
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337475
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337475
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337475
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337475
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337475/Free-Sample-Chapter

OpenGL®

SuperBible
Seventh Edition

The OpenGL graphics system is a software interface to graphics hardware.

(“GL” stands for “Graphics Library”.) It allows you to create interactive programs

that produce color images of moving, three-dimensional objects. With OpenGL,

you can control computer-graphics technology to produce realistic pictures, or

ones that depart from reality in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises tutorial and

reference books that help programmers gain a practical understanding of OpenGL

standards, along with the insight needed to unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products.

Make sure to connect with us!
informit.com/socialconnect

OpenGL Series
from Addison-Wesley

OpenGL®

SuperBible
Seventh Edition

Comprehensive Tutorial
and Reference

Graham Sellers
Richard S. Wright, Jr.
Nicholas Haemel

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

OpenGL® is a registered trademark of Silicon Graphics Inc. and is used by
permission of Khronos.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Wright, Richard S., Jr., 1965- author.

OpenGL superBible : comprehensive tutorial and reference.—
Seventh edition / Graham Sellers, Richard S. Wright, Jr., Nicholas Haemel.

pages cm
Includes bibliographical references and index.
ISBN 978-0-672-33747-5 (pbk. : alk. paper)—ISBN 0-672-33747-9

(pbk. : alk. paper)
1. Computer graphics. 2. OpenGL. I. Sellers, Graham, author. II.

Haemel, Nicholas, author. III. Title.
T385.W728 2016
006.6’8—dc23

2015014278

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey
07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-672-33747-5
ISBN-10: 0-672-33747-9
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, July 2015

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Copy Editor
Jill Hobbs

Indexer
Larry D. Sweazy

Proofreader
Anna Popick

Technical Reviewer
Matías Goldberg

Editorial Assistant
Olivia Basegio

Compositor
diacriTech

For you, the reader.
—Graham Sellers

This page intentionally left blank

Contents

Figures xv
Tables xxi
Listings xxiii
Foreword xxxi
Preface xxxiii

The Architecture of the Book xxxiv
What’s New in This Edition . xxxvi
How to Build the Examples . xxxvii
Errata . xxxviii
Note from the Publisher . xxxviii

Acknowledgments xxxix
About the Author xli

I Foundations 1

1 Introduction 3
OpenGL and the Graphics Pipeline 4
The Origins and Evolution of OpenGL 6

Core Profile OpenGL . 8
Primitives, Pipelines, and Pixels . 10
Summary . 11

2 Our First OpenGL Program 13
Creating a Simple Application . 14
Using Shaders . 17

vii

Drawing Our First Triangle . 24
Summary . 26

3 Following the Pipeline 27
Passing Data to the Vertex Shader 28

Vertex Attributes . 28
Passing Data from Stage to Stage . 30

Interface Blocks . 31
Tessellation . 33

Tessellation Control Shaders 33
The Tessellation Engine . 35
Tessellation Evaluation Shaders 35

Geometry Shaders . 37
Primitive Assembly, Clipping, and Rasterization 39

Clipping . 39
Viewport Transformation . 40
Culling . 41
Rasterization . 43

Fragment Shaders . 43
Framebuffer Operations . 47

Pixel Operations . 47
Compute Shaders . 48
Using Extensions in OpenGL . 49

Enhancing OpenGL with Extensions 50
Summary . 54

4 Math for 3D Graphics 55
Is This the Dreaded Math Chapter 56
A Crash Course in 3D Graphics Math 57

Vectors, or Which Way Is Which? 57
Common Vector Operators . 60
Matrices . 64
Matrix Construction and Operators 66

Understanding Transformations . 69
Coordinate Spaces in OpenGL 70
Coordinate Transformations 72
Concatenating Transformations 80
Quaternions . 81
The Model–View Transform . 83
Projection Transformations . 86

Interpolation, Lines, Curves, and Splines 89

viii Contents

Curves . 91
Splines . 94

Summary . 97

5 Data 99
Buffers . 100

Creating Buffers and Allocating Memory 100
Filling and Copying Data in Buffers 107
Feeding Vertex Shaders from Buffers 109

Uniforms . 117
Default Block Uniforms . 117
Uniform Blocks . 121
Using Uniforms to Transform Geometry 135

Shader Storage Blocks . 140
Synchronizing Access to Memory 145

Atomic Counters . 147
Synchronizing Access to Atomic Counters 151

Textures . 152
Creating and Initialzing Textures 152
Texture Targets and Types . 154
Reading from Textures in Shaders 156
Loading Textures from Files . 160
Controlling How Texture Data Is Read 164
Array Textures . 177
Writing to Textures in Shaders 182
Synchronizing Access to Images 194
Texture Compression . 195
Texture Views . 199

Summary . 203

6 Shaders and Programs 205
Language Overview . 206

Data Types . 206
Built-In Functions . 213

Compiling, Linking, and Examining Programs 219
Getting Information from the Compiler 219
Getting Information from the Linker 223
Separate Programs . 225
Shader Subroutines . 231
Program Binaries . 235

Summary . 238

Contents ix

II In Depth 239

7 Vertex Processing and Drawing Commands 241
Vertex Processing . 242

Vertex Shader Inputs . 242
Vertex Shader Outputs . 247

Drawing Commands . 249
Indexed Drawing Commands 249
Instancing . 255
Indirect Draws . 269

Storing Transformed Vertices . 278
Using Transform Feedback . 279
Starting, Pausing, and Stopping Transform Feedback 284
Ending the Pipeline with Transform Feedback 286
Transform Feedback Example: Physical Simulation 286

Clipping . 296
User-Defined Clipping . 300

Summary . 303

8 Primitive Processing 305
Tessellation . 306

Tessellation Primitive Modes 307
Tessellation Subdivision Modes 316
Passing Data between Tessellation Shaders 319
Communication between Shader Invocations 322
Tessellation Example: Terrain Rendering 323
Tessellation Example: Cubic Bézier Patches 329

Geometry Shaders . 333
The Pass-Through Geometry Shader 334
Using Geometry Shaders in an Application 336
Discarding Geometry in the Geometry Shader 341
Modifying Geometry in the Geometry Shader 344
Generating Geometry in the Geometry Shader 346
Changing the Primitive Type in the Geometry Shader 349
Multiple Streams of Storage . 352
New Primitive Types Introduced by the Geometry Shader . . 353
Multiple Viewport Transformations 361

Summary . 364

9 Fragment Processing and the Framebuffer 365
Fragment Shaders . 366

Interpolation and Storage Qualifiers 366

x Contents

Per-Fragment Tests . 369
Scissor Testing . 369
Stencil Testing . 372
Depth Testing . 376
Early Testing . 380

Color Output . 382
Blending . 382
Logical Operations . 387
Color Masking . 388

Off-Screen Rendering . 390
Multiple Framebuffer Attachments 395
Layered Rendering . 397
Framebuffer Completeness . 403
Rendering in Stereo . 407

Antialiasing . 412
Antialiasing by Filtering . 413
Multi-Sample Antialiasing . 415
Multi-Sample Textures . 417
Sample Rate Shading . 421
Centroid Sampling . 424

Advanced Framebuffer Formats . 428
Rendering with No Attachments 428
Floating-Point Framebuffers . 430
Integer Framebuffers . 444
The sRGB Color Space . 446

Point Sprites . 448
Texturing Points . 449
Rendering a Star Field . 450
Point Parameters . 453
Shaped Points . 454
Rotating Points . 456

Getting at Your Image . 458
Reading from a Framebuffer . 458
Copying Data between Framebuffers 461
Reading Back Texture Data . 464

Summary . 466

10 Compute Shaders 467
Using Compute Shaders . 468

Executing Compute Shaders 469
Compute Shader Communication 474

Examples . 479

Contents xi

Compute Shader Parallel Prefix Sum 479
Compute Shader Flocking . 492

Summary . 502

11 Advanced Data Management 503
Eliminating Binding . 504
Sparsely Populated Textures . 509
Texture Compression . 516

The RGTC Compression Scheme 516
Generating Compressed Data 519

Packed Data Formats . 525
High-Quality Texture Filtering . 527
Summary . 531

12 Controlling and Monitoring the Pipeline 533
Queries . 534

Occlusion Queries . 535
Timer Queries . 545
Transform Feedback Queries 549
Pipeline State Queries . 555

Synchronization in OpenGL . 556
Draining the Pipeline . 557
Synchronization and Fences 557

Summary . 562

III In Practice 565

13 Rendering Techniques 567
Lighting Models . 568

The Phong Lighting Model . 568
Blinn-Phong Lighting . 577
Rim Lighting . 579
Normal Mapping . 582
Environment Mapping . 587
Material Properties . 597
Casting Shadows . 599
Atmospheric Effects . 605

Non-Photo-Realistic Rendering . 610
Cell Shading: Texels as Light 610

xii Contents

Alternative Rendering Methods . 613
Deferred Shading . 613
Screen-Space Techniques . 624
Rendering without Triangles 631

Two-Dimensional Graphics . 647
Distance Field Textures . 647
Bitmap Fonts . 656

Summary . 659

14 High-Performance OpenGL 661
Optimizing CPU Performance . 661

Multi-Threading in OpenGL 662
Packet Buffers . 668

Low-Overhead OpenGL . 677
Indirect Rendering . 678
GPU Work Generation . 683
Zero Copy . 691

Performance Analysis Tools . 699
Windows Performance Toolkit and GPUView 699
GPU PerfStudio . 703
Tuning Your Application for Speed 706

Summary . 726

15 Debugging and Stability 729
Debugging Your Applications . 730

Debug Contexts . 730
Security and Robustness . 737

Graphics Reset . 737
Range-Checked Reads . 740

Summary . 742

A Further Reading 743

B The SBM File Format 749

C The SuperBible Tools 759

Glossary 797
Index 805

Contents xiii

This page intentionally left blank

Figures

Figure 1.1 Simplified graphics pipeline 6
Figure 1.2 Future Crew’s 1992 demo—Unreal 9

Figure 2.1 The output of our first OpenGL application 16
Figure 2.2 Rendering our first point 23
Figure 2.3 Making our first point bigger 24
Figure 2.4 Our very first OpenGL triangle 26

Figure 3.1 Our first tessellated triangle 37
Figure 3.2 Tessellated triangle after adding a geometry shader . . 39
Figure 3.3 Clockwise (left) and counterclockwise (right) winding

order . 42
Figure 3.4 Result of Listing 3.10 45
Figure 3.5 Result of Listing 3.12 46
Figure 3.6 Realtech VR’s OpenGL Extensions Viewer 51

Figure 4.1 A point in space is both a vertex and a vector 58
Figure 4.2 The dot product: cosine of the angle between two

vectors . 61
Figure 4.3 A cross product returns a vector perpendicular to its

parameters . 62
Figure 4.4 Reflection and refraction 64
Figure 4.5 A 4× 4 matrix representing rotation and translation 68
Figure 4.6 Modeling transformations: (a) rotation, then

translation and (b) translation, then rotation 69

xv

Figure 4.7 Two perspectives of view coordinates 72
Figure 4.8 The modeling transformations 73
Figure 4.9 A cube translated ten units in the positive y direction 75
Figure 4.10 A cube rotated about an arbitrary axis 78
Figure 4.11 A non-uniform scaling of a cube 80
Figure 4.12 A side-by-side example of an orthographic versus

perspective projection 88
Figure 4.13 Finding a point on a line 90
Figure 4.14 A simple Bézier curve 91
Figure 4.15 A cubic Bézier curve . 93
Figure 4.16 A cubic Bézier spline . 95

Figure 5.1 Binding buffers and uniform blocks to binding points 133
Figure 5.2 A few frames from the spinning cube application . . . 139
Figure 5.3 Many cubes! . 140
Figure 5.4 A simple textured triangle 157
Figure 5.5 A full-screen texture loaded from a .KTX file 162
Figure 5.6 An object wrapped in simple textures 164
Figure 5.7 Texture filtering—nearest neighbor (left) and

linear (right) . 169
Figure 5.8 A series of mipmapped images 171
Figure 5.9 A tunnel rendered with three textures

and mipmapping . 174
Figure 5.10 Example of texture coordinate wrapping modes 176
Figure 5.11 GL_MIRROR_CLAMP_TO_EDGE in action 177
Figure 5.12 Output of the alien rain sample 182
Figure 5.13 Resolved per-fragment linked lists 194

Figure 6.1 Shape of a Hermite curve 217

Figure 7.1 Indices used in an indexed draw 250
Figure 7.2 Base vertex used in an indexed draw 253
Figure 7.3 Triangle strips (a) without primitive restart and

(b) with primitive restart 255
Figure 7.4 First attempt at an instanced field of grass 260
Figure 7.5 Slightly perturbed blades of grass 260
Figure 7.6 Control over the length and orientation of our grass 262
Figure 7.7 The final field of grass 263
Figure 7.8 Result of instanced rendering 268
Figure 7.9 Result of asteroid rendering program 277
Figure 7.10 Relationship of transform feedback binding points . . 282
Figure 7.11 Connections of vertices in the spring mass system . . 287
Figure 7.12 Simulation of points connected by springs 295

xvi Figures

Figure 7.13 Visualizing springs in the spring mass system 296
Figure 7.14 Clipping lines . 297
Figure 7.15 Clipping triangles . 298
Figure 7.16 Clipping triangles using a guard band 299
Figure 7.17 Rendering with user clip distances 303

Figure 8.1 Schematic of OpenGL tessellation 307
Figure 8.2 Tessellation factors for quad tessellation 308
Figure 8.3 Quad tessellation example 309
Figure 8.4 Tessellation factors for triangle tessellation 310
Figure 8.5 Triangle tessellation example 311
Figure 8.6 Tessellation factors for isoline tessellation 313
Figure 8.7 Isoline tessellation example 314
Figure 8.8 Tessellated isoline spirals example 315
Figure 8.9 Triangle tessellated using point mode 316
Figure 8.10 Tessellation using different subdivision modes 318
Figure 8.11 Displacement map used in terrain example 323
Figure 8.12 Terrain rendered using tessellation 328
Figure 8.13 Tessellated terrain in wireframe 328
Figure 8.14 Final rendering of a cubic Bézier patch 332
Figure 8.15 A Bézier patch and its control cage 333
Figure 8.16 Geometry culled from different viewpoints 344
Figure 8.17 Exploding a model using the geometry shader 345
Figure 8.18 Basic tessellation using the geometry shader 348
Figure 8.19 Displaying the normals of a model using a geometry

shader . 352
Figure 8.20 Lines produced using lines with adjacency primitives 354
Figure 8.21 Triangles produced using

GL_TRIANGLES_ADJACENCY 355
Figure 8.22 Triangles produced using

GL_TRIANGLE_STRIP_ADJACENCY 355
Figure 8.23 Ordering of vertices for

GL_TRIANGLE_STRIP_ADJACENCY 356
Figure 8.24 Rendering a quad using a pair of triangles 357
Figure 8.25 Parameterization of a quad 358
Figure 8.26 Quad rendered using a geometry shader 359
Figure 8.27 Result of rendering to multiple viewports 363

Figure 9.1 Contrasting perspective-correct and
linear interpolation . 369

Figure 9.2 Rendering with four different scissor rectangles 372
Figure 9.3 Effect of depth clamping at the near plane 379
Figure 9.4 A clipped object with and without depth clamping . . 380

Figures xvii

Figure 9.5 All possible combinations of blending functions . . . 386
Figure 9.6 Result of rendering into a texture 395
Figure 9.7 Result of the layered rendering example 401
Figure 9.8 Result of stereo rendering to a stereo display 412
Figure 9.9 Antialiasing using line smoothing 413
Figure 9.10 Antialiasing using polygon smoothing 414
Figure 9.11 Antialiasing sample positions 415
Figure 9.12 No antialising (left) and eight-sample antialiasing

(center and right) . 416
Figure 9.13 Antialiasing of high-frequency shader output 422
Figure 9.14 Partially covered multi-sampled pixels 425
Figure 9.15 Different views of an HDR image 433
Figure 9.16 Histogram of levels for treelights.ktx 434
Figure 9.17 Naïve tone mapping by clamping 435
Figure 9.18 Transfer curve for adaptive tone mapping 436
Figure 9.19 Result of adaptive tone-mapping program 438
Figure 9.20 The effect of light bloom on an image 439
Figure 9.21 Original and thresholded output for bloom example 441
Figure 9.22 Blurred thresholded bloom colors 443
Figure 9.23 Result of the bloom program 444
Figure 9.24 Gamma curves for sRGB and simple powers 447
Figure 9.25 A particle effect in the flurry screen saver 449
Figure 9.26 The star texture map . 451
Figure 9.27 Flying through space with point sprites 453
Figure 9.28 Two potential orientations of textures on

a point sprite . 454
Figure 9.29 Analytically generated point sprite shapes 455

Figure 10.1 Global and local compute work group dimensions . . 473
Figure 10.2 Effect of race conditions in a compute shader 478
Figure 10.3 Effect of barrier() on race conditions 478
Figure 10.4 Sample input and output of a prefix sum operation . . 480
Figure 10.5 Breaking a prefix sum into smaller chunks 482
Figure 10.6 A 2D prefix sum . 484
Figure 10.7 Computing the sum of a rectangle in a summed area

table . 487
Figure 10.8 Variable filtering applied to an image 487
Figure 10.9 Depth of field in a photograph 488
Figure 10.10 Applying depth of field to an image 491
Figure 10.11 Effects achievable with depth of field 491
Figure 10.12 Stages in the iterative flocking algorithm 493
Figure 10.13 Output of compute shader flocking program 501

xviii Figures

Figure 11.1 Output of the bindlesstex example application . . . 508
Figure 11.2 Output of the sparsetexture example application . . 514
Figure 11.3 Representation of image data as endpoints of a line 517
Figure 11.4 Result of using RGTC texture compression on

a distance field . 525
Figure 11.5 Linear interpolation under high magnification 528
Figure 11.6 Graph showing linear interpolation 529
Figure 11.7 Graph showing smooth interpolation 529
Figure 11.8 Result of smooth interpolation 531

Figure 13.1 Vectors used in Phong lighting 570
Figure 13.2 Per-vertex lighting (Gouraud shading) 573
Figure 13.3 Per-fragment lighting (Phong shading) 574
Figure 13.4 Varying specular parameters of a material 577
Figure 13.5 Phong lighting (left) versus Blinn-Phong

lighting (right) . 579
Figure 13.6 Rim lighting vectors . 580
Figure 13.7 Result of rim lighting example 581
Figure 13.8 Example normal map 583
Figure 13.9 Result of normal mapping example 586
Figure 13.10 A selection of spherical environment maps 588
Figure 13.11 Result of rendering with spherical

environment mapping 589
Figure 13.12 Example equirectangular environment map 591
Figure 13.13 Rendering result of equirectangular

environment map . 591
Figure 13.14 The layout of six cube faces in the cubemap sample

program . 593
Figure 13.15 Cubemap environment rendering with a skybox . . . 597
Figure 13.16 Pre-filtered environment maps and gloss map 598
Figure 13.17 Result of per-pixel gloss example 599
Figure 13.18 Depth as seen from a light 602
Figure 13.19 Results of rendering with shadow maps 605
Figure 13.20 Graphs of exponential decay 608
Figure 13.21 Applying fog to a tessellated landscape 609
Figure 13.22 A one-dimensional color lookup table 610
Figure 13.23 A toon-shaded torus . 613
Figure 13.24 Visualizing components of a G-buffer 618
Figure 13.25 Final rendering using deferred shading 620
Figure 13.26 Deferred shading with (left) and without (right)

normal maps . 622
Figure 13.27 Bumpy surface occluding points 625
Figure 13.28 Selection of random vector in an oriented

hemisphere . 626

Figures xix

Figure 13.29 Effect of increasing direction count on ambient
occlusion . 627

Figure 13.30 Effect of introducing noise in ambient occlusion . . . 628
Figure 13.31 Ambient occlusion applied to a rendered scene 629
Figure 13.32 A few frames from the Julia set animation 635
Figure 13.33 Simplified 2D illustration of ray tracing 636
Figure 13.34 Our first ray-traced sphere 640
Figure 13.35 Our first lit ray-traced sphere 641
Figure 13.36 Implementing a stack using framebuffer objects 642
Figure 13.37 Ray-traced spheres with increasing ray bounces 643
Figure 13.38 Adding a ray-traced plane 645
Figure 13.39 Ray-traced spheres in a box 646
Figure 13.40 Low-resolution texture used for a logo 648
Figure 13.41 High-resolution texture used for a logo 649
Figure 13.42 Distance field of the OpenGL logo 650
Figure 13.43 Distance fields for a line 650
Figure 13.44 Output of distance field rendering application 651
Figure 13.45 Distance field for English characters 652
Figure 13.46 Distance field of a Chinese character 653
Figure 13.47 Chinese text rendered using distance fields 653
Figure 13.48 Two textures to be mixed using a distance field 654
Figure 13.49 Landscape map texture and distance field 655
Figure 13.50 Result of landscape texturing with distance fields . . . 655
Figure 13.51 Output of font rendering demo 659

