Rogers Cadenhead

Jesse Liberty E%Iér(l)llN

Updated
for C++14

SamsTeach Yourself

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f &8 B in B

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337468
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337468
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337468
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337468
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337468/Free-Sample-Chapter

Contents at a Glance

Part I: Beginning C++
1 Writing Your First Program
2 Organizing the Parts of a Program
3 Creating Variables and Constants
4 Using Expressions, Statements, and Operators
5 Calling Functions
6 Controlling the Flow of a Program

7 Storing Information in Arrays and Strings

Part II: Classes

8 Creating Basic Classes

9 Moving into Advanced Classes

Part Ill: Memory Management
10 Creating Pointers
11 Developing Advanced Pointers
12 Creating References

13 Developing Advanced References and Pointers

Part IV: Advanced C++

14 Calling Advanced Functions
15 Using Operator Overloading

Part V: Inheritance and Polymorphism
16 Extending Classes with Inheritance
17 Using Polymorphism and Derived Classes
18 Making Use of Advanced Polymorphism

Part VI: Special Topics
19 Storing Information in Linked Lists
20 Using Special Classes, Functions, and Pointers
21 Using New Features of C++14
22 Employing Object-Oriented Analysis and Design
23 Creating Templates
24 Dealing with Exceptions and Error Handling

Part VII: Appendixes

A Binary and Hexadecimal

B Glossary

C This Book’s Website

D Using the MinGW C++ Compiler on Windows

13
27
43
61
79
95

109
123

135
155
167
183

199
213

231
251
267

287
301
331
343
373
391

411
419
427
429

Rogers Cadenhead
Jesse Liberty

SamsTeach Yourself

C++

N
Ours

SIXTH EDITION

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself C++ in 24 Hours
Copyright © 2017 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected

by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is
assumed with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33746-8

ISBN-10: 0-672-33746-0

Library of Congress Control Number: 2016945006
First Printing August 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The authors
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or programs
accompanying it.
Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact

governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact

intics@pearson.com.

Editor
Mark Taber

Project Editor
Lori Lyons

Project Manager
Prashanthi Nadipalli

Copy Editor
Christopher Morris

Technical Editor
Jon Upchurch

http://www.pearsoned.com/permissions/

Contents at a Glance

Introduction

Part I: Beginning C++
HOUR 1 Writing Your First Program
2 Organizing the Parts of a Program
Creating Variables and Constants
Using Expressions, Statements, and Operators
Calling Functions

Controlling the Flow of a Program

~N 0O g AW

Storing Information in Arrays and Strings

Part II: Classes

HOUR 8 Creating Basic Classes

9 Moving into Advanced Classes

Part lll: Memory Management

HOUR 10 Creating Pointers
11 Developing Advanced Pointers
12 Creating References

13 Developing Advanced References and Pointers

Part IV: Advanced C++

HOUR 14 Calling Advanced Functions
15 Using Operator Overloading

Part V: Inheritance and Polymorphism

HOUR 16 Extending Classes with Inheritance
17 Using Polymorphism and Derived Classes

18 Making Use of Advanced Polymorphism

13
27
43
61
79
95

109
123

135
155
167
183

199
213

231
251
267

iv Sams Teach Yourself C++ in 24 Hours

Part VI: Special Topics

HOUR 19 Storing Information in Linked Lists
20 Using Special Classes, Functions, and Pointers
21 Using New Features of C++14
22 Employing Object-Oriented Analysis and Design
23 Creating Templates
24 Dealing with Exceptions and Error Handling

Part VII: Appendixes

A Binary and Hexadecimal

B Glossary

€ This Book’s Website

D Using the MinGW C++ Compiler on Windows

Index

287
301
331
343
373
391

411
419
427
429

439

Table of Contents

Introduction

Part I: Beginning C++

HOUR 1: Writing Your First Program
Using C++
Compiling and Linking the Source Code

Creating Your First Program

HOUR 2: Organizing the Parts of a Program
Reasons to Use C++
The Parts of a Program
Comments

Functions

HOUR 3: Creating Variables and Constants
What Is a Variable?
Defining a Variable
Assigning Values to Variables
Using Type Definitions
Constants

Auto-Typed Variables

HOUR 4: Using Expressions, Statements, and Operators
Statements
Expressions
Operators
If-Else Conditional Statements
Logical Operators

Tricky Expression Values

N o v g

13
13
17
19
20

27
27
32
33
34
36
38

43
43
44
45
52
56
58

Sams Teach Yourself C++ in 24 Hours

HOUR 5: Calling Functions 61
What Is a Function? 61
Declaring and Defining Functions 61
Using Variables with Functions 64
Function Parameters 67
Returning Values from Functions 68
Default Function Parameters 70
Overloading Functions 72
Auto-Typed Return Values 73

HOUR 6: Controlling the Flow of a Program 79
Looping 79
while Loops 79
do-while Loops 83
for Loops 84
switch Statements 89

HOUR 7: Storing Information in Arrays and Strings 95
What Is an Array? 95
Writing Past the End of Arrays 97
Initializing Arrays 98
Multidimensional Arrays 99
Character Arrays 102
Copying Strings 104
Reading Arrays with Foreach Loops 105

Part II: Classes

HOUR 8: Creating Basic Classes 109
What Is a Type? 109
Creating New Types 110
Classes and Members 110
Accessing Class Members 112
Private Versus Public Access 112
Implementing Member Functions 114

Creating and Deleting Objects 116

Table of Contents vii

HOUR 9: Moving into Advanced Classes 123
const Member Functions 123
Interface Versus Implementation 124
Organizing Class Declarations and Function Definitions 124
Inline Implementation 124
Classes with Other Classes as Member Data 127

Part 1lIl: Memory Management

HOUR 10: Creating Pointers 135
Understanding Pointers and Their Usage 135
The Stack and the Heap 145
Null Pointer Constant 150
HOUR 11: Developing Advanced Pointers 155
Creating Objects on the Heap 155
Deleting Objects 155
Accessing Data Members Using Pointers 157
Member Data on the Heap 158
The this Pointer 160
Stray or Dangling Pointers 161
const Pointers 162
const Pointers and const Member Functions 163
HOUR 12: Creating References 167
What is a Reference? 167
Creating a Reference 167
Using the Address of Operator on References 169
What Can Be Referenced? 171
Null Pointers and Null References 172
Passing Function Arguments by Reference 172
Understanding Function Headers and Prototypes 177
Returning Multiple Values 177
HOUR 13: Developing Advanced References and Pointers 183
Passing by Reference for Efficiency 183

Passing a const Pointer 186

viii Sams Teach Yourself C++ in 24 Hours

References as an Alternative to Pointers

When to Use References and When to Use Pointers
References to Objects Not in Scope

Returning a Reference to an Object on the Heap

Pointer, Pointer, Who Has the Pointer?

Part IV: Advanced C++

HOUR 14: Calling Advanced Functions
Overloaded Member Functions
Using Default Values
Initializing Objects
The Copy Constructor
Compile-Time Constant Expressions

HOUR 15: Using Operator Overloading
Operator Overloading

Conversion Operators

Part V: Inheritance and Polymorphism

HOUR 16: Extending Classes with Inheritance
What Is Inheritance?
Private Versus Protected
Constructors and Destructors
Passing Arguments to Base Constructors

Overriding Functions

HOUR 17: Using Polymorphism and Derived Classes
Polymorphism Implemented with Virtual Member Functions

How Virtual Member Functions Work

HOUR 18: Making Use of Advanced Polymorphism
Problems with Single Inheritance

Abstract Data Types

189
191
191
192
195

199
199
201
203
204
208

213
213
224

231
231
234
236
239
244

251
251
256

267
267
271

Part VI: Special Topics

HOUR 19: Storing Information in Linked Lists
Linked Lists and Other Structures
Linked List Case Study
Linked Lists as Objects

HOUR 20: Using Special Classes, Functions, and Pointers
Static Member Data
Static Member Functions
Containment of Classes

Friend Classes and Functions

HOUR 21: Using New Features of C++14
The Newest Version of C++
Using auto in Function Return Types
Improved Numeric Literals
The constexpr Keyword

Lambda Expressions

HOUR 22: Employing Object-Oriented Analysis and Design
The Development Cycle
Simulating an Alarm System
PostMaster: A Case Study

HOUR 23: Creating Templates
What Are Templates?
Instances of the Template
Template Definition

Using Template Items

HOUR 24: Dealing with Exceptions and Error Handling
Bugs, Errors, Mistakes, and Code Rot
Handling the Unexpected
Exceptions
Using try and catch Blocks
Writing Professional-Quality Code

Table of Contents

287
287
289
298

301
301
303
305
312

331
331
332
334
335
338

343
343
344
350

373
373
374
374
381

391
391
392
393
397
403

ix

Sams Teach Yourself C++ in 24 Hours

Part VII: Appendixes

APPENDIX A: Binary and Hexadecimal
Other Bases
Around the Bases

Hexadecimal
APPENDIX B: Glossary
APPENDIX C: This Book’s Website

APPENDIX D: Using the MinGW C++ Compiler on Windows
Downloading MinGW-w64
Setting the Path Environment Variable

Testing Your Installation

Index

411
412
412
416

419

427

429
429
431
433

439

About the Authors

Rogers Cadenhead is a writer, computer programmer, and web developer who has written
more than 25 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days
and Absolute Beginner’s Guide to Minecraft Mods Programming. He publishes the Drudge
Retort and other websites that receive more than 22 million visits a year. This book’s official
website is at http://cplusplus.cadenhead.org.

