Timothy L. Warner

Windows
PowerShell

FREE SAMPLE CHAPTER
T 9 B R @

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337284
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337284
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337284
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337284
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337284/Free-Sample-Chapter

Timothy Warner

SamsTeachYourself

Windows ®
PowerShell

N
|'iOII S

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Windows PowerShell® in 24 Hours

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 9780672337284

ISBN-10: 0672337282

Library of Congress Control Number: 2015900973

Printed in the United States of America

First Printing May 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor

Joan Murray
Development
Editor
Sondra Scott

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Cheryl Lenser

Proofreader
Katie Matejka

Technical Editor
Jeff Wouters

Publishing
Coordinator

Cindy Teeters

Cover Designer
Mark Shirar

Compositor
Gloria Schurick

Contents at a Glance

| 5sUn (oY 10 Uotn (o) s KNUUUR USSR 1

Part I: Introducing Windows PowerShell

HOUR 1 Getting to Know Windows PowerShell..........ccccccccoiviiiiinniiiiiniiiiininnenn. 7
2 Installing and Configuring Windows PowerShell...........c..cccoovieeennnneeen. 25
3 Mastering the Windows PowerShell Help System..........cccocceeirniieennnnee. 47
4 TFinding and Discovering Windows PowerShell Commands 69

Part II: Understanding Objects and the Pipeline

HOUR 5 Thinking in Terms of ODJects........ccoooueeiriiieiiniieieiiiiieeeiieeeeeee e 91
6 Mastering the Windows PowerShell Pipeline.............ccccocoiiviiiniinnnnn. 109
7 Sorting, Filtering, and Measuring Windows PowerShell Output.......... 133

Part llI: Extending the Reach of Windows PowerShell

HOUR 8 Managing Windows PowerShell Providers..........cccoccuveeeniiieenninecennnnen. 153
9 Formatting, Exporting, and Converting Windows
PowerShell OULPULccooviiiiiiiiiiiiieeeee e 175

Part IV: Managing Computers Remotely with Windows PowerShell

HOUR 10 Implementing One-to-One Windows PowerShell Remoting................ 201
11 Implementing One-to-Many Windows PowerShell Remoting 221
12 Deploying PowerShell Web ACCESS......c.ueterruiieiriiiieiniiieeenieeeerieeeeeee 237

Part V: Putting Windows Powershell to Work

HOUR 13 Multitasking Windows PowerShell..........ccocceeiiiiiiiniiiiinnnieenieeene 255
14 Harnessing Windows PowerShell WOrkflowccocciviiiiinininnnn. 275
15 Introducing WMI and CIM.......ccoccceiiriiiiinniiieeniieeenieee e eieee e 293
16 Searching and Filtering with Regular Expressionsccccceeviirnnnne. 313

Part VI: Enterprise-Class Windows PowerShell

HOUR 17 Managing Software with Windows PowerShell OneGet....................... 331
18 Desired State Configuration BASICSeeeveuiieiriiieerniiieeinieeeeieeeee 355

iv Sams Teach Yourself Windows PowerShell in 24 Hours

Part VII: Scripting with Windows PowerShell
HOUR 19 Introduction to Windows PowerShell Scriptingccccccevevevinnniiennnns 377
20 Making PowerShell Code Portable with Modules.........cccccceeeviieeennne 399

Part VIII: Administering Microsoft Enterprise Servers with
Windows PowerShell

HOUR 21 Managing Active Directory with Windows PowerShell......................... 417
22 Managing SQL Server with Windows PowerShell.................cccoein 437
23 Managing SharePoint Server with Windows PowerShell...................... 453
24 Managing Microsoft Azure with Windows PowerShell......................... 471

Table of Contents

Introduction 1
Who Should Read This BOOK........cooeiiuiiiiiiiiiiiiiiiieee ettt 1
How This Book Is Organized............cccceeviiiiiiiiiiiiiiiieiiiiciniicceieeceeeceeieee e 2
Conventions Used in This BOOKcceiiiiieiiiiiiiiieeiiiiiieeeeeeeeeiiee e e e e e eieneeeeees 4
System ReqUIT€MENtS...........cceeviiiiiiiiiiiiiiiiiiiiiiii e 5

Part I: Introducing Windows PowerShell

HOUR 1: Getting to Know Windows PowerShell 7
Why You Should Learn Windows PowerShellcccocoviiiiiiiiiiniiiiiininecennnnee. 8
Brief History of Windows PowerShell..........ccoccciiiiiiiiiiiiiiiiniiiceceeceee 10
Understanding the Windows PowerShell Components............cccooveveeiinineeennnnee. 13
Investigating the Power and Simplicity of Windows PowerShell....................... 18
N 00640540 | o V2O PP PPPRRRTPPPRE 21
QA e e e s e 22
WOTKSNIOPD .0ttt ettt st e e 23
HOUR 2: Installing and Configuring Windows PowerShell 25
Determining Your Windows PowerShell Environmentcccooeeiinniceennnee. 26
Installing the Latest Version of Windows PowerShell.............ccccooiiiiinnn. 29
Customizing the Windows PowerShell Consolecccccveeevvieiiniceiinneeeennnnee. 32
Customizing the Windows PowerShell ISEcccccoiiiiiiiiiiniiiiniiiecceee, 39
SUITIITIATY oottt ettt e e e e e s s e e e s e eamsenneees 42
QA e 42
WOTKSNIOP . ¢ttt ettt e st e st e e e enbeeeeeane 44
HOUR 3: Mastering the Windows PowerShell Help System 47
Anatomy of a Windows PowerShell Cmdlet...........ccccceeviiiiiniiiiiniiiiinniieennee 47
Updating the Windows PowerShell Help Librarycccccccceevviieeiniceiinneceennnen. 50

Understanding Windows PowerShell Help Syntax......cccccccevveieiiniiiiiinniceennnen. 54

Sams Teach Yourself Windows PowerShell in 24 Hours

Accessing Additional Command Help......ccueeiriiiiiiniiieiinniieiiieeeeiieeeeieeeee 60
N 00060540 | o V20O 66
QA e e s 66
WOTKSNIOPD . ¢ttt sttt 67
HOUR 4: Finding and Discovering Windows PowerShell Commands 69
How Windows PowerShell Commands Are Packagedcccccevvvveeirneceennnen. 69
Installing RSAT Tools on WIindows 8.1.......cccccceiiiriiiiiiiiiieiniiieeinreeeeieee e 73
Locating Windows PowerShell Commands.........c.ccueeeevveeerniiieeinnneeernneeeeennnnen 75
Running External Commandscccceevvuiiiiniiiiiiniiieiiiiieeenieee e 83
SUITIITIATY ittt et e e e e e s e e e e s ennnnneeeas 86
QA s 87
WOTKSNIOPD .ttt ettt e st e et e e e nreee s 88

Part II: Understanding Objects and the Pipeline

HOUR 5: Thinking in Terms of Objects 91
The Problem with UNIX/LINUX ...oeeiiiiiiiiniiiiiiniieeeneeceeicee et e e 91
What Is Qn ODJECt?...c.eeiiiiiiiiiiiiiiieieec et 93
Discovering Object MEIMDETS........ccoccueiiiiiiiirniiiieeiiteeeieeeeeiieee e e 96
Putting Objects into ACHONccovviiiiiiiiiiiiiiiciicreeeee e 102
SUITIITIATY ettt ettt ra e e e e e e st e e e e e e e ennnnnee 105
QA 105
WOTKSNIOPD . ¢ttt ettt e ettt e e e e 106

HOUR 6: Mastering the Windows PowerShell Pipeline 109
Understanding How the Pipeline Works
from a High Level.........cooiiiiiiiiiiiiiiiiiccieereecrecc e 109
Understanding in Depth How the
PIPline WOTKS.....cooiiiiiiiiiiieiiiee ettt st 113
Passing Data Through the Pipeline.........ccccccccceoviiiiiiiiiiiiniiiiiiiceineeeee, 118
“Forcing” Objects Through the Pipeline..........cccocceeirniiiiiniiiiinniiieenieeeeee. 125
N0 06050 | o V20PN 129
QA e s 130

Contents

HOUR 7: Sorting, Filtering, and Measuring Windows PowerShell Output
Sorting OULPUL......ccciiiiiiiiiiii s
FIltering OULPULcoiiiuiiiiiiiiieeice ettt et st e e

Part lll: Extending the Reach of Windows PowerShell

HOUR 8: Managing Windows PowerShell Providers
What Are PrOVIAEIS?......cccoviiiiiiiiiiieiiieeieiite ettt ettt e esreee s
Introduction to Default PSDIIVEScccccceiiriiiiiiniiiiiiiiiecieeeeeee e
Using the FileSystem Providercccccovviiiiiiiiiiniiiieineceeeeceeieee e
Using the Alias Provider........coccccciiiiiiiiiiiiiiiiiieiiieeeeece e
Using the Registry Providerccooocueeiiiiiiiiniiiieiniieeerieee e

HOUR 9: Formatting, Exporting, and Converting Windows PowerShell Output
How the PowerShell Formatting

SUDSYStEIN WOTIKS ...cocueiiiiiiiiiiiiiiie ettt
Formatting PowerShell OUtpuLtccooviiiiiiiiiiiiiiiieeieeeeec e
Exporting PowerShell OUtPUL.......ccoocciiiiiiiiiiiiiiiiiiiiiec e
Converting PowerShell OUtPULcooiiiiiiiiiiiiiiiiiiececc e

133

.134
.137
.144
.148
.148
.150

153

.153
.155
.159
.166
.167
.169
.171
171
.172

175

vii

viii Sams Teach Yourself Windows PowerShell in 24 Hours

Part IV: Managing Computers Remotely with Windows PowerShell

HOUR 10: Implementing One-to-One Windows PowerShell Remoting

Understanding Classic Windows PowerShell Remote Access...........cc.........
Introducing “True” PowerShell Remotingccceeeveeeveiiiiniiciiniccinnnnee.
Enabling Windows PowerShell Remoting.........ccccceevviieiiniiciiinnieeinniieeenne
Creating a Windows PowerShell Remote Session..........ccccceeveveeiininceennnnnee.

Sending Scripts over the Networkccoocceiiiiiiiiiiiiiiiiieececccee,

HOUR 11: Implementing One-to-Many Windows PowerShell Remoting

One-to-Many Remote Access in the

ClaSSIC SCENATIOcciuuiiiiiiiiiii it
One-to-Many Remoting with Persistent Sessionsccccccccevvvveeiniccinnnne.
Managing Session Configurations..........c.ccueeeevuieernieeeiniieeenniieeeeeieeeeene
One-to-Many Remoting with the Windows PowerShell ISE.......................

Passing Input to Remote Commandscccoeeueeeeeiieeenciieernnieeennieeeeeee.

HOUR 12: Deploying Windows PowerShell Web Access

Introducing Windows PowerShell Web ACCeSSc..eeeeeeurieerriieeeinneeeernneee.
Setting Up the Windows PSWA GAteWayccceeeuvieerenieeiniiieeinineeennneee.
Testing the Windows PSWA User EXPerienceccoccueeervveeeernieeeenneeeennnne

Part V: Putting Windows Powershell to Work

HOUR 13: Multitasking Windows PowerShell

Investigating the PowerShell Job Architecturecccccceeeeunneeene.
Controlling Job Behaviorcccccovviiiiiiiiiiiniiiiiiccieccee,
Understanding Parent and Child JobS.......ccccccueeeiiiieiiniiceinnnnen.
Introducing the —AsJob Parameter...........cccocceerveiiiinniiieeninneenn.
SCheduling JODSccoeviiiiiiiieiiieeeeeee et

HOUR 14: Harnessing Windows PowerShell Workflow
Understanding How Windows PowerShell Workflow Works

Writing Your First Windows PowerShell Workflow
Running a Workflow as a JOD.....c.cccccevviiiinniiiiniiiiiiiiiecieee
Understanding Workflow Activities..........cccceevveeiniiieennniceennnnen.

HOUR 15: Introducing WMI and CIM

Defining WMI and CIMccoccciiiiiiiiniiiiiiiieciecceeee e
Getting Comfortable with WMIcccooiiiiniiiiiiiciiieecee,
Using Windows PowerShell WMI Commands............ccccoeveennnenne
Using Windows PowerShell CIM Commands...........ccceeevveeernneee.

HOUR 16: Searching and Filtering with Regular Expressions

Revisiting the Wildcard Operators.......c.ccceeeeeieeeennieeenneeeennnnee.
Understanding Regular EXpressionsccceecveeevcieeeincneeennnnnee.
Using the -Match Parametercccovvveiieiiiieiniieenniceenee.

Contents

ix

Sams Teach Yourself Windows PowerShell in 24 Hours

USING SeleCt-StIINg .ccuuveiiiiiieiiiieee ettt 324
Using the RegEx Type ACCEleratorccccueiivviiiiiiiiiiiiniiieeiiieeenieee e 327
SUITIITIATY ettt e e s e e e e e s st e e e e e s e ennnnnee 327
QA 328
WOTKSNIOPD .ttt ettt ettt e e e e e 329

Part VI: Enterprise-Class Windows PowerShell

HOUR 17: Managing Software with Windows PowerShell OneGet 331
Understanding IT-Related Terminologycccceeeveeeiniiieenniieeeniieeeenieeeeee 332
Preparing Your ENvironmentcccccoovvvmiiiiiiiiiiiiiiiiiiie e 334
Browsing Package RepoSitoriescccovveiiiriiiiiiiiiieiiniiieeeieee e 336
Installing Software from the Command Line............cccocoviiiiniiiiinniiiinniieennnne 340
Managing Providers and Packages...........cc.eeeevuvieeiiiiiiinniieeeniieieeeieeeeeieeeenae 346
Hosting a Private OneGet Repositoryccccuvviiiiiiiiiiiiiiiiiiiiiniiiinnnne 349
SUITIITIATY ettt ettt e e et e e e e e e st e e e e s eennnnnee 350
QA 351
WOTKSNIOPD . ettt ettt ettt e s e e e 352

HOUR 18: Desired State Configuration Basics 355
Historical Background of DSC.........ccccceovviiiiiiiiiiiiiiiieiniieeieee e 355
BaSIC Tenets Of DSC.....coiiiiiiiiiiiieeiiiteeeette ettt et e st e e e s siaeeeeeanee 357
DSC Authoring ENVIrONMEeNTcooccuiiiiriiiiiiiiiieeiiieeeniiee e e e 358
Configuring the DSC ENVIronment.........ccceeeeiieeieiiieeiniiieeniieeenieeeeeieeeeeanee 359
Writing Your First Configuration SCript........cccccceiiviiiiiniiiiiinniiiiiiiecceeeee 364
A Word on DSC Push Configurationcceeeeveeernvieeiniieeeinniceeeniceeecieeeenae 372
SUIMIMAIY oottt e e e s saaanaes 373
QA e et 373
WOTKSNIOPD . ettt ettt 375

Part VII: Scripting with Windows PowerShell

HOUR 19: Introduction to Windows PowerShell Scripting 377
Managing EXecution POLICYccooviiiiiiiiiiiiiiiiiiiiiiciiiccecccecc e 377
Writing Our First Script: The User Profilecccccoviieiiniiiiinniiiinieeeeeeeene 379

Writing a PowerShell Functionccccocciiiiiiiiiiniii, 383

Contents

Adding Programming LOGIC.........ueeeeeumieiiniiieiiniiieiiiieeeeeteeeeiee e
Running SCIiptsooovviiiiiiiiiiiiii

Pointers to Master PowerShell SCriptingccccceeevvieeiniieiinneiinniieceieeeee

HOUR 20: Making PowerShell Code Portable with Modules
Understanding SNAP-INS.......ccoooueiiiiiiiiiiiiieeiiteeeeeeereee et eieee e
Introducing PowerShell Modulescccovviiiiiniiiiiiiiiiiiiiccreccecc e
Creating Your First PowerShell Script Module...........ccooviiiiiiiiiiinniiiiniieeenns
Using Module Manifests..........ccceeiriiiiiniiiiiiiiieeiieeenree et
Adding Comment-Based Helpccoccueeimiiiiiiiiiiiiiiiiieeceeeeceeceeeee

Part VIII: Administering Microsoft Enterprise Servers with Windows
PowerShell

HOUR 21: Managing Active Directory with Windows PowerShell
Installing Active DIFeCIOTIYc..eeeivvuiieiriiiieiiiteteriteee ettt e
Creating Common Active Directory ODbjJectscccceeevevieiriiiieinniiieeinineeennns

Understanding Various AD Administrative Tasksccccccovveeiinnieiiiniieeenns

HOUR 22: Managing SQL Server with Windows PowerShell
Running PowerShell Using SQL Server TOOIS........ccccueerriieirinieeinnieeeiniieeeene
Interacting with SQL Server Using PowerShellccccccoeeiiiiniiiinnciinnne.
Automating Common SQL Server DBA TasKS......ccoccceeerrviererniieeeniiieeenieeenns

Xi

Xii Sams Teach Yourself Windows PowerShell in 24 Hours

HOUR 23: Managing SharePoint Server with Windows PowerShell 453
Understanding the ENvironmentcocccceeeviiiiiiiiieeiniiieeiiee e 453
Deploying a Service APPLCAtioN.........ccovvueiiriiiiiiiiiieiinieeeeieee e 457
Deploying a Web ApPLCAtiONcceeiiiiiiiiriiiiiiiiieeiiiec et 459
Deploying a Site COolleCtion..........cccociieriiiiiiiiiiiiiiiciieceecceceee e 460
Setting Permissions on a Site ColleCtion.........cccceevviieiiiiiiieiinieeiniiecieeeee 462
Reporting on a SharePoint FArmcccccooviiiiiiiiiiiiiiiiiccecceccecee 463
N 00040040 | o 20O P PP OPPPPPPRRRRRPPN 468
QA et ettt e e et 468
WOTKSNIOPD . ettt ettt st 468

HOUR 24: Managing Microsoft Azure with Windows PowerShell 471
Defining MiICrOSOft AZUTEccooviiiiiiiieiiiieee ettt ettt e e 472
Preparing Your Azure-PowerShell Environment........cccoccceevviieeiniiciinnieeennnne 474
Working with Azure Virtual Machines.........cccocceeiriiiiiiniieiinniiiiiniieeeieeeene 477
Managing Office 365 and SharePoint Online with Azure.........cccccccceeveenneenn. 485
SUIMIMATY ..ottt s aae e e 488
QA L 489
WOTKSROPD ...ttt 490

INDEX 493

About the Author

Timothy Warner is an IT professional and technical trainer based in Nashville, Tennessee.
Tim became acquainted with information technology in 1982 when his dad bought the
family a Timex Sinclair 1000 home computer and he taught himself BASIC program-

ming. Today he works as an author/evangelist for Pluralsight and shares Windows
PowerShell knowledge with anyone who'll listen at his Two Minute PowerShell blog:
http://2minutepowershell.com. You can reach Tim directly via LinkedIn:
http://linkedin.com/in/timothywarner.

http://2minutepowershell.com
http://linkedin.com/in/timothywarner

Dedication

To all my students, past and present.
Thank you for giving me a professional calling,
and I hope that my work helps you attain your goals.

