A nm

In Full Color
John Ray

Figures and
code appear as they
do in Xcode 6.x

C i0s
overs 8, Swift,

and much more!

Additional files and
updates available
online

SamsTeach Yourself

10S 8
Application
Development

SAMS

FREE SAMPLE CHAPTER
"B EE N

SHARE WITH OTHERS


http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337239
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337239
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337239
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337239
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337239/Free-Sample-Chapter

John Ray

SamsTeachYourself

10S 8
Application
Development

ﬂ

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA




Sams Teach Yourself iOS 8 Application Development in 24 Hours

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 9780672337239

ISBN-10: 0672337231

Library of Congress Cataloging-in-Publication Data: 2015900442

Printed in the United States of America

First Printing March 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand
Senior Acquisitions
Editor

Laura Norman
Development
Editor

Mark Renfrow

Managing Editor
Sandra Schroeder

Project Editor
Seth Kerney

Indexer
Lisa Stumpf

Proofreader
Sarah Kearns

Technical Editor
Anne Groves
Publishing
Coordinator
Cindy Teeters

Book Designer
Mark Shirar

Compositor
Bronkella
Publishing, LLC



Contents at a Glance

HOUR 1

© 0 N O G A~ WOWDN

B R R R R
AW N PR O

15
16
17
18
19
20
21
22
23
24

Introduction

Preparing Your System and iDevice for Development
Introduction to Xcode and the iOS Simulator
Discovering Swift and the iOS Playground

Inside Cocoa Touch

Exploring Interface Builder

Model-View-Controller Application Design

Working with Text, Keyboards, and Buttons
Handling Images, Animation, Sliders, and Steppers
Using Advanced Interface Objects and Views

Getting the User’s Attention

Implementing Multiple Scenes and Popovers
Making Choices with Toolbars and Pickers
Advanced Storyboards Using Navigation and Tab Bar Controllers
Navigating Information Using Table Views and Split View
Controllers

Reading and Writing Application Data

Building Responsive User Interfaces

Using Advanced Touches and Gestures

Sensing Orientation and Motion

Working with Rich Media

Interacting with Other iOS Services

Implementing Location Services

Building Background-Ready Applications

Building Universal Applications

Application Tracing, Monitoring, and Debugging
Index

Online Appendix: Introducing Xcode Source Control

29

77
117
147
185
215
251
281
317
349
401
445

485
527
573
611
639
669
713
751
783
815
837
863



Table of Contents

Introduction

HOUR 1: Preparing Your System and iDevice for Development
Welcome to the iOS Platform
Becoming an iOS Developer
Running an iOS App
Developer Technology Overview
Further Exploration
Summary
Q&A
Workshop

Activities

HOUR 2: Introduction to Xcode and the iOS Simulator
Using Xcode
Using the iOS Simulator
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 3: Discovering Swift and the iOS Playground
Object-Oriented Programming and Swift
The Terminology of Object-Oriented Development
Exploring the Swift File Structure
Swift Programming Basics
Memory Management and Automatic Reference Counting
Introducing the iOS Playground
Further Exploration
Summary
Q&A

16
23
24
24
25
25
27

29
29
63
71
71
72
72
75

77
77
79
82
88
107
108
112
112
113



Workshop
Activities

HOUR 4: Inside Cocoa Touch

What Is Cocoa Touch?

Exploring the iOS Technology Layers
Tracing the iOS Application Life Cycle
Cocoa Fundamentals

Exploring the iOS Frameworks with Xcode
Further Exploration

Summary

Q&A

Workshop

Activities

HOUR 5: Exploring Interface Builder

Understanding Interface Builder
Creating User Interfaces

Customizing the Interface Appearance
Connecting to Code

Further Exploration

Summary

Q&A

Workshop

Activities

HOUR 6: Model-View-Controller Application Design

Understanding the MVC Design Pattern
How Xcode Implements MVC

Using the Single View Application Template
Further Exploration

Summary

Q&A

Workshop

Activities

113
116

117
117
119
126
127
135
143
143
143
144
146

147
147
154
164
170
179
180
181
181
184

185
185
187
191
209
210
210
210
213



vi Sams Teach Yourself iOS 8 Application Development in 24 Hours

HOUR 7: Working with Text, Keyboards, and Buttons
Basic User Input and Output
Using Text Fields, Text Views, and Buttons
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 8: Handling Images, Animation, Sliders, and Steppers
User Input and Output
Creating and Managing Image Animations, Sliders, and Steppers
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 9: Using Advanced Interface Objects and Views
User Input and Output (Continued)
Using Switches, Segmented Controls, and Web Views
Using Scrolling Views
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 10: Getting the User’s Attention
Alerting the User
Exploring User Alert Methods
Further Exploration
Summary
Q&A
Workshop
Activities

215
215
217
246
246
247
247
249

251
251
253
275
276
276
277
279

281
281
287
303
312
313
313
313
316

317
317
328
343
344
344
344
347



Contents vii

HOUR 11: Implementing Multiple Scenes and Popovers 349
Introducing Multiscene Storyboards 350
Using Segues 377
Popovers, Universal Applications, and iPhones 390
Further Exploration 395
Summary 396
Q&A 396
Workshop 396
Activities 399

HOUR 12: Making Choices with Toolbars and Pickers 401
Understanding the Role of Toolbars 401
Exploring Pickers 404
Using the Date Picker 412
Using a Custom Picker 425
Further Exploration 440
Summary 441
Q&A 441
Workshop 442
Activities 444

HOUR 13: Advanced Storyboards Using Navigation and Tab Bar Controllers 445

Advanced View Controllers 445
Exploring Navigation Controllers 447
Understanding Tab Bar Controllers 452
Using a Navigation Controller 458
Using a Tab Bar Controller 469
Further Exploration 479
Summary 480
Q&A 480
Workshop 481
Activities 483

HOUR 14: Navigating Information Using Table Views and Split View Controllers 485
Understanding Tables 486
Exploring the Split View Controller 495
A Simple Table View Application 498



viii Sams Teach Yourself iOS 8 Application Development in 24 Hours

Creating a Master-Detail Application 507
Further Exploration 521
Summary 522
Q&A 523
Workshop 523
Activities 525
HOUR 15: Reading and Writing Application Data 527
iOS Applications and Data Storage 527
Data Storage Approaches 530
Creating Implicit Preferences 539
Implementing System Settings 546
Implementing File System Storage 559
Further Exploration 567
Summary 568
Q&A 568
Workshop 569
Activities 571
HOUR 16: Building Responsive User Interfaces 573
Responsive Interfaces 573
Using Auto Layout 578
Programmatically Defined Interfaces 600
Further Exploration 607
Summary 607
Q&A 608
Workshop 608
Activities 610
HOUR 17: Using Advanced Touches and Gestures 611
Multitouch Gesture Recognition 611
Adding Gesture Recognizers 612
Using Gesture Recognizers 614
Further Exploration 635
Summary 635
Q&A 636
Workshop 636

Activities 638



Contents ix

HOUR 18: Sensing Orientation and Motion 639
Understanding Motion Hardware 639
Accessing Orientation and Motion Data 643
Sensing Orientation 647
Detecting Acceleration, Tilt, and Rotation 652
Further Exploration 663
Summary 664
Q&A 664
Workshop 664
Activities 666

HOUR 19: Working with Rich Media 669
Exploring Rich Media 669
The Media Playground Application 683
Further Exploration 708
Summary 709
Q&A 709
Workshop 710
Activities 712

HOUR 20: Interacting with Other iOS Services 713
Extending iOS Service Integration 713
Using the Address Book, Email, Social Networking, and Maps 730
Further Exploration 746
Summary 746
Q&A 746
Workshop 747
Activities 749

HOUR 21: Implementing Location Services 751
Understanding Core Location 751
Creating a Location-Aware Application 758
Further Exploration 777
Summary 778
Q&A 778
Workshop 778

Activities 781



Sams Teach Yourself iOS 8 Application Development in 24 Hours

HOUR 22: Building Background-Ready Applications 783
Understanding iOS Backgrounding 783
Disabling Backgrounding 789
Handling Background Suspension 790
Implementing Local Notifications 792
Using Task-Specific Background Processing 795
Completing a Long-Running Background Task 800
Performing a Background Fetch 806
Further Exploration 810
Summary 811
Q&A 811
Workshop 812
Activities 814

HOUR 23: Building Universal Applications 815
Universal Application Development 815
Size Classes 819
Further Exploration 833
Summary 834
Q&A 834
Workshop 834
Activities 836

HOUR 24: Application Tracing, Monitoring, and Debugging 837
Instant Feedback with NSLog 838
Using the Xcode Debugger 841
Further Exploration 858
Summary 859
Q&A 859
Workshop 859
Activities 862

Index 863

ONLINE APPENDIX A: Introducing Xcode Source Control



About the Author

John Ray currently serves as the Director of the Office of Research Information Systems

at The Ohio State University. He has written numerous books for Macmillan/Sams/Que,
including Using TCP/IP: Special Edition, Teach Yourself Dreamweaver MX in 21 Days, Mac OS

X Unleashed, My Yosemite MacBook, and Teach Yourself iOS 7 Development in 24 Hours. As a
Macintosh user since 1984, he strives to ensure that each project presents the Macintosh
with the equality and depth it deserves. Even technical titles such as Using TCP/IP contain
extensive information about the Macintosh and its applications and have garnered numer-
ous positive reviews for their straightforward approach and accessibility to beginner and
intermediate users.

You can visit his website at http://teachyourselfios.com or follow him on Twitter at
@johnemeryray or #iOSIn24.


http://teachyourselfios.com

Dedication

This book is dedicated to taking a long nap. Shhhhhh...

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Mark Renfrow—
and my Tech Editor, Anne Groves, for helping me survive this tumultuous year of updates.
From Yosemite, to Xcode 6.x, to Swift—Apple can’t seem to sit still for more than a few min-
utes. Getting these changes into a book, and getting them right, has been quite the chal-
lenge for the entire team. Thank you all!



We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: consumer@samspublishing.com

Mail:  Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.


mailto:consumer@samspublishing.com

This page intentionally left blank



Introduction

When you pick up an iOS device and use it, you feel connected. Whether it be an iPad, an
iPhone, or an iPod, the interface acts as an extension to your fingers; it is smooth, comfortable,
and invites exploration. Other competing devices offer similar features, and even sport gadgets
such as styluses and trackpads, but they cannot match the user experience that is iOS.

iOS and its associated development tools have changed rapidly over the past few years. iOS 7
brought us a new user interface that used depth and translucency to keep users connected to
their content and aware of the context in which they are accessing it. iOS 8 includes even more
refinement, but, perhaps more importantly, supports a brand new language for developing apps
— Swift.

Swift marks a dramatic change in the history of iOS and OS X development. With Swift, Apple
has effectively retired the Objective-C language - used on Apple and NeXT platforms for over 20
years. Swift promises to be a friendlier development platform with more modern language fea-
tures and tools. While in development for over four years at Apple, by the time this book reaches
you, Swift will have existed as a public programming language for only a few months.

In writing the revision to this book, we had to make some tough choices — we could remain
focused on Objective-C, or immediately shift to Swift. Swift is rapidly evolving, and changes with
each release of Xcode. Code that was written in one version of Xcode, sometimes breaks in the
next. Needless to say, Swift presented challenges - but that’s the direction we took. Swift is the
future of Apple development, and learning it now will give you a leg up on your Objective-C
compatriots. Will there be things that make you scratch your head? Yup, but I also think you’ll
find Swift much more fun (yes, really) to use than Objective-C.

When creating Swift and the iOS development platform, Apple considered the entire application
life-cycle — from the interface design tools, to the code that makes it function, to the presenta-
tion to the user — everything is integrated and works together seamlessly. As a developer, does
this mean that there are rules to follow? Absolutely. But, by following these rules, you can create
applications that are interactive works of art for your users to love—not software they will load
and forget.

Through the App Store, Apple has created the ultimate digital distribution system for iOS appli-
cations. Programmers of any age or affiliation can submit their applications to the App Store
for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-feature



2 Introduction

applications have been built for everything from pre-K education to retirement living. No matter
what the content, with a user base as large as the iPhone, iPod Touch, and iPad, an audience
exists.

My hope is that this book brings iOS development to a new generation of developers. Teach
Yourself'iOS 8 Development in 24 Hours provides a clear and natural progression of skills devel-
opment, from installing developer tools and registering your device with Apple, to debugging an
application before submitting it to the App Store. It's everything you need to get started - in 24
one-hour lessons.

Who Can Become an iOS Developer?

If you have an interest in learning, time to invest in exploring and practicing with Apple’s devel-
oper tools, and an Intel Macintosh computer running Mavericks, Yosemite, or later, you have
everything you need to begin creating software for iOS.

Developing an app won'’t happen overnight, but with dedication and practice, you can be writ-
ing your first applications in a matter of days. The more time you spend working with the Apple
developer tools, the more opportunities you'll discover for creating new and exciting projects.

You should approach iOS application development as creating software that you want to use,
not what you think others want. If you're solely interested in getting rich quick, you're likely to
be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of room—and
competition for top sales is fierce.) However, if you focus on building useful and unique apps,
you're much more likely to find an appreciative audience.

Who Should Use This Book?

This book targets individuals who are new to development for iOS and have experience using
the Macintosh platform. No previous experience with Swift, Cocoaq, or the Apple developer tools
is required. Of course, if you do have development experience, some of the tools and techniques
may be easier to master, but the author does not assume that you’ve coded before.

That said, some things are expected of you, the reader. Specifically, you must be willing to invest
in the learning process. If you just read each hour’s lesson without working through the tutorials,
you will likely miss some fundamental concepts. In addition, you need to spend time reading

the Apple developer documentation and researching the topics presented in this book. A vast
amount of information on iOS development is available, but only limited space in this book.
Therefore, this book covers what you need to forge your own path forward.



What Is (and Isn’t) in This Book? 3

What Is (and Isn’t) in This Book?

The material in this book specifically targets iOS release 8.1 and later on Xcode 6.1 and later.
Much of what you'll learn is common to all the iOS releases, but this book also covers several
important areas that have only come about in recent iOS releases, such as gesture recognizers,
embedded video playback with AirPlay, Core Image, social networking, multitasking, universal
(iPhone/iPad) applications, Auto Layout, Size Classes, and more!

Unfortunately, this is not a complete reference for the iOS application programming interfaces
(APIs); some topics just require much more space than this book allows. Thankfully, the Apple
developer documentation is available directly within the free tools you install in Hour 1, “Pre-
paring Your System and iDevice for Development.” In many hours, you’ll find a section titled
“Further Exploration.” This identifies additional related topics of interest. Again, a willingness to
explore is an important quality in becoming a successful developer.

Each coding lesson is accompanied by project files that include everything you need to compile
and test an example or, preferably, follow along and build the application yourself. Be sure to
download the project files from this book’s website at http://teachyourselfios.com. If you have
issues with any projects, view the posts on this site to see whether a solution has been identified.

In addition to the support website, you can follow along on Twitter! Search for #i0SIn24 on
Twitter to receive official updates and tweets from other readers. Use the hashtag #i0SIn24 in
your tweets to join the conversation. To send me messages via Twitter, begin each tweet with @
johnemeryray.


http://teachyourselfios.com

This page intentionally left blank



HOUR 3

Discovering Swift and the i0S
Playground

What You’ll Learn in This Hour:

» How Swift will be used in your projects

» The basics of object-oriented programming
» Simple Swift syntax

» Common Swift data types

» How to test your code in the iOS Playground

This hour’s lesson marks the midpoint in our exploration of the Apple iOS development plat-
form. It will give us a chance to sit back, catch our breath, and get a better idea of what it
means to “code” for iOS. Both OS X and iOS share a common development environment and a
common development language: Swift.

Swift provides the syntax and structure for creating applications on Apple platforms. Swift is a
brand-new language developed internally in Apple that still has that “new language smell,” but
also a few disconcerting knocks under the hood. It can seem a bit daunting at first, but after a
few hours of practice, you'll begin to feel right at home. This hour takes you through the steps
you need to know to be comfortable with Swift and starts you down the path to mastering this
unique and powerful language.

Object-Oriented Programming and Swift

To better understand the scope of this hour, take a few minutes to search for Swift or object-ori-
ented programming in your favorite online bookstore. You will find quite a few books—lengthy
books—on these topics. In this book, roughly 30 pages cover what other books teach in hun-
dreds of pages. Although it’s not possible to fully cover Swift and object-oriented development in
this single hour, we can make sure that you understand enough to develop fairly complex apps.

To provide you with the information you need to be successful in iOS development, this
hour concentrates on fundamentals—the core concepts that are used repeatedly throughout
the examples and tutorials in this book. The approach in this hour is to introduce you to a



78 HOUR 3: Discovering Swift and the iOS Playground

programming topic in general terms, and then look at how it will be performed when you sit
down to write your application. Before we begin, let’s look a bit closer at Swift and object-ori-
ented programming.

What Is Object-Oriented Programming?

Most people have an idea of what programming is and have even written a simple program.
Everything from setting your DVR to record a show to configuring a cooking cycle for your micro-
wave is a type of programming. You use data (such as times) and instructions (like “record”) to
tell your devices to complete a specific task. This certainly is a long way from developing for iOS,
but in a way the biggest difference is in the amount of data you can provide and manipulate
and the number of different instructions available to you.

Imperative Development

There are two primary development paradigms: imperative programming and object-oriented
programming. First, imperative programming (a subset of which is called procedural program-
ming) implements a sequence of commands that should be performed. The application follows
the sequence and carries out activities as directed. Although there might be branches in the
sequence or movement back and forth between some of the steps, the flow is from a starting con-
dition to an ending condition, with all the logic to make things work sitting in the middle.

The problem with imperative programming is that it lends itself to growing, without structure,
into an amorphous blob. Applications gain features when developers tack on bits of code here
and there. Often, instructions that implement a piece of functionality are repeated over and
over wherever something needs to take place. Procedural programming refers to an imperative
programming structure that attempts to avoid repetition by creating functions (or procedures)
that can be reused. This works to some extent, but long-term still often results in code bloat. The
benefit of this approach, however, is that it is quite easy to pick up and learn: You create a series
of instructions, and the computer follows them.

The Object-Oriented Approach

The other development approach, and what we use in this book, is object-oriented programming
(OOP). OOP uses the same types of instructions as imperative development but structures them
in a way that makes your applications easy to maintain and promotes code reuse whenever
possible. In OOP, you create objects that hold the data that describes something along with the
instructions to manipulate that data. Perhaps an example is in order.

Consider a program that enables you to track reminders. With each reminder, you want to store
information about the event that will be taking place—a name, a time to sound an alarm, a
location, and any additional miscellaneous notes that you may want to store. In addition, you
need to be able to reschedule a reminder’s alarm time or completely cancel an alarm.



The Terminology of Object-Oriented Development 79

In the imperative approach, you have to write the steps necessary to track all the reminders, all
the data in the reminders, check every reminder to see whether an alarm should sound, and so
on. It's certainly possible, but just trying to wrap your mind around everything that the applica-
tion needs to do could cause some serious headaches. An object-oriented approach brings some
sanity to the situation.