Jesse Liberty is the author of numerous books on software development, including
best-selling titles on C++ and .NET. He is the president of Liberty Associates, Inc.
(www.libertyassociates.com), where he provides custom programming, consulting, and
training.

http://cplusplus.cadenhead.org
http://www. libertyassociates.com

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: ~ Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

Congratulations! By reading this sentence, you are already 20 seconds closer to learning C++,
one of the most important programming languages in the world.

If you continue for another 23 hours, 59 minutes, and 40 seconds, you will master the
fundamentals of the C++ programming language. Twenty-four one-hour lessons cover important
features such as managing I/O, creating loops and arrays, using object-oriented programming
with templates, and creating C++ programs.

All of this has been organized into well-structured, easy-to-follow lessons. There are working
projects that you create—complete with output and an analysis of the code—to illustrate the
topics of the hour. Syntax examples are clearly marked for handy reference.

To help you become more proficient, each hour ends with a set of common questions and
answers.

Who Should Read This Book?

You don’t need any previous experience in programming to learn C++ with this book. It starts
with the basics and teaches you both the language and the concepts involved with programming
C++. Whether you are just beginning or already have some experience programming, you will
find that this book makes learning C++ fast and easy.

Should | Learn C First?

No, you don’t need to learn C first. C++ is a much more powerful and versatile language that
was created by Bjarne Stroustrup as a successor to C. Learning C first can lead you into some
programming habits that are more error-prone than what you'll do in C++. This book does not
assume that readers are familiar with C.

2 Introduction

Why Should | Learn C++?

You could be learning a lot of other languages, but C++ is valuable to learn because it has stood
the test of time and continues to be a popular choice for modern programming.

Despite being created in 1979, C++ is still being used for professional software today because of
the power and flexibility of the language. There’s even a new version of the language, called
C++14, that makes it even more useful.

Because other languages such as Java were inspired by C++, learning the language can provide
you insight into them, as well. Mastering C++ gives you portable skills that you can use on

just about any platform on the market today, from desktop computers to Linux servers, mobile
devices, videogame consoles, and mainframes.

What If | Don’t Want This Book?

I'm sorry you feel that way, but these things happen sometimes. Please reshelve this book with
the front cover facing outward on an endcap with access to a lot of the store’s foot traffic.

Conventions Used in This Book

This book contains special elements as described here.

NOTE

These boxes provide additional information to the material you just read.

CAUTION

These boxes focus your attention on problems or side effects that can occur in specific situations.

TIP

These boxes give you tips and highlight information that can make your C++ programming more
efficient and effective.

When you see this symbol, you know that what you see next will show the output from a code
listing/example.

Conventions Used in This Book 3

This book uses various typefaces:

» To help you distinguish C++ code from regular English, actual C++ code is typeset in a

special monospace font.

» Placeholders—words or characters temporarily used to represent the real words or
characters you would type in code—are typeset in italic monospace.

» New or important terms are typeset in italic.

» In the listings in this book, each real code line is numbered. If you see an unnumbered line
in a listing, you'll know that the unnumbered line is really a continuation of the preceding
numbered code line (some code lines are too long for the width of the book). In this case,
you should type the two lines as one; do not divide them.

This page intentionally left blank

HOUR 2

Organizing the Parts of a
Program

What You’ll Learn in This Hour:

» Why to use C++

» How C++ programs are organized

» How comments make programs easier to understand
» What functions can accomplish

Although it recently turned 37, the C++ programming language has aged a lot better than some
other things that came out in the late 1970s. Unlike disco, oil embargoes, shag carpet, and
avocado-colored refrigerators, C++ is still in vogue today. It remains a world-class programming
language.

The reason for its surprising longevity is that C++ makes it possible to create fast executing
programs with a small amount of code that can run on a variety of computing environments.
Today’s C++ programming tools enable the creation of complex and powerful applications in
commercial, business, and open source development.

Reasons to Use C++

During the seven decades of the computing age, computer programming languages have under-
gone a dramatic evolution. C++ is considered to be an evolutional improvement of a language
called C that was introduced in 1972.

The earliest programmers worked with the most primitive computer instructions: machine
language. These instructions were represented by long strings of ones and zeroes. Assemblers were
devised that could map machine instructions to human-readable and manageable commands
such as ADD and MOV.

The instructions that make up a computer program are called its source code.

In time, higher-level languages were introduced such as BASIC and COBOL. These languages
made it possible for programmers to begin to craft programs using language closer to actual

14 HOUR 2: Organizing the Parts of a Program

words and sentences, such as Let Average = .366. These instructions were translated back
into machine language by tools that were called either interpreters or compilers.

An interpreter-based language translates a program as it reads each line, acting on each instruction.

A compiler-based language translates a program into what is called object code through a
process called compiling. This code is stored in an object file. Next, a linker transforms the object
file into an executable program that can be run on an operating system.

Because interpreters read the code as it is written and execute the code on the fly, they're easy
for programmers to work with. Compilers require the more inconvenient extra steps of compiling
and linking programs. The benefit to this approach is that the programs run significantly faster
than programs run by an interpreter.

For many years, the principal goal of programmers was to write short pieces of code that would
execute quickly. Programs needed to be small because memory was expensive, and they needed
to be fast because processing power also was expensive. As computers have become cheaper,
faster, and more powerful and the cost and capacity of memory has fallen, these priorities
diminished in importance.

Today, the greatest expense in programming is the cost of a programmer’s time. Modern
languages such as C++ make it faster to produce well-written, easy-to-maintain programs that
can be extended and enhanced.

Styles of Programming

As programming languages have evolved, languages have been created to cater to different
styles of programming.

In procedural programming, programs are conceived of as a series of actions performed on a set
of data. Structured programming was introduced to provide a systematic approach to organizing
these procedures and managing large amounts of data.

The principal idea behind structured programming is to divide and conquer. Take a task that
needs to be accomplished in a program, and if it is too complex, break it down into a set of
smaller component tasks. If any of those tasks is still too complicated, break it down into even
smaller tasks. The end goal is tasks that are small and self-contained enough to be easily
understood.

As an example, pretend you've been asked by this publisher to write a program that tracks the
average income of its team of enormously talented and understatedly charismatic computer
book authors. This job can be broken down into these subtasks:

1. Find out what each author earns.

2. Count how many authors the publisher has.

Reasons to Use C++ 15

3. Total all their income.

4. Divide the total by the number of authors.

Totaling the income can be broken down into the following:

1. Get each author’s personnel record.

2. Access the author’s book advances and royalties.

3. Deduct the cost of morning coffee, corrective eyewear and chiropractic care.
4. Add the income to the running total.
5

. Get the next author’s record.

In turn, obtaining each author’s record can be broken down into these subtasks:
1. Open the file folder of authors.
2. Go to the correct record.

3. Read the data from disk.

Although structured programming has been widely used, this approach has some drawbacks.
The separation of data from the tasks that manipulate the data becomes harder to comprehend
and maintain as the amount of data grows. The more things that must be done with data, the
more confusing a program becomes.

Procedural programmers often find themselves reinventing new solutions to old problems instead
of producing reusable programs. The idea behind reusability is to build program components
that can be plugged into programs as needed. This approach is modeled after the physical
world, where devices are built out of individual parts that each perform a specific task and have
already been manufactured. A person designing a bicycle doesn’t have to create a brake system
from scratch. Instead, she can incorporate an existing brake into the design and take advantage
of its existing functionality.

This component-based approach became available to computer programmers for the first time
with the introduction of object-oriented programming.

C++ and Object-Oriented Programming
C++ helped popularize a revolutionary style of programming with a funny acronym: OOP.
The essence of object-oriented programming is to treat data and the procedures that act

upon the data as a single object—a self-contained entity with an identity and characteristics of
its own.

16 HOUR 2: Organizing the Parts of a Program

The C++ language fully supports object-oriented programming, including three concepts that
have come to be known as the pillars of object-oriented development: encapsulation,
inheritance, and polymorphism.

Encapsulation

When the aforementioned bike engineer creates a new bicycle, she connects together component
pieces such as the frame, handlebars, wheels, and a headlight (baseball card in the spokes
optional). Each component has certain properties and can accomplish certain behaviors. She
can use the headlight without understanding the details of how it works, as long as she knows
what it does.

To achieve this, the headlight must be self-contained. It must do one well-defined thing and it
must do it completely. Accomplishing one thing completely is called encapsulation.

All the properties of the headlight are encapsulated in the headlight object. They are not spread
out through the bicycle.

C++ supports the properties of encapsulation through the creation of user-defined types called
classes. A well-defined class acts as a fully encapsulated entity that is used as an entire unit or
not at all. The inner workings of the class should be hidden on the principle that the programs
which use a well-defined class do not need to know how the class works. They only need to know
is how to use it. You learn how to create classes in Hour 8, “Creating Basic Classes.”

Inheritance and Reuse

Now we're starting to learn a little more about our bike engineer. Let’s call her Penny Farthing.
Penny needs her new bicycle to hit the market quickly—she has run up enormous gambling
debts to people who are not known for their patience.

Because of the urgency, Penny starts with the design of an existing bicycle and enhances it with
cool add-ons like a cup holder and mileage counter. Her new bicycle is conceived as a kind

of bicycle with added features. She reused all the features of a regular bicycle while adding
capabilities to extend its utility.