Acknowledgments

The Windows PowerShell community is a terrific group of people. Thank you, Jeffrey Snover,
Bruce Payette, and Lee Holmes et al. for giving the world Windows PowerShell. Thanks to all
the PowerShell experts in the world for being so kind and willing to share your knowledge. I
seek to emulate your actions every day.

It may take a village to raise a child, but I know that it takes a large office full of talented
professionals to publish a book. To that end, I want to thank my wonderful editor Joan
Murray for having faith in my abilities. Thanks to my publisher, Greg Wiegand, for being so
receptive to my ideas.

Editorial and production staff rarely receive the credit they deserve. Thanks so much to
Windows PowerShell MVP Jeff Wouters, my technical editor, for being so thorough with the
manuscript. Truly, this book is at least twice as good as it originally was thanks to you.

Thanks to Keith Cline, my copyeditor, for making my writing easier to follow. Keith knows
that I gave his editing skills quite a workout, for sure. Sorry, Keith!

I extend my gratitude as well to Andy Beaster, my production editor, and to the ever-helpful
Cindy Teeters for streamlining the entire book publishing process. Andy and Cindy are pro-
fessionals in every sense of the word.

Thanks to my family, friends, and colleagues for your never-ending love and support.
Finally, thank you, my reader. I hope that this book helps you accomplish your next profes-
sional goal.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn’t

like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

“Try not. Do...or do not. There is no try”
—Yoda, Star Wars Episode V: The Empire Strikes Back

Hello, and welcome to the world of Windows PowerShell. I'm your instructor, Tim Warner. To
me, it's a good sign that you're actually reading this Introduction (so few readers of tech books
do, in my experience). Perhaps your first question is, “What’s in it for me?” and I'm here to give
you those details with minimal muss and fuss.

If you work as a Windows systems administrator or hope to in the future, learning Windows
PowerShell is no longer an option. Likewise, if you plan to advance your career in IT administra-
tion, you need to know your way around Windows PowerShell scripting and automation. This,
then, is what’s in it for you: By learning how to harness Windows PowerShell, you make yourself
a more effective and valuable Windows systems administrator. And if you have value in the IT
workplace, you have a means of having a stable, lucrative career and an equally stable and
lucrative life.

Who Should Read This Book

The first thing I do when I teach “stand up” training classes is to get a feel for my student. What
is your background? What do you hope to get out of this training? As I wrote this book, I had
the following audiences in the forefront of my mind:

» Microsoft certification candidates: I'm here to tell you that if you don’t understand
Windows PowerShell, you have a high likelihood of failing your Microsoft Certified
Professional (MCP) exams. And I'm not just talking about Windows Server 2012 R2 certi-
fication, either. Microsoft Learning stresses PowerShell-based administration in all of their
products nowadays, so you simply cannot escape the technology, no matter how hard you
might try.

» Windows systems administrators: I'm sure that you've been aware of Windows
PowerShell over the past several years, and maybe you've been avoiding learning the
technology because the tech appeared too “programmy” or math heavy. Let me assure
you that by the time you complete this book, you won't be afraid of that anymore because
you’ll be convinced how much easier PowerShell makes your life as a “boots on the
ground” sysadmin.

2

>

Introduction

IT newcomers: If you are working on a transition into full-time IT work, whether you're

entering IT from an unrelated field or preparing to graduate from trade school or college,
then welcome! You have an advantage in learning Windows PowerShell at the outset of

your IT career because you'll be able to seamlessly integrate PowerShell automation into
your vision of IT.

If you find that you don’t belong in any of the previous three classifications, don’t worry about
it. Set your sights on learning as much as you can and, above all else, having fun, and you'll be

fine.

How This Book Is Organized

These “24 Hour” books begin with the premise that you can learn a technology (Windows

PowerShell, in this case) by studying the material in 24 one-hour sessions. Maybe you can use
your lunch break as your training hour; then again, the hour after your children finally fall
asleep at night might work better.

In any event, allow me to present hour-by-hour details on how I structured the content:

>

Hour 1, “Getting to Know Windows PowerShell,” makes the case that knowing Windows
PowerShell is mandatory and not optional for Windows systems administrators. You'll also
learn how PowerShell works from an architectural/design standpoint.

In Hour 2, “Installing and Configuring Windows PowerShell,” you understand the
Windows PowerShell release cycle, backward-compatibility basics, and how to upgrade
your installed Windows PowerShell version.

In Hour 3, “Mastering the Windows PowerShell Help System,” you learn how to learn
Windows PowerShell. Believe me, this chapter is one of the three most important chapters
of the book because you'll use the help system every day.

In Hour 4, “Finding and Discovering Windows PowerShell Commands,” you master the
Get-Command cmdlet. This is the second of the three most important chapters, again
based on how often you'll use these skills.

In Hour 5, “Thinking in Terms of Objects,” you use Get-Member to list the methods and
properties of PowerShell objects. This hour completes the “triad” of three core chapters that
comprise your foundational understanding of Windows PowerShell.

In Hour 6, “Mastering the Windows PowerShell Pipeline,” you begin to understand that in
Windows PowerShell, you're always working from within a command pipeline, and you
also recognize that in a PowerShell pipeline, you're almost always dealing with objects.

How This Book Is Organized 3

In Hour 7, “Sorting, Filtering, and Measuring Windows PowerShell Output,” you learn how
to cut down your output to separate only the data you need.

In Hour 8, “Managing Windows PowerShell Providers,” you learn how you can access and
browse various data stores, from environment variables and the Registry to the certificate
store and Active Directory, in the same way that you browse your file system from the
command line.

In Hour 9, “Formatting, Exporting, and Converting Windows PowerShell Output,” you
pick up some valuable skills on creating submission-quality output of your PowerShell
pipelines.

In Hour 10, “Implementing One-to-One Windows PowerShell Remoting,” you get a grip on
the wonderful remoting architecture in Windows PowerShell. Here we examine how to set
up remoting and establish remote sessions with other Windows computers on our network.

In Hour 11, “Implementing One-to-Many Remoting,” you learn how to send PowerShell
commands and even entire scripts to an unlimited amount of target computers in paral-
lel. This chapter demonstrates the raw power you have at your fingertips when you use
PowerShell to manage your Windows networks.

In Hour 12, “Deploying PowerShell Web Access,” you learn how to set up PowerShell to be
accessed from any remote device—even mobile phones and tablets from outside your cor-
porate firewall. This is a cool technology, for sure.

In Hour 13, “Multitasking Windows PowerShell,” you discover the Windows PowerShell
jobs architecture, in which you can send simple or complex PowerShell operations to the
background of your session. By mastering jobs, you (and PowerShell) can multitask with
aplomb.

In Hour 14, “Harnessing Windows PowerShell Workflow,” you take the next step with
PowerShell jobs and learn how to design and deploy durable PowerShell tasks that respond
to state changes, such as system reboots. Very cool stuff here.

In Hour 15, “Introducing WMI and CIM,” you finally come to terms with two acronyms
many Windows systems administrators hear all the time but rarely understand: Windows
Management Instrumentation (WMI) and Common Information Model (CIM). By the end
of this chapter, you'll be crystal-clear on how to fetch system state data from the WMI
repository by using PowerShell code.

In Hour 16, “Searching and Filtering with Regular Expressions,” you put your string
searches on steroids by learning how to use the .NET Framework'’s regular expression
syntax to perform highly specific find and replace operations on your data—all with
PowerShell code.

4 Introduction

» In Hour 17, “Installing and Managing Software with OneGet,” you learn how to install
and manage software, all from the PowerShell console command line. If you've used
command-line software package management in Linux or OS X, what you learn during
this hour will be immediately familiar.

» In Hour 18, “Desired State Configuration Basics,” you learn what will doubtless become
the next generation of Windows Server systems configuration: Desired State Configuration,
or DSC, in Windows PowerShell.

» In Hour 19, “Introduction to Windows PowerShell Scripting,” you take everything you've
learned over the previous 18 hours of training and apply that knowledge toward code
reuse. In other words, you'll learn the basics of writing, configuration, and running
Windows PowerShell script files.

» In Hour 20, “Making PowerShell Code Portable with Modules,” you build upon what you
learned in the preceding hour of training concerning PowerShell scripts and target that
knowledge toward packing your code into modular...well, modules.

» In Hour 21, “Managing Active Directory with Windows PowerShell,” you embark on a
four-hour journey of PowerShell domain-specific management. Here the “domain” is
Active Directory Domain Services (AD DY) itself.

» In Hour 22, “Managing SQL Server with Windows PowerShell,” you learn how to use the
SQL Server PowerShell module and SQL Management Object (SMO) to interact with SQL
Server databases and objects through PowerShell code.

» In Hour 23, “Managing SharePoint Server with Windows PowerShell,” you learn how to
create SharePoint farm objects (web application, site collection, list, and so forth) by using
the SharePoint Server 2013 PowerShell snap-in.

» In Hour 24, “Managing Microsoft Azure with Windows PowerShell,” we complete the train-
ing by applying Windows PowerShell to Microsoft’s public cloud service: Azure.

Conventions Used in This Book

In my experience as an author and a teacher, I've found that many readers and students skip
over this part of the book. Congratulations for reading it. Doing so will pay off in big dividends
because you’ll understand how and why we formatted this book the way that we did.

Try It Yourself

Throughout the book, you'll find Try It Yourself exercises, which are opportunities for you to
apply what you're learning right then and there in the book. I do believe in knowledge stacking,

System Requirements 5

so you can expect that later Try It Yourself exercises assume that you know how to do stuff that
you did in previous Try It Yourself exercises.

Therefore, your best bet is to read each chapter in sequence and work through every Try It
Yourself exercise.

About the Bitly Hyperlinks

Whenever I want to point you to an Internet resource to broaden and deepen the content you're
learning, I provide a uniform resource locator (URL, also called an Internet address) in the fol-
lowing form:

http://bit.ly/uaKpYD

You might wonder what the heck this is. The way I look at the situation, if I were reading this
title as a print book and needed to type out a URL given to me by the author, I would rather
type in a “shortie” URL than some long, crazy URL with all sorts of special characters, you know
what I mean?

The most important thing I have to tell you concerning the bitly short URLs is that the ending part is
case sensitive. Therefore, typing the previous URL as, say, http://bit.ly/UaKpyD isn’t going to get
you to the same page as what I intended.

About the Code Images

For most Try It Yourself exercises, you’ll see one or more source code images that are annotated
with alphabetic letters. The Try It Yourself steps are then cross-referenced with parts of each
code image. Hopefully, you find this format convenient to your learning. Remember not to fall
into the trap of blindly copying the provided code; instead, remember that learning to program
requires (yes, requires) lots and lots of trial and error.

That actually is a point well worth repeating: To become effective with Windows PowerShell, you
need to use it daily. Don’t complain about retyping my code examples. Instead, look at it as an
opportunity for you to practice.

System Requirements

You don’t need a heck of a lot, computer-wise, to perform all the Try It Yourself exercises in this
book. However, if you do not meet the necessary system requirements, you are stuck. To that
end, make sure that you have the following met prior to beginning your work:

» A Windows-based computer: Technically, you don’t need a computer that runs only
Microsoft Windows. For instance, I use VMware Fusion to run Windows 8 virtual machines
(VMs) on my OS X computer. No matter how you slice it, though, Windows PowerShell has
Windows in its name for a reason, so you'll be stuck at the starting gate unless you have a
Windows machine at your disposal.

http://bit.ly/uaKpYD
http://bit.ly/UaKpyD

6 Introduction

» An Internet connection: In learning Windows PowerShell, you’ll be hitting the Web all
the time to gain additional insight, obtain code examples, and so forth. Moreover, because
Windows PowerShell doesn’t ship with local help files, you’ll need an Internet link to
download those at least once.

» A VM network and an Azure subscription: You can build a two- or three-node practice
network for free. Windows 8.1, for instance, includes Hyper-V. You can also download
Oracle VM VirtualBox to deploy a VM-based network. Microsoft is kind enough to offer
full-feature evaluation editions of their software, so you shouldn’t have to pay big bucks
for licenses. Along those lines, Microsoft offers trial subscriptions of their Microsoft Azure
subscription service. As I wrote this book, I made sure that replicating my network environ-
ment was as painless as possible for you because I want you to work through every single
example in the book to maximize your learning.

Design Elements Used in This Book

Some code statements presented in this book are too long to appear on a single line. In these
cases, a line-continuation character (=) is used to indicate that the following line is a continua-
tion of the current statement.

NOTE

Items of Interest
Notes offer interesting information related to the current topic.

TIP

Useful Tidbits
Tips offer advice or show you an easier way to perform a task.

CAUTION

Potential Pitfalls
Cautions alert you to a possible problem and suggest ways to avoid it.

Okay, that’s enough of the preliminaries. It’s time to learn how to use Windows PowerShell.

HOUR 18

Desired State Configuration
Basics

What You’ll Learn in This Hour:

» Historical background of DSC

» Basic tenets of DSC

» DSC authoring environment

» Configuring the DSC environment

» Writing your first configuration script
» A word on DSC push configuration

Desired State Configuration, also called DSC, is the marquee feature in Windows PowerShell v4
and later. Imagine being able to send configuration instructions to your servers such that, with
no tedious mouse clicking on your part, the target servers simply (to quote Jean-Luc Picard from
Star Trek: The Next Generation) “Make it so.”

I'm not kidding, either. In this hour, you'll learn precisely what DSC is and how it works, and
you'll see its value proposition with your own eyes. Many of my IT professional colleagues
whisper that DSC may very well spell the future standard for Windows server configuration and
administration. Let’s make it so!

Historical Background of DSC

Windows PowerShell Principal Architect Jeffrey Snover wrote The Monad Manifesto in 2002, and
in so doing outlined what he saw as the chief capabilities of a new command-line automation
language for Windows.

Amazingly, Snover and his team at Microsoft realized every major point in that document.
Specifically, with the Manifesto’s fourth point, Monad Management Models, they describe the
basic elements that the team ultimately delivered in Windows PowerShell v4.

356 Desired State Configuration Basics

DSC is a Windows PowerShell-based system configuration platform. Here’s the scenario: You
and/or your colleagues spend valuable hours manually configuring your Windows servers; I'm
talking about tasks such as the following:

» Installing and configuring roles and features
» Installing and configuring other system software and services
» Deploying and maintaining file shares

» Managing Registry settings and environment variables

The preceding list barely scratches the surface of the myriad configuration events that must be
performed on each server for that machine to be considered compliant by your organization.

However, if you have any degree of Windows systems administration experience, you know that
“configuration drift” is a sad fact of life. Joe Administrator makes one setting, and then a week
later Jane Administrator undoes said setting.

The configuration drift problem is all fun and games until questions of service level agreements
(SLAs), licensure requirements, and industry/governmental regulations come knocking at your
door, metaphorically speaking.

Long story short: DSC fills a need for us Windows server administrators, now more than ever
before.

Competitive Landscape

Remember that Jeffrey Snover and the Windows PowerShell team are almost all longstanding
experts in UNIX/Linux administration and systems programming. This fact should be patently
obvious when you compare, say, the day-to-day operation of the Bash shell with how the
Windows PowerShell command-line environment behaves.

