, 80

using implicitly typed variables with, 1–2

Components, decouple with function
parameters, 157–163

Conditional expressions, string
interpolation and, 21–22

Const keyword, 7–11

Constants, types of C#, 7–8

Constraints
documenting for users of your class, 98

on generic type parameters, 19
must be valid for entire class, 116–117
specifying minimal/sufficient, 79–84
as too restrictive at first glance, 107
transforming runtime errors into compile-

time errors, 98
type parameters and, 98
use delegates to define method, 107–112

Constructed generic types, extension
methods for, 130–132

Constructor initializers, minimize duplicate
initialization logic, 53–54, 59–61

Constructors
Exception class, 235–236
minimize duplicated code in, 53–61
minimize duplicated code with

parameterless, 55–56
never call virtual functions in, 65–68
parameterless, 55–56
static, 51–53, 61

Continuable methods, 148

Continuations, in query expressions,
173–174

Contract failures, report using exceptions,
221–225

Contravariance, generic, 101–102, 106–107

Conversions
built-in numeric types and implicit, 3–5
casts with generics not using operators for,

19
foreach loops and, 16–17
as and is vs. casts in user-defined, 13–15

Costs
of decoupling components, 158
extension methods and performance, 164
of generic type definitions, 77
memory footprint runtime, 79
throwing exceptions and performance, 224
use exception filters to avoid additional, 245

Coupling, loosen with function parameters,
157–163

Covariance, generic, 101–107

CreateSequence() method, 155–157, 161

Customer struct, 94, 96–98

256 ❘ Index

D
Data

distinguish early from deferred execution,
190–195

throw exceptions for integrity errors, 234
treating code as, 179

Data sources, 169
IEnumerable vs. IQueryable,

208–212
lamba expressions for reusable library and,

186

Data stores, LINQ to Objects queries on, 186

Debugger, exception filters and, 251–252

Declarative code, 191

Declarative model
distinguish early from deferred execution,

192
query syntax moving program logic to, 139

Default constructor
constraint, 83–84
defined, 49

Default parameters
minimize duplicate initialization logic,

60–61
minimize duplicated code in constructors,

54–56

Defensive copy mechanism
meet strong exception guarantee with, 239
no-throw guarantee, delegate invocations

and, 244–245
problem of swapping reference types,

240–241

Deferred execution
avoid capturing expensive resources, 200
composability of multiple iterator methods,

148–149
defined, 145
distinguish early from, 191–195
writing iterator methods, 145–146

Delegate signatures
define method constraints with, 107–108
loosen coupling with, 159–163

Delegate targets, no-throw guarantee for,
244–245

Delegates
captured variables inside closure and, 195,

196–197
cause objects to stay in memory longer, 43
compiler converting lambda expressions

into, 215–216
define method constraints on type

parameters using, 107–110
define method constraints with, 112
express callbacks with, 28–31
generic covariance/contravariance in,

105–107
in IEnumerable<T> extension methods,

209

Dependency injection, create/reuse objects, 64

Derived classes
calling virtual functions in constructors

and, 66–68
implement standard dispose pattern, 69,

70–71

Deterministic finalization, not part of .NET
environment, 46

Disposable type parameters, create generic
classes supporting, 98–101

Dispose() method
no-throw guarantee for exceptions, 244
resource cleanup, 225–227, 229–231
standard dispose pattern, 69–73, 75
T implementing IDisposable, 99, 100

Documentation, of constraints, 98

Duplication, minimize in initialization
logic, 53–61

Dynamic typing, implicitly typed local
variables vs., 2

E
Eager evaluation, 179–184

Early evaluation, 191–195

EntitySet class, GC's Mark and Compact
algorithm, 44

Enumerable.Range()iterator method, 138

Enumerable.Reverse() method, 7

 Index ❘ 257

Enumerators, functional programming in
classes with, 192

Envelope-letter pattern, 241–243

Equality relations
classic and generic interfaces for, 122–124,

126
ordering relations vs., 98

Equality tests, getting exact runtime type
for, 18

Equals() method
checking for equality by overriding,

123
minimizing constraints, 82
not needed for ordering relations, 98

Errors
exceptions vs. return codes and, 222
failure-reporting mechanism vs., 222
from modifying bound variables between

queries, 215–220
use exceptions for errors causing long-

lasting problems, 234

Event handlers
causing objects to stay in memory longer,

43
event invocation traditionally and, 31–33
event invocation with null conditional

operator and, 33–34

Events
use null conditional operator for invocation

of, 31–34
use of callbacks for, 28

Exception filters
leverage side effects in, 249–252
no-throw guarantee for, 244
prefer to catch and re-throw, 245–249
with side effects, 251

