In Full Color
John Ray

Figures and
code appear as
they do in Xcode 7.x

SamsTeach Yourself iPhone, iPad), and Morel

Additional files and

| | ® updates available
I online

Application
Development

SAMS

FREE SAMPLE CHAPTER
£ 9 8 A W

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337673
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337673
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337673
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337673
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337673/Free-Sample-Chapter

John Ray

SamsTeach Yourself

10S°9 Application
Development

Sams Teach Yourself i0S9° Application Development in 24 Hours
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electron-
ic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability
is assumed with respect to the use of the information contained herein. Although every pre-
caution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 978-0-672-33767-3

ISBN-10: 0-672-33767-3

Library of Congress Control Number: 2015917495
First Printing February 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The author
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your

business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Laura Norman

Development Editor
Keith Cline

Managing Editor
Kristy Hart

Senior Project Editor
Lori Lyons

Copy Editor
Keith Cline

Indexer
Publishing Works

Proofreader
Laura Hernandez

Technical Editor
Anne Groves

Editorial Assistant
Sandra Fugate

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

http://www.pearsoned.com/permissions/

Contents at a Glance

HOUR 1

© 0 N O A~ WOWN

B R R R
W N RO

14

15
16
17
18
19
20
21
22
23
24

A

Introduction

Preparing Your System and iDevice for Development
Introduction to Xcode and the iOS Simulator
Discovering Swift and the iOS Playground

Inside Cocoa Touch

Exploring Interface Builder

Model-View-Controller Application Design
Working with Text, Keyboards, and Buttons
Handling Images, Animation, Sliders, and Steppers
Using Advanced Interface Objects and Views
Getting the User’s Attention

Implementing Multiple Scenes and Popovers
Making Choices with Toolbars and Pickers

Advanced Storyboards Using Navigation and Tab
Bar Controllers

Navigating Information Using Table Views and Split View
Controllers

Reading and Writing Application Data
Building Responsive User Interfaces
Using Advanced Touches and Gestures
Sensing Orientation and Motion
Working with Rich Media

Interacting with Other iOS Services
Implementing Location Services

Building Background-Ready Applications
Universal Applications and Size Classes
Application Tracing, Monitoring, and Debugging
Index

Introducing Xcode Source Control

Note: Appendix A is a bonus online chapter. To access it, go to

www.informit.com/title/9780672337673 and click the Downloads tab.

5
29
73

123
155
193
223
259
291
329
361
413

457

497
539
585
627
663
693
743
781
813
853
877
903
Online

http://www.informit.com/title/9780672337673

Table of Contents

Introduction

Hour

Hour

Hour

Who Can Become an iOS Developer?
Who Should Use This Book?
What Is (and Isn’t) in This Book?

1: Preparing Your System and iDevice for Development
Welcome to the iOS Platform

Becoming an iOS Developer

Running an iOS App

Developer Technology Overview

Further Exploration

Summary

Q&A

Workshop

Activities

2: Introduction to Xcode and the iOS Simulator
Using Xcode

Using the iOS Simulator

Further Exploration

Summary

Q&A

Workshop

Activities

3: Discovering Swift and the iOS Playground
Object-Oriented Programming and Swift

The Terminology of Object-Oriented Development
Exploring the Swift File Structure

Swift Programming Basics

Memory Management and Automatic Reference Counting

w N NP

(6]

10
15
22
24
24
24
25
27

29
29
61
69
69
69
70
72

73
73
75
78
84

110

Hour

Hour

Hour

Introducing the iOS Playground
Further Exploration

Summary

Q&A

Workshop

Activities

4: Inside Cocoa Touch

What Is Cocoa Touch?

Exploring the iOS Technology Layers
Tracing the iOS Application Life Cycle
Cocoa Fundamentals

Exploring the iOS Frameworks with Xcode
Further Exploration

Summary

Q&A

Workshop

Activities

5: Exploring Interface Builder
Understanding Interface Builder
Creating User Interfaces

Customizing the Interface Appearance
Connecting to Code

Further Exploration

Summary

Q&A

Workshop

Activities

6: Model-View-Controller Application Design
Understanding the MVC Design Pattern
How Xcode Implements MVC

Using the Single View Application Template

Further Exploration

Contents

111
118
119
119
120
122

123
123
125
132
134
142
149
149
150
150
153

155
155
162
172
178
188
189
189
190
192

193
193
195
200
218

vi Sams Teach Yourself i0OS 9 Application Development in 24 Hours

Summary 218
Q&A 219
Workshop 219
Activities 222
Hour 7: Working with Text, Keyboards, and Buttons 223
Basic User Input and Output 223
Using Text Fields, Text Views, and Buttons 225
Further Exploration 253
Summary 254
Q&A 255
Workshop 255
Activities 257
Hour 8: Handling Images, Animation, Sliders, and Steppers 259
User Input and Output 259
Creating and Managing Image Animations, Sliders, and Steppers 261
Further Exploration 285
Summary 285
Q&A 286
Workshop 286
Activities 289
Hour 9: Using Advanced Interface Objects and Views 291
User Input and Output (Continued) 291
Using Switches, Segmented Controls, and Web Views 298
Using Scrolling and Stack Views 315
Further Exploration 324
Summary 325
Q&A 325
Workshop 326
Activities 328
Hour 10: Getting the User’s Attention 329
Alerting the User 329

Exploring User Alert Methods 340

Hour

Hour

Hour

Contents

Further Exploration
Summary

Q&A

Workshop

Activities

11: Implementing Multiple Scenes and Popovers
Introducing Multiscene Storyboards

Using Segues

Popovers, Universal Applications, and iPhones
Further Exploration

Summary

Q&A

Workshop

Activities

12: Making Choices with Toolbars and Pickers
Understanding the Role of Toolbars

Exploring Pickers

Using the Date Picker

Using a Custom Picker

Further Exploration

Summary

Q&A

Workshop

Activities

13: Advanced Storyboards Using Navigation and Tab Bar Controllers
Advanced View Controllers

Exploring Navigation Controllers

Understanding Tab Bar Controllers

Using a Navigation Controller

Using a Tab Bar Controller

Further Exploration

355
355
356
356
359

361
362
388
402
407
408
408
409
411

413
413
416
424
437
452
453
453
454
456

457
457
459
464
470
481
490

vii

viii Sams Teach Yourself i0OS 9 Application Development in 24 Hours

Summary 491
Q&A 492
Workshop 492
Activities 495

Hour 14: Navigating Information Using Table Views and Split

View Controllers 497
Understanding Tables 497
Exploring the Split View Controller 506
A Simple Table View Application 509
Creating a Master-Detail Application 519
Further Exploration 533
Summary 534
Q&A 534
Workshop 535
Activities 537

Hour 15: Reading and Writing Application Data 539
iOS Applications and Data Storage 539
Data Storage Approaches 542
Creating Implicit Preferences 551
Implementing System Settings 558
Implementing File System Storage 571
Further Exploration 579
Summary 579
Q&A 580
Workshop 580
Activities 583

Hour 16: Building Responsive User Interfaces 585
Responsive Interfaces 585
Using Auto Layout 590
Programmatically Defined Interfaces 615
Further Exploration 622
Summary 622

Q&A 622

Hour 17: Using Advanced Touches and Gestures

Hour

Hour

Workshop

Activities

Multitouch Gesture Recognition
3D Touch Peek and Pop

Using Gesture Recognizers
Implementing 3D Touch Gestures
Further Exploration

Summary

Q&A

Workshop

Activities

18: Sensing Orientation and Motion
Understanding Motion Hardware
Accessing Orientation and Motion Data
Sensing Orientation

Detecting Acceleration, Tilt, and Rotation
Further Exploration

Summary

Q&A

Workshop

Activities

19: Working with Rich Media
Exploring Rich Media

The Media Playground Application
Further Exploration

Summary

Q&A

Workshop

Activities

Contents

623
625

627
627
630
633
654
658
659
660
660
662

663
663
666
670
675
687
688
688
688
691

693
693
709
736
737
737
738
741

ix

Sams Teach Yourself i0OS 9 Application Development in 24 Hours

Hour 20: Interacting with Other iOS Services 743
Extending iOS Service Integration 743
Using Contacts, Email, Social Networking, Safari, and Maps 761
Further Exploration 776
Summary 777
Q&A 777
Workshop 777
Activities 780

Hour 21: Implementing Location Services 781
Understanding Core Location 781
Creating a Location-Aware Application 789
Using the Magnetic Compass 799
Further Exploration 808
Summary 809
Q&A 809
Workshop 809
Activities 812

Hour 22: Building Background-Ready Applications 813
Understanding iOS Backgrounding 813
Disabling Backgrounding 821
Handling Background Suspension 823
Implementing Local Notifications 824
Using Task-Specific Background Processing 828
Completing a Long-Running Background Task 833
Performing a Background Fetch 839
Adding 3D Touch Quick Actions 844
Further Exploration 848
Summary 848
Q&A 848
Workshop 849

Activities 851

Contents Xi

Hour 23: Universal Applications and Size Classes 853
Universal Application Development 853
Size Classes 857
Further Exploration 873
Summary 873
Q&A 874
Workshop 874
Activities 875
Hour 24: Application Tracing, Monitoring, and Debugging 877
Instant Feedback with NSLog 878
Using the Xcode Debugger 881
Further Exploration 898
Summary 898
Q&A 899
Workshop 899
Activities 901
Index 9203
Appendix A: Introducing Xcode Source Control Online

Note: Appendix A is a bonus online chapter. To access it, go to
www.informit.com/title/9780672337673 and click the Downloads tab.

http://www.informit.com/title/9780672337673

About the Author

John Ray currently serves as the Director of the Office of Research Information Systems
at The Ohio State University. He has written numerous books for Macmillan/Sams/Que,
including Using TCP/IP: Special Edition, Teach Yourself Dreamweaver MX in 21 Days, Mac OS

X Unleashed, My OS X — El Capitan Edition, and Sams Teach Yourself iOS 8 Development in 24
Hours. As a Macintosh user since 1984, he strives to ensure that each project presents the
Macintosh with the equality and depth it deserves. Even technical titles such as Using TCP/
IP contain extensive information about the Macintosh and its applications and have gar-
nered numerous positive reviews for their straightforward approach and accessibility to
beginner and intermediate users.

You can visit his website at http://teachyourselfios.com or follow him on Twitter at
@johnemeryray or #i0SIn24.

http://teachyourselfios.com

Dedication

This book is dedicated to the stray cat living in my garage.
It appears to like the cat food I bought.

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Mark Renfrow—
and my Tech Editor, Anne Groves, for helping me survive another year of OS and Xcode
updates. The evolution of Swift (and the Xcode tools) has been incredibly rapid, and the
ride for developers is definitely a bit bumpy. The Pearson team does a great job of keeping
me organized, honest, and on target.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Register your copy of Sams Teach Yourself iOS 9 Application Development at informit.com for
convenient access to downloads, updates, and corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an account*. Enter
the product ISBN, 9780672337673, and click Submit. Once the process is complete, you will
find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive
discounts on future editions of this product.

Introduction

When you pick up an iOS device and use it, you feel connected. Whether it be an iPad, an
iPhone, or an iPod, the interface acts as an extension to your fingers; it is smooth, comfortable,
and invites exploration. Other competing devices offer similar features, and even sport gadgets
such as wraparound screens and trackpads, but they cannot match the user experience that

is iOS.

iOS and its associated development tools have changed rapidly over the past few years. iOS 7
brought us a new user interface that used depth and translucency to keep users connected to
their content and aware of the context in which they are accessing it. iOS 8 surprised everyone
with a brand new language for developing apps: Swift. Alongside the introduction of iOS 9,
Swift became an open source language, solidifying it as the future of development on Apple
platforms and beyond.

Swift marks a dramatic change in the history of iOS and OS X development. With Swift, Apple
has effectively retired the Objective-C language—used on Apple and NeXT platforms for over 25
years. Swift offers a friendlier development platform with more modern language features and
tools. While in development for more than 4 years at Apple, by the time this book reaches you,
Swift will have existed as a public programming language for a little over a year.

Unfortunately, there are some caveats to writing about a young language. Swift is rapidly evolv-
ing, and changes with each release of Apple’s development environment: Xcode. Code that is
written in one version of Xcode sometimes breaks in the next. In the version of Swift shipping
with i0S 9, for example, the language took syntax used for creating loops and changed its pur-
pose entirely. Suddenly, code that was only a few months old stopped working.

Swift presents challenges, but I also think you’ll find that programming in Swift is fun (yes,
really) and intuitive.

When creating Swift and the iOS development platform, Apple considered the entire application
lifecycle. From the interface design tools, to the code that makes it function, to the presentation
to the user, everything is integrated and works together seamlessly. As a developer, does this
mean that there are rules to follow? Absolutely. But, by following these rules, you can create
applications that are interactive works of art for your users to love—not software they will load
and forget.

2 Introduction

Through the App Store, Apple has created the ultimate digital distribution system for iOS appli-
cations. Programmers of any age or affiliation can submit their applications to the App Store
for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-feature
applications have been built for everything from pre-K education to retirement living. No mat-
ter what the content, with a user base as large as the iPhone, iPod touch, and iPad, an audience
exists.

My hope is that this book brings iOS development to a new generation of developers. Sams Teach
Yourself iOS 9 Application Development in 24 Hours provides a clear and natural progression of
skills development, from installing developer tools and registering your device with Apple, to
debugging an application before submitting it to the App Store. It’s everything you need to get
started, in 24 one-hour lessons.

Who Can Become an iOS Developer?

If you have an interest in learning, time to invest in exploring and practicing with Apple’s devel-
oper tools, and an Intel Macintosh computer running Yosemite, El Capitan, or later, you have
everything you need to begin creating software for iOS. Starting with Xcode 7, Apple even lets
you run your applications on your own devices (no developer membership required)!

Developing an app won'’t happen overnight, but with dedication and practice, you can be writ-
ing your first applications in a matter of days. The more time you spend working with the Apple
developer tools, the more opportunities you'll discover for creating new and exciting projects.

You should approach iOS application development as creating software that you want to use,
not what you think others want. If you're solely interested in getting rich quick, you're likely to
be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of room—and
competition for top sales is fierce.) However, if you focus on building useful and unique apps,
you're much more likely to find an appreciative audience.

Who Should Use This Book?

This book targets individuals who are new to development for iOS and have experience using
the Macintosh platform. No previous experience with Swift, Cocoa, or the Apple developer tools
is required. Of course, if you do have development experience, some of the tools and techniques
may be easier to master, but the author does not assume that you've coded before.

That said, some things are expected of you, the reader. Specifically, you must be willing to invest
in the learning process. If you just read each hour’s lesson without working through the tutorials,
you will likely miss some fundamental concepts. In addition, you need to spend time reading

What Is (and Isn’t) in This Book? 3

the Apple developer documentation and researching the topics presented in this book. A vast
amount of information on iOS development is available, but only limited space is available in
this book. Therefore, this book covers what you need to forge your own path forward.

What Is (and Isn’t) in This Book?

The material in this book specifically targets iOS release 9.1 and later on Xcode 7.1 and later.
Much of what you'll learn is common to all the iOS releases, but this book also covers several
important areas that have only come about in recent iOS releases, such as gesture recognizers,
embedded video playback with 3D Touch, AirPlay, Core Image, social networking, multitasking,
universal (iPhone/iPad) applications, auto layout, size classes, and more!

Unfortunately, this is not a complete reference for the iOS application programming interfaces
(APIs), nor do I explicitly cover AppleTV or Apple Watch development; some topics just require
much more space than this book allows. That said, this book should provide ample exposure

to the tools and techniques that any iOS developer needs to be successful. In addition, the
Apple developer documentation is available directly within the free tools you install in Hour

1, “Preparing Your System and iDevice for Development.” In many hours, you'll find a section
titled “Further Exploration.” This identifies additional related topics of interest. Again, a willing-
ness to explore is an important quality in becoming a successful developer.

Each coding lesson is accompanied by project files that include everything you need to compile
and test an example or, preferably, follow along and build the application yourself. Be sure to
download the project files from this book’s website at http://teachyourselfios.com. If you have
issues with any projects, view the posts on this site to see whether a solution has been identified.

In addition to the support website, you can follow along on Twitter! Search for #i0SIn24 on
Twitter to receive official updates and tweets from other readers. Use the hashtag #i0SIn24 in
your tweets to join the conversation. To send me messages via Twitter, begin each tweet with
@johnemeryray.

http://teachyourselfios.com

This page intentionally left blank

This page intentionally left blank

HOUR 5

Exploring Interface Builder

What You’ll Learn in This Hour:

» Where Xcode’s Interface Builder fits in the development process

» The role of storyboards and scenes

» How to build a user interface using the Object Library

» Common attributes that can be used to customize interface elements
» Ways to make your interface accessible to the visually impaired

» How to link interfaces to code with outlets and actions

Over the past few hours, you've become familiar with the core iOS technologies, Xcode projects,
and the i0OS Simulator. Although these are certainly important skills for becoming a successful
developer, there’s nothing quite like laying out your first iOS application interface and watching
it come to life in your hands.

This hour introduces you to Interface Builder: the remarkable user interface (UI) editor inte-
grated into Xcode. Interface Builder provides a visual approach to application interface design
that is fun, intuitive, and deceptively powerful.

Understanding Interface Builder

Let’s get it out of the way up front: Yes, Interface Builder (or IB for short) does help you cre-
ate interfaces for your applications, but it isn’t just a drawing tool for graphical user interfaces
(GUIs); it helps you symbolically build application functionality without writing code. This
translates to fewer bugs, shorter development time, and easier-to-maintain projects.

If you read through Apple’s developer documentation, you'll see IB referred to as an editor
within Xcode. This is a bit of an oversimplification of a tool that previously existed as a stand-
alone application in the Apple Developer Suite. An understanding of IB and its use is as funda-
mentally important to iOS development as Swift. Without IB, creating the most basic interactive
applications would be an exercise in frustration.

156 HOUR 5: Exploring Interface Builder

This hour focuses on navigating IB and will be key to your success in the rest of the book. In
Hour 6, “Model-View-Controller Application Design,” you combine what you've learned about
Xcode projects, the code editor, IB, and the iOS Simulator for the first time. So, stay alert and
keep reading.

The IB Approach

Using Xcode and the Cocoa toolset, you can program iOS interfaces by hand—instantiating
interface objects, defining where they appear on the screen, setting any attributes for the object,
and finally, making them visible. For example, in Hour 2, “Introduction to Xcode and the iOS
Simulator,” you entered this listing into Xcode to make your iOS device display the text Hello
Xcode on the screen:

var myMessage: UILabel

myMessage=UILabel (frame:CGRectMake (30.0,50.0,300.0,50.0))

myMessage . font=UIFont.systemFontOfSize (48.0)

myMessage.text="Hello Xcode"

myMessage.textColor=UIColor (patternImage: UIImage (named:"Background") !)
view.addSubview (myMessage)

Imagine how long it would take to build interfaces with text, buttons, images, and dozens of
other controls, and think of all the code you would need to wade through just to make small
changes.

Over the years, there have been many different approaches to graphical interface builders. One
of the most common implementations is to enable the user to “draw” an interface but, behind
the scenes, create all the code that generates that interface. Any tweaks require the code to be
edited by hand (hardly an acceptable situation).

Another tactic is to maintain the interface definition symbolically but attach the code that
implements functionality directly to interface elements. This, unfortunately, means that if you
want to change your interface or swap functionality from one UI element to another, you have
to move the code as well.

IB works differently. Instead of autogenerating interface code or tying source listings directly to
interface elements, IB builds live objects that connect to your application code through simple
links called connections. Want to change how a feature of your app is triggered? Just change the
connection. As you'll learn a bit later this hour, changing how your application works with the
objects you create in IB is, quite literally, a matter of connecting or reconnecting the dots as you
see fit.

The Anatomy of an IB Storyboard

Your work in IB results in an XML file called a storyboard, containing a hierarchy of objects for
each unique screen that your application is going to display. The objects could be interface

Understanding Interface Builder 157

elements—buttons, toggle switches, and so forth—but might also be other noninterface objects
that you will need to use. The collection of objects for a specific display is called a scene.
Storyboards can hold as many scenes as you need, and even link them together visually via
segues.

For example, a simple recipe application might have one scene that consists of a list of recipes
the user can choose from. A second scene may contain the details for making a selected recipe.
The recipe list could be set to segue to the detail view with a fancy fade-out/fade-in effect when
the name of a recipe is touched. All of this functionality can be described visually in an applica-
tion’s storyboard file.

Storyboards aren'’t just about cool visuals, however. They also help you create usable objects
without having to allocate or initialize them manually. When a scene in a storyboard file is
loaded by your application, the objects described in it are instantiated and can be accessed by
your code.

NOTE

Instantiation, just as a quick refresher, is the process of creating an instance of an object that you
can work with in your program. An instantiated object gains all the functionality described by its
class. Buttons, for example, automatically highlight when clicked, content views scroll, and so on.

The Storyboard Document Outline

What do storyboard files look like in IB? Open the Hour 5 Projects folder and double-click the file
Empty.storyboard to open IB and display a barebones storyboard file with a single scene. You
will need to choose View, Show Toolbar from the menu bar to make the workspace look like a
normal project. Once the file is open and the toolbar visible, we can get our bearings.

The contents of the file are shown visually in the IB editor area, and hierarchically by scene in
the document outline area located in the column to the left of the editor area (see Figure 5.1).

TIP

If you do not see the document outline area in your Xcode workspace, choose Editor, Show
Document Outline from the menu bar. You can also click the disclosure arrow button in the lower-left
corner of the Xcode editor area.

Note that there is only a single scene in the file: View Controller Scene. Single-scene storyboards
will be the starting place for much of your interface work in this book because they provide
plenty of room for collecting user input and displaying output. We explore multiscene story-
boards beginning in Hour 11, “Implementing Multiple Scenes and Popovers.”

158

Scene Objects

HOUR 5: Exploring Interface Builder

Interface Builder Editor

No Selection

aoeo

Collection View - Displayy data b &
| cellectian of cell

Callsetion View Call - Dufnes the
atiributes mnd Benavios of oels a8

Collection Reusable View -
Oufirsen the sttrisuti are st ol
Peusaltle hews in 8 collection view,..

| Tt View - Dispiys meltisie Enes.
of ectiabia feat and sends an aciien
message 10 8 target object when B

‘Sorall View - Provides & maehanism
% dieglay corcem that s larger than
wam af the sepacatian's wirsaw,

Date Picker - Gispims matile

=== ponating whests 1 aliow eers to

‘sebect dues and simas.

Picker View - Disslays a spinning-
whes & aial-machine most ot
s,

Visual Bffuct View with Blur -
Erinvishes & b eaet

Visunl Effwct Views with Bhar and
Vibrancy - Pravides a tiur effect,
mhom b ot ashasd ssan

LR Empty storyboard: Ready | Today at 11:08 AW
oo} b Esety.storyonard | Mo Salsction
[* [view Controfier Geene
w 1) View Controfier @
Tep Liyout Guide -
Eottem Layout O
iew
01 First Rangeendnr
Eea
= — WAy hAM B st B @

l

Document Outline

FIGURE 5.1

Hide/Show

Document Outline

A storyboard scene’s objects are represented by icons.

Click the arrow in front of View Controller Scene to show its hierarchy (and then expand the

View Controller object within it, as well).

Six icons should be visible in the scene: View Controller, View (within View Controller), Top
Layout Guide (within View Controller), Bottom Layout Guide (within View Controller), First
Responder, and Exit. With the exception of View, these are special icons used to represent unique
noninterface objects in our application; these will be present in most of the storyboard scenes

that you work with:

» View Controller: The View Controller icon denotes the object that loads and interacts with
a storyboard scene in your running application. This is the object that effectively instanti-
ates all the other objects described within a scene. You'll learn more about the relationship

between Uls and view controllers in Hour 6.

Understanding Interface Builder 159

» Top Layout Guide: A guide line that marks the “top” of your content area (usually the
bottom of the iOS status bar). You can use this guide to keep your UI objects below the por-
tions of the display managed by iOS. This is part of the Auto Layout system that we discuss
later this hour, and in depth in Hour 16, “Building Responsive User Interfaces.”

» Bottom Layout Guide: A guide line that marks the “bottom” of your content area. This is
usually the bottom of the view itself. Like the Top Layout Guide, this is used to help posi-
tion your user interface. Again, this is an Auto Layout tool that we won’t really need until
much later in the book.

» View: The View icon is an instance of the object UIView and represents the visual layout
that will be loaded by the view controller and displayed on the iOS device’s screen. Views
are hierarchical in nature. Therefore, as you add controls to your interface, they are con-
tained within the view. You can even add views within views to cluster controls or create
visual elements that can be shown or hidden as a group.

> First Responder: The First Responder icon stands for the object that the user is currently
interacting with. When a user works with an iOS application, multiple objects could poten-
tially respond to the various gestures or keystrokes that the user creates. The first responder
is the object currently in control and interacting with the user. A text field that the user is
typing into, for example, would be the first responder until the user moves to another field
or control.

