James Foxall

Visual Basic
2015

SAMS

FREE SAMPLE CHAPTER
" 9 P R ®

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337451
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337451
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337451
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337451
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337451/Free-Sample-Chapter

James Foxall

SamsTeachYourself

Visual Basic

2015

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Visual Basic® 2015 in 24 Hours, Sams Teach Yourself
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33745-1
ISBN-10: 0-672-33745-2

Library of Congress Control Number: 2015907842
Printed in the United States of America
First Printing August 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been ap-

propriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a

term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand
Acquisitions Editor
Joan Murray

Development
Editor

Mark Renfrow
Managing Editor
Sandra Schroeder
Project Editor
Mandie Frank
Copy Editor

Keith Cline
Indexer

Lisa Stumpf
Proofreader

Katie Matejka
Technical Editor
Lucian Wischik
Editorial Assistant
Cindy Teeters
Designer

Mark Shirar
Senior Compositor
Gloria Schurick

Contents at a Glance

Introduction

Part I: The Visual Basic 2015 Environment

HOUR 1 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

2
3
4

Navigating Visual Basic 2015
Understanding Obijects and Collections

Understanding Events

Part II: Building a User Interface

HOUR 5
6
7
8
9

Building Forms: The Basics

Building Forms: Advanced Techniques
Working with Traditional Controls
Using Advanced Controls

Adding Menus and Toolbars to Forms

Part IlI: Making Things Happen—Programming

HOUR 10
11
12

13
14
15
16
17
18

Creating and Calling Code Procedures
Using Constants, Data Types, Variables, and Arrays

Performing Arithmetic, String Manipulation, and
Date/Time Adjustments

Making Decisions in Visual Basic Code
Looping for Efficiency

Debugging Your Code

Designing Objects Using Classes
Interacting with Users

Working with Graphics

xvii

1
31
63
87

107
131
163
193
215

239
259

291
313
329
343
371
391
413

iv Sams Teach Yourself Visual Basic 2015 in 24 Hours

Part IV: Working with Data

HOUR 19 Performing File Operations
20 Working with the Registry and Text Files
21 Working with a Database
22 Printing
23 Sending Emails

Part V: Deploying Solutions and Beyond

HOUR 24 Deploying Applications
APPENDIX A The 10,000-Foot View

Index

435
457
483
505
529

545
559
567

Table of Contents

Introduction

Part I: The Visual Basic 2015 Environment

Hour

Hour

1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour
Starting Visual Basic 2015

Creating a New Project

Understanding the Visual Studio 2015 Environment
Changing the Characteristics of Objects

Adding Controls to a Form

Designing an Interface

Writing the Code Behind an Interface

Running a Project

Summary

Q&A

Workshop

Exercises

2: Navigating Visual Basic 2015

Using the Visual Basic 2015 Start Page

Navigating and Customizing the Visual Basic Environment
Working with Toolbars

Adding Controls to a Form Using the Toolbox

Setting Object Properties Using the Properties Window
Managing Projects

A Quick-and-Dirty Programming Primer

Getting Help

Summary

Q&A

Workshop

Exercises

XVii

N O w N

13
15
20
24
27
28
28
29

31
31
34
40
41
43
50
57
59
60
60
61
61

vi Sams Teach Yourself Visual Basic 2015 in 24 Hours

Hour 3: Understanding Objects and Collections 63
Understanding Obijects 64
Understanding Properties 64
Understanding Methods 72
Building a Simple Object Example Project 73
Understanding Collections 79
Using the Object Browser 82
Summary 84
Q&A 84
Workshop 85
Exercises 85

Hour 4: Understanding Events 87
Understanding Event-Driven Programming 87
Building an Event Example Project 97
Keeping Event Names Current 103
Summary 103
Q&A 104
Workshop 104
Exercises 105

Part II: Building a User Interface

Hour 5: Building Forms: The Basics 107
Changing a Form’s Name 108
Changing a Form’s Appearance 109
Showing and Hiding Forms 122
Summary 128
Q&A 128
Workshop 129
Exercises 130

Hour 6: Building Forms: Advanced Techniques 131
Working with Controls 131
Creating Topmost Nonmodal Windows 151

Creating Transparent Forms 151

Hour

Hour

Hour

Creating Scrollable Forms
Creating MDI Forms
Setting the Startup Form
Summary

Q&A

Workshop

Exercises

7: Working with Traditional Controls

Displaying Static Text with the Label Control
Allowing Users to Enter Text Using a Text Box
Creating Buttons

Creating Containers and Groups of Option Buttons
Displaying a List with the List Box

Creating Drop-Down Lists Using the Combo Box
Summary

Q&A

Workshop

Exercises

8: Using Advanced Controls

Creating Timers

Creating Tabbed Dialog Boxes

Storing Pictures in an Image List Control

Building Enhanced Lists Using the List View Control
Creating Hierarchical Lists Using the Tree View Control
Summary

Q&A

Workshop

Exercises

9: Adding Menus and Toolbars to Forms
Building Menus

Using the Toolbar Control

Creating a Status Bar

Summary

Table of Contents

152
154
158
159
160
160
161

163
163
164
172
176
180
188
190
191
191
192

193
193
197
200
202
207
211
212
212
213

215
215
229
235
237

vii

viii Sams Teach Yourself Visual Basic 2015 in 24 Hours

Q&A
Workshop

Exercises

Part Ill: Making Things Happen—Programming

Hour 10: Creating and Calling Code Procedures
Creating Visual Basic Code Modules
Writing Code Procedures
Calling Code Procedures
Exiting Procedures
Avoiding Infinite Recursion
Summary
Q&A
Workshop

Exercises

Hour 11: Using Constants, Data Types, Variables, and Arrays
Understanding Data Types
Defining and Using Constants
Declaring and Referencing Variables
Working with Arrays
Determining Scope
Declaring Variables of Static Scope
Using Variables in Your Picture Viewer Project
Renaming Variables
Summary
Q&A
Workshop

Exercises

Hour 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Performing Basic Arithmetic Operations with Visual Basic
Comparing Equalities

Understanding Boolean Logic

237
238
238

239
239
242
248
254
255
256
257
257
258

259
260
263
266
273
276
281
282
286
287
288
288
289

291
291
295
296

Hour

Hour

Hour

Table of Contents

Manipulating Strings

Working with Dates and Times
Summary

Q&A

Workshop

Exercises

13: Making Decisions in Visual Basic Code
Making Decisions Using If...Then
Branching Within a Procedure Using GoTo
Summary

Q&A

Workshop

Exercises

14: Looping for Efficiency

Looping a Specific Number of Times Using For. . .Next

Using Do. . .Loop to Loop an Indeterminate Number of Times
Summary

Q&A

Workshop

Exercises

15: Debugging Your Code

Adding Comments to Your Code

Identifying the Two Basic Types of Errors

Using Visual Basic’s Debugging Tools

Breaking Only When a Condition Is Met

Breaking Only When a Breakpoint Is Hit a Certain Number of Times
Sending Messages to the Output Window Using Tracepoints
Writing an Error Handler Using Try...Catch...Finally
Summary

Q&A

Workshop

Exercises

298
304
309
310
310
311

313
313
324
326
327
327
328

329
329
336
341
341
342
342

343
344
346
349
358
359
360
360
368
368
368
369

ix

Hour

Hour

Hour

Sams Teach Yourself Visual Basic 2015 in 24 Hours

16: Designing Objects Using Classes
Understanding Classes

Instantiating Objects from Classes
Summary

Q&A

Workshop

Exercises

17: Interacting with Users

Displaying Messages Using the MessageBox . Show () Function
Creating Custom Dialog Boxes

Using InputBox () to Get Information from a User
Interacting with the Keyboard

Using the Common Mouse Events

Summary

Q&A

Workshop

Exercises

18: Working with Graphics
Understanding the Graphics Object
Working with Pens

Using System Colors

Working with Rectangles

Drawing Shapes

Drawing Text

Persisting Graphics on a Form
Building a Graphics Project Example
Summary

Q&A

Workshop

Exercises

371
372
381
388
388
388
389

391
391
398
401
404
406
409
410
410
411

413
413
416
417
421
422
423
425
425
432
432
432
433

Part IV: Working with Data

Hour

Hour

Hour

Hour

19: Performing File Operations

Table of Contents

Using the OpenFileDialog and SaveFileDialog Controls

Manipulating Files with the File Object

Manipulating Directories with the Directory Object

Summary
Q&A
Workshop

Exercises

20: Working with the Registry and Text Files

Working with the Registry
Reading and Writing Text Files
Summary

Q&A

Workshop

Exercises

21: Working with a Database
Introducing ADO.NET
Manipulating Data
Summary

Q&A

Workshop

Exercises

22: Printing

Preparing the Picture Viewer Project
Printing and Previewing a Document
Changing Printer and Page Settings
Scaling Images to Fit a Page
Summary

Q&A

Workshop

Exercises

435
435
443
452
453
454
454
455

457
457
470
480
481
481
482

483
484
491
502
502
503
503

505
506
509
519
522
527
528
528
528

xi

Xii Sams Teach Yourself Visual Basic 2015 in 24 Hours

Hour 23: Sending Emails

Understanding the Classes Used to
Send Emails

Sending Email from Your Picture Viewer Application
Summary

Q&A

Workshop

Exercises

Part V: Deploying Solutions and Beyond

Hour 24: Deploying Applications
Understanding ClickOnce Technology
Using the Publish Wizard to Create a ClickOnce Application
Testing Your Picture Viewer ClickOnce Install Program
Uninstalling an Application You've Distributed
Setting Advanced Options for Creating ClickOnce Programs
Summary
Q&A
Workshop

Exercises

Appendix A: The 10,000-Foot View
The .NET Framework
Common Language Runtime
Microsoft Intermediate Language
Namespaces
Common Type System
Garbage Collection
Further Reading

Summary

Index

529

530
530
543
544
544
544

545
545
547
552
553
556
557
557
557
558

559
559
560
560
562
563
564
564
565

567

About the Author

James Foxall is President & CEO of Tigerpaw Software, a commercial software company
providing complete business automation to more than 40,000 users in 28 countries in the
IT/Networking, Telecommunications, Systems Integrator, Security, and Point of Sale indus-
tries. In his current role as President and CEO, James provides the vision and management
to keep Tigerpaw focused on its customers and properly serving its markets.

James has a Masters degree in Business Administration and a BS degree in Management of
Information Systems. Devoted to creating better businesses through technology, James has
written 15 books, which have been published in over a dozen languages around the world.
He is considered an authority on business process improvement and application interface
and behavior standards of Windows applications, and serves the business community as an
international speaker on automating business processes in the SMB environment.

Dedication

This book is dedicated to Connie Derry,
for giving me room to “express myself” in my writing.

Acknowledgments

I would like to thank my kids Tess and Ethan, for reminding me there is more to life than
work, and for giving me something to work for.

I would also like to thank all the great people at Sams for their faith, input, and hard work;
this book would not be possible without them!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Visual Basic 2015 is Microsoft’s latest incarnation of the enormously popular Visual Basic lan-
guage, and it's fundamentally different from the versions that came before it. Visual Basic is
more powerful and more capable than ever before, and its features and functionality are on par
with “higher-level” languages such as C++. One consequence of this newfound power is added
complexity. Gone are the days when you could sit down with Visual Basic and the online Help
and teach yourself what you needed to know to create a functional program.

Audience and Organization

This book is targeted toward those who have little or no programming experience or who might
be picking up Visual Basic as a second language. The book has been structured and written with
a purpose: to get you productive as quickly as possible. I've used my experiences in writing large
commercial applications with Visual Basic and teaching Visual Basic to create a book that I
hope cuts through the fluff and teaches you what you need to know. All too often, authors fall
into the trap of focusing on the technology rather than on the practical application of the tech-
nology. I've worked hard to keep this book focused on teaching you practical skills that you can
apply immediately to a development project.

This book is divided into five parts, each of which focuses on a different aspect of developing
applications with Visual Basic. These parts generally follow the flow of tasks you’ll perform as
you begin creating your own programs with Visual Basic. I recommend that you read them in
the order in which they appear.

» Part I, “The Visual Basic 2015 Environment,” teaches you about the Visual Basic environ-
ment, including how to navigate and access Visual Basic’s numerous tools. In addition,
you’ll learn about some key development concepts such as objects, collections, and events.

» Part II, “Building a User Interface,” shows you how to build attractive and functional user
interfaces. In this part, you'll learn about forms and controls—the user interface elements
such as text boxes and list boxes.

xviii Introduction

» Part III, “Making Things Happen—Programming,” teaches you the nuts and bolts of Visual
Basic 2015 programming—and there’s a lot to learn. You'll discover how to create modules
and procedures, as well as how to store data, perform loops, and make decisions in code.
After you've learned the core programming skills, you'll move into object-oriented pro-
gramming and debugging applications.

» Part IV, “Working with Data,” introduces you to working with graphics, text files, and pro-
gramming databases and shows you how to automate external applications such as Word
and Excel. In addition, this part teaches you how to manipulate a user’s file system and
the Windows Registry.

» Part V, “Deploying Solutions and Beyond,” teaches you how to add emailing capabili-
ties to your projects, and shows you how to distribute an application that you've created
to an end user’s computer. In Appendix A, “The 10,000-Foot View,” you'll learn about
Microsoft’s .NET initiative from a higher, less-technical level.

Many readers of previous editions have taken the time to give me input on how to make this
book better. Overwhelmingly, I was asked to have examples that build on the examples in the
previous chapters. In this book, I have done that as much as possible. Instead of learning con-
cepts in isolated bits, you'll be building a feature-rich Picture Viewer program throughout the
course of this book. You'll begin by building the basic application. As you progress through the
chapters, you'll add menus and toolbars to the program, build an Options dialog box, modify
the program to use the Windows Registry and a text file, and even build a setup program to dis-
tribute the application to other users. I hope you find this approach beneficial in that it allows
you to learn the material in the context of building a real program.

Conventions Used in This Book

This book uses several design elements and conventions to help you prioritize and reference the
information it contains:

By the Way boxes provide useful sidebar information that you can read immediately or circle
back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your Visual Basic programming
more effective.