Figure 14.1 Output of the OpenMP particle simulator 667
Figure 14.2 CPU utilization of the ompparticles application . . . 667
Figure 14.3 Indirect material parameters 683
Figure 14.4 Output of the cullindirect application 690
Figure 14.5 Synchronizing access to a mapped buffer 695
Figure 14.6 Persistent mapped Julia fractal 698
Figure 14.7 GPUView in action . 700
Figure 14.8 Vsync seen in GPUView 701
Figure 14.9 A packet dialog in GPUView 703
Figure 14.10 GPU PerfStudio running an example application . . . 704
Figure 14.11 GPU PerfStudio frame debugger 705
Figure 14.12 GPU PerfStudio HUD control window 705
Figure 14.13 GPU PerfStudio overlaying information 706
Figure 14.14 GPU PerfStudio showing AMD performance counters 707
Figure 14.15 GPUView showing the effect of glReadPixels() into

system memory . 708
Figure 14.16 GPUView showing the effect of glReadPixels() into a

buffer . 709

Figure B.1 Dump of example SBM file 757

xx Figures

Tables

Table 1.1 OpenGL Versions and Publication Dates 7

Table 4.1 Common Coordinate Spaces Used in 3D Graphics . . . 70

Table 5.1 Buffer Storage Flags . 102
Table 5.2 Buffer-Mapping Flags . 106
Table 5.3 Basic OpenGL Type Tokens and Their

Corresponding C Types 108
Table 5.4 Uniform Parameter Queries via

glGetActiveUniformsiv() 127
Table 5.5 Atomic Operations on Shader Storage Blocks 143
Table 5.6 Texture Targets and Description 155
Table 5.7 Basic Texture Targets and Sampler Types 157
Table 5.8 Texture Filters, Including Mipmapped Filters 172
Table 5.9 Image Types . 183
Table 5.10 Image Data Format Classes 185
Table 5.11 Image Data Format Classes 186
Table 5.12 Atomic Operations on Images 189
Table 5.13 Native OpenGL Texture Compression Formats 195
Table 5.14 Texture View Target Compatibility 200
Table 5.15 Texture View Format Compatibility 201

Table 6.1 Scalar Types in GLSL . 206
Table 6.2 Vector and Matrix Types in GLSL 208

xxi

Table 7.1 Vertex Attribute Types 244
Table 7.2 Draw Type Matrix . 250
Table 7.3 Values for primitiveMode 285

Table 8.1 Allowed Draw Modes for Geometry Shader
Input Modes . 337

Table 8.2 Sizes of Input Arrays to Geometry Shaders 339

Table 9.1 Stencil Functions . 373
Table 9.2 Stencil Operations . 375
Table 9.3 Depth Comparison Functions 377
Table 9.4 Blend Functions . 384
Table 9.5 Blend Equations . 387
Table 9.6 Logic Operations . 388
Table 9.7 Framebuffer Completeness Return Values 405
Table 9.8 Floating-Point Texture Formats 432

Table 11.1 First RGTC Encoding for RED Images 518
Table 11.2 Second RGTC Encoding for RED Images 519
Table 11.3 Packed Data Formats Supported in OpenGL 527

Table 12.1 Possible Return Values for glClientWaitSync() 560

Table 14.1 Map Buffer Access Types 710

Table C.1 OpenGL Functions . 760
Table C.2 OpenGL Extensions (Core) 777

xxii Tables

Listings

Listing 2.1 Our first OpenGL application 14
Listing 2.2 Animating color over time 16
Listing 2.3 Our first vertex shader 18
Listing 2.4 Our first fragment shader 18
Listing 2.5 Compiling a simple shader 18
Listing 2.6 Creating the program member variable 21
Listing 2.7 Rendering a single point 22
Listing 2.8 Producing multiple vertices in a vertex shader 25
Listing 2.9 Rendering a single triangle 25

Listing 3.1 Declaration of a vertex attribute 28
Listing 3.2 Updating a vertex attribute 29
Listing 3.3 Vertex shader with an output 30
Listing 3.4 Fragment shader with an input 31
Listing 3.5 Vertex shader with an output interface block 31
Listing 3.6 Fragment shader with an input interface block 32
Listing 3.7 Our first tessellation control shader 34
Listing 3.8 Our first tessellation evaluation shader 36
Listing 3.9 Our first geometry shader 38
Listing 3.10 Deriving a fragment’s color from its position 44
Listing 3.11 Vertex shader with an output 45
Listing 3.12 Deriving a fragment’s color from its position 46
Listing 3.13 Simple do-nothing compute shader 49

Listing 5.1 Creating and initializing a buffer 103
Listing 5.2 Updating the content of a buffer with

glBufferSubData() . 104

xxiii

Listing 5.3 Mapping a buffer’s data store with
glMapNamedBuffer() . 104

Listing 5.4 Setting up a vertex attribute 112
Listing 5.5 Using an attribute in a vertex shader 113
Listing 5.6 Declaring two inputs to a vertex shader 113
Listing 5.7 Multiple separate vertex attributes 114
Listing 5.8 Multiple interleaved vertex attributes 115
Listing 5.9 Example uniform block declaration 121
Listing 5.10 Declaring a uniform block with the std140 layout . . 123
Listing 5.11 Example uniform block with offsets 124
Listing 5.12 Uniform block with user-specified offsets 125
Listing 5.13 Uniform block with user-specified alignments 125
Listing 5.14 Retrieving the indices of uniform block members . . 126
Listing 5.15 Retrieving the information about uniform

block members . 127
Listing 5.16 Setting a single float in a uniform block 129
Listing 5.17 Retrieving the indices of uniform block members . . 129
Listing 5.18 Specifying the data for an array in a uniform block 129
Listing 5.19 Setting up a matrix in a uniform block 130
Listing 5.20 Specifying bindings for uniform blocks 133
Listing 5.21 Uniform blocks binding layout qualifiers 134
Listing 5.22 Setting up cube geometry 136
Listing 5.23 Building the model–view matrix for a spinning cube 137
Listing 5.24 Updating the projection matrix for the spinning cube 137
Listing 5.25 Rendering loop for the spinning cube 137
Listing 5.26 Spinning cube vertex shader 138
Listing 5.27 Spinning cube fragment shader 138
Listing 5.28 Rendering loop for the spinning cube 139
Listing 5.29 Example shader storage block declaration 141
Listing 5.30 Using a shader storage block in place of

vertex attributes . 142
Listing 5.31 Setting up an atomic counter buffer 148
Listing 5.32 Setting up an atomic counter buffer 148
Listing 5.33 Counting area using an atomic counter 150
Listing 5.34 Using the result of an atomic counter in

a uniform block . 151
Listing 5.35 Generating, initializing, and binding a texture 152
Listing 5.36 Updating texture data with glTexSubImage2D() 153
Listing 5.37 Reading from a texture in GLSL 156
Listing 5.38 The header of a .KTX file 160
Listing 5.39 Loading a .KTX file . 161
Listing 5.40 Vertex shader with a single texture coordinate 162
Listing 5.41 Fragment shader with a single texture coordinate . . 163

xxiv Listings

Listing 5.42 Initializing an array texture 178
Listing 5.43 Vertex shader for the alien rain sample 179
Listing 5.44 Fragment shader for the alien rain sample 180
Listing 5.45 Rendering loop for the alien rain sample 181
Listing 5.46 Fragment shader performing image loads and stores 188
Listing 5.47 Filling a linked list in a fragment shader 191
Listing 5.48 Traversing a linked list in a fragment shader 193

Listing 6.1 Retrieving the compiler log from a shader 221
Listing 6.2 Fragment shader with external function declaration 224
Listing 6.3 Configuring a separable program pipeline 226
Listing 6.4 Printing interface information 230
Listing 6.5 Example subroutine uniform declaration 231
Listing 6.6 Setting values of subroutine uniforms 234
Listing 6.7 Retrieving a program binary 236

Listing 7.1 Declaration of multiple vertex attributes 243
Listing 7.2 Setting up indexed cube geometry 251
Listing 7.3 Drawing indexed cube geometry 252
Listing 7.4 Drawing the same geometry many times 256
Listing 7.5 Pseudocode for glDrawArraysInstanced() 258
Listing 7.6 Pseudocode for glDrawElementsInstanced() 258
Listing 7.7 Simple vertex shader with per-vertex color 264
Listing 7.8 Simple instanced vertex shader 265
Listing 7.9 Getting ready for instanced rendering 266
Listing 7.10 Example use of an indirect draw command 272
Listing 7.11 Setting up the indirect draw buffer for asteroids . . . 273
Listing 7.12 Vertex shader inputs for asteroids 274
Listing 7.13 Per-indirect draw attribute setup 274
Listing 7.14 Asteroid field vertex shader 275
Listing 7.15 Drawing asteroids . 276
Listing 7.16 Spring mass system vertex setup 288
Listing 7.17 Spring mass system vertex shader 291
Listing 7.18 Spring mass system iteration loop 293
Listing 7.19 Spring mass system rendering loop 294
Listing 7.20 Clipping an object against a plane and a sphere . . . 302

Listing 8.1 Simple quad tessellation control shader example . . . 308
Listing 8.2 Simple quad tessellation evaluation shader example 310
Listing 8.3 Simple triangle tessellation control shader example 311
Listing 8.4 Simple triangle tessellation evaluation

shader example . 312

Listings xxv

Listing 8.5 Simple isoline tessellation control shader example . . 313
Listing 8.6 Simple isoline tessellation evaluation shader example 313
Listing 8.7 Isoline spirals tessellation evaluation shader 315
Listing 8.8 Vertex shader for terrain rendering 324
Listing 8.9 Tessellation control shader for terrain rendering . . . 325
Listing 8.10 Tessellation evaluation shader for terrain rendering 326
Listing 8.11 Fragment shader for terrain rendering 327
Listing 8.12 Cubic Bézier patch vertex shader 329
Listing 8.13 Cubic Bézier patch tessellation control shader 330
Listing 8.14 Cubic Bézier patch tessellation evaluation shader . . 331
Listing 8.15 Cubic Bézier patch fragment shader 332
Listing 8.16 Source code for a simple geometry shader 334
Listing 8.17 Geometry shader layout qualifiers 334
Listing 8.18 Iterating over the elements of gl_in[] 335
Listing 8.19 Definition of gl_in[] 338
Listing 8.20 Configuring the custom culling geometry shader . . . 342
Listing 8.21 Finding a face normal in a geometry shader 343
Listing 8.22 Conditionally emitting geometry in

a geometry shader . 343
Listing 8.23 Setting up the “explode” geometry shader 345
Listing 8.24 Pushing a face out along its normal 345
Listing 8.25 Pass-through vertex shader 346
Listing 8.26 Setting up the “tessellator” geometry shader 347
Listing 8.27 Generating new vertices in a geometry shader 347
Listing 8.28 Emitting a single triangle from a geometry shader . . 347
Listing 8.29 Using a function to produce faces in

a geometry shader . 348
Listing 8.30 A pass-through vertex shader that includes normals 349
Listing 8.31 Setting up the “normal visualizer”

geometry shader . 350
Listing 8.32 Producing lines from normals in the geometry shader 350
Listing 8.33 Drawing a face normal in the geometry shader 351
Listing 8.34 Geometry shader for rendering quads 359
Listing 8.35 Fragment shader for rendering quads 360
Listing 8.36 Rendering to multiple viewports in

a geometry shader . 362

Listing 9.1 Setting up scissor rectangle arrays 371
Listing 9.2 Example stencil buffer usage and stencil

border decorations . 375
Listing 9.3 Rendering with all blending functions 384
Listing 9.4 Setting up a simple framebuffer object 393
Listing 9.5 Rendering to a texture 394

xxvi Listings

Listing 9.6 Setting up an FBO with multiple attachments 396
Listing 9.7 Declaring multiple outputs in a fragment shader . . . 396
Listing 9.8 Setting up a layered framebuffer 397
Listing 9.9 Layered rendering using a geometry shader 398
Listing 9.10 Displaying an array texture—vertex shader 399
Listing 9.11 Displaying an array texture—fragment shader 400
Listing 9.12 Attaching texture layers to a framebuffer 402
Listing 9.13 Checking completeness of a framebuffer object 406
Listing 9.14 Creating a stereo window 408
Listing 9.15 Drawing into a stereo window 408
Listing 9.16 Rendering to two layers with a geometry shader . . . 410
Listing 9.17 Copying from an array texture to a stereo back buffer 411
Listing 9.18 Turning on line smoothing 414
Listing 9.19 Choosing eight-sample antialiasing 416
Listing 9.20 Setting up a multi-sample framebuffer attachment . . 418
Listing 9.21 Simple multi-sample “maximum” resolve 419
Listing 9.22 Fragment shader producing high-frequency output 422
Listing 9.23 A 100-megapixel virtual framebuffer 430
Listing 9.24 Applying a simple exposure coefficient to an

HDR image . 435
Listing 9.25 Adaptive HDR to LDR conversion fragment shader . . 437
Listing 9.26 Bloom fragment shader—output bright data to

a separate buffer . 440
Listing 9.27 Blur fragment shader 442
Listing 9.28 Adding a bloom effect to the scene 443
Listing 9.29 Creating integer framebuffer attachments 445
Listing 9.30 Texturing a point sprite in the fragment shader 450
Listing 9.31 Vertex shader for the star field effect 452
Listing 9.32 Fragment shader for the star field effect 453
Listing 9.33 Fragment shader for generating shaped points 455
Listing 9.34 Naïve rotated point sprite fragment shader 456
Listing 9.35 Rotated point sprite vertex shader 457
Listing 9.36 Rotated point sprite fragment shader 457
Listing 9.37 Taking a screenshot with glReadPixels() 460

Listing 10.1 Creating and compiling a compute shader 468
Listing 10.2 Compute shader image inversion 473
Listing 10.3 Dispatching the image copy compute shader 474
Listing 10.4 Compute shader with race conditions 476
Listing 10.5 Simple prefix sum implementation in C++ 480
Listing 10.6 Prefix sum implementation using a compute shader . 483
Listing 10.7 Compute shader to generate a 2D prefix sum 485
Listing 10.8 Depth of field using summed area tables 489

Listings xxvii

Listing 10.9 Initializing shader storage buffers for flocking 494
Listing 10.10 The rendering loop for the flocking example 495
Listing 10.11 Compute shader for updates in flocking example . . . 496
Listing 10.12 The first rule of flocking 497
Listing 10.13 The second rule of flocking 497
Listing 10.14 Main body of the flocking update compute shader . . 498
Listing 10.15 Inputs to the flock rendering vertex shader 500
Listing 10.16 Flocking vertex shader body 500

Listing 11.1 Declaring samplers inside uniform blocks 505
Listing 11.2 Declaring samplers inside uniform blocks 506
Listing 11.3 Making textures resident 507
Listing 11.4 Creating a sparse texture 510
Listing 11.5 Determining supported sparse texture page sizes . . . 511
Listing 11.6 Simple texture commitment management 513
Listing 11.7 Sampling a sparse texture with clamped

level-of-detail (LoD) . 515
Listing 11.8 Fetching a block of texels using

textureGatherOffset 520
Listing 11.9 Generating a palette for RGTC encoding 521
Listing 11.10 Palettizing an RGTC block 521
Listing 11.11 Packing an RGTC block 522
Listing 11.12 Generating a palette for RGTC encoding 523
Listing 11.13 Main function for RGTC compression 524
Listing 11.14 High-quality texture filtering function 530

Listing 12.1 Getting the result from a query object 538
Listing 12.2 Figuring out if occlusion query results are ready . . . 538
Listing 12.3 Simple, application-side conditional rendering 539
Listing 12.4 Rendering when query results aren’t available 540
Listing 12.5 Basic conditional rendering example 541
Listing 12.6 A more complete conditional rendering example . . . 543
Listing 12.7 Simple control flow using queries 544
Listing 12.8 Timing operations using timer queries 546
Listing 12.9 Timing operations using glQueryCounter() 547
Listing 12.10 Drawing data written to a transform feedback buffer 552
Listing 12.11 Working while waiting for a sync object 558

Listing 13.1 The Gouraud shading vertex shader 571
Listing 13.2 The Gouraud shading fragment shader 572
Listing 13.3 The Phong shading vertex shader 574
Listing 13.4 The Phong shading fragment shader 575

xxviii Listings

Listing 13.5 Blinn-Phong fragment shader 578
Listing 13.6 Rim lighting shader function 580
Listing 13.7 Vertex shader for normal mapping 584
Listing 13.8 Fragment shader for normal mapping 585
Listing 13.9 Spherical environment mapping vertex shader 588
Listing 13.10 Spherical environment mapping fragment shader . . 588
Listing 13.11 Equirectangular environment mapping

fragment shader . 590
Listing 13.12 Loading a cubemap texture 592
Listing 13.13 Vertex shader for skybox rendering 594
Listing 13.14 Fragment shader for skybox rendering 595
Listing 13.15 Vertex shader for cubemap environment rendering 595
Listing 13.16 Fragment shader for cubemap environment rendering 596
Listing 13.17 Fragment shader for per-fragment shininess 598
Listing 13.18 Getting ready for shadow mapping 600
Listing 13.19 Setting up matrices for shadow mapping 601
Listing 13.20 Setting up a shadow matrix 602
Listing 13.21 Simplified vertex shader for shadow mapping 603
Listing 13.22 Simplified fragment shader for shadow mapping . . . 604
Listing 13.23 Displacement map tessellation evaluation shader . . 606
Listing 13.24 Application of fog in a fragment shader 608
Listing 13.25 The toon vertex shader 611
Listing 13.26 The toon fragment shader 612
Listing 13.27 Initializing a G-buffer 615
Listing 13.28 Writing to a G-buffer 616
Listing 13.29 Unpacking data from a G-buffer 617
Listing 13.30 Lighting a fragment using data from a G-buffer 618
Listing 13.31 Deferred shading with normal mapping

(fragment shader) . 621
Listing 13.32 Ambient occlusion fragment shader 630
Listing 13.33 Setting up the Julia set renderer 633
Listing 13.34 Inner loop of the Julia renderer 633
Listing 13.35 Using a gradient texture to color the Julia set 634
Listing 13.36 Ray–sphere interesection test 638
Listing 13.37 Determining closest intersection point 639
Listing 13.38 Ray–plane interesection test 644
Listing 13.39 Fragment shader for distance field rendering 651
Listing 13.40 Getting ready for bitmap fonts 656
Listing 13.41 Bitmap font rendering shader 657
Listing 13.42 Bitmap font rendering shader 658

Listing 14.1 OpenMP particle updater 663
Listing 14.2 Setting up a persistent mapped buffer 665

Listings xxix

Listing 14.3 OpenMP particle rendering loop 665
Listing 14.4 Example packet data structure 669
Listing 14.5 Union of all packets . 670
Listing 14.6 Appending a packet to a packet buffer 670
Listing 14.7 Executing a packet buffer 671
Listing 14.8 Disassembly of packet_stream::execute 672
Listing 14.9 Implementation of packet_stream::EnableDisable 673
Listing 14.10 Optimized packet insertion 676
Listing 14.11 Optimized packet execution 677
Listing 14.12 Uniform block declarations for indirect materials . . 680
Listing 14.13 Passing material index through a vertex shader 681
Listing 14.14 Declaration of material properties 681
Listing 14.15 Passing material index through a vertex shader 682
Listing 14.16 Candidate draws used for culling 685
Listing 14.17 Matrix data used for compute shader culling 685
Listing 14.18 Object culling in a compute shader 686
Listing 14.19 Driving compute culling shaders 687
Listing 14.20 Julia fractals on the CPU 696
Listing 14.21 Persistent mapped fractal rendering 697

Listing 15.1 Creating a debug context with the sb7 framework . . 730
Listing 15.2 Setting the debug callback function 731
Listing 15.3 Shader with an infinite loop 738

xxx Listings

Foreword

When OpenGL was young, the highest-end SGI systems like the Reality
Engine 2 cost $80,000 and could render 200,000 textured triangles per
second, or 3,333 triangles per frame at 60 Hz. The CPUs of that era were
slower than today, to be sure, but at around 100 MHz, that’s still 500 CPU
cycles for each triangle. It was pretty easy to be graphics limited back then,
and the API reflected that—the only way to specify geometry was
immediate mode! Well, there were also display lists for static geometry,
which made being graphics-limited even easier.

OpenGL is not young anymore, the highest-end GPUs that it can run on
cost around $1000, and they don’t even list triangles per second in their
basic product description anymore, but the number is north of 6 billion.
Today these GPUs are in the middle of the single digit teraflops and several
hundred gigabytes per second of bandwidth. CPUs have gotten faster, too:
With 4 cores and around 3 GHz, they are shy of 200 gigaflops and have
around 20 gigabytes per second of memory bandwidth. So where we had
500 CPU cycles for a triangle in the early days, we now have 0.5 cycles.
Even if we could perfectly exploit all 4 cores, that would give us a paltry
2 CPU cycles for each triangle!

All that is to say that the growth in hardware graphics performance has
outstripped conventional CPU performance growth by several orders of
magnitude, and the consequences are pretty obvious today. Not only is
the CPU frequently the limiting factor in graphics performance, we have
an API that was designed against a different set of assumptions.