» Exit: The Exit icon serves a very specific purpose that will come into play only in multi-
scene applications. When you are creating an app that moves the user between a series of
screens, the Exit icon provides a visual means of jumping back to a previous screen. If you
have built five scenes that link from one to another and you want to quickly return to the
first scene from the fifth, you'll link from the fifth scene to the first scene’s Exit icon. We
test this out in Hour 11.

» Storyboard Entry Point: This icon is just an indicator that this scene is what your appli-
cation is going to display when it launches. Storyboards can have many scenes, but they
need to start somewhere. That somewhere is the entry point.

NOTE

The storyboard shown in this example is about as “vanilla” as you can get. In larger applications
with multiple scenes, you may want to either name your view controller class to better describe what
it is actually controlling or set a descriptive label, such as Recipe Listing.

Using unique view controller names/labels also benefits the naming of scenes. IB automatically
sets scene names to the name of the view controller or its label (if one is set) plus the suffix scene.
If you label your view controller as Recipe Listing, for example, the scene name changes to Recipe

160 HOUR 5: Exploring Interface Builder

Listing Scene. We’ll worry about multiple scenes later in the book; for now, our projects will contain
a generic class called View Controller that will be in charge of interacting with our single view control-
ler scene.

As you build your Uls, the list of objects within your scenes will grow accordingly. Some Uls may
consist of dozens of different objects, leading to rather busy and complex scenes, as demon-

strated in Figure 5.2.

B0 ® b W 3 Foadng) Proess Pus Fartiieing | Bubd Fordiring: Seosseted | 52078 o T35 v = @ <SI0 B0

(1R il Farfiaing | 1 Fordiaaing | [L] Ha Seiaction

* [Detat Scars

2] sy -y BB

FIGURE 5.2
Storyboard scenes and their associated views can grow quite large and complex.

You can collapse or expand your hierarchy of views within the document outline area to help
manage the information overload that you are bound to experience as your applications

become more advanced.

NOTE

At its most basic level, a view (UIView) is a rectangular region that can contain content and
respond to user events (touches and so forth). All the controls (buttons, fields, and so on) that you'll
add to a view are, in fact, subclasses of UIView. This isn’t necessarily something you need to be
worried about, except that you’ll be encountering documentation that refers to buttons and other
interface elements referred to as subviews and the views that contain them as superviews.

Just keep in mind that pretty much everything you see onscreen can be considered a view and the
terminology will seem a little less alien.

Understanding Interface Builder 161

Working with the Document Outline Objects

The document outline area shows icons for objects in your application, but what good are they?
Aside from presenting a nice list, do they provide any functionality?

Absolutely! Each icon gives you a visual means of referring to the objects they represent. You
interact with the icons by dragging to and from them to create the connections that drive your
application’s features.

Consider an onscreen control, such as a button, that needs to trigger an action in your code. By
dragging from the button to the View Controller icon, you can create a connection from the GUI
element to a method that you want it to activate. You can even drag from certain objects directly
to your code, quickly inserting a variable or method that will interact with that object.

Xcode provides developers with a great deal of flexibility when working with objects in IB. You
can interact with the actual Ul elements in the IB editor, or with the icons that represent them
in the document outline area. In addition, any object that isn’t directly visible in the UI (such as
the first responder and view controller objects) can be found in an icon bar directly above the Ul
design in the editor. This is known as the scene dock, and is visible in Figure 5.3.

View Controller

e ole Empty.sleryboard: eady | Today 1 12:26 P E QO O 203

88 B Emotystoryboard | No Selection

« [3 Wow Controller Soone o
¥ [View Controller ® =

Top Layout Guide L
Bottom Layoust G

v view
i Button

c‘?;r Respencsr e [irst Responder

Exit

Storybosrd Entry Poi..

Storyboard Entry Point

Butt Button

=l [=] Aty Any BB bl el

FIGURE 5.3
You will interact with objects either in the editor or in the document outline area.

162 HOUR 5: Exploring Interface Builder

NOTE

If the scene dock above your view does not show any icons and is displaying the text View Controller
instead, just click it. The dock defaults to the name of a scene’s view controller until it is selected.

We go through a hands-on example later this hour so that you can get a feel for how interacting
with and connecting objects works. Before we do that, however, let’s look at how you go about
turning a blank view into an interface masterpiece.

Creating User Interfaces

In Figures 5.1 and 5.2, you've seen an empty view and a fully fleshed-out interface. Now, how do
we get from one to the other? In this section, we explore how interfaces are created with IB. In
other words, it’s time for the fun stuff.

If you haven’t already, open the Empty.storyboard file included in this hour’s Projects folder.
Make sure the document outline area is visible and that the view can be seen in the editor;
you're ready to start designing an interface.

What’s the “Default” iPhone?

When you’re editing iPhone interfaces and creating new projects in Xcode, you'll be working, by
default, with a “generic” screen that doesn’t match any shipping iPhone or iPad. This is because
Apple wants you to build interfaces that work for any device. | want you to do the same, but | want
you to learn development basics first! We cover how to create interfaces that properly resize for
any device in Hour 16. For the majority of projects in this book, we’ll be setting a default simulated
device so that we’re working on a canvas that is a bit more familiar than a nonspecific rectangle. Ill
use a 4.7-inch iPhone (6/6s) as my default screen for layouts—as you’ll see when we start building
applications from scratch.

Again, we do cover how to accommodate any size you want later in the book. Our focus now is on
getting started building apps rather than fine-grained interface layout.

The Object Library

Everything that you add to a view, from buttons and images to web content, comes from the
Object Library. You can view the library by choosing View, Utilities, Show Object Library from
the menu bar (Control-Option-Command-3). If it isn’t already visible, the utility area of the
Xcode interface opens, and Obiject Library is displayed in the lower right.

Creating User Interfaces 163

CAUTION

Libraries, Libraries, Everywhere!

Xcode has more than one library. The Object Library contains the Ul elements you'll be adding in IB,
but there are also File Template, Code Snippet, and Media libraries that can be activated by clicking
the icons immediately above the Library area.

If you find yourself staring at a library that doesn’t seem to show what you’re expecting, click the
icon of a square surrounded by a circle above the library or reselect the Object Library from the View,
Utilities menu to make sure that you're in the right place.

When you click and hover over an element in the library, a popover is displayed with a description of
how the object can be used in the interface, as shown in Figure 5.4. This provides a convenient way
of exploring your Ul options without having to open the Xcode documentation.

Object Description Obiject Library
Empiy.storyboard: Ready | Today at 12:38 PM =0 o000

pty.storyboard | Mo Salection O a4 [io

? B No Selegtion
-

[R O I % |

“ 2 | multiple segments, sach of which

~) fumetions as discrete button,

Slidar

Uishider Text Field - Displays editable text
Text | and sends an action message to @
target object when Return is tapped.

Uislider displays & horizontal bar, called a track, that
a range of valuas. The current value is shown by the position of

an indicatar, or thumb, A user selects a value by sliding the Slider - Displays a continuous range: .
thumb alang the track. You can customize the appeaance of - of valuea ans allows the saiection ot s T Selected Ob] ect
bath the track and the thumb, single valua,

Switch - Displays an element
(showing the boalean state of a value,
Allaws tapping the contral to taggle...

L+ Activity Indicator View - Provides
feadback on the progress of a task or
pracess of unknawn duratian.

_ Progress View - Depicts the

whny hAny B = of ki | BE | Filte

FIGURE 5.4
The library contains a palette of objects that can be added to your views.

Using view button (four squares) at the bottom-left of the library, you can switch between list
and icon views of the available objects. If you know the name of an object but can’t locate it in
the list, use the filter field below the library to quickly find it.

Adding Objects to a View

To add an object to a view, just click and drag from the library to the view. For example, find the
label object (UILabel) in the Object Library and drag it into the center of the view in the editor.

164 HOUR 5: Exploring Interface Builder

The label should appear in your view and read Label. Double-click the label and type Hello.
The text will update, as shown in Figure 5.5, just as you would expect.

® B
-
Hello Double-Click to Edit Text
i I Auto Layout Controls
8] wAny - Ay o bt
I Jj B Stack Views

Hide/Show Document Outline

FIGURE 5.5
If an object contains text, in many cases, just double-click to edit it.

With that simple action, you've almost entirely replicated the functionality implemented by the
code fragment presented earlier in the lesson. Try dragging other objects from the Object Library
into the view (buttons, text fields, and so on). With few exceptions, the objects should appear
and behave just the way you’d expect.

To remove an object from the view, click to select it, and then press the Delete key. You may also
use the options under the Edit menu to copy and paste between views or duplicate an element
several times within a view.

NOTE

Notice the tools along the bottom of the editing area? These are largely related to view positioning
and Auto Layout (more on that shortly), with one exception:

The button in the lower left hides and shows the document outline, giving you more space to work.
You'll want to make use of this button a lot, especially if you're working on a laptop.

Creating User Interfaces 165

The middle set of menus (typically labeled “w Any” and “h Any”) are used when designing interfaces
to fit a variety of devices, while the buttons on the right are used to insert stack views and reveal
menus for managing Auto Layout Alignment, Pinning, and Constraint issues.

Working with the IB Editing Tools

Instead of having you rely on your visual acuity to position objects in a view, Apple has included
some useful tools for fine-tuning your interface design. If you've ever used a drawing program
like OmniGraffle or Adobe Illustrator, you'll find many of these familiar.

Guides

As you drag objects in a view, you'll notice guides (shown in Figure 5.6) appearing to help with
the positioning. These blue, dotted lines are displayed to align objects along the margins of the
view, to the centers of other objects in the view, and to the baseline of the fonts used in the labels
and object titles.

As an added bonus, guides automatically appear to indicate the approximate spacing require-
ments of Apple’s interface guidelines. If you're not sure why it’s showing you a particular margin
guide, it’s likely that your object is in a position that IB considers “appropriate” for something of
that type and size.

TIP

You can manually add your own guides by choosing Editor, Guides, Add Horizontal Guide or by
choosing Editor, Guides, Add Vertical Guide. You can position manually added guides anywhere in
your view by dragging them; they will appear orange in color. When you drag an object close to the
guide, the guide highlights in blue to show when they are aligned.

TIP

To fine-tune an object’s position within a view, select it, and then use the arrow keys to position it
left, right, up, or down, 1 point at a time. You can also zoom in and out of a view by pinching on a
Magic Trackpad, or Control-clicking (or right-clicking) in the Interface Builder editor view and choosing
an appropriate zoom level from the menu that appears.

Selection Handles

In addition to the guides, most objects include selection handles to stretch an object horizontally,
vertically, or both. Using the small boxes that appear alongside an object when it is selected, just
click and drag to change its size, as demonstrated using a text field in Figure 5.7.

166 HOUR 5: Exploring Interface Builder

Guides

a8
=}

o T e e

FIGURE 5.6
Guides help position your objects within a view.

Note that some objects constrain how you can resize them; this preserves a level of consistency

within iOS application interfaces.

TIP

In busy interfaces, it can be difficult to figure out what object you’'ve selected just by the appearance
of selection handles. If you'd prefer Xcode also darken the selected object, choose Editor, Canvas,
Show Selection Highlights.

Arrangement and Alignment

When you're working with Ul objects in Interface Builder, you'll likely start to feel like you're
working in a drawing program. Two commands common in object-based drawing applications
are Arrange (where you can position objects in front of or behind one another) and Align (where
you can make misplaced objects line up). You'll find both of these options also exist in Interface
Builder.

Creating User Interfaces 167

r._li— Selection Handles

FIGURE 5.7
Use the selection handles around the perimeter of an object to change its size.

To arrange objects, you can choose from the Editor, Arrange menu. Use the Arrange selec-
tions (Send to Back, Send Forward, and so on) to move Ul elements behind or in front of other
elements.

To quickly align several objects within a view, select them by clicking and dragging a selection
rectangle around them or by holding down the Shift key and then choosing Editor, Align and an
appropriate alignment type from the menu.

For example, try dragging several buttons into your view, placing them in a variety of different
positions. To align them based on their horizontal center (a line that runs vertically through
each button’s center), select the buttons, and then choose Editor, Align, Horizontal Centers.
Figure 5.8 shows the before and after results.

The Size Inspector

Another tool that you may want to use for controlling your design is the Size Inspector. IB has
a number of inspectors for examining the attributes of an object. As the name implies, the
Size Inspector provides information about sizes, but also position and alignment. To open the
Size Inspector, first select the object (or objects) that you want to work with, and then click the
ruler icon at the top of the utility area in Xcode. Alternatively, choose View, Utilities, Show Size
Inspector or press Option-Command-5 (see Figure 5.9).

168 HOUR 5: Exploring Interface Builder

L] @
— =
a 0@
oo oo
o Buttom o Bultom
oo o o 6 @
a a a
o o o
o Another Button o a Anather Button =]
o [o a o =]
a o o
o o o
\ O Yetanother Button O " o Yetanother Button ©
=2 o o o —_— a o o
a o o
o Q o e
O ThisisalsoaButton O o Thisis also a Button ©
o i a a o o
o o o o o o
o Probably a Button, too o : Probably auBur.Ion_ too :
=] Q o
a o o
o o o g
0 The very last Button 0 o The very last Button ©
a o o a o o

FIGURE 5.8
Use the Align menu to quickly align a group of items to an edge or center.

Size Inspector

Empty.storyhoard: Ready | Today at 12:40 PM = O & = EH
2 [view Controllar Scena | () View Controller || View)| B | A Button O @ o 0 @
o View
L] Show Frame Rectangle B
15713 8g 2
X b 4
803 30/3
width Height
o o @o Arrange | Position View B
oA Buttom
a-hgg Layout Marging Default 2]
+ Preserve Superview Margins
+ | Follow Readable Width
Constraints

The selected views have no constraints, At bulld
time, explicit left, top, width, and height
conatraints will be gensrated for the view,

Content Hugging Pricrity
Horizontal | 250 =jis
vertical | 250 ¥l
N Content Compression Resistance Priority

Horizontal 750 »
Vertical | 750 X

intrinsic Size Default (System Defined) [

FIGURE 5.9
The Size Inspector enables you to adjust the size and position of one or more objects.

Creating User Interfaces 169

Using the fields at the top of the inspector, you can view or change the size and position of the
object by changing the coordinates in the Height/Width and X/Y fields.

NOTE

At the top of Size Inspector’s View settings, you'll often see a drop-down menu where you can
choose between Frame Rectangle and Alignment Rectangle. These two settings will usually be simi-
lar, but there is a slight difference. The frame values represent the exact area a “raw” object occu-
pies onscreen, whereas the alignment values take into account spacing around the object for drop
shadows and the like.

The Arrange drop-down menu gives you quick layout arrangements for the selected object (or
objects). Using this menu, you can center the object, align it with other objects, or size it to take
up the width or height of the view that holds it. You can do all of this with the main Interface
Builder tools as well; this menu is just another place to make quick tweaks to your layout.

Below the Arrange menu are options for controlling layout margins. Layout margins are the
amount of space around an object in your design. By default, layout margins are 8 points on
the top, bottom, left, and right of each object. You can explicitly set layout margins to include
more (or less) space around an object. These margins, however, are only used when using Auto
Layout. Bear with me, I'm about to tell you what Auto Layout is.

Notice that the Size Inspector includes a section at the bottom labeled Constraints. Constraints
are part of the Auto Layout system that we will be using to create resizable user interfaces in
Hour 16. Because you're likely to run into a few references to Auto Layout before we get there,
let’s take a few minutes to get an idea of what this beast is.

TIP

Hold down the Option key after selecting an object in IB. As you move your mouse around, you'll see
the distance between the selected object and other objects that you point to.

The Auto Layout System

While the guides, Size Inspector, and other tools are helpful for laying out interfaces—even inter-
faces that can adapt to view changes—iOS applications can take advantage of a new powerful
tool for managing layouts: the Auto Layout system. Auto Layouts are enabled by default on new
projects and make it possible to write applications that adapt to a number of different screen
sizes and orientations without needing to modify a single line of code. Do you want to write
software to take advantage of all the available iOS device screen sizes? How about layouts that
rearrange themselves when you move from portrait to landscape orientations? You'll want Auto
Layouts!

170 HOUR 5: Exploring Interface Builder

Understanding Constraints

Auto Layout works by building a series of constraints for your onscreen objects. The constraints
define distances between objects and how flexible these relationships are.

For example, open the Constraints.storyboard file included in the Projects folder. This storyboard
contains a view with a single label positioned in the upper center. Expand the View Controller
scene in the document outline so that you can see all the objects it contains. Notice that at

the same level in the hierarchy as the label, a Constraints object is showing up, as shown in
Figure 5.10.

Horizontal Constraints

a0 8 Constraints. storyboard: Ready | [Today at 12:41 P B el 0O e

BE B constraints storybord [View Contralier Seana fww Cornreitnr) View o LA Constrained Labe)

¥ [E] View Controfler Sceme
¥ () View Cantratar

Top Luyeut Guide —

Battom Layout Guide T

- @l !I'h = = i B
6: rain . A Constrained Labej

D B

— Vertical Constraints

1 First Respander
[E Exit

Storybaard Entry Peint

=] Any hAny BB ol bl

FIGURE 5.10
The Constraints object represents the positioning relationships within a view.

Within the Constraints object are two constraints: horizontal space and vertical space con-
straints. The horizontal constraint states that the left or right side of the label will be a certain
number of points from the left or right edge of the view. These are known as leading and trailing
constraints, respectively. A vertical constraint is the distance from the top or bottom of the view
to the top or bottom of the label. Intuitively, these are called the top and bottom constraints.

Constraints, however, are more than just entries that tie an object to the view it is within. They
can be flexible, ensuring that an object maintains at least or at most a certain distance from

Creating User Interfaces 171

another object, or even that two objects, when resized, maintain the same distance between one
another.

Constraints that set a specific size or distance between objects are called pinning. The flexibility
(or inflexibility of a constraint) is managed by configuring a relationship.

Content Hugging and Content Compression Resistance

Now that you're viewing an object with constraints, the Size Inspector updates to show a bit
more information than we saw earlier. Click the label in the Constraints storyboard file and
make sure that the Size Inspector is visible (Option-Command-5), as shown in Figure 5.11.

The constraints affecting the label itself are shown near the bottom of the Size Inspector infor-
mation, but there are additional settings now visible for Content Hugging (how friendly!) and
Content Compression.

Consaraings storyaard: Rewty | Today at 12:43 PM = el D00
(=] Scan Wiew | L A Construined Labal Deamola
Labed
“‘_" E: Pralemed Wi 1 Explicit -
-
hew Framp Rectangle B
o] n 106 5 B
—————A Constrained Label = e
R e s
werange | Panifon View B)
s @ |_Horizontal
Vertical _| s | [Constraints
Constraints e
u
ﬂ :Ildmab:"le:“ ey
g e e
mu-xmnﬂnnhﬁ‘v
Mortzomal 781 e
i 251 % Content
s emememmre | Hugging/Compression
Vertical 750 m
e Size . Dafauh {Syscem Dafined) [
whny SANY B B el i O 060

FIGURE 5.11
The Size Inspector shows information about how Auto Layout will affect an object.

These settings control how closely the sides of an object “hug” the content in the object and how
much the content can be compressed or clipped. An object that can expand horizontally but not
vertically would set horizontal hugging as a low priority and vertical hugging as a very high
priority. Similarly, if the content of the object (say a label) should not be compressed or clipped
at all, the content compression resistance settings for both horizontal and vertical compression
could be set to a very high priority.

172 HOUR 5: Exploring Interface Builder

NOTE

Another Auto Layout option you’ll encounter in the Size Inspector is an Intrinsic Size setting. The
intrinsic size is just the size of the object as determined by your layout. If you're creating custom
views, IB will have no idea how large the view actually is, so you'll need to use the Intrinsic Size
drop-down to set a “placeholder” size. This is a relatively advanced topic and not something you're
likely to encounter in day-to-day development.

1 Miss the Old Autosizing Features! Boo Hoo

If you prefer to forego the new Auto Layout tools in Xcode, you can revert your storyboard to the
“old” layout approach by first selecting the File Inspector (Option-Command-1) while viewing your sto-
ryboard. Next, uncheck the Use Autolayout check box within the Interface Builder Document section
of settings. Everything will operate exactly as it did prior to Xcode 4.5.

Hour 16 focuses on the new Auto Layout tools, however, so | suggest leaving Auto Layout active.

Auto Layout and Automatic Constraints

When Apple introduced Auto Layout in Xcode 4.5, suddenly constraints were everywhere. Any
label, button, or object you positioned in your user interface immediately had constraints
appear. Each object requires at least two constraints (horizontal positioning and vertical posi-
tioning) to determine its location in the interface and (often) two to determine height and width.
Add 10 objects, and suddenly you’ve got at least 20 to 40 constraints (and 40 blue lines all over
your view).

In later releases of Xcode, Apple made this blue crosshatched nightmare go away. Now, when
you position objects in your UI, you won’t see any constraints until you manually add them.
That doesn’t mean they aren’t there; Xcode automatically adds constraints when you build your
project. For beginners like us, this is perfect. We can lay out our Uls and not worry about con-
straints until we absolutely need to do something “clever” with object positioning. As already
mentioned, we'll “get clever” with Auto Layout in Hour 16, but for the time being, you can pre-
tend it doesn’t even exist.

Customizing the Interface Appearance

How your interface appears to the end user isn’t just a combination of control sizes, positions,
and constraints. For many kinds of objects, literally dozens of different attributes can be adjusted.
Although you could certainly configure things such as colors and fonts in your code, it’s easier to
just use the tools included in IB.

Customizing the Interface Appearance 173

Using the Attributes Inspector

The most common place you'll tweak the way your interface objects appear is through the
Attributes Inspector, available by clicking the slider icon at the top of the utility area. You can
also choose View, Utilities, Show Attributes Inspector (Option-Command-4) if the utility area isn’t
currently visible. Let’s run through a quick example to see how this works.

Turn back to the Empty.storyboard file with the label you’ve added (or just use the Constraints.
storyboard label). Select the label, and then open the Attributes Inspector, shown in Figure 5.12.

Empity:Storyhoans: Anady | Today at 1244 PR @ <000

[viaw Contreliar Scana | () View Comrater ||| View | L Hala O &= $ae
b — Attributes Inspector
» B Text Plain B
— — =
Calr W | Defast a8
For Symem 2.0 m:
gt . = m m R
[1|
Behavior B Enabiled
Highighied
Baseing Aign Bamsiors
Une Sraks Truncone Tal
datoahrio Fived Fone Sizn
Tigrean Lerwer Spacing
Vighigaiad | Dafislt
oz 0 | Dttt

(B Eee

hadom Deteat =
\ g.oo Vartranial errest
74 Hag
iew
Made Left 8
Samartie . Unspecified
g o=
Wieriton — User iteraction Esatied
Multipin Touch
Mg =
Baskgrourd = | Datwalt B
Tim D | Defash B8
Orimirg Opaue Hizden
) Chaars Graptics Contuxt
Cip Suthim
B Autoresize Susiews

— 0z 0=
% ¥

— BB ol el DO@ao

FIGURE 5.12
To change how an object looks and behaves, select it, and then open the Attributes Inspector.

The top portion of the Attributes Inspector contains attributes for the specific object. In the case
of the text object, this includes settings such as font, size, color, and alignment (everything you’'d
expect to find for editing text).

In the bottom portion of the inspector are additional inherited attributes. Remember that
onscreen elements are a subclass of a view. Therefore, all the standard view attributes are also
available for the object and for your tinkering enjoyment. In many cases, you’ll want to leave
these alone, but settings such as background and transparency can come in handy.

174 HOUR 5: Exploring Interface Builder

TIP

Don’t get hung up on trying to memorize every attribute for every control now. | cover interesting and
important attributes when they are needed throughout the book.

Feel free to explore the many different options available in the Attributes Inspector to see what
can be configured for different types of objects. There is a surprising amount of flexibility to be
found within the tool.

NOTE

The attributes you change in IB are simply properties of the object’s class. To help identify what an
attribute does, use the documentation tool in Xcode to look up the object’s class and review the
descriptions of its properties.

Setting Accessibility Attributes

For many years, the “appearance” of an interface meant just how it looks visually. Today, the
technology is available for an interface to vocally describe itself to the visually impaired. iOS
includes Apple’s screen-reader technology: Voiceover. Voiceover combines speech synthesis with
a customized interface to aid users in navigating applications.

Using Voiceover, users can touch interface elements and hear a short description of what they
do and how they can be used. Although you gain much of this functionality “for free” (the iOS
Voiceover software will read button labels, for example), you can provide additional assistance
by configuring the accessibility attributes in IB.