In an object-oriented model, you could implement a reminder as a single object. The reminder
object would know how to store the properties such as the name, location, and so on. It would
implement just enough functionality to sound its own alarm and reschedule or cancel its alarm.
Writing the code, in fact, would be very similar to writing an imperative program that only has
to manage a single reminder. By encapsulating this functionality into an object, however, we
can then create multiple copies of the object within an application and have them each fully
capable of handling separate reminders. No fuss and no messy code!

Most of the tutorials in this book make use of one or two objects, so don’t worry about being
overwhelmed with OOP. You'll see enough to get accustomed to the idea, but we're not going to
go overboard.

Another important facet of OOP is inheritance. Suppose that you want to create a special type
of reminder for birthdays that includes a list of birthday presents that a person has requested.
Instead of tacking this onto the reminder object, you could create an entirely new “birthday
reminder” that inherits all the features and properties of a reminder and then adds in the list of
presents and anything else specific to birthdays.

The Terminology of Object-Oriented
Development

OOP brings with it a whole range of terminology that you need to get accustomed to seeing in
this book (and in Apple’s documentation). The more familiar you are with these terms, the eas-
ier it will be to look for solutions to problems and interact with other developers. Let’s establish
some basic vocabulary now:

» Class: The code, usually consisting of a single Swift file, which defines an object and what
it can do.

» Subclass: A class that builds upon another class, adding additional features. Almost every-
thing you use in iOS development will be a subclass of something else, inheriting all the
properties and capabilities of its parent class.

» Superclass/parent class: The class that another class inherits from.



80

HOUR 3: Discovering Swift and the iOS Playground

Singleton: A class that is instantiated only once during the lifetime of a program. For
example, a class to read your device’s orientation is implemented as a singleton because
there is only one sensor that returns this information.

Obiject/instance: A class that has been invoked and is active in your code. Classes are the
code that makes an object work, whereas an object is the actual class “in action.” This is
also known as an instance of a class.

Instantiation: The process of creating an active object from a class.

Instance method: A basic piece of functionality, implemented in a class. For the reminder
class, this might be something like setAlarm to set the alarm for a given reminder.
Methods are, by default, available within the class they are defined and within other
classes defined in the same project.

Extensions: Provide a means of extending a class without modifying the class code itself.

Type method: Similar to an instance method, but applicable to all the objects created
from a class. The reminder class, for example, might implement a type method called
countReminders that provides a count of all the reminder objects that have been cre-
ated. If you're familiar with other OO languages, you may recognize this as a static method
or a class method.

Variable property: A storage place for a piece of information specific to a class. The name
of a reminder, for example, might be stored in a variable property. All variables have a
specific “type” that describes the contents of what they will be holding. Variable proper-
ties only differ from normal variables in where they are defined and where they can be
accessed.

Variable: A storage location for a piece of information. Unlike variable properties, a “nor-
mal” variable is accessible only in the method where it is defined.

Constant: A Swift constant is another type of variable, but one that cannot be modified
after it has been declared.

Parameter: A piece of information that is provided to a method when it is use. If you were
to use a setAlarm method, you would presumably need to include the time to set. The
time, in this case, would be a parameter.

Protocol: Protocols declare methods that can be implemented by a class—usually to pro-
vide functionality needed for an object. A class that implements a protocol is said to con-
form to that protocol. This is similar to a Java interface.

Self: A way to refer to an object within its own methods. When an instance method or
variable property is used in an application, it should be used with a specific object. If



The Terminology of Object-Oriented Development 81

you're writing code within a class and you want it to access one of its own methods or
variable properties, you can self to refer to the object. In Swift, self is usually implied
and only needs to be used explicitly in very specific circumstances.

It's important to know that when you develop for iOS you're going to be taking advantage of
hundreds of classes that Apple has already written for you. Everything from creating onscreen
buttons to manipulating dates and writing files is covered by prebuilt classes. You’ll occasionally
want to customize some of the functionality in those classes, but you'll be starting out with a
toolbar already overflowing with functionality.

Confused? Don’t worry! This book introduces these concepts slowly, and you'll quickly get a feel
for how they apply to your projects as you work through several tutorials in the upcoming hours.

What Is Swift?

For years, Apple development has centered on a decades-old language called Objective-C. Objec-
tive-C, while appealing to some, was about as far from a “modern” language as you could get.
Languages like Python and Ruby have sprung up and attracted legions of followers with their
simple syntax and focus on results, rather then esoteric concepts like memory management.
Swift is Apple’s answer to the call for a modern iOS and OS X development language.

Released in 2014, Swift carries with it many of the niceties of Objective-C, but loses much of the
baggage. The biggest issue with Swift is that it is still evolving, and developers (including yours
truly) are still trying to figure out the best way to use it. It will be several years before this churn
settles down—but, in the meantime, the core of Swift is fast, flexible, and easy to learn.

Swift statements are easier to read than other programming languages and can often be deci-
phered just by looking at them. For example, code that checks to see if two dates are equal
might be written like this:

if myBirthday.isEqualToDate (yourBirthday) {
// We're the same age!

}

It doesn’t take a very large mental leap to see what is going on in the code snippet. Throughout
the book, I will try to explain what each line of code is doing—but chances are you can pick up
on the intention just by reading the lines.

CAUTION

Case Counts

Swift is case sensitive. If a program is failing, make sure that you aren’t mixing case somewhere in
the code.




82 HOUR 3: Discovering Swift and the iOS Playground

Now that you have an idea of what OOP and Swift are, let’s take a look at how you’ll be using
them over the course of this book.

Exploring the Swift File Structure

In the preceding hour, you learned how to use Xcode to create projects and navigate their files.
As mentioned then, the vast majority of your time will be spent in the project group of Xcode,
which is shown for the MyNewApp project in Figure 3.1. You'll be adding methods to class files
that Xcode creates for you when you start a project or, occasionally, creating your own class files
to implement entirely new functionality in your application.

@08 P B A @ MyNewapp: Ready | Today at 12:11 PM = 00 m
BRRAaase=opo @ B B » ) s switt )
MyNewApp | sk
B 2 targets, 05 SDK 8.2 1 // AppDelegate.swift
3 MyNewhpp
vE |«
= AppDelogate.switt & // Created by John Ray on 12/22/14.
4 ViewControlier swift & // Copyright {c] 2014 John E. Ray. All rights reserved.
= i A
* Main.storyboard "
{5 Images. xcassats import UIKit

@UTApplicationMain
class Appbelegate: UIResponder, UIApplicationDelegate {

var window: UTWindow?

func applicationl(application: UIApplication, didF
INSObject: AnyObject]?) -= Bool {
#/ Override point for customization after application launch.
return true

n func appl LlRes application: UIApplication) {

n /4 Sent when the application is about to move from active to inactive state. This can
occur for certain types of temporary interruptions [such as an incoming phone call or
SMS message) or when the user quits the application and it begins the transition to
the background state.

» /4 Use this method to pause ongoing tasks, dissble timers, and throttle down OpenGL ES
frame rates. Games should use this method to pause the game,

+ OHE|@ -‘-- }

FIGURE 3.1
Most of your coding will occur within the files in your project group.

Okay, sounds simple enough, but where will the coding take place? If you create a new project
look, you'll see quite a few different files staring back at you.

Class Files

In Swift, a class is implemented within a single file with the .swift extension. This file contains
all of the variable/constant definitions, and all of the methods containing the application logic.
Other classes in your project will automatically be able to access the methods in this file, if
needed.

Let’s review the structure of an entirely made-up class file in Listing 3.1.



Exploring the Swift File Structure 83

LISTING 3.1 A Sample Interface File

1: import UIKit
2
3: class myClass: myParent, myProtocol {
4:
5 var myString: String = ""
6 var myOtherString: String?
7 var yetAnotherVariable: Float!
8 let myAge: Int = 29
9:
10: @IBOutlet weak var userOutput: UILabel!
11: @IBOutlet var anotherUserOutput: UILabel!
12:
13: class func myTypeMethod(aString: String) -> String {
14 : // Implement a Type method here
15: }
16:
17: func myInstanceMethod (myString: String, myURL: NSURL) -> NSDate? {
18: // Implement the Instance method here
19: }
20:
21: override func myOverriddenInstanceMethod () {
22: // Override the parent's method here
23: }
24 :
25: @IBAction func myActionMethod (sender: AnyObject)
26: // React to an action in the user interface
27: }
28:
29: }
CAUTION

Line Numbers Are for Reference Only!

In each hour, | present code samples like this one. Often, they include line numbers so that | can
easily reference the code and explain how it works. Swift does not require line numbers, nor will the
code work if you leave them in your application. If you see a line prefixed with a number and a colon
(#:), don’t type the line number prefix!

The import Declaration
1: import UIKit

First, in line 1, the interface file uses the import declaration to include any other files that our
application will need to access. The string UIKit designates a system framework that gives us
access to a vast majority of the classes.



84 HOUR 3: Discovering Swift and the iOS Playground

Whenever we need to import something, I explain how and why in the text. The UIKit example
is included by default when Xcode sets up your classes and covers most of what you need for this
book’s examples.

NOTE

Wait a sec, what’s a declaration? Declarations are commands that are added to your files that intro-
duce a new object or feature within the application. They don’t implement the logic that makes your
app work, but they are necessary for providing information on how your applications are structured
so that Xcode knows how to deal with them.

The class Declaration

The class declaration, shown in line 3, tells Xcode what class the file is going to be implement-
ing. In this case, the file should contain the code to implement myClass:

3: class myClass: myParent, myProtocol {

Notice that line 3 includes a few additional items as well: that is, myParent, myProtocol.
The class name (myClass) is always followed by a colon (:) and a list of the classes that this
class is inheriting from (that is, the parent classes) and any protocols it will be implementing. In
this example, myClass is going to by inheriting from myParent and will be implementing the
myProtocol protocol.

The class line ends with an opening curly brace {. All blocks of code are contained in curly
braces. The rest of the class code will follow this brace and eventually by terminated with a clos-
ing brace } (line 29).

NOTE

Protocol? What's a protocol? Protocols are a feature of Swift that sound complicated but really
aren’t. Sometimes you will come across features that require you to write methods to support their
use, such as providing a list of items to be displayed in a table. The methods that you need to write
are grouped together under a common name; this is known as a protocol.

Some protocol methods are required, and others are optional; it just depends on the features you
need. A class that implements a protocol is said to conform to that protocol.

Variable Properties Declarations

Lines 5-6 declare three different variable properties. A variable property is just a variable that
can be accessed from any method in the class, or from code within other classes.

5: var myString: String = ""

6: var myOtherString: String?
7: var yetAnotherVariable: Float!



Exploring the Swift File Structure 85

In this example, a variable named myString that contains a String is declared and initialized
with an empty string (""). A second String (myOtherString) is also declared, but designated
as “optional” with the ? modifier. A third variable property, yetAnotherVariable, is declared
as a floating-point number and set to be “implicitly unwrapped” by including the ! modifier.
We'll get to the point of these modifiers in a little bit. (They look confusing, but they have an
important role to play.)

NOTE

To retrieve a variable property from an object, you write <objectnames>.<variable propertys>
to access it. That means that if there is a property myProperty in an object myAmazingObject,
you type myAmazingObject .myProperty. This is known as dot notation.

What if you want to access the variable property from inside the class where it is defined? Simple.
You just refer to it by name (for example, myProperty). If you want to be overly pendantic, you can
also use self to refer to the current object, as in self.<variable propertys.

This will all be obvious once you start coding.

Getters and Setters/Accessors and Mutators

Variables in Swift don’t necessarily just store and retrieve static data. Your variables can declare
their own methods that define the information that is returned or committed to memory. This is done
by getters and setters (also called accessors and mutators). A “time” variable, for example, might
not store the time at all, but instead declare a custom “getter” that retrieves the time from the sys-
tem clock when it is accessed. We'll see this behavior a bit later in the book.

A Constant Declaration
Just below the variable properties is a constant declaration:

8: let myAge: Int = 29

This creates a constant (myAge) and sets it to the integer value 29. Constants declared alongside
variable properties (that is, outside of a method) are nearly identical to variable properties in
how they are used—but with one important difference—they can’t be changed or reassigned. In
other words, I'm 29 forever.

IBoutlet Declarations

Lines 9-10 are, yet again, variable property declarations, but they include the keyword IBOut -
let at the start. This indicates that they are going to be connected to objects defined within an
application’s user interface:

10: @IBOutlet weak var userOutput: UILabel!
11: @IBOutlet var anotherUserOutput: UILabel!

You learn more about IBOutlet in Hour 5, “Exploring Interface Builder.”



86 HOUR 3: Discovering Swift and the iOS Playground

TIP

The attribute weak that is provided with the wvariable declaration tells Xcode how to treat the
object when it isn’t in use. The weak attribute informs the system that the object it is referring to
can be cleaned up from memory when it isn’t being used anymore. It also avoids what is called a cir-
cular reference, where an object can’t be removed from memory, because it points to another object
that, in turn, points back to it. In general, try to declare your variables with the weak attribute.

Unfortunately, sometimes the system may be a bit overzealous in its desire to keep things clean for
us, and we need to leave weak out of the picture—thus creating a strong reference. (Lines 5-7, 8,
and 11 all declare strong references.) A strong reference means that the object will be kept in mem-
ory unless we explicitly tell the system to remove it or the object that contains it is removed from
memory. It's pretty rare that we need to worry about these, but I'll point it out when it's a concern.

Declaring Methods

The final pieces of the class file are the method declarations. Lines 13, 17, 21, and 25 declare
four methods that will be implemented in the class:

13: class func myTypeMethod(aString: String) -> String {
14: // Implement a Type method here

15: }

16:

17: func myInstanceMethod (myString: String, myURL: NSURL) -> NSDate? {
18: // Implement the Instance method here

19: }

20:

21: override func myOverriddenInstanceMethod () {

22: // Override the parent's method here

23: }

24:

25: @IBAction func myActionMethod (sender: AnyObject)
26: // React to an action in the user interface

27: }

Method declarations follow a simple structure. They begin with the word func, but can include
the prefix modifiers class and override. A method that begins with class func is a Type
method (often also referred to as a Class method). A method starting with override func is
one that is redefining a method already provided in a parent class. This indicates that rather
than inheriting functionality from a higher class, we're going to write our own logic.

In the example file, line 13 defines a Type method named myTypeMethod that returns a
String and accepts a String as a parameter. The input parameter is made available in a vari-
able called astring.

Line 14 defines an instance method named myInstanceMethod that returns an optional
NSDate object, taking a String and an NSURL as parameters. These are made available to the
code in the method via the variables myString and myURL. I'll rant about what optional values



Exploring the Swift File Structure 87

are and how to deal with them later in the hour. For the moment, just understand that by say-
ing this method has an optional return type, it may return an NSDate object, or nothing (nil).

Line 21 declares an instance method, myOverriddenInstanceMethod, that takes no param-
eters and returns no results. What makes this interesting is that it uses the keyword override to
indicate that it will be replacing a method provided by the parent class (mnyParent). When you
start defining methods in your classes, Xcode knows what methods are inherited, so the moment
you go to define a method provided by a parent class, it will automatically add the override
keyword for you.

The fourth instance method, myActionMethod, declared in line 25 differs from the others
because it defines an action, as indicated by the @IBAct ion keyword. Methods that begin with
@IBAction are called when the user touches a button, presses a switch, or otherwise inter-
acts with your application’s user interface (UI). These methods take a single parameter, usu-
ally denoted as sender that is set to whatever object the user interacted with. Just as with the
@IBOutlet mentioned earlier, you'll be learning much more about IBAction in Hour 5.

TIP

You will often see methods that accept or return objects of the type AnyObject. This is a special
type in Swift that can reference any kind of object and proves useful if you don’t know exactly what
you'll be passing to a method or if you want to be able to return different types of objects from a
single method.

TIP

You can add a text comment on any line within your class files by prefixing the line with two forward
slash characters: //. If you want to create a comment that spans multiple lines, you can begin the
comment with the characters /* and end with * /.

Ending the Class File

To end the class file, you just need a closing brace: }. You can see this on line 29 of the example
file:

29: }

Although this might seem like quite a bit to digest, it covers almost everything you'll see in a
Swift class file.



88 HOUR 3: Discovering Swift and the iOS Playground

Public Versus Private

If you’ve worked in other languages, you might be familiar with the concepts of public versus private
classes, methods, and variables. This lets you limit what can be accessed within a given class.
Swift does not (currently) have any consistent way to provide this functionality, but Apple assures us
it is coming. Thankfully, this is really only a concern when sharing code; so, it isn’t something that
will really impact most projects.

Structure for Free

Even though we’ve just spent quite a bit of time going through the structure of a Swift class file,
you're rarely (if ever) going to need to type it all out by hand. Whenever you add a new class

to your Xcode project, the structure of the file will be set up for you. What’s more, much of the
work of declaring variable properties and methods can be done visually. Of course, you still need
to know how to write code manually, but Xcode goes a long way toward making sure that you
don’t have to sweat the details.

When Is a Class Not a Class?

Not every “object” that you use in Swift will actually be an object. Swift includes data structures
called structs that you can think of as lightweight objects. A CGRect, for example, defines a rect-
angle on the screen and has a variety of variable properties used to describe it. You can use data
structures just like objects, and rarely give it another thought.

The biggest difference, from the perspective of a developer using an object versus a struct, is that if
you assign any one object to two variables, both variables will reference the same object. When you
assign a structure to two variables, each variable gets a unique copy of that structure.

Swift Programming Basics

We’ve explored the notion of classes, methods, and instance variables, but you probably still
don’t have a real idea of how to go about making a program do something. So, this section
reviews several key programming tasks that you'll be using to implement your methods:

» Declaring variables and constants

» Understanding built-in swift data types
» Making sense of optional values

» Initializing objects

» Using an object’s instance methods

» Making decisions with expressions

» Branching and looping



Swift Programming Basics 89

Declaring Variables and Constants

Earlier we documented what variable properties will look like in your Swift files, but we didn’t
really get into the process of how you declare them (or use them). Nor did we talk about vari-
ables within methods!

Whatever the purpose, you declare your variables using this syntax:

var <Variable Name>[: Variable Type] [Optional modifier] [ = Initialization]

Holy cow—that looks complicated! In practice, nearly everything but the var keyword and the

variable name are optional. I make a point of always trying to provide the variable type, but if
you don't, Swift will try to figure it out for you. The type is either a Swift data type or the name
of a class that you want to instantiate and use.

Let’s begin by taking a look at a few Swift data types and how they are declared and used.

Swift Data Types

Swift includes a number of data types that enable you to work with common types of informa-
tion. Most basic logic that we implement in this book will take advantage of one of these data

types:

» Int: Integers (whole numbers such as 1, 0, and -99).
» Float: Floating-point numbers (numbers with decimal points in them).
» Double: Highly precise floating-point numbers that can handle a large number of digits.

» string: Collections of characters (numbers, letters, and symbols). Throughout this book,
you'll often use strings to collect user input and to create and format user output.

» Bool: A Boolean value (that is, true or false), often used to evaluate conditions within
your code.