To that point, there’s no denying the fact that Snover & Co. took a leaf from the competition’s
playbooks with regard to this automated systems configuration framework “thing.” Specifically,
two market leaders in the systems configuration/automation space are also (partially) open
source projects:

» Chef (http://www.chef.io)

» Puppet (http://puppetlabs.com)

Don't get too bent out of shape, though: Not only are Chef and Puppet compatible with
Windows, but Microsoft Azure offers either configuration product as an option for their hosted
virtual machines. Figure 18.1 shows a representative screenshot of Puppet.

http://www.chef.io
http://puppetlabs.com

Basic Tenets of DSC 357

T T — NoNodeRequests 20f 10 Licenses admin Resources

Events Nodes Groups Classes Reports InventorySearch Live Management

Live Management Browse Resources Control Puppet Advanced Tasks
Nede filter Wildcards allowed
Summary Summary of all resource types
» Advanced search group group resources
Fiiter | Reset fiter host Nt inspacted
package
2 of 2 nodes selected (100.0%) I,;Iuo‘its;gf;uroes
Select all + Select none sorvice
vser package resources
master. s w.com Not inspected
service resources
Not inspected
user resources
Not inspected
Inspect All

What is live management?
Live management is the web interface to Puppet Enterprise's orchestration
engine (MCollective). You can use it to inspect and command your nedes in
real time. See the Puppet Enterprise manual to learn more about
orchestration.
The information you see on this page is retrieved from your infrastructure on
demand. You may notice occasional delays as we query your nodes.

FIGURE 18.1
Puppet has a browser-based management console that makes it equally simple to autoconfigure Windows/
Linux servers.

Going further yet, we'll learn shortly that DSC can actually be extended to support the autocon-
figuration and remediation of Linux/UNIX boxes in addition to Windows machines. It's a “New
Microsoft,” to be sure.

Finally, as cool as Puppet and Chef are as cross-platform configuration management products,
they cost money to license for most business scenarios. By contrast, Windows PowerShell comes
to you “free” with the cost of a Windows Server license.

One final note before we delve into DSC: Although it’s possible to leverage DSC for desktop OS
configuration, I'm cleaving to the most common DSC use case: server configuration. After all,
most of our compliance requirements focus on how we’ve set up our infrastructure server com-
puters as opposed to our users’ desktop PCs.

Basic Tenets of DSC

To begin, you should understand that most DSC configuration involves using Windows
PowerShell and the vendor-neutral Managed Object Format (MOF) in a declarative fashion. In
programming, declarative code does not spell out exactly how the computer should complete a
task. Instead, the code essentially tells the computer to “make it so” however it sees fit.

358 Desired State Configuration Basics

Structured Query Language (SQL) is a good example of a declarative data access language.
When you run a complex SELECT statement, for instance, you leave it to the database itself to
determine the system of index/row lookups it uses to satisfy the query results.

Likewise, in DSC, we start by describing how we’d like our servers to look in a standard Windows
PowerShell configuration script. Take a look at Figure 18.2, and I'll explain how DSC works step

by step.
N N
N N
Push
N mE—b—mh
ey I < <€ p_ =y !
DCSSERVERO1 DSCCLIENTMOF Pl DSCCLIENTO1
DSC Resources DSC Resources
CONFIG.PS1
FIGURE 18.2

Windows PowerShell DSC architectural overview.

DSC Authoring Environment

As you saw in Figure 18.2, DSCSERVERO1 represents our DSC authoring environment. It is on this
box, which must be equipped with at least Windows Management Framework v4 or later, that
we construct our configuration script.

The configuration script is a bread-and-butter Windows PowerShell file that contains the configu-
ration instructions for one or several target systems. The configuration script is compiled into the
vendor-neutral MOF and then transferred to the target systems for ingestion.

DSC Production Environment

A component of Windows Management Framework (WMF) 5 called the Local Configuration
Manager (LCM) running on the target system is what receives the MOF and applies its configu-
ration settings to the box.

DSC supports two modes for getting the MOF configuration file to the target computer. In the
push model, we use the Start-DSCConfiguration cmdlet to initiate the MOF push.

Configuring the DSC Environment 359

In the pull model, the client computer polls an Internet Information Services (IIS) website run-
ning on your DSC deployment server and requests any MOF files that are specified for it.

In terms of query intervals, target nodes query the pull server every 30 minutes by default. In
the push architecture, nodes reevaluate their MOF file settings every 15 minutes by default if the
configuration file had autocorrection enabled. As with anything else in Windows PowerShell,
you can edit those query defaults.

Finally, as you observed in Figure 18.2, something called “DSC resources” exist on both the
authoring and production servers. We can consider DSC resources to be specialized Windows
PowerShell modules that actually form the imperative “engine” that nodes use through their
LCM to apply their desired state configurations.

Differences Between DSC and Group Policy

Some Windows systems administrators wonder, “What’s the difference between DSC and Group
Policy?” One difference is that DSC permanently “tattoos” the configuration settings of target
nodes. You'll recall that once a Group Policy Object (GPO) no longer applies to a machine, those
settings can revert to their pre-GPO values.

Another difference is that a single node can have only a single MOF file defining a particular
configuration (installing and configuring IIS, for instance). By contrast, we can link multiple
GPOs to each of the various Active Directory levels (site, domain, organizational unit, and local
computer). Finally, GPOs grant management access principally to the computer’s registry, while
DSC MOF resources can “touch” any computer subsystem that’s accessible by PowerShell and, by
extension, the .NET Framework.

The bottom line is that DSC won't necessarily replace GPOs for systems configuration. Remember
the focus with DSC, at least at this point, is to declaratively configure our servers such that “con-
figuration drift” and deviation from compliance is no longer an issue for us.

Before we can test out DSC, we need to first prepare our environment.

Configuring the DSC Environment

Don't even think about testing, much less deploying, DSC unless all of the following are true:
» All participating computers have WMF 4.0 or later installed.
» All participating servers have Windows PowerShell remoting enabled.

» All Windows Server 2012 R2 and Windows 8.1 nodes have hotfix KB2883200 installed.

360 Desired State Configuration Basics

You can leverage Windows PowerShell to verify if that required hotfix has been applied to your
system:

PS C:\> Get-HotFix -Id KB2883200

Source Description HotFixID InstalledBy InstalledOn
DSCSERVERO1 Update KB2883200 COMPANY\trainer 9/30/2013
12:00:00AM

Windows PowerShell remoting is required because the deployment of DSC MOF files uses Web
Services-Management / Windows Remote Management (WS-Man/WinRM).

A New Microsoft

In past years, Microsoft took a highly proprietary approach to how their own products interoperated
(or didn’t) with those of other vendors, especially open source community projects.

Jeffrey Snover went to great lengths to establish Microsoft corporate buy-in for interoperability, and
this argument has paid huge dividends with cross-platform capabilities such as WS-Man, Windows
Management Instrumentation / Common Information Model (WMI/CIM), and the MOF format. The
idea that today we can use DSC to configure Linux computer was utterly inconceivable not too long
ago.

You also need to enable the DSC bits on all participating nodes. (Nodes is a more descriptive
term than server because technically DSC can be used in both server and desktop Windows ver-
sions.) From an elevated Windows PowerShell console prompt on a Windows Server box, you can
run the following:

Install-WindowsFeature

Of course, we can also use Server Manager (on servers) or Windows Features (on clients) to
enable DSC, as shown in Figure 18.3.

Configuring the DSC Environment 361

& Add Roles and Features Wizard - [o =

Select features ssmncn seves

sscclientdt

e B Select one or more features to install on the selected server,

Installation Type Features Description

o s ~] Windows PowerShell Desired State Configuration
indows Identity Foundation 3. ervice supports configuration management o
[] Windows Identity Foundation 3.5 Service supp figuratic g f
[Windows Internal Database. multiple nodes from a single repository.
4[] Windows PowerShell (2 of 5 installed)
V| Windows PowerShell 40 (Installed
: [Windows PowerShell 2.0 Engine
Confirmation indows PowerShell Desired State Configuration Service]

vl

[Windows PowerShell Web Access
) Windows Pracess Activation Service
[Windows Search Service
[Windows Server Backup
[] wWindows Server Migration Tools
[Windows Standards-Based Storage Management
[Windows TIFF IFilter
[] WinRM IIS Extension
[WINS Server
[Wireless LAN Service

=) Windows Features = = sclirevior’s et rsial

Turn Windows features on or off @

To turn a feature on, select its check box. To turn a feature off, clear its check box. A filled box
means that only part of the feature is tumed on.

). TFTP Client -
Windows Identity Foundation 3.5
Windaws Location Provider
Windows PowerShell 2.0

‘Windows PowerShell 2.0 Engine

REOO

m

|Windows PowerShell Desired State Configuration Service|
@ []). Windows Process Activation Service

[Windaws TIFF IFilter

‘Work Folders Client

XPS Services

XPS Viewer

v

FIGURE 18.3
Here we enable Windows PowerShell DSC in Windows Server 2012 R2 (top) and in Windows 8.1 (bottom).

Loading Up DSC Resources

As of this writing, Microsoft gives us 12 in-box resources in WMF v4. These resources and their
uses are as follows:

» Archive: Zipping and unzipping archives

» Environment: Managing environment variables

» Group: Managing local groups

» Log: Writes messages to the Microsoft-Windows-DSC/Analytic event log
» Package: Installs .msi or Setup.exe software

» Registry: Managing the computer and user Registry hives

> Script: Excellent as a “catchall” resource when you can’t get what you need from an exist-
ing DSC resource

362 HOUR 1.8: Desired State Configuration Basics

File: Managing files and folders

WindowsProcess: Controlling process objects
WindowsFeature: Managing server roles and features
Service: Controlling service objects

User: Managing local users

If you run the following command:

Get-DSCResource | Select-Object { $_ .parentpath }

you'll see that your built-in DSC resource folders are placed deep in the Windows\system32

hierarchy:

C:\Windows\System32\WindowsPowerShell\vl.0\Modules\<modulename>

That's all well and good, but when you need to install your own modules, you should place

them in this path:

C:\Program Files\WindowsPowerShell\Modules

Specifically, you should place the unzipped resource folder directly inside Modules. For instance,
in Figure 18.4, I show you where I placed the xActiveDirectory experimental module that I

downloaded to my server via OneGet.

] Recent places
1 item

1% This PC

€ Network

9items

= C\Program Files\WindowsPowerShell\Modules = J{I=l] =X
“ Home Share View v @
= 4 [l « Program Files » WindowsPowerShell » Modules v ¢] [Search Modules o]
A Favorites Name Date modified Type Size
B Desktop xhctiveDirectory 12/21/201411:47 .. File folder
1§ Downloads
"] Recent places fwn<| C\Program Files\WindowsPowerShell\Modules\xActiveDirectory I;‘i-
m Home Share View v @
1% This PC
[0« Modules » xActiveDirectory v ¢] [Search xActiveDirectory o]
€ Network ' Favarites Name - Date modified Type She
[Desktop DSCResources 12/21/201411:47 ... File folder
I¢ Downloads Misc File folder

&) Assert-HADC.ps1
&) Assert-ParentChildDomains.ps1
| HADCConfiguration.psd1
| ParentChildCenfig.psd1
PSGetModulelnfoxml
_| xActiveDirectory.psd1
2 xActiveDirectory_TechNetDocumentation.html

< 1]

Vindows PowerS...
dows Powers...
dows PowerS...
Vindows Powers...
XML Document

Windows Powers...

HTML Document

12/21/201411:46 ...

FIGURE 18.4

Here we see where to place additional DSC resources on a node’s file system. Notice that a DSC resource
looks and “feels” an awful lot like a traditional Windows PowerShell script module.

Configuring the DSC Environment 363

If your nodes are equipped with PowerShell v5 preview (which they shouldn’t unless v5 has
been finalized as of your reading this), I suggest you look for DSC resources by querying the
repositories:

Get-Package -Name x*

The x prefix is used to denote prerelease or eXperimental resource packages. Therefore, you use
them in production at your own risk.

DSC Resource Waves

Aside from OneGet repos, your best bet for discovering useful DSC resources are the DSC
Resource Kit “waves” that are regularly released by the Windows PowerShell team. Each wave
brings new resources to the table that allow you greater administrative control over more and
more products. Sometimes you'll find that a newer wave release includes updated resources
that supersede previously released versions. (The x in experimental is taken very seriously by the
PowerShell community.)

Sadly, the DSC resource kit waves aren’t presented in a strictly linear fashion, which can make
it tricky figuring out what’s what. To help you along, Ill pass on the links for the nine wave
announcements that are extant as of this writing:

» DSC ResKit Wave 1: http://bit.ly/1wAZpXb
» DSC ResKit Wave 2: http://bit.ly/1wAZr15

» DSC ResKit Wave 3: http://bit.ly/1IwAZpX0
» DSC ResKit Wave 4: http://bit.ly/1wAZolQ
» DSC ResKit Wave 5: http://bit.ly/1IwAZmuq
» DSC ResKit Wave 6: http://bit.ly/IwAZnOU
» DSC ResKit Wave 7: http://bit.ly/IwAZnhQ
> DSC ResKit Wave 8: http://bit.ly/1wAZieb

» DSC ResKit Wave 9: http://bit.ly/1wAZnyi

Again, you simply download the resources, unzip them into the proper directory, and run Get-
DSCResource to verify that they show up. Recall also that you need to install the resources on
all participating nodes.

http://bit.ly/1wAZpXb
http://bit.ly/1wAZr15
http://bit.ly/1wAZpXO
http://bit.ly/1wAZolQ
http://bit.ly/1wAZmuq
http://bit.ly/1wAZnOU
http://bit.ly/1wAZnhQ
http://bit.ly/1wAZieb
http://bit.ly/1wAZnyi

364 Desired State Configuration Basics

Writing Your First Configuration Script

Okay, it’s time to start building out our DSC infrastructure, the first step of which is authoring
our configuration script. Remember that although target nodes can apply only one MOF file for
a given configuration, you can apply multiple MOFs to a single host as long as you don’t have
conflicting configuration definitions. I'm sure that, over time, the Windows PowerShell team will
make it easier for administrators to manage these manifold MOF manifests (alliteration alert).

I want you to understand before we get started that creating the MOF files via a PowerShell con-
figuration script represents only one possibility for creating the MOFs. If, perchance, you under-
stood MOF syntax, there’s nothing stopping you from creating your own MOFs from scratch
using only a text editor.

In other words, we should start to see MOF authoring tools emerge from independent software
vendors (ISVs) and the community at large as we progress over time. Welcome to the world of
vendor neutrality and community-driven software architectures.

More About MOF Files

Remember that the MOF is not a Microsoft proprietary format, but instead is a vendor-neutral data
representation format developed by the Distributed Management Task Force, of which Microsoft is a
member.

MOF is used to define both management objects in CIM/WMI, and is also closely related to Web-
Based Enterprise Management (WBEM) protocols such as WS-Man.

Figure 18.5 shows you what a typical MOF file looks like. | can’t stress enough that DSC is a poten-
tially vendor-neutral technology, and the tool that you use to create the MOF doesn’t have to be
Windows PowerShell. | submit that we’ll see graphical user interface (GUI) MOF creation utilities for
DSC not too long in the future; perhaps these tools already exist by the time you’re reading this
book.

1 Configuration SampleConfigl

2 24

3 Node "dscclient@l"

4 {

5 File CopyScript

6 = {

7 Ensure = "Present”

8 Type "Directory"

9 SourcePath "\\dscserver®l\scripts"
10 DestinationPath "C:\scripts"
11 ¥

12

13 }

14 [}

15 SampleConfigl

FIGURE 18.5
A MOF file can be created by using PowerShell, another utility or programming language, or from scratch. As
long as the MOF uses legal syntax, the method by which you produce the file is irrelevant.

Writing Your First Configuration Script 365

Spend a moment studying the configuration script code in Figure 18.6, and I'll walk you through
each line. I strongly suggest you write your DSC configuration script in the Windows PowerShell
integrated scripting environment (ISE) so that you can take advantage of IntelliSense and the
easy script execution controls.

El dscclient01.mof - Notepad |;‘i-

File Edit Format View Help

* ~

@Targethode="dscclient@l”
@GeneratedBy=trainer
@GenerationDate=12/21/2014 22:48:59
@GenerationHost=DSCSERVEREB1

*/

instance of MSFT_FileDirectoryConfiguration as $MSFT_FileDirectoryConfigurationlref

ResourceID = "[File]CopyScript”;

Type = "Directory”;

Ensure = "Present”;

DestinationPath = "C:\\scripts";

Modulellame = "PSDesiredStateConfiguration™;

Sourcelnfo = "C:\\Users\\Trainer\\Desktop\\DSC\\SampleConfigl.psl::5::9::File";
ModuleVersion = "1.8";

SourcePath = "\\\\dscserver8l\\scripts";

ConfigurationMame = "SampleConfigl"”;

I

instance of OMI_ConfigurationDocument

{

Version="2.0.0";

MinimumCompatibleVersion = "1.@8.8";

CompatibleVersionAdditionalProperties= {"Omi_BaseResource:Configurationlame"};
Author="trainer";

GenerationDate="12/21/2014 22:48:59";

GenerationHost="DSCSERVER@1";
Name="SampleConfigl";
¥s

FIGURE 18.6
This DSC configuration script will produce one MOF file that is named after the specified target node.

» Line 1: We use the Configuration keyword in our script to denote a DSC configuration
file. The configuration name is arbitrary.

» Line 2: The Configuration element is enclosed in top-level curly braces.