The good news with OpenGL is that it has evolved too. First it added
vertex arrays so that a single draw command with fairly low CPU overhead
gets amplified into a lot of GPU work. This helped for a while, but it

xxxi

wasn’t enough. We added instancing to further increase the amount of
work, but this was a somewhat limited form of work amplification, as we
don’t always want many instances of the same object in an organic,
believable rendering.

Recognizing that these emerging limitations in the API had to be
circumvented somehow, OpenGL designers began extending the interface
to remove as much CPU-side overhead from the interface as possible. The
“bindless” family of extensions allows the GPU to reference buffers and
textures directly rather than going through expensive binding calls in the
driver. Persistent maps allow the application to scribble on memory at the
same time the GPU is referencing it. This sounds dangerous—and it can
be!—but allowing the application to manage memory hazards relieves a
tremendous burden from the driver and allows for far simpler, less general
mechanisms to be employed. Sparse texture arrays allow applications to
manage texture memory as well with similar, very low-overhead benefits.
And finally multi-draw and multi-draw indirect added means the GPU can
generate the very buffers that it sources for drawing, leaving the CPU a lot
more available for other work.

All of these advances in OpenGL have been loosely lumped under the
AZDO (Approaching Zero Driver Overhead) umbrella, and most of them
have been incorporated into the core API. There are still significant areas
for improvement as we try to get to an API that allows developers to
render as much as they want, the way they want, without worrying that
the CPU or driver overhead will get in the way. These features require a bit
more work to make use of, but the results can be truly amazing! This
edition of the OpenGL® SuperBible includes many new examples that make
use of AZDO features and provide good guidance on how to get the CPU
out of the way. In particular, you’ll learn good ways to make use of zero
copy, proper fencing, and bindless.

Cass Everitt
Oculus

xxxii Foreword

Preface

This book is designed both for people who are learning computer graphics
through OpenGL and for people who may already know about graphics
but want to learn about OpenGL. The intended audience is students of
computer science, computer graphics, or game design; professional
software engineers; or simply just hobbyists and people who are interested
in learning something new. We begin by assuming that the reader knows
nothing about either computer graphics or OpenGL. The reader should be
familiar with computer programming in C++, however.

One of our goals with this book was to ensure that there were as few
forward references as possible and to require little or no assumed
knowledge. The book is accessible and readable, and if you start from the
beginning and read all the way through, you should come away with a
good comprehension of how OpenGL works and how to use it effectively
in your applications. After reading and understanding the content of this
book, you will be well positioned to read and learn from more advanced
computer graphics research articles and confident that you can take the
principles that they cover and implement them in OpenGL.

It is not a goal of this book to cover every last feature of OpenGL—that is,
to mention every function in the specification or every value that can be
passed to a command. Rather, we intend to provide a solid understanding
of OpenGL, introduce the fundamentals, and explore some of its more
advanced features. After reading this book, readers should be comfortable
looking up finer details in the OpenGL specification, experimenting with

xxxiii

OpenGL on their own machines, and using extensions (bonus features
that add capabilities to OpenGL not required by the main specification).

The Architecture of the Book

This book is subdivided into three parts. In Part I, “Foundations,” we
explain what OpenGL is and how it connects to the graphics pipeline, and
we give minimal working examples that are sufficient to demonstrate each
section of it without requiring much, if any, knowledge of any other part
of the whole system. We lay a foundation for the math behind three-
dimensional computer graphics, and describe how OpenGL manages the
large amounts of data that are required to provide a compelling experience
to the users of such applications. We also describe the programming
model for shaders, which form a core part of any OpenGL application.

In Part II, “In Depth,” we introduce features of OpenGL that require some
knowledge of multiple parts of the graphics pipeline and may refer to
concepts mentioned in Part I. This allows us to cover more complex topics
without glossing over details or telling you to skip forward in the book to
find out how something really works. By taking a second pass over the
OpenGL system, we are able to delve into where data goes as it leaves each
part of OpenGL, as you’ll already have been (at least briefly) introduced to
its destination.

Finally, in Part III, “In Practice,” we dive deeper into the graphics pipeline,
cover some more advanced topics, and give a number of examples that use
multiple features of OpenGL. We provide a number of worked examples
that implement various rendering techniques, give a series of suggestions
and advice on OpenGL best practices and performance considerations, and
end up with a practical overview of OpenGL on several popular platforms,
including mobile devices.

In Part I, we start gently and then blast through OpenGL to give you a
taste of what’s to come. Then, we lay the groundwork of knowledge that
will be essential to you as you progress through the rest of the book. In
this part, you will find the following chapters:

• Chapter 1, “Introduction,” provides a brief introduction to OpenGL,
including its origins, history, and current state.

• Chapter 2, “Our First OpenGL Program,” jumps right into OpenGL
and shows you how to create a simple OpenGL application using the
source code provided with this book.

xxxiv Preface

• Chapter 3, “Following the Pipeline,” takes a more careful look at
OpenGL and its various components, introducing each in a little
more detail and adding to the simple example presented in the
previous chapter.

• Chapter 4, “Math for 3D Graphics,” introduces the foundations of
math that is essential for effective use of OpenGL and the creation of
interesting 3D graphics applications.

• Chapter 5, “Data,” provides you with the tools necessary to manage
data that will be consumed and produced by OpenGL.

• Chapter 6, “Shaders and Programs,” takes a deeper look at shaders,
which are fundamental to the operation of modern graphics
applications.

In Part II, we take a more detailed look at several of the topics introduced
in the first chapters. We dig deeper into each of the major parts of OpenGL
and our example applications start to become a little more complex and
interesting. In this part, you will find these six chapters:

• Chapter 7, “Vertex Processing and Drawing Commands,” covers the
inputs to OpenGL and the mechanisms by which semantics are
applied to the raw data you provide.

• Chapter 8, “Primitive Processing,” covers some higher-level concepts
in OpenGL, including connectivity information, higher-order
surfaces, and tessellation.

• Chapter 9, “Fragment Processing and the Framebuffer,” looks at how
high-level 3D graphics information is transformed by OpenGL into
2D images, and how your applications can determine the appearance
of objects on the screen.

• Chapter 10, “Compute Shaders,” illustrates how your applications
can harness OpenGL for more than just graphics and make use of the
incredible computing power locked up in a modern graphics card.

• Chapter 11, “Advanced Data Management,” discusses topics related
to managing large data sets, loading data efficiently, and arbitrating
access to that data once loaded.

• Chapter 12, “Controlling and Monitoring the Pipeline,” shows you
how to get a glimpse into how OpenGL executes the commands you
give it—including how long they take to execute, and how much
data they produce.

Preface xxxv

In Part III, we build on the knowledge that you will have gained in reading
the first two parts of the book and use it to construct example applications
that touch on multiple aspects of OpenGL. We also get into the
practicalities of building larger OpenGL applications and deploying them
across multiple platforms. In this part, you will find three chapters:

• Chapter 13, “Rendering Techniques,” covers several applications of
OpenGL for graphics rendering, including simulation of light, artistic
methods and even some nontraditional techniques.

• Chapter 14, “High-Performance OpenGL,” digs into some topics
related to getting the highest possible performance from OpenGL.

• Chapter 15, “Debugging and Stability,” provides advice and tips on
how to get your applications running without errors and how to
debug problems with your programs.

Finally, several appendices are provided that describe the tools and file
formats used in this book, discuss which versions of OpenGL support
which features and list which extensions introduced those features, and
give pointers to more useful OpenGL resources.

What’s New in This Edition

In this book, we have expanded on the sixth edition to cover new features
and topics introduced in OpenGL in versions 4.4 and 4.5 of the API. In the
previous edition, we did not cover extensions—features that are entirely
optional and not a mandatory part of the OpenGL core—and so left out a
number of interesting topics. Since the release of the sixth edition of this
book, some of these extensions have become fairly ubiquitous; in turn, we
have decided to cover the ARB and KHR extensions. Thus extensions that
have been ratified by Khronos (the OpenGL governing body) are part of
this book.

We have built on the previous edition by expanding the book’s application
framework and adding new chapters and appendices that provide further
insight and cover new topics. One important set of features enabled by the
extensions that are now part of the book are the AZDO (Approaching Zero
Driver Overhead) features, which are a way of using OpenGL that produces
very low software overhead and correspondingly high performance. These
features include persistent maps and bindless textures.

xxxvi Preface

To make room for the new content, we decided to remove the chapter on
platform specifics, which covered per-platform window system bindings.
Also gone is official support for the Apple Mac platform. Almost all of the
new content in this edition requires features introduced with OpenGL 4.4
or 4.5, or recent OpenGL extensions—none of which were supported by
OS X at the time of writing. There is no expectation that Apple will further
invest in its OpenGL implementation, so we encourage our readers to
move away from the platform. To support multiple platforms, we
recommend the use of cross-platform toolkits such as the excellent SDL
(https://www.libsdl.org/) or glfw (http://www.glfw.org/) libraries. In
fact, this book’s framework is built on glfw, and it works well for us.

This book includes several new example applications, including
demonstrations of new features, a texture compressor, text drawing, font
rendering using distance fields, high-quality texture filtering, and
multi-threaded programs using OpenMP. We also tried to address all of the
errata and feedback we’ve received from our readers since the publication
of the previous edition. We believe this to be the best update yet to the
OpenGL® SuperBible yet.

We hope you enjoy it.

How to Build the Examples

Retrieve the sample code from the book’s companion Web site,
http://www.openglsuperbible.com, unpack the archive to a directory on
your computer, and follow the instructions in the included
HOWTOBUILD.TXT file for your platform of choice. The book’s source code
has been built and tested on Microsoft Windows (Windows 7 or later is
required) and Linux (several major distributions). It is recommended that
you install any available operating system updates and obtain the most
recent graphics drivers from your graphics card manufacturer.

You may notice some minor discrepancies between the source code
printed in this book and that in the source files. There are a number of
reasons for this:

• This book is about OpenGL 4.5—the most recent version at the time
of writing. The examples printed in the book are written assuming
that OpenGL 4.5 is available on the target platform. However, we
understand that in practice, operating systems, graphics drivers, and
platforms may not have the latest and greatest available.

Preface xxxvii

https://www.libsdl.org
http://www.glfw.org
http://www.openglsuperbible.com

Consequently, where possible, we’ve made minor modifications to
the example applications to allow them to run on earlier versions of
OpenGL.

• Several months passed between when this book’s text was finalized
for printing and when the sample applications were packaged and
posted to the Web. In that time, we discovered opportunities for
improvement, whether that was uncovering new bugs, platform
dependencies, or optimizations. The latest version of the source code
on the Web will have those fixes and tweaks applied and will
therefore deviate from the necessarily static copy printed in the book.

• There is not necessarily a one-to-one mapping of listings in the
book’s text and example applications in the Web package. Some
example applications demonstrate more than one concept, some
aren’t mentioned in the book at all, and some listings in the book
don’t have an equivalent example application. Where possible, we’ve
mentioned which of the example applications correspond to the
listings in the book. We recommend that the reader take a close look
at the example application package, as it includes some nuggets that
may not be mentioned in the book.

Errata

We made a bunch of mistakes—we’re certain of it. It’s incredibly
frustrating as an author to spot an error that you made and know that it
has been printed, in books that your readers paid for, thousands and
thousands of times. We have to accept that this will happen, though, and
do our best to correct issues as we are able. If you think you see something
that doesn’t quite gel, check the book’s Web site for errata:

http://www.openglsuperbible.com

Note from the Publisher

Some of the figures in the print edition of the book are dark due to the
nature of the images themselves. To assist readers, color PDFs of figures
are freely available at http://www.openglsuperbible.com and
http://informit.com/title/9780672337475. In addition, PowerPoint
slides of the figures for professors’ classroom use are available at
www.pearsonhighered.com/educator/product/OpenGL-Superbible-
Comprehensive-Tutorial-and-Reference/9780672337475.page.

xxxviii Preface

http://www.openglsuperbible.com
http://www.openglsuperbible.com
http://informit.com/title/9780672337475
http://www.pearsonhighered.com/educator/product/OpenGL-Superbible-Comprehensive-Tutorial-and-Reference/9780672337475.page
http://www.pearsonhighered.com/educator/product/OpenGL-Superbible-Comprehensive-Tutorial-and-Reference/9780672337475.page

Acknowledgments

First, thanks to you—the reader. The best part of what I do is knowing that
someone I’ve never met might benefit from all this. It’s the biggest thrill,
and the reason why people like me do this. I appreciate that you’re reading
this now and hope you get as much out of this book as I put into it.

I’d like to thank my wonderful wife, Chris, who’s put up with me
disappearing into my office for three editions of this book now. She’s
worked around my deadlines and cheered me on as I made (sometimes
slow and painful) progress. I couldn’t have done this without her. Thanks,
too, to my kids, Jeremy and Emily. The answer to “What are you doing,
dad?” is almost always “Working”—and you’ve always taken it in stride.

Thanks to my coauthors, Richard and Nick. You’ve let me run alone on
this edition, but your names are on the cover because of your
contributions—your fingerprints are etched into this book. Many thanks
to Matías Goldberg, who performed a thorough technical review of the
book on short notice.

Thanks again to Laura Lewin and Olivia Basegio and the Pearson team for
letting me be me and just dropping random files and documents off
whenever I felt like it. I don’t work well with a plan, but seem to relish
pressure and am really excellent at procrastination. I’m glad you guys put
up with me.

Graham Sellers

xxxix

This page intentionally left blank

About the Author

Graham Sellers is a classic geek. His family got their first computer (a
BBC Model B) right before his sixth birthday. After his mum and dad
stayed up all night programming it to play “Happy Birthday,” he was
hooked and determined to figure out how it worked. Next came basic
programming and then assembly language. His first real exposure to
graphics was via “demos” in the early 1990s, and then through Glide, and
finally OpenGL in the late 1990s. Graham holds a master’s in engineering
from the University of Southampton, England.

Currently, Graham is a software architect at AMD. He represents AMD at
the OpenGL ARB and has contributed to many extensions and to the core
OpenGL Specification. Prior to that, he was a team lead at Epson,
implementing OpenGL-ES and OpenVG drivers for embedded products.
Graham holds several patents in the fields of computer graphics and image
processing. When he’s not working on OpenGL, he likes to disassemble
and reverse-engineer old video game consoles (just to see how they work
and what he can make them do). Originally from England, Graham now
lives in Orlando, Florida, with his wife and two children.

xli

This page intentionally left blank

Chapter 3

Following the Pipeline

WHAT YOU’LL LEARN IN THIS CHAPTER

• What each of the stages in the OpenGL pipeline does.

• How to connect your shaders to the fixed-function pipeline stages.

• How to create a program that uses every stage of the graphics
pipeline simultaneously.

In this chapter, we will walk all the way along the OpenGL pipeline from
start to finish, providing insight into each of the stages, which include
fixed-function blocks and programmable shader blocks. You have already
read a whirlwind introduction to the vertex and fragment shader stages.
However, the application that you constructed simply drew a single
triangle at a fixed position. If we want to render anything interesting with
OpenGL, we’re going to have to learn a lot more about the pipeline and all
of the things you can do with it. This chapter introduces every part of the
pipeline, hooks them up to one another, and provides an example shader
for each stage.

27

Passing Data to the Vertex Shader

The vertex shader is the first programmable stage in the OpenGL pipeline
and has the distinction of being the only mandatory stage in the graphics
pipeline. However, before the vertex shader runs, a fixed-function stage
known as vertex fetching, or sometimes vertex pulling, is run. This
automatically provides inputs to the vertex shader.

Vertex Attributes

In GLSL, the mechanism for getting data in and out of shaders is to declare
global variables with the in and out storage qualifiers. You were briefly
introduced to the out qualifier in Chapter 2, “Our First OpenGL Program,”
when Listing 2.4 used it to output a color from the fragment shader. At the
start of the OpenGL pipeline, we use the in keyword to bring inputs into
the vertex shader. Between stages, in and out can be used to form conduits
from shader to shader and pass data between them. We’ll get to that
shortly. For now, consider the input to the vertex shader and what
happens if you declare a variable with an in storage qualifier. This marks
the variable as an input to the vertex shader, which means that it is
essentially an input to the OpenGL graphics pipeline. It is automatically
filled in by the fixed-function vertex fetch stage. The variable becomes
known as a vertex attribute.

Vertex attributes are how vertex data is introduced into the OpenGL
pipeline. To declare a vertex attribute, you declare a variable in the vertex
shader using the in storage qualifier. An example of this is shown in
Listing 3.1, where we declare the variable offset as an input attribute.

#version 450 core

// ’offset’ is an input vertex attribute
layout (location = 0) in vec4 offset;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4(0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4(0.25, 0.25, 0.5, 1.0));

// Add ’offset’ to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

}

Listing 3.1: Declaration of a vertex attribute

28 Chapter 3: Following the Pipeline

In Listing 3.1, we have added the variable offset as an input to the vertex
shader. As it is an input to the first shader in the pipeline, it will be filled
automatically by the vertex fetch stage. We can tell this stage what to fill
the variable with by using one of the many variants of the vertex attribute
functions, glVertexAttrib*(). The prototype for glVertexAttrib4fv(),
which we use in this example, is

void glVertexAttrib4fv(GLuint index,
const GLfloat * v);

Here, the parameter index is used to reference the attribute and v is a
pointer to the new data to put into the attribute. You may have noticed
the layout (location = 0) code in the declaration of the offset
attribute. This is a layout qualifier, which we have used to set the location of
the vertex attribute to zero. This location is the value we’ll pass in index to
refer to the attribute.

Each time we call one of the glVertexAttrib*() functions (of which there
are many), it will update the value of the vertex attribute that is passed to
the vertex shader. We can use this approach to animate our one triangle.
Listing 3.2 shows an updated version of our rendering function that
updates the value of offset in each frame.

// Our rendering function
virtual void render(double currentTime)
{

const GLfloat color[] = { (float)sin(currentTime) * 0.5f + 0.5f,
(float)cos(currentTime) * 0.5f + 0.5f,
0.0f, 1.0f };

glClearBufferfv(GL_COLOR, 0, color);

// Use the program object we created earlier for rendering
glUseProgram(rendering_program);

GLfloat attrib[] = { (float)sin(currentTime) * 0.5f,
(float)cos(currentTime) * 0.6f,
0.0f, 0.0f };

// Update the value of input attribute 0
glVertexAttrib4fv(0, attrib);

// Draw one triangle
glDrawArrays(GL_TRIANGLES, 0, 3);

}

Listing 3.2: Updating a vertex attribute

When we run the program with the rendering function of Listing 3.2, the
triangle will move in a smooth oval shape around the window.

Passing Data to the Vertex Shader 29

Passing Data from Stage to Stage

So far, you have seen how to pass data into a vertex shader by creating a
vertex attribute using the in keyword, how to communicate with
fixed-function blocks by reading and writing built-in variables such as
gl_VertexID and gl_Position, and how to output data from the fragment
shader using the out keyword. However, it’s also possible to send your own
data from shader stage to shader stage using the same in and out
keywords. Just as you used the out keyword in the fragment shader to
create the output variable to which it writes its color values, so you can
also create an output variable in the vertex shader by using the out
keyword. Anything you write to an output variable in one shader is sent to
a similarly named variable declared with the in keyword in the subsequent
stage. For example, if your vertex shader declares a variable called
vs_color using the out keyword, it would match up with a variable named
vs_color declared with the in keyword in the fragment shader stage
(assuming no other stages were active in between).

If we modify our simple vertex shader as shown in Listing 3.3 to include
vs_color as an output variable, and correspondingly modify our simple
fragment shader to include vs_color as an input variable as shown in
Listing 3.4, we can pass a value from the vertex shader to the fragment
shader. Then, rather than outputting a hard-coded value, the fragment can
simply output the color passed to it from the vertex shader.

#version 450 core

// ’offset’ and ’color’ are input vertex attributes
layout (location = 0) in vec4 offset;
layout (location = 1) in vec4 color;

// ’vs_color’ is an output that will be sent to the next shader stage
out vec4 vs_color;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4(0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4(0.25, 0.25, 0.5, 1.0));

// Add ’offset’ to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

// Output a fixed value for vs_color
vs_color = color;

}

Listing 3.3: Vertex shader with an output

30 Chapter 3: Following the Pipeline

As you can see in Listing 3.3, we declare a second input to our vertex
shader, color (this time at location 1), and write its value to the vs_output
output. This is picked up by the fragment shader of Listing 3.4 and written
to the framebuffer. This allows us to pass a color all the way from a vertex
attribute that we can set with glVertexAttrib*() through the vertex
shader, into the fragment shader, and out to the framebuffer. As a
consequence, we can draw different-colored triangles!

#version 450 core

// Input from the vertex shader
in vec4 vs_color;

// Output to the framebuffer
out vec4 color;

void main(void)
{

// Simply assign the color we were given by the vertex shader to our output
color = vs_color;

}

Listing 3.4: Fragment shader with an input

Interface Blocks

Declaring interface variables one at a time is possibly the simplest way to
communicate data between shader stages. However, in most nontrivial
applications, you will likely want to communicate a number of different
pieces of data between stages; these may include arrays, structures, and
other complex arrangements of variables. To achieve this, we can group
together a number of variables into an interface block. The declaration of
an interface block looks a lot like a structure declaration, except that it is
declared using the in or out keyword depending on whether it is an input
to or output from the shader. An example interface block definition is
shown in Listing 3.5.

