Carmen Delessio - .

Lauren Darcey In Full Color
Shane Conder Fourth Edition
Features
Android
Release
5.0

SamsTeach Yourself

Android
Application
Development

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 9 85 @ W

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337390
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337390
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337390
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337390
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337390/Free-Sample-Chapter

Praise for Sams Teach Yourself Android™ Application
Development in 24 Hours, Fourth Edition

“This latest edition of Sams Teach Yourself Android Application Development in 24 Hours is
just what you've been waiting for if you've been waiting to get into Android development.
Freshly updated with what you need to know for developing applications using Android
Studio for Android Lollipop (Android 5) with Material Design, this book covers what you
need to know to get started building applications for Android.”

—Ray Rischpater, Author and Engineering Manager at Microsoft

“The new edition of Sams Teach Yourself Android Application Development in 24 Hours covers a
lot of new features. The book takes you from the beginning through to uploading your own
app into the store. All the screen shots in this edition use the new and official Android IDE
(the amazing Android Studio IDE).”

—Fady A. M. Ibrahim, Android Instructor, Benha Faculty of Computer and Information

“Any developer who wants to get up to speed quickly on Android will appreciate this intro-
duction. Beyond the SDK fundamentals, there’s plenty of good information on the things
real-world Android apps are made of, such as maps, images, and navigation. This is a great
way to dive head-first into Android development, or just to become Android-literate

in record time.”

—Jonathan Taylor, VP, Mobile Technology, Priceline.com

The authors knock it out of the park for new Android developers and experienced ones who
want to extend their prowess. This book is perfectly set-up for a sports technology oriented
person like me to teach me the basic principles, give me design knowledge, and then cap
that off with how to add and manipulate data. Data-driven applications are the life’s blood
of every fantasy sports player and the authors’ ability to break down the path to success

|

with real-life exercises to put these principles into action is a Grand Slam

—Rick Wolf, President, Fantasy Alarm, and Co-Founder, Fantasy Sports Trade Association

This page intentionally left blank

Carmen Delessio
Lauren Darcey
Shane Conder

SamsTeach Yourself

Android
Application

Development

Fourth Edition

Sams Teach Yourself Android™ Application Development in 24 Hours,

Fourth Edition

Copyright © 2016 by Carmen Delessio, Lauren Darcey, and Shane Conder

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or trans-
mitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without writ-
ten permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liabil-
ity assumed for damages resulting from the use of the information contained herein.

Several images in this book use scenes from the online movie Big Buck Bunny to illustrate

the use of online video and using a VideoView control. This movie and related material is distrib-
uted under a Creative Commons license. For more information on the movie, go to
http://www.bigbuckbunny.org/.

Blender Foundation | http://www.blender.org

Copyright © 2008, Blender Foundation / http://www.bigbuckbunny.org

Some images in this book are reproduced or are modifications based on work created and shared
by Google and used according to terms described in the Creative Commons 3.0 Attribution
License.

See https://developers.google.com/site-policies.

Screenshots of Google products follow these guidelines:
http://www.google.com/permissions/using-product-graphics.html

The following are registered trademarks of Google:

Android, Google Play, Android TV, Android Wear, Google, and the Google logo are registered trade-
marks of Google Inc., and are used here with permission.

Flickr and Flickr API are registered trademarks of Yahoo!.

No Flickr end-user images appear in this book.

ISBN-13: 978-0-672-33739-0

ISBN-10: 0-672-33739-8

Library of Congress Control Number: 2015906279

Printed in the United States of America

First Printing July 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the CD
or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Acquisitions Editor
Laura Lewin

Development
Editor

Sheri Cain

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Larry Sweazy

Proofreader
Sarah Kearns

Technical Editors
Ray Rischpater
Valerie Shipbaugh
Publishing
Coordinator
Olivia Basegio

Interior Designer
Gary Adair

Cover Designer
Mark Shirar

Composition
Nonie Ratcliff

http://www.bigbuckbunny.org/
http://www.blender.org
http://www.bigbuckbunny.org
http://www.google.com/permissions/using-product-graphics.html
https://developers.google.com/site-policies

Contents at a Glance

Preface

Part | Android Fundamentals

HOUR 1 Introducing Android
2 Understanding Intents
3 Understanding Resources
4 Activities and Fragments

5 Responsive Apps: Running in the Background

Part Il Creating the User Interface

HOUR 6 Using Basic UI Controls
7 Using Layouts
8 ListViews and Adapters
9 Material Design
10 More Views and Controls
11 ImageViews and Bitmaps
12 Using VideoViews and Media
13 Adding Navigation

Part Il Working with Data

HOUR 14 Using the File System
15 Using SharedPreferences
16 Using SQLite and File Storage
17 Accessing the Cloud: Working with a Remote API
18 Introducing Content Providers
19 Creating a Content Provider

20 Loaders and CursorAdapters

Xiv

17
37
53
73

91
105
119
139

"161

179
195
207

233
245
261
277
297
311
323

vi Sams Teach Yourself Android™ Application Development in 24 Hours, Fourth Edition

Part IV Next Steps

HOUR 21 Using Notifications 337
22 Android TV and Wear Apps 347
23 More Features to Explore 361
24 Publishing Your Apps 375

Index 387

Table of Contents

Preface

Part I: Android Fundamentals

HOUR 1: Introducing Android
Defining Android
Understanding Android Development
Beginning Android Studio
Summary
Q&A
Workshop

Exercise

HOUR 2: Understanding Intents
Using Intents to Start an Activity
Using Implicit Intents
Handling an Implicit Intent
Summary
Q&A
Workshop

Exercise

HOUR 3: Understanding Resources
Resources in Your Project
Understanding Common Resources
Providing Alternative Resources
Internationalization: Using Alternative Languages Resources
Summary
Q&A
Workshop

Exercises

Xiv

10
14
14
14
15

17
17
27
32
34
35
35
36

37
37
40
48
49
51
52
52
52

viii Sams Teach Yourself Android™ Application Development in 24 Hours, Fourth Edition

HOUR 4: Activities and Fragments 53
Working with Activities 53
Understanding the Activity Lifecycle 63
Introducing Fragments 66
Summary 71
Q&A 71
Workshop 71
Exercises 72

HOUR 5: Responsive Apps: Running in the Background 73
Working in the Background 73
Using an AsyncTask 76
Service and IntentService 79
Summary 87
Q&A 87
Workshop 88
Exercise 88

Part II: Creating the User Interface 89

HOUR 6: Using Basic Ul Controls 91
Using the Android Studio Palette 91
Handling User Input 92
Using Buttons for User Actions 97
Summary 102
Q&A 103
Workshop 103
Exercise 103

HOUR 7: Using Layouts 105
Getting Started with Layouts 105
Becoming a RelativeLayout Expert 108
Common Attributes 112
More Layout Types 114

Summary 116

Contents ix

Q&A 117
Workshop 117
Exercises 117
HOUR 8: ListViews and Adapters 119
Getting Started with ListViews 119
Extending Base Adapters 124
Introducing the View Holder Pattern 131
Summary 136
Q&A 136
Workshop 136
Exercises 137
HOUR 9: Material Design 139
The Evolution of App Design 139
Introducing Material Design 140
Implementing Material Design 145
Summary 159
Q&A 159
Workshop 160
Exercise 160
HOUR 10: More Views and Controls 161
Controls for Collecting Information 161
Indicating Progress 166
Displaying Data 170
More Views 174
Summary 177
Q&A 177
Workshop 177
Exercise 178
HOUR 11: ImageViews and Bitmaps 179
Examining ImageView 179
Using Bitmaps and Canvas 186

Introducing Picasso 192

Sams Teach Yourself Android™ Application Development in 24 Hours, Fourth Edition

Summary 192
Q&A 193
Workshop 193
Exercise 193
HOUR 12: Using VideoViews and Media 195
Playing Video 195
Handling VideoView Events 199
Playing Audio with MediaPlayer 202
More Media 204
Summary 205
Q&A 205
Workshop 205
Exercise 206
HOUR 13: Adding Navigation 207
Using the ActionBar 207
Introducing the Toolbar 214
Sliding Drawer Navigation 219
Summary 228
Q&A 228
Workshop 229
Exercise 229
Part Ill: Working with Data 231
HOUR 14: Using the File System 233
File System Overview 233
Saving Data Privately in Your App 236
Saving Data in Public Folders 240
Summary 242
Q&A 242
Workshop 242

Exercise 243

Contents Xi

HOUR 15: Using SharedPreferences 245
Using SharedPreferences to Store Data 245
Setting User Preferences 249
Summary 258
Q&A 258
Workshop 258
Exercise 259

HOUR 16: Using SQLite and File Storage 261
Organizing a Database with Tables 261
Managing Data with SQLiteOpenHelper 263
Adding, Deleting, and Updating Data 266
Querying Data and Using Cursors 267
Using a Database in the App 269
Summary 274
Q&A 274
Workshop 274
Exercise 275

HOUR 17: Accessing the Cloud: Working with a Remote API 277
Fetching Remote Data 277
Using and Parsing JSON-Formatted Data 282
Putting the Pieces Together 286
Checking Connectivity 290
Summary 294
Q&A 295
Workshop 295
Exercise 295

HOUR 18: Introducing Content Providers 297
Introducing Content Providers 297
All About the Calendar 298
Calendar Data via the Calendar Content Provider 300

Summary 308

Xii Sams Teach Yourself Android™ Application Development in 24 Hours, Fourth Edition

Q&A 308
Workshop 309
Exercise 309
HOUR 19: Creating a Content Provider 311
Specifying a URI for Data Retrieval 311
Using PieDbAdapter 312
Building a Content Provider 312
Using MyContentProvider in the App 319
Summary 321
Q&A 321
Workshop 322
Exercise 322
HOUR 20: Loaders and CursorAdapters 323
How Loaders Work 323
Loader Classes 324
Understanding Loader States 325
Creating Cursor Adapters 330
The Rest of the App 333
Summary 333
Q&A 333
Workshop 334
Exercise 334
Part IV: Next Steps 335
HOUR 21: Using Notifications 337
Introducing Notifications 337
Creating and Managing Notifications 338
Customizing Notifications 344
Summary 345
Q&A 346
Workshop 346

Exercise 346

Contents xiii

HOUR 22: Android TV and Wear Apps 347
Android as a Platform 347
Developing Android Wear Apps 348
Developing Android TV Apps 355
Summary 358
Q&A 358
Workshop 359
Exercise 359

HOUR 23: More Features to Explore 361
Using Google Play Services 361
Using Google Play Services for Location 364
Using Open Source and External SDKs 368
Digging Deeper into Android 369
Summary 373
Q&A 373
Workshop 374
Exercise 374

HOUR 24: Publishing Your Apps 375
Preparing for Release 375
Sharing Your App with the World 382
Monetizing Your App 384
Summary 385
Q&A 385
Workshop 385
Exercise 386

Index 387

Preface

What I wish I knew when I started Android development....