“Exception Handling: A False Sense of
Security” (Cargill), 238

Exception, new exception class must end
in, 235

Exception-safe guarantees, 238

Exception translation, 237

Exceptional C++ (Sutter), 238

Exceptions
avoid throwing in functions and actions,

188–190
best practices, 238
create application-specific exception classes,

232–237
for errors causing long-lasting problems,

234
initialize static class members and, 52–53
leverage side effects in exception filters,

249–252
move initialization into body of

constructors for, 50–51
nameof() operator and types of, 27
overview of, 221
prefer exception filters to catch and
re-throw, 245–249

prefer strong exception guarantee, 237–245
report method contract failures with,

221–225
resource cleanup with using and try/
finally, 225–232

thrown by Single(), 212–213

Execution semantics, 169

Expensive resources, avoid capturing,
195–208

Expression trees
defined, 209
IQueryable<T> using, 209
LINQ to Objects using, 186

Expression.MethodCall node, LINQ to
SQL, 186

Expressions
conditional, 21–22
describing code for replacement strings,

20–21

Extension methods
augment minimal interface contracts with,

126–130
define interface behavior with, 126
enhance constructed generic types with,

130–132
IEnumerable<T>, 209
implicitly typed local variables and, 6–7
never use same signature for multiple, 167

258 ❘ Index

Extension methods (continued)
query expression pattern, 169
reuse lambda expressions in complicated

queries, 187

F
Failures, report method contract, 221–225

False, exception filter returning, 249–250

Feedback, server-to-client callbacks, 28–31

Finalizers
avoid resource leaks with, 48
control unmanaged resources with, 45–46
effect on garbage collector, 46–47
implement standard dispose pattern with,

69–70, 73–75
minimize need for, 46–47
no-throw guarantee for exceptions, 244
use IDisposable interface instead of, 48

Find() method, List<T> class, 29

First()method, 212–214

FirstOrDefault() method, 213–214

Flexibility, const vs. read-only, 11

Font object, 62–63

Foreach loop, conversions with casts, 16–17

FormattableString, culture-specific
strings, 23–25

Func<>, delegate form, 28

Function parameters
define interfaces or creating base classes,

160–163
IEnumerable<T> extension methods

using, 209
loosen coupling with, 157–158

Functional programming style, strong
exception guarantee, 239

Functions
avoid throwing exceptions in, 188–190
decouple iterations from, 151–157
use lamba expressions, type inference and

enumerators with, 192

G
Garbage collector (GC)

avoid overworking, 61–62
control managed memory with, 43–46
effect of finalizers on, 46–47
eligibility of local variables when out of

scope for, 195
implement standard dispose pattern with,

69–72, 74
notify that object does not need

finalization, 231
optimize using generations, 47

Generate-as-needed strategy, iterator
methods, 138

Generations, garbage collector
finalizers and, 69–70
optimizing, 47

Generic contravariance
in delegates, 105–107
for generic interfaces, 105
overview of, 101–102
use of in modifier for, 107

Generic covariance
array problems, 102–103
in delegates, 105–107
in generic interfaces, 103–105
overview of, 101–102
use of out modifier for, 107

Generic interfaces, treating covariantly/
contravariantly, 103–104

Generic methods
compiler difficulty resolving overloads of,

112–115
define interfaces or create base classes,

160–161
prefer unless type parameters are instance

fields, 116–120
vs. base class, 115

Generic type definitions, 77

Generics
augment minimal interface contracts with

extension methods, 126–130
avoid boxing and unboxing with, 35

 Index ❘ 259

avoid generic specialization on base class/
interface, 112–116

create generic classes supporting disposable
type parameters, 98–101

define minimal/sufficient constraints, 79–84
enhance constructed types with extension

methods, 130–132
implement classic and generic interfaces,

120–126
ordering relations with IComparable<T>/

IComparer<T>, 92–98
overview of, 77–79
prefer generic methods unless type

parameters are instance fields, 116–120
specialize generic algorithms with runtime