#version 450 core

// ’offset’ is an input vertex attribute
layout (location = 0) in vec4 offset;
layout (location = 1) in vec4 color;

// Declare VS_OUT as an output interface block
out VS_OUT
{

vec4 color; // Send color to the next stage
} vs_out;

Passing Data from Stage to Stage 31

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4(0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4(0.25, 0.25, 0.5, 1.0));

// Add ’offset’ to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

// Output a fixed value for vs_color
vs_out.color = color;

}

Listing 3.5: Vertex shader with an output interface block

Note that the interface block in Listing 3.5 has both a block name (VS_OUT,
uppercase) and an instance name (vs_out, lowercase). Interface blocks are
matched between stages using the block name (VS_OUT in this case), but
are referenced in shaders using the instance name. Thus, modifying our
fragment shader to use an interface block gives the code shown in
Listing 3.6.

#version 450 core

// Declare VS_OUT as an input interface block
in VS_OUT
{

vec4 color; // Send color to the next stage
} fs_in;

// Output to the framebuffer
out vec4 color;

void main(void)
{

// Simply assign the color we were given by the vertex shader to our output
color = fs_in.color;

}

Listing 3.6: Fragment shader with an input interface block

Matching interface blocks by block name but allowing block instances to
have different names in each shader stage serves two important purposes.
First, it allows the name by which you refer to the block to be different in
each stage, thereby avoiding confusing things such as having to use
vs_out in a fragment shader. Second, it allows interfaces to go from being
single items to arrays when crossing between certain shader stages, such as
the vertex and tessellation or geometry shader stages, as we will see in a
short while. Note that interface blocks are only for moving data from

32 Chapter 3: Following the Pipeline

shader stage to shader stage—you can’t use them to group together inputs
to the vertex shader or outputs from the fragment shader.

Tessellation

Tessellation is the process of breaking a high-order primitive (which is
known as a patch in OpenGL) into many smaller, simpler primitives such
as triangles for rendering. OpenGL includes a fixed-function, configurable
tessellation engine that is able to break up quadrilaterals, triangles, and
lines into a potentially large number of smaller points, lines, or triangles
that can be directly consumed by the normal rasterization hardware
further down the pipeline. Logically, the tessellation phase sits directly
after the vertex shading stage in the OpenGL pipeline and is made up of
three parts: the tessellation control shader, the fixed-function tessellation
engine, and the tessellation evaluation shader.

Tessellation Control Shaders

The first of the three tessellation phases is the tessellation control shader
(TCS; sometimes known as simply the control shader). This shader takes
its input from the vertex shader and is primarily responsible for two
things: the determination of the level of tessellation that will be sent to
the tessellation engine, and the generation of data that will be sent to the
tessellation evaluation shader that is run after tessellation has occurred.

Tessellation in OpenGL works by breaking down high-order surfaces
known as patches into points, lines, or triangles. Each patch is formed
from a number of control points. The number of control points per
patch is configurable and set by calling glPatchParameteri() with pname
set to GL_PATCH_VERTICES and value set to the number of control
points that will be used to construct each patch. The prototype of
glPatchParameteri() is

void glPatchParameteri(GLenum pname,
GLint value);

By default, the number of control points per patch is three. Thus, if this
is what you want (as in our example application), you don’t need to call it
at all. The maximum number of control points that can be used to form
a single patch is implementation defined, but is guaranteed to be at
least 32.

Tessellation 33

When tessellation is active, the vertex shader runs once per control point,
while the tessellation control shader runs in batches on groups of control
points where the size of each batch is the same as the number of vertices
per patch. That is, vertices are used as control points and the result of the
vertex shader is passed in batches to the tessellation control shader as its
input. The number of control points per patch can be changed such that
the number of control points that is output by the tessellation control
shader can differ from the number of control points that it consumes. The
number of control points produced by the control shader is set using an
output layout qualifier in the control shader’s source code. Such a layout
qualifier looks like this:

layout (vertices = N) out;

Here, N is the number of control points per patch. The control shader is
responsible for calculating the values of the output control points and for
setting the tessellation factors for the resulting patch that will be sent to
the fixed-function tessellation engine. The output tessellation factors are
written to the gl_TessLevelInner and gl_TessLevelOuter built-in output
variables, whereas any other data that is passed down the pipeline is
written to user-defined output variables (those declared using the out
keyword, or the special built-in gl_out array) as normal.

Listing 3.7 shows a simple tessellation control shader. It sets the number of
output control points to three (the same as the default number of input
control points) using the layout (vertices = 3) out; layout qualifier,
copies its input to its output (using the built-in variables gl_in and
gl_out), and sets the inner and outer tessellation level to 5. Higher
numbers would produce a more densely tessellated output, and lower
numbers would yield a more coarsely tessellated output. Setting the
tessellation factor to 0 will cause the whole patch to be thrown away.

The built-in input variable gl_InvocationID is used as an index into the
gl_in and gl_out arrays. This variable contains the zero-based index of
the control point within the patch being processed by the current
invocation of the tessellation control shader.

#version 450 core

layout (vertices = 3) out;

void main(void)
{

// Only if I am invocation 0 ...
if (gl_InvocationID == 0)

34 Chapter 3: Following the Pipeline

{
gl_TessLevelInner[0] = 5.0;
gl_TessLevelOuter[0] = 5.0;
gl_TessLevelOuter[1] = 5.0;
gl_TessLevelOuter[2] = 5.0;

}
// Everybody copies their input to their output
gl_out[gl_InvocationID].gl_Position =

gl_in[gl_InvocationID].gl_Position;
}

Listing 3.7: Our first tessellation control shader

The Tessellation Engine

The tessellation engine is a fixed-function part of the OpenGL pipeline
that takes high-order surfaces represented as patches and breaks them
down into simpler primitives such as points, lines, or triangles. Before the
tessellation engine receives a patch, the tessellation control shader
processes the incoming control points and sets tessellation factors that are
used to break down the patch. After the tessellation engine produces the
output primitives, the vertices representing them are picked up by the
tessellation evaluation shader. The tessellation engine is responsible for
producing the parameters that are fed to the invocations of the tessellation
evaluation shader, which it then uses to transform the resulting primitives
and get them ready for rasterization.

Tessellation Evaluation Shaders

Once the fixed-function tessellation engine has run, it produces a number
of output vertices representing the primitives it has generated. These are
passed to the tessellation evaluation shader. The tessellation evaluation
shader (TES; also called simply the evaluation shader) runs an invocation
for each vertex produced by the tessellator. When the tessellation levels
are high, the tessellation evaluation shader could run an extremely large
number of times. For this reason, you should be careful with complex
evaluation shaders and high tessellation levels.

Listing 3.8 shows a tessellation evaluation shader that accepts input
vertices produced by the tessellator as a result of running the control
shader shown in Listing 3.7. At the beginning of the shader is a layout
qualifier that sets the tessellation mode. In this case, we selected the mode

Tessellation 35

to be triangles. Other qualifiers, equal_spacing and cw, indicate that new
vertices should be generated equally spaced along the tessellated polygon
edges and that a clockwise vertex winding order should be used for the
generated triangles. We will cover the other possible choices in the
“Tessellation” section in Chapter 8.

The remainder of the shader assigns a value to gl_Position just like a
vertex shader does. It calculates this using the contents of two more
built-in variables. The first is gl_TessCoord, which is the barycentric
coordinate of the vertex generated by the tessellator. The second is the
gl_Position member of the gl_in[] array of structures. This matches the
gl_out structure written to in the tessellation control shader given in
Listing 3.7. This shader essentially implements pass-through tessellation.
That is, the tessellated output patch is exactly the same shape as the
original, incoming triangular patch.

#version 450 core

layout (triangles, equal_spacing, cw) in;

void main(void)
{

gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position +
gl_TessCoord.y * gl_in[1].gl_Position +
gl_TessCoord.z * gl_in[2].gl_Position);

}

Listing 3.8: Our first tessellation evaluation shader

To see the results of the tessellator, we need to tell OpenGL to draw only
the outlines of the resulting triangles. To do this, we call glPolygonMode(),
whose prototype is

void glPolygonMode(GLenum face,
GLenum mode);

The face parameter specifies which type of polygons we want to affect.
Because we want to affect everything, we set it to GL_FRONT_AND_BACK. The
other modes will be explained shortly. mode says how we want our
polygons to be rendered. As we want to render in wireframe mode (i.e.,
lines), we set this to GL_LINE. The result of rendering our one triangle

36 Chapter 3: Following the Pipeline

Figure 3.1: Our first tessellated triangle

example with tessellation enabled and the two shaders of Listing 3.7 and
Listing 3.8 is shown in Figure 3.1.

Geometry Shaders

The geometry shader is logically the last shader stage in the front end,
sitting after the vertex and tessellation stages and before the rasterizer.
The geometry shader runs once per primitive and has access to all of the
input vertex data for all of the vertices that make up the primitive being
processed. The geometry shader is also unique among the shader stages in
that it is able to increase or reduce the amount of data flowing through the
pipeline in a programmatic way. Tessellation shaders can also increase or
decrease the amount of work in the pipeline, but only implicitly by setting
the tessellation level for the patch. Geometry shaders, in contrast, include
two functions—EmitVertex() and EndPrimitive()—that explicitly
produce vertices that are sent to primitive assembly and rasterization.

Another unique feature of geometry shaders is that they can change the
primitive mode mid-pipeline. For example, they can take triangles as input

Geometry Shaders 37

and produce a bunch of points or lines as output, or even create triangles
from independent points. An example geometry shader is shown in
Listing 3.9.

#version 450 core

layout (triangles) in;
layout (points, max_vertices = 3) out;

void main(void)
{

int i;

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
}

Listing 3.9: Our first geometry shader

The shader shown in Listing 3.9 acts as another simple pass-through
shader that converts triangles into points so that we can see their vertices.
The first layout qualifier indicates that the geometry shader is expecting to
see triangles as its input. The second layout qualifier tells OpenGL that the
geometry shader will produce points and that the maximum number of
points that each shader will produce will be three. In the main function, a
loop runs through all of the members of the gl_in array, which is
determined by calling its .length() function.

We actually know that the length of the array will be three because we are
processing triangles and every triangle has three vertices. The outputs of
the geometry shader are again similar to those of a vertex shader. In
particular, we write to gl_Position to set the position of the resulting
vertex. Next, we call EmitVertex(), which produces a vertex at the
output of the geometry shader. Geometry shaders automatically call
EndPrimitive() at the end of your shader, so calling this function
explicitly is not necessary in this example. As a result of running this
shader, three vertices will be produced and rendered as points.

By inserting this geometry shader into our simple one tessellated triangle
example, we obtain the output shown in Figure 3.2. To create this image,
we set the point size to 5.0 by calling glPointSize(). This makes the
points large and highly visible.

38 Chapter 3: Following the Pipeline

Figure 3.2: Tessellated triangle after adding a geometry shader

Primitive Assembly, Clipping, and Rasterization

After the front end of the pipeline has run (which includes vertex shading,
tessellation, and geometry shading), a fixed-function part of the pipeline
performs a series of tasks that take the vertex representation of our scene
and convert it into a series of pixels, which in turn need to be colored and
written to the screen. The first step in this process is primitive assembly,
which is the grouping of vertices into lines and triangles. Primitive
assembly still occurs for points, but it is trivial in that case.

Once primitives have been constructed from their individual vertices, they
are clipped against the displayable region, which usually means the window
or screen, but can also be a smaller area known as the viewport. Finally, the
parts of the primitive that are determined to be potentially visible are sent
to a fixed-function subsystem called the rasterizer. This block determines
which pixels are covered by the primitive (point, line, or triangle) and
sends the list of pixels on to the next stage—that is, fragment shading.

Clipping

As vertices exit the front end of the pipeline, their position is said to be in
clip space. This is one of the many coordinate systems that can be used to
represent positions. You may have noticed that the gl_Position variable

Primitive Assembly, Clipping, and Rasterization 39

that we have written to in our vertex, tessellation, and geometry shaders
has a vec4 type, and that the positions we have produced by writing to it
are all four-component vectors. This is what is known as a homogeneous
coordinate. The homogeneous coordinate system is used in projective
geometry because much of the math ends up being simpler in
homogeneous coordinate space than it does in regular Cartesian space.
Homogeneous coordinates have one more component than their
equivalent Cartesian coordinate, which is why our three-dimensional
position vector is represented as a four-component variable.

Although the output of the front end is a four-component homogeneous
coordinate, clipping occurs in Cartesian space. Thus, to convert from
homogeneous coordinates to Cartesian coordinates, OpenGL performs a
perspective division, which involves dividing all four components of the
position by the last, w component. This has the effect of projecting the
vertex from the homogeneous space to the Cartesian space, leaving w as
1.0. In all of the examples so far, we have set the w component of
gl_Position as 1.0, so this division has not had any effect. When we
explore projective geometry in a short while, we will discuss the effect of
setting w to values other than 1.0.

After the projective division, the resulting position is in normalized device
space. In OpenGL, the visible region of normalized device space is the
volume that extends from −1.0 to 1.0 in the x and y dimensions and from
0.0 to 1.0 in the z dimension. Any geometry that is contained in this
region may become visible to the user and anything outside of it should be
discarded. The six sides of this volume are formed by planes in
three-dimensional space. As a plane divides a coordinate space in two, the
volumes on each side of the plane are called half-spaces.

Before passing primitives on to the next stage, OpenGL performs clipping
by determining which side of each of these planes the vertices of each
primitive lie on. Each plane effectively has an “outside” and an “inside.” If
a primitive’s vertices all lie on the “outside” of any one plane, then the
whole thing is thrown away. If all of primitive’s vertices are on the “inside”
of all the planes (and therefore inside the view volume), then it is passed
through unaltered. Primitives that are partially visible (which means that
they cross one of the planes) must be handled specially. More details about
how this works is given in the “Clipping” section in Chapter 7.

Viewport Transformation

After clipping, all of the vertices of the geometry have coordinates that lie
between −1.0 and 1.0 in the x and y dimensions. Along with a z coordinate

40 Chapter 3: Following the Pipeline

that lies between 0.0 and 1.0, these are known as normalized device
coordinates. However, the window that you’re drawing to has coordinates
that usually1 start from (0, 0) at the bottom left and range to (w − 1, h− 1),
where w and h are the width and height of the window in pixels,
respectively. To place your geometry into the window, OpenGL applies the
viewport transform, which applies a scale and offset to the vertices’
normalized device coordinates to move them into window coordinates. The
scale and bias to apply are determined by the viewport bounds, which you
can set by calling glViewport() and glDepthRange(). Their prototypes are

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

and

void glDepthRange(GLdouble nearVal, GLdouble farVal);

This transform takes the following form:

xw

yw

zw

 =

 px

2 xd + ox
py

2 yd + oy
f−n

2 zd + n+f
2

Here, xw, yw, and zw are the resulting coordinates of the vertex in window
space, and xd, yd, and zd are the incoming coordinates of the vertex in
normalized device space. px and py are the width and height of the
viewport in pixels, and n and f are the near and far plane distances in the
z coordinate, respectively. Finally, ox, oy, and oz are the origins of the
viewport.

Culling

Before a triangle is processed further, it may be optionally passed through
a stage called culling, which determines whether the triangle faces toward
or away from the viewer and can decide whether to actually go ahead and
draw it based on the result of this computation. If the triangle faces
toward the viewer, then it is considered to be front-facing; otherwise, it is
said to be back-facing. It is very common to discard triangles that are
back-facing because when an object is closed, any back-facing triangle will
be hidden by another front-facing triangle.

1. It’s possible to change the coordinate convention such that the (0, 0) origin is at the upper-
left corner of the window, which matches the convention used in some other graphics systems.

Primitive Assembly, Clipping, and Rasterization 41

To determine whether a triangle is front- or back-facing, OpenGL will
determine its signed area in window space. One way to determine the area
of a triangle is to take the cross product of two of its edges. The equation
for this is

a =
1
2

n−1∑
i=0

xi
wyi⊕1

w − xi⊕1
w yi

w

Here, xi
w and yi

w are the coordinates of the ith vertex of the triangle in
window space and i⊕ 1 is (i + 1) mod 3. If the area is positive, then the
triangle is considered to be front-facing; if it is negative, then it is
considered to be back-facing. The sense of this computation can be
reversed by calling glFrontFace() with dir set to either GL_CW or GL_CCW
(where CW and CCW stand for clockwise and counterclockwise, respectively).
This is known as the winding order of the triangle, and the clockwise or
counterclockwise terms refer to the order in which the vertices appear in
window space. By default, this state is set to GL_CCW, indicating that
triangles whose vertices are in counterclockwise order are considered to be
front-facing and those whose vertices are in clockwise order are considered
to be back-facing. If the state is GL_CW, then a is simply negated before
being used in the culling process. Figure 3.3 shows this pictorially for the
purpose of illustration.

Once the direction that the triangle is facing has been determined,
OpenGL is capable of discarding either front-facing, back-facing, or even
both types of triangles. By default, OpenGL will render all triangles,
regardless of which way they face. To turn on culling, call glEnable() with
cap set to GL_CULL_FACE. When you enable culling, OpenGL will cull
back-facing triangles by default. To change which types of triangles are

V2

V2

V1

V1V0

V0

Figure 3.3: Clockwise (left) and counterclockwise (right) winding order

42 Chapter 3: Following the Pipeline

culled, call glCullFace() with face set to GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

As points and lines don’t have any geometric area,2 this facing calculation
doesn’t apply to them and they can’t be culled at this stage.

Rasterization

Rasterization is the process of determining which fragments might be
covered by a primitive such as a line or a triangle. There are myriad
algorithms for doing this, but most OpenGL systems will settle on a
half-space–based method for triangles, as it lends itself well to parallel
implementation. Essentially, OpenGL will determine a bounding box for
the triangle in window coordinates and test every fragment inside it to
determine whether it is inside or outside the triangle. To do this, it treats
each of the triangle’s three edges as a half-space that divides the window
in two.

Fragments that lie on the interior of all three edges are considered to be
inside the triangle and fragments that lie on the exterior of any of the
three edges are considered to be outside the triangle. Because the
algorithm to determine which side of a line a point lies on is relatively
simple and is independent of anything besides the position of the line’s
endpoints and of the point being tested, many tests can be performed
concurrently, providing the opportunity for massive parallelism.

Fragment Shaders

The fragment3 shader is the last programmable stage in OpenGL’s graphics
pipeline. This stage is responsible for determining the color of each
fragment before it is sent to the framebuffer for possible composition into
the window. After the rasterizer processes a primitive, it produces a list of
fragments that need to be colored and passes this list to the fragment

2. Obviously, once they are rendered to the screen, points and lines have area; otherwise, we
wouldn’t be able to see them. However, this area is artificial and can’t be calculated directly
from their vertices.

3. The term fragment is used to describe an element that may ultimately contribute to the
final color of a pixel. The pixel may not end up being the color produced by any particular
invocation of the fragment shader due to a number of other effects such as depth or stencil
tests, blending, and multi-sampling, all of which will be covered later in the book.

Fragment Shaders 43

shader. Here, an explosion in the amount of work in the pipeline occurs,
as each triangle could produce hundreds, thousands, or even millions of
fragments.

Listing 2.4 in Chapter 2 contains the source code of our first fragment
shader. It’s an extremely simple shader that declares a single output and
then assigns a fixed value to it. In a real-world application, the fragment
shader would normally be substantially more complex and be responsible
for performing calculations related to lighting, applying materials, and
even determining the depth of the fragment. Available as input to the
fragment shader are several built-in variables such as gl_FragCoord, which
contains the position of the fragment within the window. It is possible to
use these variables to produce a unique color for each fragment.

Listing 3.10 provides a shader that derives its output color from
gl_FragCoord. Figure 3.4 shows the output of running our original
single-triangle program with this shader installed.

#version 450 core

out vec4 color;

void main(void)
{

color = vec4(sin(gl_FragCoord.x * 0.25) * 0.5 + 0.5,
cos(gl_FragCoord.y * 0.25) * 0.5 + 0.5,
sin(gl_FragCoord.x * 0.15) * cos(gl_FragCoord.y * 0.15),
1.0);

}

Listing 3.10: Deriving a fragment’s color from its position

As you can see, the color of each pixel in Figure 3.4 is now a function of its
position and a simple screen-aligned pattern has been produced. The
shader of Listing 3.10 created the checkered patterns in the output.

The gl_FragCoord variable is one of the built-in variables available to the
fragment shader. However, just as with other shader stages, we can define
our own inputs to the fragment shader, which will be filled in based on the
outputs of whichever stage is last before rasterization. For example, if we
have a simple program with only a vertex shader and fragment shader in
it, we can pass data from the fragment shader to the vertex shader.

The inputs to the fragment shader are somewhat unlike inputs to other
shader stages, in that OpenGL interpolates their values across the primitive

44 Chapter 3: Following the Pipeline

Figure 3.4: Result of Listing 3.10

that’s being rendered. To demonstrate, we take the vertex shader of
Listing 3.3 and modify it to assign a different, fixed color for each vertex,
as shown in Listing 3.11.