» Arrays: A collection of ordered values that are accessed via a numeric index.

> Dictionaries: A collection of key/value pairs. A given value is accessed by providing
its key.

Integers and Floating-Point Numbers

Let’s start with something easy: integers (Int) and floating-point numbers (Float or Double).
To declare an integer variable that will hold a user’s age, you might enter the following:

var userAge: Int

If you wanted, you could even initialize it with a value, all in the same line:

var userAge: Int = 30



90 HOUR 3: Discovering Swift and the iOS Playground

After a variable is declared, it can be used for assignments and mathematical operations. The
following code, for example, declares two variables, userAge and userAgeInDays, and uses
the first (an age in years) to calculate the second (the age in days):

var userAge: Int = 30

var userAgelInDays: Int
userAgeInDays = userAge * 365

Notice that for the userAgeInDays, I declare it, then use it later. You're welcome to do this, or
declare and initialize the variables on the exact same line.

Floating-point numbers work the same way—you declare them, then use them. A simple exam-
ple to calculate the circumference of a circle (circumference = diameter * 3.141), for example,
could be written like this:

var diameter: Float = 2.5

var circumference: Float = diameter * 3.141

Pretty easy, don’t you think? Swift data types have much more to offer as well. Let’s see what else
they can do!

NOTE

As | said earlier, everything but the var keyword and the variable name is optional in a variable
declaration. For example, the age calculation code could be written to leave out the variable type
entirely:

var userAge = 30
var userAgelInDays = userAge * 365

Swift will automatically figure out what the variable is based on the initialization. Personally, | prefer
including the variable type so that | can quickly see what each variable represents in my code.

Strings

Strings are one of the most frequently used Swift types in this book. You'll be using strings for
user input and output, data manipulation, and so on. As with every other variable, the life of a
string begins with a declaration and an initialization:

var myName: String = "John"

Here, a string (myName) is initialized to the value "John". Once initialized, the string can be
manipulated using a number of techniques. String concatenation (adding two or more strings
together) is performed with the addition (+) operator. To change myName to include my last
name, I'd write the following:

myName = myName + " Ray"



Swift Programming Basics 91

You can even use a process called string interpolation to combine existing Strings, values
returned by methods, and other Swift data types into a new String. Consider this line:

var sentence: String = "Your name is \ (myName) and you are \ (userAge) years old"

Here I've combined the myName string and userAge integer into a single string, assigned to

a new variable named sentence. Any time Swift encounters the pattern \ (<variable or
method name>) in your code, it takes the result, turns it into a string, and substitutes it in place
of the pattern. You can use this to quickly format strings based on other variables and methods.

In many languages, strings require special functions to check for equality. In Swift, the same
comparison operators you'd use to compare two numbers also work for strings. We'll look at
comparisons a bit later.

Boolean Values

A Boolean value has only two states—represented by true or false in Swift. Booleans are most
often used in comparisons, although some methods have Boolean parameters that you'll need
to supply. As expected, Booleans are initialized using the same pattern you've seen for numbers
and strings:

var myFlag: Bool = false

Arrays

A useful category of data type is a collection. Collections enable your applications to store mul-
tiple pieces of information in a single object. An Array is an example of a collection data type
that can hold multiple objects, accessed by a numeric index.

You might, for instance, want to create an array that contains all the user feedback strings you
want to display in an application:

var userMessages: [String] = ["Good job!", "Bad Job", "Mediocre Job"]

Notice that the word Array doesn’t even appear in the declaration and initialization? That’s
because all we need to do to declare an array is wrap the type we want to store (in this case,
String values) in square brackets. If I wanted an array of integers, I'd use a type of [Int] and
so on. The initialization values are provided as a comma-separated list enclosed in square brack-
ets; if you use [] alone, the array is initialized as empty.

To access the strings in the userMessages array, you use an index value. This is the number
that represents a position in the list, starting with 0. To return the "Bad job" message, we use
the number 1 (the second item in the list):

userMessages [1]



92 HOUR 3: Discovering Swift and the iOS Playground

You can also use the index to assign values to an array, replacing what is currently stored:

userMessages [1]="Try again"

Swift lets you add new items to the end of the list using the array’s append method. For exam-
ple, to add a new message (“Meh”) to the end of userMessages, I might write the following:

userMessages.append ("Meh")

There are several other means of accessing and modifying arrays that we’ll use over the course
of the next 21 hours.

Dictionaries

Like arrays, dictionaries are another collection data type, but with an important difference.
Whereas the objects in an array are accessed by a numeric index, dictionaries store information
as key/value pairs. The key is usually an arbitrary string, whereas the value can be anything
you want, even objects. If the previous userMessages array were to be created as a Diction-
ary instead, it might look like this:

var userMessages: [String:String] =
["positive":"Good job!", "negative":"Bad Job", "indifferent":"Mediocre Job"]

Similar to declaring the strings, I declare the dictionary without ever using the word dictionary.
Instead, I provide the type data types that will form the keys and values within square brack-
ets—for example, [<key data types>:<value data types>]. For the userMessage diction-
ary, I'm using keys that are strings, and values that are strings. The initialization is similar to an
array, but consists of the key, a colon (:), and then the value. Each key/value pair is separated
by a comma. Empty dictionaries can be created with the initializer [:].

To access a value in the dictionary, I index into userMessages just like an array, but using the
key rather than an integer. To access the “Bad Job” message (tied to the “negative” key), I could
type the following:

userMessages ["negative"]

Keys can also be used to modify or assign new values. Here the key “apathy” is assigned the
value “Meh”:

userMessages ["apathy"] = "Meh"

Dictionaries are useful because they let you store and access data in abstract ways rather than in
a strict numeric order.



Swift Programming Basics 93

TIP

Counting the Contents

Both dictionaries and arrays include a read-only variable property called count that returns the num-
ber of elements they’ve stored. The number of elements in the userMessages array (or dictionary),
for example, can be accessed with the expression: userMessages.count.

Object Data Types

Just about everything that you'll be working with in your iOS applications will be an object.
Onscreen text, for example, will be instances of the class UILabel. Buttons that you display are
objects of the class UIButton. You'll learn about several of the common object classes in the
next hour’s lesson. Apple has literally provided thousands of different classes that you can use to
store and manipulate data.

Objects are declared and initialized just like Swift data types. For example, to declare and create
a new instance of the UILabel class, you could use the following code:

var myLabel: UILabel = UILabel ()

Here, the initializer is UILabel (). This returns a new, ready-to-use instance of the UILabel
class. You can initialize all classes using this same syntax <class name> (), but most will
require additional setup after initialization. To speed things along, many will provide convenience
methods. Convenience methods speed the process of creating a new object by taking the basic
parameters needed to create and configure the object, all at once.

NOTE

When you read through the Xcode documentation (discussed in the next hour), you'll see initializa-
tion methods denoted with the function name init for Swift. This is the internal method name in
the class. It is automatically invoked by using the <class name> () syntax.

Convenience Methods

When we initialized the UILabel instance, we did create an object, but it doesn’t yet have any
of the additional information that makes it useful. Attributes such as what the label should say,
or where it should be shown on the screen, have yet to be set. We would need to use several of
the object’s other methods to really turn it into something ready to be displayed.

These configuration steps are sometimes a necessary evil, but Apple’s classes often provide a spe-
cial initialization method called a convenience method. These methods can be invoked to set up
an object with a basic configuration so that it can be used almost immediately.



94 HOUR 3: Discovering Swift and the iOS Playground

For example, the NSURL class, which you use later to work with web addresses, defines a con-
venience method called initWithString. We can use it to create a brand-new NSURL object,
complete with the URL, just by typing the following:

var 1iOSURL: NSURL = NSURL(string: "http://www.teachyourselfios.com/")!

This is where we (briefly) go off the tracks. Notice that nowhere in that line does initWith-
String appear. The initWithString method is the name of a convenience method in Objec-
tive-C. The method still goes by the same name when used in Swift, but it takes on a simplified
form.

The general rule of thumb is that, in Swift, the initWith is removed from the name of con-
venience method. Whatever remains of the name becomes the first named parameter of the
method. A named parameter, as you'll learn a bit later, is a parameter that requires you to spell
out its name in the method call (in this case, string).

Because Xcode supports autocompletion, it is usually pretty easy to start typing in a method
named and find it in the list that appears. Just keep in mind that what you see in the Xcode
documentation doesn’t necessarily apply to both Objective-C and Swift.

Type Conversion and Type Casting

In your adventures in Swift, you will encounter code that doesn’t quite work the way you want.
You'll find legacy CGFloat floating-point numbers that must be used in place of Swift Float.
You'll find places where you need to turn Floats into Ints, and vice versa. You'll even encoun-
ter objects that have no idea what they are. To get around these little snags, you'll likely employ
type conversion, or type casting.

Type Conversion

For most of the simple data types, you can convert between types by using the syntax: <Type
Name> (<Value to Converts). For example, if a method calls for a CGFloat and you have a
Float value (in the variable myFloat), you can convert it to the proper type with the following:

CGFloat (myFloat)

Swift does everything it can to silently bridge these older data types with the new built-in Swift
types—and it is usually very successful. Unfortunately, sometimes this manual conversion will
have to happen.

Another common circumstance is when a method returns an object of one type when it needs to
be another. When this happens, you must type cast the result.



Swift Programming Basics 95

Type Casting

Type casting takes an object of a higher-level class and tells Xcode which specific subclass it
should be. Some methods will return an object of the type AnyObject rather than a specific
type. Does this make any sense? Not really, but it happens often.

For example, the NSDate class includes several methods that return a date, but instead of being
of the type NSDate, they are of the type AnyObject. The NSDate type method distantPast is
one of these methods:

var myPastDate: NSDate = NSDate.distantPast () as NSDate

Because distantPast () results in an object of the type AnyObject, we must “tell” Xcode that
it is really an NSDbate by adding as NSDate to the end of the assigment. Using the syntax as
<class name> after any object will attempt to type cast that object as being of whatever class
you name.

After a variable is cast to an object of the correct type, we can interact with it directly as that
type. This looks a bit unusual, I know, but it will come in handy later in the book. It's easier to
understand when you see it in an actual application; so for the moment, just be aware that it is
an available development tool.

Constants

Constants are declared and initialized just like variables, except they begin with the keyword
let. For example, to create a constant named lastName that holds a String with my last
name, [ would write the following:

let lastName: String = "Ray"

The key difference between a constant and a variable is that constants, once assigned, cannot be
changed or reassigned. This, however, isn’t as limiting as you might think. When you assign an
object to a constant, you can access and modify all the variable properties in that object, execute
all its methods, and so on. It can still be used just like any other variable—you just can’t reas-
sign it later.

Constants are more efficient than variables and should be used in their place wherever possible.
I think you'll be surprised to find that we use more constants in our applications than actual
variables.

Optional Values

Possibly the most confusing, infuriating thing about Swift is the notion of optional values. In
theory, it’s really quite simple. If you've developed in other languages, you’'ve almost certainly
written code that thought it was working with a value, only to find that the value had never been



96 HOUR 3: Discovering Swift and the iOS Playground

set or that a method that was supposed to return a value didn’t. Making the assumption that we
know what is in a variable is dangerous, but it’s something that developers do every day.

In Swift, Apple decided that developers should acknowledge when they’re using a value that
might not contain what they expect. The result requires interesting additions to the development
process:

1. Method, variable, and constant declarations should state when they may not have, or may
not return, a value. These are known as optional values.

2. Why would a method programmed to return a result ever make that result optional? If the
method has bad input, or otherwise can’t complete the operation it is tasked with perform-
ing, it makes perfect sense to return “nothing”—represented in Swift using the keyword

nil.

3. When attempting to access methods or variables that are optional, developers must
unwrap the values. This means that the developer acknowledges that he or she knows
what is in a variable (or returned by a method), and wants to access and use the results.

Now, you might think to yourself, “Hey, I know what I'm doing, I'm not going to write any code
where I name a variable or method return type as optional! That would just be extra work!”
You're right, it is extra work—but it’s utterly unavoidable.

All the code that makes up the Cocoa Touch classes is being updated by Apple to denote which
variable properties and methods return optional values—and there are many (and the list is
growing). I could tell you stories about the number of times I've opened a project while writing
this book, only to find that Apple has changed a class somewhere that breaks the code I've writ-
ten. That'’s one of the difficulties of being an early technology adopter.

Okay, enough ranting. What does all of this actually mean in terms of coding?

Declaring Optionals
First, when declaring a variable, you can define it as optional by adding a ? after the type name:

var myOptionalString: NSString? = "John"

This also means that if the string isn’t immediately initialized, it automatically contains the

value nil.

NOTE

What the... It’s an Optional Value, But It Has a Value (nil)?!

Yes, this is as weird as it sounds. In Swift, nil represents literally nothing. When we need some
value to represent no value at all, nil is used. We can’t use something like an empty string (" ") or
0 because those are values. Get used to the idea of nil, because even though it is something, it is
also nothing. (Cue Seinfeld music.)




Swift Programming Basics 97

For method definitions, you denote an optional return value by adding ? after the return type.
In the sample class in Listing 3.1, I defined the method as having an optional return value of
NSDate using this syntax in the declaration:

func myInstanceMethod (myString: String, myURL: NSURL) -> NSDate? {

TIP

Optional Downcasting

You’'ve seen the syntax for downcasting, but consider what happens if the class you're downcasting
cannot be cast to what you want. In this case, your app is likely going to crash. To deal with this
scenario, you can create an optional downcast. With an optional downcast, if the downcast fails, the
resulting variable will contain nil.

To define a downcast operation as optional, simply add a ? to the end of the as keyword, as
follows:

var myPastDate NSDate? = NSDate.distantPast() as? NSDate

NOTE

Constants can also be assigned as optional using the same syntax as variables. Although this might
seem counterintuitive (don’t you assign a value when you create a constant?), it makes sense when
you consider that you might be assigning a constant to the return value of a method with an optional
return type.

Unwrapping and Implicit Unwrapping

After you've either created (or encountered Swift variables and methods) that are optional, you
need to know how to access them. Accessing optional values is called unwrapping in Swift. The
easiest, most brute-force way is to use optional values is to unwrap them by adding an exclama-
tion mark (!) to the end of their name.

In other words, each time I wanted to use the value in myOptionalString, I would reference it
as follows:

myOptionalString!

The same goes for the myInstanceMethod method. To use it, I might write a line like this:

var myReturnedDate: NSDate = myInstanceMethod("A cool string", myURL: iOSURL) !

The addition of the ! tells Xcode that we want to access the return value and that we don’t care
if it is nil. We can take this a step further by defining what is called an implicitly unwrapped



98 HOUR 3: Discovering Swift and the iOS Playground

optional. This is just an optional value that will always be unwrapped automatically when we
use it.

To create an implicitly unwrapped variable, you add a ! after the type name. For example, I
could write the preceding line of code using an implicitly unwrapped variable, like this:

var myReturnedDate: NSDate! = myInstanceMethod("A cool string", myURL: iOSURL)

This declares myReturnedDate as an optional NSDate variable, but one that will be implicitly
unwrapped. I can assign it the result of an optional method without unwrapping the return
value of the method (because both are optional). However, when I go to use myReturnedDate
elsewhere in my code, it will automatically be unwrapped for me—just as if I had put the ! after
it each time.

You really won’t be doing this very often, but Xcode is going to do it a lot when it writes code for
you. Why? Because every interface object that connects to your code will be referenced through
an implicitly unwrapped variable. An interface object may be nil before it is loaded, so it has to
be optional; but once your code is active, it should always have a value, and there’s no point in
hindering its use—thus, it is implicitly unwrapped for you.

Optional Binding
Another (gentler) way to deal with optional values is called optional binding. This is the assign-

ment of an optional value to a constant. If the assignment succeeds, the optional value is acces-
sible through the constant. If it fails, the optional value is nil.

Applying optional binding to the myOptionalString variable, I might write this simple logic
to test to see whether an optional value should be used:

if let stringValue:String = myOptionalString
// myOptionalString has a non-nil value.

This is a good approach for working with optionals in production-ready code. It gives you an
opportunity to react to situations where optionals are set to nil and errors may have arisen. If
you unwrap an optional and try to work with it even if it is nil, you may crash your code.

For most of the examples in the book, I manually unwrap values with | because the code is
simple and we know how the different components are going to interact. In apps bound for the
App Store, I recommend using optional binding to trap for error conditions that you may not
have anticipated.



Swift Programming Basics 99

TIP

Optionals: Don’t Be Scared

Optionals exist to help protect you from making bad assumptions in your code. At times, you'll feel
like every single method or variable property you use has been declared as optional—and you’ll like-
ly start to think that your hair is optional as well. The good news is that Xcode recognizes optional
values throughout Cocoa Touch and will prompt you if you’re missing the required ? or ! characters.
In most cases, it will even correct simple optional unwrapping errors for you.

Don’t feel like you need to start memorizing the tens of thousands of optional values in Cocoa
Touch. Xcode knows, and it will let you know.

Using Methods

You've already seen how to declare and initialize objects, but this is only a tiny picture of the
methods you’ll be using in your apps. Let’s start by reviewing the syntax of calling methods in
Swift.

Method Syntax

To use a method, provide the name of the variable that is referencing your object followed by
the name of the method, followed by a period, the name of the method, and empty parentheses
() (empty if there are no parameters). If you're using a type (class) method, just provide the
name of the class rather than a variable name:

<object variable or class names>.<method names ()

Things start to look a little more complicated when the method has parameters. A single param-
eter method call looks like this:

<object variable or class names>.<method names> ([parameter:]<parameter values>)

Earlier I noted that convenience initialization methods will usually include at least one named
parameter, such as string when initializing an NSURL object:

var i0OSURL: NSURL = NSURL(string: "http://www.teachyourselfios.com/") !

This is important to note because the style of using an initial named parameter is only really
used in convenience initialization methods. In other (general use) methods, the first parameter is
just provided as a value.

TIP

If you aren’t sure whether the first parameter to a method is named or not, the Xcode documenta-
tion can help. If the first character after the parenthesis in a Swift method definition is an under-
score (_), that parameter is not named. You'll learn all about the documentation system in the next
hour.




100 HOUR 3: Discovering Swift and the iOS Playground

For example, let’s look at a method that takes multiple parameters:

var myFullName: String = "John Ray"
var myDescription: String =
myFullName.stringByReplacingOccurrencesOfString (myFullName, withString: "is awesome!")

This code fragment stores my name in the myFullName variable, then uses the stringBy
ReplacingOccurrencesOfString:withString method to change my last name from “Ray”
to “is awesome!”

In this example, the first parameter to the stringByReplacingOccurrencesOfString:with-
String method has no name; I just put in the value (myFullName). The second parameter does
have a name (withString:), which must be provided along with the value.

The syntax for multiple parameter method calls looks like this:

<object variable or class names>.<method names ( [parameter:]<parameter values,

<parameters>:<parameter value>, <parameters:<parameter value> ...)

NOTE

At the time of this writing, it was very difficult to break lines in Swift without literally breaking the
code. I've found that you can break lines around assignment statements (<blah> = <blah>) as
long as there are spaces around the =, as well as after a comma (, ) in lists of parameters.