Android has become a leading platform for smartphones, tablets, and other devices. The
goal of this book is to introduce the Android platform and start you on the path to creating
professional-grade apps.

In 24 hours of topic-based material, you learn the concepts of Android development and
move on to specific topics like working with data in the cloud, handling bitmaps and videos
in an app, and using new features (such as Cardview in the Lollipop versions of Android).
The coverage of material design and Lollipop features will take you far. The Lollipop version
of Android will give way to Android M in the future. Android M will focus on performance
improvements.

In the early days of Android, author Carmen Delessio worked on a significant Android
project for a large media company. The app launched and was a success. But, it could have
been built in a more “Android way.” With the authors having built many Android apps
since then, the material in this book is largely guided by the idea of including “what I wish
I knew then.”

This book is not intended to be an encyclopedia of all things Android. Plenty of Android
resources are available, and the documentation on the Android developer site has never
been better. This book starts you on the path to developing professional Android apps and
can be used as a guide to the additional material.

New in the Fourth Edition

There are two major changes from the third edition to the fourth edition of this book.

New features in Android are covered. The updates include significant coverage of material
design, including RecyclerView and CardvView. New notification features are covered. An
introduction to Android Wear and Android TV is included. Significantly, this edition uses
Android Studio throughout rather than Eclipse. All development screenshots and examples
use Android Studio.

The second change is this book starts by covering four important components of Android.
In the first hour, you learn about activities, intents, intent services, and broadcast receiv-

ers. Subsequent hours drill more deeply into these broad concepts. This change highlights
what is happening when an app runs and puts even more emphasis on doing things the

“Android way.”

Preface

Who This Book Is For

The examples in this book are created so that someone with programming knowledge can
understand them, but Android apps are developed in Java. You will find the book much
more valuable and useful if you are familiar with Java concepts and syntax. If you are
knowledgeable in C or C# and understand object-oriented concepts, you should be able to
understand the level of Java code in this book. You should know what classes and methods
are.

If you are a Java programmer with an interest in Android development, this book intro-
duces you to Android and gets you on track for professional Android development.

If you have started Android development, but have not proceeded past the basic examples,
this book is for you. It covers topics such as downloading data, using a database, and cre-
ating content providers. This book can take you from the basics to real development in a
series of understandable steps.

How This Book Is Organized

The book is organized into four broad sections:

Part I, “Android Fundamentals.” This first part introduces Android concepts and uses
examples to show how to start activities, pass data, and handle core functionality. It covers
activities, intents, resources, and background processing.

Part II, “Creating the User Interface.” When you create the user interface, you learn
about components and layouts. You cover bitmaps and video views. You also learn about
navigation within an app, and you cover material design—the new design from Google
that is used in Android.

Part III, “Working with Data.” Working with data means both retrieving data over
a network and storing it. You learn about using a SQLite database and using content
providers.

Part IV, “Next Steps.” This last part covers other features to investigate further, open
source projects of interest, and how to publish your app.

You can find online updates, contact the author, and ask questions about this book on
http://talkingandroid.com/. Links to source code are posted there.

http://talkingandroid.com/

XVi Sams Teach Yourself Android™ Application Development in 24 Hours, Fourth Edition

Source Code for the Book

Nearly every chapter in this book includes an example that has source code available
online. The code is on GitHub and organized by chapter. You will find the code here:
https://github.com/CarmenDelessio. Code for an individual chapter should be easy to
find. For example, the complete project code for Hour 10 is here: https://github.com/
CarmenDelessio/Hour10application.

https://github.com/CarmenDelessio
https://github.com/CarmenDelessio/Hour10application
https://github.com/CarmenDelessio/Hour10application

About the Authors

Carmen Delessio is an experienced application developer who has worked as a developer,
technical architect, and CTO in large and small organizations. Carmen began his online
development career at Prodigy, where he worked on early Internet applications, shopping
apps, and fantasy baseball. He is a graduate of Manhattanville College and lives in Pound
Ridge, New York, with his wife, Amy, and daughter, Natalie.

Lauren Darcey is responsible for the technical leadership and direction of a small soft-
ware company specializing in mobile technologies, including Android and iOS consulting
services. With more than two decades of experience in professional software production,
Lauren is a recognized authority in application architecture and the development of
commercial-grade mobile applications. Lauren received a BS in computer science from the
University of California, Santa Cruz.

Shane Conder has extensive application development experience and has focused his
attention on mobile and embedded development for well over a decade. He has designed
and developed many commercial applications for Android, iOS, BREW, BlackBerry, J2ME,
Palm, and Windows Mobile—some of which have been installed on millions of phones
worldwide. Shane has written extensively about the tech industry and is known for his keen
insights regarding mobile development platform trends. Shane received a BS in computer
science from the University of California, Santa Cruz.

Dedication

For ASL and NMLD.

“To the Valiant of heart, nothing is impossible.” — Jeanne d’Albret
—Carmen Delessio

Acknowledgments

This book would not exist without the help and guidance of the team at Pearson (Sams
Publishing). Thanks to Laura Lewin for constant encouragement and Olivia Basegio for her
incredible work on the project. Sheri Cain helped take this book to another level with her
feedback. Her diligence and hard work kept this project constantly moving forward.

Technical editors are an important part of every book. Ray Rischpater was an incredible
help. Valerie Shipbaugh did her technical review by placing herself in the role of a reader
who was new to Android. The feedback and guidance from Ray and Valerie make this a
better book.

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write directly to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book'’s title and author as well as your
name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Reader Feedback
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at http://www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

This page intentionally left blank

HOUR 11

ImageViews and Bitmaps

What You’ll Learn in This Hour:

» Examining ImageView Bitmaps
» Using Bitmaps and Canvas
» Introducing Picasso

Images and media can play an important role in creating an exceptional Android app. In this
chapter, you look at the details of handling images and bitmaps, including creating bitmaps,
using drawing commands, and handling very large images.

Examining ImageView

You learned about different types of views in Hour 10, “More Views and Controls.” An
ImageView is a view that displays an image, but you will find that there are unique aspects to
working with images. An ImageView can display any drawable image. The source of the image
can be a resource, a drawable, or a bitmap.

Displaying an Image

There are four methods available for setting an image in an ImageView. They differ by how the
image to display is defined. The image can be a bitmap, drawable, Uri, or resource id. The
methods are as follows:

> setImageDrawable (): Set a drawable as the content of the ImageView.
> setImageBitmap (): Set a Bitmap as the content of the ImageView.
> setImageResource (): Use a resource id to set the content of the TmageView.

> setImageUri (): Use a URI to set the content of the Imageview.

180 HOUR 11: ImageViews and Bitmaps

To set an ImageView to an image resource defined by R.drawable.mainImage, you use the
following:

ImageView mainImage = (ImageView) findViewById(R.id.imageViewl) ;
mainImage.setImageResource (R.drawable.mainImage)

To populate a Drawable object from a resource, use the getResources.getDrawable ()
method:

Drawable myDrawable = getResources () .getDrawable (R.drawable.ic_launcher) ;

In this hour, you populate an ImageView using a resource id as the source and then explore
several properties of how an ImageView can display an image.

Using ScaleTypes in ImageView

ImageViews include a ScaleType property. The ScaleType defines how the image will be
displayed within the ImageView. Using ScaleType, you can have an image fill the entire
ImageView, be centered in the ImageView, or be cropped and centered in the ImageView.

The options for ScaleType are defined in ImageView.ScaleType. For example, ImageView.
ScaleType.CENTER refers to a scale type in which the image is centered in the Imageview. The
complete set of ScaleTypes are as follows:

> ImageView.ScaleType.CENTER: Center the image with no scaling. The image dimen-
sions are unchanged.

> ImageView.ScaleType.CENTER CROP: Scales the image and keeps the aspect ratio
until either the width of height of the image is the same as the width or height of the
ImageView. For a small image, this has the effect of enlarging the entire image. For a
large image, this has the effect of showing the center of the image.

» ImageView.ScaleType.CENTER INSIDE: The image is scaled, and the aspect ratio is
maintained. The width and height of the image fit within the Imageview.

> ImageView.ScaleType.FIT CENTER: Maintain aspect ratio and fit the image in the
center of the ITmageView.

> ImageView.ScaleType.FIT START: Maintain aspect ratio and fit the image in the left
and top edge of the ImageView.

» ImageView.ScaleType.FIT END: Maintain aspect ratio and fit the image in the right
and bottom edge of the ImageView.

> ImageView.ScaleType.FIT END: Maintain aspect ratio and fit the image in the right
and bottom edge of the ImageView.

> ImageView.ScaleType.MATRIX: Scale using a matrix.

Examining ImageView 181

You can change scaleType dynamically in your code. Listing 11.1 show the code for an app
that displays an ImageView and includes a RadioGroup and set of RadioButtons for chang-
ing the scale type. When a radio button is selected, the scaleType for the ImageView is
updated.