> Line 3: The Node keyword specifies the target node. In this first example, we’re hard-
coding the name of a Windows Server 2012 R2 host named dscclientO1. In a later
example, we'll parameterize this element with a variable so we can use one config script
to target multiple nodes.

» Line 4: Indenting curly braces is optional, but an excellent practice to minimize the
chance of our forgetting to close a script block and generate a runtime script failure.

> Line 5: The “meat and potatoes” of the configuration script are these subblocks. Here we
specify the File DSC resource type, passing in an arbitrary name.

366 Desired State Configuration Basics

» Line 6: Another indented curly brace, this time enclosing the File resource script block.

» Line 7: Each DSC resource contains a number of named parameters. Like anything else
in PowerShell, read the resource’s online documentation to learn the acceptable values for
each parameter. The Ensure=“Present” line is ubiquitous in DSC configuration scripts, in
my experience. This ensures that the policy is enforced.

» Lines 8-10: Here we plug in the details for our File DSC resource declarations. What we’re
doing is copying the scripts shared folder on my deployment server to a local path on the
target node. As of this writing, I needed to add the source and destination node computer
accounts to the shared folder’s discretionary access control list (DACL) to make a UNC
path work.

» Lines 11-14: Here we close up all the script blocks.

» Line 15. This is an optional line in which we call the configuration. That way we actually
execute the Configuration block when we run the script in the Windows PowerShell ISE.

When you're ready, run the entire configuration script. If all goes well, you'll see output that is
similar to this:

PS C:\Users\Trainer> C:\Users\Trainer\Desktop\DSC\SampleConfigl.psl
Directory: C:\Users\Trainer\SampleConfigl

Mode LastWriteTime Length Name

-a---- 12/22/2014 8:23 AM 1736 dscclient0l.mof
You'll note that Windows PowerShell does a couple things when you run the DSC configuration
script:

» Creates a directory in the root of the C: drive with the same name as the .ps1 script file

» Creates one MOF for each node referenced in the script; the MOF files are named with the
node’s hostname

Customizing the Local Configuration Manager

Earlier in this hour, I told you that all DSC-enabled Windows nodes have a client component
called the Local Configuration Manager (LCM) that is installed as part of WMF v4.

We can (and probably should) push a separate configuration script to our target nodes to cus-
tomize the deployment parameters. First, let’s run Get-DscLocalConfigurationManager to see
what’s what on my dscserverO1 machine:

Writing Your First Configuration Script

PS C:\> Get-DscLocalConfigurationManager

ActionAfterReboot ContinueConfiguration
AllowModuleOverWrite False
CertificatelID
ConfigurationDownloadManagers {}
ConfigurationID

ConfigurationMode ApplyAndMonitor
ConfigurationModeFrequencyMins 15
Credential

DebugMode False
DownloadManagerCustomData
DownloadManagerName

LCMCompatibleVersions {1.0, 2.0}
LCMState Ready
LCMVersion 2.0
MaxPendingConfigRetryCount
StatusRetentionTimeInDays 7
PartialConfigurations {}
RebootNodeIfNeeded False
RefreshFrequencyMins 30
RefreshMode PUSH
ReportManagers {}

ResourceModuleManagers
PSComputerName

367

Some of the LCM parameters are more important than others. The ConfigurationMode param-
eter tells the node what to do in terms of how it applies and refreshes DSC configurations. The

options here are as follows:

» Apply: Applies the configuration once and then doesn’t check for an update or refresh

again (one-time application, in other words).

» ApplyAndMonitor: Applies the configuration and continues to validate that the node is in
compliance with the policy. If configuration drift occurs, the node does nothing.

» ApplyAndAutoCorrect: Applies the configuration, periodically checks for compliance, and

reapplies the configuration if something changes within the scope of active configurations.

Note also the RefreshFrequencyMins parameter. In push mode, the node checks for DSC com-
pliance every 30 minutes. This may be far too frequent for your business needs, so let’s deploy a
new set of LCM settings to our localhost and dscclientO1 nodes.

Once again, take a look at our script shown in Figure 18.7, and I'll walk you through selected
parts:

368 Desired State Configuration Basics

1 Configuration SetupLCM

2 2{

3 param

L (

5 string $hNodeName $env:computername

6)

8 LocalConfigurationManager

9 = {

e ConfigurationModeFrequencyMins = 248

11 ConfigurationMode "ApplyAndAutoCorrect’
12 RebootNodeIfNeeded 'True'

13 RefreshMode "PUSH"

14 }

15 |}

16

17 SetupLCM -NodeName ("dscserver®l”,"dscclient8l")
18

FIGURE 18.7
By deploying an LCM configuration, we can take fine-grained control over how DSC policies are evaluated and
applied by target nodes.

» Lines 3-5: These lines create an input parameter for our LCM script. Note that the
$NodeName parameter is defined as a string array, [], which makes it a snap to target
multiple nodes without having to repeat code blocks in the script file.

» Line 10: Here we specify a 4-hour refresh interval for the LCM policy refresh mode.

» Line 17: Again for convenience, we run the configuration in-line with the code, specifying
two target nodes by hostname. Of course, you can import the script into your runspace by
using dot sourcing. However, I like the convenience of calling the function directly in the
script file. Your mileage may vary, as I've said in this book about a hundred times before.

An exhaustive discussion of how to import scripts into your runspace using dot sourcing is included in
Hour 19, “Introduction to Windows PowerShell Scripting.”

When you run the LCM config script, you wind up with a single “meta” MOF regardless of how
many nodes you target in the script. Likewise, we use a different cmdlet to apply an LCM script:
Set-DscLocalConfigurationManager. The -Path parameter points to the directory that contains
our LCM script:

Set-DscLocalConfigurationManager -Path "C:\SetupLCM"

Let’s do a Try It Yourself exercise so that you can shore up your Windows PowerShell skills and
see how DSC works with your own eyes.

Writing Your First Configuration Script 369

TRY IT YOURSELF V¥

Creating and Pushing a DSC Configuration

In this Try It Yourself exercise, you’ll apply much of the PowerShell skills you've accrued through-
out the book to apply a specific configuration to a target node.

Specifically, you’ll configure a Windows Server 2012 R2 member server named dscclientO1 to
keep the Internet Information Services (lIS) web server installed and the default website stopped.

We’ll start by using OneGet to download and install the xWebAdministration custom DSC
resource module. Next we’ll author our configuration script and push it to a target node. Finally,
we'll verify that the configuration “took” by intentionally producing configuration drift and testing
autocorrection. If you don’'t have WMF v5 installed on your nodes, go with v4 and simply down-
load the xWebAdministration DSC resource package from TechNet (http://bit.ly/13VAcvz).

1. On your DSC authoring server (dscserverO1 in my case), fire up an elevated PowerShell v5
session and install the xWebAdministration package:

Find-Package -Name "xWebAdministration" | Install-Package -Verbose

Remember that you need to run this command on all DSC nodes, which means both my
authoring server as well as my dscclientO1.company.pri target node.

You’ll also want to verify that the DSC resource has been installed in the proper location
on disk:

PS C:\Program Files\WindowsPowerShell\Modules> dir
Directory: C:\Program Files\WindowsPowerShell\Modules
Mode LastWriteTime Length Name

d----- 12/22/2014 12:49 PM xWebAdministration

http://bit.ly/13VAcvz

370

Desired State Configuration Basics

n 2. Now open an elevated ISE instance and create a new .psi script file named

WebServerConfig.ps1. Check out Figure 18.8, and I'll walk you through the most important
code lines, as has become my habit:

1 configuration SetupIIS

2 5

3 param

46 (

5 string $NodeName 'localhost”

6)

8 Import-DscResource -Module xWebAdministration
e Node $NodeName

11 & {

i # Install the IIS server role

13 WindowsFeature TIIS

14 = {

15 Ensure "Present”

16 MHame "Web-Server”

17 }

8 # Stop the Default Web Site website

19 xWebsite DefaultSite

e = {

R1 Ensure "Present"

R2 Name "Default Web Site"
R3 State "Stopped"

24 PhysicalPath "C:\inetpub\wwwroot"
25 DependsOn "[WindowsFeature]IIS"
b }

27 1

RS |}

P9 SetupIIS -NodeName (“dscserver®l”, “"dscclient8l™)
FIGURE 18.8

Our DSC configuration script ensures that IIS is installed and that the Default Web Site website is stopped.

Line 5: Once again, we parameterize the Node name to make the script more flexible.

Line 8: This is a bit of “smoke and mirrors.” We need to run Import-DscResource to load
our custom DSC resource into the runspace. However, this is a “dynamic keyword” and is
not an honest-to-goodness PowerShell cmdlet.

Lines 13-17: Here we invoke the built-in WindowsFeature resource to ensure that IIS is
installed on the target node.

Lines 19-25: Now we call our xWebSite custom DSC resource to stop the default website.

Line 25: The DependsOn property is helpful when a configuration setting will work only if
another one is active. Logically, then, we understand that we can stop the default website
only if there exists an IIS web server to begin with.

Line 29: Modify the call to the configuration to target your own machines.

Writing Your First Configuration Script 371

3. Run your WebServerConfig.psi1 script by pressing F5 in the integrated scripting environment n
(ISE) and verify that PowerShell created two MOF files in a separate directory named after
the script file.

4. When you're ready, unleash the proverbial hounds and apply the new configuration by run-
ning Start-DscConfiguration:

Start-DscConfiguration -Path "C:\SetupIIS"

5. Because PowerShell runs DSC configuration pushes as background jobs, we can use tradi-
tional syntax to check on job status:

PS C:\> Receive-Job -id 7 -Keep

PSComputerName

dscclient01
dscserver0l
Cool. No errors on my end. How has everything gone in your neck of the woods?

6. Connect to one of your target modes and see whether you can start the IIS Manager. If
so, is the default website stopped? Figure 18.9 demonstrates my dscclientO1 machine’s

i Internet Information Services (1IS) Manager - o
@0 ‘@ » DSCCLIENTO1 » Sites » Default Web Site » ‘u) A @~
File View Help
e @ Default Web Site Home m——
e- |2 |8 8 Explore
- StartPage = - % Go - EhshowAl | Groupby: Area -B- Edit Permissions
4 “j DSCCLIENTOT (C Edit Site
1~ Application Pools ASP.NET AT
- —_— - indings
(@] Sites = & &) @ G 2\ :&
[Default Web Site % 2 404 F 2 [Elg/ B Bosicsetings.. |
NET NET NETEwor NET NETProfile .NETRoles MNET Trust Vievan o
Authorizat.. Compilation Pages Globalization Levels
~ View Virtual Directories
. B 5 R & G
NET Users Application Connection MachineKey Pagesand Providers Session State > Restart
Settings Strings Controls > St
&l S
= Browse Website
SMTP E-mail
[E] Browse 80 (hitp)
s Advanced Settings..
aq T — = g Configure
q & e))
,]Egl @ @ Dj % &J Failed Request Tracing...
Authentic.. Compression Defauft Directory EmorPages Failed Handler Limits.
Document Browsing Request Tra... Mappings -
) @ Help
p. A =) = el e a=
o] » =
 H = A = &
|[=1] Festures View || Content View
Ready &

FIGURE 18.9

I’'m just going to go ahead and say it: DSC rocks! Here we see the configuration applied to my dscclientO1

member server.

372

Desired State Configuration Basics

. Use Windows PowerShell on one of your target nodes to start the default website. Of

course, this will produce configuration drift. (If you haven’t configured your LCM to perform
autocorrection, go back and do that now.)

Start-Website -Name "Default Web Site"

If you want, you can simply wait for the next DSC LCM refresh interval to test whether your
server turned the default website back off. Alternatively, and perhaps more conveniently,
we can force a manual update:

Update-DscConfiguration

The update will once again exist as a configuration background job. Note also that you can
try Get-DscConfigurationStatus to review a node’s current relationship to DSC.

. Surprise! You should find that the Update-DscConfiguration job fails:

PS C:\> Receive-Job -Name Job4 -Keep

No attempt was made to get a configuration from the pull server because LCM
RefreshMode is currently set to Push.

+ CategoryInfo : NotSpecified:
(root/Microsoft/...gurationManager:String) [], CimException

+ FullyQualifiedErrorId : MI RESULT 1

+ PSComputerName : localhost

Here’s the deal: DSC push mode is great for test/demo situations because it's easy to set
up. However, we’ll have to run Start-DscConfiguration again from the authoring computer to
refresh this policy. It’s only in a pull server scenario that nodes have the ability to refresh
their policies. This makes sense because in a client refresh, we need some server from
which the client can check to verify it has the correct policies applied.

A Word on DSC Push Configuration

Due to space constraints in this book, I'll simply give you the barebones, “need-to-know” infor-

mation regarding setting up a DSC pull server. Let’s do that in a stepwise fashion, covering the
highest-level steps:

1.

Download and install the xPSDesiredStateConfiguration custom DSC resource from the
TechNet Script Center or by using OneGet.

Create and deploy your pull server configuration script. The recipe I recommend for your
config script comes to us courtesy of the Windows PowerShell team directly: http://bit.
ly/1ARI7pc.

Create and deploy an LCM configuration script. You can find an excellent example at
Pwrshell.net (http://bit.ly/1ARmIA]).

http://bit.ly/1ARl7pc
http://bit.ly/1ARmlAJ
http://bit.ly/1ARl7pc

Q&A 373

These settings are important because we change the configuration mode from push to pull and
we specify the URL of the pull server’s web service. We also specify how long the client waits
before updating its DSC policies.

The communication between the node and the web service occurs over HTTP or HTTPS, depend-
ing on your authentication requirements. That’s an important point, actually; you want to do
what you can to ensure that your nodes are pulling configuration from legitimate DSC pull
servers. It would be a very bad day indeed if a malicious individual stood up a bogus pull server
and borked up your DSC client nodes in the absence of Secure Sockets Layer / Transport Layer
Security (SSL/TLS) server authentication.

Summary

This was an awesome hour of training, wasn't it? I hope you're as stoked about DSC as I am.

I don’t know about you, but I can’t stand manually (re)configuring servers. Declaring how a
server “should” look and letting DSC take care of maintaining compliance to that configuration
is plain old awesome.

In Hour 19 we'll stay within the ISE because it’s finally time for us to take charge of Windows
PowerShell scripting. (And here you never thought you’d be a programmer.)

Q&A

Q. | know that many PowerShell cmdlets have a -Whatlf flag that allows you to test a cmdlet
before it runs. Is there a command or parameter we can use to verify that DSC is functioning
on a node?

A. Yes, indeed. You'll want to run Test-DscConfiguration -Verbose to instruct Windows
PowerShell to process all of its DSC scripts; the output returns True if all tests pass.

Q. Will you please look at my script? | ran the following two lines of code:

PS C:> .\LCMConfig.psl
PS C:> SetupLCM -NodeName "dscclientO1l"

and got a bunch of red error text, as shown in Figure 18.10. What'’s the problem?

374 HOUR 1.8: Desired State Configuration Basics

X Select Administrator: Windows PowerShell I;Ii-

PS C:\Users\Trainer\Desktop\DSC> .\LCMConfigl.psl
PS C:\Users\Trainer\Desktop\DSC> SetupLCM -NodeName "dsccliente1l"

PS C:\Users\Trainer\Desktop\DSC> . ".\LCMConfigl.ps1"
PS C:\Users\Trainer\Desktop\DSC> SetupLCM -NodeName "dsclient@l"

Directory: C:\Users\Trainer\Desktop\DSC\SetupLCM

LastWriteTime Length Name

12/22/2014 2:58 PM 1218 localhost.meta.mof

PS C:\Users\Trainer\Desktop\DSC>

FIGURE 18.10
You need to understand the implications of “dot sourcing” your Windows PowerShell scripts.

A. The dot-slash (.\) notation simply tells PowerShell to run the present command from the
current working directory and nothing more. This means that running a PowerShell script
in this way runs the code contained inside the script but removes any functions, variables,
and so forth from the session immediately thereafter.

Dot sourcing occurs when you type a period (.) and then type a partial or full path to a
PowerShell script. (Don’t forget to put quotes around the script path, including the dot
slash.) The key difference with dot sourcing is that any objects defined inside the script
persist in the user’s current runspace. This allows us to run the DSC configuration script
manually as was depicted in Figure 18.10.

Q. What is the suggested configuration refresh frequency for DSC?

How you configure your nodes’ LCM component, and particularly the
ConfigurationFrequencyMins property value, depends entirely on how much tolerance for
configuration drift you have.

DSC network traffic is relatively low compared to, say, Group Policy. However, many
Windows administrators are cool with setting refresh to 48 hours because the likelihood
that a server will fall out of compliance may not be particularly high.

Workshop 375

Workshop

Create a DSC configuration file that performs the following two tasks:
» Ensures that the Shutdown Event Tracker is enabled
» Ensures that the Google Chrome web browser is installed

The only hint I'll provide is that you need both the Registry built-in DSC resource and the xChrome
custom resource to complete the configuration.