NOTE

Throughout the lessons, methods are referred to by name. If the name includes a colon (:), this indi-
cates a required named parameter. This is a convention that Apple has used in its documentation
and that has been adopted for this book.

Making Sense of Named Parameters

If you've gotten to this point and you aren’t sure what a named parameter is, | am not surprised. To
work, methods take parameter values as input. A named parameter is just a string, followed by a
colon, that provides context for what a given value is or does. For example, a method that looked like
this doesn’t really tell you much:

myString.stringByReplacingOccurrencesOfString (Stringl, String2)

Is Stringl replacing String2? Vice versa?

By making the second parameter a named parameter, it becomes obvious:
myString.stringByReplacingOccurrencesOfString (Stringl, withString:String2)

The named parameter, withString:, shows us that String2 will be used to replace Stringl.

This also shows why the first parameter is rarely named: because the name of the method itself
implies that the first parameter is a string that is going to be replaced.




Swift Programming Basics 101

Chaining

Something that you'll see when looking at Swift code is that often the result of a method is used
directly as a parameter within another method. In some cases, if the result of a method is an
object, a developer may immediately use a method or variable property of that object without
first assigning it to a variable. This is known as chaining.

Chaining results directly eliminates the need for temporary variables and can make code shorter
and easier to maintain.

For example, consider this completely contrived code:

var myString: String = "JoHN ray"

myString = myString.lowercaseString

myString = myString.stringByReplacingOccurrencesOfString("john", withString: "will")
myString = myString.capitalizedString

Here I've created a string (myString) that holds my name with very very poor capitalization. I
decide that I want to replace my first name (John) with my brother’s name (Will). Because I can-
not just search and replace on John because my capitalization is all messy and I don’t want to
try to remember how I wrote my name (this is contrived folks), I decide to first convert myString
to lowercase by accessing the lowercaseString variable property. Once complete, I can just
search for john and replace it with will without worrying about capitalization. Unfortunately,
that means I still need a properly capitalized version of the string when I'm done. So, I access
the capitalizedString variable property of my string when finished, and use its value for
myString. (In case you're wondering, capitalizedString provides a copy of the string with
all of the first letters capitalized.)

The code should make sense, even if my logic is a bit shaky. That said, each of the methods and
variable properties I've used return a string. Instead of assigning things over and over, I can
chain each of these actions together into a single line:

var myString: String = "JoHN ray".lowercaseString.stringByReplacingOccurrencesOf
wString("john", withString: "will").capitalizedString

Chaining can be a powerful way to structure your code, but when overused it may lead to lines
that can be difficult to parse. Do what makes you comfortable; both approaches are equally
valid and have the same outcome.

TIP

Although | tend to leaved chained lines unbroken in my projects, you can break a chained line with-
out causing an error if you break it immediately before one of the periods.




102 HOUR 3: Discovering Swift and the iOS Playground

Optional Chaining

Time for optionals to rear their head one more time this hour. As you've just seen, chaining can be
a great way to use values without lots of temporary variables and multiple lines of code. What hap-
pens, however, if one of the values (the results of a method, or a variable property) in the middle of
the chain is optional? You can unwrap the values using ! and hope that they do exist, or you can
take advantage of optional chaining. In optional chaining, you can write out your chain, placing a ?
after optional values. This allows the full chain to be evaluated, even if a value is missing some-
where in the middle. For example, assume | wrote a line of code like this:

myObject.optionalMethod () ! .variableProperty.method ()

If the optionalMethod () ! in the middle didn’t return what | was expecting, | wouldn’t be able
to access variableProperty or the subsequent method (). To get around this, | can write the
chain as follows:

myObject.optionalMethod () ?.variableProperty.method ()

Doing this allows the line to be executed and fail gracefully. If optionalMethod () does not return
a usable object, the entire line returns nil, which can be trapped and dealt with as you learned
earlier.

Closures

Although most of your coding will be within methods, you will also encounter closures when
using the iOS frameworks. Sometimes referred to as handler blocks in the Xcode documentation,
these are chunks of code that can be passed as values when calling a method. They provide
instructions that the method should run when reacting to a certain event.

For example, imagine a personInformation object with a method called setDisplayName
that would define a format for showing a person’s name. Instead of just showing the name,
however, setDisplayName might use a closure to let you define, programmatically, how the
name should be shown:

personInformation.setDisplayName ({ (firstName: String, lastName: String) in

// Implement code here to modify the first name and last name

// and display it however you want.

3]

Interesting, isn't it? Closures are relatively new to iOS development and are used throughout this
book. You'll first encounter closures when writing alerts. The closure will provide the instructions
that are executed when a person acts on an alert.

Expressions and Decision Making

For an application to react to user input and process information, it must be capable of making
decisions. Every decision in an app boils down to a true or false result based on evaluating a set
of tests. These can be as simple as comparing two values, to something as complex as checking
the results of a complicated mathematical calculation. The combination of tests used to make a
decision is called an expression.



Swift Programming Basics 103

Using Expressions

If you recall your high school algebra, you'll be right at home with expressions. An expression
can combine arithmetic, comparison, and logical operations.

A simple numeric comparison checking to see whether a variable userage is greater than 30
could be written as follows:

userAge>30

When working with objects, we need to use variable properties within the object and values
returned from methods to create expressions. If I have stored an NSDate object with my birthday in
it (myBirthday), I could check to see whether the current day is my birthday with the expression:

myBirthday.isEqualToDate (NSDate())

Expressions are not limited to the evaluation of a single condition. We could easily combine the
previous two expressions to find a person who is over 30 and is celebrating their birthday today:

userAge > 30 && myBirthday.isEqualToDate (NSDate ())

Common Expression Syntax

() Groups expressions together, forcing evaluation of the innermost group first.

== Tests to see whether two values are equal (for example, userAge == 30).

1= Tests to see whether two values are not equal (for example, userAge != 30).

&& Implements a logical AND condition (for example, userAge > 30 && userAge < 40).

| Implements a logical OR condition (for example, userAge > 30 || userAge < 10).
! Negates the result of an expression, returning the opposite of the original result. (For exam-
ple, ! (userAge == 30) is the same as userAge != 30.)

It's good practice to put spaces on either side of the symbols you use for comparisons—especially
when using ! =. Recall that a ! also indicates that a value should be unwrapped, so Xcode can be eas-
ily confused into thinking you want to unwrap something when really you're just testing for inequality.

As mentioned repeatedly, you're going to be spending lots of time working with complex objects
and using the methods within the objects. You cannot make direct comparisons between objects
as you can with simple data types. To successfully create expressions for the myriad objects
you'll be using, you must review each object’s methods and variable properties.

Making Decisions with if-then-else and switch Statements

Typically, depending on the outcome of the evaluated expression, different code statements are
executed. The most common way of defining these different execution paths is with an if-
then-else statement:

if <expression> {

// do this, the expression is true.



104 HOUR 3: Discovering Swift and the iOS Playground

} else {
// the expression isn't true, do this instead!

For example, consider the comparison we used earlier to check a myBirthday NSDate variable
to see whether it was equal to the current date. If we want to react to that comparison, we might
write the following:

if myBirthday.isEqualToDate (NSDate()) {
let myMessage: String = "Happy Birthday!"
} else {
let myMessage: String = "Sorry, it's not your birthday."

Another approach to implementing different code paths when there are potentially many differ-
ent outcomes to an expression is to use a switch statement. A switch statement checks a vari-
able for a value and then executes different blocks of code depending on the value that is found:
switch (<some values>) ({
case <value option 1>:
// The value matches this option
case <value option 2>:
// The value matches this option

default:
// None of the options match the number.

Applying this to a situation where we might want to check a user’s age (stored in userage) for
some key milestones and then set an appropriate userMessage string if they are found, the
result might look like this:

switch userAge {

case 18:
let userMessage: String = "Congratulations, you're an adult!"
case 21:
let userMessage: String = "Congratulations, you can drink champagne!"
case 50:
let userMessage: String = "You're half a century old!"
default:
let userMessage: String = "Sorry, there's nothing special about your age."

Repetition with Loops

In some situations, you will need to repeat several instructions over and over in your code.
Instead of typing the lines repeatedly, you can loop over them. A loop defines the start and end
of several lines of code. As long as the loop is running, the program executes the lines from top



Swift Programming Basics 105

to bottom and then restarts again from the top. The loops you'll use are of two types: for loops
and condition-based while/do-while loops.

for Loops

In a for loop, the statements are repeated a (mostly) predetermined number of times. You might
want to count to 1000 and output each number, or create a dozen copies of an object. These are
perfect uses for a for loop.

The for loop you'll encounter most often consists of this syntax:

for <initializations>;<test conditions;<count updates {
// Do this, over and over!

The three “unknowns” in the for statement syntax are a statement to initialize a counter vari-
able to track the number of times the loop has executed, a condition to check to see whether
the loop should continue, and finally, an increment for the counter. A loop that uses the integer
variable count to loop 50 times could be written as follows:

for var count=0;count<50;count=count+1 {
// Do this, 50 times!

The for loop starts by setting the count variable to 0. The loop then starts and continues as
long as the condition of count<50 remains true. When the loop hits the bottom curly brace (})
and starts over, the increment operation is carried out and count is increased by 1.

NOTE

Integers are usually incremented by using ++ at the end of the variable name. In other words, rather
than using count=count+1, most often you’ll encounter count++, which does the same thing.
Decrementing works the same way, but with --.

for loops can also iterate over collections using the following syntax:

for <variable> in <collection> ({
// Do this for each value in the collection, where <variable> contains the value

Consider the array of messages we created earlier in the hour:

var userMessages: [String] = ["Good job!", "Bad Job", "Mediocre Job"]

To loop over this array of messages, we can write a “for in” loop as follows:

for message in userMessages {
// The message variable now holds an individual message



106 HOUR 3: Discovering Swift and the iOS Playground

The same applies to dictionaries as well, but the syntax changes just a little bit. If userMes-
sages is defined as a dictionary:

var userMessages: [String:String] =
["positive":"Good job!", "negative":"Bad Job", "indifferent":"Mediocre Job"]

We can loop over each key/value pair like this:

for (key, value) in userMessages ({
// The key and value variables hold an individual dictionary entry

while and do-while Loops

In a condition-based loop, the loop continues while an expression remains true. You’ll encounter
two variables of this loop type, while and do-while:

while <expressions> {

// Do this, over and over, while the expression is true!

and

do {
// Do this, over and over, while the expression is true!

} while <expressions>

The only difference between these two loops is when the expression is evaluated. In a standard
while loop, the check is done at the beginning of the loop. In the do-while loop, however, the
expression is evaluated at the end of every loop. In practice, this difference ensures that in a do-
while loop, the code block is executed at least once; a while loop may not execute the block at
all.

For example, suppose that you are asking users to input their names and you want to keep
prompting them until they type John. You might format a do-while loop like this:
do {
// Get the user's input in this part of the loop
} while userName != "John"

The assumption is that the name is stored in a string called userName. Because you wouldn’t
have requested the user’s input when the loop first starts, you would use a do-while loop to put
the test condition at the end.

Loops are a very useful part of programming and, along with the decision statements, will form
the basis for structuring the code within your object methods. They allow code to branch and
extend beyond a linear flow.



Memory Management and Automatic Reference Counting 107

Although an all-encompassing picture of programming is beyond the scope of this book, this
should give you some sense of what to expect in the rest of the book. Let’s now close out the hour
with a topic that causes quite a bit of confusion for beginning developers: memory management.

Memory Management and Automatic
Reference Counting

In the first hour of this book, you learned a bit about the limitations of iOS devices as a plat-
form. One of the biggies, unfortunately, is the amount of memory that your programs have
available to them. Because of this, you must be extremely judicious in how you manage mem-
ory. If you're writing an app that browses an online recipe database, for example, you shouldn'’t
allocate memory for every single recipe as soon as your application starts.

In the latest Xcode releases, Apple has implemented a new compiler called LLVM, along with a
feature known as Automatic Reference Counting (ARC). ARC uses a powerful code analyzer to
look at how your objects are allocated and used, and then it automatically retains and releases
them as needed. When nothing is referencing an object, ARC ensures it is automatically removed
from memory. No more retain or release messages to be sent, no more phantom crashes and
memory leaks; you just code and it works.

For most objects you declare and use in a method, you do not need to do anything; when the
method is finished, there are no more references to the object, and it is automatically freed. The
same goes for variable properties you've declared with the weak attribute. Of course, it’s hyperbole
to say that errors won’t happen with ARC; we have to use strong references in a few places in this
book to keep iOS from deciding that we have finished with an object before we actually do.

When using a variable property that has a strong reference, you should tell Xcode that you're
finished using an object if you want it removed from memory. How do you do that? Easy: by set-
ting its reference to nil.

For example, assume we’ve created a giant object called myMemoryHog:

var myMemoryHog: SomeHugeObject? = SomeHugeObject ()

To tell Xcode when we're done using the object and let it free up the memory, we would type the
following:

myMemoryHog = nil

Once the huge object isn’t directly reference by any variables, it can be removed from memory,
and all will be well with the world.

You've learned quite a bit in this hour’s lesson, and there are plenty of places for even the most
experienced developer to make mistakes. As with everything, practice makes perfect, which is
why our final topic focuses on a tool that makes practicing Swift fun.



108 HOUR 3: Discovering Swift and the iOS Playground

Introducing the i0OS Playground

For a new developer, getting started with a language can be a pain. You've got to figure out how
to create new projects, understand how a bunch of development tools work, and if you're lucky,
after a few hours you might get “Hello World” to display on your screen.

When Apple introduced Swift in Xcode 6, they realized that developers would need a way to get
their feet wet (or hands dirty, if you prefer) without all the steps of creating new iOS applica-
tions. Heck, why would you want to try building an application if you aren’t sure you're even
going to be writing code that works? Therefore, the iOS Playground was born. The Playground
gives you an area to type in experimental code and see the result—immediately—without even
pressing a Run button.

Creating a New Playground

As a first step, you'll need to create a new Playground. We'll be using the Playground through-
out the book, so understanding this process is a must.

To create a new Playground, choose File, New, Playground from the Xcode menu, as shown in
Figure 3.2.

@ Xcode Edit View Find MNavigate Editor Product Debug Source Control Window Help

Add Files to *DocExampla”...

Open...
Open Recent
Open Quickly...

Close Window s ~agN
Close Tab

Close "ViewController.swift”
Close Project

LHEN
Group from Selection

Save

Duplicate...
Revert to Saved...
Unlock...
Export...

Show in Finder
Open with External Editor

Save As Workspaca...
Project Settings...

Create Snapshot...
Restore Snapshot...

Page Setup...
Print...

FIGURE 3.2
Create a new Playground from the Xcode File, New menu.

When prompted, provide a name for the playground and make sure that the platform is set to
iOS, as demonstrated in Figure 3.3. The name can be anything you'd like. Unlike a project, a
Playground creates a single file, so it’s easy to rename later. Click Next to continue.



Introducing the iOS Playground 109

Choose options for your new file:

Name MyP[aywound

Platform:  10S
Cancel Previous Next
FIGURE 3.3

Name the playground and set the Platform to iOS.

Finally, choose where the Playground will be saved, and then click Create. After a few seconds,
the Playground window opens, as shown in Figure 3.4.

[ N @ MyPlayground.playground
Bl < >| m MyPlayg playground » No Sel
1 |/ Playground - noun: a place where people can play
: import UIKit
E var str = "Hello, playground" "Hello, playground”
FIGURE 3.4

The new playground opens, already populated with some sample code.



110 HOUR 3: Discovering Swift and the iOS Playground

Using the Playground

When the Playground first opens, it already contains some sample code that imports the UIKit
framework and defines a variable named stxr. You can safely delete the str line if you'd like,
but I recommend that you leave the import statement at the top. This adds access to most of
the objects and methods you'll need to actually do anything useful in the playground.

So, what do you do now? You play. Any code that you enter is immediately evaluated and the
results appear in the margin on the right.

For example, remember the calculation of a person’s age in days? Try typing this code into the
playground:
var userAge: Int = 30

var userAgeInDays: Int
userAgelInDays = userAge * 365

As you type the lines, watch what happens in the margin on the right. For the first statement,
declaring userAge, you'll see 30 appear in the margin because the variable contains the value
30. The second line won'’t generate any output because it doesn’t contain anything yet. The third
line, however, calculates and stores the age in days, which is displayed in the margin (10,950, if
you're interested). You can see this in Figure 3.5.

Variable Contents

[ N = MyPlayground.playground —|Edited
B < > | B MyPlayg ground ) No
1 // Playground - noun: a place where people can play
3  import UIKit
5 var str = "Hello, playground" Hello, playground
[
8 var userAge: Int = 3@ 30
9 wvar userAgeInDays: Int
10 userAgeInDays = userAge * 365 10,850
1n
12
1| |
FIGURE 3.5

The contents of your variables are shown on the right.

Generating and Inspecting Output

The iOS Playground can be used to generate and display output as well as inspect variables.
Later in the book, we’ll use it to examine the contents of web pages retrieved by our code (and
in a variety of other exercises). A simple way to generate output in Swift, however, is to use the



Introducing the iOS Playground 111

print (<String>) or println(<Strings>) functions. These take a string as an argument and
print it—with print1n adding return at the end.

Add these lines to the end of the code in the Playground:

for var count = 0; count < 50; count++ {

println("Count is \ (count)")

Shortly after typing the lines, you'll see a value in the margin quickly count to 50. This is a count
of the number of times the print1ln statement was executed. What you don’t see, however, is the
output that is generated.

To view the output, position your cursor over the line that reads “(50 times).” You'll notice two icons
appear; the first (an outline of an eye) is the Quick Look icon and lets you inspect some variable
contents more closely. (We'll do this in the next hour.) The second icon, a circle, opens the assistant
editor and displays a value history for that item, as well as any output that was generated.

Go ahead and click the circle by the print1ln statement. The assistant editor displays the output
from the println statement, as well as a draggable timeline at the bottom. If your code has val-
ues that change over time, you can drag the timeline to inspect their value at an arbitrary point

in time. These controls are visible in Figure 3.6.

Show Value History (Assistant Editor) —
Quick Look — Output
(] @ MyF
88 @ MyPimygmund playground | Mo Selection B8 @ Timsine - @ MyPlayground playgraund (Timeina) + X
1 /7 Playground — noun: & place where people

2 8 Consols Dutput

1 impart UIKit Count i3 @

5 var str = "Hello, playground” Hallo. playground E::{ _:;

T var userAger Int = 30 0 -

i var userAgelnDays: Int ount is §

¥ userAgelnDays = userAge = 365 10,880 ount is &

for var count = 8; count < 58; countss { ::: ::

printin(*Cownt is \{count]") 50 timas] unt is 9

Cownt is 10

Count is 11

Cownt is 12

tount is 13

ount is 14

cunt is 15

Count is 16

sunt is 17

ount is 18

lount is 19

Count is 20

Comnt is 21

Count is 22

sunt is 23

ount is 24

cunt is 15

lount is 26

Cownt is 27

Count is 28

Cownt is 29

Count is 30

Count an

Timeline

FIGURE 3.6
Additional output and controls are available in the assistant editor.