LISTING 11.1 Changing ScaleType Programatically

1: package com.talkingandroid.hourllapplication;

2: import android.app.Activity;

3: import android.os.Bundle;

4: import android.widget.ImageView;

5: import android.widget.RadioGroup;

6:

7: public class ScaleActivity extends Activity {

8: RadioGroup radioGroup;

9: ImageView imageView;
10:
11: @Override
12: protected void onCreate (Bundle savedInstanceState) {
13: super.onCreate (savedInstanceState) ;
14: setContentView (R.layout.activity scale);
15: radioGroup = (RadioGroup) findViewById(R.id.radioGroup) ;
16: imagevView = (ImageView) findvViewById(R.id.imageView) ;
17: radioGroup.setOnCheckedChangeListener (new
18: RadioGroup.OnCheckedChangeListener () {
19: @Override
20: public void onCheckedChanged (RadioGroup group, int checkedId) ({
21: switch (checkedId)
22: case R.id.radioCenter:
23: imageView.setScaleType (ImageView.ScaleType.CENTER) ;
24 break;
25: case R.id.radioCenterCrop:
26: imageView.setScaleType (ImageView.ScaleType.CENTER_CROP) ;
27: break;
28: case R.id.radioCenterInside:
29: imageView.setScaleType (ImageView.ScaleType.CENTER INSIDE) ;
30: break;

31: case R.id.radioFitCenter:

32: imageView.setScaleType (ImageView.ScaleType.FIT CENTER) ;
33: break;

34: case R.id.radioFitStart:

35: imageView.setScaleType (ImageView.ScaleType.FIT START) ;
36: break;

37: case R.id.radioFitEnd:

38: imageView.setScaleType (ImageView.ScaleType.FIT END) ;
39: break;

40: case R.id.radioFitXY:

182 HOUR 11: ImageViews and Bitmaps

41: imageView.setScaleType (ImageView.ScaleType.FIT XY);
42: break;

43: }

44: }

45 }) ;

46: }

47:}

On line 17 of Listing 11.1, an OnCheckChangeListener () is set for the RadioGroup. When
the change is detected, the select RadioButton id is checked, and the appropriate scaleType
is set on the image.

The image used in the code for Listing 11.1 is shown in Figure 11.1. The image is 900 pixels wide
and 200 pixels high. It is used in several other examples in this chapter.

FIGURE 11.1
Base image for showing ScaleType (scaletest.png).

By using this simple image with four circles of different colors, it is easy to see the effect of the
changing ScaleType.

The ImageView is set to match the parent width and height. When the image scaleType is set
to CENTER INSIDE, the image is shown taking the full width of the ImageView and is centered
with a height that is proportional to the width.

Figure 11.2 shows the base image using the scaleTypes set to CENTER, CENTER_CROP, and
CENTER_INSIDE. Using CENTER shows the image in actual size. Because the size of the image is
larger than the ImageView, the green and blue circles in the center are shown. CENTER CROP
shows half of the green and blue circle. The height of the image fills the ImageView.
CENTER_INSIDE shows the entire image centered in the ImageView.

Figure 11.3 shows the base image using the ScaleTypes FIT CENTER, FIT START,
FIT END, and FIT XY. The aspect ratio is maintained in the first three, but when using FIT XY,
the image fills the ImageView and “stretches” the image to fit.

ScaleActivity

ScaleActivity

@© center

O centercrop
O Centerinside.
O FitCenter
O Fitstart

O Fitend

O Fitxy

FIGURE 11.2

ScaleTypes CENTER, CENTER_CROP, and CENTER INSIDE.

O Center
@® centerCrop

O Fixy

Centerlnside: @ Centerlnside
O Fitcenter
O Fistart
O Fitend
O Finey

O Finxy.

Examining ImageView

ScaleActivity

O center

O centercrop

l_nmﬂ_m [T
ScaleActivity ScaleActivity ScaleActivity ‘ScaleActivity

O camer o O caner O oo

O Centercrop [e) O Centercrop. O contercrop

O comrvaide o O conerraide o

© e o O Ficamar

Orise @ s O sisan

O fena Orera © e

O Finxy

O
O
O
@

FIGURE 11.3

ScaleTypes FIT CENTER, FIT START, FIT END, and FIT_XY.

Rotating an Image

An ImageView contains several methods for rotating an image. When you rotate an image,
you must set the point in the image to rotate around. That is the pivot point. The method
setPivotX () and setPivotY () are used to set the pivot point.

Once the pivot point is set, you can call the setRotation () method to make the image actu-
ally rotate.

183

184 HOUR 11: ImageViews and Bitmaps

The idea in Listing 11.2 is to set the pivot point to the center of the ImageView and to rotate the
image 30 degrees each time the button is clicked. The ImageView is defined to have height and
width set to match parent. The ImageView occupies the entire screen.

To get the center of the ImageView, the width and height are divided by 2. To continuously
rotate, the number of clicks count is kept. The angle to rotate is 30 times the number of clicks.
So, if the button is clicked twice, the image is rotated 60 degrees.

Figure 11.4 shows the rotated image.

LISTING 11.2 Rotating an Image

1: package com.talkingandroid.hourllapplication;

2: import android.app.Activity;

3: import android.os.Bundle;

4: import android.view.View;

5: import android.widget.Button;

6: import android.widget.ImageView;

7:

8: public class RotateActivity extends Activity {

9: Button rotateButton;

10 ImageView imageView;

11: int numClicks = 1;

12:

13: @Override

14: protected void onCreate (Bundle savedInstanceState) {

15: super.onCreate (savedInstanceState) ;

16: setContentView (R.layout.activity rotate);

17: imageView = (ImageView)findViewById(R.id.imageView) ;
18: rotateButton = (Button) findvViewById(R.id.button) ;
19: rotateButton.setOnClickListener (new View.OnClickListener () {
20 @Override
21 public void onClick (View v) {
22 imageView.setPivotX (imageView.getWidth () /2) ;
23 imageView.setPivotY (imageView.getHeight () / 2);
24 : imageView.setRotation (30*numClicks) ;
25: numClicks++;
26: }
27:)
28: }

[\]
e}
—

Examining ImageView 185

a s 3 ¥ @11:28

RotateActivity

ROTATE

FIGURE 11.4
Rotated image.

NOTE

Considering a Matrix

As an alternative to using the built-in rotation method, you can use a matrix with an ImagevView.

In graphics programming, a matrix is used to transform an image. Simple transformations include
scaling, translating, or rotating an image. Android includes a Matrix class (android.graphics.
Matrix) to support these graphic transformations.

Setting Alpha

Alpha level indicates the opacity of an image. An image can be completely transparent, com-
pletely opaque, or somewhere in the middle. The alpha level can be set on an ImageView using
the setAlpha () method or, since API level 11, the setImageAlpha () method. These methods
take an integer parameter. A parameter of O indicates complete transparency and 255 for com-
plete opacity.

186 HOUR 11: ImageViews and Bitmaps

V¥ TRY IT YOURSELF

Using a SeekBar to Dynamically Change Alpha Values

You’ll create an Activity with a SeekBar and an ImageView. The range of the SeekBar will
be from O to 255. As the SeekBar moves, set the alpha value for the Imageview and watch
the change:

1. Create a new project with an Activity.

2. Change the XML layout file to include a SeekBar and an ImageView.
3. The ImageView should have the src value set to an existing image.
4

Use setOnSeekBarChangeListener () to set an OnSeekBarChangeListener for the
SeekBar.

5. In the onSeekBarChangeListener, you implement three methods:
onProgressChanged (), onStartTrackingTouch (), and onEndTrackingTouch (). If
you are using Android Studio, these methods are created for you if you type
"new OnSeekBarChangeListener ()" as a parameter to the setOnSeekBarChange
Listener () method.

6. The onProgressChanged () method includes a parameter called progress that
indicates the value on the SeekBar. Use that value to change the alpha level of the
ImageView. You will use imageView.setImageAlpha (progress) ;.

Using Bitmaps and Canvas

The Bitmap (android.graphics.Bitmap) class represents a bitmap image. Bitmaps are cre-
ated via the BitmapFactory (android.graphics.BitmapFactory) class.

Three typical ways use BitmapFactory to create Bitmaps are to create a bitmap from a
resource, file, or InputStream. To create a Bitmap from a resource, use the BitmapFactory
method decodeResource ():

Bitmap = BitmapFactory.decodeResource (getResources (), R.drawable.someImage) ;

The other two methods are similar to decodeResource (): decodeFile () and

decodeStream().

Handling Large Images

There are techniques for avoiding the dreaded out-of-memory (OOM) exception. Large images
can have a significant impact on memory use in your app. To demonstrate this, you'll create
an unrealistically large image to display in an Imageview. If the unmodified image is loaded

Using Bitmaps and Canvas 187

into an ImageView, the app fails with an OOM error. A java.lang.OutOfMemory exception
occurs. You'll fix the memory error for this case by checking the image size and display side.

The idea is to display the image at an appropriate size for the device. There is no point in show-
ing a 10-foot mural in a 6-inch frame. Similarly, there is no point in showing a 20-inch image
on a 3-inch device screen. You will scale down the image size and save memory.

The details of your app will influence your memory usage and the techniques that will work best
in your case. This example shows how to handle a single large image.

To demonstrate this, you'll start with an image and increase it to an unrealistic size. You will use
a photo that is 72 inches x 54 inches and that has a 28MB file size.

The image is in the drawable resource folder and has the id R.drawable.largeimage.
You can cause the app to fail with an OOM error by trying to set an ImageView to this resource.

You have an ImageView named imageView. This line of code that causes the app to fail is this:

imageView.setImageResource (R.drawable.largeimage) ;

Some work is required, but it is possible to handle an image this large. In all cases, it would be
better to work with appropriately sized images, but that does not always happen.

The approach is to get the dimensions of the underlying Bitmap without actually rendering it.
Getting those dimensions is not a memory-intensive activity. Once you have the Bitmap, you
can determine an appropriate size for the Bitmap that will fit in our display. If you have a
20-inch image and a 4-inch display, you'll request that the Bitmap that is created in memory
fill the 4-inch display.

Using BitmapFactory.Options
The BitmapFactory.Options class is used with the BitmapFactory class. It is essential for
handling large bitmaps.

You'll use the following options from the BitmapFactoryOptions class:

> inJustDecodeBounds: If set to true, this option indicates that the Bitmap dimensions
should be determined by the BitmapFactory but that the Bitmap itself should not be
created. This is the key to getting the Bitmap dimensions without the memory overhead of
creating the Bitmap.