Watch Out! boxes focus your attention on problems or side effects that can occur in specific
situations.

New terms appear in an italic typeface for emphasis.

Onward and Upward! Xix

In addition, this book uses various typefaces to help you distinguish code from regular English.
Code is presented in a monospace font. Placeholders—words or characters that represent the real
words or characters you would type in code—appear in italic monospace. When you are asked to
type or enter text, that text appears in bold.

Menu options are separated by a comma. For example, when you should open the File menu
and choose the New Project menu option, the text says “Select File, New Project.”

Some code statements presented in this book are too long to appear on a single line. In these
cases, a line-continuation character (an underscore) is used to indicate that the following line is
a continuation of the current statement.

Onward and Upward!

This is an exciting time to be learning how to program. It’s my sincerest wish that when you fin-
ish this book, you feel capable of using many of Visual Basic’s tools to create, debug, and deploy
modest Visual Basic programs. Although you won’t be an expert, you'll be surprised at how
much you've learned. And I hope this book will help you determine your future direction as you
proceed down the road to Visual Basic mastery.

I love programming with Visual Basic, and sometimes I find it hard to believe I get paid to do so.
I hope you find Visual Basic as enjoyable as I do!

This page intentionally left blank

HOUR 1

Jumping in with Both Feet:
A Visual Basic 2015
Programming Tour

What You’ll Learn in This Hour:

» Building a simple (yet functional) Visual Basic application
» Letting a user browse a hard drive

» Displaying a picture from a file on disk

» Getting familiar with some programming lingo

» Learning about the Visual Studio 2015 IDE

Learning a new programming language can be intimidating. If you've never programmed
before, the act of typing seemingly cryptic text to produce sleek and powerful applications prob-
ably seems like a black art, and you might wonder how you'll ever learn everything you need
to know. The answer, of course, is one step at a time. I believe the first step to mastering a pro-
gramming language is building confidence. Programming is part art and part science. Although
it might seem like magic, it’s more akin to illusion. After you know how things work, a lot of
the mysticism goes away, and you are free to focus on the mechanics necessary to produce the
desired result.

Producing large, commercial solutions is accomplished by way of a series of small steps. After
you've finished this hour, you’ll have a feel for the overall development process and will have
taken the first step toward becoming an accomplished programmer. In fact, you will build on
the examples in this hour in subsequent hours. By the time you complete this book, you will
have built a robust application, complete with resizable screens, an intuitive interface including
menus and toolbars, manipulation of the Windows Registry, and robust code with professional
error handling. But I'm getting ahead of myself.

In this hour, you complete a quick tour of Visual Basic that takes you step by step through cre-
ating a complete, albeit small, Visual Basic program. Most introductory programming books
start by having the reader create a simple Hello World program. I've yet to see a Hello World
program that’s the least bit helpful. (They usually do nothing more than print hello world
to the screen—what fun!) So, instead, you create a Picture Viewer application that lets you view
pictures on your computer. You learn how to let a user browse for a file and how to display a
selected picture file on the screen. The techniques you learn in this hour will come in handy in

2 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

many real-world applications that you'll create, but the goal of this hour is for you to realize just
how much fun it is to program using Visual Basic 2015.

Starting Visual Basic 2015

Before you begin creating programs in Visual Basic 2015, you should be familiar with the follow-
ing terms:

» Distributable component: The final, compiled version of a project. Components can
be distributed to other people and other computers, and they don’t require the Visual
Basic 2015 development environment (the tools you use to create a .NET program) to
run (although they do require the .NET runtime, as discussed in Hour 23, “Deploying
Applications”). Distributable components are often called programs. In Hour 23, you
learn how to distribute the Picture Viewer program that you're about to build to other
computers.

» Project: A collection of files that can be compiled to create a distributable component
(program). There are many types of projects, and complex applications might consist of
multiple projects, such as Windows application projects, and support dynamic link library
(DLL) projects.

» Solution: A collection of projects and files that make up an application or component.

BY THE WAY

In the past, Visual Basic was an autonomous language. This has changed. Now, Visual Basic is part
of a larger entity known as the .NET Framework. The .NET Framework encompasses all the .NET
technology, including Visual Studio .NET (the suite of development tools) and the common language
runtime (CLR), which is the set of files that make up the core of all .NET applications. You’ll learn
about these items in more detail as you progress through this book. For now, realize that Visual
Basic is one of many languages that exist within the Visual Studio family. Many other languages,
such as C#, are also .NET languages, make use of the CLR, and are developed within Visual Studio.

Visual Studio 2015 is a complete development environment, and it’s called the IDE (short for
integrated development environment). The IDE is the design framework in which you build applica-
tions; every tool you need to create your Visual Basic projects is accessed from within the Visual
Basic IDE. Again, Visual Studio 2015 supports development using many different languages,
Visual Basic being the most popular. The environment itself is not Visual Basic, but the language
you use within Visual Studio 2015 is Visual Basic. To work with Visual Basic projects, you first
start the Visual Studio 2015 IDE.

Creating a New Project 3

Start Visual Studio 2015 now by choosing Microsoft Visual Basic 2015 Express Edition from the
Start/Programs menu. If you are running the full retail version of Visual Studio, your shortcut
may have a different name. In this case, locate the shortcut on the Start menu and click it once
to start the Visual Studio 2015 IDE.

Creating a New Project

When you first start Visual Studio 2015, you see the Start Page tab within the IDE, as shown in
Figure 1.1. You can open projects created previously or create new projects from this Start page.
For this quick tour, you’ll create a new Windows application, so select File, New Project to display
the New Project dialog box shown in Figure 1.2.

Dd Start Page - Microsoft Visual Studio ¥ 3 | Quick Launch (Ctrl+Q Plhmio) ax
File Edit View Project Debug Team Tools Test Analyze Window Help James Foxall =
- o - = | P Attach.. = - M _

StartPage £ X

Professional 14 CTP Discover what's new in
Professional 14 CTP

You can find information about new
features and enhancements in Professional
14 CTP by reviewing the following sections

Recent

Solution Explorer REETRRE iy

FIGURE 1.1
You can open existing projects or create new projects from the Visual Studio Start page.

4 HOUR 1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

o Start Page - Microsoft Visual Studia ¥ 03| Quick Launch (Ctri+ Q) P o= O x
File Edit View Project Debug Team Took Test Anshaze Window Help T v |
B-L W = O« | b Attach.. = . o
Fi start Page = X = | Solution Explorer -« 0 x
H New Project 1 I
Prof ¥ Recent NET Framewark 45 | Sart by: [Default earch nsta p-
ro
+ Installed ﬂ Whndawd Forme AppBcatio Visual Ratie Type: Visual Basic
4 Templates - : A project far creating an application with a
4 Visusl Basic r | weF Applicetion Visuial Basic Windows user interface
Start b Store Apps L
u
Windews Deskicp ﬁ Cansale Applicstian Visual Basic
b Web
Open = i L
v Office/SharePoint CVJ Shared Project Vigual Basic
1 Cloud 5
il
LightSwitch E" Class Library Visual Basic
Reparting L
i il
Reced ::::rllght E{h! Class Library (Partable) Visual Basic
:‘:CFW ﬁ WPF Browser Application Visual Basic
Warkfiew
¥ Other Languages _\'j ; ’
1 Vi 1]
b Othes Project Types m Emptty Project isual Basic
: ;
Saiyphs :Iﬂ Windows Service Wisual Basic
¥ Online g
‘E-ivu WOF Custorn Contred Library Visual Basic
e‘ll
=4 WPF User Contral Library WVisual Basic
4
E“_T Windows Forms Control Library Visual Basie
Click hare to go anline and find temgplates,
Name: WindowsApplication1
[+ 4 | Cancel]

Thursday, lanuary 8, 2015
Owerview of NET Core, how we're going to release it, how it relates to the NET
Framewoek, and what this means for platform and open |

» [salution Explorer [T

FIGURE 1.2
The New Project dialog box enables you to create many types of .NET projects.

BY THE WAY

Your Start page might look a little different than the one shown in Figure 1.1—depending on what
version of Visual Studio you are using.

The New Project dialog box is used to specify the type of Visual Basic project to create. (You can
create many types of projects with Visual Basic, as well as with the other supported languages
of the .NET Framework.) The options shown in Figure 1.2 are limited because I am running the
Express edition of Visual Basic for all examples in this book. If you are running the full version
of Visual Studio, you will have many more options available.

Create a new Windows Forms Application now by following these steps:
1. Click Windows Desktop in the tree on the left.

2. Click the Windows Forms Application item to select it.

Creating a New Project 5

3. At the bottom of the New Project dialog box is a Name text box. This is where, oddly
enough, you specify the name of the project you're creating. Enter Picture Viewer in the

Name text box.

4. Click OK to create the project.

DID YOU KNOW?

Always set the Name text box to something meaningful before creating a project; otherwise, you'll
have more work to do later if you want to move or rename the project.

When Visual Basic creates a new Windows Forms Application project, it adds one form (the
empty gray window) for you to begin building the interface for your application, as shown in

Figure 1.3.
DQ Picture Viewer - Microsoft Visual Studio 3 | Quick Launch (Ctr+ 0 Pl B =
File Edit View Project Buld Debug Tesm Format Toals Test Anabze Window Help Jamulel-n

R e e e S N T TR |
Solutian Explorer
.) @l e-s6om o "
s Form1 = Search Schution Explorer (Ctri+ 2 -
] Ficture Viewer
*8 Analyzers
My Project
¥ =8 References
¥ App.cenfig
» B2 Formlvb

Form1.wb [Design] = X

o

Solution Explorer [RESTIRSEI

Form1 System.Windows Forms.Form

E R DF| s
B MinimumSize oo -
Opacity 100%
B Padding 0.0,0,0
RightToLeft Mo
RightToLeftlayout False
Showlcon True
ShowinTaskbar True
B Size 300, 300
SizeGripStyle Aute
StartPasition WindowsDefaultl oc.
Tag
Text Form1 S
Text

The text associated with the cantrol.

FIGURE 1.3
New Windows Forms Applications start with a blank form; the fun is just beginning!

6 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

BY THE WAY

Within Visual Studio 2015, form is the term given to the design-time view of a window that can be
displayed to a user.

Your Visual Studio 2015 environment might look different from that shown in the figures in
this hour, depending on the edition of Visual Studio 2015 you’re using, whether you’ve already
played with Visual Studio 2015, and other factors, such as your monitor’s resolution. However,
all the elements discussed in this hour exist in all editions of Visual Studio 2015 that support
desktop development (as opposed to store applications). If a window shown in a figure doesn’t
appear in your IDE, use the View menu to display it.

BY THE WAY

To create a program that can be run on another computer, you start by creating a project and then
compiling the project into a component such as an executable (a program a user can run) or a DLL
(a component that can be used by other programs and components). The compilation process is
discussed in detail in Hour 24, “Deploying Applications.” The important thing to note at this time

is that when you hear someone refer to creating or writing a program, just as you're creating the
Picture Viewer program now, that person is referring to the completion of all steps up to and includ-
ing compiling the project to a distributable file.

Understanding the Visual Studio 2015
Environment

The first time you run Visual Studio 2015, you'll notice that the IDE contains a number of win-
dows, such as the Properties window on the lower-right, which is used to view and set properties
of objects. In addition to these windows, the IDE contains a number of tabs, such as the vertical
Toolbox and Data Source tabs on the left edge of the IDE (refer to Figure 1.3). Try this now: Click
the Toolbox tab to display the Toolbox window (clicking a tab displays an associated window).
To hide the window, click another window. To close the window (don’t do this now), click the
Close (X) button on the window’s title bar.

You can adjust the size and position of any of these windows, and you can even hide and show
them as needed. You'll learn how to customize your design environment in Hour 2, “Navigating
Visual Basic 2015.”

Changing the Characteristics of Objects 7

WATCH OUT!

Unless specifically instructed to do so, don’t double-click anything in the Visual Studio 2015 design
environment. Double-clicking most objects produces an entirely different result than single-clicking
does. If you mistakenly double-click an object on a form (discussed shortly), a code window appears.
At the top of the code window is a set of tabs: one for the form design and one for the code. Click
the tab for the form design to hide the code window and return to the form.

The Properties window on the right side of the design environment is perhaps the most impor-
tant window in the IDE, and it’s the one you'll use most often. If your computer display resolu-
tion is set to 1024x768, you can probably see only a few properties at this time. This makes it
difficult to view and set properties as you create projects. All the screen shots in this book were
captured on Windows 8 running at 1152x864 because of publishing constraints, but you should
run at a higher resolution if you can. I highly recommend that you develop applications with
Visual Basic at a screen resolution of 1280x768 or higher to have plenty of workspace. To change
your display settings, right-click the desktop and select Screen Resolution. Keep in mind, how-
ever, that end users might be running at a lower resolution than you are using for development.

Changing the Characteristics of Objects

Almost everything you work with in Visual Basic is an object. Forms, for example, are objects,

as are all the items you can put on a form to build an interface, such as list boxes and buttons.
There are many types of objects, and objects are classified by type. For example, a form is a Form
object, whereas items you can place on a form are called Control objects, or controls. (Hour 3,
“Understanding Objects and Collections,” discusses objects in detail.) Some objects don’t have

a physical appearance but exist only in code. You'll learn about these kinds of objects in later
hours.

WATCH OUT!

You'll find that | often mention material coming up in future hours. In the publishing field, we call
these forward references. For some reason, these tend to unnerve some people. | do this only so
that you realize you don’t have to fully grasp a subject when it’s first presented; the material is cov-
ered in more detail later. | try to keep forward references to a minimum, but unfortunately, teaching
programming is not a perfectly linear process. Sometimes | have to touch on a subject that | feel
you're not ready to dive into fully yet. When this happens, | give you a forward reference to let you
know that the subject is covered in greater detail later.