type checking, 85–92
support generic covariance/contravariance,

107–112

GetEnumerator() method, 88–90

GetHashCode() method, overriding, 123

GetHttpCode() method, exception filters
for, 248–249

GetType() method, get runtime of object, 18

Greater-than (>) operator, ordering relations
with IComparable, 124

GroupBy method, query expression pattern,
174

GroupJoin method, query expression
pattern, 178

H
HTTPException class, use exception filters

for, 248–249

I
ICollection<T> interface

classic IEnumerable support for, 126
Enumerable.Reverse() and, 7
incompatible with ICollection, 126
specialize generic algorithms using runtime

type checking, 88–89, 91

IComparable interface
encourage calling code to use new version

with, 126
implement IComparable<T> with, 92–95
natural ordering using, 98

IComparable<T> interface
define extension methods for, 127
implement ordering relations, 92–95,

123–124
specify constraints on generic types, 81, 83
use class constraints with, 112

IComparer<T> interface
forcing extra runtime checks, 118
implement ordering relations, 96–98

IDisposable interface
avoid creating unnecessary objects, 62–63
avoid performance drain of finalizers, 48
captured variables inside closure and,

197–198
control unmanaged resources with, 45
create generic classes supporting disposable

type parameters, 98–101
implement standard dispose pattern, 69–71,

75
leak resources due to exceptions, 238
resource cleanup with using and try/
finally, 225, 227–232

variable types holding onto expensive
resources implementing, 196

variables implementing, 201

IEnumerable<T> interface
create stored collection, 139
define extension methods for, 127
enhance constructed types with extension

methods, 130–132
generic covariance in, 104
inherits from IEnumerable, 126
IQueryable<T> data sources vs.,

208–212
performance of implicitly typed locals, 5–6
prefer query syntax to loops, 140–141
query expression pattern, 169
reverse-order enumeration and, 85–87
specify constraints with, 112
use implicitly typed local variables, 1
writing iterator methods, 145–146

260 ❘ Index

IEnumerator<T> interface
generic covariance in, 104
specialize generic algorithms with runtime

type checking, 85–86, 88–91

IEquatable<T> interface
minimize constraints, 82–83
use class constraints, 112

IL, or MSIL (Microsoft Intermediate
Language) types, 8–9, 77–79

IList<T> interface
classic IEnumerable support for, 126
incompatible with IList, 126
specialize generic algorithms, 87–89

Immutable types
build final value for, 64–65
strong exception guarantee for, 239–240

Imperative code
defined, 191
lose original intent of actions in, 142

Imperative model
methods in, 192
query syntax moves program logic from,

139–144

Implicit properties, avoid initializer syntax
for, 50–51

Implicitly typed local variables
declare using var, 1–2, 7
extension methods and, 6–7
numeric type problems, 3–4
readability problem, 2–3
reasons for using, 1

In (contravariant) modifier, 107

Inheritance relationships
array covariance in, 103
runtime coupling switching to use delegates

from, 163

Initialization
assignment statements vs. variable, 48–49
local variable type in statement of, 2
minimize duplication of logic in, 53–61
order of operations for object, 61
of static class members, 51–53

InnerException property, lower-level
errors and, 236–237

INotifyPropertyChanged interface,
nameof() expression, 26

Instance constants, readonly values for, 9

Interface pointer, boxing/unboxing and, 35

Interfaces
augment with extension methods, 126–130
constraints on, 112
implement generic and classic, 120–126
loosen coupling by creating/coding against,

158–159, 163
loosen coupling with delegate signatures

vs., 160
nameof() operator for, 26–27
use function parameters/generic methods

to define, 160–161

Interfaces, generic
avoid creating nongeneric class/generic

methods for, 120
avoid generic specialization for, 112–116
implement classic interfaces and, 120–126

Internationalization, prefer
FormattableString for, 25

Interpolated strings
avoid creating unnecessary objects, 64–65
boxing/unboxing of value types and, 35–36
converting to string or formattable string,

23
prefer FormattableString for culture-

specific strings, 23–25
replace string.Format() with, 19–23

InvalidCastException, caused by
foreach loops, 17

InvalidOperationException,

Single(), 213

Invoke() method, use “?” operator with,
33–34

IQueryable enumerators, 187

IQueryable<T> interface
do not parse any arbitrary method, 209
IEnumerable<T> data sources vs.,

208–212
implement query expression pattern, 169
set of operators/methods and, 209
use implicitly typed local variables, 1, 5–6