» outWidth: The width of the image set when inJustDecodeBounds is used.
> outHeight: The height of the image set when inJustDecodeBounds is used.

» inSampleSize: This integer indicates how much the dimensions of the Bitmap should be
reduced. Given an image of 1000x400, an inSampleSize of 4 will result in a Bitmap of
250x100. The dimensions are reduced by a factor of 4.

188 HOUR 11: ImageViews and Bitmaps

Listing 11.3 shows the code to address this.

LISTING 11.3 Displaying a Large Image

1: package com.talkingandroid.hourllapplication;

2: import android.app.Activity;

3: import android.graphics.Bitmap;

4: import android.graphics.BitmapFactory;

5: import android.os.Bundle;

6: import android.view.Display;

7: import android.widget.ImageView;

8:

9: public class LargelmageActivity extends Activity {
10
11: @Override
12: protected void onCreate (Bundle savedInstanceState)
13: super.onCreate (savedInstanceState) ;
14: setContentView (R.layout.activity large image) ;
15: ImageView imageView = (ImageView) findViewById(R.id.imageView) ;
16: Display display = getWindowManager () .getDefaultDisplay () ;

17: int displayWidth = display.getWidth() ;

18: BitmapFactory.Options options = new BitmapFactory.Options() ;
19: options.inJustDecodeBounds = true;
20: BitmapFactory.decodeResource (getResources (), R.drawable.largeimage,
21: options) ;
22: int width = options.outWidth;
23: if (width > displayWidth) ({
24 : int widthRatio = Math.round((float) width / (float) displayWidth) ;
25: options.inSampleSize = widthRatio;
26: }
27: options.indJustDecodeBounds = false;
28: Bitmap scaledBitmap = BitmapFactory.decodeResource (getResources (),
29: R.drawable.largeimage, options) ;

30: imageView.setImageBitmap (scaledBitmap) ;

31: }

32: }

On lines 16 and 17, you get the size of the device display. You'll use this as the target size for
reducing the image size.

On lines 18-22, you determine the size of the current Bitmap. You do that by creating a
BitmapFactory.Options class and setting the inJustDecodeBounds value to true. On line
20, the Bitmap is decoded to get the dimensions. Using this method, you get the dimensions
without the memory overhead of creating the Bitmap. The result is available in options.
outWidth. On line 22, you assign options.outWidth to the int variable width.

Using Bitmaps and Canvas 189

In this example, you use a simple test for the size of the image. On line 23, you check whether
the width of the Bitmap is greater than the size of the display. If that is the case, you must deter-
mine the inSampleSize to use. That is done on lines 24 and 25. If the width of the Bitmap is
1000 pixels and the size of the display is 250 pixels, you get an inSampleSize of 4 by dividing
the width of the Bitmap by the width of the display. For simplicity, you are not checking the
height.

With the imSampleSize set to an appropriate value, you can render the image.

On line 27, the inJustDecodeBounds value is set to false. That means the image will be
decoded and a Bitmap object will be created.

Lines 28 and 29 use the BitmapFactory.decodeResource () method to actually decode
the image and create the Bitmap. The bitmap is assigned to the variable scaledBitmap. It is
important to note that in this call, the BitmapFactory.Options variable options is passed
as a parameter. That is how you indicate to the BitmapFactory what inSampleSize to use.
The value for options.inSampleSize was set on line 25.

It is certainly not recommended to display a 72-inch image on a device, but Figure 11.5 shows
that it can be done!

LargelmageActivity

FIGURE 11.5
Very large photo displayed on device.

190 HOUR 11: ImageViews and Bitmaps

Drawing Directly on a Canvas

There is one more thing that you can do with an ImageView and Bitmap. You'll create a
Bitmap and draw directly on the Canvas that is associated with the Bitmap. A Canvas is an
object that you can draw on by calling drawing commands.

You will use an ImageView to display the Bitmap. You will also use an ImagevView to deter-
mine the dimensions when creating the Bitmap and for drawing. In Listing 11.4, you draw the
word “Hello” in the center of the screen.

LISTING 11.4 Drawing on a Canvas

1: package com.talkingandroid.hourllapplication;

2: import android.app.Activity;

3: import android.graphics.Bitmap;

4: import android.graphics.Canvas;

5: import android.graphics.Color;

6: import android.graphics.Paint;

7: import android.os.Bundle;

8: import android.view.View;

9: import android.widget.Button;
10: import android.widget.ImageView;
11:
12: public class DrawActivity extends Activity {
13 ImageView imageView;
14: Button drawButton;
15:
16: @Override
17: protected void onCreate (Bundle savedInstanceState)
18: super.onCreate (savedInstanceState) ;
19: setContentView (R.layout.activity draw) ;
20: imagevView = (ImageView) findviewById(R.id.imageView) ;
21: drawButton = (Button)findvViewById(R.id.button) ;
22: drawButton.setOnClickListener (new View.OnClickListener () ({
23: @Override
24 : public void onClick (View v)
25: Bitmap imageBitmap = Bitmap.createBitmap (imageView.getWidth(),
26: imageView.getHeight (), Bitmap.Config.ARGB_8888) ;
27: Canvas canvas = new Canvas (imageBitmap) ;
28: float scale = getResources () .getDisplayMetrics() .density;
29: Paint p = new Paint () ;

30: p.setColor (Color.BLUE) ;

31: p.setTextSize (48*scale) ;

32: canvas.drawText ("Hello", imageView. getWidth() /2,
33: imageView.getHeight () /2, p);

34: imageView.setImageBitmap (imageBitmap) ;

35: }

36: 1

37: }

38: }

Using Bitmaps and Canvas 191

A new Bitmap is created on lines 25 and 26 by using the method Bitmap.create

Bitmap (). Note that the width and height of the bitmap are set using the width and height
of the ITmageview. The Bitmap.Config (android.graphics.Bitmap.Config) is setto
Bitmap.Config.ARGB 8888.

When looking at the documentation for the Bitmap class, there are a number of
createBitmap () methods that take different parameters. These methods may return a
mutable or an immutable Bitmap. That is important; only a mutable Bitmap can be used for
drawing.

On line 27, a Canvas is instantiated based on the Bitmap that you created.

Simple drawing commands are applied to the canvas in lines 28-33. You create a Paint object
and set the Color to blue and set the text size. Line 28 gets the density of the display. That is
used to set the text size properly. Recall that you previously learned about converting density
independent pixels to pixels. On line 32, you draw the word “Hello” in the center of the Canvas.

On line 34, you update the ImageView to show your generated Bitmap.

Figure 11.6 shows the result.

DrawActivity
Hello

FIGURE 11.6
Drawing on a Canvas.

192

HOUR 11: ImageViews and Bitmaps

Introducing Picasso

Picasso is an open source Android library from the team at Square. Picasso is an image down-
loading and caching library. When you use Picasso to download and display an image, the
library keeps track of whether it has a copy of the image in memory or stored locally on the disk.
The response time for retrieving and showing images in Picasso is very fast.

Picasso uses a context that is often your current Activity. In this example, the context is
indicated by this, which refers to the Activity. Basic usage for displaying an image from a

resource file into an ImageView is as follows:

Picasso.with(this) .load(R.drawable.ic_launcher) .into (imageView) ;

There are many other methods for Picasso; you can learn more at http://square.github.io/

picasso/.

V¥ TRY IT YOURSELF

Installing and Using Picasso

Picasso enhances your app when you work with images and bitmaps. These are the steps to
download and use Picasso:

1.
2.

Go to http://square.github.io/picasso/ to learn more about Picasso.
In Android Studio, in Project view, find the app folder and locate the build.gradle file.

Add the line compile ‘com.squareup.picasso:picasso0:2.5.0’ to the dependencies. That adds
the Picasso library to the project.

Create an Activity with an ImageView.

5. Display an image from the drawable resources folder into the Imageview using Picasso.

Summary

In this hour, you looked at ImageViews and Bitmaps. You learned how ScaleType is used to
change how images display in ImageViews and saw how rotation can be used in ImageViews.
You learned about the Matrix class. You handled the display of an unrealistically large image
by reading the dimensions of the bitmap before displaying it. You drew the word “Hello”

on Canvas and displayed it in an ImageView to learn about the relationship between an
ImageView, Canvas, and Bitmap. Picasso, an open source image library, was introduced.

http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/

Exercise 193

Q&A

Q. If | am developing an app that displays images in a ListView, should | use
BitmapFactory.Options to check the size of each image?

A. If you do not have control of the size of the images coming from the server, it is important
to check size. If you do have control over the images, the ideal scenario is to have appropri-
ately sized images. You can also use Picasso for handling images in code.

Workshop

Quiz
1. What is the purpose of inJustDecodeBounds?

2. What does mutable mean?

3. What is a pivot point?

Answers

1. In BitmapFactory.Options, inJustDecodeBounds is used to decode a Bitmap to get
the dimensions but not actually create a Bitmap in memory.

2. Mutable means changeable, and that is important when you create Bitmaps. Some meth-
ods return mutable Bitmaps and others return immutable Bitmaps.

3. When you rotate an image, there must be a point to rotate around. That is the pivot point.

Exercise

For this exercise, use your own images or images that you find on the web. Create an Activity
that includes two Imageviews. The first Imageview will take up the whole screen, with width
and height set to match parent. The second ImageView will have a fixed size. It will be
smaller than the first Imageview and will appear over the first Imageview aligned on the bot-
tom of the first ImageView. The goal is to use scaleTypes to display one image full size in the
large view and to create a good thumbnail image in the smaller view. This exercise is an oppor-
tunity to experiment with displaying modified images. Try making the smaller image a set square
size and use CENTER_CROP for the scaleType.