Quiz
1. You'd like to see what options are available for the WindowsFeature DSC resource. Which
of the following commands accomplishes that goal?

a. Get-Package
b. Get-DscResource
c. GetJob
d. Get-DscLocalConfigurationManager
2. The UpdateDscConfiguration cmdlet can be used only in DSC push scenarios.
a. True
b. False

3. A DSC authoring server running WMF 4.0 can push a configuration to a server running
WMF 5.0.

a. True

b. False

Answers

1. The correct answer is B. Here is a run of the WindowsFeature DSC resource properties from
my Windows Server 2012 R2 domain controller:

PS C:\> (Get-DscResource -Name WindowsFeature) .Properties

Name PropertyType IsMandatory Values

Name [string] True {}

Credential [PSCredential] False {}

DependsOn [string[]] False {}

Ensure [string] False {Absent, Present}
IncludeAllSubFeature [bool] False {}

LogPath [string] False {}

Source [string] False {}

Remember that you can run Get-Command -module PSDesiredStateConfiguration to retrieve
a list of all DSC commands.

376 HOUR 1.8: Desired State Configuration Basics

2. The correct answer is B. Update-DscConfiguration refreshes the target node only when a
DSC pull server is online and available.

3. The correct answer is A. Remember that backward compatibility is a priority for the Windows
PowerShell team. To use DSC, all your nodes must have the DSC bits available, which
means that your Powershell version is 4 or 5 and your host operating system is Windows
Server 2012/R2 or Windows 8/8.1.

This page intentionally left blank

Symbols

& (ampersand) operator
running external commands,
84-85
running scripts, 390
in SharePoint Server manage-
ment shell, 454
< > (angle brackets), 405
* (asterisk) wildcard character
finding cmdlets, 57, 77-78
as Kleene star, 316
as placeholder, 125
in regular expressions, 320
in searches, 313-314
@ (at) signs, 446
\ (backslash), 320
A (caret), 318-320
: (colon), 156
{ } (curly braces)
for expressions, 214
in functions, 384
in regular expressions, 322
$ (dollar sign), 318-320
$_ (dollar sign underscore)
variable, 129
* (grave accent), 128, 224, 406
> (greater than)
for output redirection, 142,
187
in WQL, 302
< (less than), 302
(octothorpe), 129, 393
() (parentheses), 165
% (percent sign), 302

. (period), 320
.\ (period backslash) notation,
390
| (pipe), 20, 113, 128
? (question mark)
as alias, 138-139
as wildcard character
in regular expressions,
320
in searches, 315
" " (quotation marks)
in directory path, 84
double quotes versus single
quotes, 385
in regular expressions, 321
; (semicolon), 73
-% (stop parsing symbol), 85-86
~ (tilde), 314
7-Zip, installing, 340-341

A

About help files, 60, 119, 167
accessing command history, 33
Active Directory
child domains, installing,
422-423
domain controllers, promot-
ing, 421-422
domains
joining, 418-419
testing for membership,
418

Index

Flexible Single Master Roles
(FSMOs)
managing, 430-431
transferring, 431-432
functional levels, setting, 432
Group Policy administration,
432-433
groups, creating, 424-425
installing, 417-423
organizational units (OUs),
creating, 423-424
user accounts
creating, 425-426
creating in bulk, 427-430
managing, 426-427
Active Directory Administrative
Center (ADAC), 17, 430
Active Directory Cookbook
(Svidergol and Allen), 423
Active Directory provider, 169-170
activities for workflows, 283-284
CheckPoint-Workflow cmdlet,
284-285
Resume-Workflow cmdlet,
284-287
Sequence, 284, 287-288
Suspend-Workflow cmdlet,
284-287
ADAC (Active Directory
Administrative Center), 17, 430
Add-ADGroupMember cmdlet, 425
Add-Computer cmdlet, 418
Add-Content cmdlet, 164
add-ons
Commands add-on, turning
on/off, 40

494 add-ons

for ISE, 384
Script Browser ISE add-in,
installing, 391
Add-PSSnapin cmdlet, 70, 401
Add-PSWAAuthorizationRule
cmdlet, 243
Add/Remove Programs (ARP),
335
ADDSDeployment module, 421
Add-WindowsFeature cmdlet, 419
administrator, running Windows
PowerShell as, 15
Adobe Portable Document Format
(PDF), 308
Advanced Package Tool (APT),
332
Alias provider, 154, 166-167
aliases
? (question mark), 138-139
cd, 136, 155, 157
creating, 64-65
dir, 80, 136, 156
exit, 210
gem, 77, 79, 133
gm, 100
group, 136
Is, 136, 156
measure, 145
ps, 80
purpose of, 166
select, 138
sl, 157
sort, 134
for Variable PSDrive, 156-157
where, 139
AliasProperties, 99
Allen, Robbie, 423
AlISigned execution policy, 378
Allversions parameter for
Find-Package cmdlet, 338
alternate credentials for remote
sessions, 212-214
Amazon Web Services, 472
Amin, Adnan, 466
ampersand (&) operator
running external commands,
84-85
running scripts, 390
in SharePoint Server manage-
ment shell, 454

anchors in regular expressions,
318-320
angle brackets (<>), 405
APT (Advanced Package Tool),
332
Archive resource (DSC), 361
arguments, passing remotely,
231-232
ARP (Add/Remove Programs),
335
arrays
defined, 128
hash tables, 128-129
AsJob parameter
for running jobs, 263-265
for workflows, 282
asterisk (*) wildcard character
finding cmdlets, 57, 77-78
as Kleene star, 316
as placeholder, 125
in regular expressions, 320
in searches, 313-314
at (@) signs, 446
attribute table for parameters,
56-57
attribute types for parameters,
118
authentication
authorization rules versus,
244
of DSC pull servers, 373
authoring environment for DSC,
358
authorization rules
authentication versus, 244
defining, 243-244
autoloading modules, 402-403
automating snap-ins, 401
automation scripts, creating,
385-387
Autoruns, 346
AutoSize parameter
for Format-Table cmdlet,
181-182
for Format-Wide cmdlet, 186
Azure. See Microsoft Azure

\b character class, 326

background jobs. See jobs

backslash (), 320

backtick (7). See grave accent ()

backups, scheduling, 447-449

Backup-SQLDatabase cmdlet, 448

Bginfo, 346

binary modules, 402

browser tools for WMI, 296-299

browsing. See viewing

bulk processing Active Directory
user accounts, 427-430

business logic, regular expressions
and, 323

Bypass execution policy, 378

C

call operator (&). See ampersand
(&) operator

calling methods in WMI, 304-305

Cancel button (PSWA), 247

Capabilities property for
Get-PSProvider cmdlet, 154-155

caret ("), 318-320

Cascading Style Sheets (CSS),
195

case sensitivity

of cmdlets, 20, 77
of comparison operators, 143

CaseSensitive parameter for
Sort-Object cmdlet, 136

cd alias, 136, 155, 157

CEC (Common Engineering
Criteria), 8

certification exams, 9

character classes in regular
expressions, 321-323

checkpoints in workflows,
284-285

CheckPoint-Workflow cmdiet,
284-285

Chef, 356

child domains, installing, 422-423

child jobs, 261-262

choco client, 345

Chocolately, 332-333
finding packages, 338
installing, 337
trusting, 346-347
upgrading packages, 347-348
usage example, 344-346
ChocolatelyGUI, 348
CIM (Common Information Model)
cmdlets for, 305
remote access, 305
usage example, 305-307
defined, 293-294
location, 294-295
terminology, 296
Class parameter for
Get-WMIObject cmdlet, 301
classes. See also data types
creating, 99
defined, 48, 94-95
in WMI
defined, 296
list of, 298-300
Classic Shell, 343
ClassName parameter for
Get-CimiInstance cmdlet, 305
cloud computing. See Microsoft
Azure
CMatch parameter in regular
expressions, 318
Cmd.exe
running commands from, 83
call operator (&), 84-85
from environment path, 84
Invoke-ltem cmdlet, 84
stop parsing symbol (-%),
85-86
running scripts from, 390
switching between
PowerShell.exe and, 19
cmdlets. See also commands
in Active Directory module,
419-421
Add-ADGroupMember, 425
Add-Computer, 418
Add-Content, 164
Add-PSSnapin, 70, 401
Add-PSWAAuthorizationRule,
243
Add-WindowsFeature, 419
Backup-SQLDatabase, 448
case sensitivity, 20, 77

for CIM, 305
remote access, 305
usage example, 305-307
Connect-MSOLService, 486
Connect-PSSession, 225
Connect-SPOService, 488
ConvertTo-Csv, 193
ConvertTo-Html, 195
ConvertTo-SecureString, 425
ConvertTo-Xml, 192, 194-195
defined, 47
Disconnect-PSSession, 210,
225
Enable-PSRemoting, 205-207
Enter-PSSession, 209-210
Exit-PSSession, 209-210
Export-Clixml, 191-195
Export-Csv, 189-191, 193
finding, 58, 80
Find-Package, 336, 338
Format-List, 183-185
Format-Table, 180-183
Format-Wide, 185-187
Get-ADComputer, 277
Get-ADDomain, 430
Get-ADForest, 430
Get-ADGroup, 424
Get-ADOrganizationalUnit, 424
Get-Alias, 77
Get-AzurePublishSettingsFile,
477
Get-AzureSqglDatabaseServer,
484
Get-AzureSubscription, 480
Get-AzureVM, 479
Get-AzureVMImage, 478
Get-Childltem, 136, 156,
160-162, 224
Get-CimClass, 305
Get-CimInstance, 305
Get-Command, 71, 77-82
Get-Content, 148, 164
Get-Credential, 486
Get-DscLocalConfiguration-
Manager, 366
Get-DSCResource, 362
Get-EventLog, 19-21
named parameters, 58
parameter sets, 55-56
positional parameters,
57-58
required parameters, 57

cmdlets 495

Get-ExecutionPolicy, 276,
378379
Get-Help, 50-51, 71
Get-Command cmdlet
versus, 79-82
ShowWindow parameter,
61-62, 72
viewing help system
content, 52-53
Get-HotFix, 360
Get-ltemProperty, 169, 224
Get-Job, 256-257, 262
Get-Member, 81, 100-102,
111
finding property names,
135
output describing
metadata, 96-97
Get-Module, 70
Get-MsolDomain, 487
Get-Package, 342, 347
Get-PackageProvider, 334
Get-PackageSource, 335
Get-Process, 59-60, 80
inputs and outputs, 112
methods available, 101
properties available, 100
Get-PSDrive, 156
Get-PSProvider, 153-156
Get-PSSession, 211, 225
Get-PSSessionConfiguration,
228
Get-PSSnapin, 70, 180, 400
Get-PswaAuthorizationRule,
243
Get-ScheduledJob, 267
Get-Service, 77
inputs and outputs,
113114
parameter binding,
114-116, 119121
pipelines example,
113118
Get-SPManagedAccount, 458
Get-SPOSite, 488
Get-SPServiceApplication, 458
Get-SPServicelnstance, 458
Get-SPSite, 462, 464
Get-SPWeb, 465
Get-SPWebApplication, 464
Get-SPWebTemplate, 460
Get-Verb, 49, 76

cmdlets

Get-WindowsFeature, 36
Get-WMIObject, 300-301
remote access, 302-303
WQL and, 301-302
Get-WmiObject, 221-222, 418
Group-Object, 136-137
help system
About help files, 60
commands for, 50-51
named parameters, 58
parameter attribute table,
56-57
parameter sets, 55-56
positional parameters,
57-58
required parameters, 57
Show-Command cmdlet,
62-64
ShowWindow parameter,
61-62
structure of help entries,
54-55
as updateable, 51-52
updating on offline
systems, 53-54
usage example, 58-60,
64-65
viewing content, 52-53
wildcards, 57
Import-AzurePublishSettings-
File, 477
Import-Clixml, 192
Import-Csv, 122, 124-125,
191
Import-DscResource, 370
Import-Module, 71
Installl-ADDSDomainController,
422
Install-Package, 340-341
Install-PSWAWebApplication,
240-243
Install-WindowsFeature, 40,
72, 240, 419
Invoke-Command, 214-215,
224, 226, 390
Invoke-Expression, 390
Invoke-GPUpdate, 433
Invoke-ltem, 84
Invoke-Sqlecmd, 443, 446
Invoke-WMIMethod, 304

for jobs, 255-256
checking job status,
256-257
deleting jobs from queue,
260-261
resuming jobs, 260
scheduling jobs, 266-270
starting jobs, 256
stopping jobs, 259
viewing job output,
257-259
with workflows, 287
line breaks, 128, 224
Measure-Object, 72-73,
144-148
for Microsoft Azure, 476
modules, 70-73
finding, 70
loading, 71-72
Move-ADDirectoryServer-
OperationsMasterRole, 431
naming conventions, 89
New-ADGroup, 424
New-ADOrganizationalUnit,
423
New-ADUser, 125-128, 425
New-Alias, 64-65
New-AzureSqlDatabase, 483
New-AzureSqlDatabaseServer,
481
New-ISESnippet, 384
New-ltem, 163-164, 317, 380
New-JobTrigger, 268
New-ModuleManifest, 407
New-PSSession, 211
New-PSSessionConfiguration-
File, 227
New-PSSessionOption, 248
New-ScheduledJobOption, 269
New-SPAuthenticationProvider,
459
New-SPMetadataService-
Application, 458
New-SPWebApplication, 459
New-WebBinding, 241
for Office 365, 485-486
for OneGet, 333
origin of name, 48
Out-Default, 133, 176-177,
180

Out-File, 117-118, 187-189
Out-Gridview, 179-180, 339
Out-Host, 133, 176
Out-Printer, 189
for outputs, 133
converting output, 193-195
exporting output, 187-193
filtering output, 137-144
formatting output, 176-187
measuring objects, 144-148
sorting output, 134-137
passing arguments remotely,
231232
Read-Host, 389
Receive-Job, 257-259, 269
Register-PackageSource, 346
Register-PSSession-
Configuration, 227, 381
Register-ScheduledJob, 266
Remove-Computer, 418
Remove-ltem, 165
Remove-Job, 260-261
Remove-Module, 401
Remove-PSSession, 211
Remove-PSSnapin, 70, 401
Remove-PswaAuthorization-
Rule, 249
Rename-Computer, 289
Restart-Computer, 289, 305
Resume-Job, 260
Save-Help, 53
Select-AzureSubscription, 480
Select-Object, 138-141
Select-String, 324-325
for service applications, 457
Set-ADAccountPassword, 427
Set-ADDomainMode, 432
Set-ADForestMode, 432
Set-CimInstance, 307
Set-ExecutionPolicy, 103, 276,
378-379
Set-Location, 136, 155, 157
Set-PSSessionConfiguration, 227
Set-WSManQuickConfig, 205
for SharePoint Online, 487
for SharePoint Server, 455,
463-464
Show-Command, 62-64
snap-ins, 69-70
Sort-Object, 112, 134, 136
Start-AzureVM, 481

Start-DscConfiguration, 371
Start-Job, 256
Start-SPAssignment, 465
Start-SPServicelnstance, 458
Start-Website, 372
Stop-AzureVM, 481
Stop-Computer, 305
Stop-Job, 259
Stop-Process, 111
Stop-Service
inputs and outputs,
113114
parameter binding,
114-116, 119121
pipelines example,
113118
Stop-SPAssignment, 465
structure of, 48-49
nouns, 49-50
origin, 76
parameters, 49-50
prefixes, 48, 79
verbs, 49, 75-76
Suspend-Job, 260
tab completion, 82-83, 138
Test-ADDSDomainController-
Installation, 421
Test-Connection, 83, 280
Test-Manifest, 409
Test-PswaAuthorizationRule,
249
Uninstall-Package, 349
Uninstall-PswaWebApplication,
250
Unlock-ADAccount, 426
Update-DscConfiguration, 372
Update-Help, 52
Where-Object, 139-141, 317
for WMI, 300
calling methods, 304-305
Get-WMIObject, 300-301
remote access, 302-304
WQL (Windows Manage-
ment Instrumentation
Query Language),
301-302
Write-Host, 38, 385
Write-Output, 38, 385
CNotMatch parameter in regular
expressions, 318
code folding, 16, 387

code highlighting, 16
CodePlex, 297
collections
defined, 93
output describing metadata,
96-97
colon (:), 156
color coding in ISE, 387
Colors tab (Properties sheet), 35
Column parameter for Format-
Wide cmdlet, 186
command history
accessing, 33
customizing, 33
viewing, 35
command prompt session,
switching between Windows
PowerShell and, 19
commands. See also cmdlets
for help system, 50-51
man, 50
running external commands,
83
call operator (&), 84-85
from environment path, 84
Invoke-ltem cmdlet, 84
stop parsing symbol (-%),
85-86
running in modules, 406
Commands add-on, turning on/
off, 40
comma-separated value (CSV)
files, outputting to, 189-191,
193
comment-based help
in modules, 410-413
in scripts, 395
comments
in modules, 405
in scripts, 393
Common Engineering Criteria
(CEC), 8
Common Information Model
(CIM). See CIM (Common
Information Model)
comparison operators, 141-144
ComputerGroupName parameter
for Get-PswaAuthorizationRule
cmdlet, 244
ComputerName parameter
for Invoke-Command cmdlet,
214

converting outputs 497

for one-to-many remoting,
221-224
for one-to-one remoting,
201-203, 214
without Session parameter, 222
conditional logic in scripts, 387
configuration scripts
creating, 364-366
defined, 358
usage example, 368-372
ConfigurationMode parameter for
Get-DscLocalConfiguration-
Manager cmdlet, 367
ConfigurationName parameter for
Get-PswaAuthorizationRule
cmdlet, 244
configurations, 48. See also DSC
(Desired State Configuration)
configuring
DSC environment, 359-360
PSWA (Windows PowerShell
Web Access), 240-243
Confirm parameter for
Install-PSWAWebApplication
cmdlet, 240
connecting
to Microsoft Azure, 477
to Office 365, 485-487
to SharePoint Online, 487-488
Connect-MSOLService cmdlet, 486
Connect-PSSession cmdlet, 225
Connect-SPOService cmdlet, 488
console, 13-14
customizing, 32-39
starting, 18
Console pane
positioning, 40-41
zooming, 41
constrained endpoints, creating,
227-228
-contains comparison operator,
142
Contig, 346
continuation character (;), 73
Control menu, Properties
sheet, 32
Colors tab, 35
Font tab, 33-34
Layout tab, 34-35
Options tab, 32-33
converting outputs, 193-195