 Index ❘ 261

IQueryProvider

prefer lambda expressions to methods, 187
translating queries to T-SQL, 210
use implicitly typed local variables, 1

Is operator
following rules of polymorphism, 17–18
prefer to casts, 12–19

Iterations
decouple from actions, predicates, and

functions, 151–157
inefficiencies for entire collections, 144
produce final collection in one, 144

Iterator methods
create composable APIs for sequences,

145–151
defined, 133
not necessarily taking sequence as input

parameter, 154
prefer to returning collections, 133–139
when not recommended, 139

Iterators, defined, 145

J
Join method, query expression pattern, 178

Just-In-Time (JIT) compiler, generics and,
77–79

L
Lambda expressions

compiler converting into delegates or
closures, 215–220

deferred execution using, 191–195
define methods for generic classes with, 108
express delegates with, 28–29
IEnumerable<T> using delegates for, 209
not all creating same code, 215–216
prefer to methods, 184–188
reusable queries expressed as, 132

Language
idioms. See C# language idioms

prefer FormattableString for culture-
specific strings, 23–25

string interpolation embedded into, 20–23

Late evaluation, 191–195

Lazy evaluation, 179–184, 192

Less-than (<) operator, order relations with
IComparable, 124

Libraries. See also .NET Base Class Library
(BCL)

exceptions generated from, 236–237
string interpolation executing code from,

20–21

LINQ
avoid capturing expensive resources,

195–208
avoid modifying bound variables, 215–220
avoid throwing exceptions in functions/

actions, 188–190
built on delegates, 29
create composable APIs for sequences,

144–151
decouple iterations from actions, predicates,

and functions, 151–154
distinguish early from deferred execution,

190–195
generate sequence items as requested, 154–157
how query expressions map to method calls,

167–179
IEnumerable vs. IQueryable, 208–212
loosen coupling by using function

parameters, 157–163
never overload extension methods, 163–167
overview of, 133
prefer iterator methods to returning

collections, 133–139
prefer lambda expressions to methods,

184–188
prefer lazy vs. eager evaluation in queries,

179–184
prefer query syntax to loops, 139–144
use queries in interpolated strings, 22
use Single() and First() to enforce

semantic expectations on queries,
212–214

LINQ to Objects, 186–187, 209

262 ❘ Index

LINQ to SQL
distinguish early from deferred execution,

194–195
IEnumerable vs. IQueryable, 208
IQueryable<T> implementation of, 210
prefer lambda expressions to methods,

186–187
string.LastIndexOf() parsed by,

211–212

List.ForEach() method, List<T> class, 29

List.RemoveAll() method signature, 159

List<T> class, methods using callbacks, 29

Local type inference
can create difficulties for developers, 5
compiler making best decision in, 4
static typing unaffected by, 2

Local variables. See also Implicitly typed
local variables

avoid capturing expensive resources, 204–207
avoid string-ly typed APIs, 27
eligibility for garbage collection, 195–196
prefer exception filters to catch and
re-throw, 246–247

promoting to member variables, 62–65
use null conditional operator for event

invocation, 32–33
when lambda expressions access, 218–220
when lambda expressions do not access,

216–218
writing and disposing of, 99–101

Localizations, prefer FormattableString
for, 25

Logging, of exceptions, 250–251

Logic, minimize duplicate initialization,
53–61

Loops, prefer query syntax to, 139–144

M
Managed environment, 75

copying heap-allocated objects in, 240
memory management with garbage

collector in, 43–44, 48

Managed heap, memory management for,
44–45

Mapping query expressions to method calls,
167–178

Mark and Compact algorithm, garbage
collector, 43–44

Max() method, 183

Member initializers, prefer to assignment
statements, 48–51

Member variables
avoid creating unnecessary objects, 62–65
call virtual functions in constructors, 66
garbage collector generations for, 47
generic classes using instance of type

parameters as, 99–100
initialize once during construction, 61
initialize where declared, 48–51
never call virtual functions in constructors,

66
static, 63–65
when lamba expressions access, 218

Memory management, .NET, 43–48

Method calls, mapping query expressions to,
167–178

Method parameters
contravariant type parameters as, 105
how compiler treats in lambda expressions,

220

Method signatures
augment minimal interface contracts with

extension methods, 127, 129, 131
decouple iterations from actions, predicates,

and functions, 152
implement classic and generic interfaces, 126
loosen coupling using function parameters,