Every object has a distinct set of attributes known as properties (regardless of whether the object
has a physical appearance). Properties define an object’s characteristics. You have certain prop-
erties as a person, such as your height and hair color. Visual Basic objects have properties as
well, such as Height and BackColor. When you create a new object, the first thing you need to

8 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

do is set its properties so that the object appears and behaves the way you want it to. To display
an object’s properties, click the object in its designer (the main work area in the IDE).

Click anywhere in the default form now (it’s the window with the title Form1), and check to see
that its properties are displayed in the Properties window. You'll know because the drop-down list
box at the top of the Properties window contains the form’s name: Form1 is the object’s name
and System.Windows.Forms.Form is the object’s type.

Naming Objects

The property you should always set first when creating any new object is the Name property.
Press F4 to display the Properties window (if it’s not already visible), and scroll toward the top of
the properties list until you see the (Name) property, as shown in Figure 1.4. If the Name property
isn’t one of the first properties listed, the Properties window is set to show properties categorically
instead of alphabetically. You can show the list alphabetically by clicking the Alphabetical but-
ton that appears just above the properties grid.

Properties * 1 x
Form1 System.Windows.Forms.Form -
o= (25
B (ApplicationSetting -
@ (DataBindings)

(none)

AccessibleDescript

AccessibleName

AccessibleRole Default

AllowDrop False
AutoScaleMode Font
AutoScrell False

B AutoScrollMargin 0,0
B AutoScrollMinSize 0,0

(Name)

Indicates the name used in code to identify
the object.

FIGURE 1.4
The Name property is the first property you should change when you add a new object to your project.

BY THE WAY

| recommend that you keep the Properties window set to show properties in alphabetic order; doing
so makes it easier to find properties that | refer to in the text. Note that the Name property always
stays toward the top of the list and is called (Name) . If you're wondering why it has parentheses
around it, it's because symbols come before letters in an alphabetic sort, and this keeps the Name
property at the top of the list.

Changing the Characteristics of Objects 9

When saving a project, you also choose a name and a location for the project and its files. When
you first create an object within the project, Visual Basic gives the object a unique, generic name
based on the object’s type. Although these names are functional, they simply aren’t descriptive
enough for practical use. For instance, Visual Basic named your form Form1, but it's common to
have dozens (or even hundreds) of forms in a project. It would be extremely difficult to manage
such a project if all forms were distinguishable only by a number (Form2, Form3, and so forth).

BY THE WAY

What you’re actually working with is a form class, or template, that will be used to create and show
forms at runtime. For the purposes of this quick tour, | simply call it a form. See Hour 5, “Building
Forms: The Basics,” for more information.

To better manage your forms, give each one a descriptive name. Visual Basic gives you the
chance to name new forms as they’re created in a project. Visual Basic created this default form
for you, so you didn’t get a chance to name it. It's important not only to change the form'’s
name but also to change its filename. Change the programmable name and the filename by fol-
lowing these steps:

1. Click the Name property and change the text from Form1 to ViewerForm. Notice that this
does not change the form’s filename as it’s displayed in the Solution Explorer window,
located above the Properties window.

2. Right-click Form1.vb in the Solution Explorer window (the window above the Properties
window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.vb to ViewerForm.vb.

BY THE WAY

| use the Form suffix here to denote that the file is a form class. Suffixes are optional, but | find that
they really help you keep things organized.

The form'’s Name property is actually changed for you automatically when you rename the file.
In future examples, I will have you rename the form file so that the Name property is changed
automatically. I had you set it in the Properties window here so that you could see how the
Properties window works.

10 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

Setting the Form’s Text Property

Notice that the text that appears in the form'’s title bar says Form1. Visual Basic sets the form'’s
title bar to the name of the form when it’s first created, but doesn’t change it when you change
the name of the form. The text on the title bar is determined by the value of the form’s Text
property. Change the text now by following these steps:

1. Click the form once more so that its properties appear in the Properties window.

2. Use the scrollbar in the Properties window to locate the Text property. If you're lucky,
Visual Studio will have already selected this property for you.

3. Change the text to Picture Viewer. Press the Enter key or Tab key, or click a different prop-
erty to commit your edit. You'll see the text on the form’s title bar change.

Saving a Project

The changes you've made so far exist only in memory. If you were to turn off your computer at
this time, you would lose all your work up to this point. Get into the habit of frequently saving
your work, which commits your changes to disk.

Click the Save All button on the toolbar (the picture of two floppy disks) now to save your work.
Visual Basic displays the Save Project dialog box, shown in Figure 1.5. Notice that the Name
property is already filled in because you named the project when you created it. The Location
text box is where you specify the location in which the project is to be saved. Visual Basic creates
a subfolder in this location, using the value in the Name text box (in this case, Picture Viewer).
You can use the default location or change it to suit your purposes. You can have Visual Basic
create a solution folder, and if you do Visual Basic creates the solution file in the folder, and

it creates a subfolder for the project and the actual files. On large projects, this is a handy fea-
ture. For now, it’s an unnecessary step, so uncheck the Create Directory for Solution box if it’s
checked, and then click Save to save the project.

= 2
Save Project £ n—

Name:

Location: D:\Dropbos\ TYVB2015\CHO1 - Jumping in with Both Feet\Samples w Browse...

Picture Viewer [_] Create directory for solution
| Add to source control
Save Cancel
FIGURE 1.5

When saving a project, choose a name and location for the project and its files.

Changing the Characteristics of Objects 11

Giving the Form an Icon

Everyone who's used Windows is familiar with icons—the little pictures that represent programs.
Icons most commonly appear on the Start menu next to the name of their respective programs.

In Visual Basic, you not only have control over the icon of your program file, you can also give

every form in your program a unique icon if you want to.

BY THE WAY

The following instructions assume that you have access to the source files for the examples in this
book. They are available at http://www.samspublishing.com. You can also get these files in the
Downloads section of my website at http://www.jamesfoxall.com. When you unzip the samples, a
folder is created for each hour, and within each hour’s folder are subfolders for the sample projects.
You'll find the icon for this example in the folder Hour 01\Samples.

You don’t have to use the icon I've provided for this example; you can use any icon. If you don’t
have an icon available (or you want to be a rebel), you can skip this section without affecting the
outcome of the example.

To give the form an icon, follow these steps:
1. In the Properties window, click the Icon property to select it.

2. When you click the Icon property, a small button with three dots appears to the right of
the property. Click this button.

3. Use the Open dialog box that appears to locate the Picture Viewer.ico file or another icon
file of your choice. When you’ve found the icon, double-click it, or click it once to select it
and then choose Open.

After you've selected the icon, it appears in the Icon property along with the word Icon. A small
version of the icon appears in the upper-left corner of the form as well. Whenever this form is
minimized, this is the icon displayed on the Windows taskbar.

Changing the Form’s Size

Next, you'll change the form’s width and Height properties. The Wwidth and Height values

are shown collectively under the Size property; Wwidth appears to the left of the comma, and
Height to the right. You can change the width or Height property by changing the correspond-
ing number in the Size property. Both values are represented in pixels. (That is, a form that
has a size property of 200, 350 is 200 pixels wide and 350 pixels tall.) To display and adjust
the width and Height properties separately, click the small plus sign next to the Size property.
(After you click it, it changes to a minus sign, as shown in Figure 1.6.)

http://www.samspublishing.com
http://www.jamesfoxall.com

12 HOUR 1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

Properties * o Xx
ViewerForm System.Windows,Forms.Forn «

IR

RightToleft Ne -
RightToleftLayout False
Showlcon True

ShowinTaskbar True

v 0
Width 300

Height 300
SizeGripStyle Auto
StartPosition WindowsDefaultlocz
Tag
Text Picture Viewer
TopMost False =
- A O LV S e

Size
The size of the control in pixels.

FIGURE 1.6
Some properties can be expanded to show more specific properties.

BY THE WAY

A pixel is a unit of measurement for computer displays; it’s the smallest visible “dot” on the screen.
The resolution of a display is always given in pixels, such as 800x600 or 1024x768. When you
increase or decrease a property by 1 pixel, you're making the smallest possible visible change to
the property.

Change the width property to 400 and the Height to 325 by typing in the corresponding box
next to a property name. To commit a property change, press Tab or Enter, or click a different
property or window. Your screen should now look like the one shown in Figure 1.7.

Adding Controls to a Form 13

DQ Picture Viewer - Microsoft Visual Studio ¥ 3 Quick Launch (CtreQ) Pl e B8 =
File Edit View Project Buld Debug Team Took Test Analyze Window Help Jarmes Foxall =
G2 e e Stant . G G Debug - = | Any CPU -8 2
g ViewerFormavh [Design]* & X ~ | Sohution Explorer -3 x
g = D e-sGcPmHm| o 7
o el Picture Viewer =8 = Cesitly Sabation intorer (Gl Bis
£] Picture Viewer
5 o8 Anshzers
’ F My Project
¥+ References
¥ App.config

¥ = ViewerFormab

Properties -3 x

FightToLeft Ne -
RightToleftlayout False
Showlcon True
ShewlnTaskbar True
B Size 400, 325
Width 400
Hright 325
SizeGripStyle Auto
StartPosition WindewsDefaultLoce
Tag
Text Picture Viewer
Tophost False 2
- Tt e |
Height
5,15 77300 £ 300

FIGURE 1.7
Changes made in the Properties window are reflected as soon as they’'re committed.

BY THE WAY

You can also resize a form by dragging its border, which you learn about in Hour 2, or by using code
to change its properties, which you learn how to do in Hour 5.

Save the project now by choosing File, Save All from the menu or by clicking the Save All button
on the toolbar—it has a picture of two floppy disks.

Adding Controls to a Form

Now that you've set the initial properties of your form, it’s time to create a user interface by add-
ing objects to the form. Objects that can be placed on a form are called controls. Some controls
have a visible interface with which a user can interact, whereas others are always invisible to the
user. You'll use controls of both types in this example. On the left side of the screen is a vertical

14 HOUR 1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

tab titled Toolbox. Click the Toolbox tab to display the Toolbox window to see the most com-
monly used controls, expanding the Common Controls section if necessary (see Figure 1.8). The
toolbox contains all the controls available in the project, such as labels and text boxes.

o Picture Viewer - Microsoft Visual Studio ¥ 3 | Quick Launch (Ctri+ Q) Pl- 8 x
File Edit View Project Budd Debug Team Tooks Test Analyze Window Help Jarmes Foxall = n
B-o@WP - O = St - G G Debug - - | fny CPU -|| =
g L e — Alo-s¢am o
g = | PO Search Sohutian Explorer (Chrl+ P
£ Z Pointer [Picture Viewer
= 8 Analyzers
] @ Button & My Preject
CheckBox) 8 References
§= CheckedListBox ¥ App.config
B ComboBox ¥ = ViewerFormab
B DeteTimeRicker =l
A Label
A Linkisbel
EE ListBox
B Listview
() MaskedTedBos
B MonthCalendar
E ::::I:::phomn | —— Salution Explarer SRR
[PictureBox Properties
B ProgressBar ViewerForm System. Windows Forms Fom =
E’- FadicButtan Fo NI A
B RienTeutlod RightToleft Mo -
B TetBox RightToleftLayout False
= Toollip Showlcon True
= Treeiew ShowinTaskbar True
B WebBrowser B Size 400,325
I+ Containers Width 400
b Menus & Toolbars Height 325
I Data SizeGripStyle Aute
I Components StartPosition WindewsDefaultLoce
b Prnting Tag
b Dislogs Text Picture Viewer
b Reporting Tophlast False =
I WPF Interoperability u.‘;.;.;. et 1
a General

FIGURE 1.8
The toolbox is used to select controls to build a user interface.

Clicking off the toolbox makes it disappear. To make the toolbox stay visible, even when you
click something else, click the little picture of a pushpin located in the toolbox’s title bar.

I don’t want you to add them yet (I'll walk you through the process), but your Picture Viewer
interface will consist of the following controls:

» Two Button controls: The standard buttons that you're used to clicking in pretty much
every Windows program you've ever run.

> A PictureBox control: A control used to display images.

> An OpenFileDialog control: A hidden control that exposes the Windows Open File dia-
log box functionality.

Designing an Interface 15

Designing an Interface

It's generally best to design a form’s user interface and then add the code behind the interface to
make the form functional. You build your interface in the following sections.

Adding a Visible Control to a Form

Start by adding a Button control to the form. Do this by double-clicking the Button item in the
toolbox. Visual Basic creates a new button and places it in the upper-left corner of the form.
Click off the toolbox to make it go away so that you can see the new button control, as shown in

Figure 1.9.
DQ Picture Viewer - Microsoft Visual Studio ¥ B Quick Ctrl+) P T
File Edit View Project Buld Debug Tesm Format Toals Test Anabze Window Help James Fexail - [
G2 L B S G G Debug - | Any CPU -8
[l ViewoFormavb [Designi = X T — -0 x
2 e @lo-sCam| o
= BEE Picture Viewer (BN RE) esrch Schation Explarer (Cit+ o-
£ Bt] Picture Viewer
& 3 o8 Anshyzers
’ & My Project
¥+ References
¥3 App.config

» 2= ViewerFormavb

| 2 Solution Explorer [RESTHRSEI

Properties >0 x
ViewerForm System Windows Forms Form =

=D F |
RightToleft No -
RightToleftlayout False
Showlcon True
ShowinT askbar True
B Size 400, 325
Width 400
Height 325
SizeGripStyle Auto
StartPasition WindewsDefaultLoc:
Tag
Text Picture Viewer
Tophast False 2
;SRR A o |
Height
15,15 1005325

FIGURE 1.9
When you double-click a control in the toolbox, the control is added to the upper-left corner of the form.

Using the Properties window, set the button’s properties as shown in the following list. Because
you clicked the form to make the toolbox go away, you need to click the button to select it
and change its properties. Remember, when you view the properties alphabetically, the Name

16 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

property is listed first, so don’t go looking for it down in the list; otherwise, you'll be looking a

while.
Property Value
Name btnSelectPicture
Location 295,10 (295 is the x coordinate; 10 is the y coordinate.)
Size 85,23
Text Select Picture
BY THE WAY

If you see only the word Select on your button, chances are you’ve set your Windows fonts to a size
larger than standard. Right-click the desktop and choose Personalize from the shortcut menu that
appears. Next, click Display in the lower-left corner and change the font size on the Display dialog
box that appears.