To access the Accessibility settings, you need to open the Identity Inspector by clicking the
window icon at the top of the utility area. You can also choose View, Utilities, Show Identity
Inspector or press Option-Command-3. The Accessibility options have their own section within
the Identity Inspector, as shown in Figure 5.13.

You can configure four sets of attributes within this area:

> Accessibility: If enabled, the object is considered accessible. If you create any custom con-
trols that must be seen to be used, this setting should be disabled.

» Label: A simple word or two that serves as the label for an item. A text field that collects
the user’s name might use “your name,” for example.

» Hint: A short description, if needed, on how to use the control. This is needed only if the
label doesn’t provide enough information on its own.

» Identifier: Similar to the Label attribute, the Identifier should contain a more detailed
description of the control (for example, “A text field for your first and last name”).

Customizing the Interface Appearance 175

» Traits: This set of check boxes is used to describe the features of the object—what it does
and what its current state is.

Accessibility Options
Identity Inspector

Emptystoryboard: Ready | Today at 12:48 PM E oleygll| & A
2 [View Controller Scene View Controller »| | Wiew | F| Round Style Text Field N®@@ET¢ LI &
Custom Class Show
] Identity Show
0 User Defined Runtime Attributes Show
Document Show

Accessibiity @) Enabled
Label | Enter your name

Hint | Type your full name hare

Identifier This text fleld accepts a full
name consisting of first,
middle, and last.

Name: o 7 Tralts | | Button Link:
Image Selected
Static Text
Search Fleld
Plays Sound
Keyboard Kay
Summary Element

: User Interaction Enabled

_.':;; Updates Frequently

Starts Media Session

Adjustable

Allows Direct Interaction

Causes Page Turn

Header

FIGURE 5.13
Use the Accessibility section in the Identity Inspector to configure how Voiceover interacts with your
application.

TIP

For an application to be available to the largest possible audience, take advantage of accessibility
tools whenever possible. Even objects such as the text labels you've used in this lesson should
have their traits configured to indicate that they are static text. This helps potential users know that
they can’t interact with them.

Enabling the i0S Accessibility Inspector

If you are building accessible interfaces, you may want to enable the Accessibility Inspector in the
iOS Simulator. To do this, start the Simulator and click the Home button to return to the home
screen. Start the Settings application and navigate to General, Accessibility, and then use the switch
to turn the Accessibility Inspector on, as shown in Figure 5.14.

176 HOUR 5: Exploring Interface Builder

iPhone B3 - Phone G5 | 05 9.1 {13B5110¢]
Carrier % 12:63 PM -

£ General Accessibility
Accessibility Inspector ‘_
Speech

Larger Text

Bold Text

Button Shapes

Increase Contrast

INTERACTION

FIGURE 5.14
Toggle the iOS Accessibility Inspector on.

The Accessibility Inspector adds an overlay to the Simulator workspace that displays the label, hints,
and traits that you've configured for your interface elements. Note that navigating the iOS interface
is very different when operating in accessibility mode.

Using the X button in the upper-left corner of the inspector, you can toggle it on and off. When off,
the inspector collapses to a small bar, and the iPhone Simulator will behave normally. Clicking the
X button again turns it back on. To disable the Accessibility Inspector altogether, just revisit the
Accessibility setting in the Settings application.

Previewing the Interface

If you've worked with earlier versions of Xcode, you know that you could easily simulate your Ul
This feature disappeared in Xcode 4, but has made a happy return in the latest Xcode releases
(even if it is a bit difficult to find).

To use the preview feature, you must use the Xcode assistant editor feature that we reviewed in
Hour 2. For example, open the PreviewUl.storyboard file included in this hour’s Projects direc-
tory. This storyboard contains a simple user interface: a label, a field, and a button. Choose
View, Show Toolbar from the menu bar so that all the typical window controls are showing. (On
a normal project, the toolbar would already be visible.)

Customizing the Interface Appearance 177

To preview the view as it will look on a device, first activate the assistant editor. Next, click the

bar above the assistant editor pane where it reads Automatic. A drop-down menu appears, with
Preview as the last option, as shown in Figure 5.15.

Activate Preview Assistant Editor
L] L]

B

Praviewli sterybourd: Ready | Todey s 12057 P
B Previewlistorybonrd | b $atection

T
I Manot » z sy =Ry |
B B sutomatic
* [Viaw Contraller Scena @) Tep Livel Ot
- Viaw Conteollar "=
Top Layeul Cuita
Bomom Layout G

X

@ Lonalizations.
@) Nomfication Payleads
Eex

Please Enter Your Name:
Etorytioaed Eriry Pol_

Praviewl ssaryboard (Prevrw)

No Assistant Results

Save

E B ol sl

FIGURE 5.15

Select Preview (or choose from the options in its submenu) to activate a preview in the assistant editor.

Select Preview, and the assistant editor refreshes to show a live preview of what your UI will look
like on a device. Use the button at the bottom of the preview to toggle between portrait and

landscape orientations. In Figure 5.16, I'm previewing the Ul on a 4.7-inch iPhone in landscape
mode.

To add additional devices to the preview, click the + menu and choose the iOS device you'd like.

If you're creating a project that runs on earlier versions of iOS, you can even choose to preview a
device running a different OS version.

The preview is added to the right of the existing preview. You can even add multiples of the

same device so that you can see a landscape and portrait view at the same time. To remove a
preview, click to select it, and then press the Delete key.

178 HOUR 5: Exploring Interface Builder

Preview
Pl storyboand; Beady | Today o1 12:68 P4 = @ 000
Mo Belestion B & Previrw | |1 PreviewlLstoryboard iPrevew] CIE 3
L -]
-
Please Enter Your Mame:
-
Please Enter Your Name:
— Simulated Device
5" IPhone 4.7-inch
Change
Orientation
8
Save | IPhana 4.7-inch
| IProna d-nch
| IPhona 3.5-inch
BB ol

Add New Device

FIGURE 5.16
Preview the Ul in different orientations and on different devices.

This will come in very handy when we explore Auto Layout more in Hour 16. In addition, if
you want to test your application Uls, you can always run your apps in the iOS Simulator, even
when they aren’t entirely written. Apple’s development tools make it possible to see results as
you build, instead of having to wait until every single feature is in place.

Connecting to Code

You know how to make an interface, but how do you make it do something? Throughout this
hour, I've been alluding to the idea that connecting an interface to the code you write is just a
matter of “connecting the dots.” In this last part of the hour, we do just that: take an interface
and connect it to the code that makes it into a functional application.

Opening the Project
To get started, we use the project Disconnected contained within this hour’s Projects folder. Open
the folder and double-click the Disconnected.xcodeproj file. This opens the project in Xcode, as

shown in Figure 5.17.

Connecting to Code 179

ane b B A Dt) g Phone B Discennmctic | Buld Disconmeeted: Susceadad | Todi al 10057 AW = Q<0 Q0O
BREAaAgEo B (B & Dhcomected
= (] i Capubiiing Ranoerce Tags nin Daivd Settings Bisld Phsas Dok Huima
¥ Bisesremsted
PRoECT
= depDelegue smift ¥ identhy
Ve ertrciar mtt B Dacermeiad
B Msinsseryboard sl Bundi identifier com. taachynurseifiss Dissomnectod
“ parwtn sy A Biscsnractad
R ¥ Version 10
Umim=hscen storysaerd
i phet Buid 1
Proshics
Team Wane]
¥ Daploymst into
Orployment Twget -]
Davicas Inbane B
(e B

Buvicu Orientaticn B Perira
Lipaids Dowe
8 Landscepe Len:
8 Landseape Right
Suaius Bar Syl Daliuk B
Hid atatis bar
Requirus full acraen
¥ App bcans and Lawnah images
Agp leom Sourcs Appless Be
Launce images Sourca Lise Asset Catwiog

Launch Screan Fle LauncrSoran (-]

+ Embaddnd Binarias

FIGURE 5.17
To begin, open the project in Xcode.

After the project is loaded, expand the project code group (Disconnected) and click the Main.sto-
ryboard file. This storyboard file contains the scene and view that this application displays as its
interface. Xcode refreshes and displays the scene in IB, as shown in Figure 5.18.

Implementation Overview

The interface contains four interactive elements: a button bar (called a segmented control), a
push button, an output label, and a web view (an integrated web browser component). Together,
these controls interface with application code to enable a user to pick a flower color, touch the
Get Flower button, and then display the chosen color in a text label along with a matching
flower photo fetched from the website http://www.floraphotographs.com. Figure 5.19 shows the
final result.

NOTE

A Blurry Visual Treat

You may notice one additional (noninteractive) element in this project: a visual effects view. This
view lives behind the color controls and labels and blurs out the background behind it. It's used to
very easily create the soft blurred backgrounds prevalent in iOS.

http://www.floraphotographs.com

180 HOUR 5: Exploring Interface Builder

Storyboard File
Project Code Group

S8 B ADEd) WPt | i ¥
RO Ao=oc @ B > B . ¥ i

+ (B BE|| [@aw o ke BBl

FIGURE 5.18
IB displays the scene and corresponding view for the application.

FIGURE 5.19
The finished application enables a user to choose a color and have a
flower image returned that matches that color.

Connecting to Code 181

Unfortunately, right now the application does nothing. The interface isn’t connected to any
application code, so it is hardly more than a pretty picture. To make it work, we create connec-
tions to outlets and actions that have been defined in the application’s code.

Outlets and Actions

An outlet is nothing more than a variable property by which an object can be referenced. For
example, if you had created a field in IB intending that it would be used to collect a user’s name,
you might want to create an outlet for it in your code called userName. Using this outlet and a
corresponding variable property, you could then access or change the contents of the field.

An action, however, is a method within your code that is called when an event takes place.
Certain objects, such as buttons and switches, can trigger actions when a user interacts with
them through an event, such as touching the screen. If you define actions in your code, IB can
make them available to the onscreen objects.

Joining an element in IB to an outlet or action creates what is generically termed a connection.
For the Disconnected app to function, we need to create connections to these outlets and actions:

» colorChoice: An outlet created for the button bar to access the color the user has selected

> getFlower: An action that retrieves a flower from the Web, displays it, and updates the
label with the chosen color

> chosenColor: An outlet for the label that will be updated by getFlower to show the name
of the chosen color

> flowerView: An outlet for the web view that will be updated by getFlower to show the
image

Let’s make the connections now.

Creating Connections to Outlets

To create a connection from an interface item to an outlet, Control-drag from a scene’s View
Controller icon (in the document outline area or the icon bar below the view) to either the visual
representation of the object in the view or its icon in the document outline area.

Try this with the button bar (segmented control). Pressing Control, click and drag from the view
controller in the document outline area to the onscreen image of the bar. A line appears as you
drag, enabling you to easily point to the object that you want to use for the connect, as shown in
Figure 5.20.

When you release the mouse button, the available connections are shown in a pop-up menu (see
Figure 5.21). In this case, you want to pick colorChoice.

182 HOUR 5: Exploring Interface Builder

® @8 P W A Dhowd) EFhoens Disconnectsd | Buld Dissoanecied: Succeeded | Todsyat 1:02 M =& g
BRAQAS =B R B] Scone
v & Ossomesing v [2] Vium Contraier S=ane
¥ s Do T T — (=D
+ AppDiegate swit Top Layos Gude -
4 ViswConarmier st Botsorm Layuut Sudn
W wain stonsasns * o Vw
5 Assats nassats 0 First oy (T | il
Launchsrstan staryboant Eea — iy =
B Storyboars Entry Pt
: Chosen Color: Your Color Get Flawes
b i Products

Control-drag from the view controller to the button bar.

09 &
[—)
Red Outlets Green l
colorChoice N
Chosen Co view P Get Flower
FIGURE 5.21

Choose from the outlets available for the targeted object.

NOTE

IB knows what type of object is allowed to connect to a given outlet, so it displays only the outlets
appropriate for the connection you're trying to make.

Repeat this process for the label with the text "Your Color™", connecting it to the chosenColor
outlet, and with the web view, connecting to flowerView.

Connecting to Actions

Connecting to actions is a bit different. An object’s events trigger actions (methods) in your
code. So, the connection direction reverses; you connect from the object invoking an event to the
view controller of its scene. Although it is possible to Control-drag and create a connection in

Connecting to Code 183

the same manner you did with outlets, this isn’t recommended because you don’t get to specify
which event triggers it. Do users have to touch the button? Release their fingers from a button?

Actions can be triggered by many different events, so you need to make sure that you're pick-
ing exactly the right one, instead of leaving it up to IB. To do this, select the object that will be
connecting to the action and open the Connections Inspector by clicking the arrow icon at the
top of the Xcode utility area. You can also show the inspector by choosing View, Utilities, Show
Connections Inspector (or by pressing Option-Command-6).

The Connections Inspector, in Figure 5.22, shows a list of the events that the object, in this case
a button, supports. Beside each event is an open circle. To connect an event to an action in your
code, click and drag from one of these circles to the scene’s View Controller icon in the document
outline area.

Connections Inspector

@B S P B A Owied) Premts | Duconnected | Bl Cisconmscted: Sussesdied | Tosksy st 1407 B = @ | Et ;

-} & Main.stn. o (Basel | [Voow Co.er Soens | () Wiew Contraber ||| View | 2| Gat Fowar Obem$ 0

v [View Comretier Sene
& . h) o B
Top Luyoct uide -
Bistiom Liyon Quids
v vew
o View =
* | Visusl EMact View ke
L Crasen Caer.
12 Fiod, Bin, Fellow, Greary Chosen Calor: Your Com, Get Flower
L Wour Cater
¥ | & ek Fiower
» [l constraints
» B consirainin
4 First Responser
Eea
Storyboard fniry Point

ceil =]

B Vellaw Gremn

2 0 Q0000000000000

FIGURE 5.22
Use the Connections Inspector to view existing connections and to make new ones.

NOTE

| often refer to creating connections to a scene’s view controller or placing interface elements in a
scene’s view. This is because IB storyboards can contain multiple different scenes, each with its
own view controller and view. In the first few lessons, there is only a single scene, and therefore,

a single view controller. That said, you should still be getting used to the idea of multiple View
Controller icons appearing in the document outline area and having to correctly choose the one that
corresponds to the scene you are editing.

For example, to connect the Get Flower button to the get Flower method, select the button,
and then open the Connections Inspector (Option-Command-6). Drag from the circle beside the
Touch Up Inside event to the scene’s view controller and release, as demonstrated in Figure 5.22.
When prompted, choose the getFlower action, shown in Figure 5.23.

184 HOUR 5: Exploring Interface Builder

(] o ¢ Dis..ted) g iPhone s Disconned

el . Discor Di Main.storyboar

¥ [=] View Controller Scene

¥ | View Controller getFlower: JE
~ Top Layout Guide ¥
Bottom Layout Guide
v View
Web View

> Visual Effect View

L Chosen Color:

B:| Red, Blue, Yellow, Green
L *our Color
> Constraints

» | Constraints
{0 First Responder
= Exit

Storyboard Entry Point

FIGURE 5.23
Choose the action you want the interface element to invoke.

After a connection has been made, the inspector updates to show the event and the action that it
calls, demonstrated in Figure 5.24. If you click other already connected objects, you'll notice that
the Connections Inspector shows their connections to outlets and to actions.

Well done! You've just linked an interface to the code that supports it. Click Run on the Xcode
toolbar to build and run your application in the iOS Simulator or on your personal iDevice.

Connections Without Code

Although most of your connections in IB will be between objects and outlets and actions you've
defined in your code, certain objects implement built-in actions that don’t require you to write a
single line of code.

The web view, for example, implements actions, including goForward and goBack. Using these
actions, you could add basic navigation functionality to a web view by dragging from a button’s
Touch Up Inside event directly to the web view object (rather than the view controller). As described
previously, you are prompted for the action to connect to, but this time, it isn’t an action you had to
code yourself.

Connecting to Code 185

O e =4 8 @

Triggered Segues
actien

Outlet Collections
gestureRecognizers

Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside

Touch Up Inside \—t View Controllar

getFlower:

]

[0 ©O [0OL®O00O000O000000 (O |0

Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outlet
ing Outlet
New Referencing Outlet Collection

FIGURE 5.24
The Connections Inspector updates to show the actions and outlets that an object references.

Editing Connections with the Quick Inspector

One of the errors that I commonly make when connecting my interfaces is creating a connec-
tion that I didn't intend. A bit of overzealous dragging, and suddenly your interface is wired

up incorrectly and won’t work. To review the connections that are in place, you select an object
and use the Connections Inspector discussed previously, or you can open the Quick Inspector by
right-clicking any object in the IB editor or document outline area. This opens a floating window
that contains all the outlets and actions either referenced or received by the object, as shown in
Figure 5.25.

Besides viewing the connections that are in place, you can remove a connection by clicking the
X next to a connected object (see Figure 5.24 and 5.25). You can even create new connections
using the same “click-and-drag from the circle to an object” approach that you performed with
the Connections Inspector. Click the X in the upper-left corner of the window to close the Quick
Inspector.

186 HOUR 5: Exploring Interface Builder

View Controller
Triggered Segues
manual
Outlets
chosenColor % Chosen Color
colerChoice * Color Choice
flow = Flower View
search
view
Presenting Segues
Relationship
Show

Present As Popc
Embed

Push (deprecated)
Modal

Referencing Outlets

Mew Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Collection

Received Actions

getFlower: % Get Flower
Touch Up Inside

FIGURE 5.25
Right-click to quickly inspect any object connections.

NOTE

Although clicking an object, such as a button, shows you all the connections related to that object, it
doesn’t show you everything you’ve connected in the IB editor. Because almost all the connections
you create will go to and from a scene’s view controller, choosing it and then opening the inspector
will give you a more complete picture of what connections you’ve made.

Writing Code with IB

You just created connections from Ul objects to the corresponding outlets and actions that have
already been defined in code. In the next hour’s lesson, you write a full application, includ-

ing defining outlets and actions and connecting them to a storyboard scene. What's interesting
about this process, besides it bringing all the earlier lessons together, is that IB editor writes and
inserts the necessary Swift code to define outlets and actions.

Although it is impossible for Xcode to write your application for you, it does create the instance
variables and properties for your app’s interface objects, as well as “stubs” of the methods your
interface will trigger. All you need to do is drag and drop the IB objects into your source code
files. Using this feature is completely optional, but it does help save time and avoid syntax
€erTors.

Connecting to Code 187

TIP

A method stub (or skeleton) is nothing more than a method that has been declared but executes
no instructions. You can add stubs to your code where you know what you’ll be writing in the future
but aren’t yet ready to commit it to code. This is useful in the initial design stages of an application
because it helps you keep track of the work you have left to do.

Stub methods are also helpful if you have code that needs to use a method that you haven’t writ-
ten. By inserting and referencing stubs for your unwritten methods, your application will compile and
run—enabling the code that is complete to be tested at any stage of the development process.

Object Identity

As we finish up our introduction to IB, I'd be remiss if I didn’t introduce one more feature: the
Identity Inspector. You've already accessed this tool to view the accessibility attributes for inter-
face objects, but there is another reason why we need to use the inspector in the future: setting
class identities and labels.

As you drag objects into the interface, you're creating instances of classes that already exist (but-
tons, labels, and so on). Throughout this book, however, we build custom subclasses that we also
need to be able to reference with IB’s objects. In these cases, we need to help IB by identifying the
subclass it should use.

For example, suppose we created a subclass of the standard button class (UIButton) that we
named ourFancyButtonClass. We might drag a button into a scene to represent our fancy
button, but when the storyboard file loads, it would just create the same old UIButton.

To fix the problem, we select the button we’ve added to the view, open the Identity Inspector by
clicking the window icon at the top of the Xcode utility area or by choosing View, Utilities, Show
Identity Inspector (Option-Command-3), and then use the drop-down menu/field to enter the
class that we really want instantiated at runtime (see Figure 5.26).

This is something we cover on an as-needed basis; so if it seems confusing, don’t worry. We come
back to it later in the book.

NOTE

| see that Module Name field you're ignoring! When setting a custom class name, you can also set
the name of the module that defines the class. Modules provide a way to organize large numbers of
classes into functional groups, but aren’t something you’ll need for the projects in this book.

188 HOUR 5: Exploring Interface Builder

Identity Inspector

pded | Today at 1:03 PM = Ole @O 8B O
View Controller View | B Get Flower 0O ® U B @
« Custom Class
® B Class ourFancyButtonClasd —=—s=—t— Class Name
. Madule v]

Identity

User Defined Runtime Attributes
Document

Accessibility

Red Blue Yellow | Green |

o o=
Chosen Color: Your Color —DGet Flowerd)
s

FIGURE 5.26
If you're using a custom class, you need to manually set the identity of your objects in the Identity Inspector.

Further Exploration

The IB editor gives you the opportunity to experiment with many of the different GUI objects
you've seen in iOS applications and read about in the previous hours. In the next hour, the
Xcode code editor is used in conjunction with IB for your first full project, developed from start to
finish.

To learn even more about what you can do with IB, I suggest reading through the following five

Apple publications:

» Interface Builder Help: Accessed by right-clicking the background in the IB editor, the IB
help is more than a simple help document. Apple’s IB Help walks you through the intrica-
cies of IB using video tutorials and covers some advanced topics that will be important as

your development experience increases.

» Auto Layout Guide: This document presents a good introduction to the Auto Layout sys-
tem and is an excellent read for anyone wanting to get a jump start on adaptive interface
layout techniques.

» Xcode Overview: Build a User Interface: Part of the larger “Xcode Overview” document,
this section offers a nice tutorial on Interface Builder principals.

» i0OS Human Interface Guidelines: The Apple iOS HIG document provides a clear set of
rules for building usable interfaces on the iOS device family. This document describes when
you should use controls and how they should be displayed, helping you create more pol-
ished, professional-quality applications.

Q&A 189

» Accessibility Programming Guide for iOS: If you're serious about creating accessible apps,
this is a mandatory read. The Accessibility Programming Guide describes the accessibility fea-
tures in this hour’s lesson as well as ways to improve accessibility programmatically and
methods of testing accessibility beyond the tips given in this hour.

As a general note, from here on, you do quite a bit of coding in each lesson. So, now is a great
time to review the previous hours if you have any questions.

Summary

In this hour, you explored the Xcode IB editor and the tools it provides for building rich graphi-
cal interfaces for your iOS applications. You learned how to navigate IB storyboards and access
the GUI elements from the Object Library. Using the various inspector tools within IB, you
reviewed how GUI elements can be placed within a scene using constraints, how the look and
feel of onscreen controls can be customized, and how interfaces can be made accessible to the
visually impaired.

More than just a pretty picture, an IB-created interface uses simple outlets and actions to connect
to functionality in your code. You used IB’s connection tools to turn a nonfunctioning interface
into a complete application. By maintaining a separation between the code you write and what
is displayed to the user, you can revise your interface to look however you want, without break-
ing your application. In Hour 6, you examine how to create outlets and actions from scratch in
Xcode (and thus gain a full toolset to get started developing).

Q&A

Q. Why do | keep seeing things referred to as NIB/XIB files?

A. The origins of IB trace back to the NeXT Computer, which made use of NIB files to store
individual views. These files, in fact, still bore the same name when Mac OS X was
released. In recent years, however, Apple renamed the files to have the .xib extension,
which has subsequently been mostly replaced by storyboards and scenes. You'll still see a
XIB file used for your startup screen in your project (see Hour 2 for details), but, in general,
anything that refers to a XIB or NIB file applies to storyboards as well.

Q. Some of the objects in the IB Object Library can’'t be added to my view. What gives?

A. Not all the items in the Object Library are interface objects. Some represent objects that
provide functionality to your application. These can be added to the scene in the document
outline area or on the icon bar located below a scene’s layout in the IB editor.

190 HOUR 5: Exploring Interface Builder

Q. I've seen controls in applications that aren’t available here. Where are they?

A. Keep in mind that the i0OS objects are heavily customizable and frequently used as a start-
ing point for developers to make their own Ul classes or subclasses. The end result can
vary tremendously from the stock Ul appearance.

Workshop

Quiz
1. The default storyboard file is named what?
a. Main
b. iPhone
c. Universal

d. Default

2. Which inspector enables you to update the appearance of an interface object?
a. ldentity
b. Appearance
c. Visual

d. Attributes

3. To change the height or width of an object, you could use which inspector?
a. Attributes
b. Constraints
c. Volumetric

d. Size

4. What system gives us a way to describe interfaces that resize and change depending on
device screen size and orientation?

a. Auto Adapt
b. Attributes
c. Auto Layout

d. Content Autosizing

Workshop 191

. To set a custom class on an object, we would turn to which inspector?
a. Class

b. Identity

c. Object

d. Location

. Invoking the Quick Inspector on which object is a good way to see most of your scene’s
connections?

a. View
b. View Controller
c. First Responder

d. Class

. Through what is an interface object referenced in code?
a. Plug

b. Action

c. Connection

d. Outlet

. Interactive interface elements often connect to code via which of the following?
a. Classes

b. Actions

c. Connections

d. Outlets

. To test the accessibility of iOS interfaces, you can activate which of the following tools in
the i0S Simulator?

a. Accessibility Viewer
b. Accessibility Chain
c. Accessibility Inspector

d. Accessibility Wizard

192 HOUR 5: Exploring Interface Builder

10. What library enables you to find and add interface objects to a scene?
a. Object
b. Media
c. Interface

d. Tool

Answers
1. A. The default storyboard name is simply Main.storyboard.