498 converting outputs

Export-Clixml cmdlet versus
ConvertTo-Xml cmdlet,
194-195

Export-Csv cmdlet versus
ConvertTo-Csv cmdlet, 193

usage example, 196-197

ConvertTo-Csv cmdlet, 193

ConvertTo-Html cmdlet, 195

ConvertTo-SecureString cmdlet,
425

ConvertTo-Xml cmdlet, 192,
194-195

Count parameter for Test-
Connection cmdlet, 280

counting with Measure-Object
cmdlet, 72-73

CPU property for Get-Process
cmdlet, 141

CreateSPGroupAddADGroupSet-
PermissionLevel.ps1 script, 463

Credential parameter for New-
PSSession cmdlet, 212

Credentials capability, 155

CSS (Cascading Style Sheets),
195

CssUri parameter for ConvertTo-
Html cmdlet, 195

CSV (comma-separated value)
files, outputting to, 189-191,
193

Ctrl+Break (stop script), 42

curly braces ({ })

for expressions, 214

in functions, 384

in regular expressions, 322

CurrentUser scope, 379
cursor size, changing, 33
customizing

console, 32-39

ISE (Integrated Scripting
Environment), 40-42

LCM (Local Configuration
Manager), 366-368

\D character class, 322
\d character class, 322
data stores. See providers

data types
creating, 99
defined, 94-95
in formatting subsystem,
177-178
in pipelines, 113-114
databases
creating, 445, 481-484
listing in SQL Server
instances, 443-444
scheduling backups, 447-449
DCL (DIGITAL Command
Language), 76
debugger, 16
debugging pipeline, 112
declarative nature of DSC,
357-358
default file association for scripts,
377
defining authorization rules,
243-244
deleting
jobs from queue, 260-261
packages, 349
Delimiter parameter for Export-Csv
cmdlet, 191
deploying
service applications, 457-459
site collections, 460-462
web applications, 459-460
Descending parameter for
Sort-Object cmdlet, 134
Desired State Configuration
(DSC). See DSC (Desired State
Configuration)
digital certificates, 208
DIGITAL Command Language
(DCL), 76
dir alias, 80, 136, 156
disabling. See turning on/off
disconnected sessions
in PSWA (Windows PowerShell
Web Access), 247-248
in remote access, 225
Disconnect-PSSession cmdlet,
210, 225
discovering. See finding
DMTF (Distributed Management
Task Force), 294
DN (distinguished name) syntax,
423

documentation
on .NET classes, 98
in repositories, 339-340
dollar sign ($), 318-320
dollar sign underscore ($_) vari-
able, 129
domain controllers
forest root domain controllers,
417
promoting, 421-422
domains
child domains, installing,
422-423
functional levels, setting, 432
groups, creating, 424-425
joining, 418-419
testing for membership, 418
DOS commands. See external
commands
dot notation, 82, 104
dot source notation, 391
DotNetFrameworkVersion property
for New-ModuleManifest cmdlet,
408
double quotes, single quotes ver-
sus, 385
downloading
Microsoft Azure module,
475-476
Microsoft Online Services
Sign-in Assistant for IT
Professionals, 485
Script Browser ISE add-in, 391
SharePoint Online
Management Shell, 487
Windows Azure Active
Directory Module for
Windows PowerShell, 485
Drives property for Get-PSProvider
cmdlet, 155
DSC (Desired State Configuration),
285
authoring environment, 358
configuration scripts, creating,
364-366
configuring environment,
359-360
customizing LCM, 366-368
declarative nature of, 357-358
Group Policy versus, 359
history of, 355-357

packages for, 338
production environment,
358-359
pull configurations, 369-373
resources
list of, 361-362
loading, 362-363
waves, 363
usage example, 368-372
dynamic modules, 402

editing
Registry values, 169
scripts, 391-394
editing options
changing, 33
Quick Edit mode, 38
EmailAddress parameter for
New-ADUser cmdlet, 126
Enable-PSRemoting cmdlet,
205-207
enabling. See also turning on/off
DSC environment, 359-360
remote access, 205-209
Enable-PSRemoting cmd-
let, 205-207
with Group Policy, 207-208
in workgroups, 208-209
Encoding parameter for Out-File
cmdlet, 188
Enter-PSSession cmdlet, 209-210
enumerations, 101
Environment provider, 154
Environment resource (DSC), 361
environment variables, PATH, 84
-eq comparison operator, 141
error handling, 395
error pipeline, 112
ErrorAction parameter for
Test-Connection cmdlet, 280
escape characters in regular
expressions, 320
event logs, retrieving, 19-21
Example parameter for help sys-
tem, 55
exception handling, 395

First parameter for Select-Object cmdlet 499

Exclude capability, 155
execution policies
scope, 379
for scripts
changing, 103-104, 276
list of, 378
viewing and setting, 378-379
exit alias, 210
Exit button (PSWA), 247
Exit-PSSession cmdlet, 209-210
Export-Clixml cmdlet, 191-195
Export-Csv cmdlet, 189-191, 193
ExportedCommands property for
Test-Manifest cmdlet, 410
exporting
About help files, 60
outputs, 187-193
Export-Clixml cmdlet,
191-193
Export-Csv cmdlet,
189-191
Out-File cmdlet, 187-189
Out-Printer cmdlet, 189
usage example, 196-197
Extensible Application Markup
Language (XAML), 283
Extensible Markup Language
(XML), outputting to, 191-195
extensions, unhiding, 226
external commands, running, 83
call operator (&), 84-85
from environment path, 84
Invoke-ltem cmdlet, 84
stop parsing symbol (-%),
85-86

F

F5 (run script) keyboard shortcut,
42

F7 (previous command buffer)
keyboard shortcut, 35

F8 (run selection) keyboard short-
cut, 42

Feldon-Lawrence, Ashley, 463

file associations for scripts, 377

file extensions, viewing, 226

File parameter, starting
PowerShell with, 390
File resource (DSC), 362
file shares, creating private reposi-
tories, 350
file-based operating system,
UNIX/Linux as, 91-92
FilePath parameter
for Invoke-Command cmdlet,
215
for Out-File cmdlet, 187
for Start-Job cmdlet, 259
files, outputting to, 187-189
FileSystem provider, 154,
159-165
Get-Childltem cmdlet and,
160-162
PSDrives for, 157
usage example, 162-165
Filter capability, 155
“filter left, format right”, 175
Filter parameter
for cmdlets, 140
for Get-Childltem cmdlet, 161
for Get-WMIObject cmdlet,
302
for New-ADOrganizationalUnit
cmdlet, 424
filtering
objects, 139-141
outputs, 137-144
comparison operators,
141-144
Select-Object cmdlet,
138-139
finding
cmdlets, 58, 80
modules, 70, 413-414
object members, 96-102
Get-Member cmdlet,
100-102
.NET classes in, 98
properties/methods,
99-100
packages in Chocolatey, 338
property names, 135-136
URLs (uniform resource loca-
tors), 476
Find-Package cmdlet, 336, 338
First parameter for Select-Object
cmdlet, 139

500 Flexible Single Master Roles (FSMOs)

Flexible Single Master Roles
(FSMOs). See FSMOs (Flexible
Single Master Roles)

Font tab (Properties sheet), 33-34

Force parameter

for Enable-PSRemoting cmd-
let, 207

for Move-ADDirectoryServer-
OperationsMasterRole cmd-
let, 432

for Stop-AzureVM cmdlet, 481

foreach construction, 386, 463

foreach keyword, 280

forest root domain controllers,
417

forests, setting functional levels,
432

Format-List cmdlet, 183-185

Format-Table cmdlet, 180-183

formatting outputs, 176-187

Format-List cmdlet, 183-185
Format-Table cmdlet, 180-183
Format-Wide cmdlet, 185-187
Out-Gridview cmdlet, 179-180
Type property, 177-178
usage example, 196-197

Format-Wide cmdlet, 185-187

Friedl, Jeffrey, 323

FSMOs (Flexible Single Master
Roles)

managing, 430-431
transferring, 431-432

Full Circle Blog, 463

Full parameter for help system,
54

function keyword, 384

functional levels of domains and
forests, setting, 432

functions

creating, 276-278, 383-385

defined, 47, 383

double quotes versus single
quotes, 385

Help, 50-52

More, 51

scope, 395

snippets, 383-384

garbage collection, 401
gateway (PSWA). See PSWA
(Windows PowerShell Web
Access)
gem alias, 77, 79, 133
-ge comparison operator, 141
Generate Document Info
Report.ps1 script, 466
Get-ADComputer cmdlet, 277
Get-ADDomain cmdlet, 430
Get-ADForest cmdlet, 430
Get-ADGroup cmdlet, 424
Get-ADOrganizationalUnit cmdlet,
424
Get-Alias cmdlet, 77
Get-AzurePublishSettingsFile cmd-
let, 477
Get-AzureSqlDatabaseServer cmd-
let, 484
Get-AzureSubscription cmdlet,
480
Get-AzureVM cmdlet, 479
Get-AzureVMImage cmdlet, 478
Get-Childltem cmdlet, 136, 156,
160-162, 224
Get-CimClass cmdlet, 305
Get-CimlInstance cmdlet, 305
Get-Command cmdlet, 71, 77-82
Get-Content cmdlet, 148, 164
Get-Credential cmdlet, 486
Get-DscLocalConfiguration-
Manager cmdlet, 366
Get-DSCResource cmdlet, 362
Get-EventLog cmdlet, 19-21
named parameters, 58
parameter sets, 55-56
positional parameters, 57-58
required parameters, 57
Get-ExecutionPolicy cmdlet, 276,
378-379
Get-Help cmdlet, 50-51, 71
Get-Command cmdlet versus,
79-82
ShowWindow parameter,
61-62, 72
viewing help system content,
52-53

Get-HotFix cmdlet, 360
Get-ltemProperty cmdlet, 169,
224
Get-Job cmdlet, 256-257, 262
Get-Member cmdlet, 81, 100-102,
111
finding property names, 135
output describing metadata,
96-97
Get-Module cmdlet, 70
Get-MsolDomain cmdlet, 487
Get-Package cmdlet, 342, 347
Get-PackageProvider cmdlet, 334
Get-PackageSource cmdlet, 335
Get-Process cmdlet, 59-60, 80
inputs and outputs, 112
methods available, 101
properties available, 100
Get-PSDrive cmdlet, 156
Get-PSProvider cmdlet, 153-156
Get-PSSession cmdlet, 211, 225
Get-PSSessionConfiguration
cmdlet, 228
Get-PSSnapin cmdlet, 70, 180,
400
Get-PswaAuthorizationRule cmd-
let, 243
Get-ScheduledJob cmdlet, 267
Get-Service cmdlet, 77
inputs and outputs, 113-114
parameter binding, 114-116,
119121
pipelines example, 113-118
Get-SPManagedAccount cmdlet,
458
Get-SPOSite cmdlet, 488
Get-SPServiceApplication cmdlet,
458
Get-SPServicelnstance cmdlet,
458
Get-SPSite cmdlet, 462, 464
Get-SPWeb cmdlet, 465
Get-SPWebApplication cmdlet,
464
Get-SPWebTemplate cmdlet, 460
Get-Verb cmdlet, 49, 76
Get-WindowsFeature cmdlet, 36
Get-WMIObject cmdlet, 300-301
remote access, 302-303
WQL and, 301-302

Get-WmiObject cmdlet, 221-222,
418
GivenName parameter for
New-ADUser cmdlet, 126
gm alias, 100
Google Cloud, 472
GPUpdate, 432
grave accent (7), 128, 224, 406
greater than (>)
for output redirection, 142,
187
in WQL, 302
group alias, 136
Group Policy
administration, 432-433
DSC (Distributed State
Configuration) versus, 359
enabling remote access,
207-208
Group resource (DSC), 361
GroupBy parameter for
Format-Table cmdlet, 182
grouping outputs, 136-137
Group-Object cmdlet, 136-137
groups, creating, 424-425
-gt comparison operator, 141

hash tables, 128-129, 223
hashtag (#). See octothorpe (#)
HasMoreData property for Get-Job
cmdlet, 257
Helmick, Jason, 82
Help function, 50-52
help system
About help files, 60, 119,
167
commands for, 50-51
comment-based help
in modules, 410-413
in scripts, 395
named parameters, 58
parameter attribute table,
56-57
parameter sets, 55-56
positional parameters, 57-58
required parameters, 57
Show-Command cmdlet, 62-64

Install-PSWAWebApplication cmdlet 501

ShowWindow parameter,
61-62, 72

structure of help entries,
54-55

as updateable, 51-52

updating on offline systems,
53-54

usage example, 58-60, 64-65

viewing content, 52-53

wildcards, 57
here strings, 446
history

of DSC, 355-357
of Windows PowerShell, 10-12
History button (PSWA), 247
$host system variable, 17
hosts, examples of, 17-18
HTML, outputting to, 195
hybrid clouds, 472

Id property for Get-Job cmdlet,
257

Idera PowerShell Plus, 18

IdleTimeout parameter for
New-PSSessionOption cmdlet,
248

If Else construction, 387

1S application pools, 459

implicit remoting, 232-233

Import-AzurePublishSettingsFile
cmdlet, 477

Import-Clixml cmdlet, 192

Import-Csv cmdlet, 122, 124-125,
191

Import-DscResource cmdlet, 370

importing modules remotely,
232-233

Import-Module cmdlet, 71

Include capability, 155

IncludeChildJob parameter for
Get-Job cmdlet, 262

IncludeManagementTools param-
eter for Install-WindowsFeature
cmdlet, 240

-in comparison operator, 142

indenting in scripts, 386

inedo company, 350

inheritance, 95
InputFile parameter for
Invoke-Sqlcmd cmdlet, 446
inputs
for Get-Process cmdlet, 112
for Get-Service/Stop-Service
cmdlets, 113-114
inserting table data, 446-447
Install-ADDSDomainController
cmdlet, 422
installing
Active Directory, 417-423
child domains, 422-423
Chocolately, 337
ISE (Integrated Scripting
Environment), 36, 40
Microsoft Azure module,
475-476
Microsoft Online Services
Sign-in Assistant for IT
Professionals, 485
.NET Framework, 27
NuGet, 336
PSWA (Windows PowerShell
Web Access), 239-240
RSAT (Remote Server
Administration Tools), 73-74
Script Browser ISE add-in, 391
SharePoint Online
Management Shell, 487
snap-ins, 400-401
software
from command line,
340-341
installation location,
341-343
from subdirectory,
343-344
usage example, 344-346
SQL Server management
tools, 438-442
Windows Azure Active
Directory Module for
Windows PowerShell, 485
Windows PowerShell, latest
version, 29-31
WMF (Windows Management
Framework), 30-31
Install-Package cmdlet, 340-341
Install-PSWAWebApplication
cmdlet, 240-243

502

Install-WindowsFeature cmdlet,
40, 72, 240, 419
instances in WMI, 296
Integrated Scripting Environment
(ISE). See ISE (Integrated
Scripting Environment)
IntelliSense code completion, 16,
103-104
interactive table, viewing output
as, 179-180
interface controls for PSWA
(Windows PowerShell Web
Access), 247
interoperability in Microsoft, 360
Introducing Windows Azure for IT
Professionals (Tulloch), 471
invocation operator (&)
running external commands,
84-85
running scripts, 390
in SharePoint Server manage-
ment shell, 454
Invoke-Command cmdlet,
214-215, 224, 226, 390
Invoke-Expression cmdlet, 390
Invoke-GPUpdate cmdlet, 433
Invoke-ltem cmdlet, 84
Invoke-Sqlcmd cmdlet, 443, 446
Invoke-WMIMethod cmdlet, 304
ISE (Integrated Scripting
Environment), 15-17. See also
scripts
add-ons, 384, 391
advantages of, 16
code folding, 387
color coding, 387
customizing, 40-42
disadvantages of, 16-17
installing, 40
one-to-many remoting,
228231
starting, 18
verifying installation, 36
working with object members,
102-104
ISESteroids, 17
IsRegistered property for
Get-PackageSource cmdlet, 336
IsTrusted property for
Get-PackageSource cmdlet, 336

Install-WindowsFeature cmdlet

IsValidated property for
Get-PackageSource cmdlet, 336
items in PSProviders, 157-158