Now you'll create a button that the user can click to close the Picture Viewer program. Although
you could add another new button to the form by double-clicking the Button control on the
toolbox again, this time you'll add a button to the form by creating a copy of the button you've
already defined. This enables you to easily create a button that maintains the size and other
style attributes of the original button when the copy was made.

To do this, right-click the Select Picture button, and choose Copy from its context menu. Next,
right-click anywhere on the form, and choose Paste from the form’s shortcut menu. (You can
also use the keyboard shortcuts Ctrl+C to copy and Ctrl+V to paste.) The new button appears
centered on the form, and it’s selected by default. Notice that it retains almost all the properties
of the original button, but the name has been reset. Change the properties of the new button as
follows:

Property Value
Name btnQuit
Location 295,40
Text Quit

The last visible control you need to add to the form is a PictureBox control. A PictureBox
has many capabilities, but its primary purpose is to show pictures, which is precisely what you’ll
use it for in this example. Add a new PictureBox control to the form by double-clicking the
PictureBox item in the toolbox, and set its properties as follows:

Designing an Interface 17

Property Value

Name picShowPicture
BorderStyle FixedSingle
Location 8,8

Size 282,275

After you've made these property changes, your form will look like the one shown in Figure 1.10.
Click the Save All button on the toolbar to save your work.

DQ Picture Viewer - Microsoft Visual Studio ¥ [QuickLaunch (Ctrie0) Pla B =
File Edit View Project Budd Debug Tesm Took Test Analyze Window Help Jarmes Foxall =
(RS - B P EESE A S S Ge B 0 |Debug -| & = |dny cPU -]
ViewsrForm.vb [Design]* @ X * | Solution Explorer -0 x
' s A e-seo@m| o "
< 2 Picture Viewer IR =H - o . e o
Q a Iy
Selact Picture [Picture Viewer
| *8 Analyzers
Gt F My Project
{ ¥ =@ References
¥ App.config
| b VieweFormaub
a u)
d o

Properties. -3 x
-

E (D F |

ImageLocation -
B Initiallmage [Ee] system.Drawing
B Location 8.8

Locked False
@ Margin 3333

B MmimumSze 0,0
B MinimumSize 0,0

Madifiers Friend
B Padding 0000
B Size 282,275

SizeMode MNommal

Tag =
Size

The size of the contral in pixels.

FIGURE 1.10
An application’s interface doesn’t have to be complex to be useful.

18 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

Adding an Invisible Control to a Form

All the controls you've used so far sit on a form and have a physical appearance when a user
runs the application. Not all controls have a physical appearance, however. Such controls, called
nonvisual controls (or invisible-at-runtime controls), aren’t designed for direct user interactivity.
Instead, they’re designed to give you, the programmer, functionality beyond the standard fea-
tures of Visual Basic.

To enable users to select a picture to display, for example, you need to enable them to locate a
file on their hard drives. You might have noticed that whenever you choose to open a file from
within any Windows application, the dialog box displayed is almost always the same. It doesn’t
make sense to force every developer to write the code necessary to perform standard file opera-
tions, so Microsoft has exposed the functionality via a control that you can use in your projects.
This control is called OpenFileDialog, and it will save you dozens of hours that would other-
wise be necessary to duplicate this common functionality.

BY THE WAY

Other controls in addition to the OpenFileDialog control give you file functionality. For example,
the saveFileDialog control provides features for allowing the user to specify a filename and path
for saving a file.

Display the toolbox and scroll down until you can see the Dialogs category. Expand the Dialogs
category and then double-click the OpenFileDialog to add it to your form. Note that the con-
trol isn’t placed on the form; rather, it appears in a special area below the form (see Figure 1.11).

This happens because the OpenFileDialog control has no form interface to display to the user.
It does have an interface (a dialog box) that you can display as necessary, but it has nothing to
display directly on a form.

Select the OpenFileDialog control and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter PNG Files|*.png|Windows Bitmaps|*.bmp|JPEG Files|*.jpg

Title Select Picture

Designing an Interface 19

0 Picture Viewer - Microsoft Visual Studio ¥ B3 Quick Launch (Ctrle Q) Pl e B x
File Edit View Project Build Debug Tesm Format Took Test Anshze Window Help larmies Feaall =
(LR B PRSI 3 G & O [Debug - - [y CPU -] &

[l ViewesFormuvk [Design]® = % » [Solution Explorer -0 x
F P A e-s¢dm@m o
- M Picture Viewer [E=NRC)| Search Solution Explarer {Cirs p-
o et P] Picture Viewer

5 8 Anshyzers

i Gt & My Project

¥+ References
¥3 App.config
b = ViewerFormvb

L Solution Explorer [RESTIRSEN

Properties

OpenfFileDialog1 System Windaws.Forms.l =

EN|RE| s

@ [ApplicationSetting -
[Name} OpenFileDialog1
AddEstension True
AutoUpgradeEnab True
CheckFileExists True
CheckPathivists True
DefaultExt
Dereferencelinks True
FileMame OpenFileDialog1
Filter
Filterindex 1

True

a
[OpenFileDiaiog 1 FileMame

The file first shawn in the dialog box, of the

last ane selected by the user.

FIGURE 1.11
Controls that have no interface appear below the form designer.

BY THE WAY

Don’t actually enter the text <make empty> for the filename; | really mean delete the default value
and make this property value empty.

The Filter property is used to limit the types of files that will be displayed in the Open File
dialog box. The format for a filter is description|filter. The text that appears before the first
pipe symbol (|) is the descriptive text of the file type, whereas the text after the pipe symbol is
the pattern to use to filter files. You can specify more than one filter type by separating each
descriptionl|filter value with another pipe symbol. Text entered into the Title property appears
on the title bar of the Open File dialog box.

The graphical interface for your Picture Viewer program is now finished. If you pinned the tool-
box open, click the pushpin on the title bar of the toolbox now to close it. Click Save All on the
toolbar now to save your work.

20 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

Writing the Code Behind an Interface

You have to write code for the program to be capable of performing tasks and responding to
user interaction. Visual Basic is an event-driven language, which means that code is executed in
response to events. These events might come from users, such as a user clicking a button and
triggering its Click event, or from Windows itself (see Hour 4, “Understanding Events,” for a
complete explanation of events). Currently, your application looks nice, but it won’t do any-
thing. Users can click the Select Picture button until they can file for disability with carpal tunnel
syndrome, but nothing will happen, because you haven’t told the program what to do when the
user clicks the button. You can see this for yourself now by pressing F5 to run the project. Feel
free to click the buttons, but they don’t do anything. When you're finished, close the window you
created to return to Design mode.

You write code to accomplish two tasks. First, you write code that lets users browse their hard
drives to locate and select a picture file and then display it in the picture box. (This sounds a lot
harder than it is.) Second, you add code to the Quit button that shuts down the program when
the user clicks the button.

Letting a User Browse for a File

The first bit of code you’ll write enables users to browse their hard drives, select a picture file, and
then see the selected picture in the PictureBox control. This code executes when the user clicks
the Select Picture button; therefore, it’s added to the Click event of that button.

When you double-click a control on a form in Design view, the default event for that control is
displayed in a code window. The default event for a Button control is its C1ick event, which
makes sense, because clicking is the most common action a user performs with a button. Double-
click the Select Picture button now to access its Click event in the code window (see Figure 1.12).

When you access an event, Visual Basic builds an event handler, which is essentially a template
procedure in which you add the code that executes when the event occurs. The cursor is already
placed within the code procedure, so all you have to do is add code. Although this may seem
daunting, by the time you're finished with this book, you'll be madly clicking and clacking away
as you write your own code to make your applications do exactly what you want them to do—
well, most of the time. For now, just enter the code as I present it here.

It's important that you get in the habit of commenting your code, so the first statement you'll
enter is a comment. Beginning a statement with an apostrophe (') designates that statement as
a comment. The compiler won't do anything with the statement, so you can enter whatever text
you want after the apostrophe. Type the following statement exactly as it appears, and press the
Enter key at the end of the line:

' Show the open file dialog box.

Writing the Code Behind an Interface 21

DQ Picture Viewer - Microsoft Visual Studio ¥ B3 Quick Launch (Ctr+0) P IT T

File Edit View Project Buld Debug Tesm Took Test Analyze Window Help Jammes Fexatl - [
O-0 F-LMWP| 3™ - | »osa Ga B o [Debug | & = [anycru -]

7 R icveiarm.vb [Design]® - R S

T SiPublic Class Viewsrfors & S = o

L = Private Sub btnSelectPicture Click(sender As Object, e As Eventirgs) Hendles btnSelectPicture.Click - @lo-scd@|e

& End Sub

: fag e —f [Picture Viewer

a 8 Analyzers

" o My Project

=@ References
¥ App.config
¥ = ViewerFormab

Solution Explorer [RESTRSNEI

Properties

Ln3 Cold Chi NS

FIGURE 1.12
You'll write all your code in a window such as this.

The next statement you enter triggers a method of the OpenFileDialog control that you

added to the form. Think of a method as a mechanism to make a control do something. The
ShowDialog () method tells the control to show its Open dialog box and let the user select a
file. The ShowDialog () method returns a value that indicates its success or failure, which you’ll
then compare to a predefined result (DialogResult .OK). Don’t worry too much about what'’s
happening here; you'll learn the details of all this in later hours. The sole purpose of this hour is
to get your feet wet. In a nutshell, the ShowDialog () method is invoked to let a user browse for
a file. If the user selects a file, more code is executed. Of course, there’s a lot more to using the
OpenFileDialog control than presented in this basic example, but this simple statement gets
the job done. Enter the following statement and press Enter to commit the code. (Don’t worry
about capitalization; Visual Basic will fix the case for you.)

If ofdSelectpicture.ShowDialog = DialogResult.OK Then

22 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

BY THE WAY

After you insert the statement that begins with If and press Enter, Visual Basic automatically cre-
ates the End If statement for you. If you type in End If, you'll wind up with two End If state-
ments, and your code won’t run. If this happens, delete one of the statements. Hour 13, “Making
Decisions in Visual Basic Code,” has all the details on the If statement.

It’s time for another comment. The cursor is currently between the statement that starts with 1£
and the End If statement. Leave the cursor there and type the following statement, remember-
ing to press Enter at the end of the line:

' Load the picture into the picture box.

DID YOU KNOW?

Don’t worry about indenting the code by pressing the Tab key or using spaces. Visual Basic auto-
matically indents code for you.

This next statement, which appears within the If construct (between the If and End If state-
ments), is the line of code that actually displays the picture in the picture box.

Type the following statement and press Enter:

picShowPicture.Image = Image.FromFile (ofdSelectPicture.Filename)

In addition to displaying the selected picture, your program will also display the path and file-
name of the picture on the title bar. When you first created the form, you changed its Text
property in the Properties window. To create dynamic applications, properties need to be con-
stantly adjusted at runtime, and you do this using code. Insert the following two statements,
pressing Enter at the end of each line:

' Show the name of the file in the form's caption.
Me.Text = "Picture Viewer (" & ofdSelectPicture.FileName & ")"

After you've entered all the code, your editor should look like that shown in Figure 1.13.

Writing the Code Behind an Interface 23
DQ Picture Viewer - Microsoft Visual Studio 0 Quick ctrle 2 Pl e B x
File Edit View Project Buld Debug Tesm Tools Test Amalge Window Help James Fexail - [
(- B-OmWP| = b Shart G B o |Debug - | Any CPU -] 5
[l vieweFormubt = % Form.vb [Design]* * | Solution Explorer -0 x
T =iPublic Clas arm s - s o
L S Private nSelectPicturs Click(sender As Dbject, = As fvemtirzs) Handles btnSelectPicture.Click - @dlo-scd@|e
=4 * Show the open file dialog box. Search Solutiun Explarer (Cik a-
g e oL Dl lamen] Picture Viewer
g ronFile (ofdselectPicture. Filetase) *8 Analyzers
7 1 the fore's caption. A My Project
e.Text = "Picture Viewer (* & ofdselectPicture.Filetane & *)* —f » *® References
¥ App.config
End If » I ViewerFormab
End Sub
End Class
Solution Explorer [RESTRSENS
Properties
=k e
00 % -] ¢ b
Lng Col39 Ch3a INS

FIGURE 1.13

Make sure that your code exactly matches the code shown here.

Terminating a Program Using Code

The last bit of code you'll write terminates the application when the user clicks the Quit but-
ton. To do this, you need to access the click event handler of the btnQuit button. At the top
of the code window are two tabs. The current tab says ViewerForm.vb*. This tab contains the

code window for the form that has the filename ViewerForm.vb. Next to this is a tab that says

ViewerForm.vb [Design]*. Click this tab to switch from Code view to the form designer. If you

receive an error when you click the tab, the code you entered contains an error, and you need

to edit it to make it the same, as shown in Figure 1.13. After the form designer appears, double-
click the Quit button to access its C1ick event.

24 Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

Enter the following code in the Quit button’s C1ick event handler; press Enter at the end of each
statement:

' Close the window and exit the application
Me.Close ()

BY THE WAY

The Me.Close () statement closes the current form. When the last loaded form in a program is
closed, the application shuts itself down—completely. As you build more robust applications, you’ll
probably want to execute all kinds of cleanup routines before terminating an application, but for this
example, closing the form is all you need to do.

Running a Project

Your application is now complete. Click the Save All button on the toolbar (the button with

two floppy disks), and then run your program by pressing F5. You can also run the program by
clicking the button on the toolbar that looks like a right-facing triangle and resembles the Play
button on a DVD player and has the label Start. (This button can also be found on the Debug
menu.) Learning the keyboard shortcuts will make your development process move along faster,
so I recommend that you use them whenever possible.

When you run the program, the Visual Basic interface changes, and the form you’ve designed
appears, floating over the design environment (see Figure 1.14).

