
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337260
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337260
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337260
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337260
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337260/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana 46240 USA

Adam Nathan

Universal
Windows®
Apps with
XAML and C#

UNLEASHED

Universal Windows® Apps with XAML and C# Unleashed
Copyright © 2015 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-672-33726-0
ISBN-10: 0-672-33726-6

Library of Congress Control Number: 2014919777

Printed in the United States of America

First Printing February 2015

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

EDITOR-IN-CHIEF
Greg Wiegand

ACQUISITIONS EDITOR
Joan Murray

DEVELOPMENT EDITOR
Mark Renfrow

MANAGING EDITOR
Kristy Hart

SENIOR PROJECT
EDITOR
Betsy Gratner

INDEXER
Lisa Stumpf

PROOFREADER
Kathy Ruiz

TECHNICAL EDITOR
Bill Wagner

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Mark Shirar

COMPOSITOR
Nonie Ratcliff

 Introduction . 1

 Part I Getting Started

 1 Hello, Real World! . 7

 2 Mastering XAML . 43

 Part II Building an App

 3 Sizing, Positioning, and Transforming Elements. 63

 4 Layout. 83

 5 Handling Input: Touch, Mouse, Pen, and Keyboard. 117

 Part III Working with the App Model

 6 App Lifecycle . 161

 7 Threading, Windows, and Pages. 181

 8 The Many Ways to Earn Money . 199

 Part IV Understanding Controls

 9 Content Controls . 227

 10 Items Controls . 259

 11 Text . 283

 12 Images . 315

 13 Audio, Video, and Speech . 355

 14 Other Controls . 387

Contents at a Glance

 Part V Leveraging the Richness of XAML

 15 Vector Graphics . 421

 16 Animation . 453

 17 Styles, Templates, and Visual States 499

 18 Data Binding. 529

 Part VI Exploiting Windows

 19 Working with Data . 555

 20 Supporting App Commands . 583

 21 Leveraging Contracts . 613

 22 Reading from Sensors . 647

 23 Controlling Devices . 663

 24 Thinking Outside the App: Live Tiles, Notifications,

and the Lock Screen . 687

 Index . 723

Contents at a Glanceiviviv

Table of Contents

 Introduction 1
Who Should Read This Book? 3

Software Requirements 3

Code Examples 3

How This Book Is Organized 3

Conventions Used in This Book 5

 Part I Getting Started

 1 Hello, Real World! 7
Creating, Deploying, and
Profiling an App 7

Understanding the App
Packages 10

Updating XAML and C# Code 21

Making the App World-Ready 29

Making the App Accessible 35

Submitting to the Windows Store 40

Summary 42

 2 Mastering XAML 43
Elements and Attributes 44

Namespaces 45

Property Elements 47

Type Converters 49

Markup Extensions 49

Children of Object Elements 52

Mixing XAML with C# 56

XAML Keywords 59

Summary 60

 Part II Building an App

 3 Sizing, Positioning, and
Transforming Elements 63
Controlling Size 64

Controlling Position 68

Applying 2D Transforms 72

Applying 3D Transforms 79

Summary 82

 4 Layout 83
Discovering Your Window Size
and Location 84

Panels 88

Handling Content Overflow 103

Summary 115

 5 Handling Input: Touch,
Mouse, Pen, and
Keyboard 117
Touch Input 118

Mouse Input 141

Pen Input 144

Keyboard Input 153

Summary 159

 Part III Working with the
App Model

 6 App Lifecycle 161
Killing 163

Suspending 164

Resuming 166

Terminating 167

Table of Contentsvi

AppBarToggleButton 243

CheckBox 244

RadioButton 245

ToolTip 246

App Bars 249

Summary 257

 10 Items Controls 259
Items in the Control 260

Items Panels 262

ComboBox 265

ListBox 267

ListView 269

GridView 273

FlipView 274

SemanticZoom 276

MenuFlyout 279

Summary 281

 11 Text 283
TextBlock 283

RichTextBlock 296

TextBox 301

RichEditBox 309

PasswordBox 311

Summary 313

 12 Images 315
The Image Element 316

Multiple Files for Multiple
Environments 325

Decoding Images 330

Encoding Images 339

Rendering PDF Content as
an Image 347

Summary 353

Launching 168

Activating 171

Managing Session State with
SuspensionManager 173

Programmatically Launching
Apps 176

Summary 179

 7 Threading, Windows,
and Pages 181
Understanding the Threading
Model for Universal Apps 181

Displaying Multiple Windows 186

Navigating Between Pages 189

Summary 198

 8 The Many Ways to Earn
Money 199
Adding Advertisements to
Your App 200

Supporting a Free Trial 205

Supporting In-App Purchases 210

Validating Windows Store
Receipts 218

Testing Windows Store
Features 220

Summary 225

 Part IV Understanding
Controls

 9 Content Controls 227
Button 230

AppBarButton 234

HyperlinkButton 241

RepeatButton 242

ToggleButton 243

Table of Contents vii

 17 Styles, Templates, and
Visual States 499
Styles 500

Templates 509

Visual States 519

Summary 528

 18 Data Binding 529
Introducing Binding 529

Controlling Rendering 538

Customizing the View of
a Collection 546

High-Performance Rendering
with ListView and
GridView 550

Summary 554

 Part VI Exploiting Windows

 19 Working with Data 555
An Overview of Files and
Folders 555

App Data 557

User Data 563

Networking 572

Summary 582

 20 Supporting App
Commands 583
Search 584

Share 589

Print 596

Play 604

Project 606

Settings 606

Summary 611

 13 Audio, Video, and
Speech 355
Playback 356

Capture 367

Transcoding 378

Speech Synthesis 383

Summary 386

 14 Other Controls 387
Range Controls 387

SearchBox 390

Popup Controls 397

Hub 403

Date and Time Controls 407

ProgressRing 411

ToggleSwitch 412

WebView 413

Summary 419

 Part V Leveraging the
Richness of XAML

 15 Vector Graphics 421
Shapes 421

Geometries 428

Brushes 436

Summary 450

 16 Animation 453
Dependency Properties 454

Theme Transitions 455

Theme Animations 466

Custom Animations 472

Custom Keyframe Animations 485

Easing Functions 490

Manual Animations 495

Summary 497

Table of Contentsviii

 24 Thinking Outside the App:
Live Tiles, Notifications,
and the Lock Screen 687
Live Tiles 687

Badges 701

Secondary Tiles 703

Toast Notifications 705

Setting Up Push Notifications 711

The Lock Screen 719

Summary 721

 Index 723

 21 Leveraging Contracts 613
Account Picture Provider 615

AutoPlay Content and
AutoPlay Device 617

File Type Associations 620

Protocol 623

File Open Picker 624

File Save Picker 627

Contact Picker 628

The Contact Contract 631

The Appointments Provider
Contract 635

Background Tasks 637

Summary 646

 22 Reading from Sensors 647
Accelerometer 647

Gyrometer 651

Inclinometer 651

Compass 651

Light Sensor 651

Orientation 652

Location 652

Proximity 659

Summary 662

 23 Controlling Devices 663
Fingerprint Readers 664

Image Scanners 664

Barcode Scanners 668

Magnetic Stripe Readers 671

Custom Bluetooth Devices 673

Custom Bluetooth Smart
Devices 676

Custom USB Devices 679

Custom HID Devices 682

Custom Wi-Fi Direct Devices 684

Summary 686

About the Author
Adam Nathan is a principal software architect for Microsoft, a best-selling technical
author, and a prolific developer of apps for Windows. He introduced XAML to countless
developers through his books on a variety of Microsoft technologies. Currently a part
of Microsoft’s Windows division, Adam has previously worked on Visual Studio and the
Common Language Runtime. He was the founding developer and architect of Popfly,
Microsoft’s first Silverlight-based product, named by PCWorld as one of its year’s most
innovative products. He is also the founder of PINVOKE.NET, the online resource for
.NET developers who need to access Win32. His apps have been featured on Lifehacker,
Gizmodo, ZDNet, ParentMap, and other enthusiast sites.

Adam’s books are considered required reading by many inside Microsoft and throughout
the industry. Adam is the author of Windows 8.1 Apps with XAML and C# Unleashed (Sams,
2013), 101 Windows Phone 7 Apps (Sams, 2011), WPF 4.5 Unleashed (Sams, 2013), .NET and
COM: The Complete Interoperability Guide (Sams, 2002), and several other books. You can
find Adam online at www.adamnathan.net, or @adamnathan on Twitter.

http:\\www.adamnathan.net

Dedication

To Tyler and Ryan.

Acknowledgments
I’d like to thank Ashish Shetty, Tim Heuer, Mark Rideout, Jonathan Russ, Joe Duffy,
Chris Brumme, Eric Rudder, Neil Rowe, Betsy Gratner, Ginny Munroe, Bill Chiles, Valery
Sarkisov, Joan Murray, Patrick Wong, Jacqueline Ting, and Michelle McCarthy. As always,
I thank my parents for having the foresight to introduce me to Basic programming on our
IBM PCjr when I was in elementary school.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Joan Murray
Acquisitions Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

N

In This Chapter

 Who Should Read
This Book?

 Software Requirements

 Code Examples

 How This Book Is
INTRODUCTIO
If you ask me, it has never been a better time to be a
software developer. Not only are programmers in high
demand—due in part to an astonishingly low number of
computer science graduates each year—but app stores make
it easier than ever to broadly distribute your own software
and even make money from it.

When I was in junior high school, I released a few
shareware games and asked for $5 donations. I earned
$15 total. One of the three donations was from my
grandmother, who didn’t even own a computer! These
days, of course, adults and kids alike can make money
on simple apps and games without relying on kind and
generous individuals going to the trouble of mailing a
check.

With universal Windows apps, it’s finally possible to create
an app that targets both PCs (desktops, laptops, tablets, and
hybrids) and phones simultaneously. Universal apps also
represent a consolidation of XAML-based technologies. First
there was Windows Presentation Foundation (WPF) for
traditional desktop apps, then Silverlight for the Web, then
Silverlight for the phone, then the XAML UI Framework
for Windows Store apps. All of these frameworks are similar
but frustratingly not quite the same. The technology
behind universal apps now has enough momentum that
the need for these older frameworks should fade away.

Organized

 Conventions Used in
This Book

INTRODUCTION2

Universal apps run on the Windows Runtime, or WinRT for short. WinRT is actually
based on Microsoft’s Component Object Model (COM) that has been around since 1993,
but most of the time you can’t tell. And most of the time, it doesn’t matter. This is a
modern, friendlier version of COM that is more amenable to automatic correct usage from
environments such as C#. (Contrast this to over a decade ago, when I wrote a book about
mixing COM with .NET. This topic alone required over 1,600 pages!)

WinRT APIs are automatically projected
into the programming language you use,
so they look natural for that language.
Projections are more than just exposing
the raw APIs, however. Core WinRT data
types such as String, collection types, and
a few others are mapped to appropriate
data types for the target environment. For
C# or other .NET languages, this means
exposing them as System.String, System.
Collections.Generic.IList<T>, and so on.

In the set of APIs exposed by Windows:

 ➔ Everything under the Windows.UI.Xaml namespace is XAML-specific

 ➔ Everything under the Windows.UI.WebUI namespace is for HTML apps

 ➔ Everything under System is .NET-specific

 ➔ Everything else (which is under Windows) is general-purpose WinRT functionality

As you dig into the framework, you notice that the XAML-specific and .NET-specific APIs
are indeed the most natural to use from C# and XAML. General-purpose WinRT APIs
follow slightly different conventions and can sometimes look a little odd to developers
familiar with .NET. For example, they tend to be exception-heavy for situations that
normally don’t warrant an exception (such as the user cancelling an action). Artifacts like
this are caused by the projection mechanism mapping HRESULTs (COM error codes) into
.NET exceptions.

I wrote this book with the following goals in mind:

 ➔ To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

➔ To answer the questions most people have when learning how to write universal
apps and to show how commonly desired tasks are accomplished

➔ To be an authoritative source, thanks to input from members of the team who
designed, implemented, and tested Windows and Visual Studio

➔ To be clear about where the technology falls short rather than blindly singing its
praises

Although WinRT APIs are not
.NET APIs, they have metadata in
the standardized format used by

.NET. Therefore, you can browse them
directly with familiar .NET tools, such as
the IL Disassembler (ILDASM). You can find
these on your computer as .winmd files.
Visual Studio’s “Object Browser” is also a
convenient way to search and browse
WinRT APIs.

How This Book Is Organized 3

➔ To optimize for concise, easy-to-understand code rather than enforcing architectural
patterns that can be impractical or increase the number of concepts to understand

➔ To be an easily navigated reference that you can constantly come back to

To elaborate on the second-to-last point: You won’t find examples of patterns such as
Model-View-ViewModel (MVVM) in this book. I am a fan of applying such patterns to
code, but I don’t want to distract from the core lessons in each chapter.

Whether you’re new to XAML or a long-time XAML developer, I hope you find this book
to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating apps for the Windows
Store, whether they are for tablets, laptops, desktops, or phones. It does not teach you
how to program, nor does it teach the basics of the C# language. However, it is designed
to be understandable even for folks who are new to .NET, and does not require previous
experience with XAML.

If you are already well versed in XAML, I’m confident that this book still has a lot of
helpful information for you. At the very least, this book should be an invaluable reference
for your bookshelf.

Software Requirements
This book targets Windows 8.1, Windows Phone 8.1, and the corresponding developer
tools. The tools are a free download at the Windows Dev Center: http://dev.windows.
com. The download includes the Windows SDK, a version of Visual Studio Express for
Windows, and miscellaneous tools.

Although it’s not required, I recommend PAINT.NET, a free download at http://getpaint.
net, for creating and editing graphics, such as the set of icons needed by apps.

Code Examples
Source code for examples in this book can be downloaded from www.informit.com/
title/9780672337260.

How This Book Is Organized
This book is arranged into six parts, representing the progression of feature areas that you
typically need to understand. But if you want to jump ahead and learn about a topic such
as animation or live tiles, the book is set up to allow for nonlinear journeys as well. The
following sections provide a summary of each part.

http://dev.windows
http://getpaint.net
http://getpaint.
net
http://www.informit.com/title/9780672337260
http://www.informit.com/title/9780672337260

INTRODUCTION4

Part I: Getting Started
This part includes the following chapters:

➔ Chapter 1: Hello, Real World!