112 HOUR 3: Discovering Swift and the iOS Playground

The beauty of the Playground is that you can do anything you want. Go back and try some of
the Swift syntax discussed in this hour. Try comparing dates, test a few loops and switch state-
ments... whatever you want.

We'll be using the Playground often to explore new code concepts, even making it do a few
things that might surprise you. I recommend using it now to gain experience writing Swift.

Further Exploration

Although you can be successful in learning iOS programming without spending hours and
hours learning more Swift, you will find it easier to create complex applications if you become
more comfortable with the language. Swift, as mentioned before, is not something that can be
described in a single hour. It is a new language that is evolving to meet the specific needs of
Apple’s computing platform.

To learn more about Swift, check out Programming in Objective-C 2.0, Third Edition (Addison-Wes-
ley Professional, 2011), Objective-C Phrasebook (Addison-Wesley Professional, 2011), Sams Teach
Yourself Swift in 24 Hours (Sams, 2014), and Xcode 4 Unleashed (Sams, 2012).

Apple has also published a book (The Swift Programming Language) that covers the entirety of the
Swift language, including Playground exercises. It is available directly with the iBook store on
your Mac or iOS device. This isn’t just recommended reading; it’s a required download for any
serious developer-to-be.

Summary

In this hour, you learned about object-oriented programming and the Swift language. Swift will
form the structure of your applications and give you tools to collect and react to user input and
other changes. After reading this hour, you should understand how to make classes, declare
objects, call methods, and use decision and looping statements to create code that implements
more complex logic than a simple top-to-bottom workflow. You should also have an understand-
ing of the iOS Playground and how it can be used to test code without needing to create a full
iOS project.

Keep in mind that a typical book would spend multiple chapters on these topics, so our goal has
been to give you a starting point that future hours will build on, not to define everything you'll
ever need to know about Swift and OOP.



Workshop 113

Q&A

Q. Is Swift on iOS the same as on 0S X?
A. For the most part, yes. OS X includes thousands of additional application programming
interfaces (APIs), however, and provides access to the underlying UNIX subsystem.

Q. Can an if-then-else statement be extended beyond evaluating and acting on a single
expression?

A. Yes. The if-then-else statement can be extended by adding another if statement after
the else:

if <expressions> {
// do this, the expression is true.
} else if <expression> {
// the expression isn't true, do this instead.
} else {
// Neither of the expressions are true, do this anyway!

}

You can continue expanding the statement with as many else-if statements as you
need.
Q. Why is the Playground better than coding up a new project? Seems the same to me.

A. The biggest advantage of the iOS Playground is that it lets you see instant feedback from
the code you enter. In addition, you don’t even have to add output statements to inspect
the contents of variables you declare; they appear automatically in the Playground margin.

Workshop

Quiz
1. ARC stands for what?
a. Automatic Reference Counting
b. Aggregated Recall Counts
c. Automated Reference Cycling

d. Apple Really Cares



114

HOUR 3: Discovering Swift and the iOS Playground

. The class files that you create for your applications will have which file extension?

a. .swift
b. .m
c. .C
d. .swf

. Variables and methods that may return nil are known as what?

a. Uncontrolled
b. Controlled
c. Optional
d. Implicit
Declaring a variable with a ! after the type definition makes it what?
a. Unwrapped
b. Optional
c. Explicitly unwrapped
d. Implicitly unwrapped
Stringing together method calls and variable properties is known as which of the following?
a. Spanning
b. Bridging
c. Chaining
d. Declaring

. A variable that is defined outside of a method and that can be accessed from other classes

is called what?
a. Constant
b. Instance variable
c. Implicitly unwrapped variable

d. Variable property

. To declare a constant versus a variable, you replace the var keyword with which of the

following?
a. set
b. get
c. let

d. constant



Workshop 115

8. Variable types that can store multiple different values are known (in general) as what?

9.

10.

a. Collections
b. Sets
c. Structs
d. Aggregates
At the time iOS 8 was released, Swift had been available to the public for how many years?
a. 0
b. 1
c. 2
d. 3
Swift classes are defined using how many files?
a. 1
b. 2
c. 3
d. 4

Answers
1. A. ARC stands for Automatic Reference Counting and is the process Apple’s development

tools use to determine whether an object can be freed from memory.

A. Class files developed in swift should include the .swift file extension.

3. C. A variable or method that returns nil (no value) is said to be optional.

D. Adding an exclamation point (!) after a variable’s type definition sets that variable to be
implicitly unwrapped.

C. Swift methods and variable properties can be strung together in a process called
chaining.

D. Variable properties are declared outside of methods and can be accessed and used by
other classes.

7. C. The let keyword is used to declare a constant.

A. Collections, including Arrays and Dictionarys, are used to store multiple pieces of
data.

. A. Swift and iOS 8 were released to the public at exactly the same time.

10.

B. A Swift class requires exactly one file for its implementation.



116 HOUR 3: Discovering Swift and the iOS Playground

Activities

1. Start Xcode and create a new project using the iPhone or iPad Single View Application tem-
plate. Review the contents of the classes in the project folder. With the information you've
read in this hour, you should now be able to read and navigate the structure of these files.

2. Use iBooks on your iOS Device or Mac to download Apple’s free book The Swift
Programming Language. This is an entirely free guide to the complete Swift language,
straight from the source: Apple!

3. Use the iOS Playground to test your knowledge of Swift syntax and build simple procedural
programs.



Symbols

! (exclamation mark), 103, 197,
268

=, 103

&&, 103

I

+/- icons, 553
==, 103

(), 103

@2x, 220
@3x, 220

A

A chips, 8

About, 554
About.plist file, 555
Accelerate, 125

acceleration, reading, with Core
Motion, 645-647

acceleration data, 660

Index

accelerometers, 639-642
accessibility attributes, 165-167

Accessibility Inspector, enabling,
167

Accessibility Programming Guide,
180

accessing
media items, 675-676
motion data, 643
orientation data, 643

System Sound Services,
326-327

tutorials, 880-884

Variable List, debuggers,
852-853

accessors, 85
Accounts, 123
action sheets, 322-324
actions
adding, 239
Gestures project, 624-625

GettingAttention project,
332-333




864 actions

ImageHop project, 266-267
LetsTab project, 476
Single View Application template, 206-207
BackgroundColor project, 541-543
BestFriend project, 732-733
ColorTilt project, 654-655
connecting to, 174-176
CustomPicker project, 431-432
DateCalc project, 418-419
FloraPhotographs project, 295-298
adding, 296-298
Gestures project, 623-625
GettingAttention project, 331-333
ImageHop project, 264-265
implementing, 338-341
Interface Builder (IB), 172-178
LetsNavigate project, 466-467
LetsTab project, 475-476
MediaPlayground project, 687-688
Modal Editor project, 386-387
responding to, alert controllers, 321-322
Scroller project, 310
setting up, 197-199
Single View Application template, 203-207
Survey project, 562-563
active size classes, setting, 821-823
adaptive segues, 358
disabling, 394
Add Missing Constraint menu option, 579
adding
actions, 239
FloraPhotographs project, 296-298
GettingAttention project, 332-333
to ImageHop project, 266-267
LetsTab project, 476
Single View Application template, 206-207

animation resources, ImageHop project, 255

assets catalogs, Xcode projects, 38
audio directions, Cupertino project, 796-799
audio files, 796
AudioToolbox framework, 795-796
background modes, 799-800
blur effect, 549
BestFriend project, 744
Cupertino project, 768
constants, 540
ReturnMe project, 547
constraints, Auto Layout, 579-581
DateChooserViewController, 413
EditorViewController class, 378
frameworks, 684
BestFriend project, 730
generic view controller classes, 459-460, 471
gesture recognizers, 612-613
to views, 619-622
Hop button, 262
image resources, 547-548
CustomPicker project, 427
FlowerColorTable project, 499
FlowerDetail project, 508
Gestures project, 616
image views, ImageHop project, 256
images
to asset catalogs, 39-56
button templates, 220
media files, 684
navigation controller classes, 459-460
navigation controllers, LetsNavigate project, 460
navigation scenes, with show segues, 451-452

new scenes and associating the view controller,
379-380

objects
to interfaces, 201-203

to scrolling view, 308



objects to views, 156-157
outlets, 238
FloraPhotographs project, 296
GettingAttention project, 331
to ImageHop project, 265
LetsNavigate project, 466-467
LetsTab project, 476
Single View Application template, 205-206
push count variable property, 468
LetsTab project, 476-477
resources, Xcode projects, 37
scenes, 352-353
LetsNavigate project, 461-462
LetsTab project, 472
scenes and associating view controllers, 472
scrolling behavior, 310-311
scrolling views, Scroller project, 305-306

segmented controls, FloraPhotographs project,
289

segments, 289-290

simulated devices, i0S Simulator, 69-71

sliders, ImageHop project, 259

speed output labels, 262

steppers, 261

styled buttons, 234

switches, FloraPhotographs project, 291

tab bar controller classes, 471

tab bar controllers, 471-472

tab bar item images, 471

tab bar scenes, 456-457

table views, 488
data source protocols, 491-494
delegate protocols, 494-495
prototype cell attributes, 489-491
setting table attributes, 488-489

text fields, FieldButtonFun project, 225

alerts 865

text views, FieldButtonFun project, 230-231

variable property, for image view size, 616-617

variables, SystemSoundIDs, 796

web views, FloraPhotographs project, 292
Address Book, 123, 713-714

Address Book framework, 716-717

BestFriend project. See BestFriend project

people picker navigation controller delegates,
715716

Address Book framework, 716-717
Address Book people picker, displaying, 734

Address Book selection, tying to map displays,
740-741

Address Book Ul framework, 121, 714-715
advanced delegate methods, picker views, 410-412
AirPlay, 671
alert controllers, 318
action sheets, 322-324
alerts, 318-321
responding to actions, 321-322
alert sounds, 327-328, 341-343
playing, 342
alertBody, 793
alerting users, 317
alert controllers, 318
action sheets, 322-324
alerts, 318-321
responding to actions, 321-322
GettingAttention project. See GettingAttention
project
System Sound Services, 325-326
accessing, 326-327
alert sounds and vibrations, 327-328
vibrations, 341-343
alerts, 318-321, 333-338
multibutton alerts, 334-336
using in fields, 337-338




866  Align

Align, 159-160
AllinCode project
programming interfaces
button touches, 606
defining variables and methods, 603

drawing interfaces when the application
launches, 606

implementing interface update method,
604-605

initializing interface objects, 603-604

updating the interface when orientation
changes, 606

setting up, 602
altitude property, 753
angles, 659
AnimalChooserViewController, 427
viewDidlLoad, 439
animated image views, ImageHop project, 267-269
animation, starting/stopping, ImageHop project,
269-270

animation resources, adding, to ImageHop project,
255

animation speed
ImageHop project, 270-272
incrementing, 273-274
animations, ImageHop project. See ImageHop project
annotations, mapping, 723-724
map view delegate protocol, 724-725
Any, size classes, 833
AnyObject, 95
API Reference, 137
app icons
universal applications, 817
Xcode, 60-62
AppDelegate.swift, 194
Apple, blurs, 303
Apple Developer Program, 10-11
joining paid Developer Program, 12-14

registering as a developer, 11

Apple Developer tools, 23
Cocoa Touch, 24
Model-View-Controller (MVC), 24
Swift, 23

Apple iOS HIG document, 180

Apple Maps, 721

application data source, FlowerDetail project,
512-515

application data structures, 512-515
populating data structures, 515

application data structures, FlowerDetail project,
512-515

application designs, MVC (Model-View-Controller). See
MVC (Model-View-Controller)

application logic
BackgroundColor project, 543
reading preferences, 545
storing preferences, 544-545
BackgroundDownload project, 808-809
BestFriend project

conforming to people picker delegate
protocol, 734

contact information, 734-737

displaying Address Book people picker, 734
ColorTilt project, 656

acceleration data, 660

displaying attitude data, 659-660

initializing Core Motion Motion Manager,
656-657

managing motion updates, 657-658

preventing interface-orientation changes,
661-662

reacting to rotation, 661
Cupertino project
configuring location manager instance, 763

implementing location manager delegate,
763-766

location manager, 762-763
setting status bar to white, 766



updating, 771-776
updating plist files, 766
FieldButtonFun project, 243-245
FloraPhotographs project, 298
fixing up interface when app loads, 302
hiding/showing detail web views, 298-300

loading and displaying images and details,
300-302

FlowerColorTable project, 502
populating flower arrays, 502
table view data source protocols, 503-505
table view delegate protocols, 505-507
Gestures project, 625-626
pinch recognizer, 627-630
replacing image views, 626
responding to tap gesture recognizers, 627
rotation recognizer, 630-632
shake gestures, 634-635
swipe recognizer, 627
ImageHop project, 267
animated image views, 267-269
animation speed, 270-272
incrementing animation speed, 273-274
starting/stopping animation, 269-270
unreadable status bar, 274
implementing, 208
LetsNavigate project, 467
adding push count variable property, 468
incrementing/displaying counters, 468-469
LetsTab project, 476
adding push count variable property, 476-477
counter displays, 477
incrementing tab bar item badge, 477-478
triggering counter updates, 478-479
Modal Editor project, 388-389
hiding keyboards, 389

Arrays 867

Orientation project
determining orientation, 650-651
registering orientation updates, 649-650
ReturnMe project, 557-559
Scroller project, 310
adding scrolling behavior, 310-311
SlowCount project, 802-804
Survey project
hiding keyboards, 564
showing survey results, 565-567
storing survey results, 564-565
application object (UlApplication), 128
application preferences, 527-529
pseudo preferences, 529-530
application resource constraints, iOS devices, 8
applicationDidBecomeActive, 788
applicationDidEnterBackground, 127, 567, 787-788
application:didFinishLaunchingWithOptions, 788
applicationlconBadgeNumber, 793

application:performFetchWithCompletionHandler,
808-809

applications, entering background, 127
applicationWillEnterForeground, 790-791
applicationWillResignActive, 788
apps
iOS apps. See i0S apps
launching with iOS Simulator, 65-66
lifecycle of iOS apps, 126-127
quitting, 209
running Xcode, 53-54
testing, FloraPhotographs project, 303
ARC (Automatic Reference Counting), 107
Arrange, 159-160
Arrays, 89




868 arrays

arrays, 91-92
populating, FlowerColorTable project, 502
arrows, compass, 776
asset catalogs, 684
adding to Xcode projects, 38
images, adding, 39-56
retina image assets, 41-42
assistant editor, Xcode, 48-49
associating view controllers, 461-462
LetsTab project, 472
attitude, 646
reading with Core Motion, 645-647
attitude data, displaying, 659-660
attributed text versus plain text, 227
attributes
bar button items, 404
date pickers, 406-407
navigation bar item attributes, 450-451
prototype cell attributes, 489-491
tab bar item attributes, 455-456
table attributes, 488-489
Attributes Inspector, 164-165, 584

audio, adding task-specific background processing,
795-796

audio directions, adding, to Cupertino project,
796-799

audio files, adding, 796
audio formats, 671

audio playback, MediaPlayground project, 692-693,
695-696

controlling, 696
loading recorded sound, 696-697
audio recording, MediaPlayground project, 692-693
controlling, 694-695
implementing, 693-694
AudioToolbox framework, adding, 795-796

authorization
requesting for Core Location, 752
requesting for notifications, backgrounding, 792
Auto Layout
constraint errors, 586-590
constraints
adding, 579-581
centering, 590-592
content compression resistance, 585-586
content hugging, 585-586

designing rotatable and resizable interfaces,
576-577

gesture recognizers, 615
scrolling views, 311
Auto Layout Guide, 180
Auto Layout system, 161
constraints, 161-162, 164
Content Compression Resistance, 162-163
Content Hugging, 162-163
Automatic Reference Counting (ARC), 107

autosizing features, reverting to old layout approach,
163

AV Audio Player, 677
completion, 677
AV audio recorder, 678-679
AV Foundation framework, 121, 676-677
AV Audio Player, 677
completion, 677
AV audio recorder, 678-679
availability, 142
AVAudioPlayer, 676
AVAudioRecorder, 676
AVEncoderAudioQualityKey, 678
AVFormatIDKey, 678
AVNumberofChannelsKey, 678
AVSampleRateKey, 678



Back button, 451
navigation controllers, 448
background color, ImageHop project, 262-264
Background Fetch mode, adding, 809
background fetches, 786-787, 806
BackgroundDownload project
adding Background Fetch mode, 809
application logic, 808-809
designing interfaces, 807
implementation overview, 806
outlets, 807-808
setting up, 807
background graphics, ImageHop project, 262-264
background image resources, Cupertino project, 759
background modes, 805
adding, 799-800
background processing, 785
background suspension, 790-791

background task processing, SlowCount project,
804-805

background touch, keyboard hiding, 242

background-aware application life cycle methods,
787-789

BackgroundColor project
application logic, 543
reading preferences, 545
storing preferences, 544-545
building apps, 545-546
designing interfaces, 540-541
implementation overview, 539-540
outlets and actions, 541-543
setting up, 540
BackgroundDownload project
adding Background Fetch mode, 809
application logic, 808-809

BestFriend project 869

designing interfaces, 807

implementation overview, 806

outlets, 807-808

setting up, 807
backgrounding, 783-784

background fetches, 786-787

background-aware application life cycle methods,
787-789

disabling, 789-790

local notifications, 784-785, 792
creating/scheduling, 793-794
properties, 793
requesting authorization for notifications, 792

long-running background tasks. See long-running
background tasks

suspension, 784, 790-791
task completion for long-running tasks, 785-786

task-specific background processing. See task-
specific background processing

badges, source control projects, 871-872
bar button items, 403-404
attributes, 404
navigation controllers, 448
barltem, 475
batteries, locations, 756
BestFriend project
application logic
conforming to people picker delegate
protocol, 734
contact information, 734-737
displaying Address Book people picker, 734
blur effect, adding, 549
designing interfaces, 731-732
configuring map view, 732
email logic

conforming to the mail compose delegate
protocol, 741




870 BestFriend project

displaying mail compose view, 741-742

mail completion, 742
implementation overview, 730
map logic, 737

controlling map display, 738-740

customizing pin annotation view, 740

requesting permission to use user's location,

737-738

tying map display to Address Book selection,

740-741
outlets and actions, 732-733
setting status bar to white, 744-745
setting up, 730-731
social networking logic, 742-743
displaying compose view, 743-744
Blame mode, 876
blueButton.png, 220
Bluetooth, 9
blur effect, adding, 549
to BestFriend project, 744
to Cupertino project, 768
blurs, Apple, 303
Bool, 89
Boolean values, 91
Bottom Layout Guide, 151
branching, source control, 865, 877-880
breakpoint navigators, 853
breakpoints
removing, 854
setting, 845-847
bridged data types, 129-130
browsing documentation, Xcode, 138
build schemes, choosing, 52-53
built-in actions, connections, 176
button attributes, editing, 235
button templates, slicing, 219
adding images, 220

button touches, AllinCode project, 606
buttons, 132, 215-216
Back button, 451
bar button items, 403-404
attributes, 404
custom button images, setting, 235-237
styled buttons, adding, 234