#version 450 core

// ’vs_color’ is an output that will be sent to the next shader stage
out vec4 vs_color;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4(0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4(0.25, 0.25, 0.5, 1.0));

const vec4 colors[] = vec4[3](vec4(1.0, 0.0, 0.0, 1.0),
vec4(0.0, 1.0, 0.0, 1.0),
vec4(0.0, 0.0, 1.0, 1.0));

// Add ’offset’ to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

// Output a fixed value for vs_color
vs_color = color[gl_VertexID];

}

Listing 3.11: Vertex shader with an output

Fragment Shaders 45

As you can see, in Listing 3.11 we added a second constant array that
contains colors and index into it using gl_VertexID, writing its content to
the vs_color output. In Listing 3.12 we modify our simple fragment
shader to include the corresponding input and write its value to the
output.

#version 450 core

// ’vs_color’ is the color produced by the vertex shader
in vec4 vs_color;

out vec4 color;

void main(void)
{

color = vs_color;
}

Listing 3.12: Deriving a fragment’s color from its position

The result of using this new pair of shaders is shown in Figure 3.5. As you
can see, the color changes smoothly across the triangle.

Figure 3.5: Result of Listing 3.12

46 Chapter 3: Following the Pipeline

Framebuffer Operations

The framebuffer is the last stage of the OpenGL graphics pipeline. It can
represent the visible content of the screen and a number of additional
regions of memory that are used to store per-pixel values other than color.
On most platforms, this means the window you see on your desktop (or
possibly the whole screen if your application covers it), which is owned by
the operating system (or windowing system to be more precise). The
framebuffer provided by the windowing system is known as the default
framebuffer, but it is possible to provide your own if you wish to do things
like render into off-screen areas. The state held by the framebuffer includes
information such as where the data produced by your fragment shader
should be written, what the format of that data should be, and so on. This
state is stored in a framebuffer object. Also considered part of the
framebuffer, but not stored per framebuffer object, is the pixel operation
state.

Pixel Operations

After the fragment shader has produced an output, several things may
happen to the fragment before it is written to the window, such as a
determination of whether it even belongs in the window. Each of these
things may be turned on or off by your application. The first thing that
could happen is the scissor test, which tests your fragment against a
rectangle that you can define. If it’s inside the rectangle, then it will be
processed further; if it’s outside, it will be thrown away.

Next comes the stencil test. This compares a reference value provided by
your application with the contents of the stencil buffer, which stores a
single4 value per pixel. The content of the stencil buffer has no particular
semantic meaning and can be used for any purpose.

After the stencil test has been performed, the depth test is performed. The
depth test is an operation that compares the fragment’s z coordinate
against the contents of the depth buffer. The depth buffer is a region of
memory that, like the stencil buffer, is part of the framebuffer with enough
space for a single value for each pixel; it contains the depth (which is
related to distance from the viewer) of each pixel.

4. It’s possible for a framebuffer to store multiple depth, stencil, or color values per pixel when
a technique called multi-sampling is employed. We’ll dig into this later in the book.

Framebuffer Operations 47

Normally, the values in the depth buffer range from 0 to 1, with 0 being
the closest possible point in the depth buffer and 1 being the furthest
possible point in the depth buffer. To determine whether a fragment is
closer than other fragments that have already been rendered in the same
place, OpenGL can compare the z component of the fragment’s
window-space coordinate against the value already in the depth buffer. If
this value is less than what’s already there, then the fragment is visible.
The sense of this test can also be changed. For example, you can ask
OpenGL to let fragments through that have a z coordinate that is greater
than, equal to, or not equal to the content of the depth buffer. The result
of the depth test also affects what OpenGL does to the stencil buffer.

Next, the fragment’s color is sent to either the blending or logical
operation stage, depending on whether the framebuffer is considered to
store floating-point, normalized, or integer values. If the content of the
framebuffer is either floating-point or normalized integer values, then
blending is applied. Blending is a highly configurable stage in OpenGL
and will be covered in detail in its own section.

In short, OpenGL is capable of using a wide range of functions that take
components of the output of your fragment shader and of the current
content of the framebuffer and calculate new values that are written back
to the framebuffer. If the framebuffer contains unnormalized integer
values, then logical operations such as logical AND, OR, and XOR can be
applied to the output of your shader and the value currently in the
framebuffer to produce a new value that will be written back into the
framebuffer.

Compute Shaders

The first sections of this chapter describe the graphics pipeline in OpenGL.
However, OpenGL also includes the compute shader stage, which can
almost be thought of as a separate pipeline that runs indepdendently of
the other graphics-oriented stages.

Compute shaders are a way of getting at the computational power
possessed by the graphics processor in the system. Unlike the
graphics-centric vertex, tessellation, geometry, and fragment shaders,
compute shaders could be considered as a special, single-stage pipeline all
on their own. Each compute shader operates on a single unit of work
known as a work item; these items are, in turn, collected together into
small groups called local workgroups. Collections of these workgroups can

48 Chapter 3: Following the Pipeline

be sent into OpenGL’s compute pipeline to be processed. The compute
shader doesn’t have any fixed inputs or outputs besides a handful of
built-in variables to tell the shader which item it is working on. All
processing performed by a compute shader is explicitly written to memory
by the shader itself, rather than being consumed by a subsequent pipeline
stage. A very basic compute shader is shown in Listing 3.13.

#version 450 core

layout (local_size_x = 32, local_size_y = 32) in;

void main(void)
{

// Do nothing
}

Listing 3.13: Simple do-nothing compute shader

Compute shaders are otherwise just like any other shader stage in
OpenGL. To compile one, you create a shader object with the type
GL_COMPUTE_SHADER, attach your GLSL source code to it with
glShaderSource(), compile it with glCompileShader(), and then link it
into a program with glAttachShader() and glLinkProgram(). The result is
a program object with a compiled compute shader in it that can be
launched to do work for you.

The shader in Listing 3.13 tells OpenGL that the size of the local
workgroup will be 32 by 32 work items, but then proceeds to do nothing.
To create a compute shader that actually does something useful, you need
to know a bit more about OpenGL—so we’ll revisit this topic later in the
book.

Using Extensions in OpenGL

All of the examples shown in this book so far have relied on the core
functionality of OpenGL. However, one of OpenGL’s greatest strengths is
that it can be extended and enhanced by hardware manufacturers,
operating system vendors, and even publishers of tools and debuggers.
Extensions can have many different effects on OpenGL functionality.

An extension is any addition to a core version of OpenGL. Extensions are
listed in the OpenGL extension registry5 on the OpenGL Web site. These

5. Find the OpenGL extension registry at http://www.opengl.org/registry/.

Using Extensions in OpenGL 49

http://www.opengl.org/registry

extensions are written as a list of differences from a particular version of
the OpenGL specification, and note what that version of OpenGL is. That
means the text of the extensions describes how the core OpenGL
specification must be changed if the extension is supported. However,
popular and generally useful extensions are normally “promoted” into the
core versions of OpenGL; thus, if you are running the latest and greatest
version of OpenGL, there might not be that many extensions that are
interesting but not part of the core profile. A complete list of the
extensions that were promoted to each version of OpenGL and a brief
synopsis of what they do is included in Appendix C, “OpenGL Features
and Versions.”

There are three major classifications of extensions: vendor, EXT, and ARB.
Vendor extensions are written and implemented on one vendor’s
hardware. Initials representing the specific vendor are usually part of the
extension name—“AMD” for Advanced Micro Devices or “NV” for
NVIDIA, for example. It is possible that more than one vendor might
support a specific vendor extension, especially if it becomes widely
accepted. EXT extensions are written together by two or more vendors.
They often start their lives as vendor-specific extensions, but if another
vendor is interested in implementing the extension, perhaps with minor
changes, it may collaborate with the original authors to produce an EXT
version. ARB extensions are an official part of OpenGL because they are
approved by the OpenGL governing body, the Architecture Review Board
(ARB). These extensions are often supported by most or all major hardware
vendors and may also have started out as vendor or EXT extensions.

This extension process may sound confusing at first. Hundreds of
extensions currently are available! But new versions of OpenGL are often
constructed from extensions programmers have found useful. In this way
each extension gets its time in the sun. The ones that shine can be
promoted to core; the ones that are less useful are not considered. This
“natural selection” process helps to ensure only the most useful and
important new features make it into a core version of OpenGL.

A useful tool to determine which extensions are supported in your
computer’s OpenGL implementation is Realtech VR’s OpenGL Extensions
Viewer. It is freely available from the Realtech VR Web site (see Figure 3.6).

Enhancing OpenGL with Extensions

Before using any extensions, you must make sure that they’re supported by
the OpenGL implementation that your application is running on. To find

50 Chapter 3: Following the Pipeline

Figure 3.6: Realtech VR’s OpenGL Extensions Viewer

out which extensions OpenGL supports, there are two functions that you
can use. First, to determine the number of supported extensions, you can
call glGetIntegerv() with the GL_NUM_EXTENSIONS parameter. Next, you
can find out the name of each of the supported extensions by calling

const GLubyte* glGetStringi(GLenum name,
GLuint index);

You should pass GL_EXTENSIONS as the name parameter, and a value
between 0 and 1 less than the number of supported extensions in index.
The function returns the name of the extension as a string. To see if a
specific extension is supported, you can simply query the number of
extensions, and then loop through each supported extension and compare
its name to the one you’re looking for. The book’s source code comes with
a simple function that does this for you. sb7IsExtensionSupported() has
the prototype

int sb7IsExtensionSupported(const char * extname);

This function is declared in the <sb7ext.h> header, takes the name of an
extension, and returns non-zero if it is supported by the current OpenGL
context and zero if it is not. Your application should always check for
support for extensions you wish to use before using them.

Using Extensions in OpenGL 51

Extensions generally add to OpenGL in some combination of four
different ways:

• They can make things legal that weren’t before, by simply removing
restrictions from the OpenGL specification.

• They can add tokens or extend the range of values that can be passed
as parameters to existing functions.

• They can extend GLSL to add functionality, built-in functions,
variables, or data types.

• They can add entirely new functions to OpenGL itself.

In the first case, where things that once were considered errors no longer
are, your application doesn’t need to do anything besides start using the
newly allowed behavior (once you have determined that the extension is
supported, of course). Likewise, for the second case, you can just start
using the new token values in the relevant functions, presuming that you
have their values. The values of the tokens are in the extension
specifications, so you can look them up there if they are not included in
your system’s header files.

To enable use of extensions in GLSL, you must first include a line at the
beginning of shaders that use them to tell the compiler that you’re going
to need their features. For example, to enable the hypothetical
GL_ABC_foobar_feature extension in GLSL, include the following in the
beginning of your shader:

#extension GL_ABC_foobar_feature : enable

This tells the compiler that you intend to use the extension in your shader.
If the compiler knows about the extension, it will let you compile the
shader, even if the underlying hardware doesn’t support the feature. If this
is the case, the compiler should issue a warning if it sees that the extension
is actually being used. Typically, extensions to GLSL will add preprocessor
tokens to indicate their presence. For example, GL_ABC_foobar_feature
will implicitly include

#define GL_ABC_foobar_feature 1

This means that you could write code such as

#if GL_ABC_foobar_feature
// Use functions from the foobar extension

#else

52 Chapter 3: Following the Pipeline

// Emulate or otherwise work around the missing functionality
#endif

This allows you to conditionally compile or execute functionality that is
part of an extension that may or may not be supported by the underlying
OpenGL implementation. If your shader absolutely requires support for an
extension and will not work at all without it, you can instead include this
more assertive code:

#extension GL_ABC_foobar_feature : require

If the OpenGL implementation does not support the
GL_ABC_foobar_feature extension, then it will fail to compile the shader
and report an error on the line including the #extension directive. In
effect, GLSL extensions are opt-in features, and applications must6 tell
compilers up front which extensions they intend to use.

Next we come to extensions that introduce new functions to OpenGL. On
most platforms, you don’t have direct access to the OpenGL driver and
extension functions don’t just magically appear as available to your
applications to call. Rather, you must ask the OpenGL driver for a function
pointer that represents the function you want to call. Function pointers are
generally declared in two parts; the first is the definition of the function
pointer type, and the second is the function pointer variable itself.
Consider this code as an example:

typedef void
(APIENTRYP PFNGLDRAWTRANSFORMFEEDBACKPROC) (GLenum mode,

GLuint id);
PFNGLDRAWTRANSFORMFEEDBACKPROC glDrawTransformFeedback = NULL;

This declares the PFNGLDRAWTRANSFORMFEEDBACKPROC type as a pointer to a
function taking GLenum and GLuint parameters. Next, it declares the
glDrawTransformFeedback variable as an instance of this type. In fact, on
many platforms, the declaration of the glDrawTransformFeedback()
function is actually just like this. This seems pretty complicated, but
fortunately the following header files include declarations of all of the

6. In practice, many implementations enable functionality included in some extensions by
default and don’t require that your shaders include these directives. However, if you rely on
this behavior, your application is likely to not work on other OpenGL drivers. Because of this
risk, you should always explicitly enable the extensions that you plan to use.

Using Extensions in OpenGL 53

function prototypes, function pointer types, and token values introduced
by all registered OpenGL extensions:

#include <glext.h>
#include <glxext.h>
#include <wglext.h>

These files can be found at the OpenGL extension registry Web site. The
glext.h header contains both standard OpenGL extensions and many
vendor-specific OpenGL extensions, the wglext.h header contains a
number of extensions that are Windows specific, and the glxext.h header
contains definitions that are X specific (X is the windowing system used
on Linux and many other UNIX derivatives and implementations).

The method for querying the address of extension functions is actually
platform specific. The book’s application framework wraps up these
intricacies into a handy function that is declared in the <sb7ext.h> header
file. The function sb7GetProcAddress() has this prototype:

void * sb7GetProcAddress(const char * funcname);

Here, funcname is the name of the extension function that you wish to use.
The return value is the address of the function, if it’s supported, and NULL
otherwise. Even if OpenGL returns a valid function pointer for a function
that’s part of the extension you want to use, that doesn’t mean the
extension is present. Sometimes the same function is part of more than
one extension, and sometimes vendors ship drivers with partial imple-
mentations of extensions present. Always check for support for extensions
using the official mechanisms or the sb7IsExtensionSupported() function.

Summary

In this chapter, you have taken a whirlwind trip down OpenGL’s graphics
pipeline. You have been (very) briefly introduced to each major stage and
have created a program that uses each one of them, if only to do nothing
impressive. We’ve glossed over or even neglected to mention several useful
features of OpenGL with the intention of getting you from zero to
rendering in as few pages as possible. You’ve also seen how OpenGL’s
pipeline and functionality can be enhanced by using extensions, which
some of the examples later in the book will rely on. Over the next few
chapters, you’ll learn more fundamentals of computer graphics and of
OpenGL, and then we’ll take a second trip down the pipeline, dig deeper
into the topics from this chapter, and get into some of the things we
skipped in this preview of what OpenGL can do.

54 Chapter 3: Following the Pipeline

Index

{ } (curly braces), 211

2D
array textures, 178–180
graphics, 647–659
prefix sums, 484
projection, 69
ray tracing, 636

3D graphics
coordinate spaces used in, 70
math for, 55. See also Math

Abstraction layers, 4
Acceleration

graphics, 8
structures, 646

Access
map buffer types, 710–711
memory, 692
synchronizing

atomic counters, 151–152
to buffers, 692–694
images, 194
memory, 145–147

texture arrays, 181–182
vectors, 208

Adaptive tone mapping, 436
Adding. See also Inserting

detail to images, 586
directions, 627
fog effects, 606–609
planes, 645

Advanced occlusion queries, 543–545
AFR (alternate frame rendering) mode, 719
Algorithms

flocking, 492–501

prefix sum operations, 479–492
shading, 599. See also Shadows

Aliasing artifacts, 169
Aligning uniform blocks, 125. See also Moving
Allocating

data stores, 101
memory, 100–107
storage, 509, 691

Alpha-to-coverage approach, 420
Alternate frame rendering. See AFR mode
Alternative rendering methods, 613–647

deferred shading, 613–624
rendering without triangles, 631–647
screen-space techniques, 624–631

ALU (arithmetic and logic unit) performance,
715

Ambient light, 568
Ambient occlusion, 624–631
AMD hardware, 704. See also Hardware
Angles, Euler, 78–79
Antialiasing, 412–428

centroid sampling, 424–428
filtering, 413–415
multi-sample, 156, 415–417
sample rate shading, 421–423
textures, 417–421

AoSs (array-of-structures), 115
APIs (application programming interfaces), 3, 6
Appending packets to packet buffers, 670
Application programming interfaces. See APIs
Applications

barriers, inserting, 146–147
building, 717
debugging, 717, 729–737
geometry shaders in, 336–341
performance, 661. See also Performance

805

Applications (continued)
rendering. See Rendering
simple example of, 14–16
sparsetexture, 512–514
speed, tuning for, 706–726
textures, unbinding, 504

Applying
attributes in vertex shaders, 113
barriers in shaders, 147
centroid qualifiers, 424
compression, 197–198
compute shaders, 468–469
extensions, 49–54
features, 713
fog, 609
instanced arrays, 265–271
mipmaps, 174
multiple GPUs, 719–721
multiple vertex shader inputs, 113–116
multi-threading, 721–723
query results, 537–540
roughness, 597
shaders, 17–24
transform feedback, 280–298

Approaching Zero Driver Overhead.
See AZDO

ARB (Architectural Review Board), 7, 8, 50
Architectural Review Board. See ARB
Architecture, 5
Arithmetic and logic unit performance. See ALU

performance
Array-of-structures. See AoSs
Arrays, 115, 210–212

declaring, 211
floats, 120
inputs, 339
instancing, 265–271
props, 229
scissor testing, configuring, 372
textures, 177–182, 397, 400, 411
VAOs (vertex array objects), 295, 493

Artifacts, aliasing, 169
ASCII characters, 652
Asteroids, drawing, 274–279
Atlas textures, 509
Atmospheric effects, 605–609
Atomic counters, 147–152, 151–152
Atomic operations, 140

images, 188–194
memory, 142–144

Attachments
completeness, 404
framebuffers

integers, 444–446
multiple, 395–397
rendering with no, 428–430

rendering, 392
textures, 392

Attributes
indirect draws, 276
interleaved, 114, 116
separate, 114
vertex shaders, 113
vertices, 28–29, 110

configuring, 112
disabling, 113
types, 246

AZDO (Approaching Zero Driver Overhead),
677

Back buffers, 390
Back end, 12
Back-facing, 41, 342
Back-to-back waiting, 536
Backward compatibility, 8, 9
Bandwidth, memory, 195, 614
barrier() function, 476, 478
Barriers, 476

applications, inserting, 146–147
shaders, 147

Barycentric coordinates, 36, 306–307, 311
Base vertex, 254–255
Bézier curves, 91. See also Curves

cubic, 92, 93
quadratic, 92
quintic, 94

Bézier splines, 95
BGRA ordering, 247
Big-picture views, 11
Binaries, programs, 235–238, 719
Binding, 100

buffers, 110, 133
eliminating, 504–509
image units, 184
points

assigning, 131
transform feedback, 284

bindingindex parameter, 110
Bindless textures, 504, 682
Bitangent vectors, 582
Bitmaps, fonts, 655–659
Blend equations, 383, 386–387
Blending, 382–387, 413
Blinn-Phong lighting models, 577–579
Blit, 461
Block Partitioned Texture Compression.