➔ Chapter 2: Mastering XAML

Part I provides the foundation for the rest of the book. Chapter 1 helps you understand
all the tools available at your disposal, and even dives into topics such as accessibility and
localization so you can be prepared to get the broadest set of customers possible for
your app.

Part II: Building an App
This part includes the following chapters:

➔ Chapter 3: Sizing, Positioning, and Transforming Elements

➔ Chapter 4: Layout

➔ Chapter 5: Handling Input: Touch, Mouse, Pen, and Keyboard

Part II equips you with the knowledge of how to place things on the screen, how to make
them adjust to the wide variety of screen types, and how to interact with the user.

Part III: Working with the App Model
This part includes the following chapters:

➔ Chapter 6: App Lifecycle

➔ Chapter 7: Threading, Windows, and Pages

➔ Chapter 8: The Many Ways to Earn Money

The app model for universal apps is significantly different from the app model for
traditional desktop applications in a number of ways. It’s important to understand how
the app lifecycle works and how you need to interact with it in order to create a well-
behaved app. But there are other pieces to what is sometimes called the app model: how
one app can launch another, how to work with the Windows Store to enable free trials
and in-app purchases, and how to deal with multiple windows and pages.

Part IV: Understanding Controls
This part includes the following chapters:

➔ Chapter 9: Content Controls

➔ Chapter 10: Items Controls

➔ Chapter 11: Text

Conventions Used in This Book 5

➔ Chapter 12: Images

➔ Chapter 13: Audio, Video, and Speech

➔ Chapter 14: Other Controls

Part IV provides a tour of the controls built into the XAML UI Framework. There are many
controls that you expect to have available, plus several that you might not expect.

Part V: Leveraging the Richness of XAML
This part includes the following chapters:

➔ Chapter 15: Vector Graphics

➔ Chapter 16: Animation

➔ Chapter 17: Styles, Templates, and Visual States

➔ Chapter 18: Data Binding

The features covered in Part V are areas in which XAML really shines. Although previous
parts of the book expose some XAML richness (applying transforms to any elements, the
composability of controls, and so on), these features push the richness to the next level.

Part VI: Exploiting Windows
This part includes the following chapters:

➔ Chapter 19: Working with Data

➔ Chapter 20: Supporting App Commands

➔ Chapter 21: Leveraging Contracts

➔ Chapter 22: Reading from Sensors

➔ Chapter 23: Controlling Devices

➔ Chapter 24: Thinking Outside the App: Live Tiles, Notifications, and the Lock Screen

This part of the book covers unique and powerful Windows features that are not specific
to XAML or C#, but they are things that all app developers should know.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

INTRODUCTION6

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and
occasionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and filenames. In code
listings, italic monospace type is used for placeholder text.

 Code listings are colorized similarly to the way they are colorized in Visual
Studio. Blue monospace type is used for XML elements and C# keywords,
brown monospace type is used for XML element names and C# strings,
green monospace type is used for comments, red monospace type is used
for XML attributes, and teal monospace type is used for type names in C#.

Bold When appropriate, bold is used for code directly related to the main lesson(s)
in a chapter.

When a line of code is too long to fit on a line in the printed book, a code-continuation
arrow (➥) is used.

Throughout this book, and even in this introduction, you will find a number of sidebar
elements:

What is a FAQ sidebar?

A Frequently Asked Question (FAQ) sidebar presents a question you might have about
the subject matter—and then provides a concise answer.

Digging Deeper

A Digging Deeper sidebar presents advanced or more detailed information on a subject than is
provided in the surrounding text. Think of Digging Deeper material as something you can look
into if you’re curious but can ignore if you’re not.

A tip offers information about design guidelines, shortcuts, or alternative approaches to
produce better results, or something that makes a task easier.

This is a warning!

A warning alerts you to an action or a condition that can lead to an unexpected or
unpredictable result—and then tells you how to avoid it.

THREADING, WINDOWS,
AND PAGES

This chapter begins by examining a very important topic,
although one that many developers take for granted: the
threading model for universal apps. This background is
especially helpful for the advanced feature of writing an
app that displays multiple windows, which is the second
topic in this chapter. The third and final topic—navigating
between a window’s pages—is a feature leveraged by just
about every real-world app.

Understanding the Threading
Model for Universal Apps
Universal apps have two types of threads that can run your
code: UI threads and background threads. (Other types
of threads exist, but they are implementation details.) As
much as possible, a UI thread should be kept free to process
input and update UI elements. Therefore, long-running
work should always be scheduled on a background thread.

Typically, an app has a single UI thread, but that’s only
because an app typically has a single window. Each window
has its own UI thread, so an app with multiple windows
(covered in the upcoming “Displaying Multiple Windows”
section) has multiple UI threads.

Understanding the
Threading Model for
Universal Apps

Displaying Multiple
Windows

Navigating Between
Pages

Chapter 7 In This Chapter

Chapter 7 THREADING, WINDOWS, AND PAGES182

If you have a long-running computation to perform, which therefore isn’t appropriate
for a UI thread, you don’t get to explicitly create a background thread for the task.
Instead, you schedule it via a static RunAsync method on the Windows.System.Threading.
ThreadPool class. Windows manages all background threads for you.

There is always a main UI thread, even if the corresponding main window has not yet
been shown. For example, if an app is activated via a contract such as the File Picker
contract (see Chapter 21, “Leveraging Contracts”), the app typically displays a special
file-picking window and never displays its main window. Yet the app has two UI threads
running in this scenario, so your code can always count on global state created by the
main thread.

UI objects must be created and called on a UI thread. This includes every class deriving
from DependencyObject, which is most classes in the XAML UI Framework. Outside of the
XAML UI Framework, most Windows Runtime objects can be created and used on any
thread, and you control their lifetime. This makes them very natural to use in C# without
worrying about threading or COM-style apartments. Such objects are called agile objects.

ASTA Threads

In documentation and error messages, UI threads are sometimes referred to as ASTA threads.
ASTA stands for App Single-Threaded Apartment, which is a nod to COM’s notion of single-
threaded apartments (STA).
ASTA threads are similar to COM’s STA threads in that they provide an easy-to-program, single-
threaded experience. But they have an enhancement that COM’s STA threads do not: they are
not reentrant, unless the incoming call is logically connected to the one in progress. In other
words, if you make a call from a UI thread to another thread (or process), and that thread needs
to call back to the UI thread, the Windows Runtime does a lot of work to track this and allow it.
On the other hand, arbitrary code is prevented from calling into the UI thread while it is doing
work. This prevents a huge class of bugs that plague traditional desktop apps, and means that UI
objects generally don’t need locking to protect themselves. The Windows Runtime also prevents
UI threads from calling each other directly, as that would be prone to deadlock.

Awaiting an Asynchronous Operation
Windows Runtime APIs are designed to make it really hard to block a UI thread.
Whenever the Windows Runtime exposes a potentially- long-running operation, it does so
with an asynchronous method that performs its work on a background thread. You can
easily identify such methods by their Async suffix. And they are everywhere. For example,
showing a MessageDialog (discussed in Chapter 14, “Other Controls”) requires a call to
ShowAsync:

MessageDialog dialog = new MessageDialog("Title");

IAsyncOperation<IUICommand> operation = dialog.ShowAsync();

// The next line of code runs in parallel with ShowAsync's background work

MoreCode();

Understanding the Threading Model for Universal Apps 183

Asynchronous methods in the Windows Runtime return one of several interfaces such as
IAsyncOperation or IAsyncAction. Asynchronous methods in .NET return a Task. These
are two different abstractions for the same set of asynchronous patterns. The System.
WindowsRuntimeSystemExtensions class provides several AsTask extension methods
for converting one of these interfaces to a Task, as well as AsAsyncOperation and
AsAsyncAction extension methods for converting in the opposite direction.

In the preceding code snippet, when ShowAsync is called in this manner, the call returns
immediately. The next line of code can run in parallel with the work being done by
MessageDialog on a different thread. When ShowAsync’s work is done (because the user
dismissed the dialog or clicked one of its buttons), MessageDialog communicates what
happened with an IUICommand instance. To get this result, the preceding code must set
operation’s Completed property to a delegate that gets called when the task has finished.
This handler can then call operation’s GetResults method to retrieve the IUICommand.

Of course, such code is pretty cumbersome to write, and the proliferation of asynchronous
methods would result in an explosion of such code if it weren’t for the C# await language
feature. When a method returns one of the IAsyncXXX interfaces or a Task, C# enables you
to hide the complexity of waiting for the task’s completion. For the ShowAsync example,
the resulting code can look like the following:

async Task ShowDialog()

{

 MessageDialog dialog = new MessageDialog("Title");

 IUICommand command = await dialog.ShowAsync();

 // The next line of code does not run until ShowAsync is completely done

 MoreCodeThatCanUseTheCommand(command);

}

When the ShowAsync call is made in this manner, the current method’s execution stops—
without blocking the current thread—and then resumes once the task has completed. This
enables the code to retrieve the IUICommand object as if ShowAsync had synchronously
returned it, rather than having to retrieve it from an intermediate object in a convoluted
fashion. You can only use the await keyword in a method that is marked with an
async keyword. The async designation triggers the C# compiler to rewrite the method’s
implementation as a state machine, which is necessary for providing the handy await
illusion.

People commonly refer to this pattern as “awaiting a method,” but you’re actually
awaiting the returned IAsyncXXX or Task object. As before, the method actually returns
promptly. This is clearer if the preceding code is expanded to the following equivalent
code:

async Task ShowDialog()

{

 MessageDialog dialog = new MessageDialog("Title");

 IAsyncOperation<IUICommand> operation = dialog.ShowAsync();

 IUICommand command = await operation;

Chapter 7 THREADING, WINDOWS, AND PAGES184

 // The next line of code does not run until the operation is done

 MoreCodeThatCanUseTheCommand(command);

}

It’s also worth noting that the async designation does not appear in the metadata for
a method when it is compiled. It is purely an implementation detail. Again, you’re not
awaiting a method; it simply happens to return a data type that supports being awaited.

Notice that the sample ShowDialog method returns a Task, which seems wrong because
the method does not appear to return anything. However, the async-triggered rewriting
done by the C# compiler does indeed return a Task object. This enables an asynchronous
operation to be chained from one caller
to the next. Because ShowDialog returns a
Task, its caller could choose to await it.

If an async method actually returns
something in its visible source code, such
as the command object in the preceding
code, then it must return Task<T>,
where T is the type of the object being
returned. In this example, it would be
Task<IUICommand>. The C# compiler
enforces that an async method must either
return Task, Task<T>, or void. This means
that ShowDialog could be rewritten with
async void instead of async Task and it would still compile. You should avoid this,
however, because it breaks the composition of asynchronous tasks.

Avoid defining an async method
with a void return type!

If you do this, your callers cannot
await or otherwise leverage an operation
returned by your method (because it doesn’t
return anything), which makes it harder for
their code to behave correctly. This cannot
be avoided, however, on methods that
must match a delegate signature, such as a
Button’s Click handler.

Do not use Task.Wait!

The .NET Task object provides many useful abstractions for cancellation and advanced
control flow. You can also schedule your own long-running task via Task.Run,

which directly returns a Task, rather than using ThreadPool.RunAsync, which returns an
IAsyncAction instead. (Task.Run should really be called Task.RunAsync.)
One feature that you should avoid is Task’s Wait method. Although Waiting for a task to
complete sounds similar to awaiting the task to complete , the Wait method blocks the current
thread. Besides defeating the purpose of the background work, for cases such as showing a
MessageDialog, this causes a deadlock:

void ShowDialog()

{

 MessageDialog dialog = new MessageDialog("Title");

 dialog.ShowAsync().AsTask().Wait(); // DEADLOCK!

}

Understanding the Threading Model for Universal Apps 185

Transitioning Between Threads
Occasions often arise when one thread needs to schedule work to be executed on another
thread. For example, although events on XAML objects are raised on the same UI thread
that created the object, this is usually not the case for non-UI objects in the Windows
Runtime. Instead, they are raised on whatever background thread happens to be doing
the work.

An example of this can be seen with the events defined by MediaCapture, a class described
in Chapter 13, “Audio, Video, and Speech.” The following code incorrectly tries to update
the UI to notify the user about a failure to capture video from the camera:

// A handler for MediaCapture's Failed event

void Capture_Failed(MediaCapture sender, MediaCaptureFailedEventArgs e)

{

 // This throws an exception:

this.textBlock.Text = "Failure capturing video.";

}

The exception thrown explains, “The application called an interface that was
marshalled for a different thread. (Exception from HRESULT: 0x8001010E
(RPC_E_WRONG_THREAD)).”

With DependencyObject’s Dispatcher property of type CoreDispatcher, however, you can
marshal a call back to the proper UI thread needed to update the TextBlock. It can be
used as follows:

// A handler for MediaCapture's Failed event

async void Capture_Failed(MediaCapture sender, MediaCaptureFailedEventArgs e)

{

 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>

 {

 // This now works, because it's running on the UI thread:

this.textBlock.Text = "Failure capturing video.";

 });

}

Here, an anonymous method is used for RunAsync’s second parameter (which must be a
parameterless DispatchedHandler delegate) to keep the code as concise as possible. The
code must be scheduled to run at one of the following priorities, from highest to lowest:

You can leverage the nice await control flow for APIs that don’t return a
Task or IAsyncXXX by wrapping the use of the APIs with an object called
TaskCompletionSource. This has a Task property that you can return to your callers,
and methods that you can call at the appropriate time to signal that the Task has

completed, failed, or been canceled. TaskCompletionSource is used later in this chapter to
provide a nice way to create and show additional windows.

Chapter 7 THREADING, WINDOWS, AND PAGES186

High (which should never be used by app code), Normal, Low, and Idle (which waits until
the destination thread is idle with no pending input).

This CoreDispatcher mechanism is also how one window can communicate with another
window. Each Window, along with related Windows Runtime abstractions, expose a
Dispatcher property that can schedule a delegate to run on its own UI thread.

Displaying Multiple Windows
Universal apps, even when running on Windows 8.1, are hosted in a window. Not only
that, but an app running on a PC can use multiple windows simultaneously. Although
they are called windows in XAML-specific APIs, windows are often called views in Windows
Runtime APIs. In Windows Runtime terminology, a view is the union of a window and its
UI thread.