C

calculateDateDifference, 421
calculating heading to Cupertino, 773-774
cameras, MediaPlayground project, 697-700
canBecomeFirstResponder, 632
cells
configuring to display in table view, 504-505
custom cells, 490
tables, 487
centering constraints, 590-592
CFNetwork, 123
CGFloat(), 646
CGRect, 88
chaining, methods, 101
changing state, 235
check boxes, 282
checkout, 864
child properties, 553
chooselmage method, 698
choosing build schemes, 52-53
chosen images, showing, 698-699
chosenColor, 173
CIFilter, 682-683
class declaration, 84

class fields Swift variable properties declarations,
84-85



class files

Single View Application template, projects,
194-195

Swift, 82-83
class declaration, 84
constant declaration, 85
declaring methods, 86-87
ending, 87
IBOutlet declarations, 85-86
import declaration, 83-84
classes
Cocoa Touch, Playground feature, 131-132
Core Application classes, 128
application object (UlApplication), 128
onscreen controls (UlControl), 129
responders (UIResponder), 128-129
view controllers (UlViewControllers), 129
views (UlView), 128
windows object (UIWindow), 128
data type classes, 129
bridged data types, 129-130
nonbridged data types, 130-131
interface classes, 132
buttons (UIButton), 132
labels (UlLabel), 132
pickers (UIDatePicker/UlIPicker), 134

popovers UIPopoverPresentation
Controller), 134-135

sliders (UlSlider), 133

steppers (UISteppers), 133-134

switches (UISwitch), 133

text fields (UlTextField/UlTextView), 134
OOP (object-oriented programming), 79

classes interface classes segmented control
(UISegmentedControl), 133

code 871

cleanup
image picker, 699-700
movie player, MediaPlayground project, 691
CLGeocoder class, 738
CLHeading, 758
CLLocation, 754
CLLocationDistance, 753
closures, 318
methods, 102
Cocoa, 119
Cocoa Touch, 24, 117-119, 317
classes
data type classes, 129-131
Playground feature, 131-132
Core Application classes, 128-129
interface classes, 132-135
layers, 120
Address Book Ul framework, 121
Event Kit Ul, 121

Game Kit, 120
iAd, 121
Map Kit, 120

Message Ul framework, 121
Notification Center framework, 121
PhotosUl, 121
UlKit, 120
code

debuggers, 848-850

Interface Builder (IB), 170
implementing, 171-172
object identity, 178-179
opening projects, 170
outlets and actions, 172-178
writing, 178

keyboard hiding, 242-243

low-level code, 446




872 code

Xcode compiling, 52
activating tabbed editing, 50 component constants, 428
adding marks, to do's and fix me's, 47-48 compose view, displaying in BestFriend project,
assistant editor, 48-49 743-744
code completion, 44-46 configureView, 521
editing tools, 42 configuring, 289-290
navigating, 42 cells to display in table view, 504-505
searching with search navigator, 46-47 devices for development, 16-17
snapshots, 50-51 installed size classes, 823
symbol navigator, 43 location manager instance, 763
code completion, Xcode, 44-46 map views, 732
color, background color, ImageHop project, 262-264 navigation controllers, LetsNavigate project, 460
colorChoice, 172 popover segue, 362-365
ColorTilt project popovers, 391-392
application logic, 656 projects, as universal, 816-817
acceleration data, 660 segue style, 370-371
displaying attitude data, 659-660 connecting
initializing Core Motion Motion Manager, to actions, 174-176
656-657 to exits, 367-368
managing motion updates, 657-658 connections
preventing interface-orientation changes, AllinCode project, 602
661-662 BestFriend project, 730-731
reacting to rotation, 661 built-in actions, 176
designing interfaces, 653 ColorTilt project, 652-653
implementation overview, 652 creating to outlets, 173-174
outlets and actions, 654-655 Cupertino project, 759
setting up, 652-653 CustomPicker project, 427-428
comments, adding marks, to do's and fix me's, DateCalc project, 414-415
47-48

editing with Quick Inspector, 177

commits, source control projects, 873-874 FloraPhotographs project, 288

committing changes, source control, 864 FlowerColorTable project, 499

Comparison mode, 876 FlowerDetail project, 509-510

compass, 768 Gestures project, 616

arrows, 776 ImageHop project, 255

Cupertino project. See Cupertino project,
updating user interfaces, 769-770

setting up, 768-769

LetsNavigate project, 463
LetsTab project, 472
MediaPlayground project, 685




Modal Editor project, 381
Orientation project, 647
planning, 197-199
SlowCount project, 801
verifying, Connections Inspector, 625
Connections Inspector, 174-175, 446
connectivity, iOS devices, 9
constant declaration, 85
constants, 428, 537
adding, 540
ReturnMe project, 547
component constants, 428
declaring, 95
location constants, 759-760
OOP (object-oriented programming), 80
table section constants, 499
constants radian conversion constants ColorTilt
project, 653
constraint errors, 586-590
constraint objects, top/bottom layout guides, 581
constraint tools, 589
constraints
adding with Auto Layout, 579-581
Auto Layout system, 161-162, 164
centering, 590-592
editing via Size Inspector, 582-585
horizontal constraints, 581
iOS devices, 8
matching sizes, 598-600
Modal Editor project, 382
setting, 595-597
storyboards, size classes, 830
vertical constraints, 581
viewing via Size Inspector, 582-585
Xcode, 579

Core Location 873

constraints objects, navigating, 581-590
contact information, BestFriend project, 734-737
contacts applications, 447
Content Compression Resistance, 162-163, 585-586
Content Hugging, 162-163, 585-586
controlHardware method, 657
controllers
navigation controllers. See navigation controllers
tab bar controllers. See tab bar controllers
view controllers, multiscene development, 446
controlling
audio playback, MediaPlayground project, 696

audio recording, MediaPlayground project,
694-695

controls, expanding, 592-597
convenience initialization method, 268, 285
convenience methods, 93-94
copy and paste, 229
Core Application classes, 128
application object (UlApplication), 128
onscreen controls (UlControl), 129
responders (UIResponder), 128-129
view controllers (UlViewControllers), 129
views (UlView), 128
windows object (UIWindow), 128
Core Audio, 121
Core Bluetooth, 125
Core Data, 32, 123, 190, 568
Core Foundation, 123, 536
Core Graphics, 122
Core Image, 121, 682
filters, 682-683, 700-702
Core Location, 123, 751
Cupertino project
application logic, 762-767
designing views, 760-761




Core Location

implementation overview, 759
outlets, 762
setting up, 759-760
getting headings, 757-758
getting locations, 751-752
location accuracy and update filter, 756
location errors, 754-756
location manager delegate protocol, 752-754

requesting authorization and plist files, 752

Core Motion, 123, 643, 645-647

Motion Manager, 656-657
radians, 653
reading acceleration, 645-647

Core OS layer, 125

Accelerate, 125

Core Bluetooth, 125
External Accessory, 125
Local Authentication, 125
Security framework, 125

System framework, 125

Core Services layer, 123

Accounts, 123
Address Book, 123
CFNetwork, 123

Core Data, 123

Core Foundation, 123
Core Location, 123
Core Motion, 123
Event Kit, 124
Foundation, 124
HealthKit, 124
HomekKit, 124
Newsstand, 124
Pass Kit, 124

Quick Look, 124
Social, 124

Store Kit, 125
System Configuration, 125

Core Text, 122
correcting errors with issue navigator, 54-57
Count Down Timer, date picker attributes, 406
counter displays, LetsTab project, 477
counter updates, triggering, 478-479
counters
incrementing/displaying, 468-469
initializing, 803
updating, 803-804
Counting Navigation Controller, 462
countLabel, 463
CPU usage, monitoring, 855-856
createStory method, 244
Cupertino project
adding
audio, 795
audio directions, 796-799
background modes, 799
blur effect, 768
application logic
configuring location manager instance, 763

implementing location manager delegate,
763-766

location manager, 762-763
setting status bar to white, 766
updating, 771-776
updating plist files, 766
compass
implementation overview, 768
outlets, 771
setting up, 768-769
updating user interfaces, 769-770
designing views, 760-761
implementation overview, 759
outlets, 762
setting up, 759-760
curly braces, 318



custom button images, setting, 235-237

custom cells, 490

custom picker views, 405, 407-408, 432-438
changing component and row sizes, 436

CustomPicker project, scene segue logic,
438-439

data source protocols, 433-434
delegate protocols, 434-435
implicit selection, 438
loading picker data, 432-433
reacting to selections, 436-438
custom pickers, 425-436
CustomPicker project
creating segues, 431
custom picker views, 432-438
implementation overview, 426
outlets and actions, 431-432
setting up, 426-428
implementation overview, 426
customizing
interfaces, 164
accessibility attributes, 165-167
Attributes Inspector, 164-165
keyboard displays with text input traits, 228-229
pin annotation view, 740
CustomPicker project, 427-428
connections, 427-428
creating segues, 431
custom picker views, 432-438
changing component and row sizes, 436
data source protocols, 433-434
delegate protocols, 434-435
implicit selection, 438
loading picker data, 432-433
reacting to selections, 436-438
designing interfaces, 428-430

data type classes 875

implementation overview, 426
outlets and actions, 431-432
scene segue logic, 438-439
setting up, 426-428

data
acceleration data, 660
attitude data, displaying, 659-660
sharing between tab bar scenes, 457-458
sharing between navigation scenes, 452
data detectors, 232-233
data models, MVC (Model-View-Controller), 190
data source protocols
custom picker views, 433-434
FlowerColorTable project, 501
picker view data source protocol, 408-409

table view data source protocols,
FlowerColorTable project, 503-505

table views, 491-494
data storage, 530
direct file system access, 534-535
file paths, 536-537
reading/writing data, 537-538

storage locations for application data,
535-536

settings bundles, 532-534
user defaults, 530-531
reading/writing, 531-532
data structures, populating, 515
data type classes, 129
bridged data types, 129-130
nonbridged data types, 130-131
URLs (NSURL), 131




876 data types

data types
declaring, 89
object data types, 93
Date, date picker attributes, 406
Date and Time, date picker attributes, 406
date calculation logic, 419
determining the differences between dates, 420
displaying date and time, 419-420
getting dates, 419

implementing date calculation and display,
421-422

updating date output, 422-423
date formats, 420
date output, updating, 422-423
date pickers, 405-406
attributes, 406-407
DateCalc project, 412
creating segues, 417
date calculation logic. See date calculation
logic
designing interfaces, 415-417
implementation overview, 413
implementing scene segue logic, 424-425
outlets and actions, 418-419
setting up, 413-415
DateCalc project, 412
building apps, 425
connections, 414-415
creating segues, 417
date calculation logic, 419

determining the differences between dates,
420

displaying date and time, 419-420
getting dates, 419

implementing date calculation and display,
421-422

updating date output, 422-423

designing interfaces, 415-417

implementation overview, 413

implementing scene segue logic, 424-425

outlets and actions, 418-419

setting up, 413-415

variables, 414-415
DateChooserViewController, 414

adding, 413

dates, determining the differences between dates,
420

dates (NSDate), 130
Debug, 842
debug, Xcode, 33
debug navigators, 853-855
DebuggerPractice project, 843-845
debuggers, 841-842
accessing Variable List, 852-853
breakpoint navigators, 853
breakpoints, setting, 845-847
code, 848-850
Debug, 842
debug navigators, 853-855
DebuggerPractice project, 843-845
lldb, 845
monitoring CPU and memory usage, 855-856
Release, 842
variable states, 847-848
view hierarchy, checking, 856-858
watchpoints, 851-852
decision making, 102
declaration, 142
declarations
class declaration, 84
constant declaration, 85
IBOutlet declarations, 85-86
import declaration, 83-84

variable properties declarations, 84-85



declared in, 142
declaring
constants, 95
methods, 86-87
variables, 89
arrays, 91-92
Boolean values, 91
convenience methods, 93-94
data types, 89
dictionaries, 92-93

integers and floating-point numbers, 89-90

object data types, 93
optional values, 95-97
strings, 90-91
default images, ImageHop project, 257
default selections, 438
default simulated devices, 154
default states, FloraPhotographs project, 292
default transitions, 361
delegate protocols
custom picker views, 434-435
FlowerColorTable project, 501, 505-507

location manager delegate protocol, 752-754,

763-766
mail compose delegate protocol, 741
map view delegate protocol, 724-725
people picker delegate protocol, 734
picker views, 409-410
table views, 494-495
describelnteger, 843, 854
description, 142
designing interfaces
adding objects, 201-203
BackgroundColor project, 540-541
BackgroundDownload project, 807
BestFriend project, 731-732

configuring map view, 732

designing interfaces 877

ColorTilt project, 653
CustomPicker project, 428-430
DateCalc project, 415-417
FieldButtonFun project, 224
adding styled buttons, 234
adding text fields, 225
adding text views, 230-231

customizing keyboard displays with text input
traits, 228-229

editing button attributes, 235
editing text field attributes, 225-227
editing text view attributes, 231-232
scrolling options, 233-234
setting custom button images, 235-237
setting simulated interface attributes, 224
FloraPhotographs project, 288, 295
adding segmented controls, 289
adding switches, 291
adding web views, 292
segments, adding/configuring, 289-290
setting default state, 292
setting web view attributes, 293-294
sizing controls, 291
FlowerColorTable project, 500-501
Gestures project, 617-618
GettingAttention project, 329-330
ImageHop project, 256
adding Hop button, 262
adding image views, 256
adding sliders, 259
adding speed output labels, 262
adding steppers, 261
background graphics and color, 262-264
making copies, 258
setting default images, 257
setting slider range attributes, 259-261
setting stepper range attributes, 261-262




878 designing interfaces

LetsNavigate project, 465-466
LetsTab project, 473-474
MediaPlayground project, 685-686
Modal Editor project, 381-384
Orientation project, 648
ReturnMe project, 548
Scroller project, 305
adding objects, 308
adding scrolling views, 305-306
resetting View Controller Simulated Size, 309
setting freeform size, 306-307
SlowCount project, 802
setting simulated interface attributes, 199-201
Survey project, 560-561
designing views, Cupertino project, 760-761
desiredAccuracy, 756
detail scenes, updating, 511-512
detail view controllers, 497
FlowerDetail project, 519
displaying detail view, 520-521
detail views, displaying, 520-521
detail web views, hiding/showing, FloraPhotographs
project, 298-300
detailltem, 519, 521
details, loading/displaying, FloraPhotographs project,
300-302

developers, 9-10
Apple Developer Program, 10-11
joining paid Developer Program, 12-14
registering, 11
installing Xcode, 14-16
who can become iOS developer, 9-10

development provisioning profiles, i0S apps, 16

device models
universal applications, 819
device orientations, Xcode, 59
devices
configuring for development, 16-17
default simulated devices, 154
iOS devices, 5-6
Dictionaries, 89
dictionaries, 92-93
didRotateFromIinterfaceOrientation, 577
different screen sizes, accommodating, 7
direct file system access, 530, 534-535
file paths, 536-537
reading/writing data, 537-538
storage locations for application data, 535-536
direction image resources, Cupertino project, 769
directionArrow, 775
disabling
adaptive segues, 394
backgrounding, 789-790
editing, Master-Detail Application template, 518
dismissDateChooser, 418
dismissing modal scenes, programmatically, 366
displaying
Address Book people picker, 734
attitude data, 659-660
compose view, BestFriend project, 743-744
counters, 468-469
date and time, 419-420
detail views, 520-521

images and details, FloraPhotographs project,
300-302

mail compose view, 741-742
media picker, 704-705



displays, 6-7
updating, 803-804
distanceFromLocation method, 764
distanceView outlet, 762
distantPast(), 95
doAcceleration, 660
doActionSheet method, 339-340
doAlert method, 333, 793-794
doAlertinput, 337
doAttitude, 659-660
document outline, storyboards, 149-152
document outline objects, storyboards, 153-154
documentation, Xcode, 135-136
browsing, 138
navigating, 139-140
searching, 137-138
setting up documentation downloads, 136-137
Documents directory, 536
doMultipleButtonAlert, 335
Done button, keyboard hiding, 240-242
doSound method, 341-342
Double, 89
doVibration method, 343
do-while loops, 106-107
downcasting, 97
downloading changes, source control, 865

downloads, documentation, setting up, 136-137

editing
button attributes, 235
code, Xcode, 42
connections, with Quick Inspector, 177

constraints, via Size Inspector, 582-585

exits

disabling, Master-Detail Application template,
518

tabbed editing, Xcode, 50
text field attributes, 225-227
text view attributes, 231-232
editing tools, Interface Builder (IB), 157
guides, 157-158
selection handles, 158-159
Size Inspector, 159-161
editor, Xcode, 33
Editor menus, 589
EditorViewController, 376
adding, 378
email, 717-719
BestFriend project. See BestFriend project
mail compose view controller delegate, 719
email logic, BestFriend project

conforming to the mail compose delegate
protocol, 741

displaying mail compose view, 741-742
mail completion, 742
empty selections, 706
endBackgroundTask, 801
ending class files, Swift, 87
errors
constraint errors, 586-590
correcting with issue navigator, 54-57
location errors, 754-756
placement errors, 588
Event Kit, 124
Event Kit Ul, 121
exclamation mark (!), 197, 268
Exit icon, 151
exits, 351, 389
connecting to, 367-368
multiscene projects, 366-368

view controllers, 381

879




880 expanding controls

expanding controls, 592-597 file paths, direct file system access, 536-537

expressions, 102-103 file storage

if-then-else, 103-104

loops
do-while loops, 106-107
for loops, 105-106

implementation overview, 559-560
Playground feature, 538-539
Survey project

application logic, 564-567

while loops, 106-107
switch statements, 103-104
syntax, 103

designing interfaces, 560-561
outlets and actions, 562-563
setting up, 560
extensions, OOP (object-oriented programming), 80 fileExistsAtPath, 537
External Accessory, 125 files, removing, from Xcode projects, 37-38
filtering, 35
filters
F Core Image, 682-683, 700-702

media picker, 673
feedback, i0S devices, 9 fireDate, 793

FieldButtonFun project, 217 First Responder icon, 151

application logic, 243-245

building apps, 245

designing interfaces, 224
adding styled buttons, 234
adding text fields, 225
adding text views, 230-231

customizing keyboard displays with text input
traits, 228-229

editing button attributes, 235
editing text field attributes, 225-227
editing text view attributes, 231-232
scrolling options, 233-234
setting custom button images, 235-237
setting simulated interface attributes, 224
keyboard hiding, 240-243
outlets and actions, 237-239
preparing button templates with slicing, 219-224
setting up, 218-219

first responders, 632-634
FIXME, 47-48
Flash Professional, 10
Float, 89
floating-point numbers, 89-90
FloraPhotographs project, 287
application logic, 298
fixing up interface when app loads, 302
hiding/showing detail web views, 298-300

loading and displaying images and details,
300-302

designing interfaces, 288, 295
adding segmented controls, 289
adding switches, 291
adding web views, 292
segments, adding/configuring, 289-290
setting default state, 292
setting web view attributes, 293-294

sizing controls, 291
outlets and actions, 295-298

fields, alert, 337-338

file formats, web views, 284




setting up, 288
testing apps, 303
FlowerColorTable project

application logic, 502
populating flower arrays, 502
table view data source protocols, 503-505
table view delegate protocols, 505-507

connections, 499

data source protocols, 501

delegate protocols, 501

designing interfaces, 500-501

implementation overview, 499

setting up, 499

variables, 499

FlowerDetail project

application data source, 512-515
application data structures, 512-515
populating data structures, 515

connections, 509-510

detail view controllers, 519
displaying detail view, 520-521

master view controllers, 515
creating table cells, 516-517
creating table view data methods, 515-516
disabling editing, 518

handling navigation events from a segue,
518-519

setting up, 508-510
tweaking interfaces, 510-512
updating detail scenes, 511-512
updating master scenes, 510
web view outlets, 512
variables, 509-510
flowerView, 173
fonts, size classes, 826
for loops, 105-106
Foundation, 124

frameworks 881

foundPinch method, 628
foundRotation method, 630-631
foundSwipe method, 627
foundTap method, 627
frames, adding, in BestFriend project, 730
frameworks, 117, 119