This page intentionally left blank

A

accessing strings, 42

ActionBar class, applying,
207-213

actions, 32
buttons, formatting, 97-102
loaders, 326

notifications, building
with, 341

ACTION_VIEW, 195

activities, 5-6
blank, 12, 67
buttons, adding, 18
code, adding to start, 21-23
colors, formatting, 43
configuring, modifying, 60-63
data, passing data

between, 24

development, 7-8
formatting, 20-21

fragments, 53. See also
fragments

formatting, 67-69

overview of, 66-70

Index

Intents class, starting, 17-27

IntentService class, starting
from, 81

layouts, applying, 54
lifecycles, 63-66
with ListViews, 121
MainActivity
checking for saved
data, 62

formatting, 55
MessageActivity, 55, 58-59
overview of, 53-63
results, returning, 54-60
Settings, generating, 256
starting, 23
viewing, 18

Activity class, 8
adapters, 119
ArrayAdapters, applying,
120-121
BaseAdapters, 124-130
view holder patterns,
implementing, 131-135

AdapterViewFlipper class,
applying, 172-174

388 adding

adding

animation to FABs (floating
action buttons), 158

apps on Google Play, 383
blank activities, 12

BroadcastReceiver to
IntentService class, 81-86

buttons to activities, 18
CardView, 146-148
child views
BaseAdapters, 126-130
to toolbars, 217-219
code to start activities, 21-23
data
to databases, 266-267
for the Spinner, 162-163
destinations, 340
elevation, 145
fields to databases, 270
hints, 96
icons
to menu items, 211
to notifications, 341

images to ImageButton
class, 98

imports on the fly, 22

MediaController to
VideoViews, 197

navigating, 207
notifications

to chronometers, 343

Wear (Android), 353-354
Show Map buttons, 30
strings

resources, 100

viewing in TextView, 94

subscreens, 254

TextView components, 93

titles, 254

toolbars, 216

up navigation, 213
Add() method, 69
AddToBackStack() method, 69
ad supported applications, 384
aligning

to parents, 108-110

views, RelativeLayout,
110-112

Alpha levels, configuring, 185
alternative resources, 48
Amazon, publishing on, 384
Android
Calendar app and, 298-299
defining, 3-5
developer documentation,
369-373
locales, handling, 50
manifest files, 6, 13
platforms, 347-348
TV. See TV (Android)
updating, 369
Wear. See Wear (Android)

Android Asset Studio, formatting
icons, 377

AndroidManifest.xml file, 80, 315,
376-377

Android Studio, 4, 10-14
activities, starting, 17-27

content providers, formatting,
312

installing, 11

IntentServices class, applying
for, 86-87

layouts, formatting, 106-107
Listviews, 119

package files, exporting, 378
projects, formatting, 11-14

Settings activity, generating,

256

Show Map buttons, adding,
30

Ul (user interface) controls,
91-92

user interfaces, formatting,
18-19

wearable apps, formatting,
349

Android Virtual Device.
See AVD

animation, 143

to FABs (floating action
buttons), adding, 158

sliding drawer, 220

APIs (application programming

interfaces), 4, 234

Flickr APIs, 278
OpenGL ES graphics, 372
remote. See remote APIs
wearable apps, 353

Apple, iCal, 298

application programming
interfaces. See APIs

applications (apps)
activities, 5
Calendar app, 298-299

CalendarContract content
provider, 300-307

databases, applying, 269-274

emulators, running in, 23

evolution of app design,
139-140

localization, 50
private storage, 236-239
public storage, 240-241
publishing, 375
Amazon, 384
Google Play Services, 382
monetizing, 384-385

preparing for release,
375-382

sharing, 382-384

remote APIs, formatting,
286-290

resources
referencing, 40-41
viewing, 39
responsive, 73. See also
background processes

signing, 378
themes, configuring, 145

wearable apps, 347

applying

ActionBar, 207-213
activities, 53-63
AdapterViewFlipper, 172-174
Android Studio
for IntentServices class,
86-87
Ul (user interface) controls,
91-92

ArrayAdapters, 120-121
AsyncTask class, 76-78

BitmapFactory.Options class,
187-189

bitmaps, 186-191
Bluetooth, 373

BitmapFactory.Options class 389

colors, 42-43
Crashlytics, 369
databases, 269-274
dimensions, 44-45
drawable images, 45-46
EditText, 96

Fabric, 369

fragments, 70
Framelayout, 116

Google Play Services,
361-364

GridView, 171

implicit Intents, 27-32
languages, 49-51

layouts, 54

LinearLayout, 115

locations, 364-367
OnltemClickListener, 122-123

OpenGL ES graphics APIs,
372

padding, 113

Picasso, 192, 368
PieDbAdapter class, 270, 312
Pie objects, 262

queries, 267-269

Realm, 369

RecycleView, 148-154
resources, 40-48

SDKs (software development
kits), 368-369

sensors, 370-371

services, background
processes, 79-87

SharedPreferences, 245

SimpleCursorAdapter class,
271274

StartActivityForResult, 54-60

strings, 41-42

styles, 47-48

toolbars, 214-219

<uses-feature> tag, 377

VideoViews, 196-197

View.post() method, 76
AppThemeNoActionBar style, 216
ArrayAdapters class, 170

arrays, adding data to
resources, 123

AsyncTask class, 76-78, 282, 287
attributes
layouts, 112-113
showAsAction, 209

audio, playing MediaPlayer,
202-204

AutoCompleteTextView class, 164
AVD (Android Virtual Device), 347
TV (Android), 356
Wear (Android) apps, 351

backgrounds
downloading in the, 287
processes, 73-76
AsyncTask class, 76-78
post() method, 75-76
services, 79-87

Ul (user interface) threads,
73-74

BaseAdapters class, 124-130
Beam, 373
bindView() method, 332

BitmapFactory.Options class,
187-189

390 bitmaps

bitmaps, 179, 186-191
blank activities, 12, 67
blocking Ul threads, 74
Bluetooth, applying, 373
BroadcastReceivers class, 7
broadcasts, sending, 7
Bundle class, 62
buttons
actions, formatting, 97-102
activities, adding, 18
clicking, 22, 99-102
properties, 97-98

C

caches
directories, 239

storage, 235. See also file
systems

Calendar app, 298-299

CalendarContract content
provider, 300-307

calls, remote APls, 278
cameras, 372

Canvas class, 186-191
cards, 144

CardView class, 146-148,
332-333

certificates, exporting files, 381
CheckBox class, 164-166

CheckBoxPreference class,
250-252

child views, 108

BaseAdapters, adding,
126-130

modifying, 123-124
toolbars, adding, 217-219

chronometers, adding

notifications, 343

classes, 8-10

ActionBar
applying, 207-213
up navigation, 213
Activity, 8

AdapterViewFlipper, applying,
172-174

ArrayAdapters, 120-121, 170
AsyncTask, 76-78, 282, 287
AutoCompleteTextView, 164

BaseAdapters

adding child views,
126-130

formatting, 125-126

BitmapFactory.Options,
187-189

BroadcastReceiver, 10

adding IntentService class,
81-86

IntentService class,
adding, 81-86

BroadcastReceivers, 7
Bundle, 62

Canvas, 186-191

CardView, 146-148, 332-333
CheckBox, 164-166
CheckBoxPreference, 250-252
ContentProvider, 311-312

CursorAdapter, 327-329,
330-332

CursorLoader, 297, 324,
327-329

CursorLoaders, 323
DelayService, 81

EditText, 96
EditTextPreference, 253
Framelayout, 114
GestureDetector, 371
GooglePlex, 31

GridLayout, 105

GridView, 171
HttpUrlConnection, 280-281

ImageButton, adding
images, 98
ImageViews, 179
navigating, 179-185
ScaleType property, 180
Intents, 6, 9, 17-27
IntentService, 9, 79-87
IntentServices, 6
LinearLayout, 105, 114-115
ListPreference, 252-253
ListViews, 119, 170
adding child views,

126-130

applying
OnltemClickListener,
122-123

ArrayAdapters, 120-121
display information, 127

modifying child views,
123-124

overview of, 119-124
populating, 122
viewing data, 122

Loader, 324

LoaderManager, 324
LoaderManagerCallbacks, 325
loaders, 324-325
MainActivity, 17, 340

checking for saved
data, 62

formatting, 55, 57

MediaController, adding
VideoViews, 197

MediaPlayer

objects, 202

playing audio, 202-204
MessageActivity, 55, 58-59

MyContentProvider, 314,
319-321

Notification, 338
Notification.Builder, 338-339
NotificationManager, 338
notifications, 338
Pendingintent, 338
PhotoCursorAdapter, 331

PieDbAdapter, 263-266,
270, 312

PlaceholderFragment, 69

PreferenceActivity, generating,
256

PreferencesFragment,
249-250

ProgressBar, 78, 166-170
RadioButtons, 164-166
RecycleView, 146, 148-154
RelativeLayout, 93, 106, 114
aligning views, 110-112
navigating, 108-112
RemoteViews, 344
RippleDrawable, 157

ScrollView, 177
SecondActivity, 20-21
SecondaryActivity, 17
SeekBars, 166-170
Service, 79
SharedPreferences
applying, 245
configuring user
preferences, 249-257
data types, 248
methods, 248
reading from, 246-248
storage, 245-248

SimpleCursorAdapter,
271-274, 300

Spinner, 161, 217
adding data, 162-163
retrieving data, 163
SQLiteOpenHelper, managing
data, 263-266
SwitchPreference, 252-253
TableLayout, 114
TextView, 37, 41
adding components, 93
aligning to parents, 110
applying styles, 48
positioning components,
93

Ul (user interface) controls,
91

viewing strings, 94
UriMatcher, 314
VideoViews, 195, 204

adding MediaController,
197

applying, 196-197

classes, 204

Commit() method 391

handling events, 199-202
pausing video, 198
playing audio with
MediaPlayer, 202-204
playing video, 195-199
positioning video, 198
starting video, 198
WearDestinationActivity, 353
WebView, 174-177
clauses, where, 267
clicking
buttons, 22, 99-102
responding to, 211
cloud, 277
applications (apps),
formatting, 286-290
connecting, 290-294