Apps show a primary window when activated, but you can create and show any
number of secondary windows on a PC. You create a secondary window by calling
CoreApplicationView.CreateNewView. This returns a CoreApplicationView instance
representing the new window and its UI thread, but you can’t interact with it yet.
You must wait for Application.OnWindowCreated to be called, which occurs on the
new UI thread. On this thread, you can initialize the window much like you would
initialize your primary window. Once it is initialized, you can show it with a PC-only
ApplicationViewSwitcher class—back on the original UI thread.

Because of the convoluted control flow, this is a perfect opportunity to use the
TaskCompletionSource type mentioned earlier in this chapter. Listing 7.1 adds an await-
friendly CreateWindowAsync method to App.xaml.cs, inspired by the Multiple Views
Sample project provided by the Windows SDK. This portion of the code compiles for both
PC and phone.

LISTING 7.1 App.xaml.cs: Providing an await-Friendly CreateWindowAsync Method

using System;

using System.Collections.Concurrent;

using System.Threading.Tasks;

using Windows.ApplicationModel;

using Windows.ApplicationModel.Activation;

using Windows.ApplicationModel.Core;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace MultipleWindows

{

 sealed partial class App : Application

 {

// The pending tasks created by CreateWindowAsync

ConcurrentQueue<TaskCompletionSource<Window>> taskWrappers

 = new ConcurrentQueue<TaskCompletionSource<Window>>();

Displaying Multiple Windows 187

// Create a new window.

// This wrapper method enables awaiting.

public Task<Window> CreateWindowAsync()

 {

 // Create a Task that the caller can await

TaskCompletionSource<Window> taskWrapper

 = new TaskCompletionSource<Window>();

 this.taskWrappers.Enqueue(taskWrapper);

 // Create the secondary window, which calls Application.OnWindowCreated

// on its own UI thread

CoreApplication.CreateNewView(null, null);

 // Return the Task

return taskWrapper.Task;

 }

 protected override void OnWindowCreated(WindowCreatedEventArgs args)

 {

 CoreApplicationView view = CoreApplication.GetCurrentView();

 if (!view.IsMain)

 {

 // This is a secondary window, so mark the in-progress Task as complete

// and "return" the relevant XAML-specific Window object

TaskCompletionSource<Window> taskWrapper;

 if (!taskWrappers.TryDequeue(out taskWrapper) ||

 !taskWrapper.TrySetResult(args.Window))

 taskWrapper.SetException(new InvalidOperationException());

 }

}

…

 }

}

The code inside OnWindowCreated can easily check whether it is being invoked for the
main window or a secondary window by obtaining the current CoreApplicationView and
examining its IsMain property.

Listing 7.2 shows the code-behind for the following MainPage.xaml that leverages
CreateWindowAsync to show a new window every time its Button is clicked:

<Page x:Class="MultipleWindows.MainPage" …>

<Viewbox>

<Button Click="Button_Click">Show a New Window</Button>

</Viewbox>

</Page>

Chapter 7 THREADING, WINDOWS, AND PAGES188

LISTING 7.2 MainPage.xaml.cs: Using CreateWindowAsync to Create Then Show
a New Window

using System;

using Windows.UI.Core;

using Windows.UI.ViewManagement;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace MultipleWindows

{

 public sealed partial class MainPage : Page

 {

public MainPage()

 {

 InitializeComponent();

 }

 async void Button_Click(object sender, RoutedEventArgs e)

 {

 int newWindowId = 0;

 // Create the new window with our handy helper method

Window newWindow = await (App.Current as App).CreateWindowAsync();

 // Initialize the new window on its UI thread

await newWindow.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>

 {

 // In this context, Window.Current is the new window.

// Navigate its content to a different page.

Frame frame = new Frame();

 frame.Navigate(typeof(SecondPage));

 Window.Current.Content = frame;

 // Set a different title

ApplicationView.GetForCurrentView().Title = "NEW";

 newWindowId = ApplicationView.GetApplicationViewIdForWindow(

 newWindow.CoreWindow);

 });

 // Back on the original UI thread, show the new window alongside this one

// (PC only)

Navigating Between Pages 189

bool success =

await ApplicationViewSwitcher.TryShowAsStandaloneAsync(newWindowId);

 }

 }

}

Once Button_Click retrieves the new Window instance, which actually came from App’s
OnWindowCreated method, it can schedule its initialization on its UI thread. It awaits
this work’s completion, because the next step requires a window ID that must be
retrieved from that window’s UI thread. With the ID, the original code can then call
ApplicationViewSwitcher.TryShowAsStandaloneAsync to show the new window.

Each new window is a top-level window to
be managed by the user, just like the app’s
main window. TryShowAsStandaloneAsync
has overloads that enable you to specify
a ViewSizePreference for the target
window or for both windows, just like
when launching an app. You can also
swap one window with another in-place
by calling SwitchAsync instead of
TryShowAsStandaloneAsync.

Navigating Between Pages
Although simple apps might have only one Page per window, most windows in real-
world apps leverage multiple Pages. The XAML UI Framework contains quite a bit of
functionality to make it easy to navigate from one page to another (and back), much like
in a Web browser. Visual Studio templates also give you a lot of code in a Common folder
to handle many small details, such as applying standard keyboard navigation to page
navigation, and automatic integration of session state.

Although a Blank App project is given a single page by default, you can add more pages
by right-clicking the project in Solution Explorer then selecting Add, New Item…, and
one of the many Page choices. The different choices are mostly distinguished by different
preconfigured layouts and controls.

In addition, if you create a Hub App project, it is already set up as an app with a multi-
Page window. Figures 7.1 and 7.2 show the behavior of the Hub App project before any
customizations are made. Separate Pages are provided for phone versus PC, which explains
a number of differences in the content and style.

For several Windows Runtime classes,
you obtain an instance by calling their
static GetForCurrentView methods.

Such objects are designed to have a single
instance per window. In other words, they
are not agile. If you have multiple windows,
you should make sure to use the appropriate
instance from each UI thread.

Chapter 7 THREADING, WINDOWS, AND PAGES190

HubPage

ItemPage

SectionPage

FIGURE 7.1 A Hub App project, shown here on a PC, contains three pages: one that shows sections,
and one that shows the items inside each section, and one that shows item details.

Selecting a certain section on the first Page (HubPage) automatically navigates to its details
on the second page (SectionPage). Selecting an item in the section navigates to the third
page (ItemPage). When the user clicks the back button in the corner of the window on
a PC, or the hardware back button on a phone, the window navigates back to the
previous page.

Basic Navigation and Passing Data
Although it’s natural to think of a Page as the root element of a window (especially for
single-page windows), all Pages are contained in a Frame. Frame provides several members
to enable Page-to-Page navigation. It is often accessed from the Frame property defined on
each Page.

To navigate from one page to another, you call Frame’s Navigate method with the type
(not an instance) of the destination page. An instance of the new page is automatically
created and navigated to, complete with a standard Windows animation.

Navigating Between Pages 191

HubPage ItemPageSectionPage

FIGURE 7.2 A Hub App project, shown here on a phone, contains three pages: one that shows
sections, and one that shows the items inside each section, and one that shows item details.

For example, when an item is clicked in a Hub App’s SectionPage, it navigates to a new
instance of ItemPage as follows:

void ItemView_ItemClick(object sender, ItemClickEventArgs e)

{

 // Navigate to the appropriate destination page, configuring the new page

 // by passing required information as a navigation parameter

var itemId = ((SampleDataItem)e.ClickedItem).UniqueId;

 this.Frame.Navigate(typeof(ItemPage), itemId);

}

Navigate has two overloads, one that accepts only the type of the destination page, and
one that also accepts a custom System.Object that gets passed along to the destination
page. In this case, this second parameter is used to tell the second page which item was
just clicked. If you use SuspensionManager in your project, its automatic management of
navigation state means that whatever you pass as the custom Object for Navigate must be
serializable.

The target ItemPage receives this custom parameter via the NavigationEventArgs instance
passed to the Page’s OnNavigatedTo method. It exposes the object with its Parameter
property.

A call to Navigate raises a sequence of events defined on Frame. First is Navigating,
which happens before the navigation begins. It enables the handler to cancel navigation
by setting the passed-in NavigatingCancelEventArgs instance’s Cancel property to true.

Chapter 7 THREADING, WINDOWS, AND PAGES192

Then, if it isn’t canceled, one of three events will be raised: Navigated if navigation
completes successfully, NavigationFailed if it fails, or NavigationStopped if Navigate is
called again before the current navigation finishes.

Page has three virtual methods that correspond to some of these events. OnNavigatingFrom
enables the current page to cancel navigation. OnNavigatedFrom and OnNavigatedTo
correspond to both ends of a successful navigation. If you want to respond to a navigation
failure or get details about the error, you must handle the events on Frame.

Navigating Forward and Back
Just like a Web browser, the Frame maintains a back stack and a forward stack. In addition
to the Navigate method, it exposes GoBack and GoForward methods. Table 7.1 explains the
behavior of these three methods and their impact on the back and forward stacks.

TABLE 7.1 Navigation Effects on the Back and Forward Stacks

Action Result

Navigate Pushes the current page onto the back stack, empties the forward stack, and
navigates to the desired page

GoBack Pushes the current page onto the forward stack, pops a page off the back stack,
and navigates to it

GoForward Pushes the current page onto the back stack, pops a page off the forward stack,
and navigates to it

GoBack throws an exception when the back stack is empty (which means you’re currently
on the window’s initial page), and GoForward throws an exception when the forward
stack is empty. If a piece of code is not certain what the states of these stacks are, it can
check the Boolean CanGoBack and CanGoForward properties first. Frame also exposes a
BackStackDepth readonly property that reveals the number of Pages currently on the
back stack.

Therefore, you could imagine implementing Page-level GoBack and GoForward methods as
follows:

void GoBack()

{

if (this.Frame != null && this.Frame.CanGoBack) this.Frame.GoBack();

}

void GoForward()

{

if (this.Frame != null && this.Frame.CanGoForward) this.Frame.GoForward();

}

For advanced scenarios, the entire back and forward stacks are exposed as BackStack and
ForwardStack properties, which are both a list of PageStackEntry instances. With this,

Navigating Between Pages 193

you can completely customize the navigation experience, and do things such as removing
Pages from the back stack that are meant to be transient.

On a PC, apps with multiple pages typically provide a back button in the corner of the
window. On a phone, apps should rely on the hardware back button instead. To respond
to presses of the hardware back button, you attach a handler to a static BackPressed event
on a phone-specific HardwareButtons class:

#if WINDOWS_PHONE_APP

 Windows.Phone.UI.Input.HardwareButtons.BackPressed +=

 HardwareButtons_BackPressed;

#endif

In your handler, you can perform the same GoBack logic shown earlier:

#if WINDOWS_PHONE_APP

void HardwareButtons_BackPressed(object sender,

 Windows.Phone.UI.Input.BackPressedEventArgs e)

{

 if (this.Frame != null && this.Frame.CanGoBack)

 {

 e.Handled = true;

 this.Frame.GoBack();

 }

}

#endif

Setting the BackPressedEventArgs instance’s Handled property to true is critical, as it
disables the default behavior that closes your app. Here, that only happens once the back
stack is empty.

The HardwareButtons class also exposes events for when the camera button is half-
pressed, pressed, and released.

How do I pass data from one page to another when navigating backward?

Sometimes an app uses a scheme that navigates to a new page in order to have the user
select something or fill out a form, and then that data needs to be communicated back

to the original page when the new page is dismissed. You’ve already seen how to pass data to
the next page when calling Navigate, but there is no equivalent mechanism for passing data to
the preceding page when calling GoBack. (The same is true for GoForward.)
Instead, you must find a shared place to store the data where both pages know to look. For
example, this could be your own static member on one of your classes, or perhaps even session
state might be appropriate to use for this.

Chapter 7 THREADING, WINDOWS, AND PAGES194

Page Caching
By default, Page instances are not kept alive on the back and forward stacks; a new
instance gets created when you call GoBack or GoForward. This means you must take care
to remember and restore their state, although you will probably already have code to do
this in order to properly handle suspension.

You can change this behavior on a Page-by-Page basis by setting Page’s
NavigationCacheMode property to one of the following values:

 ➔ Disabled—The default value that causes the page to be recreated every time.

 ➔ Required—Keeps the page alive and uses this cached instance every time (for
GoForward and GoBack, not for Navigate).

 ➔ Enabled—Keeps the page alive and uses the cached instance only if the size of the
Frame’s cache hasn’t been exceeded. This size is controlled by Frame’s CacheSize
property. This property represents a number of Pages and is set to 10 by default.

Using Required or Enabled can result in excessive memory usage, and it can waste CPU
cycles if an inactive Page on the stack is doing unnecessary work (such as having code
running on a timer). Such pages can use the OnNavigatedFrom method to pause its
processing and the OnNavigatedTo method to resume it, to help mitigate this problem.

When you navigate to a Page by calling Navigate, you get a new instance of it, regardless
of NavigationCacheMode. No special relationship exists between two instances of a
Page other than the fact that they happen to come from the same source code. You
can leverage this by reusing the same type of Page for multiple levels of a navigation
hierarchy, each one dynamically initialized to have the appropriate content. However, if
you want every instance of the same page to act as if it’s the same page (and “remember”
its data from the previously seen instance), then you need to manage this yourself,
perhaps with static members on the relevant Page class.

NavigationHelper
If you add any Page more sophisticated than a Blank Page to your project, it uses a
NavigationHelper class whose source also gets included in your project. For convenience,

Frame’s Content Property

Instead of calling Navigate, you can place content in a Frame by setting its Content property.
(This is what the Visual Studio-generated code in App.xaml.cs does.) This is much different
than calling Navigate, however, because doing so clears the back and forward stacks. It also
doesn’t trigger the typical navigation animation.
Furthermore, the Frame control can hold arbitrary content via its Content property. This is not
a normal thing to do, but using Frame in this way enables hosting the content in an isolated
fashion. For example, properties that would normally be inherited down the element tree stop
when they reach the Frame. In this respect, Frame acts like a frame in HTML.

NavigationHelper defines GoBack and GoForward methods similar to the ones
implemented earlier. It also adds phone-specific handling of the hardware back button, as
well as standard keyboard and mouse shortcuts for navigation. It enables navigating back
when the user presses Alt+Left and navigating forward when the user presses Alt+Right.
For a mouse, it enables navigating back if XButton1 is pressed and forward if XButton2 is
pressed. These two buttons are the browser-style previous and next buttons that appear on
some mice.