C++ supports the idea of reuse through inheritance. A new type can be declared that is an
extension of an existing type. This new subclass is said to derive from the existing type. Penny’s
bicycle is derived from a plain old bicycle and thus inherits all its qualities but adds additional
features as needed. Inheritance and its application in C++ are discussed in Hour 16, “Extending
Classes with Inheritance.”

Polymorphism

As its final new selling point, Penny Farthing’s Amazo-Bicycle behaves differently when its horn
is squeezed. Instead of honking like an anguished duck, it sounds like a car when lightly pressed

The Parts of a Program 17

and roars like a foghorn when strongly squashed. The horn does the right thing and makes the
proper sound based on how it is used by the bicycle’s rider.

C++ supports this idea that different objects do the right thing through a language feature called
function polymorphism and class polymorphism. Polymorphism refers to the same thing taking many
forms, and is discussed during Hour 17, “Using Polymorphism and Derived Classes.”

You will learn the full scope of object-oriented programming by learning C++. These concepts
will become familiar to you by the time you’ve completed this full 24-hour ride and begun to
develop your own C++ programs.

Disclaimer: You won't learn how to design bicycles or get out of gambling debt.

The Parts of a Program

The program you created during the first hour, Mot to. cpp, contains the basic framework of a
C++ program. Listing 2.1 reproduces the source code of this program so that it can be explored
in more detail.

When typing this program in to a programming editor such as NetBeans, remember not to
include the line numbers in the listing. They are included solely for the purpose of referring to
specific lines in this book.

LISTING 2.1 The Full Text of Motto.cpp

#include <iostream>

1

2

3 int main()

a:

5 std::cout << "Solidum petit in profundis!\n";
6 return 0;

7

This program produces a single line of output, the motto of Aarhus University:

Solidum petit in profundis!

On line 1 of Listing 2.1 a file named iostream is included in the source code. This line causes
the compiler to act as if the entire contents of that file were typed at that place in Motto. cpp.

Preprocessor Directives

A C++ compiler’s first action is to call another tool called the preprocessor that examines the
source code. This happens automatically each time the compiler runs.

18 HOUR 2: Organizing the Parts of a Program

The first character in line 1 is the # symbol, which indicates that the line is a command to be
handled by the preprocessor. These commands are called preprocessor directives. The preprocessor’s
job is to read source code looking for directives and modify the code according to the indicated
directive. The modified code is fed to the compiler.

The preprocessor serves as an editor of code right before it is compiled. Each directive is a
command telling that editor what to do.

The #include directive tells the preprocessor to include the entire contents of a designated
filename at that spot in a program. As you learned in Hour 1, “Writing Your First Program,”
C++ includes a standard library of source code that can be used in your programs to perform
useful functionality. The code in the iostream file supports input and output tasks such as
displaying information onscreen and taking input from a user.

The < and > brackets around the filename iostream tell the preprocessor to look in a standard
set of locations for the file. Because of the brackets, the preprocessor looks for the iostream

file in the folder that holds header files for the compiler. These files also are called include files
because they are included in a program'’s source code.

The full contents of iostream are included in place of line 1.

NOTE

Header files traditionally ended with the filename extension .h and also were called h files, so they
used a directive of the form include <iostream.h>.

Modern compilers don’t require that extension, but if you refer to files using it, the directive might
still work for compatibility reasons. This book omits the extraneous .h in include files.

The contents of the file iostream are used by the cout command in line 5, which displays
information to the screen.

There are no other directives in the source code, so the compiler handles the rest of Motto. cpp.

Source Code Line by Line

Line 3 begins the actual program by declaring a function named main (). Functions are blocks of
code that perform one or more related actions. Functions do some work and then return to the
spot in the program where they were called.

Every C++ program has a main () function. When a program starts, main () is called
automatically.

All functions in C++ must return a value of some kind after their work is done. The main ()
function always returns an integer value. Integers are specified using the keyword int.

Comments 19

Functions, like other blocks of code in a C++ program, are grouped together using the brace
marks { and }. All functions begin with an opening brace { and end with a closing brace }.

The braces for the main () function of Motto.cpp are on lines 4 and 7, respectively. Everything
between the opening and closing braces is part of the function.

In line 5, the cout command is used to display a message on the screen. The object has the
designation std: : in front of it, which tells the compiler to use the standard C++ input/output
library. The details of how this works are too complex for this early hour and likely will cause
you to throw the book across the room if introduced here. For the safety of others in your vicinity,
they are explained later. For now, treat std: : cout as the name of the object that handles
output in your programs and std: : cin as the object that handles user input.

The reference to std: : cout in line 5 is followed by <<, which is called the output redirection
operator. Operators are characters in lines of code that perform an action in response to some
kind of information. The << operator displays the information that follows it on the line. In
line 5, the text "Solidum petit in profundis!\n" is enclosed within double quotes. This
displays a string of characters on the screen followed by a special character specified by "\n",
a newline character that advances the program’s output to the beginning of the next line.

On line 6, the program returns the integer value 0. This value is received by the operating
system after the program finishes running. Typically, a program returns the value O to indicate
that it ran successfully. Any other number indicates a failure of some kind.

The closing braces on line 7 ends the main () function, which ends the program. All of your
programs use the basic framework demonstrated by this program.

Comments

As you are writing your own programs for the first time, it will seem perfectly clear to you
what each line of the source code does. But as time passes and you come back to the program
to fix a bug or add a new feature, you may find yourself completely mystified by your

own work.

To avoid this predicament and help others understand your program, you can document your
source code with comments. Comments are lines of text that explain what a program is doing.
The compiler ignores them, so they are strictly for benefit of humans reading the code.

There are two types of comments in C++. A single-line comment begins with two slash marks
(//) and causes the compiler to ignore everything that follows the slashes on the same line.
Here’s an example:

// The next line is a kludge (ugh!)

20 HOUR 2: Organizing the Parts of a Program

A multiple-line comment begins with the slash and asterisk characters (/*) and ends with

the same characters reversed (* /). Everything within the opening /* and the closing */ is a
comment, even if it stretches over multiple lines. If a program contains a /* that is not followed
by a */ somewhere, that’s an error likely to be flagged by the compiler. Here’s a multiline
comment:

/* This part of the program doesn't work very well. Please remember to

fix this before the code goes live -- or else find a scapegoat you can
blame for the problem. The new guy Curtis would be a good choice. */

In the preceding comment, the text on the left margin is lined up to make it more readable. This

is not required. Because the compiler ignores everything within the /* and */, anything can be
put there—grocery lists, love poems, secrets you've never told anybody in your life, and so on.

CAUTION

An important thing to remember about multiline comments is that they do not nest inside each
other. If you use one /* to start a comment and then use another /* a few lines later, the first */
mark encountered by the compiler will end all multiline comments. The second */ mark will result in
a compiler error. Most C++ programming editors display comments in a different color to make clear
where they begin and end.

The next project that you create includes both kinds of comments. Write lots of comments in
your programs. The more time spent writing comments that explain what'’s going on in source
code, the easier that code will be to work on weeks, months or even years later.

Functions

The main () function is unusual among C++ functions because it’s called automatically when a
program begins running.

A program is executed line by line in source code, beginning with the start of main (). When a
function is called, the program branches off to execute the function. After the function has done
its work, it returns control to the line where the function was called. Functions may or may not
return a value, with the exception of main (), which always returns an integer.

Functions consist of a header and a body. The header consists of three things:
» The type of data the function returns
» The function’s name

» The parameters received by the function

The function name is a short identifier that describes its purpose.

Functions 21

When a function does not return a value, it uses data type void, which means nothing. To
clarify: void isn’t meaningless. It means “nothing,” like how stars in space are separated by a
ginormous amount of nothing called “the void.”

Arguments are data sent to the function that control what it does. These arguments are received
by the function as parameters. A function can have zero, one, or more parameters. The next
program that you create has a function called add () that adds two numbers together. Here's
how it is declared:

int add(int x, int y)

{

// body of function goes here

The parameters are organized within parentheses marks as a list separated by commas. In this
function, the parameters are integers named x and y.

The name of a function, its parameters and the order of those parameters is called its signature.
Like a person’s signature, the function’s signature uniquely identifies it.

A function with no parameters has an empty set of parentheses, as in this example:

int getServerStatus ()

{

// body of function here

Function names cannot contain spaces, so the getServerStatus () function capitalizes
the first letter of each word after the first one. This naming convention is common among
C++ programmers and adopted throughout this book.

The body of a function consists of an opening brace, zero or more statements, and a closing
brace. A function that returns a value uses a return statement, as you've seen in the Motto
program:

return 0;

The return statement causes a function to exit. If you don’t include at least one return
statement in a function, it automatically returns void at the end of the function’s body. In that
situation, void must be specified as the function’s return type.

Using Arguments with Functions

The Calculator.cpp program in Listing 2.2 fleshes out the aforementioned add () function,
using it to add a pair of numbers together and display the results. This program demonstrates
how to create a function that takes two integer arguments and returns an integer value.

22

HOUR 2: Organizing the Parts of a Program

LISTING 2.2 The Full Text of Calculator.cpp

1
2
3: int
a: |
5:

6

7
8:
9:
10: int
11: |
12:

13:

14:

15:

16:

17:

18:

19:

20:
21: }

#include <iostream>

add (int x, int y)

// add the numbers x and y together and return the sum
std::cout << "Running calculator ...\n";

return (x+y);

main ()

/* this program calls an add() function to add two different
sets of numbers together and display the results. The
add () function doesn't do anything unless it is called by
a line in the main() function. */

std::cout << "What is 867 + 5309?\n";

std::cout << "The sum is " << add(867, 5309) << "\n\n";

std::cout << "What is 777 + 9311?2\n";

std::cout << "The sum is " << add(777, 9311) << "\n";

return 0;

This program produces the following output:

What is
Running

The sum

What is
Running

The sum

867 + 53097
calculator
is 6176

777 + 931172
calculator
is 10088

The Calculator program includes a single-line comment on line 5 and a multi-line comment
on lines 12-15. All comments are ignored by the compiler.