JSON (JavaScript Object
Notation), 282-286

code

activities, adding to start,
21-23

applications (apps), viewing
resources, 39
loaders, 333
MainActivity.java, 207
OnClick property, 101
sliding drawer activities, 226
colors
applying, 42-43
design, 142
formatting, 43
text, modifying, 95
<color> tag, 42

command-line tools, signing
apps, 380
Commit() method, 69

392 common resources

common resources, 40-48
communication, NFC, 373
components
design, 91
of notifications, 337
TextView
adding, 93
positioning, 93
conditions, resources, 37. See
also resources

configuring
activities, modifying, 60-63
Alpha levels, 185
elevation, 145

Google Play Services,
361-363

preferences, 245-246

sliding drawer navigation,
222-224

themes, 145

user preferences, 249-257

wearable apps, 349
connecting

cloud, 290-294

Google Play Services,
363-364

constructors, 150
ContentProvider class, 311-312
content providers, 297
Calendar app, 298-299
CalendarContract, 300-307
declaring, 314-315
formatting, 311
applying PieDbAdapter
class, 312
defining URIs, 312-319
specifying URIs, 311

getType() method, 317

MyContentProvider class,
319-321

overview of, 297

query() method, 315
controls, 161

AutoCompleteTextView, 164

CheckBox, 164-166

data display, 170-174

information collection,
161-166

progress indicators, 166-170
RadioButtons, 164-166
Uls (user interfaces), 91
applying Android Studio,
91-92
creating buttons (for
actions), 97-102
handling input, 92-96
ViewGroup, 372
Crashlyticsm, applying, 369
createBitmap() methods, 191
creating. See formatting
CursorAdapter class
CursorLoader class, 327-329
formatting, 330-332
CursorLoader class, 297, 324
CursorAdapter class, 327-329
overview of, 324
CursorLoaders class, 323
cursors, applying queries,
267-269

customizing
notifications, 342, 344-345
styles, 372
themes, 372

views, 372

data

adding/deleting/updating,
266-267

remote APIs, fetching,
277-282

SQLiteOpenHelper class,
managing, 263-266

databases, 261

applications (apps), applying,
269-274

data, adding/deleting/
updating, 266-267

fields, adding, 270

queries, applying cursors,
267-269

tables, managing, 261-262

data types, SharedPreferences
class, 248

declaring content providers,
314-315

default resources, specifying, 50
defining
Android, 3-5
IntentService class, 80
queries, 268-269

URIs (Uniform Resource
Identifiers), 312-319

DelayService class, 81
delete() method, 312, 318
deleting data from databases,
266-267
density-independent pixel.
See dp

design

components, 91

flat, 140

layouts, 106-107

materials, 139
3D space, 141
animation, 143
cards, 144

evolution of app design,
139-140

graphics, 142
implementing, 145-159
overview of, 140-144
shadows, 141
typography, 143
RelativeLayout, 112
TV (Android), 355
wearable apps, 348
desktops, 139
destinations, adding, 340
developers
documentation, 369-373
signing up as, 278
development
activities, 5-8
BroadcastReceivers, 7

environments, 4. See also
IDEs

intents, 6

IntentServices, 6

overview of, 5

services, 7-8

TV (Android), 355-357

Wear (Android) apps, 348-354
dimensions, applying, 44-45

directories
cache, 239
resources, qualifiers, 48
display information, ListViews,
127
displays, fragments, 70
documentation, developers,
369-373

dolnBackground() method, 76,
287

dots per inch. See dpi
downloading

Android Studio, 11

in the background, 287
dp (density-independent pixel), 45
dpi (dots per inch), 45
dragging and dropping

images, 48

TextView components, 93

drawable images, 40, 45-46. See
also images

drawing on Canvas, 190-191

editing, 91, 107
EditText class, applying, 96
EditTextPreference class, 253
elevation, configuring, 145
emulators
applications, running in, 23
maps, applying, 29
environments, development, 4.
See also IDEs

files 393

events. See also Calendar app
inserting, 307
lists of attendees, 306

VideoViews, handling,
199-202

viewing, 305
evolution of app design, 139-140
execute() method, 77
explicit Intents, 27
exporting
files, certificates, 381
package files, 378
extending
BaseAdapter, 119
PreferencesFragment, 249

external SDKs (software
development kits), 368-369

external storage, 233-234.
See also file systems

files, saving, 241

F

Fabric, applying, 369
FABs (floating action buttons),
141, 155-159

features, 361-367

fetching data, remote APls,
277-282

fields, adding to databases, 270
filename rules, 40
files

Android manifest, 6, 13

AndroidManifest.xml, 80, 315,
376-377

394 files

certificates, exporting, 381
external storage, saving, 241
images, moving, 48
layouts, 40, 91
package
exporting, 378
testing, 381
resources, formatting, 42
storage, 261
XML, RelativeLayout, 106
file systems, 233
overview of, 233-236
private storage, 236-239
public storage, 240-241
findViewByld() method, 54, 353
flat design, 140
Flickr APIs, 278, 282

floating action buttons. See
FABs

folders, navigating resources, 39
fonts, sizing, 44
formatting
activities, 20-21
BaseAdapters, 125-126
buttons (for actions), 97-102
colors, 43
content providers, 311
applying PieDbAdapter
class, 312
defining URIs, 312-319
specifying URIs, 311
CursorAdapter class, 330-332
databases, applications
(apps), 269-274

display information, ListViews,
127

fragments, activities, 67-69

icons, Android Asset Studio,
377

Intents with latitudes/
longitudes, 28-29

JSON (JavaScript Object
Notation), 282-286

JSONArray, 283-284
JSONObject, 283
layouts, 106-107, 113
loaders, 326
MainActivity, 55, 57
MessageActivity, 58
notifications, 338-343

projects, Android Studio,
11-14

queries, 274

remote APls, 286-290

resources, files, 42

sliding drawer navigation,
222-224

strings, 41
TV (Android), 355-357

URIs (Uniform Resource
Identifiers), 297

user interfaces, 18-19
Wear (Android) apps, 348-354
forms, RelativeLayout, 112
fragments
activities, 53
formatting, 67-69
lifecycles, 63-66
overview of, 53-63
layouts, applying, 70
lists, viewing, 289
overview of, 66-70

FragmentTransction object, 69

Framelayout class, 114, 116
free applications, 384
functionality, 10

G

generating
PreferenceActivity class, 256
Settings activity, 256
signed APKs, 378

geo Intent, viewing
GooglePlex, 31

GestureDetector class, 371
gestures, handling, 371

getActiveNetworkInfo()
method, 290

getApplicationContext()
method, 23

getAssets() method, 204

getCheckedRadioButtonlD()
method, 166

getColumnindex() method, 269

getExternalFilesDir() method,
240-241

getltemCount() method, 150
getLoaderManager() method, 325
getPieFromCursor() method, 269
getResources() method, 40

getSharedPreferences() method,
246

getString() method, 42
getText() method, 61, 96, 164
getType() method, 312, 317
getView() method, 131

global positioning system.
See GPS

Google
Calendar, 298
Play Services
applying, 361-364
configuring, 361-363
connecting, 363-364
locations, 364-367
publishing on, 382
GooglePlex class, 31

GPS (global positioning
system), 364. See also locations

graphics, 142

gravity, 115

GridLayout class, 105, 114
GridView class, applying, 171

guidelines for images, 142

handling
buttons, clicking, 99-102
events, VideoViews, 199-202
implicit Intents, 32-34
large images, 186-187
locales, 50
selection, 224
users
gestures, 371
input, 92-96
hasExtra() method, 33
Hello World, 37, 40
hints, adding, 96

holder patterns, implementing
views, 131-135

horizontal scrolling, 174

HTTP (Hypertext Transfer
Protocol), 278

HttpUriConnection class, 280-281

Hypertext Transfer Protocol.
See HTTP

icons

Android Asset Studio,
formatting, 377

menu items, adding, 211
notifications, adding to, 341

IDEs (integrated development
environments), 4. See also
Android Studio

ImageButton class, 98
images
drawables, 40
guidelines, 142
ImageButton, adding, 98
large, handling, 186-187
moving, 48
rotating, 183-185
sizing, 44
viewing, 179-180
ImageViews class, 179
navigating, 179-185
ScaleType property, 180
implementing
bindView() method, 332
BroadcastReceiver, 82
material design, 145-159
newView() method, 330

onCreatelLoader() method,
329

IntentService class 395

onLoaderReset() method, 329
onLoadFinished() method, 329
view holder patterns, 131-135
implicit Intents, 27
applying, 27-32
handling, 32-34
importing
FABs (floating action
buttons), 156
on the fly, adding, 22
in-app payments, 384
<include/> element, 106

information collection controls,
161-166

Input controls, 92
inputType properties, 96
inserting events, 307
insert() method, 312, 318
installing
Android Studio, 11
Picasso, 192

integrated development
environments. See IDEs

Intents
explicit, 27
implicit, 27
applying, 27-32
handling, 32-34
latitudes/longitudes, creating
with, 28-29
video, playing, 195
Intents class, 6, 9, 17-27
IntentService class, 9, 79-87
activities, starting from, 81

AndroidManifest.xml file,
updating, 80

396 IntentService class

BroadcastReceiver, adding,
81-86

defining, 80
IntentServices class, 6, 86-87
interfaces, 5. See also APIs
internal padding, 113

internal storage, 233-234.
See also file systems

internationalization, 49-51

items, adding icons, 211

J

Java. See also code
applications (apps), viewing

resources, 39
MainActivity.java code, 207

Java Development Kits.
See JDKs

JavaScript Object Notation.
See JSON

JDKs (Java Development
Kits), 380

JSON (JavaScript Object Notation),
282-286

JSONArray, formatting, 283-284
JSONObject, formatting, 283

K

keys
applications, signing, 378

stores, formatting, 381

L

languages, 49-51
large images, handling, 186-187

latitudes, creating with intents,
28-29
launching. See starting
layout_gravity property, 115
layouts, 105
activities, applying, 54
attributes, 112-113
editing, 107
files, 40, 91
formatting, 106-107
fragments, applying, 70
ListViews, display
information, 127
margins, 113
notifications, 344
overview of, 105-108