NavigationHelper also hooks into some extra functionality exposed by
SuspensionManager in order to automatically maintain navigation history as part of
session state. To take advantage of this, you need to call one more method inside
OnLaunched (or OnWindowCreated) to make SuspensionManager aware of the Frame:

var rootFrame = new Frame();

SuspensionManager.RegisterFrame(rootFrame, "AppFrame");

Each Page should also call NavigationHelper’s OnNavigatedTo and OnNavigatedFrom
methods from its overridden OnNavigatedTo and OnNavigatedFrom methods, respectively,
and handle NavigationHelper’s LoadState and SaveState events for restoring/persisting
state. LoadState handlers are passed the “navigation parameter” object (the second
parameter passed to the call to Navigate, otherwise null) as well as the session state
Dictionary. SaveState handlers are passed only the session state Dictionary.

When you create a Hub App project, all
these changes are applied automatically.
Internally, this works in part thanks
to a pair of methods exposed by
Frame—GetNavigationState and
SetNavigationState—that conveniently
provide and accept a serialized string
representation of navigation history.

Other Ways to Use Frame
Not every app needs to follow the pattern of a Window hosting a Frame that hosts Page(s).
A Window’s content doesn’t have to be a Frame, and you can embed Frames anywhere
UIElements can go. We can demonstrate this by modifying a Hub App project to set the
Window’s Content to a custom Grid subclass that we create. Imagine this is called RootGrid,
and it must be constructed with a Frame that it wants to dynamically add to its Children
collection. It would be used in App.xaml.cs as follows:

// Instead of Window.Current.Content = rootFrame:

Window.Current.Content = new RootGrid(rootFrame);

RootGrid can be added to the project as a pair of XAML and code-behind, shown in
Listings 7.3 and 7.4.

Navigating Between Pages 195

If your app does any navigation, you
should use NavigationHelper (or
copy its code) to automatically handle

the hardware back button and the standard
keyboard/mouse shortcuts.

Chapter 7 THREADING, WINDOWS, AND PAGES196

LISTING 7.3 RootGrid.xaml: A Simple Grid Expecting to Contain a Frame

<Grid x:Class="Chapter7.RootGrid" Background="Blue"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <!-- A 3x3 Grid -->

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition/>

<RowDefinition/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

 <!-- Two Buttons to interact with a Frame -->

<Button Name="BackButton" Grid.Row="1" HorizontalAlignment="Center"

 Click="BackButton_Click">Back</Button>

<Button Name="ForwardButton" Grid.Row="1" Grid.Column="2"

 HorizontalAlignment="Center" Click="ForwardButton_Click">Forward</Button>

</Grid>

LISTING 7.4 RootGrid.xaml.cs: The Code-Behind That Places the Frame and Interacts with It

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Navigation;

namespace Chapter7

{

 public sealed partial class RootGrid : Grid

 {

Frame frame;

 public RootGrid(Frame f)

 {

 InitializeComponent();

 this.frame = f;

 // Add the Frame to the middle cell of the Grid

Grid.SetRow(this.frame, 1);

 Grid.SetColumn(this.frame, 1);

 this.Children.Add(this.frame);

Navigating Between Pages 197

this.frame.Navigated += Frame_Navigated;

 }

 void Frame_Navigated(object sender, NavigationEventArgs e)

 {

 if (this.frame != null)

 {

 // Keep the enabled/disabled state of the buttons relevant

this.BackButton.IsEnabled = this.frame.CanGoBack;

 this.ForwardButton.IsEnabled = this.frame.CanGoForward;

 }

 }

 void BackButton_Click(object sender, RoutedEventArgs e)

 {

 if (this.frame != null && this.frame.CanGoBack)

 this.frame.GoBack();

 }

 void ForwardButton_Click(object sender, RoutedEventArgs e)

 {

 if (this.frame != null && this.frame.CanGoForward)

 this.frame.GoForward();

 }

 }

}

By placing the Frame in its middle cell, RootGrid is effectively applying a thick blue border
to the Frame that persists even as navigation happens within the Frame. (When used this
way, Frame seems more like an iframe in HTML.) The simple back and forward Buttons in
RootGrid are able to control the navigation (and enable/disable when appropriate) thanks
to the APIs exposed on Frame. This unconventional window is shown in Figure 7.3, after
navigating to the second page.

Although this specific use of Frame doesn’t seem practical, you can do some neat things
with a similar approach. One example would be to have a Page that always stays on
screen containing a fullscreen Frame that navigates to various Pages. The reason this is
compelling is that the outer Page can have app bars that are accessible regardless of what
the current inner Page is. (App bars are discussed in Chapter 9, “Content Controls.”)

If you decide you want your Page to truly be the root content in your app’s Window, you
can change the code in App.xaml.cs to eliminate the hosting Frame. This can work fine,
but with no Frame, you don’t get the navigation features.

Chapter 7 THREADING, WINDOWS, AND PAGES198

FIGURE 7.3 A Frame doesn’t have to occupy all the space in an app’s window.

Summary
The design of the Windows Runtime, combined with slick C# language support, could
lead one to think, “Threading model? I didn’t realize universal apps had a threading
model.” In C#, you get to enjoy the benefits of writing an app that largely feels single-
threaded, but has all the power of asynchronous code (and a number of parallelism
mechanisms employed internally by the Windows Runtime).

Supporting multiple windows within a single app is one area where the code you write
can become awkward, but the model of having each window run on a separate UI thread
maximizes an app’s responsiveness.

Finally, the features enabled by Frame and Page support the navigation paradigm common
for universal apps. Almost all apps use multiple pages.

This page intentionally left blank

INDEX

Symbols
2D transforms, 72

combining, 77
CompositeTransform, 77-78
MatrixTransform, 78-79
RotateTransform, 73-74
ScaleTransform, 74-75
SkewTransform, 76
TransformGroup, 78
TranslateTransform, 77

3D transforms, 79-81
/ (slash), 318

A
absolute sizing, 96
accelerometer, 647-649

shake detection, 650
tossing motion, 649-650

Accelerometer.GetDefault method, 648
AcceptsReturn versus TextWrapping, 302
accessibility, 35

high contrast themes, 38-39
improving screen reading, 36-37

accessing known folders, 570
Account Picture Provider, 615-616
Accuracy, 655
activating versus launching, 172
activating apps, 171-172
activation contracts. See contracts
ActivationKind, 169
ActualHeight, 65

ActualWidth724

ActualWidth, 65
AdControl, 203

advanced behaviors, 204-205
AddDeleteThemeTransition, 462-464
AddFile, 626
AddHandler, 123
adding

PC ads to pages, 202-203
phone ads, 204

AdErrorEventArgs, 205
adjusting camera settings, MediaCapture,

374-375
admitting logos, 14
ad units, defining in pubCenter, 200-202
advanced behaviors, AdControl, 204-205
advertisements, 200

adding PC ads to pages, 202-203
adding phone ads, 204
defining ad units in pubCenter, 200-202

AgeRating, 210
alarm apps, toast notifications, 708-710
Alignment, 69
AllowedFileTypes, 626
altform-XXX, 328
Altitude, 655
AltitudeAccuracy, 655
AltitudeReferenceSystem, 655
Alt key, 155-157
animation, 453

custom animation, controlling duration, 475
custom animations, 472-473, 478

From and To, 475-477
independent versus dependent, 473-474
property paths, 481-483
storyboards with multiple animations,

480-481
tweaking. See tweaking animations
tweaking Storyboard with Timeline,

484-485
custom keyframe animations, 485

discrete keyframes, 488-490
easing keyframes, 490
linear keyframes, 485-486
spline keyframes, 487-488

dependency properties, 454-455
easing functions, 490-491

built-in easing functions, 493
power easing functions, 491-493

manual animations, 495-497
theme animations, 466, 469-471

Storyboard, 466-468
tweaking, 471

theme transitions, 455-456
AddDeleteThemeTransition, 462-464
applying to elements, 456-457
EdgeUIThemeTransition, 460
EntranceThemeTransition, 457-459
PaneThemeTransition, 461-462
PopupThemeTransition, 459
ReorderThemeTransition, 466
RepositionThemeTransition, 464-465

Timeline, 480
triggering, 468-469

AppBar, 251-253
AppBarButton, content controls, 234-236

BitmapIcon, 240-241
FontIcon, 238
PathIcon, 239
SymbolIcon, 236-237

app bars, content controls, 249-250
AppBar, 251-253
CommandBar, 254-255

AppBarToggleButton, 243-244
app commands, 583

Play command, 604-605
Print command, 596-601

adding custom options, 603
changing default options, 601-602
configuring displayed options, 602

Project command, 606
Search command, 584

customizing Search pane, 586-588
programmatically showing Search pane,

588-589
Search Contract, 584-586

background tasks 725

Settings command, 606
handling links with SettingsPane, 608-610
showing links, 606-608

Share command, 589
being a share source, 589-592
being a share target, 592-595

app containers, 9
app data, 555-557

app files, 560-563
app settings, 558-560

local settings, 558
roaming settings, 559

AppendResultSuggestion, 396
app files, app data, 560-563
application definition, updating XAML, 24-29
ApplicationId, 204
Application tab, package manifest, 11
Appointments Provider Contract, 635

source, 635-636
targets, 636-637

App.OnLaunched, 29
app packages, 10-11
apps

compiling, 9
creating, 7-10
lifecycle. See lifecycle
Mail app, 591
not running apps, 161
running apps, 161
sideloaded apps, 220
submitting to Windows Store, 40-41
suspended apps, 161

App Specific Hardware ID (ASHWID), 220
app themes, 228-229

Flyouts, 234
AppX, 10
App.xaml, 228
App.xaml.cs, 28
AreTransportControlEnabled, 363
Arguments, 169
ASHWID (App Specific Hardware ID), 220
AssemblyFileVersion, 29
AssemblyVersion, 29

AsTask, 183
ASTA threads, 182
async, 182-184
asynchronous operations, threading model,

182-184
attached properties, 88-89
attached property providers, 88
attributes, XAML, 44-45
audio

background audio, 637
adding Background Tasks declaration, 638
AudioCategory, 637-638
SystemMediaTransportControls, 638-641

capturing, MediaCapture, 377
AudioCategory, 637-638
automated testing, Windows Store (testing

features), 224-225
automation ID, 268
AutoPlay Content, contracts, 617-620
AutoPlay Device, contracts, 617-620
AutoReverse, 479
autosizing, 97
await, 182-185

B
back button, 193
BackEase, 494
background audio, 637

adding Background Tasks declaration, 638
AudioCategory, 637-638
SystemMediaTransportControls, 638-641

BackgroundColor, 350
BackgroundDownloader, 577
Background property, 127
BackgroundTaskBuilder, 643
background tasks, 637

background audio, 637-638
adding Background Tasks declaration, 638
SystemMediaTransportControls, 638-641

background tasks726

custom background tasks, 641
conditions, 645-646
IBackgroundTask, 641-642
leveraging background work from the

foreground, 644
registering, 642-643
triggers, 644-645

background threads, 181
background transfers, networking, 576-579
backgrounds, logos, 15
badges, 701-703
BarcodeScanner, 669
barcode scanners, 668

BarcodeScanner, 669
claiming devices, 669-670
enabling, 670
retrieving data, 670-671

BaseTargetType, 503
BaseTextBlockStyle, 504
BeginTime, 478
Bézier curves, 429
Binding, 529-530

C#, 531-532
collections, 534-536
customizing data flow, 532-533
improving display, 537
RelativeSource, 531
sharing source with DataContext, 533-534
to plain properties, 532

BitmapDecoder, 330-331
pixel data, 332

BitmapEncoder, 340, 343
BitmapEncoderId, 350
BitmapFrame, 333
BitmapIcon, 240-241
BitmapImage, 317
BitmapProperties, reading from decoders, 337
BitmapTransform, 334
BitmapTypedValues, 341
Blocks, 291
Bluetooth Low Energy (Bluetooth LE), 676
Bluetooth Smart, 676
Bold element, 293

BounceEase, 494
branding=”logo,” 690
Brushes, 436

color brushes
LinearGradientBrush, 437-443
SolidColorBrush, 436-437

tile brushes, 443-444
ImageBrush, 444-445
WebViewBrush, 446-450

Buffering Progress, 360
Build Action, 318
built-in easing functions, 493
bulk transfers, custom USB devices, 681
ButtonBase, 234
buttons, content controls, 230-231

ButtonBase, 234
Flyout, 231-233

C
C#

Binding, 531-532
GridLength, 98
markup extensions, 51
XAML and, 44-45

loading and parsing XAML at runtime,
56-57

naming XAML elements, 57
support for, 57-58

cached composition, 451
caching, controlling, 575
CameraCaptureUI, 367-368

capturing photos, 368-370
capturing video, 370-371

camera settings, adjusting (MediaCapture),
374-375

CanAddFile, 626
CancelCommandIndex property, 399
CanGoBack, 192
CanGoForward, 192
Canvas, 88-89

child layout properties, 89

commas in Geometry strings 727

Capabilities tab, package manifests, 16-17
device capabilities, 18
file capabilities, 17-18
identity capabilities, 19
network capabilities, 19

capture
CameraCaptureUI, 367-368

capturing photos, 368-370
capturing video, 370-371

CaptureElement, 371
capturing photos, 374
showing previews, 371-373

MediaCapture
adjusting camera settings, 374-375
capturing audio only, 377
capturing video, 376

CaptureElement, 367, 371
capturing photos, 374
showing previews, 371-373

CaptureFileAsync, 369
capturing audio only, MediaCapture, 377
capturing photos

CameraCaptureUI, 368-370
CaptureElement, 374

capturing pointers, 123-126
capturing video

CameraCaptureUI, 370-371
MediaCapture, 376

capturing web content, WebView, 418-419
CarouselPanel, 266

WrapGrid, 263
catalogs

displaying, 214
managing custom catalogs, 216-217

CenterX, 73-74
CenterY, 73-74
certification process, Windows Store, 40-41
Character Map app, 238
CharacterSpacing, 284-286
CheckBox, 244
child layout properties