Running a Project 25

o Picture Viewer (Running) - Microsoft Visual Studio ¥ 3| Quick Launch (Ctrl+Q) Pl- o ox
File Edit View Project Buld Debug Tesm Toolks Test Analye Window Help James Foxsl =
B - R -t RSP EE - - Contmuz = H B G 0 - o _E = -
ViewerFormwvb 8 2 X
=Public Class crm o —
= Private Sub btnSelectPicture_Click{sender As Object, e As Eventirgs) Handles btnSelectPicture.Clita @lo-SG ol k-
* Show the open file dialog bax. 3 rhe 2 -
1f nfdselecrplcn:ur:.shn«uialng - sult.0K Then & Picture
* Load the picture into the pictu — Wiriine
plcshowPicture, Tmage = Froneile{ofdselectPicture. Filename) 8 Analyeers
* Show the na the form's caption. A My Project
e, Text = "Plcturs View ofdselectPicture.FileName & ")" b em References
¥ App.canfig
End Tf - S _— = b = ViewerFormyb
End sub 1o Picture Viewer - olEN |
Private Sub btnQuit_Click(sender As Obj E—
* Close the window and exit the apj Select Picture
‘. Close
0 Gt
End Sub
End Class
Ea
Iwo*. -4 v
Ready Ln 16 Call Chl NS

FIGURE 1.14
When in Run mode, your program executes just as it would for an end user.

You are now running your program as though it were a standalone application running on
another user’s machine; what you see is exactly what users would see if they ran the program
(without the Visual Studio 2015 design environment in the background, of course). Click the
Select Picture button to display the Select Picture dialog box, shown in Figure 1.15. Use this dia-
log box to locate a picture file. When you've found a file, double-click it, or click once to select it
and then click Open. The selected picture is then displayed in the picture box, as shown in
Figure 1.16.

26 HOUR 1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

o Picture Viewer (Running) - Microsaft Visual Studic ¥ B Quick Launch (CtiQ) Pl- O x
Fle Edit View Project Buld Debug Team Format Took Tet Anshze Window Help Jammes Fexail - [

b - B S| L BER o Continue = H ® , - H_ =

ViewerFormv @

ViewesFormvb [Design] 8 = X%

-~ Picture Viewer =[BT

= Select Picture n

(] L « Dropbox + TYVE2015 » CHO1- Jumpsng in with Both Feet + Samples v O
Organize = New folder E E ®
& OneDrve n
#% Homegroup mﬁ

W jarnes foxall @
Picture Viewer Divinglamaica.pn
8 Ths PC

— ke Deskicp

!l Documents

& Downloads
U Music

DpenFileDialag

= Pictures
¥ Tess (ptayroom) a
H Videos rture
i Local Disk (C)
= MasterData (D)
I ofiisd w Recording (E)

File name: w| | PNG Files {".png) v

== s, pogWindows Bil
Filterindex 1

True

The file filters to display in the dialog by, for example, “C2
il cl Al Files]". ",

FIGURE 1.15
The OpenFileDialog control handles all the details of browsing for files. Cool, huh?

BY THE WAY

When you click the Select Picture button, the default path shown depends on the last active path in
Windows, so it might be different for you from what you see in Figure 1.15.

BY THE WAY

If you want to select and display a picture from your digital camera, chances are the format is JPEG,
so you need to select this from the Files of Type drop-down. Also, if your image is very large, you'll
see only the upper-left corner of the image (what fits in the picture box). In later hours, you learn
how to scale the image to fit the picture box, and even resize the form to show a larger picture in its
entirety.

When you’ve finished playing with the program, click the Quit button to return to Design view.

Summary 27

o Picture Viewer (Running) - Microsaft Visual Studio ¥ B3| Quick Launch (Ctd+ Q) Pla B x
File Edit View Project [Buld Debuy Team Format Took Test Anshze Window Help Jarmies Fousll =
-5 S| B o b Contnie- MM G 0 - = .

Salution Explarer
R b-sl PR o p -
Search Solution Explarer (Ctrl P-
[Picture Viewer
=8 Analyzers
Qut A My Praject
B =8 References
¥ App.canfig
b [ViewsrFarm.vb

» Picture Viewer

- Picture Viewer (DADropbox\Tyvez01. ~ = EE

| Select Pictur

System.
S NiaF |
B (ApplicationSettings) .

(Name] ofdSelectPicture
AddEstension True
z = AutoUpgradeEnabled True
B oS eecictura CheckfileExsts True
CheckPathExists True
DefaultEst
Dereferencelinks True
Immediate Windaw x FileName
Filter PNG Files]"png[Windows Bit
Filterindex 1
GenerateMember True =
Filter
The file filters to display in the dialog box, for example, “C2
il cl Al Files]". ",

FIGURE 1.16
Displaying pictures is easy if you know just a few techniques.

Summary

That's it! You've just created a bona fide Visual Basic program. You've used the toolbox to build
an interface with which users can interact with your program, and you've written code in stra-
tegic event handlers to empower your program to do things. These are the basics of application
development in Visual Basic. Even the most complicated programs are built using this funda-
mental approach: You build the interface and add code to make the application do things. Of
course, writing code to do things exactly the way you want things done is where the process can
get complicated, but you're on your way.

If you take a close look at the organization of the hours in this book, you'll see that I start out
by teaching you the Visual Basic (Visual Studio .NET) environment. I then move on to build-
ing an interface, and later I teach you about writing code. This organization is deliberate. You
might be eager to jump in and start writing serious code, but writing code is only part of the

28

Jumping in with Both Feet: A Visual Basic 2015 Programming Tour

equation—don’t forget the word Visual in Visual Basic. As you progress through the hours, you'll
build a solid foundation of development skills.

Soon, you'll pay no attention to the man behind the curtain. You'll be that man (or woman)!

Q&A

Q.
A.

Can | show bitmaps of file types other than BMP, JPG, and PNG?

Yes. PictureBox supports the display of images with the extensions BMP, JPG, ICO, EMF,
WMF, PNG, and GIF. PictureBox can even save images to a file using any of the sup-
ported file types.

Is it possible to show pictures in other controls?

PictureBox is the control to use when you are just displaying images. However, many
other controls allow you to display pictures as part of the control. For instance, you can dis-
play an image on a button control by setting the button’s Image property to a valid picture.

Workshop

Quiz

1.
2.

What type of Visual Basic project creates a standard Windows program?

What window is used to change the attributes (location, size, and so on) of a form or control
in the IDE?

3. How do you access the default event (code) of a control?

What property of a picture box do you set to display a picture?

. What is the default event for a button control?

Answers

1.

@ p N

Windows Forms Application

The Properties window

Double-click the control in the designer
The Image property

The Click event

Exercises 29

Exercises

1. Change your Picture Viewer program so that the user can also locate and select GIF files.
(Hint: Change the Filter property of the OpenFileDialog control.)

2. Create a new project with a new form. Create two buttons on the form, one above the other.
Next, change their position so that they appear next to each other.

This page intentionally left blank

Symbols

& (ampersand), 300

' (apostrophe), 21, 345
* (asterisk), 74, 171

= (equals sign), 65

+ (plus), 300

_ (underscore), 244

A

Abort, DialogResult, 396

Accept buttons, creating,
173-174

AcceptButton property, 173-174
AcceptsReturn property, 169
accessing

Help, 60

object’s events, 91-93

Windows Registry, with

My.Computer.Registry,
460-463

Add() method, 182-183, 206

Index

adding
comments, to code, 344-345
controls
to forms, 13-14

to forms with toolbox,
41-43

controls to forms, 131-133
to Date/Time, 305-306

images to backgrounds,
forms, 113-116

invisible controls, to forms,
18-19

items, to lists, 182-183
list items with code, 206
to enhanced lists,
204-206
nodes to Tree View control,
208-210
PageSetupDialog controls,
508-509
Print button, to forms,
506-508
Print Preview button, to
forms, 506-508
PrintDocument controls,
508-509

568 adding

PrintPreviewDialog control,
508-509

project files, 55-56
scrollbars, to text boxes, 169

Send Email toolbar buttons,
530-531

toolbar buttons, with Items
collection, 230-233

visible controls to forms,
15-17

addition, performing, 292

Add/Remove Programs dialog
box, 553

adjusting grid, granularity, 135
ADO.NET, 484-485

closing connections to data
sources, 491

connecting to databases,
485-491

connection object,
ConnectionString property,
487

connection strings, building,
487-489

ConnectionString property,
489-490

creating new records,
499-500

DataAdapter, creating,
492-493

DataRow, referencing fields in,
494-496

DataTable, 491

creating/populating,
493-494

deleting records, 500-501
editing records, 498-499
navigating records, 496-498

running database examples,
502

System.Data, 484

advanced breakpoint features,
357

advanced options for ClickOnce
programs, 556

aligning controls, 140-141

alignment, text alignment, text
boxes, 166-167

ampersand (&), 300

Anchor property, 145

anchoring controls, 143-149

And, 297

anticipated exceptions, 364-367

apostrophe (), 21, 345

appearance of forms, changing,
109

adding images to background,
113-116

buttons, 117-119
assigning icons, 116-117
background color, 111-113
borders, 119-121
controlling size, 121-122

displaying text on title bars,
110-111

applications, uninstalling,
553-555

arguments, 252
Arial font, 424
arithmetic operations

equalities, comparing,
295-296

performing, 291-292
addition, 292
division, 293

exponentiation, 293
modulus arithmetic, 293
multiplication, 292-293
negation, 292

order of operator prece-
dence, 294-295

subtraction, 292
arrays, 259, 273
dimensioning, 273

multidimensional arrays, creat-
ing, 274-276

referencing array variables,
273274

two-dimensional arrays, 274
As Integer, 247, 252
assigning

icons, to forms, 116-117

shortcut keys, to menu items,
227-229

asterisk (*), 71, 171
Attachment, .NET classes, 530
attributes

file attribute flags, 449

of files, getting, 449

object attributes, as proper-
ties, 376-378

Auto Hide, 39
auto hiding, design windows, 39
AutoScroll, 153
AutoScrollMargin, 153
AutoScrollMinSize, 153
autosizing, controls, 143-149
avoiding

infinite recursion, 255-256

recursive events, 90

BackColor property, 111-113

background color, changing on
forms, 111-113

BaseDirectory(), 477
benefits of constants, 264
binary data, 53

binding object references to vari-
ables, 382

early-binding, 384-385

late-binding, 382-384
bitmaps, Graphics object,

415-416

block scope, 277
Boolean, 260, 263
Boolean logic, 291, 296-297
Boolean operators, 297

And, 297

Not, 297-298

Or, 298

Xor, 298

borders, customizing (forms),
119-121

branching within procedures,
GoTo, 324

breakpoints, 349-351

advanced breakpoint features,
357

breaking only when hit a certain
number of times, 359

stopping code execution, 358
BringToFront method, 151

browsing files, writing code for,
20-22

brushes, 424

btnQuit button, 23

build errors, 346-349

Button controls, 14, 322

buttons

Accept buttons, creating,
173-174

Cancel buttons, creating,
174-175

creating, 172-173
message boxes, 393-396

determining which button
is clicked, 396-397

Print button, adding, 506-508

Print Preview button, adding,
506-508

Quit button, 23
removing, 250-251
Save All button, 10

Send Email toolbar buttons,
adding, 530-531

Byte, 260
ByVval, 253

C

calling
code procedures, 248-251
passing parameters, 252-254
Function, 250
Cancel, DialogResult, 396
Cancel buttons, creating, 174-175
CancelButton property, 174-175
Case Else, 319

Case statements, evaluating,
320-321

casting, data from one data type
to another, 262-263

casting downward, 262
casting upward, 262
Catch, 361-363

anticipated exceptions, 364

Click events 569

CenterParent, 126
CenterScreen, 126
ChangePageSettings(), 520
changing

form’s name, 108

printer and page settings,
519-521

properties, 44-46
size, of forms, 11-12
Char, 260
check boxes, yes/no options, 175

checked menu items, creating,
220-222

CheckState property, 175
child forms, 156-157
circles, drawing, 423
class interfaces, 374
class modules, 54, 240
classes, 372

comparing with standard mod-
ules, 373

encapsulating data and code,
372-373

exposing object attributes as
properties, 376-378

instantiating objects from,
381-382

object interfaces, creating,
374-376

System.Random class, 425
ClassesRoot, 460

Clear() method, 76, 185, 207,
423

clearing

drawing surfaces, 423

lists, 185

nodes, Tree View control, 211
Click, 406
Click events, 20, 93, 172

570 ClickOnce

ClickOnce, 545-546

creating applications, with
Publish Wizard, 547-551

Picture Viewer ClickOnce
install program, testing, 552

setting advanced options for
programs, 556

clients, 373
interactions with objects, 375
CLng(), 355

Close button, adding, to forms,
117-119

Close() method, 127
closing

connections to data sources,
ADO.NET, 491

loops, with Next statement,
330-331

COBOL, 561

code
adding list items, 206
comments, adding, 344-345
for email, testing, 541-542

encapsulating in classes,
372-373

manipulating, List View con-
trol, 206-207

referencing properties, 65-66
removing, list items, 207
writing
for browsing files, 20-22
with procedures, 58-59

to retrieve file properties,
450-451

to send emails, 537-541

terminating programs,
23-24

code labels, 325
code procedures
calling, 248-251

passing parameters,
252-254

writing, 242-243

declaring procedures that
don't return values,
243-247

declaring procedures that
return values, 247-248

collections, 79-81
Controls collection, 79-81
color drop-down list, 47
color properties, 46-49
colors, system colors, 417-419

columns in enhanced lists, List
View control, 203

Combo Box control, 188-190

combo boxes, creating drop-down
lists, 188-190

comments, 21
adding to code, 344-345
creating, 345

common language runtime, .NET
Framework, 560

common type system, .NET
Framework, 563

comparing
classes, with standard mod-
ules, 373

equalities, 295-296
comparison operators, 295
components, 53-54

class modules, 54

distributable components,
2forms, 54

modules, 54
of For statement, 330
user controls, 54

concatenating, strings, of text,
299-300

concatenation, 81

condition, 332

conditions, stopping code execu-
tion, 358

connecting to databases, ADO.
NET, 485-491

connection object,
ConnectionString property, 487

connection strings, building,
487-489

ConnectionString property,
487-490

constants, 259, 263-265
benefits of, 264
creating, 265
defining, 264
constructs, If...Then, 313-315
containers
Group Box controls, 176-178
radio buttons, 178-180
Context Menu Strip control, 225

context menus, implementing,
225-227

continuing, looping before Next is
reached, 332

control box buttons, adding to
forms, 117-119

Control objects, 7

controlling, size, of forms,
121-122

controls, 131, 163

adding to forms, 13-14,
131-133

with toolbox, 41-43
aligning, 140-141
Button controls, 14
buttons. See buttons
containers, radio buttons,
178-180
Context Menu Strip control,
225