The add () function takes two integer parameters named x and y and adds them together in a

return statement (lines 3-8).

The program’s execution begins in the main () function. The first statement in line 16 uses the

object std: : cout and the redirection operator << to display the text "What is 867 + 5309?"

followed by a newline.

The next line displays the text "The sum is" and calls the add () function with the arguments
777 and 9311. The execution of the program branches off to the add () function, as you can tell

in the output by the text "Running calculator...."

Q&A 23

The integer value returned by the function is displayed along with two more newlines.
The process repeats for a different set of numbers in lines 18-19.

The formula (x+y) is an expression. You learn how to create these mathematical workhorses in
Hour 4, “Using Expressions, Statements, and Operators.”

Summary

During this hour, you were shown how C++ evolved from other styles of computer languages and
embraced a methodology called object-oriented programming. This methodology has been so
successful in the world of computing that the language remains as contemporary today as it did
when it was invented in 1979.

I wish the mullet haircut I sported in college had survived the test of time as well. Instead, it lives
on in Facebook photos that friends share to shock and awe.

In the two programs that you developed during this hour, you made use of three parts of a
C++ program: preprocessor directives, comments, and functions.

All the programs that you will create in C++ employ the same basic framework as the Motto and
Calculator programs. They just become more sophisticated as they make use of more functions,
whether you write them from scratch or call functions from header files included with the
#include directive.

Q&A

Q. What does the # character do in a C++ program?

A. The # symbol signals that the line is a preprocessor directive, a command that is handled
before the program is compiled. The #include directive includes the full text of a file at
that position in the program. The compiler never sees the directive. Instead, it acts as if the
contents of the file were typed in with the rest of the source code.

Q. What is the difference between // comments and /* style comments?

A. The comments that start with // are single-line comments that end with the end of the line
on which they appear. The /* comments are multi-line comments that don’t end until a */
is encountered. The end of a function won’t even cause a multi-line comment to be ended.
You must put in the closing */ mark or the compiler will fail with an error.

Q. What’s the difference between function arguments and function parameters?

A. The terms are two sides of the same process when a function is called. Arguments are the
information sent to the function. Parameters are the same information received by the
function. You call a function with arguments. Within a function, those arguments are
received as parameters.

24

HOUR 2: Organizing the Parts of a Program

Q. What is a kludge?

A. A kludge is an ugly solution to a problem that’s intended to be replaced later with some-

thing better. The term was popularized by Navy technicians, computer programmers, and
aerospace engineers and spread to other technical professions.

In a computer program a kludge is source code that works but would have been designed
better if there had been more time. Kludges have a tendency to stick around a lot longer
than expected.

The astronauts on the Apollo 13 mission created one of the greatest kludges of all time: a
system cobbled together from duct tape and socks that filtered carbon dioxide from the air
on the spacecraft and helped them make it back to Earth.

The first known usage of the term was in a 1962 article in Datamation magazine by
Jackson W. Granholm, who gave it an elegant definition that has stood the test of time:
“An ill-assorted collection of poorly matching parts, forming a distressing whole.”

Workshop

Now that you've learned about some of the pieces of a C++ program, you can answer a couple of
questions and complete a couple of exercises to firm up your knowledge.

Quiz

1. What data type does the main function return?

A. void
B. int

C. It does not return a type.

2. What do the braces do in a C++ program?

A. Indicate the start and end of a function
B. Indicate the start and end of a program

C. Straighten the program'’s teeth

3. What is not part of a function’s signature?

A. Its name
B. Its arguments

C. Its return type

Workshop 25

Answers

1. B. The main function returns an int (integer).

2. A. Braces mark the start and end of functions and other blocks of code you learn about in
upcoming hours.

3. C. A function signature consists of its name, parameters, and the precise order of those
parameters. It does not include its return type.

Activities
1. Rewrite the Motto program to display the Aarhus University motto in a function.
2. Rewrite the Calculator program to add a third integer called z in the add () function and

call this function with two sets of three numbers.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org

This page intentionally left blank

Symbols

+ (addition) operator
explained, 46
overloading, 219-220
& (address-of) operator, 169-171
&& (AND) operator, 56-57
= (assignment) operator

compared to copy
constructor, 228

explained, 33, 45-46
overloading, 221-223
* (asterisk) with pointers, 169
\ (backslash), 137
{ } (braces), 19, 62, 403-404
<> brackets, 18
, (comma), 335
// comment notation, 19, 23
/* %/ comment notation, 20, 23
—— (decrement) operator, 47
/ (division) operator, 46
. (dot) operator, 103, 112, 157
“ (double quotes), 137
== (equality) operator
explained, 52
overloading, 224

Index

! (exclamation point)
! (NOT) operator, 57
!= (inequality) operator, 52
numeric value, 31

> (greater than) operator, 52

>= (greater than or equals)
operator, 52

(hash) symbol, 23
++ (increment) operator
explained, 47
overloading
postfix operator, 217-218
prefix operator, 215-216
* (indirection) operator,
140-141, 169
< (less than) operator, 52

<= (less than or equals)
operator, 52

% (modulus) operator, 46

* (multiplication) operator, 46, 169

|| (OR) operator, 57

r,19

& (reference) operator, 169

+= (self-assigned addition)
operator, 46-47

%= (self-assigned modulus)
operator, 46-47

440

*= (self-assigned multiplication)
operator, 46-47

—= (self-assigned subtraction)
operator, 46-47

‘ (single quotes)
digit separator, 335
displaying, 137
— (subtraction operator), 46
:: (scope resolution operator), 114
; (semicolon)
common mistakes, 86
in compound statements, 44
with variables, 32
~ (tilde), 117, 203
_ (underscore), 32
13, superstitions related to, 107
80/20 rule, 358
80/80 rule, 358

A

Aarhus University, 8

abort() function, 399

abstract data types (ADT)
advantages of, 284

complex hierarchies of,
279-283

explained, 271-275, 346
when to use, 283-284
access guidelines, 407
accessing
classes
class members, 112-113
contained classes, 311

data members, 157-158

*= (self-assigned multiplication) operator

accessors, 113, 123
add() function, 21-23
addition operator (+)

explained, 46

overloading, 219-220
Addresser program, 136-137
addresses

examining in pointers, 143-144

storing in pointers, 138-140
address-of operator (&), 169-171
ADTs. See abstract data

types (ADT)

advantages of C++, 13-14
airplane black boxes, 92
Alabama Crimson Tide, 409
allocating

linked lists, 294

memory, 146-147
analysis and requirements, 345
angle brackets (<>), 18
Animal program, 280-283

anonymous functions (inline),
338-339

APIs (application programming
interfaces), 359-360
apostrophe (‘)
digit separator, 335
displaying, 137
application programming
interfaces (APls), 359-360
architecture prototypes, 358
Area program, 63
AreaCube program, 71
arguments
compared to parameters, 23
explained, 21-23

passing by reference,
172-174

passing to base constructors,
239-244

ArrayFunction program, 316-318
ArrayMaxer program, 337
arrays
arrays of pointers
to functions, 316-318

to member functions,
325-327

buffer overflow, 107
character arrays, 102-104

constant expressions,
335-338

declaring, 95

elements of, 95

explained, 95-97

initializing, 98

memory, 101-102

multidimensional arrays
explained, 99-100
initializing, 100-101

reading with foreach loops,

105-106
sizeof() function, 337-338

uninitialized array
elements, 107

writing past end of, 97-98
Assignment class, 222-223
assignment operator (=)

compared to copy
constructor, 228

explained, 33, 45-46
overloading, 221-223
Assignment program, 170-171

asterisk (*), 169
auto keyword
explained, 38, 62

in function return types,
332-334

risks, 339
AutoArea program, 333
AutoCube program, 74-75
auto-typed return values, 73-75
auto-typed variables, 38-40
Autry, Gene, 265

avoiding memory leaks, 149

backslash, displaying, 137
Badger program, 84
BadTeacher program, 90-91
base classes
initializing, 239-244
member functions
calling, 247-249

constructors, passing
arguments to, 239-244

hiding, 246-247
base constructors, passing
arguments to, 239-244

BASIC, 13-14

Bauman, Charlie, 328
Beaudouin, Paul, 92

Bell Labs, 5-6

binary integers, 334-335
binary literals, 335
binding, late, 255

black boxes (airplane), 92

bool type, 28, 31

Boole, George, 28

Boolean variables, 28

Box program, 100-101

BoxMaker program, 87-88

braces ({ }), 19, 62, 403-404

break statement, 81-82

breaking out of loops, 81-82

BridgeKeeper program,
103-104

buffer overflow, 107

buffers, 102

bug-free code. See
professional-quality code,
writing

bugs. See errors

bulletproof programs, 392

C

.c file extension, 7

C language, 5-6

The C++ Programming Language
(Stroustrop), 331

C++ standardization website, 340
C++0x, 331

C++1z, 340

C++14, 331, 332, 333

Calculator program, 21-23

calling base class member
functions, 247-249

CamelCase, 33, 406

Canary Islands, Silbo language in,
284-285

capitalization of names, 406

classes 441

case sensitivity, 32, 112
casting
dynamic casting, 284
explicit casts, 257
catch blocks, 393-397
catching exceptions
advantages of, 408
definition of, 393
explained, 397-398
multiple catches, 398
polymorphism, 398-403
by reference, 398-403
try/catch blocks, 393-397
char type, 28, 31, 102
character arrays, 102-104
Circle program, 209
classes. See also objects;
polymorphism
accessing members of,
112-113
Assignment, 222-223
base classes