Canvas, 89
Grid, 96

StackPanel, 91
VariableSizedWrapGrid, 103

child object elements, 52
collection items, 52

dictionaries, 54
lists, 53

content property, 52
processing rules, XAML, 55-56
type conversion, 54-55

children, direct child, 229
ChildrenTransitions, 457
ChildTransitions, 457
ChooseSuggestionOnEnter, 393
choosing minimum width, 85-86
CircleEase, 494
ClaimedBarcodeScanner, 669
ClaimedMagneticStripeReader, 672
claiming devices, barcode scanners, 669-670
ClickMode, 234
client-side code, push notifications, 717-719
clipping, 104-105
ClockIdentifier property, 411
Closing, 626
code-behind, 21
collection items, child object elements, 52

dictionaries, 54
lists, 53

collections
Binding, 534-536
customizing view of, 546

grouping, 547-549
navigating, 550

color brushes
LinearGradientBrush, 437-443
SolidColorBrush, 436-437

ColumnDefinition, 94
columns, sizing in Grid, 96-97
ColumnSpan, 94
combining 2D transforms, 77
ComboBox, items controls, 265-267
CommandBar, 250, 254-257
commands, app commands. See app commands
commas in Geometry strings, 435

CommonStates728

CommonStates, 520
communicating with

custom Bluetooth devices, 675-676
custom Bluetooth Smart devices, 677-678
custom HID devices, 683-684
custom USB devices, 680-681

compass, 651
compiling apps, 9
composing

HTML with XAML, WebView, 416
Javascript with C#, WebView, 417-418

CompositeTransform, 77-78
conditions, custom background tasks, 645-646
configuring displayed options, Print

command, 602
configuring scan sources, image scanners,

666-667
config-XXX, 328
connecting to

custom Bluetooth devices, 674-675
custom Bluetooth Smart devices, 677
custom HID devices, 683
custom USB devices, 680

connection info, networking, 581-582
constructor, 25
consumable products

in-app purchases, 214-218
initiating and fulfilling purchases, 214-215
managing custom catalogs, 216-217

Contact Contract, 631
sources, 631-632
targets, 633-635

ContactManager, 631-632
Contact Picker, 628

sources, 628-629
targets, 630

ContainerContentChanging, 552
ContainFile, 626
Content, 230
content alignment, 70
content checks, 40

ContentControl, Content property, 511
ContentControl property, 513
content controls, 229-230

AppBarButton, 234-236
BitmapIcon, 240-241
FontIcon, 238
PathIcon, 239
SymbolIcon, 236-237

app bars, 249-250
AppBar, 251-253
CommandBar, 254-255

AppBarToggleButton, 243-244
buttons, 230-231

ButtonBase, 234
Flyout, 231-233

CheckBox, 244
HyperlinkButton, 241
RadioButton, 245-246
RepeatButton, 242
ToggleButton, 243
ToolTip, 246-249

content overflow, 84, 103
clipping, 104-105
scaling, 111-114
scrolling, 106-110

ContentPresenter element, 513
content property, child object elements, 52
Content property, 48

ContentControl, 511
Frame, 194

ContentThemeTransition, 460
ContentTransitions, 457
Content URIs tab, package manifests, 20
contract activations, 614
contracts, 613-614

Account Picture Provider, 615-616
Appointments Provider Contract, 635

source, 635-636
targets, 636-637

AutoPlay Content, 617-620
AutoPlay Device, 617-620

customizing 729

Contact Contract, 631
sources, 631-632
targets, 633-635

Contact Picker, 628
sources, 628-629
targets, 630

File Open Picker, 624-626
File Save Picker, 627-628
File Type Associations, 620-622
Protocol, 623
Share contracts, 614

Control, 61
controlling caching, 575
controlling duration, custom animation, 475
controls, 228

content controls, 229
content controls. See content controls
custom HID devices, 684
date and time controls. See date and time

controls
Hub controls. See Hub controls
items controls. See items controls
popup controls. See popup controls
ProgressRing, 411-412
range controls. See range controls
text controls. See text controls
ToggleSwitch, 412-413
WebView, 413

capturing web content, 418
composing HTML with XAML, 416
composing JavaScript with C#, 417
navigation, 414-416

XAML controls, 236
control templates, 509-511

tweaking, 518-519
versus data templates, 539

control transfers, custom USB devices, 680
Convert, 545
ConvertBack, 545
cookies, manipulating, 575
CoreDispatcher, 185-186
CoreWindow.GetAsyncKeyState, 157
CoreWindow.GetKeyState, 157

CPU Usage, 10
CreateForInPlacePropertyEncodincugAsync, 347
CreateForTranscodingAysnc, 346
CreatePrintTask, 598,-599
CreateWindowAsync, 188
CreationCollisionOption, 561
CrossSliding, 131, 134
curly braces, escaping, 50
CurrentApp, 221
CurrentAppSimulator, 225

Windows Store, testing features, 222-223
current location, 653-655
CurrentMarket, 209
current value display, customizing, 390
custom animations, 472-473, 478

controlling duration, 475
From and To, 475-477
independent versus dependent, 473-474
property paths, 481-483
storyboards with multiple animations, 480-481
tweaking Storyboard with Timeline, 484-485

custom background tasks, 641
conditions, 645-646
IBackgroundTask, 641-642
leveraging background work from the

foreground, 644
registering, 642-643
triggers, 644-645

custom Bluetooth devices, 673
communicating with, 675-676
connecting to, 674-675
declaring the right device, 673-674

custom Bluetooth Smart devices, 676
communicating with, 677-678
connecting to, 677
declaring the right device capability, 676-677

custom HID devices, 682
communicating with, 683-684
connecting to, 683
declaring the right device capability, 682

customizing
current value display, 390
data flow, Binding, 532-533

customizing730

Grid, 98
launching apps, programmatically, 178-179
logo images, 13-16
page rendering, Image element, 350-353
playback, MediaElement, 358-359
ScrollViewer, 106-107
Search pane, 586-588
splash screens, 11-12
text rendering, 284-287

CharacterSpacing, 285-286
IsColorFontEnabled, 288-289
OpticalMarginAlignment, 287-288
TextLineBounds, 286-287
TextReadingOrder, 288

view of collections, 546
grouping, 547-549
navigating, 550

custom keyframe animations, 485
discrete keyframes, 488-490
easing keyframes, 490
linear keyframes, 485-486
spline keyframes, 487-488

custom options, Print command, 603
CustomResource, 509
custom USB devices, 679

communicating with, 680-681
connecting to, 680
declaring the right device capability, 679

custom Wi-Fi Direct devices, 684-686

D
data, 555

app data, 555-557
app files, 560-563
app settings, 558-560

files, 555-557
folders, 555-557

networking, 572
background transfers, 576-579
connection info, 581-582
HTTP requests, 572-576
sockets, 579
syndication, 579-581

sharing, 592
user data, 555, 563

file picker, 564-567
folder picker, 567-570
libraries and special folders, 570-571

data binding, 529
Binding, 529-530
customizing view of collections, 546

grouping, 547-549
navigating, 550

high-performance rendering, ListView and
GridView, 550-554

rendering, 538
data templates, 538-542
value converters, 543-546

DataContext, Binding, 533-534
data flow, customizing (Binding), 532-533
DatagramSocket, 579
DataPackage, 592
data templates

versus control templates, 539
rendering, 538-542

data virtualization, ListView, 272
DataWriter, 325
date and time controls, 407

DatePicker, 408-409
TimePicker, 410-411

DatePicker, 408-409
DateTime, 336-337
DateTimeOffset, 336
Declarations tab, package manifests, 19-20
declaring the right device, custom Bluetooth

devices, 673-674
declaring the right device capability

custom Bluetooth Smart devices, 676-677
custom HID devices, 682
custom USB devices, 679

dynamic images 731

decoding images, 330-331
pixel data, 331-333
reading metadata, 335-339

default options, Print command, 601-602
DefaultPlaybackRate, 359
DefaultSectionIndex property, 405
default themes, 227
deferral, suspending apps, 166
DependencyObject, 61, 447
dependency properties, animation, 454-455
dependency property, 453
DesiredSize, 65
DestinationHeight, 350
DestinationWidth, 350
DetachPixelData, 332
device capabilities, Capabilities tab (package

manifests), 18
DeviceCapability, 673
Device Manager, 679
Device option, 8
device protocol APIs, 663
devices

barcode scanners, 668
BarcodeScanner, 669
claiming devices, 669-670
enabling, 670
retrieving data, 670-671

custom Bluetooth devices, 673
communicating with, 675-676
connecting to, 674-675
declaring the right device, 673-674

custom Bluetooth Smart devices, 676
communicating with, 677-678
connecting to, 677
declaring the right device capability,

676-677
custom HID devices, 682

communicating with, 683-684
connecting to, 683
declaring the right device capability, 682

custom USB devices, 679
communicating with, 680-681
connecting to, 680
declaring the right device capability, 679

custom Wi-Fi Direct devices, 684-686
fingerprint readers, 664
image scanners, 664-665

configuring scan sources, 666-667
ImageScanner, 665
performing scans, 665-666
previews, 667-668

magnetic stripe readers, 671-672
retrieving data, 672-673

device scenario APIs, 663
dictionaries, collection items (child object

elements), 54
direct child, 229
Disabled case, ScrollViewer, 109
disabling flipped orientations, 11
discrete keyframes, 488-490
Dispatcher, 185
DispatcherTimer, 495
displaying multiple windows, 186-189
displaying catalogs, durable purchases, 213-214
DisplayMemberPath, 537
DoQuadraticInterpolation, 495
DoubleAnimation, 472-473
DownloadProgress, 360
dragging, 143
DragItemThemeAnimation, 470
drop-down, 266
DropTargetItemThemeAnimation, 470
durable products, 211-213

determining if a product has been
purchased, 211

initiating purchases, 212-213
durable purchases, displaying catalogs, 213-214
Duration, 475, 657
Duration property, theme animation, 472
DwellTime, 657
dynamic images, generating with

WriteableBitmap, 322-325

EaseInOut732

E
EaseInOut, 494-495
EaseOut, 494
easing functions, 490-491

built-in easing functions, 493
power easing functions, 491-493

easing keyframes, custom keyframe
animations, 490

EdgeGesture, 135
EdgeUIThemeTransition, 460
effects

MediaTranscoder, 383
playback, MediaElement, 361

ElasticEase, 494
elements, XAML, 44-45
Ellipse, 423
EllipseGeometry, 428
embedding UIElements, RichTextBlock, 297-298
Emulator option, 8
EnableDependentAnimation, 474
enabling barcode scanners, 670
encoding images, 339-341

transcoding, 344-347
writing metadata, 343-344
writing pixel data, 341-342

encoding options, 341
Energy Consumption, 10
EntranceThemeTransition, 457-459
escaping curly braces, 50
EvenOdd, 431
event bubbling, 120
event processing, order of, 45
events

manipulation events, 137-140
playback, MediaElement, 359-360
routed events, 120

event triggers, 468
explicit runs versus implicit runs, 291
ExponentialEase, 494

F
Facedown, 652
Faceup, 652
FadeInThemeAnimation, 469

troubleshooting, 471
FadeOutThemeAnimation, 469
failure conditions, initiating and fulfilling

purchases, 216
FallbackValue, Binding, 530
feature-differentiated trials, 206-207
feature reports, custom HID devices, 684
file activation, 619
FileActivatedEventArgs, 622
file capabilities, Capabilities tab (package

manifests), 17-18
FileOpenPicker, 568
File Open Picker contract, 624-626
FileOpenPickerUI, 626
file picker, user data, 564-567
FileRemoved, 626
files, 555-557
File Save Picker, 627-628
FileSavePicker, 567
File Type Associations, contracts, 620-622
FileTypeFilter, 569
file variations

loading automatically, Image element, 326-327
loading manually, Image element, 329

Fill, 127, 423
FillBehavior, 480
FillRule, 431
fingerprint readers, 664
Flat line cap, 426
flipped orientations, disabling, 11
FlipView, 274-276
FlowDirection, 71, 91
FlushAsync, 341
Flyouts

app themes, 234
buttons, content controls, 231-233

focus, keyboard input, 158-159

gyrometer 733

FocusStates, 520
folder picker, user data, 567-570
folders, 555-557
FontIcon, 238
footers, ListView, 270
FooterTransitions, 457
format, transcoding (MediaTranscoder), 381-382
format patterns, date and time, 409
FormattedPrice, 209
Frame

Content property, 194
navigating pages, 195-197

FrameworkElement, 61, 75
freemium business model, 199
free trials, 205-206

feature-differentiated trials, 206-207
helping user purchase full license, 208-210
time-based trials, 206

From, custom animations, 475-477
From+By, 477
FromHorizontalOffset, 458
FromIdAsync, 675
FromVerticalOffset, 458
full-screen mode, 358

G
games, pausing, 165
GATT (Generic Attribute Profile), 676-678
GattCharacteristic, 678
generating dynamic images with

RenderTargetBitmap, 325
Geocoordinate, 655
Geofence, 656-658
geofencing, 656-659
Geolocator, 654
Geometry, 428-429

FillRule, 431
GeometryGroup, 432-433
PathFigure, 429

PathSegment, 429
representing as strings, 433-435
string commands, 434

GeometryGroup, 428, 432-433
GeometryTransform, 422
Geopoint, 655
GeoshapeType, 655
GestureRecognizer, 131-134

mouse input, 143
gestures, 118, 130-136

EdgeGesture, 135-136
GestureRecognizer, 131-134
UIElement gesture events, 136

GetDeferral, 166
GetGeopositionAsync, 659
GetIntermediatePoints, 122
GetParentAsync, 556
GetPosition, 122
GetPreviewPage event, 598
GetPropertiesAsync, 338, 347
GetThumbnailAsync, 329, 335
GetValue, 455
gift cards, 200
globalization, 29-35
GoBack, 192
gradients, 443
Grid, 91-99

child layout properties, 96
comparing to other panels, 99
customizing, 98
mimicking Canvas, 99
mimicking StackPanel, 99
percentage sizing, 97
sizing rows and columns, 96-97

GridLength, C#, 98
GridView, 273-274

high-performance rendering, 550-553
GridView incremental rendering, 550-553
grouping, customizing view of collections,

547-549
GroupStyle, 548
gyrometer, 651

halting bubbling734

H
halting bubbling, 122-123
handwriting, rendering, 146-149
handwriting recognition, 150-153
hardware back button, 193
HardwareButtons, 193
headers, ListView, 270
HeaderTransitions, 457
Heading, 655
height, 64-65
HelloRealWorld.Shared, 8
HelloRealWorld.Windows, 8
HelloRealWorld.WindowsPhone, 8
helping user purchase full license, 208-210
Hidden case, ScrollViewer, 108
hidden managed-to-unmanaged code

transitions, 324
HID (Human Interface Device), custom. See

custom HID devices
hiding software keyboards, 308
HidInputReport, 683
HidOutputReport, 683
HighContrastChanged event, 39
high contrast themes, accessibility, 38-39
high-performance rendering, ListView and