159
map query expressions to method calls,

167–169, 171
prefer implicitly typed local variables, 2
prefer is or as operators to casts, 12
return codes as part of, 222

Methods
culture-specific strings with
FormattableString, 24–25

 Index ❘ 263

declare compile-time vs. runtime constants, 8
distinguish early from deferred execution,

190–195
extension. See Extension methods
generic. See Generic methods
iterator. See Iterator methods
prefer lambda expressions to, 184–188
in query expression pattern. See Query

expression pattern
readability of implicitly typed local

variables and names of, 2–3
use exceptions to report contract failures of,

221–225
use new modifier to incorporate new

version of base class, 39–41

Min() method, 183

MSIL, or IL (Microsoft Intermediate
Language) types, 8–9, 77–79

Multicast delegates
all delegates as, 29–30
event invocation with event handlers and,

31–32
no-throw guarantee in delegate targets and,

244

N
Named parameters, 11

Nameof() operator, avoid string-ly typed
APIs, 26

Names
checking for equality on, 123
importance of method, 222–223
variable type safety vs. writing full type, 1–2

Namespaces
nameof() operator for, 27
never overload extension methods in, 164–167

Nested loops, prefer query syntax to, 141

.NET 1.x collections, avoid boxing/unboxing
in, 36–37

.NET Base Class Library (BCL)
convert elements in sequence, 18–19
delegate definition updates, 105

ForAll implementation, 140
implement constraints, 112
loosen coupling with function parameters,

162–163
use generic collections in 2.0 version of, 36

.NET resource management
avoid creating unnecessary objects, 61–65
implement standard dispose pattern, 68–75
minimize duplicate initialization logic,

53–61
never call virtual functions in constructors,

65–68
overview of, 43
prefer member initializers to assignment

statements, 48–51
understanding, 43–48
use proper initialization for static class

members, 51–53

New() constraint, 83–84
implement IDisposable, 100–101
requires explicit parameterless constructors,

55–56

New modifier, use only to react to base class
updates, 38–41

No-throw guarantee, exceptions, 238, 244

Nonvirtual functions, avoid new modifier to
redefine, 39

NormalizeValues() method,
BaseWidget class, 40–41

Null operator
avoid initializer syntax in, 49
compile-time constants limited to, 9
event invocation with, 31–34
for queries returning zero or one element, 213
use with as operator vs. casts, 13

NullReferenceException, 31–32

Numbers
compile-time constants limited to, 9
generate sequence items as requested,

154–157

Numeric types
explicitly declaring, 7
problems with implicitly declaring, 3–5
provide generic specialization for, 115

264 ❘ Index

O
Objects

avoid creating unnecessary, 61–65
avoid initializer syntax for multiple

initializations of same, 49–50
manage resource usage/lifetimes of, 195
never call virtual functions in construction

of, 65–68
order of operations for initialization of, 61
ownership decisions, 44

OnPaint()method, 62–63

Open generic type, 77

Optional parameters, 11

OrderBy method
needs entire sequence for operation, 183
query expression pattern, 172–173

OrderByDescending method, query
expression pattern, 172–173

Ordering relations
with IComparable<T>/IComparer<T>,

92–98
implement classic and generic interfaces for,

123–124, 126
as independent from equality relations, 124

Out (covariance) modifier, 107

Overloads
avoid extension method, 163–167
compiler difficulty in resolving generic

method, 112–115
minimize duplicated code with constructor,

55–56, 60–61

P
Parameterless constructors, minimize

duplicated code with, 55–56

Parameters. See also Type parameters
default, 54–56, 60–61
function, 157–163, 209
method, 105, 220
optional, 11

Params array, 20–21

Performance
const vs. read-only trade-offs, 11
cost of boxing and unboxing, 34
exception filter effects on program, 248
IEnumerable vs. IQueryable, 208–212
penalties of relying on finalizers, 46
produce final collection in one iteration for,

144

Polymorphism, is operator following rules
of, 17–18

Predicates, decouple iterations from,
151–157

Predicate<T>, delegate form, 28

Private methods, use of exceptions, 222–223

Public methods, use of exceptions, 222–223

Q
Queries. See also LINQ

cause objects to stay in memory longer, 43
compiler converting into delegates or

closures, 215–216
designed to return one scalar value, 214
execute in parallel using query syntax, 144
generate next value only, 198
IEnumerable vs. IQueryable, 209
implement as extension methods, 131–132
prefer lazy evaluation to eager evaluation,