base class member
functions, 246-249

constructors, 239-244
initializing, 239-244
class definitions
organizing, 124
writing, 407
contained classes
accessing members of, 311

copying by value versus
copying by reference, 312

defining, 305-311
filtering access to, 312
declaring, 111

442

classes

definition of, 7, 16
design
overview, 346-348

PostMaster case study,
353-354

encapsulation, 110
explained, 110-111
friend classes
disadvantages of, 327
explained, 312-313
HeadNode, 290-297
inheritance

base class initialization,
239-244

calling base class member
functions, 247-249

constructors, 236-239
derivation, 232
destructors, 236-239
explained, 16, 231

hiding base class member
functions, 246-247

overriding functions,
244-246

protected classes,
234-236

syntax, 233-234
InternalNode, 290-297

member functions. See
functions

member variables, 110
Number, 213

object initialization, 203-204
pAddress, 368-369

pObject, 357

Point, 127-128
PostMasterMessage, 358-359

private classes, 112-113,
234

protected classes, 234-236

public class members,
112-113, 121

Rectangle, 127-128
String, 306-309
TailNode, 290-297

Tricycle, 111, 125-126,
205-207

clauses, else, 53-54

clone() function, 260-263
clown colleges, 196

COBOL, 13-14

code listings. See programs
code space, 145

colon (), 114

Combat program, 39
combining operators, 46-47
comma (,), 335

comments, 19-20, 23, 406-407
Compass program, 37-38

compilers

constructors provided by com-

piler, 118-120
explained, 5-6
GCC, 7
history of, 13-14
type inference, 332-334
warning messages from, 9

compile-time constant expres-
sions, 208-210

compiling
definition of, 14
explained, 5-7

components of linked lists,
289-297

compound statements
compound if, 54-56
explained, 44

conceptualization, 344

const keyword, 123, 132, 208,
247, 408

const member functions

classes with other classes as
member data, 127-132

declaring, 123
explained, 123, 124

inline implementation,
124-127

interface versus
implementation, 124

const objects, 165
const pointers
explained, 162-164
passing, 186-188
constant expressions, 335-338
Constantinople, 249
constants

compile-time constant
expressions, 208-210

defining, 36-37
enumerated constants, 37-38
explained, 36

literal constants, 36

null pointer constant,
150-151

symbolic constants, 36, 41
constexpr keyword, 209, 335-338
ConstPasser program, 186-188
ConstPointer program, 163-164
constructors

base constructors, passing
arguments to, 239-244

constructors provided by
compiler, 118-120

copy constructors, 228
declaring, 116-117, 210-211
default constructors, 112-117
definition of, 117
explained, 204-208
inheritance, 236-239
overloading, 203

contained classes
accessing members of, 311

copying by value versus
copying by reference, 312

defining, 305-311

filtering access to, 312
continue statement, 82-83
continuing to next loop, 82-83
conversion operators, 224-226
convert() function, 62, 65
copy constructors

explained, 183, 204-208, 228

virtual copy constructors,

260-263

copying

deep copying, 204-208

shallow copying, 204

strings, 104-105
Coulier, Dave, 228
Counter program, 214
Counter2 program, 215-216
Counter3 program, 217-218
Counter4 program, 219-220
Counter5 program, 224
Counter6 program, 225
Counter7 program, 226-227
.cp file extension, 7

.cpp file extension, 7

Crimson Tide, 409

crossword puzzles, invention
of, 340

.cxx file extension, 7

dangling pointers, 161-162
data members

accessing with pointers,
157-158

definition of, 111
data types. See types
DataMember program, 158-159

decimal values, assigning to
integers, 41

declaring. See also defining

anonymous functions (inline),
338-339

arrays, 95
classes, 111

constructors, 116-117,
210-211

destructors, 117
functions

const member
functions, 123

example, 61-64
pointers

to functions, 313-316

to variables, 138

pure virtual functions,
275-276

references, 167-168

virtual function members,
252-253

design 443

decrement operator (—-), 47
deep copying, 204-208
DeepCopy program, 205-207
default constructors, 112-117

default function parameters,
70-72

default values

advantages/
disadvantages, 210

member functions, 201-203
#define directive, 36
defining. See also declaring
constants, 36-37
contained classes, 305-311
functions, 61-64
objects, 111-112, 116-117
static member variables, 303
templates, 374-381
types, 110
variables, 32-33
delegation of responsibility, 289
delete keyword, 147-149

deleting objects, 116-117,
155-157

derivation, inheritance and, 232
design
analysis and requirements, 345
classes, 346-348
conceptualization, 344
development cycle, 343
event loops, 348-350
high-level design, 345-346
low-level design, 345-346
PostMaster case study
80/20 rule, 358
80/80 rule, 358

444 design

API (application

programming interface),

359-360

driver programs, 362-369

initial class design,
353-354

interfaces, 356-357

message format, 352-353

ongoing design consider-

ations, 361-362
overview, 350-351

PostMasterMessage class,

358-359
programming in large

groups, 360
prototype, 357-358

rooted versus non-rooted

hierarchies, 354-355
subprojects, 351-352

simulation, 344

third-party libraries, 356
destructors

explained, 117

inheritance, 236-239

overloading, 203

virtual destructors, 260
development cycle, 343
development of C++, 5-6, 331
Diogenes, 299
directives

#define, 36

#include, 104, 309

overview, 17-18
displaying

backslash, 137

quotation marks, 137

division operator (/), 46

dot operator (.), 112, 157
double quotes (“), 137
double type, 31

doubly linked lists, 287-288
do-while loops, 83-84
draw() function, 276, 279
drawShape() function, 201
Driver program, 362-368
driver programs, 362-369
Dusky Seaside Sparrow, 181
dynamic casting, 284

easy-to-read code, writing, 405
Edit() function, 369

editors. See text editors
elements of arrays, 95, 107

elephant mascot (Alabama
Crimson Tide), 409

else clause, 53-54

Emerson, Ralph Waldo, 403

Employee program, 309-311

encapsulation
definition of, 110
explained, 16

enum keyword, 37

enumerated constants, 37-38

enumerations, 37

equality operator (==
explained, 52
overloading, 223

errors. See also exceptions
buffer overflow, 107

fence post errors, 97

overview, 391-392
professional-quality code,
writing
access, 407
braces ({ }), 403-404
class definitions, 407
comments, 406-407
const, 408
identifier names, 405-406
include files, 408
long lines, 404
overview, 403
program text, 405

spelling and capitalization
of names, 406

switch statements,
404-405

event loops, 348-350

examining addresses stored in
pointers, 143-144

Exception program, 394-397
exceptions
catching
advantages of, 408
definition of, 393
explained, 397-398
multiple catches, 398
polymorphism, 398-403
by reference, 398-403
try/catch blocks, 393-397
definition of, 392-393
explained, 393
throwing, 393
try/catch blocks, 393-397
exclamation point (1), 31
explicit casts, 257

Expression program, 45

expressions

compile-time constant
expressions, 208-210

constant expressions,
335-338

explained, 44-45
expression values, 58

lambda expressions, 338-339

F

factor() function, 179, 180

Favre, Henri, 370

Fell, Norman, 41

fence post errors, 97

Fifteens program, 82-83

files. See also programs
header files, 124
include files, 18, 408
names, 7

filtering access to contained
members, 312

findArea() function, 63,
71-72,333

float type, 29, 31

floating-point types, 29, 31

flow control with loops
breaking out of loops, 81-82
continuing to next loop, 82-83
definition of, 79
do-while loops, 83-84
for loops, 84-87
nested loops, 87-88
switch statements, 89-91
while loops, 79-81

Fourteens program, 81

fragility in code, 392

friend classes
disadvantages of, 327
explained, 312-313

friend functions, pointers to

arrays of pointers to functions,
316-318

arrays of pointers to member
functions, 325-327

declaring, 313-316

passing to other functions,
319-321

pointers to member functions,
322-324

typedef, 321-322
func() function, 313
funcPtr, 313
function polymorphism, 17, 72
functionality prototypes, 358