See BPTC
Blocks, 516

atomic operations, 143–144
interfaces, 31–33
packing RGTC, 522
palettizing RGTC, 522
shader storage, 140–147
texels, fetching, 520
uniforms, 121–135. See also Uniforms

declaring, 121, 680

806 Index

default, 117–120
indexes, 126

Bloom programs, 438–444
Boolean occlusion queries, 543
bool scalar type, 206
Bounces, increasing, 643
Bound buffers, copying, 109
Boxes

bounding, 537
filters, 486
ray tracing, 646

BPTC (Block Partitioned Texture Compression),
196

Brute force approaches, 646
Bubbles, 557
Buffers, 10, 100–117

access to, synchronizing, 692–694
atomic counters, 149
back, 390
bindings, 110, 133
commands, 668, 699
copying, 107–109
depth, 626
feedback, 549
filling, 107–109
formatting, 103
G-buffers, 614
indirect draws, configuring, 275
initializing, 103
mapping, 100, 102–103, 104, 699,

709–713
memory, allocating, 100–107
objects, updating, 104
packets, 668–677, 676–677
persistent maps, 665, 691–692
ranges, mapping, 106
stencil, 373–374
storage flags, 102
TBOs (texture buffer objects), 288
UBOs (uniform buffer objects), 121
unmapping, 105
updating, 378–379
velocity, 493
vertex shaders, feeding from, 109–117
write combined memory, 699

Building applications, 717
Built-in data manipulation functions, 218–219
Built-in functions, 213–219
Built-in math functions, 215–217
Built-in matrices, 213–215
Built-in variables, 25
Bump mapping, 582
Bumpy surfaces, 625

C, corresponding OpenGL type tokens, 108
Calculating

ambient light, 568

bitangent vectors, 582
Blinn-Phong lighting models, 577
indexes, 270
light, 619
lighting, 640
rim lighting, 580
shadows, 600
TBN (tangent, bitangent, normal) matrix,

584
Callback functions, 731
Cameras, 490. See also Images
Candidate draws, culling, 685
Cartesian coordinates, 40, 583
Casting shadows, 599–605
ccw layout qualifiers, 319
Cell shading, 610–613
Central processing units. See CPUs
Centroid sampling, 424–428
Chaining packet buffers, 675
Characters, ASCII, 652
Clamping

depth, enabling, 379–380
levels of detail, 515
tone mapping, 435

Classes, image data formats, 185
Classifications of extensions, 50
Clipping, 39–40, 298–305

depth clamping, 380
guard bands, 301–302
objects, 304
user-defined, 302–305

Clip spaces, 18, 39, 72
Clocks, 5
Coefficients, exposure, 435
Colors

distance fields, 654–655
fragments, 44, 46, 48
Julia sets, 634
masking, 388–390
one-dimensional color lookup tables, 610
outputs, 382–387
specular highlights, 569
sRGB color spaces, 446–448
vertex shaders, 266

Column-major layouts, 66
Column-primary layouts, 66
Columns, 485
Commands, 4. See also Functions

buffers, 668, 699
drawing, 251–280

applying instanced arrays, 265–271
indexed, 251–257
indirect draws, 271–280
instancing, 257–265

formatting, 662
SwapBuffers(), 702

Comment chunks, 755

Index 807

Committing
pages, 510
textures, 513

Common vector operators, 60–64
cross products, 62–63
dot products, 60–61
length of vectors, 63
reflection, 63–64
refraction, 63–64

Communication
compute shaders, 474–479
between tessellation shader invocations, 322

Comparisons, depth testing, 377
Compatibility

APIs (application programming interfaces), 6
backward, 8, 9
profiles, 9
texture target view, 200

Compilers, 219–224
retrieving logs, 221

Compiling shaders, performance, 716–719
Completeness, framebuffers, 403–407
Components, G-buffers, 618
Compression, textures, 195–199, 516–525, 715
Computer programs, 468
Compute shaders, 48–49, 467, 704

applying, 468–469
communication, 474–479
culling, 685
examples, 479–501
executing, 469–474
flocking, 492–501
objects, culling, 686
parallel prefix sums, 479–492
synchronizing, 475–479

Concatenating transformations, 80–81
Conditional rendering, 541–543
Conditions

inverting, 544
race, 476, 477, 478, 692

Configuring
atomic counters, 149
cube geometry, 136, 253
custom culling geometry shaders, 342
framebuffers, 390, 398
indirect draws, 275
Julia sets, 633
pipelines (graphics), 226
scissor testing, 372
shadow matrices, 603
tessellation geometry shaders, 347
uniforms, 119–120
values, subroutine uniforms, 235
vertices, attributes, 112

Connecting vertices, 289
Consuming G-buffers, 617–619
Control flow, queries, 545

Control points, 33, 91, 94, 306, 319, 329
Control shaders (tessellation), 33–35
Conventions, coordinates, 41
Converting .DDS files, 745–746
Coordinates

barycentric, 36, 306–307, 311
Cartesian, 40, 583
clip spaces, 72
conventions, 41
floating-point textures, 167
interpolation, 368
normalized device space, 72
objects, 71
spaces, 70–72
textures, 162–164, 209
transformations, 65, 72–80
views, 71–72
windows, 41
world, 71
world-space, 615

Copying
arrays, textures, 411
buffers, 107–109
data, 696
between framebuffers, 461–464
zero copy, 691–699

Cores
profile OpenGL, 8–10
shaders, 5

Counters
atomic, 147–152
performance, 706

C++ prefix sum implementation, 480
CPUs (central processing units), 102

multi-threading, 662–667
optimization, 661–677
packet buffers, 668–677
performance analysis tools, 699–726
queues, 700
zero copy, 691–699

Cross products, 62–63
Cube geometry, 136

configuring, 253
drawing, 254

Cubemaps, 592–597
rendering to, 402–403

Cubic Bézier curves, 92, 93
Cubic Bézier patches, tessellation, 329–333
Cubic Bézier splines, 95
Cubic Hermite splines, 97
Culling, 41–43

back-face, 342
computer shaders, 685
objects, 686

Curly braces ({ }), 211
Curves, 89

Hermite, 217

808 Index

math (for 3D graphics), 91–94
transfer, 436

Custom culling geometry shaders, 342
Customizing resolve operations, 419
cw layout qualifiers, 319

Data, 99
atomic counters, 147–152
buffers, 100–117

allocating memory, 100–107
copying/filling, 107–109
feeding vertex shaders from, 109–117

chunks, 751–752
copying, 696
fixed-point, 246
G-buffers, unpacking from, 617
management, 503

eliminating binding, 504–509
generating compressed data, 519–525
high-quality texture filtering, 527–531
packed data formats, 525–527
RGTC (Red–Green Texture Compression)

compression schemes, 516–519
sparsely populated textures, 509–515
texture compression, 516–525

packed data formats, 247
partitioning, 692
per patch, 306
reading, 707–709
shader storage blocks, 140–147
tessellation, passing between shaders,

319–322
textures, 152–202

copying into, 463–464
reading back, 464–466

threading, generating, 662–667
under-sampling, 412
uniforms, 117–140

Data manipulation functions, built-in, 218–219
Data stores, 100, 664

allocating, 101
mapping, 105

Data types, 206–212
scalars, 206–207
support, 119

dds2ktx program, 745–746
.DDS files, converting, 745–746
Debug contexts, 730–737
Debuggers, 705, 717
Debugging applications, 729–737
Decay, 608
DECLARE_MAIN macro, 14
Declaring

arrays, 211
atomic counters, 148
interface variables, 31
multiple inputs in vertex shaders, 113

multiple outputs in fragment shaders, 396
shader storage blocks, 140, 141
uniforms, 121

blocks, 123, 680
subroutines, 232

vertices, 28, 247
Decommitting pages, 510
Decompressors, 519. See also Compression
Decrementing atomic counters, 149
Default blocks, uniforms, 117–120
Deferred procedure calls. See DPCs
Deferred shading, 613–624

downsides to, 622–624
normal mapping, 619–622

Degenerate primitives, 24
Dependency (blocks), 516
Depth

buffers, 47, 48, 378–379, 626
clamping, enabling, 379–380
of field, 488, 490
in lighting models, 602
testing, 376–380

Depth testing, 47
Design, 4
Desktop Window Manager. See DWM
Destination factors, 383
Detail to images, adding, 586
Detecting edges, 426–428
Diffuse albedo, 576
Diffuse light, 569
Directions, adding, 627
Disabling

interpolation, 366–367
rasterizers, 288
scissor testing, 371
vertex attributes, 113

Disassembling packets, 672
Discarding

geometry in geometry shaders, 341–344
rasterizers, 296

Displacement mapping, 323
tessellation evaluation shaders, 607

Distance
fields, textures, 647–655
focal, 488

Division, perspective, 40
Domains, patches, 329
Do-nothing computer shaders, 468
Dot products, 60–61, 584
double scalar type, 206
Downsides to deferred shading, 622–624
DPCs (deferred procedure calls), 702
Draining pipelines, 557
Drawing

asteroids, 274–279
commands, 251–280

applying instanced arrays, 265–271

Index 809

Drawing (continued)
indexed, 251–257
indirect draws, 271–280
instancing, 257–265

cube geometry, 254
data written to transform feedback buffers,

553
geometry, 258
grass, 261–262
points, 250
stereo windows, 409
triangles, 24–26

Dual encodings (RGTC), 519
Dual-source blending, 385–386
DWM (Desktop Window Manager), 701

EAC (Ericsson Alpha Compression), 197
Early testing, fragments, 380–382
Edges, detecting, 426–428
Editions, 7
Effects, atmospheric, 605–609
Elements

iterating, 325
types, 211

Eliminating binding, 504–509
EmitVertex() function, 37, 38, 335, 340
EnableDisable function, 674
Enabling depth clamping, 379–380
Encoding ASCII characters, 652
Ending pipelines with transform feedback, 288
Endpoints, 517
EndPrimitive() function, 37, 38, 335, 341
Engines, tessellation, 35. See also Tessellation
Environment maps, 587–597

filtering, 598
equal_spacing mode, 317
Equations. See also Math (for 3D graphics)

blend, 383, 386–387
quadratic, 92

Equirectangular environment maps, 590–591
Ericsson Alpha Compression. See EAC
Ericsson Texture Compression. See ETC2
ETC2 (Ericsson Texture Compression), 197
Euler angles, 78–79
Evaluation shaders (tessellation), 35–37, 607
Evolution of OpenGL, 6–10
Examples of compute shaders, 479–501
Exclusive prefix sums, 480
Executing

compute shaders, 469–474
hardware, 4
packet buffers, 671, 677

Exploding models, 344, 345
Exponents, sharing, 198–199
Exposure coefficients, 435
Extensions, 8, 49–54
Extinction, 606

Faces
finding normal, 342
pushing, 345

Factors, shininess, 570
Features, 713, 759–796
Feedback

buffers, 549
transform, 280–298

Fences, synchronization, 557–562
Fetching

blocks, texels, 520
vertices, 28

Fields
distance, textures, 647–655
stacking, 209
stars, rendering, 450–453

Files
.DDS, converting, 745–746
.KTX, 160–161, 743–745
objects, loading, 116–117
.SBM, 746–748, 749–757

chunk headers, 750–751
comment chunks, 755
defined chunks, 751–755
file headers, 749–750
object list chunks, 755–757

textures, loading from, 160–164
Filling buffers, 107–109
Filtering, 412

antialiasing, 413–415
box filters, 486
environment maps, 598
high-quality texture, 527–531
mipmaps, 171–173
textures, 167–169
variables, 487

Filtering modes, samplers, 164
Fixed-function stages, 5
Fixed-point data, 246
Flags

buffers
mapping, 106
storage, 102

GL_DYNAMIC_STORAGE_BIT, 102
flags parameter, 101
Flat inputs, 366
flat qualifier, 367
Flexible indirect rendering, 678–683
Floating-point framebuffers, 430–444
Floating-point numbers, 525
Floating-point textures, 167
Floats, arrays, 120
float scalar type, 206
Flocking compute shaders, 492–501
Flow control barriers, 476
Focal depth, 488
Focal distance, 488

810 Index

Focus, images, 488
Fog, 606–609. See also Atmospheric effects
Fonts

bitmaps, 655–659
distance fields, 652–654

Format layout qualifiers, 186
Formatting

applications, simple example of, 14–16
buffers, 103
commands, 662
compression, 195
framebuffers, 390, 428–448
internal formats, 153
.KTX (Khronos TeXture), 160–161
multi-sample textures, 417
packed data formats, 247, 525–527
packet buffers, 668–672
RGTC (Red–Green Texture Compression),

516–519
screenshots, 460–461
stereo windows, 408
textures, 152–154, 199–202

Fractals
Julia sets, 696, 697
rendering, 698

fractional_even_spacing mode, 317
fractional_odd_spacing mode, 317
Fractional segments, 317
Fragments

colors, 48
depth testing, 376–380
lighting, 619
Phong shading, 574
quad, 556

Fragment shaders, 17, 43–46, 366–369
ambient occlusion, 631
array textures, 400
colors

masking, 388–390
output, 382–387

cubemaps, 596
deferred shading, 621
distance field rendering, 651
equirectangular environment maps, 590–591
fog, 609
Gouraud shading, 572
high-frequency output, 422
images loads/stores, 188
interpolation, 366–369
logical operations, 387–388
normal mapping, 586
off-screen rendering, 390–412
per-fragment shininess, 598–599
Phong shaders, 575–576
pre-fragment tests, 369–382
ray tracing in, 634–647
shadow mapping, 604

skybox rendering, 595
spherical environment mapping, 589
spinning cubes, 138
terrain rendering, 327
texture coordinates, 163
toon, 612

Framebuffers, 704
antialiasing. See Antialiasing
attachments

multiple, 395–397
rendering with no, 428–430

completeness, 403–407
configuring, 390
copying between, 461–464
floating-point, 430–444
formatting, 390, 428–448
G-buffers. See G-buffers
integers, 444–446
layers, 397
operations, 47–48
reading from, 458–461
sRGB color spaces, 446–448
stacks, implementing, 642

Frame Profiler, 706
Frames, AFR (alternate frame rendering) mode,

719
Free-form Bézier patches, 329
Front end, 12
Front-facing, 41
Frustrum matrices, 88
Functionality of extensions, 53
Functions, 759–796. See also Methods

barrier(), 476, 478
blend, 383–385
built-in, 213–219
built-in data manipulation, 218–219
built-in math, 215–217
callback, 731
EmitVertex(), 37, 38, 335, 340
EnableDisable, 674
EndPrimitive(), 37, 38, 335, 341
glAttachShader(), 20, 468
glBeginConditionalRender(), 541541
glBeginQuery(), 535, 545, 551
glBeginQueryIndexed(), 551
glBeginTransformFeedback(), 287
glBindBuffer(), 101, 284, 710
glBindBufferRange(), 284
glBindFramebuffer(), 391, 393
glBindSampler(), 165
glBindTexture(), 152
glBindTransformFeedback(), 553, 713
glBindVertexArray(), 713
glBindVertexArrays(), 21
glBindVertexBuffer(), 249
glBlendColor(), 383
glBlendEquation(), 386

Index 811

Functions (continued)
glBlendEquationSeparate(), 386
glBlendFunc(), 383
glBlendFuncSeparate(), 383
glBlitFramebuffer(), 463
glBufferData(), 122, 141, 709
glBufferStorage(), 101, 107, 696
glBufferSubData(), 102, 128, 666
glCheckFramebufferStatus(), 406
glClear(), 372
glClearBufferfv(), 372
glClearBufferiv(), 374
glClearBufferSubData(), 687
glClearBufferv(), 541
glClearTexSubImage(), 154
glClientWaitSync(), 559, 560, 692
glColorMask(), 389, 537
glColorMaski(), 389
glCompilerShader(), 220
glCompileShader(), 19, 468, 717
glCopyBufferSubData(), 108, 109
glCopyImageSubData(), 464
glCopyNamedBufferSubData(), 108, 696
glCreateBuffers(), 100
glCreateFramebuffers(), 390
glCreateProgram(), 20
glCreateShader(), 19, 336, 468
glCreateTextures(), 152
glCreateVertexArrays(), 20
glDebugMessageCallback(), 731, 734
glDebugMessageControl(), 734
glDeleteQueries(), 535
glDeleteShader(), 20
glDeleteSync(), 562
glDeleteTextures(), 161
glDepthFunc(), 377
glDepthMask(), 378
glDepthRange(), 41, 361
glDisable(), 378, 674
glDispatchCompute(), 469, 474,541
glDispatchComputeIndirect(), 469
glDrawArrays(), 22, 24, 25, 113, 137, 251,

257, 344, 541, 666
glDrawArraysIndirect(), 273, 469
glDrawArraysInstanced(), 260, 265
glDrawArraysInstancedBaseInstance(), 469
glDrawArraysInstancedBaseInstanced(), 270
glDrawArraysInstancedBaseVertex(), 678
glDrawBuffer(), 393, 397, 538
glDrawBuffers(), 397
glDrawElements(), 251, 272, 344, 545
glDrawElementsBaseVertex(), 678
glDrawElementsIndirect(), 272, 273
glDrawElementsInstanced(), 260, 265
glDrawTransformFeedback(), 713
glEnable(), 674
glEndConditionalRender(), 541541

glEndQuery(), 536, 545, 551
glEndQueryIndexed(), 551
glEndTransformFeedback(), 287
glFenceSync(), 558, 692
glFinish(), 557, 692
glFlush(), 557
glFlushMappedBufferRange(), 666
glFramebufferParameteri(), 429
glFramebufferTexture(), 395, 403, 418, 419
glFramebufferTextureLayer(), 401
glFrontFace(), 42
glGenerateMipMap(), 466
glGenFramebuffers(), 391
glGenQueries(), 534
glGenTransformFeedbacks(), 553
glGetCompressedTexImage(), 741
glGetError(), 406, 534, 733
glGetGraphicsResetStatus(), 739
glGetIntegeri(), 470
glGetIntegerv(), 135, 340
glGetInternalformativ(), 511
glGetProgramBinary, 236
glGetProgramiv(), 471
glGetQueryObjectiv(), 536, 538, 545
glGetShaderiv, 221
glGetShaderiv(), 717
glGetTexImage(), 465, 740
glGetTextureHandleARB(), 504
glGetTextureSamplerHandleARB(), 504
glGetTextureStorage2D(), 509
glGetUniformBlockIndex(), 131
glGetUniformLocation(), 118–119
glLinkProgram(), 20, 224, 468, 717
glLogicOp(), 388
glMakeCurrent(), 721
glMakeTextureHandleResidentARB(), 507
glMapBuffer(), 105, 122, 709
glMapBufferRange(), 128, 141, 666, 710
glMapNamedBufferRange(), 691, 692
glMapNamedBufferRanger(), 106
glMapNamedBufferStorage(), 691, 692
glMemoryBarrier(), 146, 147, 151
glMinSampleShading(), 423
glMultiDrawArraysIndirect(), 678
glMultiDrawArraysIndirectCountARB(), 684
glMultiDrawElementsIndirect(), 678
glMultiDrawElementsIndirectCountARB(),

684
glNamedBufferStorage(), 101, 103
glNamedFramebufferDrawBuffer(), 393
glNamedFramebufferTexture(), 395
glObjectLabel(), 736
glObjectPtrLabel(), 736
glPatchParameteri(), 33
glPointParameteri(), 453
glPointSize(), 23, 38, 250
glPolygonMode(), 319

812 Index

glPopDebugGroup(), 733
glPrimitiveRestartIndex(), 257
glPushDebugGroup(), 733
glQueryCounter(), 547, 548
glReadBuffer(), 459
glReadPixels(), 458, 465, 683, 707, 708,

709, 740
glSampleCoverage(), 420
glScissor(), 370
glScissorIndexed(), 370
glScissorIndexedv(), 370
glShaderSource(), 19, 468
glStencilFuncSeparate(), 375, 376
glStencilMaskSeparate(), 376
glStencilOpSeparate(), 374, 375
glTexPageCommitmentARB(), 510, 512
glTexparameteri(), 601
glTexStorage2D(), 152, 592
glTexStorageSubImage2D(), 658
glTexSubImage2D(), 466, 524, 592, 697
glTextBuffer(), 295
glTexturePageCommitmentEXT(), 510, 512
glTextureParameteri(), 510
glTextureStorage2DMultisample(), 417
glTextureStorage3DMultisample(), 417
glTextureStorageSubImage2D(), 512
glTextureSubImage2D(), 170
glTextureView(), 199
glTransformFeedbackVaryings(), 281
glUniform(), 469
glUniform*(), 119
glUniformMatrix*(), 120
glUseProgram(), 22, 134, 469
glVertexArrayAttribFormat(), 111
glVertexArrayVertexBuffer(), 112
glVertexAttrib*(), 29, 31
glVertexAttribDivisor(), 500
glVertexAttribFormat(), 525
glVertexAttribPointer(), 244–246, 714, 715
glVertexAtttribDivisor(), 268
glVertextAttribPointer(), 266
glViewPort(), 41, 137, 361
glViewportArrayv, 370
glWaitSync(), 559, 560
glXMakeCurrent(), 721
init(), 731
main(), 17, 335, 342, 524
make_face, 348
matrixCompMult(), 214
max, 569
MemoryBarrier(), 147, 687
NextPacket, 671
overloading, 183, 213
packRGTC, 523
palettizeTexel, 523
startup(), 663
stencil, 373–374

texelFetch(), 167
texture(), 167
textureGatherOffset, 520
vectors, 213–215

Gamma correction, 446
G-buffers, 614

components, 618
consuming, 617–619
generating, 614–617
initializing, 616
writing to, 616

Generating
compressed data, 519–525
data, applying threads to, 662–667
distance fields, 648
G-buffers, 614–617
geometry in geometry shaders, 346–349
query objects, 549
vertices, 347

Geometry
cubes

configuring, 253
drawing, 254

displacement mapping, 323
drawing, 258
Phong shading, 573
primitive restarts, 255–257
rendering, 267
uniforms, transforming, 135–140

Geometry shaders, 37–39, 333–334, 704
geometry

discarding in, 341–344
generating, 346–349
modifying in, 344–345

layers, rendering with, 399, 411
multiple streams of storage, 352–353
multiple viewport transformations, 361–364
new primitive types, 353–361
pass-through, 334–336
primitive types, modifying, 349–352
quads, rendering, 355–361
tessellation, configuring, 347
triangles, 348

Gimbal locks, 79
GL_DYNAMIC_STORAGE_BIT flag, 102
GL (graphics library) functions, 6

glAttachShader() function, 20, 468
glBeginConditionalRender() function,

541541
glBeginQuery() function, 535, 545, 551
glBeginQueryIndexed() function, 551
glBeginTransformFeedback() function, 287
glBindBuffer() function, 101, 284, 710
glBindBufferRange() function, 284
glBindFramebuffer() function, 383, 391
glBindSampler() function, 165