2. D. Use the Attributes inspector to change visual properties for any object in your interface
layout.

3. D. You can use the Size Inspector to fine-tune the height and width of most interface
elements.

4. C. Auto Layout is the name of Apple’s system for describing size/orientation-independent
interfaces.

5. B. The Identity Inspector enables you to set an object to a custom class.

6. B. Select the View Controller object and open the Quick Inspector to view most of the con-
nections within a scene.

7. D. Outlets connect interface objects to a variable property in code.

8. B. Actions provide a connection point between an interface element and an underlying
method in code.

9. C. Use the Accessibility Inspector to view the accessibility properties set on interface
elements within the iOS Simulator.

10. A. You'll use the Object Library to find, select, and place interface elements in Interface
Builder.

Activities

1. Practice using the interface layout tools on the Empty.storyboard file. Add each available
interface object to your view, and then review the Attributes Inspector for that object. If an
attribute doesn’t make sense, remember that you can review documentation for the class
to identify the role of each of its properties.

2. Revise the Disconnected project with an accessible interface. Review the finished design
using the Accessibility Inspector in the iOS Simulator.

This page intentionally left blank

&& (AND) expression, 103

* (asterisks), 101

{ } (curly braces), 45, 80

- (decrementing), 105

== (equal to) expression, 103

! (exclamation points), 748

++ (incrementing), 105

! (negation) expression, 103

= (not equal) expression, 103

|| (OR) expression, 103

() (parenthesis), 45, 103

? (question marks), 94, 748

3D graphics, 8

3D Touch

peek and pop
adding, 631-632
editor screen, 655-657
implementing, 654-655
overview, 630-631
table views, 657-659
testing, 633
Quick Actions, 817-819

defining, 818-819

acceleration data, 665,
683-684
attitude, 665
measurable axes, 664
access levels (Swift), 84
accessibility attributes (Uls),
174-175
Accessibility Inspector, enabling,
175-176
accessing
dictionary values, 89

direct file system access. See

direct file system access
media items, 697-698
music library. See music
player
optional values, 94-95
orientation notifications,
667-668
popover presentation
controller, 383
Safari web browser, 752-753
System Sound Services,

Index

creating, 246-247
press method definition,
206
triggering, 206
ColorTilt app, 679
connections, creating, 183
CustomPicker app, 444
date pickers, 430
defined, 181
direct file system access
preferences, 574-575
gestures, 642-644
hideKeyboard, 248
ImageHop app, 264
implicit preferences, 554
MediaPlayground app, 715
ModalEditor app, 399
navigation controllers, 479
switches, 307-309
tab bar controllers, 487
view to view controller
connections, 215
adaptive segues, disabling, 406

events, handling, 846-847
icons, 819, 844

338-339
accessors, 81

add contact buttons, 243
Add Horizontal Guide/Add Vertical

.plist file configuration,
844-845
responding, 819

A

a: date format, 432
Accelerate framework, 131
acceleration data, 665, 683-684
accelerometers, 663-665
1g of force on devices at
rest, 665

Accounts framework, 129
accuracy (locations), 783, 786
action sheets, 334-337
implementing, 350-352
popovers, 352
actions
alerts, 333-334, 344-345
animation loops, 275-276
BestFriend app, 765
built-in, 185
buttons

Guide commands (Xcode Editor

menu), 166
AddMusic Apple tutorial, 736
Address Book framework, 129
addTextFieldWithConfiguration
Handler method, 333
Adobe Flash Professional, 10
AirPlay support, 700
alertBody property, 825
alerts, 331-334
action sheets, 334-337
implementing, 350-352
popovers, 352
actions, 333-334

904 alerts

buttons, 332-333
example, 331
fields, adding, 349-350
implementing, 331-333,
345-346
multibutton, creating, 346-348
Playground, 336-337
sounds/vibrations, 339-340,
353-355
text fields, adding, 333
Align command (Xcode Editor
menu), 167
aligning
constraints, 593, 604
Ul objects, 167-168
AllinCode app
button touches, handling, 621
interface, drawing upon
launching, 620
objects
defining, 617
initializing, 617-618
project setup, 616-617
rotations, handling, 621
running, 621
screen orientations,
enabling, 616
update method, implementing,
619-620
allowsExternalPlayback
property, 700
anchors, 376
AND (&&) expression, 103
animal chooser scene, 441-442
animal picker. See CustomPicker
app
AnimalChooserViewController
class, 439
animated image view,
implementing, 277-278
animationDuration property,
269, 278
animationlmages property, 278
animations
loading, 277-278
looping
actions, 264, 275-276
animated image view,
implementing, 277-278

background image,
271-272
blur visual effect, 272-273
default images, setting,
265-266
image copies, creating,
266-267
image views, adding, 264
outlets, 264, 274-275
Playground, 281-282
project, setting up, 263
resources, adding, 263
running, 284
slider range attributes,
268-269
speed output labels, 271
speed slider, adding,
267-268
start/stop button, adding,
271
status bar appearance,
283-284
steppers, adding, 269-270
Quartz Core framework, 129
resources, adding, 263
speed
incrementing, 282-283
setting, 280-281
starting/stopping, 278-280
annotations, 755-757
adding, 755
customizing, 756-757,
770-771
deleting, 756
Any, Any size class, 859, 873
Any Landscape screen orientation
constant, 586
Anything But Upside-Down screen
orientation constant, 587
Anything screen orientation
constant, 587
Any(w), Compact(h) size class,
870-873
Any(w), Regular(h) size classes,
configuring, 868-870
API Reference, 144
App Store, 2
App Transport Security (ATS), 311

appearance
bar button items, configuring,
416
buttons, editing, 242-243
date pickers, configuring, 418
frosted glass, 561
keyboard, 236
popovers, troubleshooting,
405
segmented controls, 301
status bars, configuring,
283-284, 775, 796
tables, 498
text fields, editing, 233-235
Uls
accessibility attributes,
174-175
Attributes Inspector,
173174
append method, 88
Apple Developer Program, 10-13
Apple IDs
creating, 11
Xcode, adding, 16
Apple Maps integration. See
mapping
Apple Settings application,
540-541
application logic
animation loops
animated image view,
implementing, 277-278
setting speed, 280-281
starting/stopping
animations, 278-280
animations
incrementing speed,
282-283
status bar appearance,
284
BackgroundColor app
creating preferences, 555
reading preferences, 557
storing preferences,
556-557
BackgroundDownload app,
841-842
ColorTilt app, 679-680
acceleration data,
handling, 683-684

attitude data, handling,
682-683
CMMotionManager,
initializing, 680-681
interface-orientation
changes, disabling,
685-686
motion tracking switch
updates, managing,
681-682
rotations, handling,
684-685
Cupertino app
distance to Cupertino,
calculating, 795-796
errors, handling, 794
location manager instance,
creating, 793-794
location manager
preparations, 793
plist file update, 797
status bar appearance,
796
Cupertino Compass app
handling heading updates,
805-807
heading to Cupertino,
calculating, 804-805
recent locations, storing,
803-804
requesting heading
updates, 802
current date, retrieving, 431
DateCalc app, 431
date differences,
calculating, 432-434
date output, updating,
434-435
date/time, displaying,
431-432
FieldButtonFun, 251-252
flower app, 309-314
flower images, loading,
311-313
initial display, updating,
313-314
FlowerColorTable app,
514-518
cells to display,
configuring, 516-517

flower arrays, populating,
514
number of sections,
returning, 515
row selections, handling,
517-518
section headings, 515
section row counts,
returning, 515
Gestures app, 644
image view, replacing,
644-645
pinch recognizer response,
646-649
rotation recognizer
response, 649-650
shake gesture response,
653
shake recognizer
implementation, 651-653
swipe recognizer response,
646
tap gesture recognizer
response, 645-646
HelloNoun, 216-217
LetsNavigate app, 479-480
LetsTab app, 488
count button presses,
tracking, 488
counter updates,
triggering, 490
display updates with
counter values, 488-489
tab bar item badges,
updating, 490
ModalEditor app, 400-401
emailField text field,
populating, 400
initial scene label to editor
scene field, setting, 401
keyboard, hiding, 401
Orientation app, 672-675
orientation changes,
responding, 673-675
orientation updates,
registering, 673
ReturnMe app, 569-570
SlowCount app, 836
counters, updating, 837
timer, initializing, 836

applications 905

Survey app, 575-578
displaying survey results,
577578
keyboard, hiding, 575
storing survey results,
576-577
applicationDidBecomeActive
method, 821
applicationDidEnterBackground
method, 133, 821
application:didFinishLaunching
WithOptions method, 821, 824
applicationlconBadgeNumber
property, 825
application:performActionFor
Shortcutltem method, 846
application:performFetchWith
CompletionHandler method, 842
applications
badges, creating, 355
building process, 51
converting to universal,
404-407
data structures
creating, 524
populating, 525-526
device orientation, setting, 56
icons, 57-60
life cycles
background-aware
methods, 820-821
diagram, 132
tracing, 133
preferences. See preferences
quitting, 218
running
development provisioning
profiles, 15-16
device configurations,
16-18
iOS Simulator, 51
Welcome app, 19-21
what happens on devices,
17-18
sandbox, 546-547
Simulator, launching, 62-63
state preservation, 541-542
submitting to App Store, 2
suspending, 133, 814

906 applications

UlApplication class, 134
universal. See universal
applicationWillEnterForeground
method, 821, 823
applicationWillResignActive
method, 821
applicationWillTerminate
method, 821
ARC (Automatic Reference
Counting), 110-111
Arrange command (Xcode Editor
menu), 167
arranging Ul objects, 167, 169
arrays, 85
animated image views,
implementing, 278
classes, 136
contents, counting, 89
declaring/initializing, 88
FlowerDetail app
creating, 524
populating, 525-526
index values, 88
iterating over, 106
new items, adding to end, 88
populating, 514
userMessages, 88
asset catalogs, 38-42
application icons, setting,
58-60
contents, viewing, 39
features, 38
files, adding, 39
new, adding, 38
Retina images, 40-42
slicing, 40
sound files, 340
assistant editor mode (Xcode), 48
asterisks (*), 101
ATS (App Transport Security), 311
attitude data, handling, 665,
682-683
attributed text, 235
attributes
bar button items, 416
buttons, editing, 242-243
contentSize, 322
date pickers, 418
navigation bar items, 462-463
slider range, 268-269

stepper range, 270
tab bar items, 466
tables, 500-501, 512
tap gesture recognizers, 638
text fields
editing, 233-235
input traits, 236-237
text views, editing, 238-239
ul
objects, customizing, 172
simulated, 208
web view, 303-305
Attributes Inspector, 173-174
bar button items, 416
buttons, 242-243
constraints, editing, 595-597
custom button images,
244-245
date pickers, 418
navigation bar items, 462-463
pinches, 641
slider ranges, 268-269
stepper ranges, 270
tab bar items, 466
tables, 500-501, 512
text fields, 233-235
text views, 238-239
web views, 304-305
audio
AddMusic Apple tutorial, 736
alerts, 339-340
alerts with vibrations,
353-355
asset catalog storage, 340
AV Audio Player
audio files, playing, 702
customizing, 736
playback completion,
handling, 703
playback controls, 702
books filter, 695
file filter, 695
formats supported, 699
frameworks
AV Foundation, 127
Core Audio, 127
loading/playing, 338
music player
empty selections,
handling, 733-734

media picker, displaying,
732-733
media picker preparations,
730
playing music, 734-735
playlist, creating, 733
preparations, 730-731
playback
classes, 698
controlling, 723
implementing, 722-723
recorded sounds, loading,
723724
playing in the
background, 828
audio files, adding, 828
AudioToolbox framework,
adding, 828
background modes, 832
heading update audio
feedback, adding,
830-831
sound file references,
initializing, 829
system sound ID variables,
829
recording, 703-705
controlling, 721-722
implementing, 720-721
microphone prompt, 722
resources, adding, 340
system, playing, 353-354
System Sound Services,
337-339
audioPlayer property, 722
audioRecorder property, 720
AudioToolbox framework
adding, 828
importing, 353
authentication framework, 132
authorization
local notifications, 824-825
user locations, 768-769, 782
Auto Layouts.
constraints. See constraints,
Auto Layouts
Content Compression, 171
Content Hugging, 171
Intrinsic Size setting, 172

responsive interfaces, 588, 590

turning off, 172

autocompleting code, 44-45
Auto-Enable Return Key attribute,
236-237
automatic constraints, 172
Automatic Reference Counting
(ARC), 110-111
AV Audio Player
audio files, playing, 702
customizing, 736
playback completion,
handling, 703
playback controls, 702
AV Audio Recorder, 703-705
controlling, 721-722
implementing, 720-721
AV Foundation framework, 127,
698-699
AV Kit framework, 127, 698-699
external device playback/
AirPlay support, 700
loading/displaying movies,
699-700
playback completion,
handling, 701-702
playback controls, 701
screen placement, 700
availableData method, 550
AVAudioPlayer class, 699
AVAudioRecorder class, 698
AVPlayer class, 698
AVPlayerltem class, 698
AVPlayerViewController class,
698, 736

background fetches, 817
Background Fetch background
mode, adding, 843
completion, handling,
842-843
minimum fetch intervals,
defining, 841-842
background-aware methods,
819-821

BackgroundColor app
actions, 554
background color preferences
creating, 555
reading, 557
storing, 556-557
color slider, 554
key constants, adding, 552
on/off switch, 554
project setup, 552
running, 557
Ul design, 552-553
backgroundColor property, 555
BackgroundDownload app, 839
Background Fetch background
mode, adding, 843
completion, handling,
842-843
minimum background fetch
intervals, defining, 841-842
outlet, 841
project setup, 840
running, 843
ul, 840
backgrounding
3D Touch Quick Actions,
817-819
defining, 818-819
events, handling, 846-847
icons, 819, 844
.plist file configuration,
844-845
responding, 819
Apple documentation, 848
application life cycle methods,
820-821
application suspension
implementing, 823
overview, 814
background fetches, 817
Background Fetch
background mode,
adding, 843
completion, handling,
842-843
minimum fetch intervals,
defining, 841-842
constraints, 9
disabling, 821-822
iPads, 859

behaviors 907

local notifications, 814-815
authorization, requesting,
824-825
creating, 826-827
properties, 825
scheduling, 827
split-screen, 814
suspension, 823
task completion, 816
counting slowly app. See
SlowCount app
enabling, 837-839
task-specific. See task-specific
backgrounding
backgrounds
images
adding, 271-272
blur visual effect, adding,
272-273
modes, 832
touches, 249-250
badges
creating, 355
tab bar items, updating, 489
tabs, 466
bar button items
navigation bars, 460
toolbars, 415-416
adding, 415
appearance, configuring,
416
positioning, 416
bars
navigation, 460
bar button items, 460
item attributes, 462-463
tab
defined, 465
images, 468
items, 465-466
toolbars. See toolbars
battery life, 787
beginBackgroundTaskWith
ExpirationHandler method, 816
beginGeneratingDevice
OrientationNotifications
method, 667
behaviors
scrolling, 322-323
text fields, editing, 233-235

908 BestFriend app

BestFriend app
actions, 765
Contacts
CNContactPickerView
Controller protocol, 765
contact selections,
handling, 766-768
picker view, displaying,
766
email, 771
composition completion,
handling, 772-773
Mail compose delegate
protocol, conforming,
771
messages, composing,
772
mapping, 768
annotations, 770-771
display, controlling,
769-770
user locations, displaying,
768-769
outlets, 764
project setup, 762
frameworks, adding, 762
variables/connections,
planning, 762
running, 775
Safari web views, opening,
775
social networking, 773-774
status bar appearance, 775
Ul design, 762-764
binding optional values, 95
Bluetooth, 131
blur effect, 272-273
Cupertino app, adding,
798-799
FlowerWeb app, 314-315
labels, adding, 561
bookmarking Xcode
documentation, 145-146
Bool data type, 85, 87, 136
boolForKey method, 557
Bottom Layout Guide icon
(storyboards), 159
bottom layout guides, 594

breakpoints, 885-886
navigator, 893
watchpoints, configuring,

890-891
bridged data type classes, 136
browsing Xcode documentation,
144-145

build schemes, choosing, 50-51

building
applications, 51
code, 50-51

buttons, 223-224
actions

creating, 246-247
triggering, 206
adding, 241
alerts, 332-333
animations
starting/stopping, 271
triggering, 275
appearance, 242-243
attributes, editing, 242-243
bar button items, 415-416
adding, 415
appearance, configuring,
416
positioning, 416
centering, 604-606
Clear, 234
custom images, 243-245
flower app, adding, 305
keyboards, hiding, 248-249
labels, editing, 342
presses, tracking, 488
state, changing, 243
templates, creating, 227-232
images, adding, 227-228
slices, creating, 228-231
touches, handling, 621
types, 243
UlButton class, 139
variable/size matching
constraints, 612-614

C

calculateDateDifference
method, 433
Calendar and Reminders
Programming Guide, 777
call stacks, 893
canBecomeFirstResponder
method, 651
Canvas, Show Selection Highlights
command (Xcode Editor
menu), 166
Capitalize attribute, 236
case sensitivity (Swift), 77
cells
colors, 502
display, configuring, 516-517
editing, disabling, 530
further exploration, 533
identifiers, 502
images, adding, 502
labels, 502
master view controllers,
creating, 528-529
prototype, 512
styles, 502
tables, 498
prototype, configuring, 501
sizing, 501
centering layout constraints,
604-606
CFNetwork framework, 129
chaining
methods, 98-99
optional values, 99
characters (strings), 87
child preference panes, 544,
566-568
child view controllers, adding, 700
chooselmage method, 725
classes
AnimalChooserViewController,
439
audio playback, 698
AVPlayerViewController, 736
CLGeocoder, 757
CLLocationManager class,
781

CMMotionActivity, 687
CMMotionActivityManager,
687
core application, 134-135
UlApplication, 134
UlControl, 135
UIResponder, 135
UlView, 135
UlViewController, 135
UIWindow, 134
CountingNavigationController,
459
data type, 136-137
bridged, 136
nonbridged, 136
NSDate, 137
NSURL, 137
DateChooserViewController,
425
declaration, 80
declaring, 80
defined, 75
EditorViewController, adding,
389
extensions, 76
gesture-recognizer, 628
interface, 138-141
UlButton, 139
UlDatePicker/UlPicker,
140
UlLabel, 138
UlPopoverPresentation
Controller, 141
UlSegmentedControl, 139
UlSlider, 139
UlStepper, 140
UlSwitch, 139
UlTextField/UlTextView,
140
MasterViewController, 527
media player, 694
NSURL, 295
NSURLRequest, 295
NSUserDefaults, 543
singletons, 76
size, 856, 857-859
Any, Any, 859
Any(w), Compact(h),
870-873

Any(w), Regular(h),
868-870
definitions and devices/
orientations represented,
858
documentation, 857
fonts, 865
images, 866
installed, configuring,
862-863
manually configuring,
863-865
responsive interfaces, 590
selecting, 860-862
storyboards, creating,
867-873
Swift file structure, 78-79
UlActionSheet, implementing,
335
UlBarButtonltem, 460
UlColor, 555
UllmagePickerController, 705
UlLabel, 90
UINavigationBar, 460
UINavigationController, 459
UlScrollView, 324
UlStackView, 324
UlTabBar, 465
UlTabBarController, 464
UlTouch, 659
UlViewControllerTransition
Coordinator, 622
UlVisualEffectView, 285
UlWebView, 324
video playback, 698
view controllers, adding to
navigation controllers, 472
ViewController, 43
cleanup, handling
image pickers, 726-727
video, 718
Clear buttons, 234
CLGeocoder class, 757
CLLocationManager class, 781
closures, 101, 330
CMMotionActivity class, 687
CMMotionActivityManager
class, 687

code 909

CMMotionManager
configuring, 669-670
initializing, 680-681
CN contact picker delegate,
745-746
Cocoa, 125
Cocoa Touch, 23, 123
advantages, 125
alert controllers, 330
action sheets, 334-337
alerts, 331-334
bridged data types, 136
classes
core application, 134-135
data type, 136-137
interface, 138-141
Playground, 137
Cocoa, compared, 125
frameworks, 126-127
Contacts Ul, 126
EventKit Ul, 126
GameKit, 126
iAd, 127
MapKit, 126
Message Ul, 126
Notification Center, 127
TextKit, 127
UlIKit, 126
functionality, 124
overview, 124
code
application icons, 57-60
auto completion, 44-45
build schemes, choosing,
50-51
comments, adding, 46-47
curly braces/parenthesis,
autocompleting, 45
device orientation, setting, 56
editing, 42
assistant editor mode, 48
tabbed editing, 49-50
files, 35-36
IB, writing, 186
launch images/screens,
setting, 60
methods/properties, finding,
43
mixing development
methodology, 194

910 code

navigating, 43
problems, fixing, 52-55
searching, 45-46
Uls, connecting, 178
actions, 183
outlets, 181-182
project, opening, 178
colors (cells), 502
ColorTilt app
action, 679
application logic, 679-680
acceleration data,
handling, 683-684
attitude data, handling,
682-683
CMMotionManager,
initializing, 680-681
interface-orientation
changes, disabling,
685-686
motion tracking switch
updates, managing,
681-682
rotations, handling,
684-685
outlets, 679
project setup, 676-677
running, 686
ul, 677
commands
Editor menu (Xcode)

Add Horizontal Guide/Add

Vertical Guide, 166
Align, 167
Arrange, 167
Canvas, Show Selection
Highlights, 166
Show Document Outline,
232
File menu (Xcode)
New, Playground, 111
New, Tab, 49
New Project, 30
Hardware menu (Xcode)
Device, 65
Home, 65
Lock, 65
Reboot, 65
Shake Gesture, 65

Simulate Hardware
Keyboard, 66
Simulate Memory
Warning, 66
Toggle In-Call Status
Bar, 66
Touch ID Enrolled/
Simulate Finger
Touch, 65
TV Out, 66
Help, Quick Help (Xcode), 147
Preferences, Text Editing,
Editing (Xcode), 45
View, Navigators, Show
Navigator (Playground), 117
View menu (Xcode)
Utilities, Show Attributes
Inspector, 173
Utilities, Show Connections
Inspector, 183
Utilities, Show Identity
Inspector, 174
Utilities, Show Object
Library, 162
Utilities, Show Size
Inspector, 168
Window, Devices (Xcode), 67
comments
code, adding, 46-47
Swift, 83
comparison expressions, 103
component constants (custom
pickers), 440
composeViewControllerFor
ServiceType method, 751
concatenation, 87
condition-based loops, 106-107
configuring
animations
loop default images,
265-266
animation speed, 280-281
application icons, 58-60
bar button item appearance,
416
CMMotionManager, 669-670
constraints, 609-612
custom button images,
243-245

date pickers
appearance, 418
scenes, 426
detail view controllers,
531-533
devices
development, 16-18
orientations supported, 56
image pickers, 705-706
initial scenes, 205
media pickers, 694-695
navigation controllers,
472-473
object identities, 187-188
popover segues, 402-404
projects as universal, 854
prototype cells, 501, 512
segmented control segments,
300-301
segue styles, 382
simulated screen sizes, 232
size classes
Any(w), Regular(h),
868-870
installed, 862-863
manually, 863-865
status bar appearance,
775, 796
table layout, 503-504
watchpoints, 890-891
Xcode
debugger breakpoints,
885-886
documentation downloads,
142-143

connections

actions. See actions
delegate/data source outlets
to view controllers, 513-514
devices, 9
exits, 379-380
Mad Libs-style story creator,
planning, 227
outlets. See outlets
tab bar scenes to tab bar
controllers, 484-485
Uls, 178
actions, 183
deleting, 186
editing, 185-186

outlets, 181-182
project, opening, 178
view controllers, 205-206
views to view controllers,
212-215
actions, 215
outlets, 213-215
Connections Inspector, 183
constants
components (custom pickers),
440
declaring/initializing, 81, 92
defined, 76
key
implicit preferences, 552
settings bundles, 559
lastName, 92
location accuracy, 786
radian conversion, 677
screen orientation, 586-587
table sections, adding, 511
variables, compared, 93
constraints
Any(w), Compact(h) size
class, 872
Any(w), Regular(h) size
class, 869
Auto Layout, 170-171
adding, 591-593
alignment, 593
centering, 604-606
content compression
resistance, 598
content hugging, 597
controls, expanding,
607-612
editing, 595-597
errors, fixing, 598-601
horizontal/vertical, 593
manually defining,
601-604
removing, 634
top/bottom layout guides,
594
variable/size matching,
612-614
viewing, 594
automatic, 172

date pickers
date chooser scenes,
428-429
initial scenes, 427-428
installed size classes,
862-863
Size Inspector, 169
object, 170
views, 394
contactPickerDidCancel
method, 745
Contacts, 744
CNContactPickerViewController
protocol, 765
contact selections, handling,
766-768
frameworks, 776
Contacts, 746-748
Contacts Ul, 744-745
people picker
cancel action, 745
displaying, 745, 766
drilling down, 746
person selection, handling,
745
user selections, handling,
745-746
Contacts framework, 746-748
Contacts Ul framework, 126,
744-745
container views, 712-713
Content Compression (Auto
Layouts), 171
Content Compression Resistance
(Auto Layout), 598
Content Hugging (Auto Layouts),
171, 597
contentSize attribute, 322
Continue icon, 888
controlHardware method, 681
controls
expanding, 607-612
constraints, configuring,
609-612
interface, creating,
607-608
repositioning based on
orientation, 867