J

JobName parameter for running
jobs, 265
jobs. See also workflows
cmdlets for, 255-256
checking job status,
256-257
deleting jobs from queue,
260-261
resuming jobs, 260
scheduling jobs, 266-270
starting jobs, 256
stopping jobs, 259
viewing job output,
257-259
with workflows, 287
parent and child jobs,
261-262
running remotely, 263-265
scheduling, 266-270
adding triggers, 268-269
creating scheduled jobs,
266-268
usage example, 270-272
viewing job output,
269270
for WMI remote access,
303-304
workflows as, 282
joining domains, 418-419
Jones, Don, 119, 121, 410

K

Keep parameter for Receive-Job
cmdlet, 258, 269
keyboard shortcuts
Ctrl+Break (stop script), 42
F5 (run script), 42
F7 (previous command buf-
fer), 35

F8 (run selection), 42
Tab (cycle through param-
eters), 59
keywords
foreach, 280
function, 384
param, 386
kill method, 82, 111
killing processes, 110-112
Kleene, Stephen Cole, 316

L

Last parameter for Select-Object
cmdlet, 139
Layout tab (Properties sheet),
34-35
LCM (Local Configuration
Manager), 358, 366-368
LDAP (Lightweight Directory
Access Protocol), 423
-le comparison operator, 142
less than (<), 302
libraries, viewing, 465-466
Liebnitz, Gottfried Wilhelm, 11
Lightweight Directory Access
Protocol (LDAP), 423
-like comparison operator, 142
line breaks, 128, 224, 406
line numbers, viewing, 41
Linux
as file-based operating sys-
tem, 91-92
pipelines, PowerShell pipe-
lines versus, 109-110
list view, 183-185
ListAvailable parameter for
Get-Module cmdlet, 70
listings
collection describing meta-
data, 97
properties available with
Get-Process, 100
lists
creating, 466-467
viewing, 465-466
loading
modules, 71-72, 402-403
resources (DSC), 362-363

Local Configuration Manager
(LCM), 358, 366-368

LocalMachine scope, 379

locating. See finding

Location property for Get-Job cmd-
let, 257

Log resource (DSC), 361

logging on to PSWA connection,
244-247

LogName parameter for
Get-EventLog cmdlet, 56

loops in functions, 386

Is alias, 136, 156

-It comparison operator, 141

man command, 50
managed accounts, creating for
SharePoint Server, 455-456
Managed Metadata Service (MMS)
service application, deploying,
457-459
Managed Object Format (MOF)
files, 294-295
creating, 364-366
DSC push/pull models,
358-359
management portal for Microsoft
Azure, 473
management shell
for SharePoint Online, 487
for SharePoint Server,
454-455
manifest modules, 402
manifests
creating, 407-409
defined, 407
troubleshooting, 409-410
Mann, Steven, 457
Mastering Regular Expressions
(Friedl), 323
match() method for regular
expressions, 327
Match parameter in regular
expressions, 317-323
$matches variable, 318

MaxResultCount parameter for
Register-ScheduledJob cmdlet,
270

Mcliroy, Douglas, 113

measure alias, 145

Measure-Object cmdlet, 72-73,
144-148

measuring objects, 144-148

members. See also Get-Member
cmdlet; methods; properties

finding, 96-102
Get-Member cmdlet,
100-102
.NET classes in, 98
properties/methods,
99-100
working with, 102-104

MemberType parameter of
Get-Member cmdlet, 100

methods

defined, 99-100
of Get-Process cmdlet, 101
in WMI
calling, 304-305
defined, 296

Microsoft, interoperability in, 360

Microsoft Azure, 356. See also
Office 365; SharePoint Online

cmdlets for, 476

connecting to, 477

defined, 472

downloading module, 475-476

features, 472-473

free trial, 474-475

management portal, 473

security issues, 474

SQL databases, creating,

481-484

VMs (virtual machines)
creating, 477-479
managing, 479-481
starting, 481-484
stopping, 479, 481-484

Microsoft Office TechCenter, 466

Microsoft Online Services Sign-in
Assistant for IT Professionals,
485

Microsoft PowerShell Gallery, 414

Microsoft Script Center, 387

Microsoft Software Installer (MSI),
335

namespaces in WMI 503

Microsoft SQL Server 2012
Unleashed (Rankins), 437
MMS (Managed Metadata Service)
service application, deploying,
457-459
Module parameter for Get-
Command cmdlet, 79
modules, 70-73
comment-based help, adding,
410-413
creating, 403-407
defined, 401-402
finding, 70, 413-414
importing, remotely, 232-233
loading, 71-72
loading and unloading,
402-403
manifests
creating, 407-409
defined, 407
troubleshooting, 409-410
running commands in, 406
types of, 402
unapproved verbs in, 407
MOF (Managed Object Format)
files, 294-295, 364-366
Monad Manifesto, 10-12, 355
More function, 51
Move-ADDirectoryServerOperations-
MasterRole cmdlet, 431
MSI (Microsoft Software Installer),
335
MSPSGallery, 336
multipane interface, 16
multiple criteria, sorting output on,
136

Name parameter

for Find-Package cmdlet, 338

for Get-Job cmdlet, 257

for Out-Printer cmdlet, 189
named parameters

for cmdlets, 58, 135-136

for workflows, 280
Namespace parameter for

Get-WMIObject cmdlet, 300

namespaces in WMI, 296

504 naming conventions

naming conventions
cmdlets, 89
workflows, 280
-ne comparison operator, 141
.NET classes, documentation, 98
.NET Framework
defined, 13
determining version of, 26-27
installing, 27
required versions, 26
New-ADGroup cmdlet, 424
New-ADOrganizationalUnit cmdlet,
423
New-ADUser cmdlet, 125-128,
425
New-Alias cmdlet, 64-65
New-AzureSqlDatabase cmdlet,
483
New-AzureSqlDatabaseServer
cmdlet, 481
New-ISESnippet cmdlet, 384
New-ltem cmdlet, 163-164, 317,
380
New-JobTrigger cmdlet, 268
New-ModuleManifest cmdlet, 407
New-PSSession cmdlet, 211
New-PSSessionConfigurationFile
cmdlet, 227
New-PSSessionOption cmdlet,
248
New-ScheduledJobOption cmdlet,
269
New-SPAuthenticationProvider
cmdlet, 459
New-SPMetadataService-
Application cmdlet, 458
New-SPWebApplication cmdlet,
459
New-WebBinding cmdlet, 241
Ninite, 350
Noel, Michael, 456
NoExit parameter for
PowerShell.exe console, 454
-notcontains comparison
operator, 142
-notin comparison operator, 142
-notlike comparison operator, 142
NotMatch parameter in regular
expressions, 318
nouns for cmdlets, 49-50
NuGet, 332-333, 336

o

object-oriented programming
(O0P), 94-95
objects
class diagram, explained,
94-95
creating, 99
defined, 93-94
finding members, 96-102
Get-Member cmdlet,
100-102
.NET classes in, 98
properties/methods,
99-100
measuring, 144-148
methods, 99-100
properties, 99-100
referencing, 94-96
working with, 102-104
octothorpe (#), 129, 393
Office 365, 472
connecting to, 485-487
pricing, 485
offline systems, updating help on,
53-54
Olson, Kevin, 393
OneGet
cmdlets for, 333
creating private repositories,
349-350
defined, 333-334
Install-Package cmdlet,
340-341
Ninite versus, 350
removing packages, 349
software installation locations,
341-343
subdirectory installation,
343-344
system requirements, 334
upgrading packages, 347-348
usage example, 344-346
one-to-many remoting
ComputerName parameter,
221224
implicit remoting, 232-233
passing arguments to cmd-
lets, 231-232
persistent sessions, 224-225

session configuration manage-
ment, 225-228
with Windows PowerShell ISE,
228231
one-to-one remoting
alternate credentials for,
212-214
ComputerName parameter,
201-203
creating remote session,
209-214
enabling, 205-209
Enable-PSRemoting cmd-
let, 205-207
with Group Policy, 207-208
in workgroups, 208-209
explained, 203-205
sending scripts over network,
214-215
storing sessions in variables,
212-214
usage example, 215-217
Online parameter for help system,
52
on-premises environment, 485
OOP (object-oriented program-
ming), 94-95
Options tab (Properties sheet),
32-33
OUs (organizational units),
creating, 423-424
Out-Default cmdlet, 133,
176-177, 180
Out-File cmdlet, 117-118,
187-189
Out-Gridview cmdlet, 178-180,
339
Out-Host cmdlet, 133, 176
Out-Printer cmdlet, 189
outputs
cmdlets for, 133
converting output, 193-195
exporting output, 187-193
filtering output, 137-144
formatting output, 176-187
measuring objects,
144-148
sorting output, 134-137
for Get-Process cmdlet, 112
for Get-Service/Stop-Service
cmdlets, 113-114

redirecting, 142
truncation, 188-189

P

package managers, 332
package providers, viewing list of,
334-336
package repositories. See reposi-
tories
Package resource (DSC), 361
packages
defined, 332
for DSC, 338
finding in Chocolatey, 338
installing
from command line,
340-341
installation location,
341-343
from subdirectory,
343-344
usage example, 344-346
private repositories, creating,
349-350
removing, 349
upgrading, 347-348
parallel workflows, creating, 283
param keyword, 386
parameter binding, 114-116,
118-119
manual property mapping,
125-129
by property name, 119-122
usage example, 122-125
by value, 119
parameter sets for cmdlets, 55-56
parameters
for cmdlets, 49-50. See also
names of specific
parameters
attribute table, 56-57
attribute types, 118
cycling through, 59
named parameters, 58
positional parameters,
57-58
required parameters, 57
in functions, 384

parent jobs, 261-262
parentheses (()), 165
passing arguments remotely,
231-232
passing data through pipelines.
See parameter binding
passwords, resetting in Active
Directory, 427
PATH environment variable, 84
Path parameter
for Get-Childltem cmdlet, 161
for New-Item cmdlet, 163
for Select-String cmdlet, 324
Pattern parameter for
Select-String cmdlet, 324
PDF (Portable Document Format),
308
percent sign (%), 302
period (.), 320
permissions on site collections,
462-463
persistent sessions, 224-225
PIl (personally identifiable infor-
mation), finding with regular
expressions, 325-327
pinning shortcut icons to taskbar,
35
pipe (|), 20, 113, 128
pipelines. See also outputs
case study, 110-112
data types in, 113-114
Get-Service/Stop-Service cmd-
lets example, 113-118
origin of pipe (|) usage, 113
parameter binding, 114-116,
118119
manual property mapping,
125-129
by property name,
119-122
usage example, 122-125
by value, 119
streams, 395
types of, 112
Windows/Linux pipelines ver-
sus, 109-110
PL-SQL, 440
Portable Document Format (PDF),
308
PoSH acronym, 334

properties 505

positional parameters for cmdlets,
57-58
positioning
Console pane, 40-41
Script pane, 40-41
pound sign (#). See octothorpe (#)
PowerShell. See Windows
PowerShell
Powershell Code Repository, 387
PowerShell for SharePoint 2013
How-To (Mann), 457
PowerShell.exe, switching
between Cmd.exe and, 19
PowerShellGet, 413-414. See also
OneGet
PowerShellVersion property for
New-ModuleManifest cmdlet,
408
PowerShellWebAccess module,
cmdlets in, 240
prefixes for cmdlets, 48, 79
premises, 485
printers, outputting to, 189
private repositories, creating,
349-350
Process Explorer, 346
Process scope, 379
processes, killing, 110-112. See
also Get-Process cmdlet
production environment for DSC,
358-359
$profile automatic variable, 380
profile scripts
creating, 380-381
tips for, 381-382
verifying presence of, 379-380
ProGet, 350
programming logic in scripts,
385-387
promoting domain controllers,
421-422
Prompt parameter for Read-Host
cmdlet, 389
properties. See also parameter
binding
defined, 93, 99-100
finding names, 135-136
of Get-Process cmdlet, 100
manual property mapping,
125-129
in WMI, 296

506

Properties sheet (Control menu),
32
Colors tab, 35
Font tab, 33-34
Layout tab, 34-35
Options tab, 32-33
property name, parameter binding
by, 119-122
Property parameter
for Format-List cmdlet, 184
for Format-Table cmdlet, 182
for Measure-Object cmdlet,
146
for Sort-Object cmdlet, 134
ProtectedFromAccidentalDeletion
parameter for
New-ADOrganizationalUnit cmd-
let, 424
ProviderName property for
Get-Package cmdlet, 348
providers
Active Directory provider,
169-170
Alias provider, 166-167
defined, 153-154
FileSystem provider, 159-165
Get-Childltem cmdlet and,
160-162
usage example, 162-165
PSDrives, 155-156
items, 157-158
navigation system for,
156-157
PSProviders
for external applications,
154
items, 157-158
list of, 153-154
purpose of, 154-155
Registry provider, 167-169
editing values, 169
retrieving values, 167-169
SQL Server provider, 170
ps alias, 80
PSComputerName property, 223
PSDrives, 155-156
items, 157-158
navigation system for,
156-157
PSGallery, 336

Properties sheet (Control menu)

PsisContainer property of
DirectoryInfo object, 163
PSJobTypeName property for
Get-Job cmdlet, 257, 262
PSModule, 335
$PSModulePath environment vari-
able, 70, 404
PSPersist parameter in workflows,
284-285
PSProviders
for external applications, 154
items, 157-158
list of, 153-154
PSReadline, 17
PSWA (Windows PowerShell Web
Access), 237-239
configuring, 240-243
defining authorization rules,
243-244
disconnected sessions,
247-248
installing, 239-240
interface controls, 247
managing, 249-250
testing connection, 244-247
usage example, 250-251
public clouds, 472
Public network adapters, enabling
remote access, 205-207
pull model (DSC), 359, 369-373
Puppet, 356
push model (DSC), 358
PuTTY, 343-344

Q

qualifiers in regular expressions,
320-321
Query parameter
for Get-WMIObject cmdlet,
301
for Invoke-Sglcmd cmdlet, 446
Quest PowerGUI, 18
question mark (?)
as alias, 138-139
as wildcard character
in regular expressions,
320
in searches, 315

Quick Edit mode, 38
quotation marks (" ")
in directory path, 84
double quotes versus single
quotes, 385
in regular expressions, 321

ranges in regular expressions,
318-320
Rankins, Ray, 437
RDP (Remote Desktop Protocol),
479
Read-Host cmdlet, 389
Receive-Job cmdlet, 257-259, 269
Recurse parameter for Remove-
Item cmdlet, 165
redirecting
output, 142, 187
streams, 395
refactoring, 392
referencing objects, 94-96
RefreshFrequencyMins parameter for
Get-DscLocalConfiguration-
Manager cmdlet, 367
RegExBuddy, 325
RegExes. See regular expressions
RegExLib.com, 326
Registered parameter for Get-
PSSnapin cmdlet, 70
Register-PackageSource cmdlet, 346
Register-PSSessionConfiguration
cmdlet, 227, 381
Register-ScheduledJob cmdlet, 266
Registry provider, 167-169
editing values, 169
retrieving values, 167-169
Registry resource (DSC), 361
regular expressions
anchors and ranges, 318-320
business logic and, 323
character classes, 321-323
defined, 315-316
with Match parameter, 317-323
qualifiers, 320-321
quotation marks, 321
Select-String cmdlet, 324-325
test environment setup, 316-317

type accelerator, 327
usage example, 325-327
when to use, 316
remote access. See also PSWA
(Windows PowerShell Web
Access)
in CIM, 305
one-to-many remoting
ComputerName parameter,
221224
implicit remoting, 232-233
passing arguments to cmd-
lets, 231-232
persistent sessions,
224-225
session configuration man-
agement, 225-228
with Windows PowerShell
ISE, 228-231
one-to-one remoting
alternate credentials for,
212-214
ComputerName parameter,
201-203
creating remote session,
209-214
enabling, 205-209
explained, 203-205
sending scripts over net-
work, 214-215
storing sessions in vari-
ables, 212-214
usage example, 215217
profile scripts and, 381-382
running jobs, 263-265
in WMI, 302-304
Remote Desktop Protocol (RDP),
479
Remote Server Administration
Tools (RSAT), installing, 73-74
RemoteSigned execution policy,
378
Remove-Computer cmdlet, 418
Remove-ltem cmdlet, 165
Remove-Job cmdlet, 260-261
Remove-Module cmdlet, 401
Remove-PSSession cmdlet, 211
Remove-PSSnapin cmdlet, 70,
401
Remove-PswaAuthorizationRule
cmdlet, 249

Scriptblock parameter for Invoke-Command cmdlet

removing. See deleting
Rename-Computer cmdlet, 289
REPL (Read, Evaluate, Print, Loop)
interface, 13-14
repositories
creating private, 349-350
defined, 333
documentation in, 339-340
trusting, 337, 346-347
viewing, 336-340
required parameters for cmdlets,
57
resetting passwords in Active
Directory, 427
resources (DSC), 359
list of, 361-362
loading, 362-363
waves, 363
Restart-Computer cmdlet, 289,
305
Restricted execution policy, 378
Resume-Job cmdlet, 260
Resume-Workflow cmdiet,
284-287
resuming
jobs, 260
workflows, 285-287
Retrieve, as unapproved verb, 406
retrieving
event logs, 19-21
Registry values, 167-169
root site collections, 460
RootModule property for
New-ModuleManifest cmdlet,
408
RSAT (Remote Server
Administration Tools), installing,
73-74
RSAT for Windows 7 SP1, 74
RSAT for Windows 8, 74
RSAT for Windows 8.1, 74
rule files for formatting subsys-
tem, 178-179
RuleName parameter for
Get-PswaAuthorizationRule cmd-
let, 244
running
commands in modules, 406
external commands, 83
call operator (&), 84-85
from environment path, 84