Accelerate, 125

Accounts, 123

adding, 684

Address Book, 123

Address Book Ul framework, 121

AudioToolbox, adding, 795-796

AV Foundation framework, 121

CFNetwork, 123

Core Audio, 121

Core Bluetooth, 125

Core Data, 123

Core Foundation, 123

Core Graphics, 122

Core Image, 121

Core Location, 123

Core Motion, 123

Core Text, 122

Event Kit, 124

Event Kit Ul, 121

External Accessory, 125

Foundation, 124

Game Kit, 120

HealthKit, 124

HomekKit, 124

iAd, 121

Image 1/0, 122

Local Authentication, 125

Map Kit, 120

Media Player framework, 122

Message Ul framework, 121

Metal, 122




882 frameworks

Newsstand, 124 Gestures project
Notification Center framework, 121 adding gesture recognizers to views, 619-622
OpenGL ES, 122 application logic, 625-626
Pass Kit, 124 pinch recognizer, 627-630
Photos framework, 122 replacing image views, 626
PhotosUl, 121 responding to tap gesture recognizers, 627
Quartz Core, 122 rotation recognizer, 630-632
Quick Look, 124 shake gestures, 634-635
Security framework, 125 swipe recognizer, 627
Social, 124 building apps, 635
Store Kit, 125 designing interfaces, 617-618
System Configuration, 125 implementation overview, 614-615
System framework, 125 outlets and actions, 623-625
UlKit, 120 setting up, 616-617
freeform size, setting up in Scroller project, 306-307 shake recognizer, 632

fullscreen view, transitioning to in media player, 671 getFlower, 172
functions versus methods, 190 getters, 85
GettingAttention project
action sheets, 338-341

G alert sounds and vibrations, 341-343
alerts, 333-338
Game Kit, 120 creating multibutton alerts, 334-336
generating fields, 337-338
multitouch events, 66-67 designing interfaces, 329-330
output, from Playground, 110-112 outlets and actions, 331-333
generic view controller classes, adding, 459-460, setting up, 328-329
471 Git, 863
geocoding, 725-728 branching/merging, 865
Playground feature, 727-728 committing changes, 864
geographic north, 757 downloading changes, 865
gesture recognizers, 614 repositories, 865-866
adding, 612-613 connecting to remote repositories, 868-869
to views, 619-622 creating local, 866-868
Auto Layout, 615 working copies, 870-871

projects, Gestures project. See Gestures project Google Maps, 721
gesture-recognizer classes, 612 GPS, 751

gestures, multitouch gesture recognition, 611-612 graphics, 6-7




grouped tables, 486
guides, 142
Interface Builder (IB), 157-158
gutters, 844
gyroscope, 639, 642

heading updates, Cupertino project, 771-772,
774-776

headingAvailable, 757, 771
headingFilter, 775
headings
calculating, Cupertino project, 773-774
Core Location, 757-758
HealthKit, 124
hideKeyboard method, 242, 564
hiding
detail web views, FloraPhotographs project,
298-300
keyboards, 564
Modal Editor project, 389
Hint attributes, 166
hi-res images, loading for retina display, 258
HomekKit, 124
Hop button, adding, 262
horizontal constraints, 581

hueSlider, 540

iAd, 121

IB editor, 589
@IBAction, 189-190
@IBOutlet, 188-189, 197

ImageHop project

IBOutlet declarations, 85-86
icons, app icons
universal applications, 817
Xcode, 60-62
IDE (integrated development environment), 29
identifier attribute, 534
identifiers, 359
if-then-else, 103-104
Image 1/0, 122
image picker, 679-680
cleanup, 699-700

MediaPlayground project, photo library and
camera, 697-698

image resources
adding, 547-548
CustomPicker project, 427
FlowerColorTable project, 499
FlowerDetail project, 508
Gestures project, 616
Cupertino project, 759
image views, 253
adding to ImageHop project, 256

animated image views, ImageHop project,
267-269

replacing, Gestures project, 626
ImageHop project, 253-254

application logic, 267
animated image views, 267-269
animation speed, 270-272
incrementing animation speed, 273-274
starting/stopping animation, 269-270
unreadable status bar, 274

building apps, 274-275

designing interfaces, 256
adding Hop button, 262
adding image views, 256
adding sliders, 259

883




884

ImageHop project

adding speed output labels, 262
adding steppers, 261
background graphics and color, 262-264
making copies, 258
setting default images, 257
setting slider range attributes, 259-261
setting stepper range attributes, 261-262
outlets and actions, 264-265
adding outlets, 265
setting up, 254-255

adding animation resources, 255

images

adding
to asset catalogs, 39-56
to button templates, 220
chosen images, 698-699
default images, ImageHop project, 257

direction image resources, Cupertino project,
769

hi-res images, loading for retina display, 258

JPEG images, 40

loading/displaying, FloraPhotographs project,
300-302

PNG images, 40

retina image assets, 41-42

size classes, 826-827

tab bar item images, adding, 471

Ul image picker controller delegate, 680-682

imperative programming, 78

implementing

application logic, Single View Application
template, 208

audio recording, MediaPlayground project,
693-694

code, Interface Builder (IB), 171-172
interface update method, 604-605

Single View Application template, 191-192
split view controllers, 496-497

implicit preferences, 539
BackgroundColor project
application logic, 543-545
designing interfaces, 540-541
implementation overview, 539-540
outlets and actions, 541-543
setting up, 540
implicit selection, custom picker views, 438
implicit unwrapping, 97-98
import declaration, class files, 83-84
incrementCount, 468
incrementCountFirst, 475
incrementCountSecond, 475
incrementCountThird, 475
incrementing
animation speed, 273-274
counters, 468-469
tab bar item badge, 477-478
indexed tables, 486
initializing, interface objects, 603-604

initializing Core Motion Motion Manager, 656-657

initWithContentURL, 689
input. See also output
FieldButtonFun project, 217
application logic, 243-245
building the app, 245

designing interfaces. See designing interfaces

keyboard hiding, 240-243

preparing button templates with slicing,
219-224

setting up, 218-219
iOS devices, 9
inspecting output from Playground, 110-112
installed size classes, configuring, 823
installing, Xcode, 14-16

instance methods, OOP (object-oriented
programming, 80



instances, OOP (object-oriented programming), 80
instantiation, 149
OOP (object-oriented programming), 80
Int, 89
integers, 89-90
interactions
buttons, 215-216
labels, 216
text fields, 216
text views, 216
Interface Builder (IB), 147-148
Auto Layout system, 161
constraints, 161-162, 164
Content Compression Resistance, 162-163
Content Hugging, 162-163
connecting to code, 170
implementing, 171-172
object identity, 178-179
opening projects, 170
outlets and actions, 172-178
writing code, 178
customizing interfaces, 164
accessibility attributes, 165-167
Attributes Inspector, 164-165
editing tools, 157
guides, 157-158
selection handles, 158-159
Size Inspector, 159-161
overview, 148
previewing interfaces, 168-169
resources, 179
storyboards, 149
document outline, 149-152
document outline objects, 153-154
user interfaces
adding object to views, 156-157
Object Library, 154-155

interfaces 885

interface classes, 132
buttons (UIButton), 132
labels (UlLabel), 132
pickers (UlDatePicker/UlPicker), 134
popovers

UlPopoverPresentation
Controller), 134-135

sliders (UlSlider), 133

steppers, 133-134

switches (UISwitch), 133

text fields (UlTextField/UlTextView), 134

interface classes segmented control
(UISegmentedControl), 133

interface objects, initializing, 603-604
interface rotation events, 644
interface update method, implementing, 604-605
interface-orientation changes, preventing, 661-662
interfaces
customizing, 164
accessibility attributes, 165-167
Attributes Inspector, 164-165
designing, 199-203
adding objects, 201-203

setting simulated interface attributes,
199-201

expanding controls, 593-595
i0S 7,7
previewing, 168-169

programmatically defined interfaces. See
programmatically defined interfaces

responsive interfaces

designing rotatable and resizable interfaces,
576-578

rotation, 573-574
rotation, enabling, 574-575

tweaking. See tweaking interfaces




886 interpreting results, of Quick Help

interpreting results, of Quick Help, 142-143 iPhone 5, screens, 7

Intrinsic Size setting, Auto Layout system, 163 iPhone 6, screens, 6

i0OS 6, segmented controls, 290 iPhone 6+, screens, 6

i0OS 7, interfaces, 7 iPhones

i0OS Accessibility Inspector, enabling, 167 popovers, 393-395

iOS applications, data storage, 527-529 screens, 6

i0OS apps iPod touch, 6
configuring devices for development, 16-17 isAnimating, 269
development provisioning profiles, 16 issue navigator, correcting, errors, 54-57
launching, 19-22 items, navigation controllers, 448

lifecycle of i0OS apps, 126-127
running, 16-19

iOS Dev Center, 14 .l
iOS developers, 9-10
Apple Developer Program, 10-11 JPEG images, 40

joining paid Developer Program, 12-14
registering as a developer, 11
installing Xcode, 14-16
iOS devices, 5-6

K

application resource constraints, 8 key constants, 540

connectivity, 9 ReturnMe project, 547

display and graphics, 6-7 keyboard displays, customizing with text input traits,

feedback, 9 228-229
input, 9 keyboard hiding
registering multiple devices, 17 adding code, 242-243
iOS Human Interface Guidelines, 180 FieldButtonFun project, 240-243
i0S Simulator, 63-64 background touch, 242
adding addition simulated devices, 69-71 Done button, 240-242
data storage, 535 Modal Editor project, 389
launching apps, 65-66 keyboard types, 229
multitouch events, generating, 66-67 keyboards
rotating, simulated devices, 67 hiding, 564
running, first time, 57 virtual keyboards, 217
testing other conditions, 68-69 keychains, 17

iPads, screens, 6
iPhone, 6




L

Label attributes, 166
labels, 216
getting in scolling view, 309
UlLabel, 132
lastSound, 797
launch images, Xcode, 60, 62-63
launch screens
universal applications, 818
Xcode, 60, 62-63
launching
apps, i0S Simulator, 65-66
iOS apps, 19-22
layers, 119
Cocoa Touch, 120
Address Book Ul framework, 121
Event Kit Ul, 121
Game Kit, 120
iAd, 121
Map Kit, 120
Message Ul framework, 121
Notification Center framework, 121
PhotosUl, 121
UlKit, 120
Core OS layer, 125
Accelerate, 125
Core Bluetooth, 125
External Accessory, 125
Local Authentication, 125
Security framework, 125
System framework, 125
Core Services layer, 123
Accounts, 123
Address Book, 123
CFNetwork, 123

LetsNavigate project 887

Core Data, 123
Core Foundation, 123
Core Location, 123
Core Motion, 123
Event Kit, 124
Foundation, 124
HealthKit, 124
HomeKit, 124
Newsstand, 124
Pass Kit, 124
Quick Look, 124
Social, 124
Store Kit, 125
System Configuration, 125
Media layer, 121
AV Foundation framework, 121
Core Audio, 121
Core Graphics, 122
Core Image, 121
Core Text, 122
Image 1/0, 122
Media Player framework, 122
Metal, 122
OpenGL ES, 122
Photos framework, 122
Quartz Core, 122
layout guides, 581
leading, 579
leading space, 581
LetsNavigate project
application logic, 467
adding push count variable property, 468
incrementing/displaying counters, 468-469
building apps, 469
designing interfaces, 465-466
implementation overview, 458-459
outlets and actions, 466-467




888 LetsNavigate project

setting up, 459

adding scenes and associating view
controllers, 461-462

adding/configuring navigation controllers,
460

connections, 463
variables, 463
show segues, creating, 464-465

LetsNavigate project setting up adding navigation
controllers and generic view controller classes,
459-460

LetsTab project

adding scenes and associating view controllers,

472
application logic, 476

adding push count variable property, 476-477

counter displays, 477

incrementing tab bar item badge, 477-478

triggering counter updates, 478-479
building apps, 479
designing interfaces, 473-474
implementation overview, 470
outlets and actions, 475-476
setting up, 470
adding tab bar controller and generic view
controller classes, 471
adding tab bar controllers, 471-472
connections, 472
variables, 472
tab bar relationships, creating, 472-473
LetsTab project setting up adding tab bar item
images, 471
Library/Caches directory, 536
lifecycle of iOS apps, 126-127

lifecycles, background-aware application life cycle
methods, 787-789

limitations, MVC (Model-View-Controller), 186
linking, 52

listings

Activating Interface Rotation, 575

Add a Method as a Placeholder for the Unwind
Segue, 381

Adding a Method in GenericViewController.swift
to Update Each Scene's Counter, 478

Adding Audio Feedback When the Heading
Updates, 798-799

Adding the foundRotation Method, 630-631
Adding the getFlower Implementation, 300-301

Applying a Filter to the Image in the
UllmageView, 700-701

Asking to Become a First Responder, 634
Calculating a Heading to a Destination, 774
Calculating the Date Difference, 422

Calculating the Difference Between Two Dates,
421

Calculating the Distance When the Location
Updates, 764-765

Calling the NSLog Function, 839

Centering the Map and Adding an Annotation,
739

Changing the Label as the Orientation Changes,
650

Cleaning Up After the Movie Player, 691
Completed setOutput Method, 208

The Completed setSpeed Method, 270-271
Completing the recordAudio Method, 696

Configuring a Cell to Display in Table View,
504-505

Configuring and Displaying the Mail Compose
View, 741

Configuring the Detail View Using the detailltem,
521

Configuring the Sections and Row Count for the
Table View, 492

Creating a Method to Display the User's
Selection, 437

Creating and Initializing the Audio Recorder, 693



Creating the Location Manager Instance, 763
Customizing the Annotation View, 724, 740
Defining Handlers Within Alert Actions, 322

Defining the Minimum Background Fetch Interval,
808

Disable the Adaptive Segue, 394

Disabling Editing of Table Cells, 518

Disabling Editing of the Ul, 518

Disabling Interface Rotation, 662

Dismissing the Mail Compose View, 742
Dismissing the Modal Scene, 424, 439
Displaying the Media Picker, 704

The doAlertinput Implementation, 337

Editing the viewDidLoad Method, 842-844
Enabling Scrolling in Your Scroll View, 311
Enabling the Ability to Be a First Responder, 632
Example of the Tap Gesture Recognizer, 613
The Final viewDidLoad Implementation, 703-704

Finishing the Background Fetch by Implementing
application:performFetchWithCompletion
Handler, 808-809

Forward Geocoding, 725

Handling a Cancel Action in the People Picker,
715

Handling a Popover Dismissal, 374
Handling a Row Selection Event, 506
Handling a User's Music Selection, 705
Handling Button Touches, 606

Handling Drilling Down to Individual Properties,
716

Handling Empty Selections in the Media Picker,
706

Handling Heading Updates, 758
Handling Location Manager Errors, 763-764
Handling Playback Completion, 677

Handling Rotation in
didRotateFrominterfaceOrientation, 606

listings 889

Handling the Cancellation of a Media Selection,
674

Handling the Cancellation of an Image Selection,
681, 699

Handling the Composition Completion, 719
Handling the Heading Updates, 775-776

Handling the Notification of Playback Completion,
672

Handling the Selection of a Contact, 735-736

Handling the Selection of a Person in the
Address Book, 716

Handling the Selection of an Image, 681
Handling the Selection of Media Items, 674
Handling the User's Selection of an Image, 699
Hiding the Keyboard, 243

Hiding the Keyboard When Its Done Key Is
Pressed, 389

Hiding the Keyboard When It Isn't Needed, 564

Implementing a Custom Picker Data Source
Protocol, 408

Implementing a Custom Picker Delegate
Protocol, 409-410

Implementing a UlActionSheet Class, 323-324

Implementing an Alert-styled UlAlertController,
319-320

Implementing playAudio Method, 696
Implementing the chooselmage Method, 698

Implementing the controlHardware Method,
657-658

Implementing the createStory Method, 244
Implementing the describelnteger Method, 843
Implementing the doAccleration Method, 660

Implementing the doActionSheet Method,
339-340

Implementing the doAlert Method, 333
Implementing the doAttitude Method, 659

Implementing the doMultipleButtonAlert Method,
335

Implementing the doRotation Method, 661




listings

Implementing the doVibration Method, 343

Implementing the Final setBackgroundHueValue
Method, 544

Implementing the foundPinch Method, 628
Implementing the foundSwipe Method, 627
Implementing the foundTap Method, 627
Implementing the incrementCount Method, 468

Implementing the Initial setBackgroundHueValue
method, 543

Implementing the newBFF method, 734
Implementing the playMusic Method, 706

Implementing the setValuesFromPreferences
Method, 558

Implementing the showResults Method, 566

Implementing the Simple Tweet Compose View,
743-744

Implementing the storeSurvey Method, 564-565

Implementing the toggleFlowerDetail Method,
300

Implementing the viewDidLoad Method, 626
Implementing updatelnterface, 604-605

Initializing the Interface When the Application
Loads, 606

Initializing the Motion Manager, 657
Initializing the Movie Player, 689-690

Initializing the Sound File References in
viewDidLoad, 796-797

Initiating Movie Playback, 690-691
Loading and Playing a Sound, 327
Loading the Animation, 267-268

Loading the Data Required for the Picker View,
432-433

Loading the Settings When the Initial View loads,
559

Performing a Default Calculation When the Date
Chooser Is First Displayed, 423

Placing an Annotation, 723

Populating the Field with the Current Email
Address, 388

Populating the Flower Data Structures, 513

Prepare the Interface (But Don't Display It Yet),
603

Preparing and Showing the Compose Dialog, 719

Preparing the Audio Player with a Default Sound,
695-696

Preparing to Post to Facebook, 721
Presenting the Picker with Custom Views, 411
Processing a Climage with a ClFilter, 682