FunctionPasser program,
319-321

FunctionPointer program,
314-316

functions. See also specific
functions (for example, add()
function)

accessors, 113, 123
arguments
explained, 21-23

passing by reference,
172-174

auto-typed return values,
73-75

base class member functions
calling, 247-249
hiding, 246-247
compile-time constant
expressions, 208-210

functions 445

const member functions

classes with other classes
as member data,
127-132

declaring, 123

explained, 123

function definitions,
organizing, 124

inline implementation,
124-127

interface versus
implementation, 124

constructors

base constructors, passing
arguments to, 239-244

definition of, 117
inheritance, 236-239

virtual copy constructors,
260-263

copy constructors,
204-208, 228

declaring, 61-64
default values, 201-203
defining, 61-64
definition of, 7, 18, 61, 111
destructors
explained, 117
inheritance, 236-239
virtual destructors, 260
explained, 20-23
friends. See friend functions,
pointers to

function definitions,
organizing, 124

function polymorphism, 17

headers, 177

implementing, 114-116

increment methods, 215-216

446

functions

inline anonymous functions,
338-339

inline functions, 73
names, 20
overloading

compared to overriding
functions, 246

explained, 72, 199-201
overriding

compared to function over-
loading, 246

syntax, 244-246
parameters

default parameters, 70-72

explained, 21, 67-68
passing values to, 319-321
pointers to

arrays of pointers to
functions, 316-318

arrays of pointers to
member functions,
325-327

declaring, 313-316
passing, 319-321

pointers to member
functions, 322-324

typedef, 321-322
prototypes, 177
return values

auto keyword,
332-334, 339

multiple values, 177-179

returning by reference,
179-180

returning values from, 68-70

signatures, 21

static member functions
advantages of, 327
explained, 303-305
variables
explained, 64
global variables, 66-67
local variables, 64-66
virtual function members
cost of, 263-264
declaring, 252-253
how they work, 256-257
polymorphism, 252-255
pure virtual functions,
275-279

v-tables (virtual function
tables), 256-257

when to use, 264

Garden Gnome Liberation
Front, 121

gathering requirements, 345
GCC compiler, 7

GetAge() function, 188

getArea() function, 131, 274
getArraySize() function, 336
getHowMany() function, 305
getline() function, 103
getPerim() function, 274
getSalaryMultiple() function, 332

getSpeed() function, 115-116,
123,125

getter functions, 123

getUpperLeft() function, 131

global name space, 145

Global program, 66

global variables, 66-67

gnomes, lawn, 121

“gnoming”, 121

gold, panning for, 388

goldmaps.com, 388

Grader program, 53

Granholm, Jackson W., 24

grapes, flavor of, 10

grasshopper ice cream, 133

greater than operator (>), 52

greater than or equals operator
(>=),52

Griebel, Phillip, 121

.h file extension, 124
hash (#) symbol, 23
Hayes, Woody, 327-328
head (linked lists), 287
headers

function headers, 177

header files, 124
HeadNode class, 290-297
heap

advantages of, 152

allocating memory on,
146-147

creating objects on, 155
deleting objects on, 155-157
explained, 145-146

member data on heap,
158-160

referencing objects on,
192-194

restoring memory to, 147-149
Heap program, 148
HeapAccessor program, 157-158
HeapCreator program, 156

hiding base class member
functions, 246-247

high-level design, 345-346
history of C++, 5-6, 331
horseradish, 211
.hp file extension, 124
.hpp file extension, 124
Hussenot, Francois, 92
hyphen (-)

decrement operator (—), 47

subtraction operator (-), 46

IDE (integrated development
environment), 9

identifier names, 405-406
if-else
expression values, 58
logical operators
explained, 56-57
logical AND, 56-57
logical NOT, 57
logical OR, 57
relational precedence, 57

if-else statements

interface design prototypes

compound if statements,
54-56

else clause, 53-54
explained, 52-53
when to use, 92
implementing. See also initializing
member functions
explained, 114-116

inline implementation,
124-127

interface versus
implementation, 124

pure virtual functions,
276-279

#include directive, 104, 309
include files, 18, 408

increment methods, writing,
215-216

increment operator (++), 47
indirection operator (*), 140-141
inequality operator (!=), 52
inferring data type, 332-334
infinite loops, 80, 295
inheritance. See also

polymorphism

base classes

base class initialization,
239-244

calling base class member
functions, 247-249

hiding base class member
functions, 246-247

constructors, 236-239
derivation, 232

design, 354-355
destructors, 236-239

explained, 16, 231
overriding functions

compared to function
overloading, 246

syntax, 244-246
protected classes, 234-236

single inheritance, problems
with, 267-271

syntax, 233-234

when to use, 388
initializing

arrays, 98

base classes, 239-244

multidimensional arrays,
100-101

objects, 203-204
variables, 33-34

inline anonymous functions,
338-339

inline functions, 73

inline implementation of const
member functions, 124-127

inline keyword, 73, 124

insert() function, 295-296,
381, 387

instance variables, 111
instances of templates, 374
int() operator, 226-227
integers

binary, 334-335

explained, 28, 41

signed versus unsigned, 30

table of, 31

integrated development
environment (IDE), 9

interface design prototypes, 357

447

448 interfaces

interfaces
versus implementation, 124

PostMaster case study,
356-357

InternalNode class, 290-297

International Code of Zoological
Nomenclature, 59

International Union of Pure and
Applied Chemistry (IUPAC), 370

interpreters, 13-14
isLeapYear() function, 69-70
isothiocyanate, 211
Istanbul, Turkey, 249
iterations, 79

IUPAC (International Union of Pure
and Applied Chemistry), 370

J-K

Jagged Little Pill, 228

keywords. See also statements
auto, 38, 62, 332-334, 339
catch, 393-397

const, 123, 132, 208,
247, 408

constexpr, 209, 335-338
delete, 147-149
enum, 37

inline, 73, 124
new, 146-147
private, 113
protected, 234
public, 112-113
template, 374
try, 393-397
virtual, 252

kludge, 24
Klugman, Jack, 41

L

lambda expressions, 338-339

large groups, programming
in, 360

late binding, 255

lawn gnomes, 121

Leak program, 193

leaks (memory), 149,
192-194, 195

LeapYear program, 68-69
less than operator (<), 52

less than or equals (<=)
operator, 52

libraries, 7, 356

linked lists
advantages of, 299
allocating, 294
component parts, 289-297
cost of, 298
definition of, 287
delegation of

responsibility, 289

doubly linked lists, 287-288
explained, 287-288
head, 287
infinite loops, 295
LinkedList program, 290-294
nodes, 287
as objects, 298-299
singly linked lists, 287-288
tail, 287

trees, 287-288
weaknesses of, 374
LinkedList program, 290-294
linker, 5-6
linking source code, 5-7
listings. See programs
lists
linked lists
advantages of, 299
allocating, 294

component parts,
289-297

cost of, 298
definition of, 287

delegation of
responsibility, 289

doubly linked lists,
287-288

explained, 287-288
head, 287
infinite loops, 295

LinkedList program,
290-294

nodes, 287

as objects, 298-299
singly linked lists, 287-288
tail, 287

trees, 287-288
weaknesses of, 374

parameterized List objects,
374-381

template lists, 381-387
literal constants

binary literals, 335

numeric literals, 334-335

overview, 36

local variables, 64-66, 75

memory 449

Log() function, 350 main() function, 18-19 declaring, 313-316
logic errors, 391 Mammall program, 233-234 passing, 319-321
logical operators Mammal2 program, 235-236 pointers to member
explained, 56-57 Mammal3 program, 237-238 functions, 322-324
logical AND, 56-57 Mammal4 program, 239-242 typedef, 321-322
logical NOT, 57 Mammal5 program, 244-245 global name space, 145
logical OR, 57 Mammal6 program, 246-247 heap
long integers, 28, 41 Mammal7 program, 248 advantages of, 152
long lines of code, 404 Mammal8 program, 252-253 allocating memory on,
long long int type, 30, 31 Mammal9 program, 253-255 146-147
long type, 31 Mammal10 program, 257-259 creating objects on, 155
for loops Mammal11 program, 260-263 deleting objects on,
) 155-157
explained, 84-87, 92 Mammal12 program, 267-268
explained, 145-146
foreach, 105-106 Mammal13 program, 269-271
member data on heap,
loops Marks, Johnny, 265
158-160
breaking out of, 81-82 mathematical operators, 46 .
o restoring memory to,
continuing to next loop, 82-83 May, Robert, 264-265 147-149
definition of, 79 member data on heap, 158-160 memory leaks, 149,
do-while, 83-84 member functions. See functions 192-194, 195
event loops, 348-350 member variables pointers
for accessing members of con- accessing data members
explained, 84-87 tained classes, 311 with, 157-158
foreach, 105-106 definition of, 110 advantages of, 144-145
infinite loops, 80, 295 static member variables, const pointers, 162-164,
for loops, 92 301-303 186-188
nested loops, 87-88 MemberPointer program, 322-324 dangling pointers, 161-162
switch statements, 89-91 member-wise (shallow) declaring, 138
while loops, 79-81, 92 copies, 204 distinction between point-
memor
low-level design, 345-346 y) ers and addresses, 141
Ivalues. 45 allocating on heap, 146-147 examining addresses
arrays, 101-102 stored in, 143-144
code space, 145 explained, 135-138
function pointers importance of, 151
M arrays of pointers, indirection operator (*),
316-318 140-141
machine code, 6 arrays of pointers to mem- null pointer constant,

machine languages, 13 ber functions, 325-327 150-151

450 memory

null pointers, 138

references as alternative
to, 189-190

storing addresses in,
138-140

stray pointers, 161-162
this pointer, 160-161
when to use, 191
wild pointers, 138
restoring to heap, 147-149
stack, 145-146
storing variables in, 28-30

message format (PostMaster case
study), 352-353

messages, compiler warnings, 9
mistakes. See errors
Modern C++, 339
modulus operator (%), 46
Morissette, Alanis, 228
Motto program
comments, 19-20
function arguments, 21-23
functions, 20-21
include files, 18
overview, 7-8

preprocessor directives,
17-18

source code, 18-19
MPFunction program, 325-326
multidimensional arrays

explained, 99-100

initializing, 100-101
multiline comments, 20, 23
multiple exception catches, 398

multiple values, returning,
177-179

multiplication operator (*), 46

MultTable program, 85-86

\n character, 137

names
function names, 20, 62
identifier names, 405-406
source code files, 7, 124
spelling and capitalization, 406
variable names, 32-33