Graphics object, creating, 414

Group Box controls, 176-178
Image List control, 200-202

invisible controls, adding to
forms, 18-19

Label controls, 97

displaying static text,
163-164
layering, 151
List Box control, 180
List View control

building enhanced lists.
See enhanced lists

manipulating with code,
206-207

manipulating, 133
aligning controls, 140-141
anchoring, 143-149
autosizing, 143-149

with grid (size and snap),
133-136

selecting groups of con-
trols, 138-140

setting property values for
groups of controls, 142

sizing controls, 142

with snap lines, 136

spacing evenly, 142
Menu Strip control, 216
Open File Dialog control, 193

OpenfFileDialog controls, 14.
See also OpenFileDialog
controls

PageSetupDialog controls,
508-509

Panel, 176-178
PictureBox controls, 14
placing on group boxes, 178

PrintDocument controls, add-
ing, 508-509

PrintPreviewDialog control,
adding, 508-509

sizing, 142

Status Bar control, 235-237

Tab control, 197-200

tbrMainToolbar control, 233

Text Box control, 172

Textbox control, 89

Timer control, 194

ToolStrip control, 229-230

Tree View control, 201
adding nodes, 208-210
clearing all nodes, 211

creating hierarchical lists,
207-208

removing nodes, 211
user controls, 54

visible controls, adding to
forms, 15-17

Controls collection, 79-81

Copy() method, 444-445

copying files, File object, 444-445
CreateGraphics, 75
CreateGraphics(), 414
CreateSubKey() method, 461
CurrentConfig, 460

currently viewed images, printing,
514-516

CurrentUser, 460

custom dialog boxes, creating,
398-401

Custom Dialog Example, creating,
398-401

custom object events, 375
customizing
design windows, 35-36
forms, 109
adding buttons, 117-119

adding images to back-
ground, 113-116

DataSet 571

assigning icons, 116-117

background color, 111-113

borders, 119-121

controlling size, 121-122

displaying text on title
bars, 110-111

DashStyle, 416-417

data, encapsulating, in classes,
372-373

data sources, closing connections
to, 491

data types, 260

casting data from data type to
another, 262-263

Date, 304-305
determining, 260
guidelines for, 261-262
Object, 262

Time, 309

type conversion functions,
262

value ranges, 260
data typing, 260

enforced variable declaration,
269

DataAdapter, 484
ADO.NET, 492-493

databases, connecting to, ADO.
NET, 485-491

DataReader, 484

DataRow, ADO.NET, referencing
fields in, 494-496

DataSet, 484

572 DataTable

DataTable, 484
ADO.NET, 491

creating new records,
499-500

creating/populating,
493-494

deleting records, 500-501
editing records, 498-499

navigating records,
496-498

Date, 260
Date data type, 304-305

date information, getting for files,
448

DateAdd(), 305-307
DateDiff(), 307
Date/Time

adding to/subtracting
from, 305-306

determining intervals
between, 307

determining whether val-
ues are dates, 309

formatting, 308
retrieving
current system, 309
parts of dates, 307-308
debugging
breakpoints, breaking only

when hit a certain number of
times, 359

comments, adding to code,
344-345

errors, 346-349

Picture Viewer project,
Windows Registry, 467-470

sending messages to Output
window using trace points,
360

stopping code execution under
specific conditions, 358

debugging tools, 349

advanced breakpoint features,
357

breakpoints, 349-351
Immediate window, 351-356

Debug.WriteLine() method, 356,
360

Decimal, 260
decisions
Elself, 317-318
GoTo, 324
If...Then, 313-315

executing code when
expression is false, 316

nesting, 318-319

Declarations section, modules,
279

declaring

procedures that don't return
values, 243-247

procedures that return values,
247-248

variables, 58, 266-267

variables of static scope,
281-282

default values, 267
defaultresponse parameter, 402
Define Color dialog box, 48
Delete() method, 79, 446-447
deleting

event procedures, 99

files, File object, 446-447

menu items, 220

records, ADO.NET, 500-501

Registry keys, 461-462

deliberate recursion, 256

design time, manipulating, items,
181

design windows
auto hiding, 39
customizing, 35-36
docked windows, sizing, 38
docking, 37-39
floating, 36
showing/hiding, 36
designing interfaces
invisible controls, 18-19
visible controls, 15-17
Destination variable, 513
dialog boxes

creating, custom dialog boxes,
398401

Define Color dialog box, 48
New Project dialog box, 4
Save Project dialog box, 10

Send Email dialog box, creat-
ing, 532-536

tabbed dialog boxes, creating,
197-200

DialogResult, MessageBox.Show(),
396

Dim, 267
Dim statement, 277
dimensioningarrays, 273

variables, creating new
objects, 386

directories, manipulating with
Directory object, 452-453

Directory object, manipulating,
directories, 452-453

display position, specifying for
forms, 126-127
displaying
lists with list boxes, 180-181

log files, Picture Viewer proj-
ect, 477-479

messages, with MessageBox.
show() function, 391-393

options from Windows
Registry, 464-465

static texts, with Label con-
trols, 163-164

text on title bars, forms,
110111

distributable components, 2. See
also programs

division, performing, 293
docking, design windows, 37-39
documents
previewing, 517-518
printing, 510-516
creating Printimage proce-
dures, 512-513

currently viewed images,
514-516

DoesSourceFileExist() method,
444

Do.Loop, 336
creating, 336
examples, 338-341
ending, 336-337
Do.Loop structure, 277
Double, 260
double-clicking, 7

adding controls to toolbox,
132

in Solution Explorer, 52

dragging controls from toolbox,
132

DrawBorder(), 476
DrawEllipse() method, 423
Drawlmage() method, 430
drawing

brushes, 424

clearing drawing surface, 423

event names, keeping current

controls, to add to forms,
132-133

to forms, 425
pens, 416-417
rectangles, 421-422
shapes, 422
circles, 423
ellipses, 423
lines, 422
rectangles, 423
system colors, 417-419
text, 423-425
drawing surfaces, clearing, 423
DrawLine() method, 422

DrawRectangle() method, 76-77,
423

DrawString() method, 423-425

drop-down lists, creating with
combo boxes, 188-190

drop-down menus, creating, for
toolbar buttons, 234

dynamic applications, creating, 22

early-binding, object variables,
384-385

editing records, ADO.NET,
498-499

ellipses, drawing, 423
Else, 316

Elself, 317-318
emails, sending

adding a Send Email toolbar
button, 530-531

classes used to send, 530

creating Send Email dialog
box, 532-536

testing code, 541-542
writing code for, 537-541
Enabled property, 168

encapsulating data and code in
classes, 372-373

End Function, 254

End If statements, 22, 314
End Sub, 243, 245, 254
ending Do.Loop, 336-337

enforced variable declaration,
data typing, 269

enhanced lists, building with List
View control, 202-203

adding list items, 204-206
creating columns, 203
enumerations, 510
creating, 511
equalities, comparing, 295-296
equals sign (=), 65
error handlers

anticipated exceptions,
364-367

exceptions, 363-364

writing, Try...Catch...Finally,
360-363

Error icon, 395
Error List window, 272
errors
build errors, 346-349
runtime errors, 346-349
evaluating

Case statements, If...Then,
320-321

expressions, Select Case,
319

event declarations, 93-94
event handlers, creating, 98-103

event names, keeping current,
103

573

574 event parameters

event parameters, 95-97
event procedures
creating, 92
deleting, 99
event projects, building
event handlers, 98-103
user interfaces, 97-98
event-driven language, 20
event-driven programming, 87-88
accessing object’s events,
91-93
event names, 103
event parameters, 95-97
recursive events, avoiding, 90
triggering events, 88
events
Click events, 93
custom object events, 375

object’s events, accessing,
91-93

Paint event, 429-430
recursive events, avoiding, 90
text boxes, 172
triggering, 88
by objects, 89
by operating systems, 90
through user interaction,
88-89
exceptions, 346

anticipated exceptions,
364-367

causing, 365
error handlers, 363-364

Exclamation, MessageBoxIcon,
393

Exists() method, 443-444
Exit statements, 254

exiting
loops early, For...Next, 332
procedures, 254

explicit variable declaration,
269-270

exponentiation, performing, 293
expression argument, 304

executing code when expres-
sion is false, 316

expressions, variables, 268

extensions, .vb, 53

F

False, executing code when
expression is false, 316

file attribute flags, 449

file filters, creating in
OpenFileDialog controls,
439-440

File object, manipulating files,
443

copying files, 444-445
deleting files, 446-447

determining whether files
exist, 443-444

moving files, 445-446

retrieving file properties,
447-451

file operations
OpenFileDialog controls,
435-439
creating file filters,
439-440
SaveFileDialog controls,
441-443

file properties
retrieving, 447-451

writing code for retrieing,
450-451

FileName property, 439
files

attributes, getting for files,
449

browsing, writing code for,
20-22

copying with File object,
444-445

deleting with File object,
446-447

getting date and time informa-
tion, 448

manipulating with File object,
443

copying files, 444-445
deleting files, 446-447

determining whether files
exist, 443-444

moving files, 445-446

retrieving file properties,
447-451

moving with File object,
445-446

SaveFileDialog controls,
435-436

Filter property, 19, 439
FilterIndex property, 440
Finally, 361-363

findtext argument, 304
floating, design windows, 36
Font object, 424

For statement, initiating loops,
330

Form object, 7
Format(), 308
Format16bppGrayScale, 415

Format16bppRgb555, 415
Format24bppRgb, 415
formatting, Date/Time, 308

FormBorderStyle property,
119-121

forms, 54, 107
adding

controls with toolbox,
41-43

invisible controls, 18-19
Print button, 506-508

Print Preview button,
506-508

visible controls, 15-17
buttons. See buttons
changing appearance, 109

adding buttons, 117-119

adding images to back-
ground, 113-116

assigning icons, 116-117
background color, 111-113
borders, 119-121
controlling size, 121-122
displaying text on title
bars, 110-111

changing names, 108

changing size, 11-12

check boxes, 175

child forms, 156-157

controls
adding, 13-14, 131-133
layering, 151

manipulating. See manipu-
lating

displaying in normal, maxi-
mized or minimized state,
124-125

drawing to, 425
Graphics object, creating, 414

icons, 11

MDI forms, creating, 154-158
modality, 123-124

nonmodal windows, creating,
151

parent forms, 156-158

preventing from appearing on
taskbars, 127

removing images, 116

scrollable forms, creating,
152-153

showing, 122-123
specifying initial display posi-
tion, 126-127
startup forms, 158-159
tab order, creating, 149-151
text boxes, 164-166
events, 172

limiting number of charac-
ters, 170-171

multiline text boxes,
167-168

password fields, 171-172

scrollbars, 169

text alignment, 166-167
Text property, 10

transparent forms, creating,
151-152

unloading, 127-128

For...Next, 329

closing with Next statement,
330-331

continuing looping before Next
is reached, 332

creating, 332-334

exiting loops early, 332

initiating loops using For, 330

specifying increment value
with Step, 331-332

forward references, 7

GetCreationTime 575

Friend, 282

Function, 58, 247-248
calling, 250

functions, 242
classes, 375

DateAdd(), 305-306,
307DateDiff(), 307

declaring, 247-248

exposing as methods,
381Format(), 308

IsDate(), 309
IsNumeric(), 314-315
LTrim(), 303
Replace(), 304
RTrim(), 303
strings
Instr(), 302-303
Len(), 300