Core Location 911

segmented, 293
adding, 300
connecting to actions,
307-309
iOS 6 versus i0OS 7
appearance, 301
outlets, 306
segments, configuring,
300-301
sizing, 302
UISegmentedControl class,
139
convenience methods, 91,
278, 295
converting data types, 92
copies (images), creating,
266-267
copying/pasting text, 237
core application classes, 134-135
UlApplication, 134
UlControl, 135
UIResponder, 135
UlView, 135
UlViewController, 135
UIWindow, 134
Core Audio framework, 127
Core Bluetooth framework, 131
Core Data framework, 32, 129,
199, 579
Core Foundation framework, 129
Core Graphics framework, 128
Core Image framework, 127, 707
filters, applying, 708-709,
728729
Programming Guide, 736
Core Location, 130, 781
accuracy, 783, 786
distance calculations,
795-796
errors, handling, 794
headings, 787-789
LocateMe Apple tutorial, 808
location manager
instance, creating,
793-794
preparing, 793

912 Core Location

locations
authorization, requesting,
782
battery life, 787
location managers, 782
plist keys, 782
simulated, configuring,
798
updates, receiving,
782-784, 786
Core Motion, 130, 668-670
acceleration, handling,
683-684
attitude data, handling,
682-683
CMMotionManager,
configuring, 669-670
interface-orientation changes,
disabling, 685-686
motion manager, initializing,
680-681
motion updates, receiving,
669
radians to degrees
conversion, 677
rotations, handling, 684-685
Core OS layer frameworks,
131-132
Accelerate, 131
Core Bluetooth, 131
External Accessory, 131
Local Authentication, 132
Security, 132
System, 132
Core Services frameworks,
129-131
Accounts, 129
Address Book, 129
CFNetwork, 129
Core Data, 129
Core Foundation, 129
Core Location, 130
Core Motion, 130
EventKit, 130
Foundation, 130
Health Kit, 130
Home kit, 130
Newsstand, 130
PassKit, 130

Quick Look, 131
Social, 131
StoreKit, 131
System Configuration, 131
Core Text framework, 128
Correction attribute, 236
Count Down Timer mode (date
pickers), 418
count property, 89
counters
button presses, tracking, 488
current count, displaying,
480-481
dictionaries/arrays, 89
incrementing, 480
updates, 837
displaying with counter
values, 488-489
triggering, 490
counting slowly app. See
SlowCount app
CountingNavigationController
class, 472
countUp method, 837
cover vertical transitions, 372
CPU usage, monitoring, 895
crash recovery (Simulator), 67
Create Story button, 246-247
createFlowerData method, 525
createStory method,
246-247, 252
cross dissolve transition, 372
Cupertino app
application logic
distance to Cupertino,
calculating, 795-796
errors, handling, 794
location manager instance,
creating, 793-794
location manager
preparations, 793
.plist file update, 797
blur, adding, 798-799
outlets, 792
project setup, 789-790
background image
resources, 789
location constants,
adding, 790

running, 797
status bar appearance, 796
Ul design, 790-792
Cupertino Audio Compass
app, 828
audio directions,
implementing, 829-832
heading updates audio
feedback, adding,
830-831
sound file references,
initializing, 829
audio files, adding, 828
AudioToolbox framework,
adding, 828
background modes, 832
system sound ID variables,
829
Cupertino Compass app
application logic
heading to Cupertino,
calculating, 804-805
heading updates, handling,
802, 805-807
recent locations, storing,
803-804
audio directions. See
Cupertino Audio Compass
app
outlet, 801
project setup, 799-800
running, 807
ul, 800-801
curly braces ({}), 45, 80
current context modal
segues, 372
current date retrieval, 431
currentltem property, 716
customizing
annotations, 756-757
buttons, 243
attributes, 242-243
labels, 342-343
code, 42
assistant editor mode
(Xcode), 48
tabbed editing, 49-50
constraints, 595-597
disabling, 529-530
keyboard display, 236-237

pickers
labels, 440
toolbars, 440
segues, 370
status bar appearance,
283-284
text field attributes, 233-235
text view attributes, 238-239
Uls
accessibility attributes,
174-175
connections, 185-186
object attributes, 173-174
variable values, 887
viewDidLoad method, 883
CustomPicker app
actions, 444
animal chooser scene, 439,
441-442
AnimalChooserViewController
class, adding, 439
components
constants, 440
sizes, 448
custom picker view, 444-445
data source protocol,
implementing, 445-446
delegate protocol, 446-448
image resources, adding, 439
initial scene, 441
outlet, 444
picker view data source/
delegate, 442-443
project setup, 438-440
row sizes, 448
running, 451
segues, 443
modal, dismissing,
450-451
popovers, 451
selections
default, 450
displaying, 448-450
reactions, 449-450
Ul design, 440-443
view controller association,
439

d: date format, 432
darkening objects, 166
data
detectors, 239
models. See Core Data
sharing
navigation scenes, 464
tab bar scenes, 470
source protocols
custom picker views,
implementing, 445-446
picker views, 420-421
tables. See tables
sources
picker view, 442-443
table outlets, connecting,
513514
storage, 539, 542
direct file system access,
546-550
Playground, 550-551
settings bundles, 544-546
user defaults, 543-544
structures
creating, 524
populating, 525-526
type classes, 136-137
bridged, 136
nonbridged, 136
NSDate, 137
NSURL, 137
types
converting, 92
downcasting, 92
Swift, 85
datatips (variables), 887
dataUsingEncoding method, 550
Date and Time mode (date
pickers), 418
Date mode (date pickers), 418
DateCalc app
actions, 430
application logic, 431
current date, retrieving,
431
date differences,
calculating, 432-434

dates/times 913

date output, updating,
434-435
date/time, displaying,
431-432
DateChooserViewController
class, adding, 425
initial/date chooser scenes,
configuring, 426
outputLabel outlet, 430
Playground, 435-436
project setup, 425-427
running, 437
segues, 436-437
Ul design, 427-429
date chooser scene,
428-429
initial scene, 427-428
view controller association,
426
DateChooserViewController
class, 425
dates/times
Apple tutorial, 453
date chooser scenes
creating, 428-429
date pickers, 426
date differences, calculating,
432-434
date pickers, 417-419, 424
actions, 430
appearance, configuring,
418
Apple tutorial, 452
constraints, 427-429
current date, retrieving,
431
date chooser scenes,
428-429
date differences,
calculating, 432-434
date output, updating,
434-435
DateChooserViewController
class, 425
date/time, displaying,
431-432
default calculation upon
exiting, 434
initial/date chooser
scenes, configuring, 426

914

dates/times

locales, 418

modes, 418

outputLabel outlet, 430
Playground test, 435-436
segues, 429, 436-437
toolbars, creating, 427
Ul design, 427-429

view controller association,

426
displaying, 431-432
NSDate class, 137
output, updating, 434-435
string formats, 432

debugging

debug navigator, 893-894
further exploration, 898
NSLog function, 878-879
calling, 879
output, displaying,
879-880
Xcode debugger. See Xcode
debugger

declaring

arrays, 88

classes, 80

constants, 81, 92
defined, 80

dictionaries, 89
enumerations, 90
floating-point numbers, 86
IBOutlet, 81

import, 79-80

integers, 86

method, 82-83

objects, 90

optional values, 94
variable properties, 80-81
variables, 85

decrementing integers, 105
defer statements, 109-110
delegates

CN contact picker, 745-746
Mail compose, 750, 771
map view, 756-757

media picker, 696
navigation controllers, 707
picker views, 442-443

protocols
custom picker views,
implementing, 446-448
location manager, 782-784
people picker, 765
picker views, 421-424
tables, 505-506, 517-518
table outlets, connecting,
513514
text fields/text views, 254
deleting
annotations, 756
Auto Layout constraints, 634
breakpoints, 885
objects from memory,
110111
Simulator devices, 68
ul
connections, 186
objects from views, 164
Xcode project files/resources,
37-38
describelnteger method, 883
desiredAccuracy property, 786
detail disclosure buttons, 243
detail scenes
sharing information with
master scenes, 509
updating, 523
detail view controllers,
configuring, 531-533
detailltem method, 532
developers
Apple Developer Program,
10-13
becoming, 2
requirements, 10
Windows options, 10
Xcode, installing, 13-15
development provisioning profiles
multiple devices, 7
overview, 15-16
viewing, 21
Device command (Xcode
Hardware menu), 65
devices, 5-6
apps, running, 17-18
configuring for development,
16-18
connectivity, 9

graphics, 8
input/feedback, 9-10
locations. See locations
memory constraints, 9
model queries, 857
multitasking constraints, 9
orientations. See
orientations, 56
processors, 8
resolution
iPads, 7
iPhones, 6
scaling, 7
rotation simulation, 64
screen sizes, 8
Simulator, adding, 67-69
size class representations,
858
universal apps
popovers, 404-407
vibrating for alerts, 354-355
Xcode, adding, 17
Devices command (Xcode
Windows menu), 67
dictionaries, 85
classes, 136
contents, counting, 89
declaring, 89
iterating over, 106
key/value pairs, 89
soundSetting, 704
userMessages, 89
values
accessing, 89
assigning/modifying, 89
Did End on Exit event, 248-249
didSelectContact method, 745
didSelectContactProperty
method, 746
direct file system access, 546-550
actions, 574-575
fields/text view outlets, 574
file paths, 548-549
keyboards, hiding, 575
reading/writing data, 549-550
results
displaying, 577-578
storing, 576-577
sandbox restrictions, 546-547
storage locations, 547-548

direction image resources, 799
directives (view controllers)
IBAction, 198
IBOutlet, 197
directories
Documents, 548
Library/Caches, 548
Library/Preferences, 547
tmp, 548
disabling
backgrounding, 821-822
editing, 529-530
interface-orientation changes,
685-686
Xcode Welcome screen, 30
Disconnected project
connections
actions, creating, 183
editing, 185-186
outlets, creating, 181-182
opening, 178
dismissDateChooser method, 436
dismissing
modal segues, 450-451
popovers, 385-386
segues, 378
dismissViewControllerAnimated
method, 378
displaying
asset catalogs, 39
call stacks, 893
constraints, 594
counter values, 488-489
current count, 480-481
date/time, 431-432
document outline area, 232
image pickers, 705, 725-726
keyboards, 236-237
media pickers, 695, 732-733
Navigator (Playground), 117
NSLog output, 879-880
Object Library, 162
output (Playground), 114
people picker, 745, 766
picker view selections,
448-449
Playgrounds, 112
popovers on iPhones, 405
provisioning profiles, 21

Size Inspector, 168
storyboards, 157
survey results, 577-578
table cells, 516-517
ul
connections, 185
preview, 176-178
user locations, 768-769
variables
lists, 892
contents in Playground, 113-114
view controllers, 382
view hierarchy, 896-897
web views, 309-311, 313-314
Xcode
Quick Help Inspector, 148
templates, 30-31
distanceFilter property, 786
doAcceleration method, 684
doActionSheet method, 351
doAlert method, 345
doAlertinput method, 349
doAttitude method, 683
do-catch statements, 107-108
dock (storyboard scenes), 162
document outline area (IB), 232
document outline objects, 161
documentation (Xcode), 142
bookmarks, 145-146
browsing, 144
downloads, setting up,
142-143
navigating, 144-146
searching, 143-144
Documents directory, 548
doMultipleButtonAlert
method, 347
Done button, 248-249
doRotation method, 685
doSound method, 354
dot notation, 81
Double data type, 85
doVibration method, 355
downcasting, 88-96, 92
downloading Xcode
documentation, 142-143
dragging objects, 215

enumerations 915

earlierDate method, 137
editing. See customizing
editing tools (IB), 165
alignment, 167-168
Arrangement, 167
guides, 165-166
selection handles, 166-167
Size Inspector, 168
editor (Xcode), 33
autocompleting code, 44-45
editing code, 42
Editor menu commands (Xcode)
Add Horizontal Guide/Add
Vertical Guide, 166
Align, 167
Arrange, 167
Canvas, Show Selection
Highlights, 166
Show Document Outline, 232
editor scenes, creating, 395-396
EditorViewController class,
adding, 389
email, 748-749
composition
completion, handling, 750,
772-773
messages, composing,
772
view, 748
Mail compose delegate
protocol, conforming, 771
Mail compose window, 749
Message Ul framework, 749
emailField text field, 400
enabling
first responder view
controllers, 651-653
interface orientation changes,
586-588
screen orientation
changes, 616
task completion
backgrounding, 837-839
endBackgroundTask method, 816
enumerations, 89-90
creating, 90
declaring, 90
values, 90

916

equal to (==) expression, 103
errors, 52
Auto Layout constraints,
fixing, 598-601
code, 52-55
Core Location, 783
guard statements, 109
location, handling, 794
Playground, 116
Swift, 107
defer, 109-110
do-catch statements,
107-108
throw statements,
108-109
Euler angles, 683
event handling
alerts
actions, 334
buttons, 344-345
Did End on Exit, 248-249
motion, 130
orientation notifications,
requesting, 667-668
Quick Actions, 846-847
segue navigation, 530-531
table row selections, 517-518
touches
background, 249-250
buttons, 621
multitouch, 64
EventKit framework, 130
EventKit Ul framework, 126
exclamation points (!), 748
Exit icon (storyboards), 159
exits
connecting, 379-380
defined, 363
view controller preparations,
378-379, 393
expressions, 103
extensions, 76
External Accessory
framework, 131
external device movie playback
support, 700

equal to (==) expression

F

Facebook posts, preparing, 751
feedback mechanisms, 9-10
FieldbuttonFun app, 225
action, creating, 246-247
application logic,
implementing, 251-252
button templates, creating,
227-232
images, adding, 227-228
slices, creating, 228-231
connections, planning, 227
createStory method,
implementing, 252
keyboard, hiding, 247-251
background touch,
249-250
code, adding, 250-251
Done button, 248-249
outlets, connecting, 245-246
Playground, 251
running, 252
setting up, 226
Ul design
button attributes, editing,
242-243
buttons, adding, 241
custom button images,
243-245
plain versus attributed
text, 235
scrolling options, 241
simulated screen size,
232
text field attributes,
editing, 233-235
text fields, adding,
232-233
text input traits, 236-237
text view attributes,
editing, 238-239
text views, adding, 237
variables, planning, 227
fields
alerts, adding, 349-350
direct file system access
outlets, 574
survey, storing, 576-577

text. See text fields
user input, 206
File menu commands (Xcode)
New, Playground, 111
New, Tab, 49
New Project, 30
file paths, 548-549
fileExistsAtPath method, 549
fileHandleForReadingAtPath
method, 550
fileHandleForUpdatingAtPath
method, 550
fileHandleForWritingAtPath
method, 550
files
asset catalogs, adding, 39
class, 202-203
importing (Swift), 79-80
storyboard, 203-205
Xcode projects
adding, 35-36
deleting, 37-38
filters
Core Image, 708-709,
728-729
location updates, 786
media picker, 695
Xcode project navigator, 35
finding methods/properties in
code, 43
fireDate property, 825
First Responder icon
(storyboards), 159
first responder view controllers,
651-653
fixing Auto Layout constraint
errors, 598-601
FIXME comments, 47
flip horizontal transitions, 372
Float (floating point numbers)
data type, 85-86, 136
floatForKey method, 557
FlowerColorTable app
application logic, 514-518
cells to display,
configuring, 516-517
flower arrays, populating,
514
number of sections,
returning, 515

row selections, handling,
517-518
section headings, 515
section row counts,
returning, 515
delegate/data source outlets,
connecting, 513-514
project setup, 510-511
image resources,
adding, 510
section constants,
adding, 511
running, 518
Ul design, 511-512
FlowerDetail app
3D Touch peek and pop
gestures, adding, 657-659
detail view controller,
configuring, 531-533
flower data structures
creating, 524
populating, 525-526
master view controller, 527
editing, disabling, 529-530
number of section rows,
retrieving, 527
number of sections,
retrieving, 527
section labels, 527
segue navigation events,
handling, 530-531
table cells, creating,
528-529
table view data source
methods, 527-528
project setup, 520-521
hierarchy, 520-521
image resources, adding,
520
running, 533
Ul design, 521-523

FlowerWeb app
actions, 307-309
application logic, 309-314
Detail web view, hiding/
displaying, 309-311
flower images, loading,
311-313
initial display, updating,
313-314
blur visual effect, 314-315
outlets, 306
running, 315
setting up, 299
ul, 299
button, 305
color choice segmented
controls, 300-302
flower details switch,
302-303
web view attributes,
304-305
web views, adding,
303-304
fonts, 865
for loops, 105-106
form sheet modal segue, 372
forward geocoding, 757-758
Foundation framework, 130
foundPinch method, 647
foundRotation method, 649
foundSwipe method, 646
foundTap method, 629, 645
frameworks
AudioToolbox
adding, 828
importing, 353
AV Foundation, 698-699
AV Kit, 698-699
external device playback/
AirPlay support, 700
loading/displaying movies,

functions 917

iAd, 127
MapkKit, 126
Message Ul, 126
Notification Center, 127
TextKit, 127
UlIKit, 126
Contacts, 746-748, 776
Contacts Ul, 744-745
Core Image, 707
Core Location. See Core
Location
Core 0S. See Core OS layer
frameworks
Core Services. See Core
Services frameworks
defined, 123
Map Kit, 123, 753
Media layer, 127-129
AV Foundation, 127
AVKit, 127
Core Audio, 127
Core Graphics, 128
Core Image, 127
Core Text, 128
Game Controller, 128
Image 1/0, 128
Metal, 128
OpenGL ES, 128
Photos, 128
Photos Ul, 128
Quartz Core, 129
SpriteKit, 129
Media Player, 694
classes, 694
media picker configuration,
694-695
Media Player. See Media
Player framework
Message Ul, 749
projects, adding, 710
Social, 751, 777

detail scene, updating, 699-700 freeform sizing (scrolling views),
523 playback completion, 321

master scene, updating, handling, 701-702 frosted glass appearance, 561
522 playback controls, 701 full screen modal segues, 372

web view outlet,
connecting, 523
flowerDetailView web view, 303
flowerView web view, 303

functions
See also methods
methods, compared, 198

screen placement, 700
Cocoa Touch, 126-127
Contacts Ul, 126
EventKit Ul, 126
GamekKit, 126

918 functions

NSLog, 878-879
calling, 879
output, displaying,
879-880
print function, compared,
878
print versus NSLog, 878
setObject:forKey, 543
user defaults, reading/writing,
543

G

Game Controller framework, 128
GamekKit framework, 126
geocoding, 757-759
forward, 757-758
mapping, 769-770
Playground, 759-760
reverse, 758-759
geographic north, 787
gestures
3D Touch peek and pop
adding, 631-632
editor screen, 655-657
implementing, 654-655
overview, 630-631
table views, 657-659
testing, 633
built-in, 641
image views
replacing, 644-645
resetting to default, 635
outlets, 642
recognizers
adding, 628-629
classes, 628
pinch, 640-641
rotation, 641
shake, 651-653
swipe, 639-640
tap, 638-639
responding
actions, 642-644
pinching, 646-649
rotations, 649-650
shake, 653

swipe, 646
tap, 645-646
SimpleGestureRecognizers
tutorial project, 659
swipes, 627
views, creating, 636-637
Gestures app
actions, 642-644
application logic, 644
image view, replacing,
644-645
pinch recognizer response,
646-649
rotation recognizer
response, 649-650
shake gesture response,
653
shake recognizer
implementation, 651-653
swipe recognizer response,
646
tap gesture recognizer
response, 645-646
gesture recognizers, adding
pinch, 640-641
rotation, 641
swipe, 639-640
tap, 638-639
interface, designing, 636-637
outlets, 642
overview, 633-634
project setup, 634-635
image resources, 635
image views, resetting to
default, 635
running, 654
getFlower method, 312
getters, 81
GettingAttention app
action sheets, implementing,
350-352
actions, 344-345
alert sounds with vibrations,
354-355
alerts, implementing, 345-346
fields in alerts, adding,
349-350
local notifications, registering,
826-827

multibutton alerts, creating,
346-348
outlet, 343
project setup, 340
sound resources, adding, 340
Ul design, 342-343
g-forces, 664
graphics
See also images
displaying, 8
frameworks
Core Graphics, 128
Metal, 128
SpriteKit, 129
groups
preferences, 544
tables, 498
Xcode projects, 35
guard statements, 109
guides, 165-166
gutter (Xcode), 883
gyroscopes, 663, 666-667
attitude data, handling,
682-683
radians per second, 666

handleButton method, 621
handling
acceleration data, 683-684
alerts
actions, 334
buttons, 344-345
attitude data, 682-683
background
fetch completion, 842-843
suspension, 823
button touches, 621
contact picker selections,
766-768
Core Location errors,
783, 794
device rotations, 684-685
email composition completion,
750
errors. See errors

heading updates, 805-807
image pickers, 706-707,
726-727
mail composition completion,
772-773
media picker selections, 696
music player
empty selections, 733-734
user selections, 733
orientation notifications,
requesting, 667-668
people pickers
cancel action, 745
drilling down, 746
person selection, 745
selections, 745-746
playback completion
AV Audio Player, 703
video player, 701-702
Quick Actions events,
846-847
segue navigation, 530-531
table row selections, 517-518
video player cleanup, 718
Hardware menu commands

height

cells, 501

picker components/rows, 422
popovers, 375-376

scrolling views, 323

view picker components, 448

HelloNoun app

application logic, 216-217
class files, 202-203
interface

objects, adding, 209-212

simulated attributes, 208
setting up, 201-202
storyboard file, 203-205
variable properties, 205-206
view/view controller

connection, 212-215
actions, 215
outlets, 213-215

help

1B, 188-189
images, 285
MVC, 218
Swift, 118
toolbars, 452

IBOutlet declaration 919

HomeKit framework, 130

Hop button, 271

hopping bunnies animation. See
ImageHop app

horizontal constraints (Auto
Layout), 593

horizontal size class, 858

horizontal stack views, 319

iAd framework, 127
IB (Interface Builder), 155-156
accessibility attributes,
173174
Attributes Inspector, 173-174
buttons, 242-243
custom button images,
244-245
text fields, 233-235
text views, 238-239
Auto Layout. See Auto Layouts

(Xcode) view controllers, 407 Connections Inspector, 183
Device, 65 Xcode, 24, 147-149 default screens, 162
Home, 65 Help, Quick Help menu document outline area,
Lock, 65 commands (Xcode), 147 161, 232
Reboot, 65 hh: date format, 432 editing tools

alignment, 166-167
Arrange menu, 167
guides, 165-166
selection handles,
166-167

Shake Gesture, 65
Simulate Hardware
Keyboard, 66
Simulate Memory Warning, 66
Toggle In-Call Status Bar, 66
Touch ID Enrolled/Simulate
Finger Touch, 65
TV Out, 66
headingfilter property, 787
headings, 787-789
destinations, calculating,
804-805
table sections, 515
updates, 830-831
handling, 805-807
requesting, 802
HealthKit framework, 130

hideKeyboard action, 248
hiding
keyboards, 247-251, 401
background touch,
249-250
code, adding, 250-251 further exploration, 188-189
Done button, 248249 gesture recognizers, adding,
file system preferences, 629
575 Identify Inspector, 187
web views, 309-311 layout constraints, manually
hierarchy defining, 601-604
split view controllers, 520-521 Object Library, 162-163
storyboard scenes, 158 Quick Inspector, 185-186
views, displaying, 896-897 Size Inspector. See Size
high-pass filters, 687 Inspector
Hint attributes, customizing, 174 storyboards. See storyboards

Home command (Xcode Hardware Ul objects. See Ul, objects
menu), 65 IBAction directive, 198