National Debt Clock, 335

negative numbers, 59

nested loops, 87-88

new features (C++14)

auto keyword in function
return types, 332-334

constexpr keyword, 335-338
lambda expressions, 338-339
numeric literals, 334-335
overview, 331

new keyword, 146-147

NewGrader program, 54-55

NewRectangle program, 35

NewTricycle program, 118-120

nodes (linked lists), 287

not equal operator (!=), 52

NOT operator (logical), 57

Notepad++, 6

null character, 102

null pointers, 138, 172

null references, 172

nullptr, 138, 172

Number class, 213

numbers. See also mathematical
operators

negative numbers, 59
Number class, 213
numeric literals, 334-335

thirteen, superstitions related
to, 107

numeric literals, 334-335

o

object code, 14
object-oriented programming.
See OOP (object-oriented

programming)

The Object-Oriented Thought
Process, Fourth Edition
(Weisfeld), 347

ObjectRef program, 184-185
objects. See also classes
const objects, 165
creating
constructors, 116-117
on heap, 155
defining, 111-112
deleting
destructors, 116-117
on heap, 155-157
initializing, 203-204
linked lists as, 298-299
references. See also pointers

address-of operator (&),
169-171

advantages of, 181

as alternative to pointers,
189-190

creating, 167-168
definition of, 167
null references, 172

objects not in scope,
191-192

objects on heap, 192-194

passing by reference,
172-174, 183-186

returning values by,
179-180

swap() function, 175-177

what can be referenced,

171-172
when to use, 191
size of, 121
template objects, passing,
381-387
Tricycle, 112

Ohio College of Clowning Arts, 196
OOP (object-oriented
programming). See also objects;
polymorphism
advantages of, 369-370
classes

accessing members of,
112-113

class polymorphism, 17

constructors, 112-117,
118-120

constructors provided by
compiler, 118-120

contained classes,
305-311

declaring, 111

default constructors,
112-117

definition of, 7, 16

explained, 110-111

inheritance, 16

member functions,
114-116

private classes, 112-113,
234

protected classes,
234-236

public class members,
112-113

design. See also PostMaster

case study

analysis and
requirements, 345

classes, 346-348
conceptualization, 344
development cycle, 343
event loops, 348-350
high-level design, 345-346
low-level design, 345-346
simulation, 344

third-party libraries, 356

encapsulation

definition of, 110
explained, 16

explained, 15-16

inheritance

base class initialization,
239-244

calling base class member
functions, 247-249

constructors, 236-239

derivation, 232

destructors, 236-239

explained, 16, 231

hiding base class member
functions, 246-247

operators

overriding functions,
244-246

protected classes,
234-236

syntax, 233-234
objects. See also classes
creating, 116-117
defining, 111-112
deleting, 116-117
operands, 45
AND operator (logical), 56-57
OR operator (logical), 57
operator=, 221-223
operators

addition operator (+),
219-220

address-of operator (&),
169-171

assignment operator (=)

compared to copy
constructor, 228

explained, 33, 45-46
overloading, 221-223
combining, 46-47

conversion operators,
224-226

decrement operator (——), 47
definition of, 45

dot operator (.), 112, 157
equality operator (==), 224
increment operator (++), 47

indirection operator (*),
140-141

int() operator, 226-227

logical operators
logical AND, 56-57
logical NOT, 57

451

452 operators

logical OR, 57
overview, 56-57
mathematical operators, 46

output redirection operator
(<<), 19

overloading

addition operator (+),
219-220

advantages of, 228

conversion operators,
224-226

equality operator (==), 223
explained, 213-214

with increment method,
215-216

int() operator, 226-227
limitations, 220-221
operator=221-223

postfix operator (++),
217-218

prefix operator (++),
215-216

postfix operator (++)
explained, 47-49, 228
overloading, 217-218

precedence, 49-51, 57, 59

prefix operator (++), 47-49,
215-216

reference operator (&), 169
relational operators, 51-52
scope resolution
operator (::), 114
self-assignment operators,
46-47
order of precedence, 49-51
organizing
class definitions, 124

function definitions, 124

output redirection
operator (<<), 19

Overbey, Charles, 388

overloading
constructors, 203
destructors, 203
functions

compared to overriding
functions, 246

overview, 72
member functions, 199-201
operators

addition operator (+),
219-220

advantages of, 228

conversion operators,
224-226

equality operator (==), 223
explained, 213-214

with increment method,
215-216

int() operator, 226-227
limitations, 220-221
operator=, 221-223

postfix operator (++),
217-218

prefix operator (++),
215-216

overriding functions

compared to function
overloading, 246

syntax, 244-246

P

pAddress class, 368-369
panning for gold, 388

parameterized List object,
374-381

parameters
compared to arguments, 23
default parameters, 70-72
explained, 21, 67-68
ParamlList program, 375-380
passing values

to base constructors,
239-244

const pointers, 186-188
contained classes, 312

function pointers to other
functions, 319-321

by reference, 172-174,
183-186

template objects, 381-387
by value, 186

pedal() function, 208

pencil grades, 76

period (.), 103, 112, 157

pi, 209-210

pID type, 357

pObject class, 357

Point class, 127-128

Pointer program, 142

PointerCheck program, 143-144

pointers. See also heap;
references

accessing data members with,
157-158

advantages of, 144-145,
181, 195

const pointers, 162-164,
186-188

dangling pointers, 161-162
declaring, 138

distinction between pointers
and addresses, 141

examining addresses stored
in, 143-144

explained, 135-138
to functions

arrays of pointers to
functions, 316-318

arrays of pointers to
member functions,
325-327

declaring, 313-316
passing, 319-321

pointers to member
functions, 322-324

typedef, 321-322
importance of, 151

indirection operator (*),
140-141

manipulating data with,
141-143

memory leaks, 195

null pointers, 138,
150-151, 172

references as alternative to,
189-190

storing addresses in,
138-140

stray pointers, 161-162

swap() function, 174-175

this pointer, 160-161

v-pointers, 256-257

when to use, 191

wild pointers, 138
PointerSwap program, 174-175
PolyException program, 399-402

polymorphism. See also
inheritance

professional-quality code, writing

abstract data types
advantages of, 284

complex hierarchies of
abstraction, 279-283

explained, 271-275
when to use, 283-284

exceptions, catching,
398-403

explained, 16-17, 251
explicit casts, 257

single inheritance, problems
with, 267-271

virtual copy constructors,
260-263

virtual destructors, 260
virtual function members
cost of, 263-264
declaring, 252-253
how they work, 256-257
implementing, 252-255

pure virtual functions,
275-279

slicing, 257-260

v-tables (virtual function
tables), 256-257

when to use, 264
polymorphism (function), 72
postfix operator (++)

explained, 47-49, 228

overloading, 217-218
PostMaster case study

80/20 rule, 358

80/80 rule, 358

API (application programming

interface), 359-360
driver programs, 362-369
initial class design, 353-354

interfaces, 356-357
message format, 352-353
ongoing design
considerations, 361-362
overview, 350-351

PostMasterMessage class,
358-359

programming in large groups,
360
prototype, 357-358

rooted versus non-rooted
hierarchies, 354-355

subprojects, 351-352

PostMasterMessage class,
358-359

PostMasterMessage program,
359-360

potassium octanoate, 370
pound sign (#), 23

precedence (operator), 49-51,
57,59

prefix operator (++)
explained, 47-49
overloading, 215-216
preprocessor directives
#define, 36
#include, 104, 309
overview, 17-18
printError() function, 402
private classes, 112-113, 234
private keyword, 113
procedural programming, 14-15
Production program, 106
professional-quality code, writing
access, 407
braces ({ }), 403-404

class definitions, 407

453

454 professional-quality code, writing

comments, 406-407
const, 408

identifier names, 405-406
include files, 408

long lines, 404

overview, 403

program text, 405

spelling and capitalization of
names, 406

switch statements, 404-405
program text, writing, 405
programming in large groups, 360
programming styles, 14-15
programs

Addresser, 136-137

Animal, 280-283

Area, 63

AreaCube, 71

ArrayFunction, 316-318

ArrayMaxer, 337

Assignment, 170-171

AutoArea, 333

AutoCube, 74-75

BadTeacher, 90-91

Box, 100-101

BridgeKeeper, 103-104

bulletproof programs, 392

Calculator, 21-23

Circle, 209

Combat, 39

Compass, 37-38

ConstPasser, 186-188

ConstPointer, 163-164

Counter, 214

Counter2, 215-216

Counter3, 217-218
Counter4, 219-220
Counterb, 224
Counter6, 225
Counter7, 226-227
creating, 7-8
DataMember, 158-159
DeepCopy, 205-207
Driver, 362-368
Employee, 309-311
Exception, 394-397
Expression, 45
Fifteens, 82-83
Fourteens, 81
FunctionPasser, 319-321
FunctionPointer, 314-316
Global, 66

Grader, 53

Heap, 148
HeapAccessor, 157-158
HeapCreator, 156
Leak, 193

LinkedList, 290-294
Mammall, 233-234
Mammal2, 235-236
Mammal3, 237-238
Mammal4, 239-242
Mammal5, 244-245
Mammal6, 246-247
Mammal7, 248
Mammal8, 252-253
Mammal9, 253-255
Mammal10, 257-259
Mammalll, 260-263
Mammall2, 267-268