Index 813

GL (graphics library) functions (continued)
glBindTexture() function, 152
glBindTransformFeedback() function,

553, 713
glBindVertexArray() function, 713
glBindVertexArrays() function, 21
glBindVertexBuffer() function, 249
glBlendColor() function, 383
glBlendEquation() function, 386
glBlendEquationSeparate() function, 386
glBlendFunc() function, 383
glBlendFuncSeparate() function, 383
glBlitFramebuffer() function, 463
glBufferData() function, 122, 141, 709
glBufferStorage() function, 101, 107, 696
glBufferSubData() function, 102, 128, 666
glCheckFramebufferStatus() function, 406
glClearBufferfv() function, 15, 372
glClearBufferiv() function, 374
glClearBufferSubData() function, 687
glClearBufferv() function, 541
glClear() function, 372
glClearTexSubImage() function, 154
glClientWaitSync() function, 559, 560, 692
glColorMask() function, 389, 537
glColorMaski() function, 389
glCompilerShader() function, 220
glCompileShader() function, 19, 468, 717
glCopyBufferSubData() function, 108, 109
glCopyImageSubData() function, 464
glCopyNamedBufferSubData() function,

108, 696
glCreateBuffers() function, 100
glCreateFramebuffers() function, 390
glCreateProgram(), 20
glCreateShader() function, 19, 336, 468
glCreateTextures() function, 152
glCreateVertexArrays() function, 20
glDebugMessageCallback() function,

731, 734
glDebugMessageControl() function, 734
glDeleteQueries() function, 535
glDeleteShader() function, 20
glDeleteSync() function, 562
glDeleteTextures() function, 161
glDepthFunc() function, 377
glDepthMask() function, 378
glDepthRange() function, 41, 361
glDisable() function, 378, 674
glDispatchCompute() function, 469,

474, 541
glDispatchComputeIndirect() function, 469
glDrawArrays() function, 22, 24, 25, 113,

137, 251, 257, 344, 541, 666
glDrawArraysIndirect() function, 273, 469
glDrawArraysInstancedBaseInstanced()

function, 270

glDrawArraysInstancedBaseInstance()

function, 469
glDrawArraysInstancedBaseVertex()

function, 678
glDrawArraysInstanced() function, 260, 265
glDrawBuffer() function, 393, 397, 538
glDrawBuffers() function, 397
glDrawElementsBaseVertex() function, 678
glDrawElements() function, 251, 272,

344, 545
glDrawElementsIndirect() function, 272,

273
glDrawElementsInstanced() function,

260, 265
glDrawTransformFeedback() function, 713
glEnable() function, 674
glEndConditionalRender() function, 541541
glEndQuery() function, 536, 545, 551
glEndQueryIndexed() function, 551
glEndTransformFeedback() function, 287
glFenceSync() function, 558, 692
glFinish() function, 557, 692
glFlush() function, 557
glFlushMappedBufferRange() function, 666
glFramebufferParameteri() function, 429
glFramebufferTexture() function, 395, 403,

418, 419
glFramebufferTextureLayer() function, 401
glFrontFace() function, 42
glGenerateMipMap() function, 466
glGenFramebuffers() function, 391
glGenQueries() function, 534
glGenTransformFeedbacks() function, 553
glGetCompressedTexImage() function, 741
glGetError() function, 406, 534, 733
glGetGraphicsResetStatus() function, 739
glGetIntegeri() function, 470
glGetIntegerv() function, 135, 340
glGetInternalformativ() function, 511
glGetProgramBinary function, 236
glGetProgramiv() function, 471
glGetQueryObjectiv() function, 536,

538, 545
glGetShaderiv() function, 221, 717
glGetTexImage() function, 465, 740
glGetTextureHandleARB() function, 504
glGetTextureSamplerHandleARB() function,

504
glGetTextureStorage2D() function, 509
glGetUniformBlockIndex() function, 131
glGetUniformLocation() function, 118–119
glLinkProgram() function, 20, 224, 468, 717
glLogicOp() function, 388
glMakeCurrent() function, 721
glMakeTextureHandleResidentARB() function,

507
glMapBuffer() function, 105, 122, 709

814 Index

glMapBufferRange() function, 128, 141,
666, 710

glMapNamedBufferRange() function, 106, 691,
692

glMapNamedBufferStorage() function, 691,
692

glMemoryBarrier() function, 146, 147, 151
glMinSampleShading() function, 423
glMultiDrawArraysIndirectCountARB()

function, 684
glMultiDrawArraysIndirect() function, 678
glMultiDrawElementsIndirectCountARB()

function, 684
glMultiDrawElementsIndirect() function,

678
glNamedBufferStorage() function, 101, 103
glNamedFramebufferDrawBuffer() function,

393
glNamedFramebufferTexture() function, 395
glObjectLabel() function, 736
glObjectPtrLabel() function, 736
glPatchParameteri() function, 33
gl_PerVertex structure, 320
glPointParameteri() function, 453
glPointSize() function, 20, 38, 250
glPolygonMode() function, 319
glPopDebugGroup() function, 733
glPrimitiveRestartIndex() function, 257
glPushDebugGroup() function, 733
glQueryCounter() function, 547, 548
glReadBuffer() function, 459
glReadPixels() function, 458, 465, 683, 707,

708, 709, 740
glSampleCoverage() function, 420
glScissor() function, 370
glScissorIndexed() function, 370
glScissorIndexedv() function, 370
glShaderSource() function, 19, 468
glStencilFuncSeparate() function, 375, 376
glStencilMaskSeparate() function, 376
glStencilOpSeparate() function, 374, 375
glTexPageCommitmentARB() function,

510, 512
glTexparameteri() function, 601
glTexStorage2D() function, 152, 592
glTexStorageSubImage2D() function, 658
glTexSubImage2D() function, 466, 524,

592, 697
glTextBuffer() function, 295
glTexturePageCommitmentEXT() function,

510, 512
glTextureParameteri() function, 510
glTextureStorage2DMultisample() function,

417
glTextureStorage3DMultisample() function,

417
glTextureStorageSubImage2D() function, 512

glTextureSubImage2D() function, 170
glTextureView() function, 199
glTransformFeedbackVaryings() function,

281
glUniform() function, 469
glUniform*() function, 119
glUniformMatrix*() function, 120
glUseProgram() function, 22, 134, 469
glVertexArrayAttribFormat() function, 111
glVertexArrayVertexBuffer() function, 112
glVertexAttribDivisor() function, 500
glVertexAttribFormat() function, 525
glVertexAttrib*() function, 29, 31
glVertexAttribPointer() function, 244–246,

714, 715
glVertexAtttribDivisor() function, 268
glVertextAttribPointer() function, 266
glViewportArrayv function, 370
glViewPort() function, 41, 137, 361
glWaitSync() function, 559, 560
glXMakeCurrent() function, 721

Global illumination, 624
Global work groups, 470–471, 473
GLSL (OpenGL Shading Language)

built-in functions, 213–219
compilers, 219–224
data types, 206–212
overview of, 206–219
storage qualifiers, 366

GLuint variables, 100
Gouraud shading, 571, 572
GPU PerfStudio, 703–706
GPUs (graphics processing units), 4, 5, 102

multiple GPUs, 719–721
work generation, 683–690

GPUView, 699–703
Gradients, 528, 634
Graphics

3D. See 3D graphics
acceleration, 8
pipelines, 3. See also Pipelines (graphics)
programs, 468
resetting, 737–740
two-dimensional, 647–659

Graphics library functions. See GL functions
Graphics processing units. See GPUs
Grass, drawing, 261–262
Grids, 262
Groups, debug, 735
Guard bands, 301–302

Half-spaces, 40
Handles, 504
Hangs, 738
Hardware, 4

queues, 700
timer queries, 546

Index 815

Hatching patterns, 517
Hazards, 151
HDR (high dynamic range), 431, 432–433, 615
Heads-up display. See HUD
Height maps. See Displacement mapping
Hermite curves, 217
Hermite interpolation, 216
Hermite splines, 97
High dynamic range. See HDR
Higher-order surfaces, 329
High-frequency output, 422
Highlights, specular, 569–573. See also Lighting
High-quality texture filtering, 527–531
Histograms, 434
History of OpenGL, 6–10
Homogeneous vectors, 59
HUD (heads-up display), 546, 705

Identify matrices, 73–75
IEEE standards, 206
Illumination, global, 624. See also lighting
Images

access, synchronizing, 194
atomic operations, 188–194
blocks, 516
columns, 485
data format classes, 185
depth of field, 488, 490
detail to, adding, 586
focus, 488
mipmaps, 171
RED, 518
types, 183
units, 183, 184
variables, 182
viewing, 458–466

Immutable objects, 101
Implementation, 206, 642
Inclusive prefix sums, 480
Indexes

calculating, 270
data chunks, 752–753
drawing commands, 251–257
queries, 551–552
regions, 517
restart, 257
uniform blocks, 126

indices parameter, 272
Indirect draws, 271–280. See also Drawing
Indirect rendering, 678–683
Infinite loops, shaders, 738
In flight, 4
Inheriting states, 675
init() function, 731
Initializing

buffers, 103
G-buffers, 616
textures, 152–154

in keyword, 30
Inner loops, Julia sets, 633
Inner products, 60
Inputs

arrays, 339
compute shaders, 471–474
flat, 366
multiple vertex shaders, 113–116
naming, 230
smooth, 366
vertex shaders, 244–249, 276

Inscattering, 606
Inserting

barriers into applications, 146–147
packets, optimizing, 676

Instancing, 257–265
arrays, applying, 265–271
rendering, 269, 270
vertex shaders, 267

Integers
framebuffers, 444–446
interpolation, 366
signed/unsigned, 207
types, 183

Interfaces, 3
blocks, 31–33
matching, 227–231
variables, declaring, 31

Interleaved attributes, 114, 116
Internal formats, 153
Interpolation, 44, 89

curves, 91
fragment shaders, 366–369
Gouraud shading, 571
linear, 528, 529
smooth, 529
splines, 95

Interrupt service routine. See ISR
Intersections

points, 639
ray-sphere intersection tests, 638
testing, 645

Intra-member rules, 497
int scalar type, 206
Inverting conditions, 544
Invocations, 206
IRIS GL, 6
Isolines, tessellation using, 312–315
ISR (interrupt service routine), 702
Items, work, 48, 470
Iterating

elements, 325
flocking algorithms, 493

Jaggies, 422
Julia sets

fractals, 696, 697
rendering, 632–634

816 Index

Keywords
in, 30
out, 30

.KTX files, 160–161, 743–745
ktxtool program, 743–745

Landscapes
distance fields, 655
fog, applying, 609

Languages
built-in functions, 213–219
compilers, 219–224
data types, 206–212
overview of, 206–219

Layers, 178
abstraction, 4
framebuffers, 397
geometry shaders, rendering with, 411
off-screen rendering, 397–403

Layouts
column-major, 66
column-primary, 66
format layout qualifiers, 186
qualifiers, 29

ccw, 319
cw, 319
geometry shaders, 334
multiple framebuffer attachments, 396

uniforms, 122
.length() method, 212
Length of vectors, 63
Levels, generating mipmaps, 173
Levels of detail, clamping, 515
Libraries, sb7::vmath, 135
Light bloom, 438–444
Lighting, 568–609

atmospheric effects, 605–609
Blinn-Phong, 577–579
calculating, 619, 640
casting shadows, 599–605
environment mapping, 587–597
fragments, 619
material properties, 597–599
normal mapping, 582–586
Phong, 568–577

ambient light, 568
diffuse light, 569
shading, 573–577, 584
specular highlights, 569–573

rim lighting, 579–582
Linear interpolation, 369, 528, 529. See also

Interpolation
Linear texture filtering, 527
Lines, 89

clipping, 298–305
endpoints, 517

Linkers, logs, 223–225
Linking programs, 225–227

Lists, object chunks, 755–757
Loading

2D array textures, 178–180
objects from files, 116–117
textures from files, 160–164

Local workgroups, 48, 470–471, 473
Locations, uniforms, 118–119
Logical operations, 387–388
Logs

compilers, retrieving, 221
linkers, 223–225

Lookout matrices, 84–86
Loops

infinite, shaders, 738
inner, Julia sets, 633
rendering, 137, 139

Macros, DECLARE_MAIN, 14
Magnification, 168
main() function, 17, 335, 342, 524
make_face function, 348
Management

data, 503
eliminating binding, 504–509
generating compressed data, 519–525
high-quality texture filtering, 527–531
packed data formats, 525–527
RGTC (Red–Green Texture Compression)

compression schemes, 516–519
sparsely populated textures, 509–515
texture compression, 516–525

pipelines (graphics), 533
occlusion queries, 535–545
pipeline state queries, 555–556
queries, 534–556
synchronization, 556–562
timer queries, 545–549
transform feedback queries, 549–555

textures, committing, 513
Mandlebrot sets, rendering, 632
ManuallyLaidOutBlock uniform blocks, 125
Mapping

buffers, 100, 102–103, 104, 699
optimizing, 709–713
ranges, 106

bump, 582
cubemaps, 402–403, 592–597
data stores, 105
displacement, 323
environment, 587–597
mipmaps, 153. See also Mipmaps
normal, 582–586
persistent maps, 664, 665, 691–692
shadows, 600–605
texture compression, 715
tone, 434–438
unmappable resources, 694–699
vertex shaders, 248

Index 817

Masking
colors, 388–390
sample masks, 420

Matching
blocks, 32
interfaces, 227–231

Material properties, 597–599, 680
Math

for 3D graphics, 55
common vector operators, 60–64
curves, 91–94
matrices, 64–69
overview of, 56–57
splines, 94–97
transformations, 69–89
vectors, 57–60

built-in math functions, 215–217
Matrices, 208–210

built-in, 213–215
construction of, 66–69
frustrum, 88
identify, 73–75
lookout, 84–86
math (for 3D graphics), 64–69
operators, 66–69
orthographic, 89
perspective, 88–89
rotating, 68, 76–79
scaling, 79–80
shadows, 602
TBN (tangent, bitangent, normal), 583, 619
transformation, 72, 117
translating, 68, 75–76
updating, 137

MatrixCompMult() function, 214
max function, 569
Memory

access, 692
allocating, 100–107
atomic operations, 142–144
bandwidth, 195, 614
buffers. See Buffers
optimization, 723–726
resident, 506
synchronizing, 145–147

MemoryBarrier() function, 147, 687
Meshes, transforming, 492
Methods

glClearBufferfv(), 15
length(), 212
render(), 14, 16
run, 14
special, 212
startup(), 14

Minification, 168
Mipmaps, 153, 169–171

applying, 174

filtering, 171–173
levels, generating, 173
tails, 512

Models
exploding, 344, 345
lighting, 568–609. See also Lighting
spaces, 71

Model-view transformations, 83–84, 137
Modes

AFR (alternate frame rendering), 719
equal_spacing, 317
filtering, samplers, 164
fractional_even_spacing, 317
fractional_odd_spacing, 317
GPU PerfStudio, 704
points, tessellation, 315–316
polygons, 319
subdivision, tessellation, 316–319
texture filtering, 527
wrapping

samplers, 164
textures, 174–177

Modifying
geometry in geometry shaders, 344–345
patterns, 507
primitive types in geometry shaders,

349–352
vertex shaders, 30

Moving uniforms, 118–119
Multiple framebuffer attachments, 395–397
Multiple GPUs, 719–721
Multiple outputs in fragment shaders,

declaring, 396
Multiple streams of storage, 352–353
Multiple textures, 166–167
Multiple vertex shader inputs, 113–116
Multiple viewport transformations, 361–364
Multi-sample antialiasing, 156, 415–417
Multi-sample textures, 417–421
Multi-sampling, 47
Multi-threading, 662–667, 721–723

Naming, 100
inputs, 230
output, 230
packed data formats, 526
textures, 392

NaN (not a number), 207
N-bytes, 123
Nearest texture filtering, 527
Negative reflection, 570
New primitive types, geometry shaders,

353–361
NextPacket function, 671
Noise in ambient occlusion, 628
Non-photo-realistic rendering, 610–613
noperspective qualifier, 368, 369

818 Index

Normalization, 58, 246
Normalized device spaces, 40, 72
Normal mapping, 582–586

deferred shading, 619–622
texture compression, 715

Not a number. See NaN
Numbers, floating-point, 525
NVIDIA GeForce GTX 560 SE graphics cards,

701
Nyquist rates, 412

Objects
buffers, updating, 104
clipping, 304
coordinates, 71
culling, 686
depth clamping, 380
files, loading, 116–117
framebuffers, 390
immutable, 101
lighting models. See Lighting
list chunks, 755–757
pipelines, 718
programs, 17
queries, generating, 549
samplers, 164
separable program, 717
shaders, 17
shadows. See Shadows
spaces, 71
stacks, 642
synchronization, 557–562
TBOs (texture buffer objects), 288
UBOs (uniform buffer objects), 121
VAOs (vertex array objects), 295, 493

Occlusion queries, 535–545
Off-screen rendering, 390–412

framebuffer completeness, 403–407
layers, 397–403
multiple framebuffer attachments, 395–397
in stereo, 407–412

Offsets
polygons, 604
uniform blocks with, 124, 125

One-dimensional color lookup tables, 610
Opacity, 15
OpenGL Shading Language. See GLSL
OpenMP (Open Multi-Processing), 662–664
Open Multi-Processing. See OpenMP
Operating systems, 5
Operations

logical, 387–388
resolve, customizing, 419
stencil, 375

Operators, 210
common vector, 60–64
matrices, 66–69

Optimization, 661. See also Performance
buffers, mapping, 709–713
CPUs (central processing units), 661–677
GPU work generation, 683–690
indirect rendering, 678–683
memory, 723–726
multi-threading, 662–667
overhead, reducing, 677–699
packet buffers, 668–677
performance analysis tools, 699–726
rules for shaders, 576
zero copy, 691–699

Order, winding, 42
Origins of OpenGL, 6–10
Orthogonal, 67
Orthographic matrices, 89
Orthonormal, 67
out keyword, 30
Outputs

colors, 382–387
compute shaders, 471–474
control points, 319
font rendering demos, 659
high-frequency, 422
naming, 230
patches, 36
variables, 228
vertex shaders, 30, 249–251

Overdrawing, 614
Overhead, reducing, 677–699
Overloading, 15, 183, 213

Packed data formats, 247, 525–527
Packets

buffers, 668–677
present, 702
specialization, 676–677
standard DMA, 702
standard queue, 702

Packing RGTC blocks, 522
PackRGTC function, 523
Pages, 509, 510
PalettizeTexel function, 523
Palettizing RGTC blocks, 522
Parallelism, 4
Parallel prefix sums, 479–492
Parameters

bindingindex, 110
flags, 101
indices, 272
points, 453–454
primitiveMode, 287
readoffset, 109
shininess, 570
stride, 111, 115
uniforms, queries, 127–128
writeoffset, 109

Index 819

Particle systems, 448
OpenMP (Open Multi-Processing), 664

Partitioning data, 692
Passing

data
between shaders, 319–322
into shaders, 117
from stage to stage, 30–33
to vertex shaders, 28–28

primitives, 40
Pass-through geometry shaders, 334–336
Pass-through vertex shaders, 346
Patches, 33, 305, 306

cubic Bézier, tessellation, 329–333
output, 36

Patterns
hatching, 517
modifying, 507

Pausing transform feedback, 286–288
Pentium processors, 8
Performance, 8, 661

ALU (arithmetic and logic unit), 715
bubbles, 557
counters, 706
CPUs (central processing units), 661–677
extensions, 50. See also Extensions
GPU work generation, 683–690
indirect rendering, 678–683
memory, 723–726
multi-threading, 662–667
overhead, reducing, 677–699
packet buffers, 668–677
shaders, compiling, 716–719
zero copy, 691–699

Performance analysis tools, 699–726
applications, tuning for speed,

706–726
GPU PerfStudio, 703–706
GPUView, 699–703
WPT (Windows Performance Toolkit),

699–703
Per-fragment shininess, 598–599
Per patch data, 306
Persistent maps, 103, 664, 665, 691–692.