RelativeLayout, navigating,
108-112

resources, programming, 108

sliding drawer navigation,
220-222

types, 114-116
layout_weight property, 115
lifecycles, activities, 63-66
LinearLayout class, 105, 114-115

listening for states, ViewViews,
199-202

ListPreference class, 252-253
lists
event of attendees, 306

fragments, viewing, 289

ListViews class, 119, 170

ArrayAdapters, applying,
120-121
child views
adding, 126-130
modifying, 123-124
data, viewing, 122
display information, 127

OnltemClickListener, applying,
122-123

overview of, 119-124
populating, 224
Loader class, 324

LoaderManagerCallbacks
class, 325

LoaderManager class, 324
loaders, 323
actions, 326
classes, 324-325
code, 333

CursorAdapter class,
formatting, 330-332

formatting, 326

overview of, 324

resetting, 326

states, 325-330
locales, handling, 50
locations

Google Play Services,
364-367

maps, opening, 28
tracking, 365-367
Lollipop, 4. See also OS (operating
systems)

longitudes, creating with intents,
28-29

MainActivity class, 17, 340

formatting, 55, 57

saved data, checking for, 62
MainActivity.java code, 207
makePies() method, 127
managing

data, SQLiteOpenHelper class,

263-266

databases with tables,
261-262

notifications, 338-343
maps

opening, 28

viewing, 29-31
margins, layouts, 113
material design, 139

3D space, 141

animation, 143

cards, 144

evolution of app design,
139-140

graphics, 142
implementing, 145-159
overview of, 140-144
shadows, 141
typography, 143
media, VideoViews, 195

adding MediaController
to, 197

applying, 196-197
audio with MediaPlayer,
202-204

classes, 204
handling events, 199-202
pausing video, 198

playing video, 195-199

positioning video, 198

starting video, 198
MediaController class

VideoViews

adding, 197

MediaPlayer class

audio, playing, 202-204

objects, 202

memory, OOM (out-of-memory),
187

menus
icons, adding, 211
overflow, 209
MessageActivity class, 55, 58-59
methods
Add(), 69
AddToBackStack(), 69
bindView(), 332
Commit(), 69
ContentProvider class, 312
createBitmap(), 191
delete(), 312, 318
dolnBackground(), 76, 287
execute(), 77
findViewByld(), 54, 353
geSharedPreferences(), 246
getActiveNetworklInfo(), 290
getApplicationContext(), 23
getAssets(), 204

getCheckedRadioButtonlD(),
166

getColumnindex(), 269
getExternalFilesDir(), 240-241
getltemCount(), 150
getLoaderManager(), 325

methods 397

getPieFromCursor(), 269
getResources(), 40
getString(), 42

getText(), 61, 96, 164
getType(), 312, 317
getView(), 131
hasExtra(), 33

insert(), 312, 318
makePies(), 127
moveToFirst(), 268
moveTolast(), 268
moveToNext(), 268
moveToPrevious(), 268
newView(), 330
onActivityCreated(), 325
onBindViewHolder(), 150
OnClickListener(), 21
onClickListener(), 30, 99
onConnected(), 367
onConnectionFailed(), 363
OnCreate(), 13, 33, 53

onCreate(), 21, 64-66, 249,
312

onCreatelLoader(), 325, 329
onCreateMenuOptions(), 211
onCreateView(), 69
onCreateViewHolder(), 150
onHandlelntent(), 81

onltemClickListener(),
122-123, 303

onLoaderReset(), 329
onLoadFinished(), 329
onOptionsltemSelected(), 211
onPause(), 64-66, 203
onPostExecute(), 77

onPreExecute(), 76

398 methods

OnPreparedListener(), 199 update(), 312, 318 toolbars, applying, 214-219
onProgressUpdate(), 77, 168 View.post(), 76 up navigation, 213
onResume(), 64-66 mobile platforms, 5 near-field communication. See
onStart(), 64-66, 364 modifying NFC
onStop(), 64-66 activities, configuring, 60-63 newView() method, 330
openFileOutput(), 239 child views, 123-124 NFC (near-field communication),
pause(), 199 queries, 321, 330 373
post(), 75-76 ScaleType property, 181 Notification.Builder class,
338-339
postExecute(), 77 text
. Notification class, 338
publishProgress(), 76, 167 colors, 95
query(), 312 strings, 94 NotificationManager class, 338
Y » Y L notifications, 337
Remove(), 69 monetizing applications (apps),)
Replace(), 69 publishing, 384-385 chronometers, adding, 343
resolveActivity(), 30 moveToFirst() method, 268 customizing, 342, 344-345
run(), 75 moveTolLast() method, 268 formatting, 338-343
SavelnstanceState(), 61-62 moveToNext() method, 268 overview of, '337-33'8
seekTo(), 199 moveToPrevious() method, 268 Wear (Android), adding,
') 353-354
sendBroadcast(), 10 moving
setAlpha(), 185 images, 48
setAnchorView(), 197 TextView components, 93
setAutoCancel(), 338 MP3 audio files, playing, 203 0
setContentintent(), 341 MyContentProvider class, 314,
319-321 objects

setContentView(), 54

. cursors, retreiving, 269
setlmageBitmap(), 179

FragmentTransction, 69
setimageDrawable(), 179
N JSON (JavaScript Object

Notation), 282-286
MediaPlayer, 202

setimageResource(), 179
setimageUri(), 179

setlLargelcon(), 341 navigating _ .
) . Pie, applying, 262
setOnClickListener(), 74 ActionBar, applying, 207-213 o
. onActivityCreated() method, 325
setTextViewText(), 344 adding, 207 o
. onBindViewHolder() method, 150
SetTransition(), 69 ImageViews, 179-185 o
Relativel. t 108112 onClickListener() method,
elativeLayout, -
SharedPreferences class, 248 Y 21, 30, 99
resources, 37
start(), 199 onClick property, 99
ivi common, 40-48
startActivity(), 6, 195 onCompletionListener, 200
i folders, 39
startService(), 81 o o onConnected() method, 367
SystemClock.sleep(), 74 sliding drawer navigation,

219-228

onConnectionFailed()
method, 363

onCreateLoader() method,
325, 329

onCreateMenuOptions()
method, 211

onCreate() method, 13, 21, 33,
53, 64-66, 249, 312
onCreateViewHolder()
method, 150
onCreateView() method, 69
onDestroy() method, 64-66
onHandlelntent() method, 81

onltemClickListener() method,
122-123, 303

onLoaderReset() method, 329
onLoadFinished() method, 329

onOptionsltemSelected()
method, 211

onPause() method, 64-66, 203
onPostExecute() method, 77
onPreExecute() method, 76
onPreparedListener() method, 199

onProgressUpdate() method,
77,168

onResume() method, 64-66

onStart() method, 64-66, 364

onStop() method, 64-66

on the fly, adding imports, 22

OOM (out-of-memory), 187

openFileOutput() method, 239

OpenGL ES graphics APIs, 372

opening maps, 28

open source SDKs (software
development kits), 368-369

operating systems. See OSs

Options menu, viewing, 207-209
OS (operating systems), 3, 139
out-of-memory. See OOM

overflow menus, 209

owner data, viewing, 332

P

package files
exporting, 378
testing, 381
padding, 113
paging, 174
paid models, applications, 384

palettes, Android Studio, 91.
See also Android Studio

parents, aligning to, 108-110

parsing JSON (JavaScript Object
Notation), 284-286

passing data between
activities, 24

patterns, view holder, 131-135
pause() method, 199
pausing video, 198
Pendingintent class, 338

personal computers. See PCs
PhotoCursorAdapter class, 331
Picasso

applying, 368

overview of, 192

PieDbAdapter class, 263-266,
270, 312

Pie objects, applying, 262

pixels, sizing, 44

processes, background 399

PlaceholderFragment class, 69
platforms
Android, 347-348
mobile, 5
playing. See also viewing
audio, MediaPlayer, 202-204
video, 195-199
populating ListViews, 224
positioning
TextView components, 93
video, 198
postExecute() method, 77
post() method, 75-76

PreferenceActivity class,
generating, 256

preferences
configuring, 245-246
reading, 256
SharedPreferences,
applying, 245
types, 251
user, configuring, 249-257

PreferencesFragment class,
249-250

primary colors, design, 142

private storage, 235. See also
file systems

applications (apps), 236-239

processes, background, 73-76
AsyncTask class, 76-78
post() method, 75-76
services, 79-87

Ul (user interface) threads,
73-74

400 programming

programming
layouts, resources, 108

ScaleType property, 181

ProgressBar class, 78, 166-170

progress indicators, 166-170
projects

Android Studio, formatting,
11-14

resources, 37-39
structures, viewing, 38
properties
buttons, 97-98
inputType, 96
layout_gravity, 115
layout_weight, 115
OnClick, 99
padding, 113
ScaleType, 180-183
textColor, 95

public storage, 235, 240-241.
See also file systems

publishing
applications (apps), 375
monetizing, 384-385

preparing for release,
375-382

sharing, 382-384
systems, 7

publishProgress() method,
76, 167

Q

qualifiers, directories, 48
queries
cursors, applying, 267-269
defining, 268-269
formatting, 274
modifying, 321, 330
query() method, 312, 315

RadioButtons class, 164-166

READ_EXTERNAL_STORAGE
permission, 235

reading
app data, 237
preferences, 256

from SharedPreferences
class, 246-248

Realm, applying, 369

RecycleView class, 146, 148-154

referencing resources,
applications (apps), 40-41

RelativeLayout class, 93, 106,
114

navigating, 108-112
views, aligning, 110-112

releasing applications, 375.
See also publishing
remote APls, 277
applications (apps),
formatting, 286-290
calls, 278
connecting, 290-294

data, fetching, 277-282

JSON (JavaScript Object
Notation) data, 282-286

RemoteViews class, 344
Remove() method, 69
Replace() method, 69
requests, 6
resetting loaders, 326
resolveActivity() method, 30
resources, 37
alternative, 48
applications (apps)
referencing, 40-41
viewing, 39
arrays, adding data to, 123
colors, 42-43
common, 40-48
default, specifying, 50
dimensions, 44-45
directories, qualifiers, 48
drawable images, 45-46
filename rules, 40
files, formatting, 42
folders, navigating, 39
languages, 49-51
layouts, programming, 108
projects, 37-39
sizing, 44
storage, 40
strings, 41-42, 100
styles, 47-48
responding to clicks, 211

responsive applications (apps),
73. See also background
processes

results, returning activities, 54-60
retreiving
data

from HttpUriConnection,
280-281

from a Spinner, 163
objects from cursors, 269
RadioButtons, 166

returning results, activities, 54-60

right-to-left languages. See
RTL languages

RippleDrawable class, 157
Roboto, 143
rotating images, 183-185
RTL (right-to-left) languages, 109
rules, filenames, 40
run() method, 75
running
apps in emulators, 23
on Ul threads, 74