179–184

Query expression pattern
eleven methods of, 169–170
groupBy method, 174
groupJoin method, 178
join method, 178
OrderBy method, 172–173
OrderByDescending method, 172–173
Select method, 171–172
selectMany method, 174–177
ThenBy method, 172–173
ThenByDescending method, 172–173
Where method, 169–170

Query expressions
deferred execution using, 191–195

 Index ❘ 265

as lazy, 181
mapping to method calls, 167–178

Query syntax, prefer to loops, 139–144

R
Re-throw exceptions, exception filters vs.,

245–249

Readability
implicitly typed local variables and, 2–3, 7
interpolated strings improving, 20, 23
query syntax improving, 140

ReadNumbersFromStream() method,
198–199

Readonly values
assigned/resolved at runtime, 9
avoid creating unnecessary objects, 62
avoid modifying bound variables, 216–219
implement ordering relations, 92, 94, 96
implement standard dispose pattern, 74
initialization for static class members, 51–52
never call virtual functions in constructors,

66–67
prefer iterator methods to returning

collections, 136
prefer to const, 7–11

Refactored lambda expressions, unusability
of, 185

Reference types
boxing converting value types to, 34–35
create memory allocations, 62
define constraints that are minimal/

sufficient, 83
foreach statement using casts to support, 17
iterator methods for sequences containing,

150
in local functions, avoid creating multiple

objects of, 65
program errors from swapping, 240–241,

243–245
promote local variables to member variables

when they are, 63

Replacement strings, using expressions for, 20

Resources, 225–232
avoid capturing expensive, 195–208
avoid leaking in face of exceptions, 238
management of. See .NET resource

management

Return values, multicast delegates and, 30

Reusability, produce final collection in one
iteration as sacrifice of, 144

RevenueComparer class, 96–98

ReverseEnumerable constructor, 85–86

ReverseEnumerator<T> class, 87–90

ReverseStringEnumerator class, 89–90

Revisions, tracking with compile-time
constants, 10–11

Runtime
catch clauses for types of exceptions at,

233–234
constants, 7–9
define minimal constraints at, 79–80
delegates enable use of callbacks at, 31
evaluate compatibility at, 9–10
get type of object at, 18
readonly values resolved at, 9
testing, vs. using constraints, 80
type checking at, 12
working with generics, 77–79

Runtime checks
to determine whether type implements
IComparer<T>, 118

for generic methods, 115–116
specialize generic algorithms using, 85–92

S
SafeUpdate() method, strong exception

guarantee, 242, 244

Sealed keyword, adding to IDisposable,
99, 100

Select clause, query expression pattern,
171, 174–175

Select method, query expression pattern,
171–172

266 ❘ Index

SelectMany method, query expression
pattern, 174–177

Semantic expectations, enforce on queries,
212–214

Sequences
create composable APIs for, 144–151
generate as requested, 154–157
generate using iterator methods, 133–139
when not to use iterator methods for, 139

Servers, callbacks providing feedback to
clients from, 28–31

Side effects, in exception filters, 249–252

Single() method, enforce semantic
expectations on queries, 212–214

SingleOrDefault() method, queries
returning zero/one element, 213–214

Singleton pattern, initialize static class
members, 51–53

SqlConnection class, freeing resources,
230–231

Square()iterator method, 149–150

Standard dispose pattern, 68–75

State, ensuring validity of object, 238

Static analysis, nameof() operator for, 27

Static class members, proper initialization
for, 51–53

Static constants, as compile-time
constants, 9

Static constructors, 51–53, 61

Static initializers, 51–53

Static member variables, 63–65

Static typing
local type inference not affecting, 2
overview of, 12

String class, ReverseEnumerator<T>,
89–90

String interpolation. See Interpolated strings

StringBuilder class, 65

String.Format() method, 19–23

Stringly-typed APIs, avoid, 26–27

Strings
compile-time constants limited to, 9
FormattableString for culture-

specific, 23–25
nesting, 22
replace string.Format() with

interpolated, 19–23
specifying for attribute argument with
nameof, 27

use string interpolation to construct, 23–25

Strong exception guarantee, 238–240

Strongly typed public overload, implement
IComparable, 94

Sutter, Herb, 238

Symbols, nameof() operator for, 26–27

System.Exception class, derive new
exceptions, 234–235

System.Linq.Enumerable class
extension methods, 126–127, 130–132
prefer lazy evaluation to eager in queries, 183
query expression pattern, 169