IBOutlet declaration, 81

920 IBOutlet directive

IBOutlet directive, 197
icons
application, 57-60
Quick Actions, 819, 844
scrolling view resources,
adding, 316
stack views, adding, 318
storyboards, 158-159
templates, 819
universal applications, 855
Xcode debugger, 888
Identifier attributes,
customizing, 174
identifiers
bar button items, 416
cells, 502
objects, configuring, 187-188
storyboards, 381
Identity Inspector, 187
Accessibility settings,
174-175
object identities configuring,
187-188
if-then-else statements, 104-105
Image 1/0 framework, 128
ImageHop app
actions, 264, 275-276
animation resources,
adding, 263
application logic
animated image view,
implementing, 277-278
incrementing animation
speed, 282-283
setting animation speed,
280-281
starting/stopping
animations, 278-280
background
image, 271-272
suspension, implementing,
823
blur visual effect, 272-273
outlets, 264, 274-275
Playground, 281-282
project setup, 263
Quick Actions
events, handling, 846-847
icons, adding, 844

.plist file configuration,
844-845
running, 847
running, 284
status bar appearance,
283-284
ul, 264
default images, setting,
265-266
Hop button, 271
image copies, creating,
266-267
image view, adding, 264
slider, adding, 267-268
slider range attributes,
268-269
speed output labels, 271
steppers, adding, 269-270
imagePickerControllerDidCancel
method, 707, 726
imagePickerController:didFinish
PickingMediaWithIinfo method,
706, 726
images
animations. See animations
background
adding, 271-272
blur visual effect, adding,
272-273
buttons
custom, 243-245
templates, adding,
227-228
cells, adding, 502
copies, creating, 266-267
Core Image, 707
filters, 708-709, 728-729
Programming Guide, 736
frameworks
Core Image, 127
Image 1/0, 128
Photos, 128
Photos Ul, 128
further exploration, 285
launch, 60
pickers, 705
cleanup, handling,
726-727
configuring/displaying,
705-706

custom, 439
displaying, 725-726
further capabilities, 736
navigation controller
delegate, 707
preparing, 724
selections, handling,
706-707, 726
resources
direction, 799
Gestures app, 635
settings bundles, 560
split view controllers,
adding, 520
tables, adding, 510
selector preferences, creating,
563-565
size classes, 866
stack view icons, adding, 318
tab bars, 468
views, 261
animated, implementing,
277278
animation loops, adding,
264
animationDuration
property, 269
default, resetting, 635
replacing, 644-645
transformations in
Playground, 650-652
imperative programming, 74
implicit preferences, 540
actions, 554
creating, 555
key constants, 552
project setup, 552
reading, 557
sliders, 554
storing, 556-557
toggle switches, 554
import declaration, 79-80
importing files (Swift), 79
incrementCount method, 480
incrementCountFirst method, 490
incrementing
animation speed, 282-283
integers, 105
incrementSpeed method, 283
index values (arrays), 88

info light buttons, 243
Information Property List Key
Reference tutorial, 579
inheritance (OOP), 75
initial scenes
creating, 393-395
date pickers, 426
labels, setting, 401
unwinding back to, 398
initinterface method, 617
initNamed method, 278
initWithMediaTypes method, 729
initWithString method, 91
input/output
alerts. See alerts
buttons. See buttons
data detectors, 239
image views, 261
input mechanisms, 9-10
keyboards, hiding, 247-251
background touch,
249-250
code, adding, 250-251
Done button, 248-249
labels. See labels
Mad Libs-style story creator.
See Mad Libs-style story
creator
pickers. See pickers
Playground
displaying, 114
generating, 114
history, 114-115
scrolling, 297
enabling, 317-318,
322-323
freeform sizing, 321
icon resources, adding,
316
outlet, 322
pagination, 318
stack views, adding,
318-321
text view options, 241
width/height values, 323
segmented controls, 293
adding, 300
connecting to actions,
307-309

i0OS 6 versus i0OS 7
appearance, 301
outlets, 306
segments, configuring,
300-301
sizing, 302
sliders. See sliders
stack views, 297
adding, 318-321
horizontal, 319
icon images, adding, 318
vertical, 320
steppers, 260-261
animation loop speed,
269-270
outlets, 275
trigger action, 276
switches. See switches
System Sound Services,
337-339
text fields. See text, fields
touch. See touches
visual effect views, 261
web views. See web views
Inspector (Xcode Quick Help), 148
installing Xcode, 13-15

instances
defined, 76
methods, 76

UlLabel class, creating, 90
instantiateViewControllerWith
Identifier method, 381
instantiation, 76
integers (Int), 85, 86
classes, 136
incrementing/decrementing,
105
integration, 743
Contacts, 744
CNContactPickerView
Controller protocol, 765
contact selections,
handling, 766-768
Contacts framework,
746-748
Contacts Ul framework,
744-745
people picker, displaying,
745

iterating over collections 921

picker view, displaying,
766
user selections, handling,
745-746
email, 748-749
composition completion,
handling, 750, 772-773
composition view, 748
Mail compose delegate
protocol, conforming,
771
Mail compose window,
749
Message Ul framework,
749
messages, composing,
772
mapping, 753
annotations, 755-757,
770-771
display, controlling,
769-770
geocoding, 757-759
locations. See locations
Map Kit, 753
map views, adding, 753
regions, 754
Safari web browser, 752-753,
775
social networking, 750-752,
773774
interface (Xcode), 33-34
Interface Builder. See IB
interfaces. See Uls
interpolation, 87
Intrinsic Size setting (Auto
Layouts), 172
iOS Design Cheat Sheet by Ivo
Mynttinen website, 60
iOS devices. See devices
iPads
multitasking, 859
resolution, 7
iPhones
popovers, displaying, 405
resolution, 6
isAnimating property, 279
isAvailableForServiceType
method, 751
issue navigator, 52-55
iterating over collections, 106

922 Keyboard Type attribute

K

Keyboard Type attribute, 236
keyboards
display, editing, 236-237
hiding, 247-251, 401
background touch,
249-250
code, adding, 250-251
Done button, 248-249
file system preferences,
575
simulation, 66
keys
constants
implicit preferences, 552
settings bundles, 559
dictionaries, 89
accessing, 89
assigning/modifying, 89
.plist file, 782
iterating over, 106

L

labels, 224
animation speed output, 271
attributes, customizing, 174
blur effect, 561
buttons, editing, 342-343
cells, 502
custom pickers, 440
initial scenes setting, 401
master view controller
sections, 527
navigation items, 477
sliders, 267
tab bar items, 485-486
text
fields, adding, 233
orientation changes, 672
views, adding, 237
UlLabel class, 138
user output, 206
view controllers, 391
visual effects, editing, 272

Landscape Left screen orientation
constant, 586
Landscape Right screen
orientation constant, 586
landscape versus portrait
orientations, 620
lastName constant, 92
launch images/screens, 60, 856
launching. See starting
layouts
Auto Layout. See Auto Layouts
margins, 169
tables, 503-504
Uls, 165
Auto Layouts, 169-172
aligning, 167-168
arranging, 167, 169
constraints, 169
guides, 165-166
layout margins, 169
selection handles,
166-167
LetsNavigate app
action, 479
application logic
current count, displaying,
480-481
pushing scenes, 479-480
navigation controller
configuration, 472-473
outlet, 478
project setup, 471-472
running, 481
scenes, adding, 473-474
show segues, creating, 476
Ul design, 477
view controller
association, 473-474
classes, adding, 472
LetsTab app
actions, 487
application logic, 488
count button presses,
tracking, 488
counter updates,
triggering, 490
display updates with
counter values, 488-489
tab bar item badges,
updating, 489

outlets, 487
project setup, 482-484
running, 490
scene connections, 484-485
scenes, adding, 483
tab bar controllers,
adding, 483
Ul design, 485-486
view controller association,
483
libraries
Object, 162-163
adding objects to views,
164
deleting objects from
views, 164
displaying, 162
Xcode, 163
Library/Caches directory, 548
Library/Preferences directory, 547
life cycles (applications)
background-aware methods,
820-821
diagram, 132
tracing, 133
listings
3D Touch peek and pop,
adding, 631
adaptive segues, disabling,
406
alert action handlers, 334
animations
loading, 277-278
starting/stopping, 279
annotations
adding, 755
customizing, 756
applicationWillEnterForeground
method, 823
audio player
implementing, 722
playback, controlling, 723
recorded sounds, loading,
723
audio recorder
controlling, 721
implementing, 720
AV Audio Player playback
completion, 703

background fetches
completion, handling, 842
minimum fetch intervals,
defining, 841
background processing,
starting, 838
canBecomeFirstResponder
method, 651
chooselmage method, 725
CMMotionManager, 669, 680
contact picker selections,
handling, 767
controlHardware method, 681
Core Image filters, 708, 728
Core Location errors, 785
counter updates, 837
createStory method,
implementing, 252
data structures, populating,
525
date differences, calculating,
433-434
date pickers
first displayed default
calculation, 435
modal scenes, dismissing,
436
popover size, 437
describelnteger method, 883
detail view controller,
configuring, 532
doAcceleration method, 684
doActionSheet method, 351
doAlert method, 345
doAlertinput method, 349
doAttitude method, 683
doMultipleButtonAlert
method, 347
doRotation method, 685
doSound method, 354
doVibration method, 355
email composition completion,
handling, 750
ending background
processing, 838
exit points, 379
Facebook post, preparing,
751
foundPinch method, 647
foundRotation method, 649

foundSwipe method, 646
foundTap method, 645
geocoding
forward, 757
reverse, 758
Gestures app, image views,
replacing, 644
getFlower method, 312
heading updates, 788
audio feedback,
adding, 830
handling, 806
requesting, 802
headings to destinations,
calculating, 804
image pickers
cleanup, handling, 727
configuring/displaying, 706
selections, handling,
706, 726
incrementCount method, 480
incrementCountFirst
method, 490
incrementSpeed method, 283
initial scene labels to editor
scene field, setting, 401
interface orientations
changes, enabling, 617
interface rotations
activating, 587
disabling, 686
keyboards, hiding, 250,
401, 575
loading preferences upon
startup, 570
loading/playing sounds, 338
local notifications
authorization requests,
825
registering, 826
location managers
distance calculations, 795
errors, handling, 794
instance, creating, 793
location updates, receiving,
783
mail compose view, 772-773
Mail compose window, 749

listings 923

maps
annotations, customizing,
771
centering, 769
media pickers
displaying, 732
selections, handling, 696
setup/display, 695
motionEnded:withEvent
method, 653
music player
playing music, 734
preparations, 731
selections, handling,
733-734
newBFF method, 766
NSLog function, calling, 879
orientation changes
responding, 674
updates, registering, 673
people picker
cancel action, 745
drilling down, 746
person selection,
handling, 746
picker data source
protocol, 420
picker delegate protocol, 421
picker views
custom views, 423, 447
data, loading, 445
modal segues, dismissing,
451
number of components,
445
number of elements per
component, 446
popovers, dismissing, 451
popovers
dismissal, 386
presentation controller
delegate, 406
size, 403
preferences, updating, 557
preferredStatusBarStyle
method, 284
prepareForSegue method, 387
Quick Action events,
handling, 846
recent locations, storing, 803

listings

responsive interfaces
button touches, 621
drawing upon launching,
620
objects, initializing, 618
rotations, handling, 621
updating, 619
Safari web views, opening,
775
screen space changes,
reacting, 589
scrolling, enabling, 323
segue navigation event
handling, 531
setBackgroundHueValue
method, 555-556
setOutput method, 217
setSpeed method, 280
setValuesFromPreferences
method, 569
sound file references,
initializing, 829
status bar appearance,
776, 797
storeSurvey method, 576
survey results, displaying, 577
Swift class file, 7879
class declaration, 80
constant declaration, 81
ending, 83
IBOutlet declaration, 81
import declaration, 79-80
method declarations,
82-83
variable property
declarations, 80-81
tab bar item badges,
updating, 489
tables. See tables
tap gesture recognizer,
adding, 629
text fields, populating, 400
timers, initializing, 836
toggleFlowerDetail method,
311
tweet compose view, 774
Ul editing, disabling, 530
UlActionSheet class,
implementing, 335

UlAlertController object,
implementing, 331-333
unwind segue placeholder,

393
updateCounts method, 488
user location authorization,
768
video player
cleanup, 718
loading/preparing, 717
playback completion,
handling, 701
view controller first
responders, 653
view picker selections
components/row sizes,
448
default, 450
displaying, 448-450
reacting, 449-450
ViewController.swift
connections, 206
outlets/actions, 276
viewDidLoad method, 44,
314, 883
viewWillAppear:animated
method, 480
watchpoints, configuring, 890
lidb, 881-882
activity to monitor,
adding, 883
breakpoints
configuring, 885-886
navigator, 893
Continue to Here, 890
CPU/memory usage,
monitoring, 895
navigators, 893-894
breakpoints, 893
debug, 893-894
source code line numbers,
883
stepping through code,
888-890
variables
examining, 887
lists, accessing, 892
values, editing, 887
view hierarchy, displaying,
896-897

watchpoints, 890-891
Xcode gutter, 883
loadMovie method, 717
loadRequest method, 313
Local Authentication
framework, 132
local notifications
authorization, requesting,
824-825
creating, 826-827
properties, 825
scheduling, 814-815, 827
LocateMe Apple tutorial, 808
location managers, 782
delegate protocol, 782-784
distance calculations,
795-796
headings, 787-789
instances, creating, 793-794
locations. See Core Location,
locations
preparing, 793
locationManager:didFailWithError
method, 785, 794
locationManager:didUpdate
Heading method, 788
locationManager:didUpdate
Locations method, 795
locationManager:didUpdateTo
Locations method, 783
locationManager:ShouldDisplay
HeadingCalibration method, 789
locations
Core Location. See Core
Location
data storage, 547-548
displaying, 768-769
distance calculations,
795-796
errors, handling, 794
recent, storing, 803-804
retrieving
accuracy, 783, 786
authorization, requesting,

782
battery life, 787
errors, 783

location managers, 782

.plist keys, 782

updates, receiving,
782-784

simulated, configuring, 798
updates, filtering, 786
locations (maps), 760-761
Lock command (Xcode Hardware
menu), 65
logic problems, 52
long pressing gesture class, 628
long-running background
tasks. See task completion
backgrounding
loops, 105
for, 105-106
animation. See animations,
looping
condition-based, 106-107
low-pass filters, 687

Mad Libs-style story creator, 225
action, creating, 246-247
application logic,

implementing, 251-252
button templates, creating,
227-232
images, adding, 227-228
slices, creating, 228-231
connections, 227
createStory method,
implementing, 252
keyboard, hiding, 247-251
background touch,
249-250
code, adding, 250-251
Done button, 248-249
outlets, connecting, 245-246
Playground, testing, 251
project setup, 226
running, 252
Ul design
buttons, 241-243
custom button images,
configuring, 243-245
plain versus attributed text,
235
scrolling options, 241

simulated screen size,
232
text field attributes,
editing, 233-235
text fields, adding,
232-233
text input traits, 236-237
text view attributes,
editing, 238-239
text views, adding, 237
variables, planning, 227
magnetic compass
direction image resources,
799
headings
to destinations,
calculating, 804-805
updates, handling, 802,
805-807
recent locations, storing,
803-804
magnetic north, 787
Mail compose view controller, 749
delegate, 750
delegate protocol,
conforming, 771
mailComposeController:didFinish
WithResult method, 771
mailComposeController:didFinish
WithResult:error method, 750
Map Kit framework, 123,
126, 753
map views, adding, 753
mapping, 753
annotations, 755-757
adding, 755
customizing, 756-757,
770-771
deleting, 756
audio directions, 828
audio files, adding, 828
AudioToolbox framework,
adding, 828
background modes, 832
heading update audio
feedback, adding,
830-831
sound file references,
initializing, 829
system sound ID variables,
829

master view controllers 925

Core Location, 781
display, controlling, 769-770
distance calculations,
795-796
errors, handling, 794
geocoding, 757-759
forward, 757-758
Playground, 759-760
reverse, 758-759
geographic north versus
magnetic north, 787
headings, 787-789
LocateMe Apple tutorial, 808
locations, 760-761
accuracy, 783, 786
authorization, requesting,
782
battery life, 787
errors, 784-786
location managers, 782
.plist keys, 782
recent, storing, 803-804
simulated, configuring,
798
updates, 782-784, 786
magnetic compass
heading updates, handling,
802, 805-807
headings to destinations,
calculating, 804-805
recent locations, storing,
803-804
Map Kit, 753
map views, adding, 753
regions, 754
user locations, displaying,
768-769
MARK comments, 47
Markdown documentation,
101-102
master scenes
sharing information with detail
scenes, 509
updating, 522
master view controllers, 527
editing, disabling, 529-530
number of section rows,
retrieving, 527
number of sections,
retrieving, 527
section labels, 527

926 master view controllers

segue navigation events,
handling, 530-531
table cells, creating, 528-529
table view data source
methods, 527-528
Master-Detail Application
template, 509, 519
MasterViewController class, 527
media
AddMusic Apple tutorial, 736
audio playback
controlling, 723
implementing, 722-723
recorded sounds, loading,
723-724
audio recorder
controlling, 721-722
implementing, 720-721
microphone prompt, 722
AV Audio Player
audio files, playing, 702
customizing, 736
playback completion,
handling, 703
playback controls, 702
AV Audio Recorder, 703-705
AV Foundation/AV Kit
frameworks, 698-699
Core Image, 707
filters, 708-709
Programming Guide, 736
files, adding, 710
formats supported, 699
frameworks. See frameworks
images. See images
items
accessing, 697-698
media picker selections,
handling, 696
music player
empty selections,
handling, 733-734
media picker, displaying,
732-733
media picker preparations,
730
playing music, 734-735
playlist, creating, 733
preparations, 730-731

pickers. See pickers, media
video player. See video player
Media Player framework, 694
classes, 694
media items, accessing,
697-698
media pickers
configuring, 694-695
displaying, 695
filters, 695
iPad popover enforcement,
707
selections, handling, 696
media player, 697
mediaPickerDidCancel
method, 696
mediaPicker:didPickMedialtems
method, 696
MediaPlayground app
actions, 715
audio playback
controlling, 723
implementing, 722-723
recorded sounds, loading,
723724
audio recording
audio recorder,
implementing, 720-721
controlling, 721-722
Core Image filters, applying,
728729
image pickers
cleanup, handling,
726-727
displaying, 725-726
preparing, 724
selections, handling, 726
music library access
empty selections,
handling, 733-734
media picker, displaying,
732-733
media picker preparations,
730
playlist, creating, 733
preparations, 730-731
outlets, 715
playing music, 734-735

project setup, 710
frameworks, adding, 710
media files, adding, 710
variables/connections,

planning, 710-711

Ul design, 711-713

video player
cleanup, handling, 718
implementing, 716
movie playback, 717-718

memory

constraints, 9

management
ARC (Automatic Reference

Counting), 110-111
objects, removing,
110111
usage, monitoring, 895
warning simulation, 66
Message Ul framework, 126, 749
Metal framework, 8, 128
methods
See also functions
addTextFieldWithConfiguration
Handler, 333
append, 88
applicationDidBecomeActive,
821
applicationDidEnter
Background, 133, 821
application:didFinishLaunching
WithOptions, 821, 824
application:performActionFor
Shortcutltem, 846
application:performFetchWith
CompletionHandler, 842
applicationWillEnter
Foreground, 821, 823
applicationWillResignActive,
821

applicationWillTerminate, 821

availableData, 550

background-aware, 820-821

beginBackgroundTaskWith

ExpirationHandler, 816
beginGeneratingDevice

OrientationNotifications, 667
boolForKey, 557
calculateDateDifference, 433

canBecomeFirstResponder,
651
chaining, 98-99
chooselmage, 725
closures, 101
composeViewControllerFor
ServiceType, 751
contactPickerDidCancel, 745
controlHardware, 681
convenience, 91
convenience initialization,
278, 295
countUp, 837
createFlowerData, 525
createStory, 246-247, 252
dataUsingEncoding, 550
declaring, 82-83
describelnteger, 883
detailltem, 532
didSelectContact, 745
didSelectContactProperty, 746
dismissDateChooser, 436
dismissViewController
Animated, 378
doAcceleration, 684
doActionSheet, 351
doAlert, 345
doAlertinput, 349
doAttitude, 683
doMultipleButtonAlert, 347
doRotation, 685
doSound, 354
doVibration, 355
earlierDate, 137
endBackgroundTask, 816
fileExistsAtPath, 549
fileHandleForReadingAtPath,
550
fileHandleForUpdatingAtPath,
550
fileHandleForWritingAtPath,
550
finding in code, 43
floatForKey, 557
foundPinch, 647
foundRotation, 649
foundSwipe, 646
foundTap, 629, 645
functions, compared, 198
getFlower, 312

handleButton, 621
imagePickerControllerDid
Cancel, 707, 726
imagePickerController:did
FinishPickingMediaWithInfo,
706, 726
incrementCount, 480
incrementCountFirst, 490
incrementSpeed, 283
initinterface, 617
initNamed, 278
initWithMediaTypes, 729
initWithString, 91
instance, 76
instantiateViewControllerWith
Identifier, 381
isAvailableForServiceType,
751
loadMovie, 717
loadRequest, 313
locationManager:didFailWith
Error, 785, 794
locationManager:didUpdate
Heading, 788
locationManager:didUpdate
Locations, 795
locationManager:didUpdateTo
Locations, 783
locationManager:Should
DisplayHeadingCalibration,
789
mailComposeController:did
FinishWithResult, 771
mailComposeController:did
FinishWithResult:error, 750
Markdown documentation,
101-102
mediaPickerDidCancel, 696
mediaPicker:didPickMedia
ltems, 696
motionEnded:withEvent, 653
multiple return values, 100
mylnstanceMethod, 95
named parameters, 98
newBFF, 766
numberOfComponentsin
Picker, 445
numberofComponentsinPicker
View, 420

methods 927

numberOfSectionsinTable
View, 503, 515
openWeb, 775
orientationChanged, 674
parameters, 76
picker view delegate protocol,
422-424
pickerView:didSelectRow:in
Component, 421, 448
pickerView:numberOfRowsIn
Component, 420, 446
pickerView:rowHeightFor
Component, 422, 448
pickerView:titleForRow:for
Component, 421
pickerView:viewForRow:for
Component:reusingView,
446
pickerView:viewForRow:view
ForComponent:ReusingView,
422
pickerView:widthFor
Component, 422, 448
playAudio, 723
playMovieFinished, 718
playMusic, 734
preferredStatusBarStyle, 284
prepareForSegue, 387, 406
presentViewController, 382
previewingContext:commitView
Controller, 631
previewingContext:view
ControllerForLocation, 631
recordAudio, 720
registerForPreviewingWith
Delegate:sourceView, 631
registerUserNotification
Settings, 815
removeConstraints, 634
schedulelLocalNotification,
815, 827
sendEmail, 772
sendTweet, 774
setBackgroundHueValue, 556
implementing, 555
switches/sliders,
connecting, 554
setDisplayName, 101
setMinimumBackground-
Fetchinterval, 842