Invoke-ltem cmdlet, 84
stop parsing symbol (-%),
85-86
jobs remotely, 263-265
scripts, 41-42, 390-391
SELECT queries against
tables, 447
Windows PowerShell
as administrator, 15
with SQL Server tools,
438-442
workflows as jobs, 282
Russinovich, Mark, 471

S

\S character class, 322
\s character class, 322
Santos, Donabel, 445, 447
Sapien Powershell Studio, 18
Save button (PSWA), 247
Save-Help cmdlet, 53
scheduling
database backups, 447-449
jobs, 266-270
adding triggers, 268-269
creating scheduled jobs,
266-268
usage example, 270-272
viewing job output,
269-270
schemas in WMI, 296
scope
of execution policies, 379
of functions, 395
Scope parameter for
Set-ExecutionPolicy cmdlet, 379
screen buffer size, changing, 34
Script Browser ISE add-in, 387,
391
script modules, 402-407
Script pane
positioning, 40-41
zooming, 41
Script resource (DSC), 361
Scriptblock parameter for
Invoke-Command cmdlet, 214

507

508 scripts

scripts. See also configuration
scripts; ISE (Integrated Scripting
Environment); one-to-many
remoting; workflows
creating, 276-279, 388-390
default file association, 377
editing, 391-394
execution policies
changing, 103-104, 276
list of, 378
scope, 379
viewing and setting,
378-379
functions
creating, 276-278,
383-385
defined, 47, 383
double quotes versus
single quotes, 385
Help, 50-52
More, 51
scope, 395
snippets, 383-384
pipeline streams, 395
profile scripts
creating, 380-381
tips for, 381-382
verifying presence of,
379-380
programming logic in,
385-387
running, 41-42, 390-391
sending over network,
214-215
sharing, 387
SQL Server scripts, creating,
449
stopping, 42
tips for, 395
workflows versus, 276
searching. See regular expres-
sions; wildcards
Secure Sockets Layer (SSL) certifi-
cates, 241
security
Microsoft Azure, 474
script execution policies, 379
trusting repositories, 337,
346-347
select alias, 138
SELECT queries, running against
tables, 447

Select-AzureSubscription cmdlet,
480
Select-Object cmdlet, 138-141
Select-String cmdlet, 324-325
semicolon (;), 73
Sequence activity, 284, 287-288
Server Management Objects
(SMO0), 438
service accounts, creating for
SharePoint Server, 455-456
service applications, deploying,
457-459
Service resource (DSC), 362
session configuration manage-
ment, 225-228
Session parameter without
ComputerName parameter, 222
Set-ADAccountPassword cmdlet,
427
Set-ADDomainMode cmdlet, 432
Set-ADForestMode cmdlet, 432
Set-CimInstance cmdlet, 307
Set-ExecutionPolicy cmdlet, 103,
276, 378-379
Set-Location cmdlet, 136, 155,
157
Set-PSSessionConfiguration cmd-
let, 227
Set-WSManQuickConfig cmdlet,
205
7-Zip, installing, 340-341
shared files, creating private
repositories, 350
SharePoint 2013 Unleashed
(Noel), 456
SharePoint Online, 472
connecting to, 487-488
pricing, 485
SharePoint Server
architecture of, 453-454
cmdlets for, 455, 463-464
libraries, viewing, 465-466
lists
creating, 466-467
viewing, 465-466
managed accounts, creating,
455-456
management shell, 454-455
service applications, deploy-
ing, 457-459

site collections
deploying, 460-462
permissions on, 462-463
viewing, 464-465
sites, viewing, 465
web applications
deploying, 459-460
viewing, 464
sharepoint.ps1 startup script,
454-455
sharing scripts, 387
shell scripts, 10
shells, 10
shortcut icons, pinning to taskbar,
35
ShouldProcess capability, 155
Show-Command cmdlet, 62-64
ShowSecurityDescriptorUl
parameter for
Set-PSSessionConfiguration
cmdlet, 227
ShowWindow parameter for help
system, 53, 61-62, 72
Simple Network Management
Protocol (SNMP), 294
single quotes, double quotes ver-
sus, 385
site collections
deploying, 460-462
permissions on, 462-463
viewing, 464-465
sites, viewing, 465
SkipNetworkProfileCheck param-
eter for Enable-PSRemoting
cmdlet, 206
sl alias, 157
SMO (Server Management
Objects), 438
snap-ins, 69-70, 399-400
automating, 401
installing, 400-401
for SharePoint Server,
454-455
viewing list of, 400
shippets, 16, 276-278, 383-384
SNMP (Simple Network
Management Protocol), 294
Snover, Jeffrey, 10, 76, 144, 355,
360

software management. See also
OneGet
creating private repositories,
349-350
installation from command
line, 340-341
installation location, 341-343
package providers, viewing list
of, 334-336
removing packages, 349
repositories, viewing, 336-340
subdirectory installation,
343-344
terminology, 332-334
trusting repositories, 346-347
upgrading packages, 347-348
usage example, 344-346
sort alias, 134
sorting outputs, 134-137
finding property names,
135-136
grouping output, 136-137
on multiple criteria, 136
Sort-Object cmdlet, 134
Sort-Object cmdlet, 112, 134, 136
Source parameter for
Get-Package cmdlet, 342
sp_configure, 440
splat operator. See asterisk (*)
wildcard character
SQL (Structured Query Language),
137-138, 358, 440
SQL Server
databases
creating, 445, 481-484
listing in instances,
443-444
scheduling backups,
447-449
management tools, installing,
438-442
running PowerShell with,
438-442
scripts, creating, 449
sqlps module, 442-443
tables
creating, 445-446
inserting data, 446-447
running SELECT queries,
447

SQL Server 2012 with PowerShell
V3 Cookbook (Santos), 445,
447

SQL Server Management Studio
(SSMS), 438

SQL Server provider, 170

sqlps module, 442-443

sqlps utility, 441-442

SSL (Secure Sockets Layer) certifi-
cates, 241

SSMS (SQL Server Management
Studio), 438

Stardock Start8, 342

Start-AzureVM cmdlet, 481

Start-DscConfiguration cmdlet,
371

starting

console, 18

ISE (Integrated Scripting
Environment), 18

jobs, 256

VMs (virtual machines),
481-484

Windows PowerShell, 14

Start-Job cmdlet, 256

Start-SPAssignment cmdlet, 465

Start-SPServicelnstance cmdlet,
458

StartupScript parameter for
Register-PSSessionConfiguration
cmdlet, 381

Start-Website cmdlet, 372

State property

for Get-Job cmdlet, 257
for Remove-Job cmdlet,
260-261

stop parsing symbol (-%), 85-86

Stop-AzureVM cmdlet, 481

Stop-Computer cmdlet, 305

Stop-Job cmdlet, 259

stopping

jobs, 259
scripts, 42
VMs (virtual machines), 479,
481-484
Stop-Process cmdlet, 111
Stop-Service cmdlet
inputs and outputs, 113-114
parameter binding, 114-116,
119-121
pipelines example, 113-118

TechNet Script Gallery 509

Stop-SPAssignment cmdlet, 465
storing remote sessions in vari-
ables, 212-214
streams, 395
Structured Query Language (SQL),
137-138, 358, 440
subdirectories, installing from,
343-344
Submit button (PSWA), 247
subscriptions
Office 365
connecting to, 485-487
pricing, 485
SharePoint Online
connecting to, 487-488
pricing, 485
SurName parameter for
New-ADUser cmdlet, 126
suspending workflows, 285-287
Suspend-Job cmdlet, 260
Suspend-Workflow cmdlet,
284-287
Svidergol, Brian, 423
switch construction, 389
switch parameters for cmdlets, 50
Sysinternals tools, 345-346
system configuration, workflows
for, 285
system requirements
for OneGet, 334
for workflows, 276

T

Tab (cycle through parameters)
keyboard shortcut, 59
Tab Complete button (PSWA),
247
tab completion, 82-83, 138, 301,
305
table view, 180-183
tables
creating, 445-446
inserting data, 446-447
running SELECT queries, 447
taskbar, pinning shortcut icons
to, 35
TechNet library, 52
TechNet Script Gallery, 387

510

templates for site collections,
460-462
Test-ADDSDomainController-
Installation cmdlet, 421
Test-Connection cmdlet, 83, 280
testing
domains for membership, 418
PSWA connection, 244-247
Test-Manifest cmdlet, 409
Test-PswaAuthorizationRule cmd-
let, 249
text files, outputting to, 187-189
ThrottleLimit parameter for
Invoke-Command cmdlet, 226
tilde (~), 314
top-level site collections, 460
trademark issues for Windows
PowerShell, 36
Transactions capability, 155
Transact-SQL (T-SQL), 440
transferring FSMOs (Flexible
Single Master Roles), 431-432
triggers, adding to scheduled jobs,
268-269
troubleshooting manifests,
409-410
truncation of output, 188-189
TrustedHosts list, enabling remote
access, 208-209
trusting repositories, 337,
346-347
T-SQL (Transact-SQL), 440
Tulloch, Mitch, 471
turning on/off
Commands add-on, 40
module autoloading, 403
type accelerator for regular
expressions, 327
Type parameter
in formatting subsystem,
177-178
for New-ltem cmdlet, 164

unapproved verbs
in modules, 407
Retrieve as, 406
in SQL Server, 443-444

templates for site collections

Undefined execution policy, 378
unhiding extensions, 226
uniform resource locators (URLS),
finding, 476
Uninstall-Package cmdlet, 349
Uninstall-PswaWebApplication
cmdlet, 250
UNIX, as file-based operating sys-
tem, 9192
unloading modules, 402-403
Unlock-ADAccount cmdlet, 426
Unrestricted execution policy, 378
Update() method, 465
updateable, help system as,
51-52
Update-DscConfiguration cmdiet,
372
Update-Help cmdlet, 52
updating
help system on offline sys-
tems, 53-54
local help library, 52
upgrading packages, 347-348
URLs (uniform resource locators),
finding, 476
user accounts
in Active Directory
creating, 425-426
creating in bulk, 427-430
managing, 426-427
for SharePoint Server, creat-
ing, 455-456
User resource (DSC), 362
UserGroupName parameter for
Get-PswaAuthorizationRule cmd-
let, 244
UseTestCertificate parameter for
Install-PSWAWebApplication
cmdlet, 240

'/

value, parameter binding by, 119

Variable PSDrive, aliases for,
156-157

variables, storing remote sessions
in, 212-214

VBScript (Visual Basic Scripting
Edition), 10

Verbose parameter for Install-
Package cmdlet, 340
verbose pipeline, 112
verbs
for cmdlets, 49, 75-76
unapproved verbs
in modules, 407
Retrieve as, 406
in SQL Server, 443-444
verifying
ISE (Integrated Scripting
Environment) installation, 36
profile script presence,
379-380
versions
of .NET Framework
determining, 26-27
required versions, 26
of Windows
determining version of, 28
required versions, 27-28
of Windows PowerShell
determining, 28
installing latest version,
29-31
vertical bar (|). See pipe (|)
viewing
command history, 35
databases, 443-444
event logs, 19-21
execution policies, 378-379
file extensions, 226
help system content, 52-53
job output
for background jobs,
257-259
for scheduled jobs,
269-270
libraries, 465-466
line numbers, 41
lists, 465-466
package providers, 334-336
repositories, 336-340
site collections, 464-465
sites, 465
snap-ins, 400
web applications, 464
virtual machines (VMs). See VMs
(virtual machines)
Visual Basic Scripting Edition
(VBScript), 10

VMs (virtual machines)
creating, 477-479
managing, 479-481
starting, 481-484
stopping, 479, 481-484

w

\W character class, 322
\w character class, 322
Wait parameter for
Restart-Computer cmdlet, 289
warning pipeline, 112
waves, resources (DSC), 363
WBEM (Web-Based Enterprise
Management), 294
web access. See PSWA (Windows
PowerShell Web Access)
web applications
deploying, 459-460
viewing, 464
Web Services-Management
(WS-Man) protocol, 203-205
WebApplicationName parameter
for Install-PSWAWebApplication
cmdlet, 240
Web-Based Enterprise
Management (WBEM), 294
WebSiteName parameter for
Install-PSWAWebApplication
cmdlet, 241
WF (Windows Workflow
Foundation), 276
Whatlf parameter for
Install-PSWAWebApplication
cmdlet, 241
where alias, 139
Where-Object cmdlet, 139-141,
317
Width parameter for Out-File cmd-
let, 188
wildcards. See also asterisk (*)
wildcard character; question
mark (?)
in help system, 57
syntax for, 313-315
Wilson, Ed, 395
Win32_BIOS class, 298

WMI (Windows Management Instrumentation)

Win32_DesktopMonitor class, 300
Win32_LogicalDisk instance,
297-299
Win32_NetworkAdapter class,
300
Win32_OperatingSystem class,
300
Win32_PhysicalMemory class,
298
Win32_Process class, 300
Win32_Product class, 300
Win32_Service class, 300
Win32_StartupCommand class,
300
window position, changing, 34
window size, changing, 34
Windows
determining version of, 28
required versions, 27-28
Windows Azure Active Directory
Module for Windows PowerShell,
485
Windows Management
Framework (WMF), 30
components, 30
installing, 30-31
Windows Management
Instrumentation Query Language
(wWQL), 137, 301-302
Windows Management
Instrumentation (WMI). See
WMI (Windows Management
Instrumentation)
Windows pipelines, PowerShell
pipelines versus, 109-110
Windows PowerShell
components
console, 13-14. See also
console
hosts, 17-18
ISE, 15-17. See also ISE
(Integrated Scripting
Environment)
defined, 12-13
determining version of, 28
history of, 10-12
installing latest version, 29-31
.NET Framework
determining version of,
26-27
required versions, 26

511

PoSH acronym, 334
reasons for learning, 8-10
running as administrator, 15
running with SQL Server tools,
438-442
shortcut icon, pinning to task-
bar, 35
starting, 14
switching between command
prompt session and, 19
trademark issues, 36
Windows
determining version of, 28
required versions, 27-28
"Windows PowerShell: Comment
Your Way to Help" (Jones), 410
Windows PowerShell Web Access
(PSWA). See PSWA (Windows
PowerShell Web Access)
Windows Remote Management
(WinRM), 204-205
Windows Script Host (WSH), 10
Windows Server 2012 R2, 17
Windows Server 2012 Unleashed
(Morimoto), 418
Windows Task Scheduler, 266
Windows Workflow Foundation
(WF), 276
WindowsFeature resource (DSC),
362
WindowsProcess resource (DSC),
362
WIinRAR, 338, 342
WinRM (Windows Remote
Management), 204-205
WMF (Windows Management
Framework), 30
components, 30
installing, 30-31
WMI (Windows Management
Instrumentation)
browser tools, 296-299
classes, list of, 298-300
cmdlets for, 300
calling methods, 304-305
Get-WMIObject, 300-301
remote access, 302-304
WQL (Windows
Management
Instrumentation Query
Language), 301-302

512 WMI (Windows Management Instrumentation)

defined, 293-294
drawbacks of, 293
location, 294-295
terminology, 296
WMI Client (WMIC), 296
WMI Explorer 2.0 (Codeplex.com),
297
WMI Explorer 2014 (Sapien
Technologies), 297
WMI Query Language (WQL), 299
WMIC (WMI Client), 296
workflows. See also jobs
activities, 283-284
CheckPoint-Workflow cmd-
let, 284-285
Resume-Workflow cmdlet,
284-287
Sequence, 284, 287-288
Suspend-Workflow cmdlet,
284-287
checkpoints in, 284-285
creating, 280-281
defined, 47, 266, 276
naming conventions, 280
parallel workflows, creating,
283
resuming, 285-287
running as jobs, 282
scripts versus, 276
suspending, 285-287
for system configuration, 285
system requirements, 276
usage example, 288-289
workgroups, enabling remote
access, 208-209
WorkingSet (WS) property for
Get-Process cmdlet, 141
WQL (Windows Management
Instrumentation Query
Language), 137, 301-302
WQL (WMI Query Language), 299
Wrap parameter for Format-Table
cmdlet, 181
Write-Host cmdlet, 38, 385
Write-Output cmdlet, 38, 385
WS (WorkingSet) property for
Get-Process cmdlet, 141
WSH (Windows Script Host), 10

WS-Man (Web
Services-Management) protocol,
203-205

WSMan provider, 154

X

XAML (Extensible Application
Markup Language), 283

XML (Extensible Markup
Language), outputting to,
191-195

xp_cmdshell, 439-441

XPS (XML Paper Specification),
308

XPS Document Writer, 308

y 4

zooming
Console pane, 41
Script pane, 41

	Table of Contents
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	System Requirements

	HOUR 18: Desired State Configuration Basics
	Historical Background of DSC
	Basic Tenets of DSC
	DSC Authoring Environment
	Configuring the DSC Environment
	Writing Your First Configuration Script
	A Word on DSC Push Configuration
	Summary
	Q&A
	Workshop

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