GridView, 550-554
hijacking existing properties for new

purposes, 517
history suggestions, SearchBox, 392
hit testing, 126-127
Holding, 131
HoldingState, 134
homeregion-XXX, 328
HorizontalAlignment, 69
HorizontalChildrenAlignment, 101
HorizontalScrollMode, 109
HtmlFormatHelper.CreateHtmlFormat, 590
HttpBaseProtocolFilter, 575
HttpClient, 572
HTTP filters, 574

HTTP GET request, 572
HTTP prefetching, 576
HTTP requests, networking, 572-576
HttpResponseMessage, 575
Hub controls, 403-405

HubSection, 405-406
jumping to, 406-407

HubSection, 405-406
jumping to, 406-407

HyperlinkButton, 241

I
IAsyncAction, 574
IBackgroundTask, 641-642
IconElement, 236, 240-241
identity capabilities, Capabilities tab (package

manifests), 19
IlluminanceInLux, 651
image-based large templates, 696
ImageBrush, 444-445
Image element, 316

decoding images, 330-331
pixel data, 331-333
reading metadata, 335-339

encoding, writing metadata, 343-344
encoding images, 339-341

writing pixel data, 341-342
generating dynamic images with

RenderTargetBitmap, 325
generating dynamic images with

WriteableBitmap, 322-325
loading file variations manually, 329
multiple environments, 325-326

loading file variations automatically,
326-327

loading file variations manually, 329
multiple variations, leveraging resource

packages, 329-330
referencing files with URIs, 316-318

items controls 735

rendering PDF content as an image, 347-348
customizing page rendering, 350-353
rendering a PDF page, 348-350

scaling, 326
stretching with nine-grid feature, 319-322
transcoding, 344-347

ImageOpened, 317
ImageProperties, 335-336
images

decoding, 330-331
pixel data, 331-333
reading metadata, 335-339

encoding, 339-341
transcoding, 344-347
writing metadata, 343-344
writing pixel data, 341-342

ImageScanner, 665
image scanners, 664-665

configuring scan sources, 666-667
ImageScanner, 665
performing scans, 665-666
previews, 667-668

implicit runs versus explicit runs, 291
implicit styles, 505

TargetType, 506
improving screen reading, 36-37
in-app purchases, 210-211

consumable products, 214-218
durable products, 211-213

inclinometer, 651
incoming call notifications, toast notifications,

708-710
incremental item rendering, 551

ListView, 272
independent versus dependent, custom

animations, 473-474
index markers, 360
inertia, manipulation, 141
inheritance, style inheritance, 504-505
InitializeAsync, 372, 373
InitializeComponent, 24
initiating purchases, durable products, 212-213
InkManager, 150-152

Inlines, 291
INotifyCollectionChanged, 536
input, 65

keyboard input. See keyboard input
mouse input. See mouse input
pen input. See pen input
touch input. See touch input

input reports, custom HID devices, 683
InputScope, TextBox, 304-306
input scopes, 306

restricting what is typed in text boxes, 307
Intellisense, 505
intermediate-mode graphics, 451
interrupt transfers, custom USB devices, 681
IRandomAccessStream, 318-319
IsAvailable, 557
IsBarrelButtonPressed, 144
IsColorFontEnabled, 285, 288-289
IsEditable property, 267
IsEraser, 144
IsFullWindow, 358
IsHorizontalMouseWheel, 142
IsHorizontalScrollChainingEnabled, 109
IsIgnoringHighContrast, 350
IsIndeterminate, 388
IsInRange, 145
IsInverted, 145
IsPressed, 455
IsScrollInertiaEnabled, 109
IsSpellCheckEnabled, 302
IsSwipeEnabled, 270
IsTextPredictionEnabled, 303
IStorageItem, 555-556
IsVerticalScrollChainingEnabled, 109
ItemContainerTransitions, 457
item controls, 259-261
ItemHeight property, 101
item rendering, ListView, 272
items, reordering (ListView), 272
ItemsControl, 260-261, 538
items controls

ComboBox, 265-267
FlipView, 274-276

items controls736

GridView, 273-274
items panel, 262-265
ListBox, 267-269
ListView, 269-270
MenuFlyout, 279-280
SemanticZoom, 276-279

items panel, 262-265
ItemWidth property, 101
ITextCharacterFormat, 309
ITextDocument, 309-310
ITextParagraphFormat, 309
ITextRange, 309
ITextSelection, 309

J
JavaScript, composing with C# (WebView),

417-418
jump effect, 477
jumping to HubSection, 406-407

K
KeyboardCapabilities, 154
keyboard input, 153-154

focus, 158-159
keyboard modifiers in pointer events, 157-158
key states, 155-157
UIElement keyboard events, 154-155

keyboard modifiers in pointer events, 157-158
keyboards, software keyboards, 308
keyboard shortcuts, panes, 611
keyframe animations, custom. See custom

keyframe animations
KeyModifiers, 122
key states, 155-157
keywords, XAML, 59-60
killing apps, lifecycle, 163-164
know folders, accessing, 570
KnownFolders, 570

L
landscape, 652
landscape-flipped, 652
language code, 30
languages, 31-35

Pseudo Language, 32-33
language-XXX, 328
lang-XXX, 328
Large 310x310 Logo, 13
large tile templates, 696
Latitude, 655
LaunchActivatedEventArgs, 168-169
launching

versus activating, 172
purchasing dialog, 208-209

launching apps, 168
LaunchActivatedEventArgs, 168-169
PreviousExecutionState, 169-170
programmatically, 176

customizing, 178-179
URI, 176-177

LaunchUriAsync, 177
layout, 63

2D transforms. See 2D transforms
content overflow, 103

clipping, 104-105
scaling, 111-115
scrolling, 106-110

panels
Canvas, 88-89
Grid, 91-99
StackPanel, 90-91
VariableSizedWrapGrid, 99-103

position, 68
Alignment, 69
content alignment, 70
FlowDirection, 71

size
height, 64-65
Margin, 66-67
Padding, 66-67
width, 64-65

listings 737

window size and location, 84-85
choosing minimum width, 85-86
discovering orientation, 86-87

layoutdir-XXX, 328
LeftHeader, 109
leveraging resource packages, Image element,

329-330
libraries

managing, 571
user data, 570-571

LicenseChanged event, 207
LicenseInformation class, 208
licenses, helping user purchase full license,

208-210
lifecycle, 161-162

activating apps, 171-172
killing apps, 163-164
launching apps, 168

LaunchActivatedEventArgs, 168-169
PreviousExecutionState, 169-170

resuming apps, 166
suspending apps, 164-165

deferral, 166
Suspending event, 165-166

terminating apps, 167
transitioning from running to killing, 163-164

LightSensor, 651
LightSensorReading, 651
Line, 423-424
LinearGradientBrush, 437-443
linear interpolation, 473
linear keyframes, 485-486
LinearXXXKeyFrame, 487
LineBreak, 291
LineGeometry, 428
LineHeight, 284
LineSegment, 430
links

Settings command, handling with
SettingsPane, 608-610

showing, Settings command, 606-608
ListBox, 267-269
ListBoxItem, 261
listing details, 209

listings
Applying ScaleTransform to Buttons in a

StackPanel, 74-75
App.xaml.cs—The Code-Behind for the App

Class, 26-28
App.xaml—The Markup for the App Class, 25
Button’s Control Template from Its Default

Style, 520-522
A Complex ToolTip, 248
The ControlTemplate for Button from Listing

17.1, Enhanced with Visual States, 524-527
CustomSettingsFlyout.xaml.cs: The Code-

Behind File for a Custom Settings Pane, 609
CustomSettingsFlyout.xaml: The User Interface

for a Custom Settings Panel, 608
insert.js: The Auto-Generated Insert Script,

with Demo Code for Sending a Push Toast
Notification, 714-715

MainPage.xaml.cs: Creating and Monitoring a
Geofence, 657-659

MainPage.xaml.cs: Generating Random Audio
for MediaElement to Play, 365-367

MainPage.xaml.cs: Handling Manipulation
Events to Enable Panning, Rotating, and
Zooming, 139

MainPage.xaml.cs: How to Make
GestureRecognizer Raise Its Events, 132-134

MainPage.xaml.cs: Performing Simple Drag and
Drop, 124-125

MainPage.xaml.cs: Rendering Ink Strokes on a
Canvas, 146-149

MainPage.xaml.cs: Supporting Print and Print
Preview, 596-598

MainPage.xaml.cs: Tracking Multiple Pointers,
128-130

MainPage.xaml.cs: Using CreateWindowAsync
to Create Then Show a New Window,
188-189

MainPage.xaml—Markup with User-Visible
English Text Removed, 30

MainPage.xaml—The Initial Markup for the
Main Page, 21

MainPage.xaml—Updated Markup for the
HelloRealWorld App, 22

Modifying a User-Selected File In-Place by
Inverting Its Pixels and Changing Metadata,
344-346

listings738

push.register.cs: Sending the Current Channel
URI to the Service’s insert.js Script, 717-718

RootGrid.xaml: A Simple Grid Expecting to
Contain a Frame, 196

RootGrid.xaml.cs: The Code-Behind That Places
the Frame and Interacts with It, 196-197

Updates to the ControlTemplate for Button
That Make It More Reusable, 514-515

Updating an App’s Tile with Content for Three
Tile Sizes, 688-689

WindowsStoreProxy.xml: The Default Windows
Store Data Used by CurrentAppSimulator,
222-223

The Zigzag Animation for Figure 16.9, 486
lists, collection items (child object elements), 53
ListView, 269-270

data virtualization, 272
footers, 270
headers, 270
high-performance rendering, 550-554
incremental item rendering, 272
reordering items, 272
ScrollIntoView, 270
selection, 270-271

ListView incremental rendering, 550-553
live regions, 37
live tiles, 687

tile templates, 688-690
image-based large templates, 696
large tile templates, 696
medium tile templates, 690
peek medium templates, 692
peek wide templates, 696
static image-based wide templates, 694-696
static medium templates, 690
static text-only wide templates, 693-694
text-only large templates, 696
wide tile templates, 693

updating options, 699-701
LoadComponent method, 59
loading

file variations automatically, Image element,
326-327

file variations manually, Image element, 329
XAML at runtime, 56-57

local content suggestions, SearchBox, 395
local files, app data, 561
localization, 29
local notifications, 690
local options, showing toast notifications, 710
local settings, app settings (app data), 558
local updates, live tiles, 700
location, 652

current location, 653-655
geofencing, 656-659

lock screen, 719-721
secondary tiles, 721

logical pixels, 66
logo images, customizing, 13-16
logos

admitting, 14
backgrounds, 15
scaling, 14-16

Longitude, 655

M
magnetic stripe cards, 672
MagneticStripeReader, 672
magnetic stripe readers, 671-672

retrieving data, 672-673
Mail app, 591
main page logic, XAML (updating), 23-24
main page user interface, XAML (updating),

21-22
making money

advertisements. See advertisements
free trials. See free trials
in-app purchases, 210-211
validating Windows Store receipts, 218-220

managing custom catalogs, consumable
products, 216-217

manipulating cookies, 575
manipulation, inertia, 141
ManipulationDelta, 138-140
manipulation events, 137-140

MusicProperties 739

manipulations, 118, 136
manipulation events, 137-140

ManipulationStarting, 137
manual animations, 495-497
Margin, 66-67
markers, playback (MediaElement,) 360-361
Markers, 361
markup compatibility, XML namespace, 47
markup extensions

C#, 51
XAML, 49-51

Matrix3DProjection, 81
MatrixTransform, 78-79
MaxHeight, 64
MaximumRowsOrColumns, 101
MaxLines, 284
MaxWidth, 64
media

capture. See capture
playback, 356-357
speech synthesis, 384
transcoding. See transcoding

MediaCapture, 373-374
adjusting camera settings, 374-375
capturing audio only, 377
capturing video, 376
terminating, 373

media content, playback, 357-358
MediaElement, 356

playback, 356-357
adding effects, 361
customizing, 358-359
markers, 360-361
media content, 357-358
MediaPlayer, 363-364
playing custom media formats, 365-367
states and events, 359-360
using as a media player, 362

MediaEncodingProfile, 381
MediaFailed, 360
MediaOpened, 360
MediaPlayer, 363-364
media players, playback (MediaElement), 362

MediaStreamSource, 365-367
MediaTranscoder

changing format, 381-382
changing quality, 378-379
trimming, 382-383

MediaTranscoder class, 378
medium tile templates, 690
Memory Usage, 10
MenuFlyout, 279-280
MenuFlyoutItem, 279
MenuFlyoutSeparator, 280
MessageDialog, 397-399
messages, sending/receiving (proximity),

660-661
MessageWebSocket, 579
metadata

associating with audio, video, 359
reading

decoding images, 335-339
with metadata query language, 338-339

writing, Image element, 343-344
metadata query language, reading (raw

metadata), 338-339
Microsoft Local Language Portal, 35
MinHeight, 64
minimum width, choosing, 85-86
MinWidth, 64
MonitoredStates, 656
MouseCapabilities, mouse input, 141-142
MouseDevice, 141
mouse input, 141

GestureRecognizer, 143
MouseCapabilities, 141-142
MouseDevice, 141
pointer events, 142-143
PointerPointProperties, 142-143
UIElement gesture events, 144

MouseWheelDelta, 142
ms-appx, 318
Multilingual App Toolkit, 32
multithreading, 181-183
MusicProperties, 367

named elements740

N
named elements, templates, 528
namespaces, XAML, 45-47
naming XAML elements, 57
narrow mode, 86
Navigate, 191
navigating

customizing view of collections, 550
between pages, 189-191
pages

basic navigation and passing data, 190-192
forward and back, 192-193
Frame, 195-197
NavigationHelper, 194-195
page caching, 194

navigation, WebView, 414-416
NavigationCompleted, 415
NavigationHelper, 194-195
NeighboringFilesQuery property, 622
.NET, XAML, 55
network capabilities, Capabilities tab (package

manifests), 19
networking

background transfers, 576-579
connection info, 581-582
data, 572
HTTP requests, 572-576
sockets, 579
syndication, 579-581

NetworkStatusChanged, 581
NFC tags, 660
nine-grid feature, Image element (stretching),