S

SavelnstanceState() method,
61-62

saving

app data, 239

files, external storage, 241
ScaleType property, 180-183
scrolling, horizontal, 174
ScrollView class, 177

SDKs (software development kits),
11, 48, 368-369

SecondActivity class, 20-21
SecondaryActivity class, 17

SeekBars class, 166-170
seekTo() method, 199
selection, handling, 224
sendBroadcast() method, 10
sending broadcasts, 7
sensors, applying, 370-371

Service class, 79. See also
background processes

services

background processes, 79-87

development, 7-8

Google Play Services

applying, 361-364
locations, 364-367

starting, 6
setAlpha() method, 185
setAnchorView() method, 197
setAutoCancel() method, 338
setContentintent() method, 341
setContentView() method, 54
setimageBitmap() method, 179
setimageDrawable() method, 179
setimageResource() method, 179
setimageUri() method, 179
setLargelcon() method, 341
setOnClickListener() method, 74
setTextViewText() method, 344
Settings activity, generating, 256
SetTransition() method, 69
shadows, 141
SharedPreferences class

applying, 245

data types, 248

methods, 248

reading from, 246-248

StartActivityForResult 401

storage, 245-248

user preferences, configuring,
249-257

sharing applications (apps),
382-384

showAsAction attribute, 209
showing. See viewing
Show Map buttons, adding, 30
signing
applications (apps), 378
up as developers, 278

SimpleCursorAdapter class,
271-274, 300

sizing. See also dimensions
resources, 44
text, 96
skeuomorphism, 139

sliding drawer navigation,
219-228

software development kits.
See SDKs

specific locations, opening
maps, 28
specifying
default resources, 50
language-specific
resources, 51

URIs (Uniform Resource
Identifiers), 311

Spinner class, 161-163, 217

SQL (Structured Query
Language), 261

SQLite, 261

SQLiteOpenHelper class, 263-266
Square, 368
StartActivityForResult, 54-60

402 startActivity() method

startActivity() method, 6, 195
starting
activities, 23
adding to start, 21-23
Intents class, 17-27
IntentService class from
activities, 81
services, 6
video, 198
start() method, 199
startService() method, 81
statements, switch, 225
states

FABs (floating action buttons),
155

loaders, 325-330

ViewViews, listening for,
199-202

storage. See also file systems
files, 261
resources, 37, 40

SharedPreferences class,
245-248

stores, creating key, 381

strings, 37
adding, viewing in

TextView, 94

applying, 41-42
definitions, 40
formatting, 41
resources, adding, 100
text, modifying, 94

<string> tag, 41

Structured Query Language.
See SQL

structures, viewing projects, 38

styles. See also formatting
applying, 47-48
AppThemeNoActionBar, 216
customizing, 372
text, 96

subscreens, adding, 254

subscribing systems, 7

support

ad supported applications,
384

color formats, 43
SwitchPreference class, 252-253
switch statements, 225

SystemClock.sleep() method, 74

T

TableLayout class, 114
tables, managing, 261-262
tags

<color>, 42

<string>, 41

<uses-feature>, 377
testing

package files, 381

TV (Android), 357

Wear (Android) apps, 351
text

colors, modifying, 95

sizing, 96

strings, modifying, 94

styles, 96

textColor property, 95
TextView class, 37, 41
components
adding, 93
positioning, 93
parents, aligning to, 110
strings, viewing, 94
styles, applying, 48
Ul (user interface)
controls, 91

themes
configuring, 145
customizing, 372
threads, Ul (user interface), 73-74
titles, adding, 254
toolbars
adding, 216
applying, 214-219
child views, adding, 217-219
tools, updating, 24
tracking locations, 365-367

troubleshooting connecting,
290-294

TV (Android), 347

AVD (Android Virtual Device),
356

developing, 355-357
as platforms, 347-348
testing, 357

types
layouts, 114-116
preferences, 251
of resources, 37

typography, 143

U

Uls (user interfaces), 5. See also
interfaces
controls, 91
applying Android Studio,
9192

creating buttons (for
actions), 97-102

formatting, 18-19

input, handling, 92-96
reading/writing files, 236
threads, 73-74

updating, 19, 77

Uniform Resource Identifiers.
See URIs

uninstalling package files, 382
update() method, 312, 318
updating

Android, 369

AndroidManifest.xml file, 80,
315

Calendar app, 307
data in databases, 266-267
tools, 24
Ul (user interface), 19, 77
up navigation, 213
UriMatcher class, 314

URIs (Uniform Resource
Identifiers), 297

defining, 312-319

specifying, formatting content
providers, 311

user gestures, handling, 371

user input, handling, 92-96

user preferences, configuring,
249-257

<uses-feature> tag, applying, 377

'/

values, 37, 209
versions, OS (operating
systems), 4
videos
pausing, 198
playing, 195-199
positioning, 198
starting, 198
viewing, 195
VideoViews class, 195
applying, 196-197
audio, playing with
MediaPlayer, 202-204
classes, 204
events, handling, 199-202
MediaController, adding, 197
video
pausing, 198
playing, 195-199
positioning, 198
starting, 198
ViewGroup controls, 372
viewing
activities, 18
Calendar apps, 300
data, 122
data display, 170-174

wearable apps 403

events, 305

images, 179-180

lists in fragments, 289

maps, 29-31

Options menu, 207-209

owner data, 332

ProgressBar, 78

projects, structures, 38

resources, applications

(apps), 39

strings in TextView, 94

videos, 195

web pages, 31
View.post() method, applying, 76
views, 161, 174-177

child, 108. See also child
views

modifying, 123-124
customizing, 372

holder patterns, implementing,
131-135

ListViews, overview of,
119-124

RelativeLayout, aligning,
110-112

ScrollView, 177
WebView, 174-177

w

wearable apps, 347
APIs (application programming
interfaces), 353
design, 348

404 Wear (Android) apps

Wear (Android) apps, 347-354

AVD (Android Virtual Device),
351

notifications, adding, 353-354
testing, 351

WearDestinationActivity
class, 353

WebView class, 174-177

weight, 115

where clauses, 267

Widgets, 91

WRITE_EXTERNAL_STORAGE
permission, 235

writing app data, 237

X

XML files
layouts, editing, 107
RelativeLayout, 106

This page intentionally left blank

Learning Labs!

Learn online with videos, live code
editing, and quizzes

SPECIAL 50% OFF — Introductory Offer

Discount Code: STYLL50

FOR A LIMITED TIME, we are offering readers of Sams Teach Yourself books a 50% OFF
discount to ANY online Learning Lab through Dec 15, 2015.

Visit informit.com/learninglabs to see available labs, try out full samples, and order today.

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Hour 3
Understanding Dynamic Web Page Anatomy
m i

Try It ¥~urself

Adding Forms to Web Pages

Using HTML/HTMLS5 Elements to Build a :
Dynamic Web Page

m Read the complete text of the book m Watch an expert instructor show you how
online in your web browser to perform tasks in easy-to-follow videos

PEARSON ALWAYS LEARNING
AA Q

PEARSON

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Sams Teach Yourself jQuery and JavaScript in 24 Hours
FIGURE 3.15 sing Javaseript t araw pixels on a canvas. N
LISTING 3.8 JavaScript and HTML Code That Draws a Cube onto a <canvas> Element Quiz

> 8/10
=) Given the HTML markup <p align="center”>,
what is the component that is represented

by “align”?

hour0308.1

a.tag
b. content

c.attribute

+ Prey Next

m Try your hand at coding in an interactive m Test yourself with interactive quizzes
code-editing sandbox in select products

ALWAYS LEARNING PEARSON

Essential Resources for Android Developers
informit.com/android

livelessons®
Developing))]
Android’ Developing Android User RO'? .
User Interfaces Interfaces LivelLessons Ai\! De Des'g Android User.
e (Video Training) | nterfﬁc Interface Design
id Adam Porter yse’ lan G. Clifton
Hlel=e) ISBN-13: 978-0-134-0-3773-8 an GYGHIFTON ISBN-13: 978-0-321-88673-6
livelessons®
Bulletproof
Android Bulletproof Android: Aégglgo'd Android Security
Practical Advice for Building Secure Apps El’al(glcal édVice onr Essentlgls (E\S/Sdentia-::s I_‘iv‘el_?ssons
uilding Secure S ideo Trainin
g PP Godfrey Nolan 9
Godfrey Nolan Godfrey Nolan

"PROGRAMMING

JOHN M. WARGO

ISBN-13: 978-0-133-99332-5

Apache Cordova 4
Programming

John M. Wargo
ISBN-13: 978-0-134-04819-2

\Vile[=Ye)

COOKBOOK

JUHN M WARGD

ISBN-13: 978-0-133-82904-4

Apache Cordova API
Cookbook

John M. Wargo
ISBN-13: 978-0-321-99480-6

A oo
Vv oo
Addison PR E.N:I CE
Wesley HALL
Advapcgd Android Titles are available in print and/or eBook formats.
Application
Advanced Android’ Devel.o.pment, IIIIIII'III “- For more information and to
Application Development 4th Edition ottt read sample material, please

Joseph Annuzzil Lauren visit informit.com/android.

Darcey, and Shane Conder
ISBN-13: 978-0-133-89238-3

Titles are also available at
safari.informit.com.

A Sc

	Table of Contents
	Preface
	HOUR 11: ImageViews and Bitmaps
	Examining ImageView
	Using Bitmaps and Canvas
	Introducing Picasso
	Summary
	Q&A
	Workshop
	Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