Mammall3, 269-271
MemberPointer, 322-324
Motto
comments, 19-20
function arguments, 21-23
functions, 20-21
include files, 18
overview, 7-8
preprocessor directives,
17-18
source code, 18-19
MPFunction, 325-326
MultTable, 85-86
NewGrader, 54-55
NewRectangle, 35
NewTricycle, 118-120
ObjectRef, 184-185
ParamList, 375-380
Pointer, 142
PointerCheck, 143-144
PointerSwap, 174-175
PolyException, 399-402

PostMasterMessage,
359-360

Production, 106

Rectangle, 33-34, 128-131,
199-200

Rectangle2, 201-202
Reference, 168
Reference2, 169
ReferenceSwap, 176
RefPasser, 189-190
ReturnPointer, 178
ReturnRef, 191-192
ReturnReference, 179-180

Shape, 272-274
Shape2, 276-279
SimpleEvent, 348-350
Sizer, 29-30
StaticFunction, 304-305
StaticRobot, 302-303
StringCopier, 105
structure of
comments, 19-20
function arguments, 21-23
functions, 20-21
overview, 17

preprocessor directives,
17-18

source code, 18-19
Swapper, 150-151
Temperature, 64-65
TemplateList, 381-387
Thirteens, 80
This, 160-161
Tricycle, 114-116
ValuePasser, 173
Years, 47-49
protected classes, 234-236
protected keyword, 234
prototypes

function prototypes, 177

PostMaster case study,
357-358

public class members,
112-113, 121

public keyword, 112-113

pure virtual functions
declaring, 275-276
implementing, 276-279

QR

quotation marks
“ (double quotes), 137
‘ (single quotes)
digit separator, 335
displaying, 137
readability of code, 405

reading arrays with foreach loops,
105-106

Rectangle class, 127-128

Rectangle program, 33-34,
128-131, 199-200

Rectangle2 program, 201-202
red-eye effect (photographs), 165
reference operator (&), 169
Reference program, 168
Reference2 program, 169
references. See also pointers

address-of operator (&),
169-171

advantages of, 181

as alternative to pointers,
189-190

catching exceptions by,
398-403

creating, 167-168

definition of, 167

null references, 172

objects not in scope, 191-192

objects on heap, 192-194

passing by reference
contained classes, 312
explained, 183-186

function arguments,
172-174

r-values 455

returning values by, 179-180
swap() function, 175-177

what can be referenced,
171-172

when to use, 191
ReferenceSwap program, 176
RefPasser program, 189-190
registering your book, 3
relational operators, 51-52
relational precedence, 57
requirement gathering, 345
responsibility, delegation of, 289

restoring memory to heap,
147-149

return statement, 62
return values
auto keyword, 332-334, 339

auto-typed return values,
73-75

multiple values, 177-179
obtaining, 68-70

returning by reference,
179-180

returning by value, 195
ReturnPointer program, 178
ReturnRef program, 191-192

ReturnReference program,
179-180

reuse through inheritance, 16

rooted versus non-rooted
hierarchies, 354-355

“Rudolph the Red-Nosed
Reindeer”, 264-265

runtime binding, 255

r-values, 45

456

S

Sams Teach Yourself UML in
24 Hours, Third Edition
(Schmuller), 345

Schlichter, Art, 328
Schuster, Lincoln, 340
scope

explained, 37

objects not in scope,
191-192

scope resolution operator (::), 114
self-assignment operators, 46-47
semicolon (;)

common mistakes, 86

in compound statements, 44

with variables, 32
SetAge() function, 188
setFirstName() function, 311
setLastName() function, 311
setSalary() function, 311

setSpeed() function,
115-116, 123

shallow copies, 204

Shape program, 272-274
Shape2 program, 276-279
short integers, 28, 31, 41
signatures (function), 21
signed variables, 30
silbadors, 284-285

Silbo, 284-285

Simon, Dick, 340
SimpleEvent program, 348-350
simulation, 344

single inheritance, problems with,
267-271

single quotes (‘)
digit separator, 335
displaying, 137
singly linked lists, 287-288
size of objects, 121

sizeof() function, 29-30,
337-338

Sizer program, 29-30

slicing virtual function members,
257-260

solution space, 345
source code. See also programs
compiling, 5-7
definition of, 6, 13
filenames, 7
header files, 124
linking, 5-7
space, 345
spelling of names, 406
stack, 145-146
statements. See also loops
break, 81-82
compound statements, 44
continue, 82-83
definition of, 43
expressions, 44-45
if-else
compound if statements,
54-56
else clause, 53-54
explained, 52-53
expression values, 58
logical operators, 56-57
relational precedence, 57
when to use, 92

return, 62

Sams Teach Yourself UML in 24 Hours, Third Edition (Schmuller)

switch, 89-91, 92, 404-405
whitespace, 43-44, 59

static member functions,
303-305, 327

static member variables,
301-303, 327

StaticFunction program, 304-305

StaticRobot program, 302-303

——std=c++14 command-line
option, 333

store() function, 72

storing

addresses in pointers,
138-140

variables in memory, 28-30
stray pointers, 161-162
strcpy() function, 105
strcpy_s() function, 105
String class, 306-309
StringCopier program, 105
strings

copying, 104-105

definition of, 102
strncpy() function, 105

Stroustrop, Bjarne, 5-6, 47,
331, 339

structured programming, 14-15
Strupper, Everett, 409
styles of programming, 14-15
subtraction operator (), 46
swap() function
implementing with pointers,
174-175

implementing with references,
175-177

parameters, 67-68

Swapper, 150-151

switch statements, 89-91, 92,
404-405

symbolic constants, 36, 41

syntactic errors, 391

T

\t character, 137

tail (linked lists), 287
TailNode class, 290-297
Temperature program, 64-65
template keyword, 374

TemplateList program,
381-387

templates
advantages of, 387
defining, 374-381
explained, 373
instances of, 374

template objects, passing,
381-387

when to use, 388
text editors

compared to word
processors, 9

overview, 6
third-party libraries, 356

thirteen, superstitions
related to, 107

Thirteens program, 80
this pointer, 160-161
This program, 160-161
throwing exceptions
definition of, 393
try/catch blocks, 393-397

tilde (~), 117, 203
trees, 287-288

Tricycle class, 111, 125-126,
205-207

Tricycle object, 112
Tricycle program, 114-116
triskaidekaphobia, 107
try blocks, 393-397
type definitions, 34-36
type inference, 332-334
typedef, 34-36, 321-322
types

abstract data types

advantages of, 284

complex hierarchies of
abstraction, 279-283

explained, 271-275
when to use, 283-284
auto-typed variables, 38-40
creating, 110
explained, 109

integers
explained, 28
signed versus
unsigned, 30
pID, 357
table of, 31

type definitions, 34-36
type inference, 332-334
void, 62

U

UML (Unified Modeling
Language), 345

underscore (_), 32

variables 457

Unified Modeling Language
(UML), 345

uninitialized array elements, 107

unsigned variables, 30

'/

value, passing by
contained classes, 312
explained, 186
ValuePasser program, 173
values
assigning to variables, 33-34
default values, 210
passing by reference
contained classes, 312
explained, 172-174,
183-186
passing by value
contained classes, 312
explained, 186

passing with const pointers,
186-188

return values

auto-typed return values,
73-75

explained, 68-70

multiple values, 177-179

obtaining from functions,
68-70

returning by reference,
179-180

returning by value, 195
variables. See also pointers
defining, 32-33
explained, 27

458 variables

with functions
explained, 64
global variables, 66-67
local variables, 64-66
initializing, 33-34
local variables, 75

members of contained
classes, accessing, 311

names, 32-33
signed, 30

static member variables,
301-303, 327

storing in memory, 28-30
types

auto-typed variables,
38-40

table of, 31

type definitions, 34-36
unsigned, 30
values, assigning, 33-34

virtual destructors,
260-263

virtual function members

cost of, 263-264

declaring, 252-253

how they work, 256-257

polymorphism, 252-255

pure virtual functions
declaring, 275-276
implementing, 276-279

v-tables (virtual function
tables), 256-257

when to use, 264

virtual function tables (v-tables),
256-257

virtual keyword, 252

Visual Studio Community, 7

void type, 62
v-pointers, 256-257
vptrs, 256-257

v-tables (virtual function tables),
256-257

W-X-Y-Z

warnings (compiler), 9
Warren, David, 92
wasabi, 211
Washington, George, 152
Washington, Paul Emory, 152
waterfall technique, 343
Web Edition of book, 3
websites

Bjarne Stroustrop, 339

C++ standardization
website, 340

first crossword puzzle, 340
goldmaps.com, 388
WeightGoals program, 96
Weinberg, Gerald, 391
while loops, 79-81, 92

Whistled Languages (Busnel and
Classe), 284-285

white-eye effect
(photographs), 165

whitespace, 43-44, 59, 405
wild pointers, 138, 161-162
word processors, 9
writing
increment methods,
215-216

professional-quality code

access, 407

braces ({ }), 403-404
class definitions, 407
comments, 406-407
const, 408

identifier names, 405-406
include files, 408

long lines, 404

overview, 403

program text, 405

spelling and capitalization
of names, 406

switch statements,
404-405

writing past end of a rrays, 97-98
Wynne, Arthur, 340
Years program, 47-49

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Part I: Beginning C++
	HOUR 2: Organizing the Parts of a Program
	Reasons to Use C++
	The Parts of a Program
	Comments
	Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