319-322
Nonzero, 431
notifications

local notifications, 690
push notifications, 711-712

client-side code, 717-719
Push Notification Wizard, 712-713
server-side code, 713-715

toast notifications. See toast notifications, 710

NotRotated, 652
not running apps, 161

O
Object, 61
object elements, 44
OneTime binding, 533
OneWay binding, 533
OnFileOpenPickerActivated, 625
OnLaunched method, 26
OnSuspending method, 26
OnWindowCreated, 172, 189
OpticalMarginAlignment, 285-288
order of property and event processing, 45
orientation, 11

discovering, 86-87
sensors, 652

Orientation, 145
Orientation property, 101
OrientationSensor, 652
output, 65
output reports, custom HID devices, 683
overscroll effect, 109

P
packaged files, app data, 561
package manifest, 10-11

Application tab, 11
package manifests

Capabilities tab, 16-17
device capabilities, 18
file capabilities, 17-18
identity capabilities, 19
network capabilities, 19

Content URIs tab, 20
Declarations tab, 19-20

PlaybackRate 741

Packaging tab, 20
Requirements tab, 16
Visual Assets tab, 11

customizing logo images, 13-16
customizing splash screen, 11-12

Packaging tab, package manifests, 20
Padding, 66-67
page bar, 253
page caching, 194
page rendering, customizing (Image element),

350-353
pages

navigating
basic navigation and passing data, 190-192
forward and back, 192-193
Frame, 195-197
NavigationHelper, 194-195
page caching, 194

navigating between, 189-191
panels, 63, 84, 88

Canvas, 88-89
Grid, 91-99
StackPanel, 90-91
VariableSizedWrapGrid, 99-103

panes, keyboard shortcuts, 611
PaneThemeTransition, 461-462
panning, ScrollViewer, 140
parent elements, 63
parsing XAML at runtime, 56-57
PasswordBox, 311-312
passwords, 313
Path, 425-426
PathFigure, 429-430
PathGeometry, 428, 433
PathIcon, 239
PathSegment, 429-431
pausing games, 165
paying per click, 200
paying per impression, 200
PC ads, adding to pages, 202-203
PC projects, creating apps, 8-9
PDFPage, 350
PDF pages, rendering (Image element), 348-350

peek medium templates, 692
peek wide templates, 696
peer devices, proximity, 661-662
pen input, 144-145

handwriting recognition, 150-153
rendering handwriting, 146-149

PenLineCap, 427
pens

PointerMoved events, 145
RightTapped, 145

percentage sizing, 97
performance, cached composition, 451
Performance and Diagnostics page, 10
performance scalability, vector graphics, 451
performing scans, image scanners, 665-666
perspective transforms, 79
phone ads, adding, 204
PhoneticName property, 704
Photo Loop, 375
photos, capturing

CameraCaptureUI, 368-370
CaptureElement, 374

pictures, Account Picture Provider (contracts),
615-616

pipe, 681
PixelBuffer, 325
pixel data

decoding images, 331-333
writing, Image element, 341-342

pixels, 66
PlaceholderText property, 266
PlaneProjection, 80-81
playback, 356-357

MediaElement
adding effects, 361
customizing, 358-359
markers, 360-361
media content, 357-358
MediaPlayer, 363-364
playing custom media formats, 365-367
states and events, 359-360
using as a media player, 362

PlaybackRate, 359

Play command742

Play command, 604-605
playing custom media formats, 365-367
Playlist class, 363
Point, 655
PointCaptures, 126
PointerCanceled, 121
PointerCaptureLost, 121
Pointer class, 119
PointerDevice class, 118-119
PointerDownThemeAnimation, 470
PointerEntered, 121
pointer events, 120-122

mouse input, 142-143
PointerExited, 121
PointerMoved, 121
PointerMoved events, pens, 145
PointerPoint class, 119-120
PointerPointProperties, mouse input, 142-143
PointerPointProperties class, 120
PointerPressed, 121-122
PointerReleased, 121-122
pointers, 118

capturing pointers, 123-126
hit testing, 126-127
Pointer class, 119
PointerDevice class, 118-119
pointer events, 120-122
PointerPoint class, 119-120
PointerPointProperties class, 120
tracking multiple pointers, 127-130

PointerUpThemeAnimation, 470
point of sale devices. See barcode scanners
points, halting bubbling, 122-123
Polygon, 425
Polyline, 424-425
PopInThemeAnimation, 469
PopOutThemeAnimation, 469
Popup, 401-403
popup controls, 397

MessageDialog, 397-399
Popup, 401-403
PopupMenu, 399-401

PopupMenu, 399-401
PopupThemeTransition, 459
portrait, 652
portrait-flipped, 652
position, layout, 68

Alignment, 69
content alignment, 70
FlowDirection, 71

Position, 655
PositionSource, 655
power easing functions, 491-493
PrepareFileTranscodeAsync, 379
Pressure, 145
previews

CaptureElement, 371-373
image scanners, 667-668

PreviousExecutionState, 169
launching apps, 169-170

primary XML namespace, 47
Print command, 596-601

adding custom options, 603
changing default options, 601-602
configuring displayed options, 602

PrintDocument, 596-598
PrintManager, 596
PrintTaskRequested, 599
processing rules, XAML (child object elements),

55-56
ProductLicenses, 211
ProductListings, 210
ProgressBar, 388
ProgressRing, 411-412
Project command, 606
projections, 79
properties

attached properties, 88-89
Background property, 127
binding to plain properties, 532
CancelCommandIndex property, 399
ClockIdentifier property, 411
content property, child object elements, 52
Content property, 48

RemoveFile 743

DefaultSectionIndex property, 405
hijacking for new purposes, 517
HorizontalChildrenAlignment, 101
IsEditable property, 267
ItemHeight property, 101
ItemWidth property, 101
MaximumRowsOrColumns, 101
NeighboringFilesQuery property, 622
Orientation property, 101
PhoneticName property, 704
PlaceholderText property, 266
RenderTransform property, 72
respecting, 514-516
SelectedItems, 268
SelectionMode, 267
Stretch property, 111
VerticalChildrenAlignment, 101
VideoSettings property, 371

property, order of, 45
property elements, XAML, 47-48
property paths, custom animations, 481-483
proportional sizing, 97
ProtocolActivatedEventArgs.Uri, 616
Protocol contracts, 623
providing suggestions, SearchBox, 391-392
proximity, 659-660

peer devices, 661-662
sending/receiving messages, 660-661

Pseudo Language, 32-33
pubCenter, 200

defining ad units, 200-202
publication, 581
pull updates, live tiles, 701
purchasing dialog, launching, 208-209
push notifications, 711-712

client-side code, 717-719
live tiles, 701
Push Notification Wizard, 712-713
server-side code, 713-715

Push Notification Wizard, 712-713

Q
quality, transcoding (MediaTranscoder), 378-379
query suggestions, SearchBox, 393-394
quick links, 595

R
radial gradients, 443
RadioButton, 245-246
RadiusX, 423
range controls, 387

ProgressBar, 388
SearchBox, 390-391

history suggestions, 392
local content suggestions, 395
providing suggestions, 391-392
query suggestions, 393-394
result suggestions, 395-396

Slider, 389-390
reading

BitmapProperties from decoders, 337
ImageProperties, 335-336
metadata with metadata query language,

338-339
reading metadata, decoding images, 335-339
receipts, validating from Windows Store, 218
receiving messages, proximity, 660-661
Rectangle, 422-423
RectangleGeometry, 428
red squiggles, 303
referencing resource files, 59
referencing files with URIs, Image element,

316-318
registering custom background tasks, 642-643
RelativeSource, Binding, 531
Remote Machine option, 8
RemoveFile, 626

rendering744

rendering, 538
data templates, 538-542
handwriting, 146-149
high-performance rendering, ListView and

GridView, 550
value converters, 543-546

rendering PDF content as an image, Image
element, 347-348

customizing page rendering, 350-353
rendering a PDF page, 348-350

RenderSize, 65
RenderTargetBitmap, generating dynamic

images, 325
RenderToStreamAsync, 349
RenderTransform, 422
RenderTransformOrigin, 72
RenderTransform property, 72
reordering items, ListView, 272
ReorderThemeTransition, 466
RepeatBehavior, 479-480
RepeatButton, 242
RepositionThemeAnimation, 470
RepositionThemeTransition, 464-465
representing session state, 173-174
RequestProductPurchaseAsync, 213
RequestUnconstrainedDownloadsAsync, 579
Requirements tab, package manifests, 16
resource, 316
ResourceDictionary, 508
resource files, referencing, 59
resource lookup, styles, 508-509
resource packages, leveraging (Image element),

329-330
resource qualifiers, 328
respecting

properties, 514-516
target control’s properties, templates, 511-516

responding to clicked toast notifications, 708
responding to changes, visual states, 520-522
restricting what is typed in text boxes, 307
result suggestions, SearchBox, 395-396
result TextBlock, 25
resuming apps, 166

retained-mode graphics, 451
RetrieveFeedAsync, 580
retrieving data

barcode scanners, 670-671
magnetic stripe readers, 672-673

RfcommDeviceService, 676
RichEditBox, 309-311
RichTextBlock, 296-297

embedding UIElements, 297-298
spelling and text predictions, 302-303
TextBox, 301-302
text overflow, 298-300

RightTapped, 131
pens, 145

RightToLeft, 91
VariableSizedWrapGrid, 103

roaming files
app data, 561
app files, 562

roaming settings, app data (app settings), 559
root object elements, XAML, 45
Rotated90DegressCounterclockwise, 652
Rotated180DegreesCounterclockwise, 652
Rotated270DegreesCounterclockwise, 652
RotateTransform, 73-74
rotation, orientation, 11
Round line cap, 426
routed events, 120
RowDefinition, 94
rows, sizing in Grid, 96-97
RowSpan, 94
RunAsync method, 182
running apps, 161

S
SatelliteData, 655
ScaleTransform, 74-76, 111, 474
ScaleX, 74
ScaleY, 74

SetPreviewPage 745

scaling, 67
content overflow, 111-114
Image element, 326

loading file variations automatically,
326-327

loading file variations manually, 329
logos, 14-16
Viewbox, 112

ScanData, 671
ScanDataLabel, 671
ScanDataType, 671
scheduled option, showing toast

notifications, 710
ScheduledToastNotification, 711
scheduled updates, live tiles, 700
screen readers, 37
screens, improving screen reading, 36-37
screensavers, turning off during media, 363
ScriptNotify, 418
ScrollBar, 106
scrolling

content overflow, 106-111
snap points, 109-111

scrolling placeholders, 551
ScrollIntoView, ListView, 270
ScrollViewer, 106

customizing, 106-107
panning and zooming, 140
SemanticZoom, 279
zooming, 114

SearchBox, 390-391
history suggestions, 392
local content suggestions, 395
providing suggestions, 391-392
query suggestions, 393-394
result suggestions, 395-396

Search command, 584
customizing Search Pane, 586-588
programmatically showing Search Pane,

588-589
Search Contract, 584-586

Search Contract, Search command, 584-586

Search Pane
customizing, 586-588
showing, 588-589

secondary tiles, 703-705
lock screen, 721

security checks, 40
SelectedIndex, 259
SelectedItem, 259
SelectedItems, 268
SelectedValue, 259
selection, ListView, 270-271
SelectionChanged, 267
SelectionMode, 267, 626
Selector, 259-260
Self, RelativeSource, 531
SemanticZoom, 276-279

ScrollViewer, 279
sending messages, proximity, 660-661
sensors, 647

accelerometer, 647-649
shake detection, 650
tossing motion, 649-650

compass, 651
gyrometer, 651
inclinometer, 651
light sensor, 651
location, 652

current location, 655-656
geofencing, 656-659

orientation, 652
proximity, 659-660

peer devices, 661-662
sending/receiving messages, 660-661

server-side code, push notifications, 713-715
session state

representing, 173-174
SuspensionManager, 173

SetAccountPictureAsync, 616
SetAccountPictureFromStreamAsync, 616
SetDefaultCharacterFormat, 310
SetPixelData, 342
SetPreviewPage, 600

SetPropertiesAsync746

SetPropertiesAsync, 347
SetSource, 325
Settings command, 606

handling links with SettingsPane, 608-610
showing links, 606-608

SettingsFlyout, 611
SettingsIdentifier, 626
SettingsPane, handling links, 608-610
shake detection, accelerometer, 650
Shape, 421-422

Ellipse, 423
Line, 423-424
Path, 425-426
Polygon, 425
Polyline, 424-425
Rectangle, 422-423
strokes, 426-428

Share command, 589
being a share source, 589-592
being a share target, 592-595

Share contracts, 614
ShareOperation, 595
share source, Share command, 589-592
share target, Share command, 592-595
sharing data, 592
sharing source with DataContext, Binding,

533-534
Show, 609
ShowAsync, 183
ShowError, 388
ShowIndependent, 610
showing

Search pane, 588-589
toast notifications, 710-711

showing/hiding software keyboards, 308
showing links, Settings command, 606-608
showing previews, CaptureElement, 371-373
ShowPaused, 388
ShowScrollingPlaceholders, 551
shrinking, 105
sideloaded apps, 220
SimpleOrientationSensor, 652
Simulator option, 8

simulators, 8
SineEase, 494
SingleUse, 657
size, layout

height, 64-65
Margin, 66-67
Padding, 66-67
width, 64-65

SizeChanged event handler, 84
sizing

absolute sizing, 96
autosizing, 97
percentage sizing, 97
proportional sizing, 97
rows and columns in Grid, 96-97

SkewTransform, 76
slashes (/), 318
Slider, 389-390
snap points, 109

scrolling, 110
sockets, networking, 579
software keyboard, TextBox, 304-306
software keyboards, 308
SolidColorBrush, 436-437
source, Appointments Provider Contract,

635-636
source property, Binding, 530
SourceRoot, 351
sources

Contact Contract, 631-632
Contact Picker, 628-629
image scanners, 666-667

Sources, 316
spaces in Geometry strings, 435
Span, 292-293
SpatialReferenceId, 655
special folders, user data, 570-571
speech synthesis, 383-384
Speech Synthesis Markup Language (SSML),

384-385
SpeechSynthesizer, 384
Speed, 655
SpeedRatio, 478-479

target action 747

spelling and text predictions, RichTextBlocks,
302-303

spelling errors, 303
SplashScreen, 169
splash screens, 29

customizing, 11-12
spline keyframes, 487-488
SplineXXXKeyframe, 487
SplitCloseThemeAnimation, 471
SplitOpenThemeAnimation, 471
Square 30x30 Logo, 13
Square 70x70 Logo, 13
Square 150x150 Logo, 13
SSML (Speech Synthesis Markup Language),