Microsoft.VisualBasic.
Left(), 300-301

Microsoft.VisualBasic.
Mid(), 301-302
Microsoft.VisualBasic.
Right(), 301
Trim(), 303-304

type conversion functions,
casting data from data type
to another, 262

garbage collection, .NET
Framework, 564

GDI (graphical device interface),
414

Get construct, creating readable
properties, 378

GetAttributes(), 449, 451
GetCreationTime, 448

576 GetLastAccessTime

GetLastAccessTime, 448
GetLastWriteTime, 448
GetSetting(), 460
GetValue() method, 462
ghost forms, 151-152
global scope, 279-280
Gmail, 529

good messages, creating with
MessageBox.show() function,
397

GoTo, 324
granularity, adjusting grid, 135

graphical device interface. See
GDI (graphical device interface)

graphics
drawing. See drawing
forms, drawing to, 425
pens, 416-417
Persisting Graphics project,
creating, 425-431
rectangles, 421-422
shapes. See shapes
system colors, 417-419
Graphics object, 413-414
creating
for bitmaps, 415-416
for forms/controls, 414
drawing to forms, 425

grid, manipulating, controls,
133-136

GridSize, 134-135

Group Box controls, 176-178

group boxes, 176-178

placing controls on, 178

groups of controls, selecting,
138-140

guidelines for, data types,
261-262

Handles, 103
Height property, 12
Help, 59-60
hiding
design windows, 36
toolbars, 40-41

hierarchical lists, creating, with
Tree View control, 207-208

HKEY_CLASSES_ROOT, 458
HKEY_CURRENT_CONFIG, 458
HKEY_CURRENT_USER, 458, 461
HKEY_LOCAL_MACHINE, 458
HKEY_USERS, 458

Icon parameter, message boxes,
393

icons

assigning icons, to forms,
116-117

Error icon, 395

giving to forms, 11
message boxes, 393-396
Question icon, 395

IDE (integrated development envi-
ronment), 2, 6-7, 360

adding, controls to forms with
toolbox, 41-43

customizing, design windows,
35-36

If test, 359
If...Then, 277, 295, 313-316
Elself, 317-318

evaluating, Case statements,
320-321

nesting, 318-319
Select Case, 323-324

building examples,
321-323

Ignore, DialogResult, 396

IL (Intermediate Language),
560-562

Image List control, 200-203
images
adding to backgrounds, forms,
113116
removing from forms, 116
scaling to fit a page, 522-527

storing in Image List controls,
200-202

ImageSize property, 201

Immediate window, debugging
tools, 351-356

implementing context menus,
225-227

Imports, 486

increment value, specifying incre-
ment value with Step, 331-332

infinite recursion, avoiding,
255-256

Inflate() method, 422

Information, MessageBoxlIcon,
393

initial display position, specifying
for forms, 126-127

InitialDirectory property, 439

initializing options variables,
283-286

InputBox(), 401-404

Insert() method, 183

instantiating objects from classes,
381-382

Instr(), 302-303
Integer, 260

integrated development environ-
ment. See IDE (integrated devel-
opment environment)

interfaces

creating for drawing project,
74

designing
adding invisible controls to
forms, 18-19

adding visible controls to
forms, 15-17

Intermediate Language (IL),
560-562

Interval property, 89, 194

intervals, between Date/Time,
307

Invalidate() method, 431

invisible controls, adding to forms,
18-19

invoking, methods, 73
IsDate(), 309
IsNumeric(), 314-315
itemname, 463
items

adding to lists, 182-183

manipulating at design time,
list boxes, 181

manipulating at runtime, list
boxes, 182-187

removing from lists, 183-184
Items collection, 181

adding toolbar buttons,
230-233

Items Collection Editor, 233, 506
Items property, 188

J

JITter (just-in-time compiler), 561

K

key values, Registry keys,
462-463

Keyboard Example project, 405

keyboard input, 404-405

keyboards, user interaction,
404-406

KeyChar property, 406
KeyDown, 404
keypath, 463
KeyPress, 404, 406
keys, Registry keys. See also
Registry keys
KeyUp, 404
keywords
Function, 58
Handles, 103
reserved keywords, 267
Sub, 58
To, 320
Until, 337
While, 337

L

Label controls, 97

displaying, static text,
163-164

language runtime, 560
LargelmagelList property, 203

late-binding, object variables,
382-384

lists 577

layering, controls, 151
LayoutMode, 134

layouts, multiple layouts, 40
Len(), 300

lifetime of, objects, 387

limiting number of characters in
text boxes, 170-171

lines, drawing, 422
List Box control, 180
list boxes, 180-181
items, manipulating
at design time, 181
at runtime, 182-187
list items
adding
with code, 206

to enhanced lists,
204-206

removing, 207
with code, 207
List View control

building enhanced lists,
202-203

adding list items, 204-206
creating columns, 203

manipulating, using code,
206-207
lists
clearing, 185
displaying with list boxes,
180-181

drop-down lists, creating with
combo boxes, 188-190

enhanced lists. See
enhanced lists

hierarchical lists, creating with
Tree View control, 207-208

items
adding, 182-183
removing, 183-184

578 lists

retrieving information about
selected items in lists,
185-187

sorting, 187

literal values, passing to variables,
268

local scope, 278

LocalMachine, 460

Location property, 179

log files, Picture Viewer project
creating, 474-477
displaying, 477-479

testing, 479
Long, 260
looping

Do.Loop, 336

creating, 336

creating examples,
338-341

ending, 336-337
For.Next, 329

closing with Next state-
ment, 330-331

continuing looping before
Next is reached, 332

creating, 332-334
exiting loops early, 332
initiating using For, 330
specifying increment value
with Step, 331-332
LTrim(), 303

MailMessage, 532
.NET classes, 530
managed code, 560

managing projects, 50
with Solution Explorer, 50-52
manipulating
controls, 133
aligning controls, 140-141
anchoring, 143-149
autosizing, 143-149

with grid (size and snap),
133-136

selecting groups of con-
trols, 138-140

setting property values for
groups of controls, 142

sizing, 142
with snap lines, 136
spacing evenly, 142

directories, with Directory
object, 452-453

files with File object, 443
copying files, 444-445
deleting files, 446-447

determining whether files
exist, 443-444
moving files, 445-446
retrieving file properties,
447-451
items

at design time, list boxes,
181

at runtime, listboxes,
182-187

List View control, with code,
206-207

Manual, 126

math, arithmetic operations. See
arithmetic operations

Maximize button, adding, to
forms, 117-119

maximized state, forms, 124-125

MaximumSize property, 121-122

MaxLength property, 170-171
MDI forms, creating, 154-158

MDIs (multiple document inter-
faces), 131

Me.Close(), 24
menu items

assigning shortcut keys,
227-229

checked menu items, creat-
ing, 220-222

creating for top-level menus,
219-220

deleting, 220
moving, 220
Menu Strip control, 216
menus

checked menu items, creat-
ing, 220-222

context menus, implementing,
225227

menu items, assigning short-
cut keys, 227-229

programming menus, 223-225
top-level menus
creating, 216-219

creating menu items for,
219-220

message boxes

buttons, determining which
button is clicked, 396-397

creating good messages, 397
displaying with MessageBox.
show() function, 391-393

specifying buttons and icons,
393-396

MessageBoxButtons, 393
MessageBoxlcon, 393-394
MessageBox.Show(), 59, 81, 186

creating good messages, 397

DialogResult, 396
displaying messages,
391-393
messages, displaying with
MessageBox.show() function,
391-393

metadata, 563

method dynamism, 73

methods, 72
Add() method, 182-183, 206
BringToFront method, 151
classes, 375

Clear() method, 185, 207,
423

Close() method, 127
Copy() method, 444-445
CreateSubKey() method, 461

Debug.WriteLine() method,
356

Delete() method, 79,
446-447

DoesSourceFileExist() method,
444

DrawEllipse() method, 423
Drawlmage() method, 430
DrawLine() method, 422

DrawRectangle() method, 76,
77, 423

DrawString() method,
423-425

Exists() method, 443-444
functions as, 381
GetAttributes() method, 451
GetValue() method, 462
Inflate() method, 422
Insert() method, 183
Invalidate() method, 431
MessageBox.Show(), 81
Move() method, 445-446
NewRow() method, 484

namespaces, .NET Framework 579

Remove() method, 183-184,
207, 211

SelectNextControl() method,
150

SendToBack() method, 151
SetValue() method, 462
Show() method, 123

ShowDialog() method, 21,
400, 440-441

triggering, 73
Microsoft Intermediate Language
(IL), 560-562

Microsoft.VisualBasic namespace,
562

Microsoft.VisualBasic.Left(),
300-301

Microsoft.VisualBasic.Mid(),
301-302

Microsoft.VisualBasic.Right(), 301
Mid(), 301-302

Minimize button, adding, to forms,
117-119

minimized state, forms, 124-125
MinimumSize property, 121-122
modal forms, 123-124
modifying Picture Viewer project

to use Registry, 464-470

to use text files, 474-479
module-level scope, 278-279
modules, 54

class modules, 240

creating, 239-241

Declarations section, 279

declaring procedures that
don't return values,
243-247

standard modules, 240

comparing with classes,
373

creating, 241

modulus arithmetic, performing,
293

mouse clicks, double-clicking, 7
mouse events, 406-409
mouse input, 406
MouseDown, 93, 95, 172, 406
MouseEnter, 406
MouseEventArgs, 95
MouseHover, 406
MouseLeave, 100, 406
MouseMove, 103, 172, 406
MousePaint project, 407-409
MouseUp, 172, 406
Move() method, 445-446
moving

files, File object, 445-446

menu items, 220
MsgBox() function, 393

multidimensional arrays, creating,
274-276

Multiline property, 167, 169
multiline text boxes, 167-168

multiple document interfaces.
See MDIs (multiple document
interfaces)

multiplication, performing,
292-293

My.Computer.Registry, accessing
Windows Registry, 460-463

name conflicts, scope, 280-281

Name property, 8-9

names, changing form's name,
108

namespace scope, 279-280

namespaces, .NET Framework,
562-563

580 naming

naming
objects, 89
suffixes, 9
variables, 286
naming collisions, 562

navigating records, ADO.NET,
496-498

negation, performing, 292

nesting If...Then constructs,
318-319

.NET Framework, 2, 556, 559

classes, for sending email,
530

common language runtime,
560

common type system, 563
garbage collection, 564

IL (Intermediate Language),
560-562

namespaces, 562-563
new features, multiple layouts, 40
New Project dialog box, 4
NewRow() method, 484

Next, continuing looping before
Next is reached, For...Next, 332

Next statement, closing loops,
330-331

No, DialogResult, 396
nodes

adding to Tree View control,
208-210

clearing, Tree View control,
211

removing, Tree View control,
211

None
DialogResult, 396
MessageBoxIcon, 393
nonmodal forms, 123

nonmodal windows, creating, 151

normal state, forms, 124-125
Not, 297-298
Notepad, 54

o

Object, 260, 262

object attributes, as properties,
376-378

Object Browser, 82-83

object interfaces, creating,
374-376

object references
binding to variables, 382
early-binding, 384-385
late-binding, 382-384
releasing, 387
object-based code, writing, 74-78
object-oriented programming, 64
objects, 7-8, 64
building simple object
projects, 73-74
creating interfaces, 74
testing, 78

writing object-based code,
74-78

collections, 79-81

creating when dimensioning
variables, 386

Directory object, manipulating
directories, 452-453

events, triggering, 89

Font object, 424

forms, 7

Graphics. See Graphics object

instantiating from classes,
381-382

lifetime of, 387

methods, 72
dynamism, 73
triggering, 73
naming, 8-9
suffixes, 9
properties, 8, 64
changing, 44-46
color properties, 46-49
referencing in code, 65-66
viewing, 44
viewing property descrip-
tions, 49-50
working with, 67-72
Registry object, 460
Text property, 10
objFile.Close(), 471
objFile.Dispose(), 471
objGraphics, 76, 416
OK, DialogResult, 396
On Error statements, 360
Opacity property, 151-152
Open File dialog box
file filters, creating, 439-440

OpenFileDialog controls,
436-439

showing, 440-441

OpenfFileDialog controls, 14,
15-17, 193, 435-439

creating, file filters, 439-440
opening existing projects from
Start page, 34
OpenPicture() function, 474

OpenPicture() procedure, 245,
475

operating systems, triggering,
events, 90

operators. See also Boolean
operators

Option Infer, 272

options variables, initializing,
283-286
Or, 297, 298

order of operator precedence,
294-295

P

page settings, changing, 519-521
pages, tabs, 197

PageSetupDialog controls, adding,
508-509

Paint event, 90, 429-430
Panel control, 176-178
parameters

ConnectionString property,
487

defaultresponse parameter,
402

event parameters, 95-97
itemname, 463
keypath, 463
passing, 252-254
parent forms, 156-158
parentheses, 244
passing
literal values to variables, 268

parameters, code procedures,
252-254

password fields, text boxes,
171-172

PasswordChar property, 171-172
pens, 416-417

performing arithmetic operations,
291-292

addition, 292
division, 293
exponentiation, 293

modulus arithmetic, 293

multiplication, 292-293
negation, 292

order of operator precedence,
294-295

subtraction, 292
Persisting Graphics project, creat-
ing, 425-431
Picture Viewer ClickOnce install
program, testing, 552

Picture Viewer project
adding

PageSetupDialog controls,
508-509

Print button, 506-508

Print Preview button,
506-508

PrintDocument controls,
508-509

PrintPreviewDialog control,
508-509

log files
creating, 474-477
displaying, 477-479
testing, 479

modifying, to use Registry,
464-470

modifying to use text files,
474-479

sending email

adding a Send Email tool-
bar button, 530-531

creating Send Email dialog
box, 532-536

testing email code,
541-542

writing code for, 537-541

tabbed dialog boxes, adding,
197-200

testing and debugging,
467-470

procedure-level scope 581

working with, objects and
properties, 67-72
PictureBox controls, 14

pictures, storing, in Image List
controls, 200-202

pixelformat, 415
pixels, 12

plus (+), 300
Pointer, 133

populating DataTable, ADO.NET,
493-494

preventing forms from appearing
on taskbars, 127

previewing documents, 517-518

Print button, adding, to forms,
506-508

Print Preview button, adding, to
forms, 506-508

Print Preview window, 518
PrintDocument controls, 509
adding, 508-509
printer settings, changing,
519-521

Printimage procedures, creating,
512-513

printing
documents, 510-516

creating Printimage proce-
dures, 512-513

printing currently viewed
page, 514-516
printer and page settings,
changing, 519-521

scaling images to fit a page,
522-527

PrintPage event, 523-524

PrintPreviewDialog control, 517
adding, 508-509

Private, 94, 512

procedure-level scope, 278

582 procedures

procedures. See also code proce-
dures

exiting, 254
functions, 242
hooking up, 253

infinite recursion, avoiding,
255-256

Printimage procedures,
creating, 512-513

ResizeToPrintableArea
procedure, 524

subroutines, 242
writing, 242-243

declaring procedures that
don't return values,
243-247

declaring procedures that
return values, 247-248

functional units of code,
58-59

program interaction, 391
InputBox(), 401-404
keyboards, 404-406

MessageBox.Show(). See
MessageBox.Show()

mouse events, 406-409
programming menus, 223-225
programming toolbars, 233-234
programs

defined, 52

terminating, code for, 23-24

project files, adding/removing,
55-57

project properties, 54-55
projects, 2
creating new, 3-6
Start page, 32-34
defined, 52

managing, 50

with Solution Explorer,
50-52

opening, from Start page, 34
running, 24-26
saving, 10
properties, 8, 64
AcceptButton property,
173-174

AcceptsReturn property, 169
Anchor property, 145
BackColor property, 111-113

CancelButton property,
174-175

changing, 44-46
CheckState property, 175
classes, 375

color properties, 46-49

ConnectionString property,
487-490

Enabled property, 168
FileName property, 439

Filter property, 19,
439Filterindex property, 440

FormBorderStyle property,
119121

Height property, 12
ImageSize property, 201
InitialDirectory property, 439
Interval property, 89, 194
Iltems property, 188