928 methods

setOutput, 217
setQueueWithltemCollection,
697, 730
setSpeed, 280
setToRecipients, 749
setValuesFromPreferences,
569
showAddress, 769
showResults, 577
startUpdatingHeading, 787
stopDeviceMotionUpdates,
670
stopUpdatingLocation, 782
storeSurvey, 576
storyboardWithName, 381
stringFromDate, 431
stubs, 187
supportedinterface
Orientations, 586, 616
syntax, 96-97
systemMusicPlayer, 730
table view data source, 503,
527-528
tableView:canEditRowAtindex
Path, 530
tableView:cellForRowAtindex
Path, 503, 516, 528
tableView:didSelectRowAt
IndexPath, 505
tableView:numberOfRowsIn
Section, 503, 515
tableView:titleForHeaderIn
Section, 503, 515
timelntervalSinceDate, 432
titleForSegmentAtindex, 293
toggleAnimation, 279
toggleFlowerDetail, 311
type, 76
updateBadge, 489
updateCounts, 488
updateEditor, 401
updatelLayoutWithScreen
Width:screenHeight,
619-620
valueForProperty, 697
viewDidLoad, 44, 314
viewWillAppear, 400
viewWillAppear:animated, 480

viewWillTransitionToSize:with
TransitionCoordinator,
589, 621
whiteColor, 555
writeData, 550
MFMailComposeViewController
Delegate, 771
microphone prompt (audio
recording), 722
mixing code development
methodology, 194
mm date format, 432
MMMM: date format, 432
modal segues, 371-373
creating, 396-398
date pickers, 436
dismissing, 450-451
manually triggering, 377-378
modal Ul elements, 331
modal views, 363
ModalEditor app
3D Touch peek and pop
gestures, adding, 655-657
actions, 399
application logic, 400-401
emailField text field,
populating, 400
initial scene label to editor
scene field, setting, 401
keyboard, hiding, 401
editor scenes, creating,
395-396
EditorViewController class,
adding, 389
initial scenes, creating,
393-395
modal segues, creating,
396-398
outlets, 399
popover segues, configuring,
402-404
project setup, 389
running, 401
Ul design, 393-396
universal app, creating,
404-407
unwinding back to initial
scene, 398

view controllers
adding, 390
associations, 391
exit preparations, 393
labels, 391
Model-View-Controller. See MVC
momentum, 687
monitoring CPU/memory
usage, 895
motion
acceleration data, handling,
683-684
accelerometers, 663-665
1g of force on devices at
rest, 665
acceleration data, 665
attitude, 665
measurable axes, 664
attitude data, handling,
682-683
Core Motion, 130, 668-670
CMMotionManager,
configuring, 669-670
motion manager,
initializing, 680-681
motion updates, receiving,
669
gyroscopes, 663, 666-667
attitude data, handling,
682-683
radians per second, 666
high-pass filters, 687
interface-orientation changes,
disabling, 685-686
low-pass filters, 687
momentum, 687
Newton’s laws of motion
website, 687
operations queues, 670
orientation. See orientations
radians to degrees
conversion, 677
rotations, handling, 684-685
updates, monitoring, 681-682
motionEnded:withEvent
method, 653
Movable Type Scripts latitude/
longitude functions
documentation website, 808

movies
playback, implementing,
717-718
playback cleanup, 718
video player
external device playback/
AirPlay support, 700
loading/displaying movies,
699-700
playback completion,
handling, 701-702
playback controls, 701
screen placement, 700
MPMedialtem class, 694
MPMedialtemCollection
class, 694
MPMusicPlayerController, 694
MPPediaPickerController
class, 694
multi value preferences, 545
multibutton alerts, creating,
346-348
multiple storyboards, 857
multiscene storyboards, 362
actions, 399
editor scenes, creating,
395-396
initial scenes, creating,
393-395
ModalEditor app. See
ModalEditor app
moving backwards, 378-380
connecting to exits,
379-380
exit preparations, 378-379
naming scenes, 366
outlets, 399
passing data between scenes,
386-388
scenes, adding, 364-365
segues
creating, 368-371
manually creating
popovers, 383-386
manually triggering,
377-378
modal, 371-373, 396-398
popover, 373-377,
402-404

programming from scratch,
380-383
transitions, 372-373
terminology, 363
Ul design, 393-396
unwinding back to initial
scenes, 398
view controllers, 367-368,
458
multitasking. See backgrounding
multitouch events (i0S Simulator),
64
multitouch gesture
recognition, 627
3D Touch peek and pop
adding, 631-632
editor screen, 655-657
implementing, 654-655
overview, 630-631
table views, 657-659
testing, 633
built-in gestures, 641
image views
replacing, 644-645
resetting to default, 635
outlets, 642
recognizers, adding
adding, 628-629
classes, 628
pinch, 640-641
rotation, 641
shake, 651-653
swipe, 639-640
tap, 638-639
responding to gestures
actions, 642-644
pinching, 646-649
rotations, 649-650
shake, 653
swipe, 646
tap, 645-646
SimpleGestureRecognizers
tutorial, 659
swipes, 627
views, creating, 636-637
music library
accessing
empty selections,
handling, 733-734

names 929

media picker, displaying,
732-733
media picker preparations,
730
playlist, creating, 733
preparations, 730-731
filter, 695
playing music, 734-735
mutators, 81
MVC (Model-View-Controller),
23, 193
application parts,
defining, 194
data models, 198
further exploration, 218
HelloNoun app, 203-205
Single View Application
template, 200
application logic,
implementing, 216-217
class files, 202-203
interface objects, adding,
209-212
project, setting up,
201-202
simulated interface
attributes, 208
variable properties,
205-206
view/view controller
connection, 212-215
view controllers
IBAction, 198
IBOutlet directive, 197
implementing, 196
views, implementing, 195-196
mylnstanceMethod method, 95
myName string, 87
myOptionalString variable, 95

named parameters, 98
names
objects with connected
outlets, 215
Playgrounds, 112
scenes, 366

930 names

Simulator, 69

storyboard scenes, 160
navigation, 459

action, 479

negative g-force, 664 local

New, Playground command authorization, requesting,
(Xcode File menu), 111 824-825

New, Tab command (Xcode File creating, 826-827

adding, 461-462 menu), 49 properties, 825

additional features, 491 New Project command (Xcode File scheduling, 814-815, 827
Apple tutorial, 491 menu), 30 orientation changes, 667-668,
application Ul design, 477 newBFF method, 766 673

bars, 460
bar button items, 460
customizing, 462-463
defined, 460
item attributes, 462-463
navigation items, 460

Newsstand framework, 130

Newton’s laws of motion
website, 687

NeXTSTEP platform, 125

nonbridged data types, 136

north (maps), 787

remote, 815
sounds/vibrations, 337-338
video player playback
completion, 701-702
nowPlayingltem property, 697
NSDate class, 137

code, 43 not equal (!=) expression, 103 NSLog function, 878-879
configuring, 472-473 Notification Center framework, calling, 879
counters, 480-481 127 output, displaying, 879-880

notifications

data sharing, 464
delegate, 707
items, 460
attributes, 462-463
Uls, adding, 477
LetsNavigate project setup,
471-472
outlet, 478
pushing/popping, 459,
479-480
scenes, adding, 463,
473-474
show segues, creating, 475
view controller
association, 473-474
classes, adding, 472
Xcode
documentation, 144-146
projects, 34-35
Navigator (Playground),
displaying, 117
navigators (Xcode), 33
code searches, 45-46
debugger, 893-894
breakpoints, 893
debug, 893-894
methods/properties,
finding, 43
project navigation, 34-35
Navigators, Show Navigator
command (Playground View
menu), 117
negation (!) expression, 103

alerts

actions, 333-334

buttons, 332-333

example, 331

fields, adding, 349-350

implementing, 331-333,
345-346

multibutton, creating,
346-348

Playground, 336-337

sounds/vibrations,
339-340

text fields, adding, 333

GettingAttention app

action sheets,
implementing, 350-352

actions, 344-345

alert sounds with
vibrations, 354-355

alerts, implementing,
345-346

fields in alerts, adding,
349-350

multibutton alerts,
creating, 346-348

outlet, 343

project setup, 340

sound resources, adding,
340

Ul design, 342-343

print function, compared, 878

NSOperationQueue, 670
NSURL class, 137, 295
NSURLRequest class, 295
NSUserDefaults class, 543
numberOfComponentsinPicker

View method, 420, 445
numberOfSectionsinTableView

method, 503, 515

o

Object Library, 162-163
displaying, 162
objects
adding to views, 163-164
deleting from views, 164
object-oriented programming.
See OOP
objects
application, 134
built-in actions, 185
declaring/initializing, 90
defined, 76
document outline, 161
dragging, 215
identities, configuring,
187-188
installed size classes,
862-863

names, 215
personinformation, 101
pinning, 171
removing from memory,
110111
responsive interfaces
defining, 617
initializing, 617-618
variable properties,
retrieving, 81
onscreen controls, 135
OOP (object-oriented
programming)
classes, 75
constants, 76
extensions, 76
inheritance, 75
instances, 76
instantiation, 76
methods
instance, 76
type, 76
objects, 76
overview, 74-75
parameters, 76
protocols, 76
self, 77
singletons, 76
subclasses, 75
superclasses, 75
variable properties, 76
variables, 76
OpenGL, 8
OpenGL ES framework, 128
openWeb method, 775
operations queues, 670
opinionated software, 539
optional values
accessing, 94-95
binding, 95
chaining, 99
declaring, 94
downcasting, 88-96
overview, 93-94
OR (||) expression, 103
Orientation app, 671
application logic, 672-675
orientation changes,
responding, 673-675
orientation updates,
registering, 673

interface design, 671
label text outlet, 672
project setup, 671
orientationChanged method, 674
orientations
devices
changes, responding,
673-675
controls, repositioning,
867
label text changes, 672
notifications, requesting,
667-668
portrait versus landscape,
620
sensing, 670
size class representations,
858
updates, registering, 673
interface-related
Auto Layout, 588
disabling changes,
685-686
enabling changes,
586-588, 616
handling changes, 621
programming in code, 589
rotation, activating, 587
size classes, 590
views, swapping, 590
outlets
animation loops, 274-275
BackgroundDownload app,
841
BestFriend app, 764
ColorTilt app, 679
connections, creating,
181-182
Cupertino app, 792
Cupertino Compass app, 801
CustomPicker app, 444
date picker initial scene, 430
defined, 181
delegate/data source,
connecting, 513-514
direct file system access, 574
gestures, 642
ImageHop app, 264
label text orientation, 672
MediaPlayground app, 715

people pickers 931

ModalEditor app, 399
navigation controllers, 478
scrolling views, 322
segmented controls, 306
sliders, 275, 554
SlowCount app, 836
steppers, 275
tab bar controllers, 487
text fields/text views,
connecting, 244-246
toggle switches, 554
user output label, 343
view controller variable
properties, 205-206
view to view controller
connections, 213-215
web views, 306, 523
Xcode object naming, 215
outputLabel outlet, 430

P

page sheet modal segue, 372
pagination, 318
panning gesture class, 628
parameters
defined, 76
named, 98
parent classes, 75
parenthesis (), autocompleting,
45
partial vurl transitions, 372
passing data between scenes,
386-388
PassKit framework, 130
passthrough views (popovers),
376-377
pause method, 730
peek and pop gestures
adding, 631-632
editor screen, 655-657
implementing, 654-655
overview, 630-631
table views, 657-659
testing, 633
people pickers
cancel action, 745
contact selections, 766-768

932 people pickers

delegate protocol, 765

displaying, 745, 766

drilling down, 746

user selections, handling,

745-746

personinformation object, 101
Photos framework, 128
Photos Ul framework, 128
pickers, 417

custom, 437, 444
actions, 444
chooser scene, 441-442
component constants, 440
component/row sizes, 448
data, loading, 444-445
data source protocol,
implementing, 445-446
image resources, adding,
439
initial scene, 441
labels, 440
outlet, 444
picker view data
source/delegate,
442-443
project setup, 438-440
scenes, adding, 439
segues, 443
toolbar, adding, 440
Ul design, 440-443
view controller association,
439
view controller class,
adding, 439
data source, 442-443
date. See date pickers
delegates
custom picker, 442-443
protocol, implementing,
446-448
height/width components/
rows, 422
images. See images, pickers
media
configuring, 694-695
displaying, 695, 732-733
filters, 695
iPad popover enforcement,
707

music players, preparing,
730
selections, handling, 696
number of components,
returning, 445
number of elements per com-
ponent, returning, 446
people picker
cancel action, 745
displaying, 745, 766
drilling down, 746
person selection, handling,
745
user selections, handling,
745-746
segues
modal, dismissing,
450-451
popovers, 451
selections
default, 450
displaying, 448-449
reacting, 449-450
spinning, 452
UlDatePicker/UlPicker
classes, 140
views, 419
customizing, 423-424
data source protocol,
420-421
delegate protocol,
421-422
pickerView:didSelectRow:
inComponent method, 421, 448
pickerView:numberOfRowslIn
Component method, 420, 446
pickerView:rowHeightFor
Component method, 422, 448
pickerView:titleForRow:
forComponent method, 421
pickerView:viewForRow:
forComponent:reusingView
method, 446
pickerView:viewForRow:viewFor
Component:ReusingView
method, 422
pickerView:widthForComponent
method, 422, 448

pinch gesture
class, 628
recognizer
adding, 640-641
responding, 646-649
pinning, 171, 603
placeholder text, 234
plain tables, 498
plain text, 235
play method, 730
playAudio method, 723
playback (media player), 697
playbackState property, 697
player property, 716
Playground, 111
alerts, 336-337
animation loops, 281-282
Cocoa Touch classes, 137
code, entering, 113
creating, 111-112
data storage, 550-551
date pickers, 435-436
displaying, 112
FieldbuttonFun app, testing,
251
geocoding, 759-760
names, 112
Navigator, displaying, 117
output
displaying, 114
generating, 114
history, 114-115
timelines, 116
resources, 117
run modes, switching, 117
transformations, 650-652
troubleshooting, 116
variable contents, displaying,
113114
web views, testing, 296-297
playing
audio. See audio
movies/video. See movies;
video
music, 734-735
empty selections,
handling, 733-734
media picker, displaying,
732-733

media picker preparations,
730
playlist, creating, 733
sounds, 338
system sounds, 353-354
playMovieFinished method, 718
playMusic method, 734
.plist files
keys, 782
Quick Actions
adding, 818
configuring, 844-845
podcasts filter, 695
popovers, 373-377
action sheets, 352
anchors, 376
appearance, troubleshooting,
405
configuring, 402-404
creating, 374-375
date pickers, 437
dismissing, 385-386
iPhones, displaying, 405
outside touch dismissal, 452
presentation controller
accessing, 383
delegates, 406
presentation directions/
passthrough views,
376-377, 384-385
Presentation segues, 370
sizing, 375-376, 385, 403,
451
source location, 384
UlPopoverPresentation
Controller class, 141
universal app, creating,
404-407
populating
data structures, 525-526
tables, 504-505, 514
text fields, 400
Portrait screen orientation
constant, 586
Portrait Upside-Down screen
orientation constant, 586
portrait versus landscape
orientations, 620

positioning
bar button items, 416
objects on guides, 165-166
posting to social networking sites,
750-752
preferences
Apple Settings application,
540-541
benefits, 540
direct file system access. See
direct file system access
further exploration, 579
implicit. See implicit
preferences
loading upon startup, 570
opinionated software, 539
Playground, 550-551
settings bundles. See settings
bundles
types, 544
user defaults, 543-544
Preferences, Text Editing, Editing
command (Xcode), 45
Preferences menu commands
(Xcode), 45
preferredContentSize
property, 437
preferredStatusBarStyle
method, 284
prepareForSegue method,
387, 406
Present Modally segues, 370
presentation directions (popovers),
376-377
presentViewController method,
382
previewing Uls, 176-178
previewingContext:commitView
Controller method, 631
previewingContext:viewController
ForLocation method, 631
print functions versus NSLog, 878
procedural programming, 74
processors, 8
projects
animation resources, adding,
263
configuring as universal, 854

protocols 933

creating, 30-32
product names/
organization names/
identifiers, 31-32
templates, 30-31
files, deleting, 37-38
filtering, 35
groups, 35
navigating, 34-35
new code files, adding, 35-36
properties, managing, 55
resources
adding, 36-37
deleting, 37-38
saving, 32
SimpleGestureRecognizers
tutorial, 659
UlCatalog Apple sample, 254
.xcodeproj file extension, 32
properties, 76
allowsExternalPlayback, 700
animationDuration, 269, 278
animationlmages, 278
audioPlayer, 722
audioRecorder, 720
backgroundColor, 555
count, 89
declaring, 80-81
desiredAccuracy, 786
distancefFilter, 786
finding in code, 43
headingFilter, 787
isAnimating, 279
local notifications, 825
nowPlayingltem, 697
playbackState, 697
preferredContentSize, 437
pushCount, 479-480
retrieving, 81
setdateFormat, 431
splitViewController, 509
UlDeviceOrientation, 667-668
variables, compared, 197-198
video playback, 698
Xcode projects, managing, 55

protocols, 80

data source
custom picker views,
implementing, 445-446
tables, 503-505

934 protocols

defined, 76
delegate
custom picker views,
implementing, 446-448
tables, 505-506
image picker, 724
location manager delegate,
782-784
Mail compose delegate,
conforming, 771
picker views
data source, 420-421
delegate, 421-422
table view data source
numberofSectionsinTable
View method, 515
tableView:cellForRowAt
IndexPath method, 516
tableView:numberOfRowsIn
Section method, 515
tableView:titleForHeaderIn
Section method, 515
table view delegate, 517-518
UlPopoverPresentation
ControllerDelegate, 385
prototype cells, configuring,
501, 512
provisioning profiles
multiple devices, 7
overview, 15-16
viewing, 21
pushCount property, 479-480
pushing scenes, 479-480

Q

Quartz Core framework, 129
question marks (?), 94, 748
Quick Actions, 817-819
defining, 818-819
events, handling, 846-847
icons, 819, 844
.plist file configuration,
844-845
responding, 819

Quick Help (Xcode), 147
Inspector, 148
results, 148-149
Quick Help command (Xcode Help
menu), 147
Quick Inspector, 185-186
Quick Look framework, 131
quitting applications, 218

radians per second, 666
radians to degrees conversion,
677
range attributes
sliders, 268-269
steppers, 270
reading
data, 549-550
preferences, 557
user defaults, 543-544
Reboot command (Xcode
Hardware menu), 65
recent locations, storing, 803-804
recordAudio method, 720
recording audio, 703-705
controlling, 721-722
implementing, 720-721
microphone prompt, 722
recovering Simulator crashes, 67
regions (maps), 754
registerForPreviewingWithDelegat
e:sourceView method, 631
registerUserNotificationSettings
method, 815
remote notifications, 815
removeConstraints method, 634
repeatinterval property, 825
repeat-while loops, 106-107
resetting Simulator, 63
resolution
iPads, 7
iPhones, 6
scaling, 7
resources
animation, adding, 263
icon, 316

images
custom pickers, adding,
439
direction, 799
Gestures app, 635
settings bundles, 560
split view controllers,
adding, 520
tables, adding, 510
Playground, 117
sound, adding, 340
Xcode projects

adding, 36-37
deleting, 37-38
responding

acceleration data, 683-684
attitude data, 682-683
device rotations, 684-685
gestures
pinching, 646-649
rotations, 649-650
shake, 653
swipe, 646
tap, 645-646
screen orientation changes,
673-675
table touches, 505-506
UIResponder class, 135
responsive interfaces
AllinCode app, 616-617
Auto Layout, 588, 590
buttons
centering, 604-606
touches, handling, 621
variable/size matching,
612-614
controls, expanding, 607-612
constraints, configuring,
609-612
interface, creating,
607-608
drawing upon launching, 620
interface orientation changes,
enabling, 586-588
objects
defining, 617
initializing, 617-618
orientation changes, enabling,
616

portrait versus landscape
orientations, 620
programming in code, 589
rotations
activating, 587
handling, 621
size classes, 590
update method, implementing,
619-620
views, swapping, 590
results, storing, 576-577
Retina assets, 40-42
Return Key attribute, 236
return values (methods), 100
ReturnMe app
application logic, 569-570
project setup, 559-560
image resources, 560
key constants, adding,
559
running, 570
settings bundle, creating,
562-568
About, 566-568
Contact Information group,
565
Sympathy Image, 563-565
ul, 560-561
reverse geocoding, 758-759
rich media. See media
rotations
devices
handling, 684-685
simulation, 64

gestures
adding, 641
class, 628

responding, 649-650
interfaces, 685-686
rows (tables)
counts, 503-504, 515
selections, handling, 517-518
run modes (Playground), 117
running
animation loops, 284
applications
build process, 51
development provisioning
profiles, 15-16

device configuration, 16-18

iOS Simulator, 51

Welcome app, 19-21

what happens on devices,
17-18

S

Safari web browser
access, 752-753
URLs, opening, 775
Sample Code (Xcode
documentation), 144
sandbox, 546-547
saving Xcode projects, 32
scaling
resolution, 7
web views, 305
scenes
custom pickers, adding, 439
date pickers
creating, 428-429
initial/date chooser,
configuring, 426
defined, 363
detail, 523
dock, 162
editor, creating, 395-396
hierarchy, 158
initial
configuring, 205
creating, 393-395
labels, setting, 401
unwinding back to, 398
master, updating, 522
multiscene storyboards, 362
names, 160, 366
navigation. See navigation,
459
pushing, 479-480
segues. See segues
split view controller, 465, 509
tab bars. See tab bars
transitions, 372-373
views, compared, 196
scheduleLocalNotification method,
815, 827

scrolling 935

scheduling local notifications,
814-815, 827
screen-edge panning gesture
class, 628
screens
defaults, 162
graphics, 8
orientations
Auto Layout, 588
enabling changes,
586-588, 616
handling changes, 621
label text changes, 672
notifications, requesting,
667-668
portrait versus landscape,
620
programming in code, 589
responding to changes,
673-675
repositioning controls, 867
size classes, 590, 858
updates, registering, 673
views, swapping, 590
resolution
iPads, 7
iPhones, 6
rotations
activating, 587
handling, 684-685
scaling, 7
sizes, 8, 232
video player placement, 700
Scroller app
icon resources, adding, 316
outlet, 322
running, 323-324
scrolling, enabling, 322-323
setting up, 316

ul
scroll views, adding,
317-318
stack views, adding,
318-321
scrolling, 297

Apple tutorial, 324
enabling, 317-318, 322-323
freeform sizing, 321

icon resources, adding, 316
outlet, 322

936 scrolling

pagination, 318
stack views, adding, 318-321
text view options, 241
width/height values, 323
SDK Guides, 144
searching
code, 45-46
Xcode documentation,
143-144
sections
master view controllers
labels, 527
number of, retrieving, 527
row counts, returning, 527
tables
configuring, 503-504
constants, adding, 511
headings, 515
number, returning, 515
row counts, returning, 515
Secure attribute, 236
security
ATS, 311
framework, 132
local notifications, 824-825
user locations, 768-769, 782
segmented controls, 293
adding, 300
Apple tutorial, 324
connecting to actions,
307-309
iOS 6 versus i0OS 7
appearance, 301
outlets, 306
segments, configuring,
300-301
sizing, 302
UlSegmentedControl class,
139
segments, configuring, 300-301
segues, 368
adaptive, disabling, 406
creating, 368-371
CustomPicker app, 443
date pickers, 429, 436-437
defined, 363
manually triggering, 377-378
dismissing, 378
starting, 377-378

modal, 371-373
creating, 396-398
date pickers, 436
dismissing, 450-451
ModalEditor app. See
ModalEditor app
navigation events, handling,
530-531
peek and pop gestures,
adding, 654-655
picker views
modal, dismissing,
450-451
popovers, 451
popovers. See popovers
programming from scratch,
380-383
displaying view controllers,
382
instantiating view
controllers, 381
segue styles, 382
storyboard identifiers, 381
show
creating, 476
navigation scenes, 463
styles, configuring, 382
transitions, 372-373
types, 370
unwind, 379-380, 397-398
selection handles, 166-167
selections (picker views)
default, 450
displaying, 448-450
reacting, 449-450
self, 77
sendEmail method, 772
sending tweets, 773-774
sendTweet method, 774
services integration. See
integration
setBackgroundHueValue
method, 556
implementing, 555
switches/sliders, connecting,
554
setdateFormat property, 431
setDisplayName method, 101
setMinimumBackground
Fetchinterval method, 842

setObject:forKey function, 543
setOutput method, 217
setQueueWithltemCollection
method, 697, 730
sets (Swift), 88
setSpeed method, 280
setters, 81
Settings application, 540-541
settings bundles, 544-546
adding, 544
creating, 562-568
child preference pane,
566-568
image selector
preferences, 563-565
custom, 545
image resources, 560
key constants, adding, 559
loading preferences upon
startup, 570
preference types, 544
text fields, 565
setToRecipients method, 749
setValuesFromPreferences
method, 569
SFSafariViewController, 752
shake gesture, 628
adding, 651-653
responding, 653
Shake Gesture command (Xcode
Hardware menu), 65
sharing data
between split view controller
scenes, 509
navigation scenes, 464
tab bar scenes, 470
Show Detail segues, 370
Show Document Outline
command (Xcode Editor
menu), 232
show segues, 370
creating, 476
navigation scenes, 463
showAddress method, 769
showResults method, 577
SimpleGestureRecognizers tutorial
project, 659
Simulate Hardware Keyboard
command (Xcode Hardware
menu), 66