384-385
StackPanel, 90-91

child layout properties, 91
star sizing, 97
star syntax, 97
StartPeriodicUpdate, 701
StartTime, 657
states, playback (MediaElement), 359-360
static image-based wide templates, 694-696
static medium templates, 690
StaticResource, 508
static text-only wide templates, 693-694
static VisualStateManager, 523
StorageFile, 556
StorageFolder, 556, 571
Store Logo, 13
Storyboard, 466-468

tweaking with Timeline, 484-485
storyboards with multiple animations, 480-481
StreamSocket, 579
StreamWebSocket, 579
Stretch, 69
stretching with nine-grid feature, Image

element, 319-322
Stretch property, 111
strings, Geometry, 433-435
Stroke, 423
StrokeDashArray, 426-427
StrokeDashCap, 426
StrokeEndLineCap, 426

StrokeLineJoin, 426
StrokeMiterLimit, 426
strokes, Shape, 426-428
StrokeStartLineCap, 426
Style, 502
style inheritance, 504-505
styles, 499-503

BaseTargetType, 503
implicit styles, 505
resource lookup, 508-509
setting templates int, 517-518
style inheritance, 504-505
theme resources, 506-508

stylus. See pens
submitting apps to Windows Store, 40-41
subscriptions, 200
suspended apps, 161
suspending apps

deferral, 166
lifecycle, 164-165
Suspending event, 165-166

Suspending event, suspending apps, 165-166
SuspensionManager, 163, 174-175

session state, 173
SVG-to-XAML converters, 435
SwipeBackThemeAnimation, 470
SwipeHintThemeAnimation, 470
SymbolIcon, 236-237, 237
syndication, networking, 579-581
SystemConditionType, 646
System.GPS.XXX, 338
System.Image.XXX, 338
SystemMediaTransportControls, background

audio, 638-641
System.Photo.XXX, 338
System.XXX, 338

T
tap and send, 659
Tapped, 131
target action, SemanticZoom, 276

target control’s properties748

target control’s properties, templates, 511-516
target property, Binding, 530
TargetProperty, 482-483, 487
targets

Appointments Provider Contract, 636-637
Contact Contract, 633-635
Contact Picker, 630

targetsize-XXX, 328
TargetType, implicit styles, 506
Task, 183
technical checks, 40
TemplateBindingBackground, 515
templates, 499, 509

control templates, 510-511
tweaking, 518-519

data templates, rendering, 538-542
data versus control, 539
named elements, 528
setting inside styles, 517-518
target control’s properties, 511-516
tile templates, 688

image-based large templates, 696
large tile templates, 696
medium tile templates, 690
peek medium templates, 692
peek wide templates, 696
static image-based wide templates, 694-696
static medium templates, 690
static text-only wide templates, 693-694
text-only large templates, 696
wide tile templates, 693

toast templates, 706-707
template selectors, 543
temporary files, app files, 562
terminating MediaCapture, 373
terminating apps, 167
testing Windows Store features, 220-221

automated testing, 224-225
CurrentAppSimulator, 222-223

TextAlignment, 284

TextBlock, 37, 283
text controls

customizing text rendering, 284-287
text content, 289-291
text elements, 291-294
text selection, 294-295

whitespace, 291
TextBox, 301-302

InputScope, 304-306
RichTextBlocks, 301-302
software keyboard, 304-306
spelling and prediction, 302-303
text selection, 304

text content, TextBlock, 289-291
text controls, 283

PasswordBox, 311-312
RichEditBox, 309-311
RichTextBlock, 296-297

embedding UIElements, 297-298
text overflow, 298-300

RichTextBlocks
spelling and text predictions, 302-303
TextBox, 301-302

RichTextBlock. See RichTextBlock
TextBlock, 283

customizing text rendering, 284-287
text content, 289-291
text elements, 291-294
text selection, 294-295

TextBox, 301-302
InputScope, 304-306
software keyboard, 304-306
spelling and prediction, 302-303
text selection, 304

text elements, 291-294
text elements, TextBlock, 291-294
TextElements, 291
TextLineBounds, 284, 286-287
text-only large templates, 696-698
text overflow, RichTextBlock, 298-300
TextPointer, 295
TextReadingOrder, 285, 288

touch events 749

text rendering, customizing, 284-287
CharacterSpacing, 285-286
IsColorFontEnabled, 288-289
OpticalMarginAlignment, 287-288
TextLineBounds, 286-287
TextReadingOrder, 288

text selection
TextBlock, 294-295
TextBox, 304

text-to-speech, 383-384
TextTrimming, 284
TextWrapping, 284

versus AcceptsReturn, 302
theme animations, 466, 469-471

Duration property, 472
Storyboard, 466-468
tweaking, 471

ThemeResource, 507-508
theme resources, styles, 506-508
theme transitions, 455-456

AddDeleteThemeTransition, 462-464
applying to elements, 456-457
ContentThemeTransition, 460
EdgeUIThemeTransition, 460
EntranceThemeTransition, 457-459
PaneThemeTransition, 461-462
PopupThemeTransition, 459
ReorderThemeTransition, 466
RepositionThemeTransition, 464-465

themes, 228-229
default themes, 227

Thickness, 66
third-party payment systems, 200
threading, 181-183
threading model, 181-182

awaiting synchronous operations, 182-184
transitioning between threads, 185-186

ThreadPoolTimer, 495
threads

ASTA threads, 182
transitioning between, 185-186

Thumbnail property, 542
thumbnails, 557

TickPlacement, 389
tile brushes, 443-444

ImageBrush, 444-445
WebViewBrush, 446-450

TileID, 169
tile templates, live tiles, 688-690

image-based large templates, 696
large tile templates, 696
medium tile templates, 690
peek medium templates, 692
peek wide templates, 696
static image-based wide templates, 694-696
static medium templates, 690
static text-only wide templates, 693-694
text-only large templates, 696
wide tile templates, 693

time-based trials, 206
Timeline

animation, 480
tweaking Storyboard, 484-485

TimePicker, 410-411
TimeSpan, 475
Timestamp, 655
Title, 626
To, custom animations, 475-477
toast notifications, 705

alarm apps, 708-710
incoming call notifications, 708-710
options for showing, 710-711
responding to clicked, 708
toast templates, 706-707

toast templates, toast notifications, 706-707
ToggleButton, 243
ToggleMenuFlyoutItem, 280
ToggleSwitch, 412-413
ToolTip, 246-249
ToolTipService, 247
TopHeader, 109
tossing motion, accelerometer, 649-650
touch events, 118

touch input750

touch input, 118
gestures, 130-136

EdgeGesture, 135-136
GestureRecognizer, 131-134
UIElement gesture events, 136

manipulations, 136-137
inertia, 141
manipulation events, 137-140

pointers, 118
capturing pointers, 123-126
hit testing, 126-127
Pointer class, 119
PointerDevice class, 118-119
pointer events, 120-122
PointerPoint class, 119-120
PointerPointProperties class, 120
tracking multiple pointers, 127-130

points, halting bubbling, 122-123
tracking multiple pointers, 127-130
transcoding

Image element, 344-347
media, 378
MediaTranscoder

adding effects, 383
changing format, 381-382
changing quality, 378-379
trimming, 382-383

TransformGroup, 78
transitioning between threads, threading model,

185-186
transitioning from running to killing, lifecycle,

163-164
transitions

hidden managed-to-unmanaged code
transitions, 324

theme transitions. See theme transitions
TranslateTransform, 77, 474
translating languages, 33
TriggerConnectState, 662
triggering animation, 468-469
triggers, custom background tasks, 644-645
trimming, MediaTranscoder, 382-383
troubleshooting FadeInThemeAnimation, 471
TrySetFileName, 628

tweaking
control templates, 518-519
theme animation, 471

tweaking animations, 478
AutoReverse, 479
BeginTime, 478
FillBehavior, 480
RepeatBehavior, 479-480
SpeedRatio, 478-479

tweaking Storyboard with Timeline, custom
animations, 484-485

Twist, 145
TwoWay binding, 533
type conversion, child object elements, 54-55
type converters, XAML, 49

U
UI Accessibility Checker, 36
UIElement, 61, 65
UIElement gesture events, 136

mouse input, 144
UIElement keyboard events, keyboard input,

154-155
UIElements, RichTextBlock, 297-298
UI objects, 182
UI threads, 181
UI virtualization, 262
Update, 700
UpdateTile, 689
updating

live tiles, options for, 699-701
XAML

application definition, 24-29
main page logic, 23-24
main page user interface, 21-22

XAML code, 21
URIs

launching apps, programmatically, 176-177
referencing files, Image element, 316-318

USB devices, custom USB devices. See custom
USB devices

Windows.Graphics.Display.DisplayProperties 751

UserConsentVerifier, 664
user data, 555, 563

file picker, 564-567
folder picker, 567-570
libraries and special folders, 570-571

UserInformation, 616
user themes, 228-229

V
validating Windows Store receipts, 218-220
value converters, 546

rendering, 543-546
VariableSizedWrapGrid, 99-103

child layout properties, 103
RightToLeft, 103

vector graphics, 421, 451
Brushes. See Brushes
Geometry, 428-429

FillRule, 431
GeometryGroup, 432-433
PathFigure, 429
PathSegment, 429
representing as strings, 433-435

performance scalability, 451
Shape, 421-422

Ellipse, 423
Line, 423-424
Path, 425-426
Polygon, 425
Polyline, 424-425
Rectangle, 422-423
strokes, 426-428

VerticalAlignment, 69
VerticalChildrenAlignment, 101
VerticalScrollMode, 109
video, capturing

CameraCaptureUI, 370-371
MediaCapture, 376

VideoEncodingQuality, 380

VideoSettings property, 371
video stabilization, 361
Viewbox, 111-113
view model, 540
views, 186
VirtualKey, 157
VirtualKey.Menu, 155
Visual Assets tab, package manifests, 11

customizing logo images, 13-16
customizing splash screen, 11-12

VisualStateGroup, 523
Visual State Manager, 519-521
VisualStateManager, 519-521
visual states, 499, 519-520

responding to changes, 520-522
visual transitions, 523-527

Visual Studio, support for XAML and code-
behind, 57

visual transitions, visual states, 523-527
VSM (Visual State Manager), 519-521

W
Wait method, 184
WebAuthenticationBroker, 313
WebView, 413

capturing web content, 418
composing HTML with XAML, 416
composing JavaScript with C#, 417
navigation, 414-416

WebViewBrush, 446-450
whitespace, TextBlock, 291
Wide 310x150 Logo, 13
wide tile templates, 693
width, 64-65
Wi-Fi, custom Wi-Fi Direct devices, 684-686
Window.Current.Bounds, 85
windows, displaying multiple, 186-189
Windows.ApplicationModel.Store, 221
Windows.Graphics.Display.DisplayProperties, 87

window size and location752

window size and location, layout, 84-85
choosing minimum width, 85-86
discovering orientation, 86-87

Windows Store
certification process, 40-41
submitting to, 40-41
testing features, 220-221

automated testing, 224-225
CurrentAppSimulator, 222-223

validating receipts, 218-220
wizards, Push Notification Wizard, 712-713
WrapGrid, 263
WriteableBitmap, generating dynamic images,

322-325
writing

ImageProperties, 335-336
metadata, Image element, 343-344
pixel data, Image element, 341-342

X
XAML, 43-44

attributes, 44-45
C# and, 44-45

loading and parsing XAML at runtime,
56-57

naming XAML elements, 57
support for, 57-58

child object elements. See child object
elements

elements, 44-45
keywords, 59-60
markup extensions, 49-51
namespaces, 45-47
.NET, 55
property elements, 47-48
root object elements, 45
type converters, 49
updating

application definition, 24-29
main page logic, 23-24
main page user interface, 21-22

XAML code, updating, 21
XAML controls, 236
XamlTune, 435
XAML UI Responsiveness, 10
x:Boolean, 60
x:Class, 60
x:Double, 60
x:FieldModifier, 60
X:Int32, 60
x:Key, 60
XLIFF files, 32-33
XML, 10
xml:lang, 59
XML namespace, markup compatibility, 47
xml:space, 59
x:Name, 57, 60
x:Null, 60
x:StaticResource, 60
x:String, 60
x:Subclass, 60
x:TemplateBinding, 60
x:ThemeResource, 60
XTilt, 145
x:Uid, 60

Y
YTilt, 145

Z
ZIndex value, 90
ZoomFactor, 114
zooming, ScrollViewer, 114, 140
ZoomSnapPoints, 114
Z order, 90

This page intentionally left blank

OTHER UNLEASHED TITLES

C# 5.0 Unleashed

ISBN-13: 9780672336904

ASP.NET Dynamic

Data Unleashed

ISBN-13: 9780672335655

Microsoft System Center

2012 Unleashed

ISBN-13: 9780672336126

System Center 2012

Configuration Manager

(SCCM) Unleashed

ISBN-13: 9780672334375

Windows Server 2012

Unleashed

ISBN-13: 9780672336225

Microsoft Exchange

Server 2013 Unleashed

ISBN-13: 9780672336119

Windows 8.1 Apps with

HTML5 and JavaScript

Unleashed

ISBN-13: 9780672337116

Microsoft Visual Studio

2012 Unleashed

ISBN-13: 9780672336256

System Center 2012

Operations Manager

Unleashed

ISBN-13: 9780672335914

Microsoft Dynamics

CRM 2013 Unleashed

ISBN-13: 9780672337031

Microsoft Lync Server

2013 Unleashed

ISBN-13: 9780672336157

Visual Basic 2012

Unleashed

ISBN-13: 9780672336317

Microsoft Visual Studio

LightSwitch Unleashed

ISBN-13: 9780672335532

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts, and the most
in-depth coverage of the latest technologies.

informit.com/unleashed

informit.com/sams

XAML Unleashed

ISBN-13: 9780672337222

WPF 4.5 Unleashed

ISBN-13: 9780672336973

Windows 8.1 Apps with

XAML and C# Unleashed

ISBN-13: 9780672337086

UNLEASHED

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

	Table of Contents
	Introduction
	Who Should Read This Book?
	Software Requirements
	Code Examples
	How This Book Is Organized
	Conventions Used in This Book

	7 Threading, Windows, and Pages
	Understanding the Threading Model for Universal Apps
	Displaying Multiple Windows
	Navigating Between Pages
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