KeyChar property, 406
LargelmageList property, 203
Location property, 179

MaximumSize property,
121-122

MaxLength property, 170-171

MinimumSize property,
121-122

Multiline property, 167, 169
Name property, 8-9

object attributes as, 376-378
Opacity property, 151-152

PasswordChar property,
171172

project properties, 54-55
radio buttons, 179

readable properties, creating
with Get construct, 378

read-only properties, 66
creating, 380

referencing in code, 65-66

Registry object, 460

ScrollBars property, 169

SelectedIndex properties, 187

Selectedltem property,
185-187, 207

SelectionMode property, 187
ShowGrid property, 136
ShowlInTaskbar property, 127
SizingGrip property, 237
StartPosition property,
126-127
Subltems property, 205
Tablndex properties, 149
Text property, 10, 111
TextAlign property, 166-167
Title property, 19, 439
Toolbox window, 151

TransparentColor property,
202

viewing, 44

property descriptions,
49-50

Visible property, 128

Width property, 12
WindowsState property, 124
working with, 67-72

writable properties, creating
with Set construct, 379

write-only properties, creating,
380

Properties pane, Properties win-
dow, 44

Properties window, 7, 43
Description section, 49-50
resolution, 7
property descriptions, viewing,
49-50

property values, setting for groups
of controls, 142

Public Sub, 243

Publish Wizard, 556

creating ClickOnce applica-
tions, 547-551

Q

Question icon, 395

radio buttons, 178-180
properties, 179
Select Case, 323

random numbers, 425

readable properties, creating with
Get construct, 378

reading, text files, Windows
Registry, 472-473

read-only properties, 66
creating, 380
ReadToEnd(), 478

records

creating new (ADO.NET),
499-500

deleting (ADO.NET), 500-501
editing (ADO.NET), 498-499

navigating, (ADO.NET),
496-498

rectangles, 421-422

drawing, 423
recursive events, avoiding, 90
recursive loops, 256
referencing

array variables, 273-274

fields, in DataRow (ADO.NET),
494-496

REG_BINARY, 458
REG_EXPAND_SZ, 458
REG_MULTI_SZ, 458
REG_SZ, 458
Registry. See Windows Registry
Registry keys

creating, 460-461

deleting, 461-462

key values, 462-463
Registry object, 460

top-node properties, 460
releasing, object references, 387

Remove() method, 183-184, 207,
211

removing

applications, 553-555
buttons, 250-251
images, from forms, 116
items, from lists, 183-184
list items, 207

with code, 207
nodes, Tree View control, 211

project files, 57

SaveSetting() 583

renaming variables, 286
Replace(), 304

replacetext argument, 304
replacing text within strings, 304
reserved keywords, 267

ResizeToPrintableArea procedure,
524

resolution, Properties window, 7
retrieving

current system, Date/Time,
309

file properties, 447-451
code for, 450-451

information about selected
items in lists, 185-187

parts of dates, 307-308
Retry, DialogResult, 396
Return, 247
RTrim(), 303
Run mode, 24

runningdatabase examples,
ADO.NET, 502

projects, 24-26
runtime, 560
manipulating, items, 182-187

runtime errors, 346-349

S

Save All button, 10

Save File dialog box, creating,
441-443

Save Project dialog box, 10

SaveFileDialog controls, 435-436,
441-443

SaveSetting(), 460

584 saving

saving

options to Windows Registry,
465

projects, 10
SByte, 260

scaling images to fit a page,
522-527

scope, 259, 276-277
block scope, 277

declaring variables of static
scope, 281-282

global scope, 279-280

local scope, 278

module-level scope, 278279

name conflicts, 280-281

procedure-level scope, 278
scope designator, 244

scrollable forms, creating,
152-153

scrollbars, adding, to text boxes,
169

ScrollBars property, 169

SDI (single-document interface),
154

Select Case, 319, 323-324
building examples, 321-323
evaluating, 320-321

Selectedindex properties, 187

Selectedltem property, 185-187,
207

Selectedltems collection, 207

selecting, groups of controls,
138-140

SelectionMode property, 187

SelectNextControl() method, 150

Send Email dialog box, creating,
532-536

Send Email toolbar buttons, add-
ing, 530-531

sending
emails

adding a Send Email tool-
bar button, 530-531

classes, 530

creating Send Email dialog
box, 532-536

testing code, 541-542
writing code for, 537-541

messages to Output window
using tracepoints, 360

SendToBack() method, 151
servers, 373

Set construct, writable properties,
creating, 379

SetValue() method, 462
shapes, drawing, 422
circles, 423
ellipses, 423
lines, 422
rectangles, 423
Short, 260

shortcut keys, assigning to menu
items, 227-229

Show() method, 123

ShowCurrentRecord() method,
496

ShowDialog() method, 21, 400,
440-441

ShowGrid, 134
ShowGrid property, 136
showing
design windows, 36
forms, 122-123
Open File dialog box, 440-441
toolbars, 40-41
ShowInTaskbar property, 127

simple object projects, building,
73-74
creating interfaces, 74
testing, 78

writing object-based code,
74-78

Single, 260

single-document interface (SDI),
154

size, of forms, controlling,
121-122

sizing
docked windows, 38
forms, 11-12
sizing handles, 139
SizingGrip property, 237
SmtpClient, .NET classes, 530

snap lines, manipulating, controls,
136

SnapToGrid, 134

Solution Explorer
double-clicking, 52
managing, projects, 50-52

Solution Explorer window, 50-51
solutions, 2, 53
defined, 53

sorting lists, 187

source files, 11

spaces, 244

trimming from strings,
303-304

spacing controls, evenly, 142

spaghetti code, 324

SqlConnection, 484

SqlDataAdapter, 492-493

StackOverflow exception, 90

standard modules, 240
comparing with classes, 373
creating, 241

Start page, 31
creating new projects, 32-34
opening existing projects, 34
starting Visual Studio 2015, 2-3
StartPosition property, 126-127
startup forms, 158-159

state of forms, displaying in nor-
mal, maximized or minimized
state, 124-125

static scope, declaring variables,
281-282

static texts, displaying with Label
controls, 163-164

static variables, 282

Status Bar control, 235-237
status bars, creating, 235-237
StatusStrip, 236
SteamReader, 472-473

Step, specifying increment value,
331-332

Stop, MessageBoxIcon, 393

stopping, code execution under
specific conditions, 358

storing

pictures in Image List con-
trols, 200-202

values in variables, 58
StreamWriter, 470-472
strict typing, 269
variables, 270-272
String, 260
strings, 298-299
concatenating, text, 299-300
functions
Instr(), 302-303
Len(), 300

Microsoft.VisualBasic.
Left(), 300-301

Microsoft.VisualBasic.
Mid(), 301-302

Microsoft.VisualBasic.
Right(), 301

replacing text within, 304

trimming spaces from,
303-304

Structured Exception Handling
project, creating, 360-361

structures, 277

Sub, 58, 94, 243, 248
Subltems property, 205
subkeys, 461
subroutines, 242

subtracting from Date/Time,
305-306

subtraction, performing, 292
suffixes, naming objects, 9
system colors, 417-419
System namespace, 562
SystemColors, 75
System.Data, ADO.NET, 484
System.Data namespace, 562
System.Diagnostics, 562
System.Drawing hamespace, 562
System.l0, 443

System.l0 namespace, 562
System.l0.Directory, 452-453

System.lO.File object, 447, 449,
451

System.Net namespace, 562
System.Net.Mail, 530
System.Random class, 425
System.Security namespace, 562
System.Web namespace, 562

System.Windows.Forms
namespace, 562

System.Xml namespace, 562

text boxes 585

T

Tab control, 197-200

tab order, creating for forms,
149-151

tabbed dialog boxes, creating,
197-200

TabIndex properties, 149
TabPage Collection Editor, 197
tabs, collections, pages, 197
taskbars, preventing forms from
appearing on, 127
tbrMainToolbar control, 233
Templates list, 32
terminating programs, code for,
23-24
testing
email code, 541-542

Picture Viewer ClickOnce
install program, 552

Picture Viewer logs, 479

Picture Viewer project,
Windows Registry, 467-470

simple object projects, 78
text

concatenating, strings,
299-300

displaying on title bars, forms,
110111

drawing, 423-425
replacing in strings, 304
text alignment, text boxes,
166-167

Text Box control, 172
text boxes, 164-166
events, 172

limiting number of characters,
170-171

multiline text boxes, 167-168

586 text boxes

password fields, 171-172
scrollbars, adding, 169
text alignment, 166-167
text files, 53, 457
modifying, Picture Viewer proj-
ect to use, 474-479

reading, Windows Registry,
472-473

writing, Windows Registry,
470-472

Text property, 10, 111

TextAlign property, 166-167

Textbox control, 89

TextChanged, 172

texts, static texts, displaying with
Label controls, 163-164

time. See Date/Time

Time data type, 309

time information, getting for files,
448

TimeOfDay(), 196

Timer control, 194

timers, creating, 193-196

title bars, displaying text, forms,
110111

Title property, 19, 439

To, 320

toolbar buttons

adding with Items collection,
230-233

creating drop-down menus
for, 234

toolbar items, 229
toolbars, 40, 229
drop-down menus for toolbar
buttons creating, 234
programming toolbars,
233234

showing/hiding, 40-41
toolbar buttons, adding with
Items collection, 230-233
toolbox, 14

adding controls to forms,
41-43

double-clicking to add controls
to forms, 132

dragging to add controls to
forms, 132

Toolbox window, 6
tools, debugging tools, 349

advanced breakpoint features,
357

breakpoints, 349-351
Immediate window, 351-356
toolstrip, 229
ToolStrip control, 229-230

top-level menus, creating,
216-219

menu items, 219-220

TopMost property, nonmodal win-
dows, 151

tracepoints, 360

transparent forms, creating,
151-152

TransparentColor property, 202
Tree View control, 201
clearing nodes, 211

creating hierarchical lists,
207-208

nodes, adding, 208-210
removing nodes, 211
triggering
events, 88
by objects, 89
by operating systems, 90

through user interaction,
88-89

methods, 73

Trim(), 303-304

trimming, spaces from strings,
303-304

Try, 361, 363

Try...Catch...Finally, 360-363
Try...End Try structures, 367
two-dimensional arrays, 274

type conversion functions, casting
data from data type to another,
262

U

Ulnteger, 260
ULong, 260
underscore (_), 244
uninstalling applications, 553-555
unloading forms, 127-128
Until, 337
Update(), 498
user controls, 54
user interaction
InputBox(), 401-404
keyboards, 404-406
mouse events, 406-409
triggering events, 88-89
user interfaces, creating, 97-98
Users, Registry object, 460
UShort, 260

'/

value data types, Windows
Registry, 458

value items, 462

value ranges, data types, 260

values

determining if values are
dates, 309

increment value, specifying
increment value with Step,
331-332

literal values, passing to vari-
ables, 268

storing in variables, 58
variables, 252, 259, 266

array variables, referencing,
273274

binding object references to,
382

early-binding, 384-385
late-binding, 382-384
creating, 282-283

creating new objects when
dimensioning variables, 386

declaring, 58, 266-267
of static scope, 281-282
Destination variable, 513

explicit variable declaration,
269-270

options variables, initializing,
283-286

passing literal values to, 268

renaming, 286

static variables, 282

storing values, 58

strict typing, 270-272

using in expressions, 268
.vb, 53
View Detail window, 354
ViewerForm.vb*, 23
viewing

properties, 44

property descriptions, 49-50

visible controls, adding to forms,
15-17

Visible property, 128

Visual Basic 2015 Start page, 31
creating new projects, 32-34
opening existing projects, 34

Visual Studio 2015, starting, 2-3

w

Warning, MessageBoxIcon, 393
While, 337
Width property, 12

Window Color and Appearance
dialog box, 418-419

windows
CLng(), 355

Immediate window. See
Immediate window

nonmodal windows, creating,
151

Print Preview window, 518
Properties window, 7, 43
Solution Explorer window,
50-51
Toolbox window, 6
View Detail window, 354
Windows Forms Application, cre-
ating, 4-5
Windows Forms Application proj-
ects, creating, 343-344
Windows Registry, 457-458
accessing with My.Computer.
Registry, 460-463
displaying options from,
464-465
modifying, Picture Viewer proj-
ect to use, 464-470

writing 587

nodes, 458

Picture Viewer project, testing
and debugging, 467-470

reading text files, 472-473
saving options to, 465
structure of, 458-460
using options stored in
Registry, 465-466
value data types, 458
writing text files, 470-472
WindowsDefaultBounds, 126
WindowsDefaultLocation, 126
WindowState property, 124
With, 439
wizards, Publish Wizard, 556

creating ClickOnce applica-
tions, 547-551

writable properties, creating with
Set construct, 379

Write(), 471-472
WriteLine(), 471-472

write-only properties, creating,
380

writing
code
for browsing files, 20-22
with procedures, 58-59

to retrieve file properties,
450-451

to send emails, 537-541

terminating programs,
23-24

code procedures, 242-243

declaring procedures that
don't return values,
243-247

declaring procedures that
return values, 247-248

588 writing

error handlers

anticipated exceptions,
364-367

exceptions, 363-364
Try.Catch.Finally, 360-363
object-based code, simple
object projects, 74-78
text files, Windows Registry,
470-472

X

XML files, 53
Xor, 297, 298

Y-Z

Yes, DialogResult, 396

yes/no options, check boxes, 175

	Table of Contents
	Introduction
	Hour 1: Jumping in with Both Feet: A Visual Basic 2015 Programming Tour
	Starting Visual Basic 2015
	Creating a New Project
	Understanding the Visual Studio 2015 Environment
	Changing the Characteristics of Objects
	Adding Controls to a Form
	Designing an Interface
	Writing the Code Behind an Interface
	Running a Project
	Summary
	Q&A
	Workshop
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