Simulate Memory Warning
command (Xcode Hardware
menu), 66

simulated screen size,
setting, 232

Simulator, 61

Accessibility Inspector,
enabling, 175-176
applications
launching, 62-63
running, 51
conditions, testing, 65-66
crash recovery, 67
devices
adding, 67-69
rotation, 64
limitations, 62
multitouch events, 64
names, 69
resetting, 63
Single View Application
template, 200
application logic, 216-217
interface design
objects, adding, 209-212
simulated attributes, 208
project, setting up, 201-202
class files, 202-203
storyboard files, 203-205
variable properties, 205-206
view/view controller
connection, 212-215
actions, 215
outlets, 213-215

singletons, 76, 543

size classes. See classes, size

Size Inspector, 168

cells, 501

constraints
content compression

resistance, 598

content hugging, 597
editing, 595-597
viewing/editing, 594-597

segmented controls, 302

sizes
buttons, 612-614
cells, 501

popovers, 375-376, 385,
403, 451
screens, 8
scrolling views freeform, 321
segmented controls, 302
view picker components/rows,
448
SLComposeViewController, 751
slicing
button templates, creating,
227-232
images, adding, 227-228
slices, creating, 228-231
images, 40
sliders, 260
animation loop speed
adding, 267-268
range attributes, 268-269
implicit preferences, 554
labels, 267
outlets, 275
preferences, 544
range attributes, 268-269
trigger actions, 276
UlSlider class, 139
SlowCount app
application logic, 836
counters, updating, 837
timer, initializing, 836
background task processing,
enabling, 837-839
outlet, 836
project setup, 834-835
running, 839
Ul design, 835
Snapshots, 49
Social framework, 131, 751, 777
social networking, 750-752
Social framework, 131,
751, 777
tweets, sending, 773-774
sound file references,
initializing, 829
soundName property, 825
sounds. See audio
soundSetting dictionary, 704
source control (Xcode) tutorial, 19

stack views 937

speed (animations)
incrementing, 282-283
loops
output labels, 271
slider, 267-269
steppers, 269-270
setting, 280-281
Spell Checking attribute, 236
spinning pickers, 452
split view controllers, 506-507
application data structures
creating, 524
populating, 525-526
detail scenes, updating, 523
detail view controller,
configuring, 531-533
hierarchy, 520-521
image resources, adding, 520
implementing, 508-509
master scenes, updating, 522
master view controller, 527
editing, disabling, 529-530
number of section rows,
retrieving, 527
number of sections,
retrieving, 527
section labels, 527
segue navigation events,
handling, 530-531
table cells, creating,
528529
table view data source
methods, 527-528
Master-Detail Application
template, 509
sharing information between
master/detail scenes, 509
web view outlets,
connecting, 523
split-screen multitasking, 814
splitViewController property, 509
SpriteKit framework, 129
ss: date format, 432
stack views, 297
adding, 318-321
icons
horizontal, 319
images, adding, 318
vertical, 320

starting

starting

animations, 271, 278-280

applications, 18-22

applications in Simulator,
62-63

background processing, 838

segues, 377-378

Xcode, 29

startUpdatingHeading

recent locations, 803-804
settings bundles, 544-546
adding, 544
custom, 545
preference types, 544
user defaults, 543-544
Storyboard Entry Point icon
(storyboards), 159
storyboards, 157

storyboardWithName method,
381
stretching Ul objects, 166-167
stringFromDate method, 431
strings, 85
characters, 87
classes, 136
concatenation, 87
date formats, 432

method, 787 Apple tutorial, 407 initializing, 87
state defined, 363 interpolation, 87
buttons, changing, 243 detail scenes, updating, 523 myName, 87

media player, 697 displaying, 157 structs, 84

preservation, 541-542
switch default, 303

statements

defer, 109-110
do-catch, 107-108
guard, 109
if-then-else, 104-105
Swift, 77

document outline objects, 161

HelloNoun project file,
203-205

icons, 158-159

identifiers, 381

initial scenes, configuring,
205

master scenes, updating, 522

structure. See MVC
stub methods, 187
subclasses, 75
superclasses, 75
supportedinterfaceOrientations

method, 586, 616
Survey app

actions, 574-575

throw, 108-109 multiple, 857 application logic, 575-578
status bar appearance, multiscene. See multiscene displaying survey results,
customizing, 283-284, 775, 796 storyboards 577578

Step Into icon, 888
Step Out icon, 888
Step Over icon, 888
steppers, 260-261

navigation. See navigation

old autosizing features,
turning on, 172

scenes. See scenes

keyboard, hiding, 575
storing survey results,
576-577
field/text view outlets, 574

animation loops, adding,
269-270

segues. See segues
size classes, creating,

project setup, 571-572
Ul design, 572

outlets, 275 867-873 survey fields, storing, 576-577
trigger action, 276 Any, Any, 873 suspending applications,
UlStepper class, 140 Any(w), Compact(h), 133, 814
stopDeviceMotionUpdates 870-873 Swift, 23
method, 670 Any(w), Regular(h), access levels, 84
stopping animations, 271, 868-870 arrays
278-280 previewing, 873 contents, counting, 89
stopUpdatingLocation repositioning controls declaring/initializing, 88
method, 782 based on orientation, index values, 88
StoreKit framework, 131 867 iterating over, 106

storeSurvey method, 576
storing data

split view controllers, adding,
508-509

new items, adding to
end, 88

direct file system access,
546-550
file paths, 548-549
reading/writing data,
549-550
sandbox restrictions,
546-547
storage locations, 547-548
Playground, 550-551

tab bars. See tab bars

view controllers
EditorViewController class

association, 390-391

exit preparations, 393
instantiating, 381
labels, 391

views, 160, 196

Boolean values, 87
bridged data type
classes, 136
case sensitivity, 77
class files
ending, 83
structure, 78-79
classes, declaring, 80

comments, 83
constants
declaring/initializing, 92
variables, compared, 93
data types
converting, 92
downcasting, 92
listing of, 85
declarations
class, 80
constant, 81
IBOutlet, 81
import, 79-80
dictionaries
contents, counting, 89
declaring, 89
iterating over, 106
key/value pairs, 89
values, 89
dot notation, 81
enumerations, 89-90
creating, 90
declaring, 90
values, 90
error handling, 107
defer statements, 109-110
do-catch statements,
107-108
guard statements, 109
throw statements,
108-109
expressions, 103
floating-point numbers,
declaring, 86
getters/setters, 81
help learning, 118
if-then-else statements,
104-105
integers, declaring, 86
key/value pairs, 106
loops, 105
for, 105-106
condition-based, 106-107
iterating over collections,
106
methods
chaining, 98-99
closures, 101
convenience, 91
convenience initialization,
278

declaring, 82-83
Markdown documentation,
101-102
multiple return values, 100
named parameters, 98
syntax, 96-97
objects, declaring, 90
optional values
accessing, 94-95
binding, 95
chaining, 99
declaring, 94
downcasting, 88-96
overview, 93-94
overview, 77
print function versus NSLog,
878
properties
declaring, 80-81
retrieving, 81
variables, compared,
197-198
protocols, 80
sets, 88
statements, 77
defer, 109-110
do-catch, 107-108
guard, 109
throw, 108-109
strings
characters, 87
concatenation, 87
initializing, 87
interpolation, 87
structs, 84
tuples, 100
variables, 86
constants, compared, 93
declaring, 85

swipe gesture, 627

adding, 639-640
class, 628
responding, 646

switches

actions, 307-309
adding, 302-303
Apple tutorial, 324
default state, 303
overview, 292

toggle, 544, 554, 679
UISwitch class, 139

tabbed editing 939

symbol navigator, 43
system buttons, 243
System Configuration
framework, 131
System framework, 132
System Sound Services, 337-338
accessing, 338-339
alert sounds with vibrations,
playing, 354-355
AudioToolbox framework,
importing, 353
system sounds, playing,
353-354
systemMusicPlayer method, 730

T

tab bars, 464
actions, 487
adding, 466-467, 483
additional features, 491
Apple tutorial, 491
application Ul design,
485-486
badges, 466
count button presses,
tracking, 488
counter updates, triggering,
490
customizing, 467-468
data sharing, 470
defined, 465
display updates with counter
values, 488-489
example, 465
images, 468
items, 465
attributes, 466
badges, updating, 489
labels, 485-486
LetsTab project setup,
482-484
outlets, 487
scenes
adding, 469, 483
connections, 484-485
Tabbed Application template, 466
tabbed editing, 49-50

940 tables

tables, 497
3D Touch peek and pop
gestures, adding, 657-659
adding, 499
appearance, 498
Apple tutorials, 534
attributes, 500-501, 512
cells, 498. See also cells
data source
methods, 527-528
outlets, 513-514
protocol, 503-505,
515-516
delegate
outlets, 513-514
protocol, 505-506,
517-518
functionality, increasing, 534
image resources, adding, 510
layout, configuring, 503-504
populating, 504-505, 514
row selections, handling,
517-518
sections
constants, adding, 511
headings, 515
number, returning, 515
row counts, returning, 515
user touches, responding,
505-506
tableView:canEditRowAtindexPath
method, 530
tableView:cellForRowAtIindexPath
method, 503, 516, 528
tableView:didSelectRowAtIndex
Path method, 505
tableView:numberOfRowsIn
Section method, 503, 515
tableView:titleForHeaderInSection
method, 503, 515
tap gestures
adding, 628-629, 638-639
class, 628
responding, 645-646
taps attribute (tap gesture
recognizer), 638
tapView view, 629

task completion backgrounding,
816
counting slowly app
counters, updating, 837
outlet, 836
project setup, 834-835
timer, initializing, 836
Ul design, 835
enabling, 837-839
task-specific backgrounding
audio map directions, 828
audio files, adding, 828
AudioToolbox framework,
adding, 828
background modes, 832
heading update audio
feedback, adding,
830-831
sound file references,
initializing, 829
system sound ID variables,
829
overview, 816
technology layers. See layers
templates, 30-31
buttons, creating, 227-232
images, adding, 227-228
slices, creating, 228-231
icons, 819
Master-Detail Application, 509
Single View Application. See
Single View Application
template
Tabbed Application, 466
text, 224
adding, 237
attributes, editing, 238-239
copying/pasting, 237
Core Text framework, 128
data detectors, enabling, 239
delegates, 254
direct file system access
outlets, 574
fields, 224
alerts, adding, 333,
349-350
attributes, editing,
233-235
copy/paste functionality,
237

delegates, 254
input traits, 236-237
labels, adding, 233
outlets, connecting,
244-246
placeholders, 234
plain versus attributed,
235
populating, 400
preferences, 544
settings bundles, 565
Uls, adding, 232-233
UlTextField class, 140
user input, 206
input traits, 236-237
labels
adding, 237
orientation changes, 672
outlets, connecting, 244-246
placeholder, 234
plain versus attributed, 235
scrolling options, 241
Text Editing preferences
(Xcode), 45
TextKit framework, 127
throw statements, 108-109
Time mode (date pickers), 418
timelnternalSinceDate
| method, 432
timelines (Playground), 116
timers, initializing, 836
timeZone property, 825
title preferences, 544
titleForSegmentAtindex
method, 293
tmp directory, 548
TODO comments, 47
Toggle Breakpoints icon, 888
Toggle In-Call Status Bar
command (Xcode Hardware
menu), 66
toggle switches, 544, 554
action, 679
motion updates, monitoring,
681-682
outlets, connecting, 679
toggleAnimation method, 279
toggleFlowerDetail method, 311

toolbars, 33, 413

adding, 414
bar button items, 415-416
adding, 415
appearance, configuring,
416

positioning, 416
custom pickers, adding, 440
date picker, creating, 427
further exploration, 452
Top Layout Guide icon
(storyboards), 159
top layout guides, 594
Touch ID Enrolled/Simulate
Finger Touch command (Xcode
Hardware menu), 65
touches
3D Touch peek and pop
adding, 631-632
editor screen, 655-657
implementing, 654-655
overview, 630-631
table views, 657-659
testing, 633
3D Touch Quick Actions,
817-819
defining, 818-819
events, handling, 846-847
icons, 819, 844
.plist file configuration,
844-845
responding, 819
background, 249-250
buttons, handling, 621
lower-level handling, 659
multitouch gesture
recognition. See multitouch
gesture recognition
SimpleGestureRecognizers
tutorial project, 659
tables, responding, 505-506
touches attribute, 638
Traits attribute, customizing, 175
transformations (Playground),
650-652
transitions. See segues
transparent blurs, 273
triggering
buttons, 206, 275
counter updates, 490

segues manually, 377-378
dismissing, 378
starting, 377-378

sliders, 276

steppers, 276

troubleshooting

Auto Layout constraint errors,

598-601

Core Location errors, 783

Playground, 116

popover appearance, 405

tuples, 100

TV Out command (Xcode
Hardware menu), 66

tweets, sending, 773-774

type methods, 76

U

UlActionSheet class,
implementing, 335
UlAlertController object,
implementing, 331-333
UlApplication class, 134
UlBarButtonltem class, 460
UlButton class, 139
UlCatalog Apple sample
project, 254
UlColor class, 555
UlControl class, 135
UlDatePicker class, 140
UlDeviceOrientation property,
667-668
UlimagePickerController
class, 705
UlimagePickerControllerDelegate
protocol, 724
UlinterfaceOrientationMask.All
constant, 587
UlIinterfaceOrientationMask.
AllButUpsideDown constant, 587
UlinterfaceOrientationMask.
Landscape constant, 586
UlinterfaceOrientationMask.
LandscapelLeft constant, 586
UlIinterfaceOrientationMask.
LandscapeRight constant, 586

Uls 941

UlinterfaceOrientationMask.
Portrait constant, 586
UlinterfaceOrientationMask.
PortraitUpsideDown
constant, 586
UIKit framework, 126
UlLabel class, 90, 138
UlLongPressGestureRecognizer
class, 628
UINavigationBar class, 460
UINavigationController class, 459
UINavigationControllerDelegate
protocol, 724
UIPanGestureRecognizer
class, 628
UlPicker class, 140
UIPinchGestureRecognizer
class, 628
UlPopoverPresentationController
class, 141, 383
UlPopoverPresentationController
Delegate protocol, 385
UIResponder class, 135
UlRotationGestureRecognizer
class, 628
Uls
appearance
accessibility attributes,
174-175
Attributes Inspector,
173-174
Auto Layouts, 169-172
constraints, 170-172
Content Compression, 171
Content Hugging, 171
Intrinsic Size setting, 172
turning off, 172
BackgroundColor app,
552-553
BackgroundDownload app,
840
BestFriend app, 762-764
classes, 138-141
UlButton, 139
UlDatePicker/UlPicker,
140
UlLabel, 138
UlPopoverPresentation
Controller, 141
UISegmentedControl, 139

942

Uls

UlSlider, 139

UlStepper, 140

UISwitch, 139

UlTextField/UlTextView,

140

ColorTilt app, 677
connections, 178

actions, 183

deleting, 186

editing, 185-186

outlets, 181-182

project, opening, 178
controls, expanding, 607-608
creating

default screens, 162

Object Library, 162-163
Cupertino app, 790-792
Cupertino Compass, 800-801

multiscene storyboards,
393-396

objects. See objects

Orientation app, 671

orientation changes, enabling,
586-588

previewing, 176-178

responsive. See responsive
interfaces

ReturnMe app, 560-561

rotations, 685-686

scrolling views, adding,
317-318

simulated attributes, 208

SlowCount app, 835

stack views, adding, 318-321

Survey app, 572

text fields, adding, 232-233

popovers, creating, 404-407
size classes. See classes,
size
tools/techniques, 856-857
unwind segues, 379-380, 398
unwinding, 363
unwrapping optional values,
94-95
updateBadge method, 489
updateCounts method, 488
updateEditor method, 401
updateLayoutWithScreen
Width:screenHeight method,
619-620
updates
counters, 490, 837
date output, 434-435
detail scenes, 523

CustomPicker app, 440-443
DateCalc app, 427-429
date chooser scene,
428-429
initial scene, 427-428
editing, disabling, 530
flower app, 299
button, 305
color choice segmented
controls, 300-302
flower details switch,
302-303
web views, 303-305

UlScreenEdgePanGesture
Recognizer class, 628
UlScrollView class, 324
UlSegmentedControl class, 139
UlSlider class, 139
UlStackView class, 324
UlStepper class, 140
UlSwipeGestureRecognizer
class, 628
UlSwitch class, 139
UlTabBar class, 465
UlTabBarController class, 464
UiTapGestureRecognizer

display with counter values,
488-489

headings, 788

audio feedback, adding,

830-831

handling, 805-807
implicit preferences, 557
locations, receiving, 782-784
master scenes, 522
motion

monitoring, 681-682

receiving, 669
orientation, registering, 673

FlowerColorTable app, class, 628 .plist files, 797
511-512 UlTextField class, 140 responsive interfaces,
FlowerDetail app, 521-523 UlTextView class, 140 619-620

detail scene, updating, UlTouch class, 659 tab bar item badges, 489

523 UlView class, 135 user defaults, 543-544
master scene, updating, UlViewController class, 135 userAge variable, 86
522 UlViewControllerTransition userAgelnDays variable, 86

web view outlet,
connecting, 523
Gesture app, 636-637
GettingAttention app, 342-343
ImageHop app. See ImageHop
app
LetsNavigate app, 477
LetsTab app, 485-486
MediaPlayground app,
711-713
modal elements, 331

Coordinator class, 622
UlVisualEffectView class, 285
UlWebView class, 324
UIWindow class, 134
Unicode date formats

website, 432
universal applications, 586, 853

creating, 854

icons, 855

launch screen, 856
documentation, 873

userMessages array, 88
userMessages dictionary, 89
Utilities commands (Xcode View
menu)
Show Attributes Inspector
command, 173
Show Connections Inspector
command, 183
Show Identity Inspector
command, 174

Show Object Library
command, 162
Show Size Inspector
command, 168
utility area (Xcode), 33

'/

valueForProperty method, 697
values
dictionaries
accessing, 89
assigning/modifying, 89
enumerations, 90
method multiple return, 100
optional
accessing, 94-95
binding, 95
chaining, 99
declaring, 94
downcasting, 88-96
overview, 93-94
UlDeviceOrientation property,
667-668
var keyword, 86
variables
constants, compared, 93
contents, displaying in
Playground, 113-114
declaring, 85
defined, 76
Mad Libs-style story creator,
planning, 227
myOptionalString, 95
properties, compared,
197-198
userAge/userAgelnDays, 86
Xcode debugger
examining, 887
listing of, displaying, 892
values, editing, 887
vertical constraints (Auto
Layout), 593
vertical size class, 858
vertical stack views, 320
vibrancy, 272

vibrations
alerts, 339-340, 354-355
System Sound Setrvices,
337-339
video
formats supported, 699
frameworks
AV Foundation, 127
AVKit, 127
Core Image, 127
playback classes, 698
video player
cleanup, handling, 718
external device playback/
AirPlay support, 700
implementing, 716
loading/displaying movies,
699-700
movie playback, 717-718
playback completion,
handling, 701-702
playback controls, 701
screen placement, 700
View, Navigators, Show Navigator
command (Playground), 117
View Controller icon (storyboards),
158
view controllers
adding, 390
animal chooser class, 439
associations, 483
EditorView Controller class,
391
navigation controllers,
473-474
tab bar controllers, 483
child view controllers,
adding, 700
classes, 472
container views, adding,
712-713
custom picker scenes,
associating, 439
DateChooserViewController
class association, 426
defined, 363
delegate/data source outlets,
connecting, 513-514
detail, configuring, 531-533

View icon (storyboards) 943

directives
IBAction, 198
IBOutlet, 197
displaying, 382
exits
connecting, 379-380
preparations, 378-379,
393
first responders, 651-653
further exploration, 407
implementing, 195-196
interfaces
objects, adding, 209-212
simulated interface
attributes, 208
labels, 391
Mail compose, 749-750
master, 527
editing, disabling, 529-530
number of section rows,
retrieving, 527
number of sections,
retrieving, 527
section labels, 527
segue navigation events,
handling, 530-531
table cells, creating,
528-529
table view data source
methods, 527-528
multiscene development, 458
navigation. See navigation
passing data between
scenes, 387
properties, 205-206
relationships, 469
Safari, 775
SFSafariViewController, 752
social networking, 751
split. See split view controllers
storyboards
identifiers, 381
instantiating, 381
subclass support, adding,
367-368
tab bars, 464
views, connecting, 212-215
actions, 215
outlets, 213-215

View icon (storyboards), 159

944 View, Utilities commands (Xcode)

View, Utilities commands (Xcode)
Show Attributes Inspector,
173
Show Connections Inspector,
183
Show Identity Inspector, 174
Show Object Library, 162
Show Size Inspector, 168
view pickers
data source protocol, 420-421
delegate protocol, 421-422
implementing, 421-422
methods, 422-424
ViewController class, 43
ViewController.swift
connections code listing, 206
outlets/actions, 276
setOutput method, 217
viewDidLoad method, 44,
314, 883
viewing. See displaying
views
3D Touch ready, registering,
631
animated image,
implementing, 277-278
background images, adding,
271-272
blur visual effect, 272-273
constraints, 394
Contacts picker, displaying,
766
container, 712-713
custom annotation, 770-771
defined, 363
email composition, 748
gesture recognizers, adding
pinch, 640-641
rotation, 641
swipe, 639-640
tap, 638-639
hierarchy, displaying, 896-897
image, 261
animation loops, adding,
264
default, resetting, 635
replacing, 644-645
transformations
(Playground), 650-652
implementing, 195-196

mail compose
completion, handling,
772-773
displaying, 772
map
adding, 753
annotations, 755-757
delegate protocol,
756-757
regions, 754
modal, 363
pickers. See pickers
scenes, compared, 196
scrolling, 297
adding, 317-318
Apple tutorial, 324
freeform sizing, 321
icon resources, adding,
316
outlet, 322
pagination, 318
scrolling, enabling,
322-323
stack views, adding,
318-321
width/height values, 323
Single View Application
template, 200
stack, 297
adding, 318-321
horizontal, 319
icon images, adding, 318
image views, adding, 318
vertical, 320
storyboards, 160
swapping, 590
tables. See tables
tapView, 629
text. See text
transparent blur effect, 273
tweet compose, 774
Ul objects
adding, 164
aligning, 167-168
arranging, 167
deleting, 164
positioning, 165-166
stretching, 166-167
UlView class, 135
UlViewController class, 135

view controllers, connecting,
212-215
actions, 215
outlets, 213-215
visual effects, 180, 261
web. See web views
zooming in/out, 166
viewWillAppear method, 400
viewWillAppear:animated
method, 480
viewWillTransitionToSize:withTrans
itionCoordinator method,
589, 621
visual effects
blur, 272-273, 314-315
frosted glass, 561
views, 180, 261
visual notifications
action sheets, 334-337
alerts
actions, 333-334
buttons, 332-333
example, 331
implementing, 331-333
Playground, 336-337
text fields, adding, 333
vmOSX, 10

w

warnings, 52, 116
watchpoints, configuring, 890-891
web views, 294-297
adding, 303-304
Apple tutorial, 324
attributes, 304-305
content, loading, 311-313
content types supported, 294
hiding/displaying, 309-311
initial display, 313-314
outlets, 306, 523
Playground test, 296-297
remote content, loading,
295-297
scaling, 305
segments, configuring,
300-301

websites
Adobe Flash Professional, 10
Apple Developer Program
Enroliment page, 11
Apple IDs, 11
Euler angles, 683
high-pass filters, 687
icon templates, 819
iOS Design Cheat Sheet by Ivo
Mynttinen, 60
low-pass filters, 687
Markdown, 101
momentum, 687
Movable Type Scripts latitude/
longitude functions
documentation, 808
Newton’s laws of motion, 687
Sam's Teach Yourself iOS 9
Application Development in
24 Hours, 3
Swift access control, 84
Unicode date formats, 432
vmOSX, 10
Xcode, 14, 19
Welcome app, running, 19-21
Welcome screen (Xcode), 30
while loops, 106-107
whiteColor method, 555
width
picker components/rows, 422
popovers, 375-376
scrolling views, 323
view picker components, 448
Window, Devices command
(Xcode), 67
Windows development options, 10
Wolfram Mathworld Euler angles
website, 683
writeData method, 550
writing
data, 549-550
user defaults, 543-544

X

Xcode
Apple ID, adding, 16
applications
building process, 50
device orientations,
setting, 56
icons, 57-60
running in i0S
Simulator, 51
asset catalogs. See asset
catalogs
assistant editor mode, 47
build schemes, choosing,
50-51
code
autocompletion, 44-45
editing, 42
methods/properties,
finding, 43
navigating, 43
problems, fixing, 52-55
searching, 45-46
comments, adding, 46-47
Core Data, 32
curly brace/parenthesis,
autocompleting, 45
debugger, 881-882
activity to monitor, adding,
883
breakpoints, setting,
885-886
Continue to Here, 890
CPU/memory usage,
monitoring, 895
editing variable values,
887
examining variables, 887
gutter, 883
navigators, 893-894
source code line numbers,
883
stepping through code,
888-890
variable lists, accessing,
892

zooming views 945

view hierarchy, displaying,
896-897
watchpoints, 890-891
devices, adding, 17
documentation. See
documentation
gutter, 883
help, 24
IB. See IB
installing, 13-15
interface, 33-34
iOS Simulator. See Simulator
launch images/screens, 60
launching, 29
libraries, 163
Playground. See Playground
projects. See projects
Quick Help, 147
Inspector, 148
results, 148-149
Snapshots, 49
source control tutorial, 19
Stop button, 571
tabbed editing, 49-50
Text Editing preferences, 45
view controllers
IBAction, 198
IBOutlet directive, 197
implementing, 195-196
views, implementing, 195-196
Welcome screen, 30
.xcodeproj file extension, 32

Y

YYYY: date format, 432

y 4

zooming views, 165

	Table of Contents
	Introduction
	Who Can Become an iOS Developer?
	Who Should Use This Book?
	What Is (and Isn’t) in This Book?

	Hour 5: Exploring Interface Builder
	Understanding Interface Builder
	Creating User Interfaces
	Customizing the Interface Appearance
	Connecting to Code
	Further Exploration
	Summary
	Q&A
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