System.Linq.Queryable class, query
expression pattern, 169

System.Object

avoid substituting value types for, 36, 38
boxing/unboxing of value types and, 34–36
check for equality using, 122
IComparable taking parameters of,

92–93
type parameter constraints and, 80

System.Runtime.Interop.SafeHandle,
69–75

T
T local variable, implement IDisposable,

99–101

T-SQL, IQueryProvider translating
queries into, 210

Task-based asynchronous programming,
exception filters in, 248

Templates, generics vs. C++, 77

 Index ❘ 267

Test methods, naming, 222–223

Text
prefer FormattableString for culture-

specific strings, 23–25
replace string.Format() with

interpolated strings, 19–23

ThenBy() method, query expression
pattern, 172–173

ThenByDescending() method, query
expression pattern, 172–173

Throw statement, exception classes, 234

ToArray() method, 139, 184

ToList() method, 139, 184

Translation, from query expressions to
method calls, 170–171

TrueForAll() method, List<T> class, 29

Try/catch blocks, no-throw guarantees,
244

Try/finally blocks, resource cleanup,
225–232

Type inference
define methods for generic classes, 108
functional programming in classes, 192

Type parameters
closed generic type for, 26, 77
create generic classes supporting disposable,

98–101
create generic classes vs. set of generic

methods, 117–118
define method constraints on, 107–112
generic classes using instance of, 99–100
minimal/sufficient constraints for, 79–84,

98
reuse generics by specifying new, 85
weigh necessity for class constraints, 19
when not to prefer generic methods over,

116–120
wrap local instances in using statement, 99

Type variance, covariance and
contravariance, 101–102

TypeInitializationException,
initialize static class members, 53

Types, nameof() operator, 26–27

U
Unboxing operations
IComparable interface and, 92–93
minimize, 34–38

Unique() iterator method
composability of multiple iterator methods,

149–150
as continuation method, 148
create composable APIs for sequences,

146–148

Unmanaged resources
control, 43
control with finalizers, 45–46
explicitly release types that use, 225–232
implement standard dispose pattern for,

68–75
use IDisposable interface to free, 48, 69

Updates, use new modifier in base class, 38–41

UseCollection() function, 17

User-defined conversion operators, 13–16

User-defined types, casting, 13–14

Using statement
ensure Dispose() is called, 225–227
never overload extension methods, 166–167
resource cleanup utilizing, 225–232
wrap local instances of type parameters in, 99

Utility class, use generic methods vs. generic
class, 116–120

V
Value types

avoid substituting for System.Object,
36, 38

cannot be set to null, 100
cost of boxing and unboxing, 38
create immutable, 37
minimize boxing and unboxing of, 34–38

Var declaration, 1–3, 7

Variables
avoid modifying bound, 215–220
captured, 195–197, 215–220

268 ❘ Index

Variables (continued)
hold onto expensive resources, 196
implicitly typed local. See Implicitly typed

local variables
lifetime of bound, 195
local. See Local variables
member. See Member variables
nameof() operator for, 26–27
static member, 63–65

Virtual functions
implement standard dispose pattern, 70–71
never call in constructors, 65–68

W
When keyword, exception filters, 244–246

Where method
needs entire sequence for operation, 183
query expression pattern, 169–170

Windows Forms, cross-thread marshalling
in, 29

Windows paint handler, avoid allocating
GDI objects in, 62–63

Windows Presentation Foundation (WPF),
cross-thread marshalling in, 29

WriteMessage(MyBase b), 113–115

WriteMessage<T>(T obj), 113–115

Y
Yield return statement

create composable APIs for sequences,
145–150

generate sequence with, 154–157
write iterator methods, 133–134, 136, 138

Z
Zip

create composable APIs for sequences,
149–150

delegates defining method constraints on
type parameters, 109–110

loosen coupling with function parameters,
160–161

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 2 .NET Resource Management
	Item 11: Understand .NET Resource Management
	Item 12: Prefer Member Initializers to Assignment Statements
	Item 13: Use Proper Initialization for Static Class Members
	Item 14: Minimize Duplicate Initialization Logic
	Item 15: Avoid Creating Unnecessary Objects
	Item 16: Never Call Virtual Functions in Constructors
	Item 17: Implement the Standard Dispose Pattern

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