See also Mapping
fractals, rendering, 698

Perspective
division, 40
matrices, 88–89

Perspective-correct interpolation, 367–369
Phong lighting models, 568–577

ambient light, 568
diffuse light, 569
shading, 573–577, 584
specular highlights, 569–573

Physical simulation (transform feedback),
288–298

Pipelines (graphics), 3, 10–11, 27
clipping, 39–40
compute shaders, 48–49
configuring, 226
culling, 41–43
draining, 557
extensions, 49–54
fragment shaders, 43–46
framebuffer operations, 47–48
geometry shaders, 37–39
management, 533
overview of, 4–6
program objects, 718
queries, 534–556

occlusion, 535–545
pipeline state, 555–556
timer, 545–549
transform feedback, 549–555

rasterization, 43
synchronization, 556–562
tessellation, 33–37
transform feedback, 280–298
vertex shaders, 17

inputs, 244–249
passing data from stage to stage, 30–33
passing data to, 28–28

viewports, transforming, 40–41
Pixels, 10–11, 17

framebuffer operations, 47–48
interpolation. See Interpolation

Planes
adding, 645
depth clamping, 379

Points
binding, 100

assigning, 131
transform feedback, 284

control, 306. See also Control points
drawing, 250
intersections, 639
parameters, 453–454
rotating, 456–458
sampling, 168, 527
shaped, 454–456
sizes, 250
sprites, 448–458
tessellation, 315–316
textures, 449–450

Polygons, 11
modes, 319
offsets, 604
smoothing, 414

Populating sparsely populated textures,
509–515

Positioning vertices, 117
Post-rasterization processing, 370
PowerPC processors, 8

820 Index

Prefixes, parallel prefix sums, 479–492
Pre-fragment tests, 369–382

depth testing, 376–380
early testing, 380–382
scissor testing, 369–372
stencil testing, 372–376

Pre-optimizing shaders, 719
Present packets, 702
PrimitiveMode parameter, 287
Primitive processing, 305

geometry shaders, 333–334
changing primitive types, 349–352
discarding geometry in, 341–344
generating geometry in, 346–349
modifying geometry in, 344–345
multiple streams of storage, 352–353
multiple viewport transformations,

361–364
new primitive types, 353–361
pass-through, 334–336
using in applications, 336–341

tessellation, 306–322
communication between shader

invocations, 322
cubic Bézier patches, 329–333
passing data between shaders, 319–322
primitive modes, 307–316
subdivision modes, 316–319
terrain rendering, 323–328

Primitives, 10–11
geometry shaders, 37
passing, 40
query results, 552–555
restarts, geometry, 255–257
synchronization, 107
tessellation. See Tessellation
types

geometry shaders, modifying,
349–352

new in geometry shaders, 353–361
winding order of, 318–319

Printing interface information, 231
Processing

.KTX files, 743–745
post-rasterization, 370
primitives. See Primitive processing
vertices, 244–251

Processors, 8–10
Products

cross, 62–63
dot, 60–61
inner, 60
vectors, 62

Profiles, 9
Programs, 13. See also Applications; Tools

binaries, 235–238, 719
bloom, 438–444

computer, 468
creating, 14–16
dds2ktx, 745–746
graphics, 468
ktxtool, 743–745
linking, 225–227
objects, 17
pipeline objects, 225, 718
sb6mtool, 746–748
separable objects, 717
shaders, 17–24
triangles, drawing, 24–26

Projection
2D data, 69
matrices, updating, 137
transformations, 86–88

Properties, material, 597–599
props arrays, 229
Publication dates, 7
Pulling (vertex), 28
Pythagoras’s theorem, 63

Quad fragments, 556
Quadratic Bézier curves, 92
Quads

geometry shaders, rendering, 355–361
tessellation using, 307–310

Qualifiers
centroid, applying, 424
flat, 367
format layout, 186
interpolation, 367
layouts, 29

ccw, 319
cw, 319
geometry shaders, 334
multiple framebuffer attachments, 396

noperspective, 368, 369
shared storage, 475
smooth, 367
storage, fragment shaders, 366–369

Quaternions, 79, 81–83
Queries, 534–556

control flow, 545
indexes, 551–552
objects, generating, 549
occlusion, 535–545
pipeline state, 555–556
results

applying, 537–540
primitive, 552–555
rendering, 540
retrieving, 536–537

timer, 545–549
transform feedback, 549–555
uniform parameters, 127–128

Index 821

Queues
CPUs (central processing units), 700
hardware, 700
software, 700
standard queue packets, 702

Quintic Bézier curve, 94

Race conditions, 476, 477, 478, 692
Radians, 217
Range-checked reads, 740–742
Ranges, mapping buffers, 106
Rasterization, 43, 365, 366

fragment shaders. See Fragment shaders
post-rasterization processing, 370

Rasterizers, 11
disabling, 288
discarding, 296

Rates, sample rate shading, 421–423
RAW (read-after-write) hazard. See RAW145
Ray-sphere intersection tests, 638
Ray tracing in fragment shaders, 634–647
Read-after-write. See RAW
Reading

from framebuffers, 458–461
range-checked reads, 740–742
states, 707–709
textures, 156–160, 164–177

Read–modify–write cycle, 143
readoffset parameter, 109
Rectangles

pages, 509
scissor testing, 369–372
summed area tables, 487
textures, 155

Red–Green Texture Compression. See RGTC
RED images, 518
Reducing overhead, 677–699
Redundancy, state setting commands, 672
Reflection, 63–64

negative, 570
vectors, 571

Refraction, 63–64
ref value, 374
Regions

hatching patterns, 517
pages, 509

Rendering, 11, 567
AFR (alternate frame rendering) mode, 719
alternative rendering methods, 613–647
attachments, 392
with blending functions, 385
colors, distance fields, 654–655
conditional, 541–543
to cubemaps, 402–403
flexible indirect, 678–683
fonts, distance fields, 652–654
fractals, 698
framebuffers with no attachments, 428–430

geometry, 267
indirect, 678–683
instancing, 258, 269, 270
Julia sets, 632–634
layers with geometry shaders, 411
lighting models, 568–609
loops, 137, 139
Mandlebrot sets, 632
multiple viewports, 363
non-photo-realistic, 610–613
off-screen, 390–412

framebuffer completeness, 403–407
layers, 397–403
multiple framebuffer attachments,

395–397
quads using geometry shaders, 355–361
query results, 540
shadow maps, 605
skyboxes, 594
spherical environment maps, 587–589
star fields, 450–453
in stereo, 407–412
terrain, 323–328
textures, 394, 395
two-dimensional graphics, 647–659
with user clip distances, 305
without tessellation control shaders,

321–322
without triangles, 631–647

render() method, 14, 16
Resetting

graphics, 737–740
packet buffers, 674

Resident memory, 506
Resolution, 5
Resolve operations, customizing, 419
Resources, unmappable, 694–699
Results

atomic counters, 151
queries

applying, 537–540
primitive, 552–555
rendering, 540
retrieving, 536–537

Retrieving query results, 536–537
Return values, framebuffer completeness, 405
RGTC (Red–Green Texture Compression), 196,

516–519
Rim lighting, 579–582
Robustness, 737–742
Rotating

matrices, 68, 76–79
points, 456–458

Roughness, applying, 597
Rules

flocking algorithms, 497
shaders, 576

run() method, 14

822 Index

Sample masks, 420
Sample rate shading, 421–423
Samplers

antialiasing, 415. See also Antialiasing
filtering modes, 164
types, 157–160
uniform blocks, declaring inside, 505, 507
variables, 156, 504
wrapping modes, 164

Sampling
centroid, 424–428
points, 168, 527

sb6mtool program, 746–748
sb7::vmath library, 135
.SBM files, 746–748, 749–757

chunk headers, 750–751
comment chunks, 755
defined chunks, 751–755
file headers, 749–750
object list chunks, 755–757

Scalability, 4
Scalars, 65, 206–207
Scaling matrices, 79–80
Schematics, tessellation, 307
Scintillation (aliasing artifacts), 169
Scissor testing, 47, 369–372
Screenshots, formatting, 460–461
Screen-space ambient occlusion. See SSAO
Screen-space techniques, 624–631
Security, 737–742
Segments, fractional, 317
Separable program objects, 717
Separate attributes, 114
Separate programs, 225–227
Serialization, 144
SGI (Silicon Graphics Inc.), 6
Shaders

applying, 17–24
atomic counters, declaring, 148
atomic operations, 143–144
barriers, applying, 147
compiling, 716–719
compute, 48–49. See also Compute shaders
control (tessellation), 33–35
cores, 5
evaluation (tessellation), 35–37
fragments, 17, 43–46. See also Fragment

shaders
spinning cubes, 138
terrain rendering, 327

geometry, 37–39. See also Geometry shaders
infinite loops, 738
logs, retrieving compiler, 221
objects, 17
optimization rules, 576
pre-optimizing, 719
programs, linking, 225–227
rim lighting, 581

storage, blocks, 140–147
subroutines, 231–235
TCSs (tessellation control shaders), 306
testing, 381. See also Testing
textures

reading from, 156–160
writing in, 182–194

updating, 112
vertex, passing data to, 28–28
vertices, 17

Shading. See also Shadows
cell, 610–613
deferred, 613–624
Gouraud, 571, 572
normal mapping, 619–622
Phong lighting models, 573–577, 584
ray tracing, 636
sample rate, 421–423

Shadows
casting, 599–605
mapping, 600–605
matrices, 602

Shaped points, 454–456
shared storage qualifier, 475
Sharing

data, partitioning, 692
exponents, 198–199
layouts, uniforms, 122

Shininess, per-fragment, 598–599
Shininess factors, 570
Side effects, 473
Signaled state, 557
Silicin Graphics Inc. See SGI
Sizes of input arrays to geometry shaders, 339
Skyboxes, rendering, 594
Slices, time, 475
Smoothing polygons, 414
Smooth inputs, 366
Smooth interpolation, 529
smooth qualifier, 367
SoAs (structure-of-arrays), 115
Software, 700. See also Applications
Sorting values, 521
Source factors, 383
Spaces

clip, 72
coordinates, 70–72
models, 71
normalized device, 72
objects, 71

Sparsely populated textures, 509–515
sparsetexture application, 512–514
Specialization, packet buffers, 676–677
Special methods, 212
Specifying bindings, uniform blocks, 133
Specular albedo, 576
Specular highlights, 569–573
Speed, tuning applications for, 706–726

Index 823

Spherical environment maps, 587–589
Splines, 89, 94–97
Sprites (points), 448–458
SRGB color spaces, 446–448
SSAO (screen-space ambient occlusion),

624
Stacking

fields, 209
implementation, 642

Stages, 5
data from stage to, passing, 30–33
of pipelines, 28

Standard DMA packets, 702
Standard layouts, 123. See also Layouts
Standard operators, 210
Standard queue packets, 702
Standards, IEEE, 206
Star fields, rendering, 450–453
Starting

occlusion queries, 537
transform feedback, 286–288

startup() function, 14, 663
States

packet buffers, chaining, 675
reading, 707–709

Stencil testing, 47, 372–376
Stereo, rendering in, 407–412
Stopping transform feedback, 286–288
Storage, 101. See also Data stores

allocating, 509, 691
atomic counters, 148
atomic operations, 143–144
buffers, flags, 102
multiple streams of, geometry shaders,

352–353
qualifiers, fragment shaders, 366–369
resident memory, 506
shaders, blocks, 140–147
textures. See Textures
world-space coordinates, 615

Streams, transform feedbacks, 554
stride parameter, 111, 115
Stripping tools, 255
Structure-of-arrays. See SoAs
Structures, 210–212

acceleration, 646
gl_PerVertex, 320
packet data, 669
VERTEX, 245

Subdivision modes, tessellation, 316–319
Subroutines

shaders, 231–235
uniforms

configuring values, 235
declaring, 232

Summed area tables, 485, 487
Sums, parallel prefix, 479–492

Support
data types, 119
packed data formats, 527
swizzling, 209
textures, 510
types, 108

Surfaces
bumpy, 625
higher-order, 329

SwapBuffers() command, 702
Swizzling, 209
Synchronizing, 666, 701

access
to atomic counters, 151–152
images, 194
memory, 145–147

access to buffers, 692–694
compute shaders, 475–479
objects, 557–562
pipelines (graphics), 556–562
primitives, 107

Systems, updating, 291

Tables
one-dimensional color lookup, 610
summed area, 485, 487

Tails, mipmaps, 512
Tangent, bitangent, normal. See TBN matrix
Tangents

space normals, 619
vectors, 582

Targets, 100
textures, 154–156
views, 200

TBN (tangent, bitangent, normal) matrix, 583,
584, 619

TBOs (texture buffer objects), 288
TCSs (tessellation control shaders), 306, 704
Terrain, rendering, 323–328
TESs (tessellation evaluation shaders), 306, 704
Tessellation, 33–37, 227, 250

communication between shader invocations,
322

control shaders, 33–35
cubic Bézier patches, 329–333
data, passing between shaders, 319–322
engines, 35
evaluation shaders, 35–37, 607
geometry shaders, configuring, 347
landscapes, applying fog, 609
point modes, 315–316
primitives

modes, 307–316
processing, 306–322

schematics, 307
subdivision modes, 316–319
terrain rendering, 323–328

824 Index

transform feedback queries, 549
triangles, 37
using isolines, 312–315
using quads, 307–310
using triangles, 310–312

Tessellation control shaders. See TCSs
Tessellation evaluation shaders. See TESs
Testing

depth, 47
intersections, 645
pre-fragment, 369–382

depth testing, 376–380
early testing, 380–382
scissor testing, 369–372
stencil testing, 372–376

ray-sphere intersection, 638
ray-sphere intersection tests, 638
scissor, 47
stencil, 47

texelFetch() function, 167
Texels

blocks, fetching, 520
as light, 610
texture filtering, 528

Texture buffer objects. See TBOs
texture() function, 167
textureGatherOffset function, 520
Textures, 11, 152–202

arrays, 177–182, 397
copying, 411
viewing, 400

atlas, 509
attachments, 392
bindless, 504, 682
committing, 513
compression, 195–199, 516–525, 715
coordinates, 162–164, 209
data

copying into, 463–464
reading back, 464–466

distance fields, 647–655
files, loading from, 160–164
filtering, 167–169
floating-point formats, 432
formatting, 152–154
framebuffers, configuring, 390
gradients, 634
high-quality texture filtering,

527–531
initializing, 152–154
interpolation, 368
mipmaps, 169–171
multiple, 166–167
multi-sample, 417–421
points, 449–450
reading, 164–177
rectangles, 155

rendering, 394, 395
resident, applying, 508
shaders

reading from, 156–160
writing in, 182–194

sparsely populated, 509–515
support, 510
targets, 154–156
types, 154–156
unbinding, 504
units, 152
updating, 153
views, 199–202
wrapping modes, 174–177

Threading
data, generating, 662–667
multi-threading, 662–667, 721–723

Tightly packed arrays, 115
Time, slices, 475
Timer queries, 545–549
Tokens, types, 108
Tone mapping, 434–438
Tools, 743

dds2ktx program, 745–746
ktxtool program, 743–745
performance analysis, 699–726

GPU PerfStudio, 703–706
GPUView, 699–703
tuning applications for speed, 706–726
WPT (Windows Performance Toolkit),

699–703
sb6mtool program, 746–748
stripping, 255

Toon shaders, 611, 612
Transfer curves, 436
Transformation, 69–89

concatenation, 80–81
coordinates, 65, 70–72, 72–80
geometry, uniforms, 135–140
matrices, 72, 117
meshes, 492
model-view, 83–84, 137
multiple viewport, geometry shaders,

361–364
projection, 86–88
transform feedback, 280–298

ending pipelines with, 288
physical simulation, 288–298

viewports, 40–41
Transform feedback queries, 549–555
Translating matrices, 68, 75–76
Triangles, 11

clipping, 299, 300. See also Clipping
drawing, 24–26
geometry shaders, 348
Phong shading, 573
rendering without, 631–647

Index 825

Triangles (continued)
strips, 257
tessellation, 37, 310–312

Tuning applications for speed, 706–726
Two-dimensional graphics, 647–659, 655–659
Types

data, 206–212
packed, 525
support, 119

elements, 211
images, 183
integers, 183
rendering, 11
samplers, 157–160
textures, 154–156
tokens, 108
vertices, attributes, 246

UBOs (uniform buffer objects), 121
Unbinding textures, 504
Under-sampling data, 412
Uniform buffer objects. See UBOs
Uniforms, 117–140

blocks, 121–135
declaring, 121, 680
defaults, 117–120
indexes, 126
specifying bindings, 133

configuring, 119–120
geometry, transforming, 135–140
moving, 118–119
parameters, queries, 127–128
samplers, declaring blocks inside, 505, 507
subroutines

configuring values, 235
declaring, 232

Unions of packets, 670
Units

images, 183, 184
textures, 152
vectors, 58

Unmappable resources, 694–699
Unmapping buffers, 105. See also Mapping
Unpacking data from G-buffers, 617
Unsignaled state, 557
unsigned int scalar type, 206
Updating

buffers, objects, 104
depth buffers, 378–379
flocking, 499
OpenMP (Open Multi-Processing), 664
projection matrices, 137
shaders, 112
stencil buffers, 376
systems, 291
textures, 153
vertices, attributes, 29

User-defined clipping, 302–305
User-defined framebuffers, 392. See also

Framebuffers

Values
primitiveMode parameter, 287
ref, 374
return, framebuffer completeness, 405
sorting, 521

VAOs (vertex array objects), 20, 109, 295, 493, 704
Variables, 25

filtering, 487
GLuint, 100
images, 182
interfaces, declaring, 31
output, 228
point sizes, 250
samplers, 156, 504

Varyings, 281–285
geometry shaders, 338

Vectors, 57–60, 208–210
bitangent, 582
common operators, 60–64
functions, 213–215
length of, 63
products, 62
reflection, 571
rim lighting, 580
tangent, 582

Velocity, buffers, 493
Versions, 7, 759–796
Vertex array objects. See VAOs
Vertex shaders

array textures, 400
attributes, applying, 113
buffers, feeding from, 109–117
colors, 266
cubemaps, 596
flocking, 500
Gouraud shading, 572
inputs, 244–249, 276
instancing, 267
mapping, 248
material indexes, passing through, 681
multiple inputs, 113–116
normal mapping, 585
outputs, 249–251
passing data, 28–29, 30–33
pass-through, 346
Phong shading, 575
shadow mapping, 603
skybox rendering, 594
spherical environment mapping, 588
spinning cubes, 138
systems, updating, 291
texture coordinates, 163
toon, 611

826 Index

VERTEX structure, 245
Vertices, 6, 12

attributes, 28–29, 110
configuring, 112
disabling, 113
shader storage blocks, 142
types, 246

base vertex, 254–255
buffers, bindings, 110
chunks, 753–755
connections, 289
declaring, 247
generating, 347
positioning, 117
processing, 244–251
shaders. See Vertex shaders

Viewing
array textures, 400
extensions, 51
images, 458–466

Viewports
multiple transformation, 361–364
transformation, 40–41

Views
big-picture, 11
coordinates, 71–72
model-view transformations, 83–84
space, 620
textures, 199–202

Virtual framebuffers, 430. See also Framebuffers
vmath library, 61
VSync, 701

Waiting, back-to-back, 536
WAR (write-after-read) hazard, 145
WAW (write-after-write) hazard, 145
Weather, 605–609
Whole framebuffer completeness, 404
Winding order, 42

of primitives, 318–319
Windows

coordinates, 41
stereo

drawing, 409
formatting, 408

Windows Performance Toolkit. See WPT
Workgroups, 470–471, 473

local, 48
Work items, 48, 470
Workstations, 6
World coordinates, 71
World-space coordinates, 615
WPT (Windows Performance Toolkit), 699–703
Wrapping modes

samplers, 164
textures, 174–177

Write-after-read. See WAR
Write-after-write. See WAW
Write combined memory buffers, 699
writeoffset parameter, 109
Writing

to G-buffers, 616
textures in shaders, 182–194

Zero copy, 691–699

Index 827

This page intentionally left blank

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking timely
and relevant information and tutorials. Looking for expert opinions, advice, and tips?
InformIT has a solution.

• Learn about new releases and special promotions by subscribing to a wide
variety of monthly newsletters. Visit informit.com/newsletters.

• FREE Podcasts from experts at informit.com/podcasts.

• Read the latest author ar ticles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books Online
digital library. safari.informit.com.

• Get Advice and tips from expert blogs at informit.com/blogs.

Visit informit.com to find out all the ways you can access the hottest technology content.

Are you part of the IT crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube
and more! Visit informit.com/socialconnect .

 InformIT is a brand of Pearson and the online presence for the world’s
leading technology publishers. It’s your source for reliable and qualified

content and knowledge, providing access to the leading brands, authors, and contributors
from the tech community.

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

Color Plate 1: All possible combinations of blend function

Color Plate 2: Rendering to a stereo display

Color Plate 3: Different views of an HDR image

Color Plate 4: Adaptive tone mapping

Color Plate 5: Bloom filtering: no bloom (left) and bloom (right)

Color Plate 6: Depth of field applied to an image

Color Plate 7: Output of bindless texture example

Color Plate 8: Varying specular parameters of a material

Color Plate 9: Result of rim lighting example

Color Plate 10: Normal mapping in action

Color Plate 11: Depth of field applied in a photograph

Color Plate 12: A selection of spherical environment maps

Color Plate 13: A golden environment-mapped dragon

Color Plate 14: Result of per-pixel gloss example

Color Plate 15: Toon shading output with color ramp

Color Plate 16: Real-time rendering of the Julia set

Color Plate 17: Ray tracing with four bounces

	Contents
	Figures
	Tables
	Listings
	Foreword
	Preface
	The Architecture of the Book
	What’s New in This Edition
	How to Build the Examples
	Errata
	Note from the Publisher

	Acknowledgments
	About the Author
	3 Following the Pipeline
	Passing Data to the Vertex Shader
	Passing Data from Stage to Stage
	Tessellation
	Geometry Shaders
	Primitive Assembly, Clipping, and Rasterization
	Fragment Shaders
	Framebuffer Operations
	Compute Shaders
	Using Extensions in OpenGL
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