Providing a Custom View for Each Possible Picker
Element, 434-435

Reacting to a User's Selection, 437
Reacting to a User's Touch, 494

Reacting to Core Location Errors, 755
Requesting Heading Updates, 771-772
Requesting Notification Authorization, 792
Responding to a Shake Gesture, 634-635

Returning a Count of the Rows (Array Elements)
in Each Section, 503

Returning a Heading for Each Section, 504
Returning the Number of Components, 433

Returning the Number of Elements per
Component, 434

Returning the Number of Sections in the Table,
503

Reverse Geocoding, 726
A Sample Interface File, 83

Scheduling a Timer When the Application Starts,
803

Set a Preferred Size for the Popover, 425
Set a Size for the Editor Popover, 391

Set the Popover Presentation Controller
Delegate, 394

Setting a Custom Height and Width for the Picker
Components and Rows, 436

Setting a Default Selection, 438
Setting an Exit Point, 367



Setting the Detail View Controller's detailltem,
519

Setting the End of Background Processing, 805

Setting the Initial Scene's Label to the Editor
Scene's Field, 389

Setting the Start on Background Processing, 805

Setting the Status Bar Appearance in
preferredStatusBarStyle, 274, 745, 766

Setting Up and Displaying the Image Picker, 680

A Silly Implementation of tableView:cellForRowAt
IndexPath, 493

Starting and Stopping the Animation in
toggleAnimation, 269-270

Storing the Recently Received Location for Later
Use, 772-773

Supporting All Interface Orientations, 602
Typical Setup and Display of a Media Picker, 673

Update the viewDidLoad Method to Ask for
Location Authorization, 738

ateAnimalChooserViewController's viewDidLoad
Method, 439

Updating doAlert to Register a Local Notification,
793-794

Updating the Counter, 804

Updating the Display in viewWillAppear:animated,
469

Updating the Display Using the Counter Values,
477

Updating the Initial recordAudio Method, 694
Updating the Settings in viewDidLoad, 545
Updating the Tab Bar Item's Badge, 477-478

Updating the viewDidLoad Method to Set the
Initial Display, 302

Updating viewDidLoad to Loop 2,000 Times, 851

Using prepareForSegue:sender to Grab the View
Controllers, 375

Using the Motion Manager, 646

The ViewController.swift Outlets and Actions,
266-267

locations 891

ViewController.swift with Connections Defined,
198

Watching for Orientation Changes, 649
Your First Code Exercise, 44

lidb, 845

loading
hi-res images for Retina display, 258

images and details, FloraPhotographs project,
300-302

picker data, 432-433

recorded sound, 696-697

remote content, web views, 284-285

sound, 326-327
loadRequest, loading remote content, 284-285
Local Authentication, 125
local notifications, backgrounding, 784-785, 792

creating/scheduling, 793-794

properties, 793

requesting authorization for notifications, 792
local repositories, Git, 866-868
location accuracy, Core Location, 756
location constants, Cupertino project, 759-760
location errors, 754-756
location manager, Cupertino project, 762-763
location manager delegate implementing, 763-766
location manager delegate protocol, 752-754
location manager instance, configuring, 763
location managers, Core Location, 751-752
locations

batteries, 756

Core Location. See Core Location

mapping, 728-729

north, 757

permissions, requesting to use user's location,
737-738

storing recent, Cupertino project, 772-773




892 locMan

locMan, 764

Log mode, 876

long pressing, 612

long-running background tasks, 800

SlowCount project

application logic, 802-804
background task processing, 804-805
designing interfaces, 802
implementation overview, 800
outlets, 802
setting up, 801

long-running tasks, task completion for long-running
tasks, 785-786

loops
do-while loops, 106-107
for loops, 105-106
while loops, 106-107

low-level code, 446

Mac Developer Program, 19
magnetic compass, 768
magnetic north, 757
mail completion, BestFriend project, 742
mail compose delegate protocol, 741
mail compose view, displaying, 741-742
mail compose view controller delegate, 719
Main.storyboard file, 196
managing, project properties, Xcode, 58
map displays

controlling map display, 738-740

tying to Address Book selection, 740-741
Map Kit, 120, 721-723

map logic, BestFriend project, 737
controlling map display, 738-740
customizing pin annotation view, 740

requesting permission to use user's location,
737-738

tying map display to Address Book selection,
740-741

map view delegate protocol, 724-725
map views, configuring, 732
mapping, 721-723
annotations, 723-724
map view delegate protocol, 724-725
geocoding, 725-728
permissions, 728-729
maps, BestFriend project. See BestFriend project
MARK, 47-48
master scenes, updating, 510
master view controllers, 497
FlowerDetail project, 515
creating table cells, 516-517
creating table view data methods, 515-516
disabling editing, 518
handling navigation events from a segue,
518519

Master-Detail Application template, 497-498, 507
FlowerDetail project
application data source, 512-515
master view controllers, 515-519
setting up, 508-510
tweaking interfaces, 510-512
implementation overview, 507-508
matching sizes, constraints, 598-600
media files, adding, 684
media items, accessing, 675-676
Media layer, 121
AV Foundation framework, 121
Core Audio, 121



Core Graphics, 122
Core Image, 121
Core Text, 122
Image 1/0, 122
Media Player framework, 122
Metal, 122
OpenGL ES, 122
Photos framework, 122
Quartz Core, 122
media picker, 673-674
displaying, 704-705
filters, 673
music library, 702-703
media picker controller delegate, 674
media player
audio formats, 671
transitioning to fullscreen view, 671
Media Player framework, 122, 670-671
accessing media items, 675-676
media picker, 673-674
media picker controller delegate, 674
movie player, 671
movie player completion, 672
music player, 675
media selections, 674
MediaPlayground project
audio playback, 692-693, 695-696
controlling, 696
loading recorded sound, 696-697
audio recording, 692-693
controlling, 694-695
implementing, 693-694
Core Image filter, 700-702
designing interfaces, 685-686

implementation overview, 683-684

Modal Editor project 893

movie player, 689
cleanup, 691
implementing playback, 690-691
initializing movie player instance, 689-690
music library, 702
displaying media picker, 704-705
empty selections, 706
media picker, 702-703
playing music, 706-708
preparing music player, 703-704
user's selection, 705
outlets and actions, 687-688
photo library and camera, 697-700
setting up, 684-685
variables, 685
memory management, 107
memory usage, monitoring, 855-856
merging, source control, 865, 877-880
Message Ul framework, 121, 741
Metal, 122
method stubs, 178
methods
chaining, 101
closures, 102
declaring, 86-87
versus functions, 190
syntax, 99-100
MFMailComposeViewController, 742
Misplaced Views error, 587
MKMapView, 728
MKMapViewDelegate protocol, 740
Modal Editor project, 377
application logic, 388-389
hiding keyboards, 389
connections, 381
designing interfaces, 381-384




894 Modal Editor project

implementation overview, 377
modal segues, creating, 384-385
outlets and actions, 386-387
popovers
configuring, 391-392
iPhones, 393-395
setting up, 377-381
toggling to universal applications, 392-393
unwinding back to the initial scene, 386
variables, 381

modal scenes, dismissing, programmatically, 366

modal segues
creating, 359-361, 384-385
presenting manually, 366
modal user interface, 318
modal views, 351
Model-View-Controller (MVC), 24
monitoring CPU and memory usage, 855-856
motion data, accessing, 643
motion hardware
accelerometers, 640-642
gyroscope, 642
Motion Manager, Core Motion, 656-657
motion sensing, 639
motion updates, managing, 657-658
motion-input mechanisms, 639
movie playback, implementing, 690-691
movie player, 671
MediaPlayground project, 689
cleanup, 691
implementing playback, 690-691

initializing movie player instance, 689-690

movie player instance, initializing, 689-690
MPMedialtem, 670, 675-676
MPMedialtemCollection, 670, 674
MPMediaPickerController, 670, 673-674

MPMoviePlayerController, 670
MPMusicPlayerController, 670
multibutton alerts, creating, 334-336
multiscene development, view controllers, 446
multiscene projects, 352
exits, 366-368
modal segues
creating, 359-361
presenting manually, 366
naming scenes, 354-355
passing data between scenes, 375-377
popover segue, configuring, 362-365
popovers, 371-374
popover arrow, 372-373

PopoverPresentation
ControllerDelegate Protocol, 374

segues

creating, 356-359

programming from scratch, 369-371
view controller subclasses, 355-356

multiscene projects adding additional scenes,
352-353

multiscene storyboards, 350

multiscene projects. See multiscene projects

multitouch events, generating, 66-67
multitouch gesture recognition, 611-612
multivalue picker, 552, 556
music library
displaying media picker, 704-705
empty selections, 706
MediaPlayground project, 702
media picker, 702-703
playing music, 706-708
preparing music player, 703-704

user's selection, 705



music player, 675
preparing, 703-704

mutators, 85

MVC (Model-View-Controller), 24, 185
data models, 190
limitations, 186

Single View Application template. See Single
View Application template

structured application design, 186-187
view controllers, 188
@I|BAction, 189-190
@IBOutlet, 188-189
views, 187-188
mylnstanceMethod, 97
myOptionalString, 97

named parameters, 100
naming, scenes, 354-355
navigating
code, Xcode, 42
constraints objects, 581-590
documentation, Xcode, 139-140
projects, Xcode, 34-35
navigation bar item attributes, setting up, 450-451
navigation bars, 448
navigation controller classes, adding, 459-460
navigation controllers, 445, 447
bar button items, 448
items, 448
navigation bars, 448

people picker navigation controller delegates,
715-716

numberOfTouchesRequired 895

projects, 458
LetsNavigate project. See LetsNavigate
project
sharing data between navigation scenes, 452
storyboards, 449-450

adding navigation scenes with show segues,
451-452

setting navigation bar item attributes,
450-451

navigation events, segues, 518-519

navigation scenes, adding with show segues,
451-452

navigator, Xcode, 33
Newsstand, 124
nonbridged data types, 130-131
URLs (NSURL), 131
non-Retina display, 61
north, locations, 757
Notification Center framework, 121
NSDate, 130, 423-424
NSDateFormatter, 423-424
NSFileHandle, 538
NSLog, 838-839
viewing output, 839-841
NSNotificationCenter, 647, 672

NSOperationQueue,
647

NSsearchPathForDirectories
InDomains, 536

NSTimelnterval, 420
NSURL, 131

loading remote content, 284-285
NSURLRequest, loading remote content, 284-285
number formatters, 765
numberOfComponentsinPickerView, 408
numberOfSectionsinTableView, 491
numberOfTapsRequired, 613
numberOfTouchesRequired, 613




896 object data types

o orientation data, accessing, 643
orientation notifications, requesting, through
object data types, 93 UlDevice, 644
object identity, 178-179 Orientation project
Object Library, user interfaces, 154-155 application logic, determining orientation,
650-651

Objective-C, 81, 129

object-oriented programming. See OOP (object- designing interfaces, 648

oriented programming) implementation overview, 647
imperative programming, 78 outlets, 649
object-oriented approach, 78-79 sensing orientation, application logic, 649-651
objects, 513 setting up, 647
adding orientation updates, registering, 649-650
to interfaces, 201-203 orientationChanged method, 650
to scrolling view, 308 originalRect, 617
adding to views, 156-157 outlets
OOP (object-oriented programming), 80 BackgroundColor project, 541-543
onscreen controls (UlControl), 129 BackgroundDownload project, 807-808
OOP (object-oriented programming), 78-79 BestFriend project, 732-733
terminology, 79-81 ColorTilt project, 654-655
OpenGL ES, 122 Cupertino project, 762, 769, 771
opening projects, Interface Builder (IB), 170 CustomPicker project, 431-432
opinionated software, 527-528 DateCalc project, 418-419
optional binding, 98-99 FieldButtonFun project, 237-239
optional chaining, 101 FloraPhotographs project, 295-298
optional values, 95-96, 99 Gestures project, 623-625
declaring, 96-97 GettingAttention project, 331-333
optional binding, 98-99 ImageHop project, 264-265
unwrapping, 97-98 Interface Builder (IB), 172-178
orientation LetsNavigate project, 466-467
constraints. See constraints LetsTab project, 475-476
determining, 650-651 MediaPlayground project, 687-688
screen orientations, 575 Modal Editor project, 386-387
sensing. See sensing orientation Orientation project, 649
orientation changes ReturnMe project, 549
AllinCode project, 602 Scroller project, 310

setting up, 197-199




Single View Application template, 203-207
SlowCount project, 802
Survey project, 562-563

output. See also input

from Playground, generating and inspecting
output, 110-112

outputLabel, 418, 475

P

pagination, scrolling views, 308
paid Developer Program, joining, 12-14
panning, 612
parameters, 142
named parameters, 100
OOP (object-oriented programming), 80

parent classes, OOP (object-oriented programming),
79

parent controllers, 446

parentViewController, 468

Pass Kit, 124

passing data between scenes, 375-377
passthrough views, 364-365

pausing, playback, media player, 671

people picker delegate protocol, conforming to, 734

people picker navigation controller delegates,
715-716

peoplePickerNavigationControllerDidCancel, 715

peoplePickerNavigationController:didSelectPerson,
715

permissions

mapping, 728-729

requesting to use user's location, 737-738
photo library, MediaPlayground project, 697-700
Photos framework, 122

playback, implementing 897

PhotosUl, 121
picker data, loading, 432-433
picker view data source protocol, 408-409
picker views, 407-408
advanced delegate methods, 410-412
picker view data source protocol, 408-409
picker view delegate protocol, 409-410
pickers, 134, 401, 404-405
custom pickers. See custom pickers
date pickers, 406
attributes, 406-407
projects. See DateCalc project
picker views, 407-408
advanced delegate methods, 410-412
picker view data source protocol, 408-409
picker view delegate protocol, 409-410
pickerView:didSelectRow:inComponent, 409
pickerView:numberOfRowsInComponent, 408
pickerView:rowHeightForComponent, 410
pickerView:titleForRow:forComponent, 409

pickerView:viewForRow:viewForComponent:Reusing
View, 410

pickerView:widthForComponent, 410

pin annotation view, customizing, 740

pinch recognizer, 621-622
responding to, 627-630

pinching, 612

pinning, 581

placement errors, 588

plain tables, 486

plain text versus attributed text, 227

play, 689

play method, media player, 671

playAudio, 696

playback, implementing, 690-691




898 playbackState

playbackState, 675
Playground feature, 108
Cocoa Touch classes, 131-132
creating new, 108-109
dates and times, 423-424
FieldButtonFun project, 244
file storage, 538-539
generating and inspecting output, 110-112
geocoding, 727-728
ImageHop project, 272-273
testing, user notifications, 324-325
testing web views, 285-286
transformations, 632-633
using, 110
playing
alert sounds with vibrations, 342
music, music library, 706-708
sound, 326-327
System Sound Services, 341-342
playMovieFinished, 672
playMusic method, 706
plist files
requesting, 752
updating, 766
PNG images, 40
pop, 447
popover arrow, 372-373
popover segue, configuring, 362-365
popoverPresentationController, 394
popovers, 134-135, 340, 371-374, 439
configuring, 391-392
iPhones, 393-395
popover arrow, 372-373
preparing, 362-363
sizing, 363
UIPrPresentationController
Delegate Protocol, 374

populating
arrays, FlowerColorTable project, 502
data structures, 515
posting to social networking sites, 720-721
preference types, 533
preferences
BackgroundColor preferences, reading, 545
storing in BackgroundColor project, 544-545
preferredStatusBarStyle, 745
prepareForSegue:sender method, 375-377
presentation directions, 364-365
presentation styles, segues, 370

presentingViewController, 422

preventing, interface-orientation changes, 661-662

previewing, interfaces, 168-169
print, 838
printin, 838
private, 87
products, 35
programmatically defined interfaces, 600-601
AllinCode project
programming interfaces, 602-606
setting up, 602
implementation overview, 601-602
programming interfaces
AllinCode project
button touches, 606
defining variables and methods, 603

drawing interfaces when the application
launches, 606

implementing interface update method,
604-605

initializing interface objects, 603-604

updating the interface when orientation
changes, 606

rotation, 577
project code, 35



project groups, 35
project properties, managing, 58
project types, Xcode, 30-32
projects
AllinCode project. See AllinCode project
BackgroundColor project. See BackgroundColor
project
BackgroundDownload project. See
BackgroundDownload project
BestFriend project. See BestFriend project
ColorTilt project. See ColorTilt project
configuring as universal, 816-817
Cupertino project. See Cupertino project
CustomPicker project. See CustomPicker project
DateCalc project. See DateCalc project
DebuggerPractice project, 843-845
FieldButtonFun project. See FieldButtonFun
project
FloraPhotographs project. See FloraPhotographs
project
FlowerColorTable project. See FlowerColorTable
project
FlowerDetail project. See FlowerDetail project
Gestures project. See Gestures project
GettingAttention project. See GettingAttention
project
ImageHop project. See ImageHop project
MediaPlayground project. See MediaPlayground
project
Modal Editor project. See Modal Editor project
multiscene projects. See multiscene projects
navigation controllers, 458
LetsNavigate project. See LetsNavigate
project
Orientation project. See Orientation project

ReturnMe project. See ReturnMe project

prototype cell attributes 899

Scroller project. See Scroller project
Single View Application template, 192-193
class files, 194-195
planning variables and connections, 197-199
storyboard files, 195-197
SlowCount project. See SlowCount project
source control, 871
branching/merging, 877-880
commits, 873-874
pulls, 874
pushes, 873-874
status codes, 871-872
updates, 874
viewing revisions, 874-877
Survey project. See Survey project
Swapper project. See Swapper project
tab bar controllers, 469
LetsTab project. See LetsTab project
Xcode, 30
adding new assets catalogs, 38
adding resources, 37
choosing project types, 30-32
getting your bearings, 33-34
navigating, 34-35
removing files and resources, 37-38
Xcode Asset Catalog, 38
ProjectTests, 35
properties, 551
child properties, 553
local notifications, backgrounding, 793
Values property, 552
versus variables, 189
protocols, 84
OOP (object-oriented programming), 80
prototype cell attributes, 489-491




900 provisioning profiles, viewing

provisioning profiles, viewing, 22

pseudo preferences, 529-530

public, 87

pulls, source control projects, 874

push, 447

push count variable property, adding, 468
LetsTab project, 476-477

pushCount, 463

pushes, source control projects, 873-874

Q

Quartz Core, 122
Quick Help, Xcode, 140-141
activating Quick Help Inspector, 141-142
interpreting results, 142-143
Quick Help Inspector, activating, 141-142
Quick Inspector, editing, connections, 177
Quick Look, 124
quitting apps, 209

radian conversion constants ColorTilt project, 653
radian/degree conversion constants, Cupertino
project, 769
radio buttons, 282
reading
acceleration with Core Motion, 645-647
attitude with Core Motion, 645-647
BackgroundColor preferences, 545
data, direct file system access, 537-538
rotation, with Core Motion, 645-647
user defaults, 531-532
recordAudio method, 693-694, 696

recorded sound, loading, 696-697
registering
as a developer, Apple Developer Program, 11
multiple devices, 17
orientation updates, 649-650
related, 142
relationships, 351
tab bar relationships, creating, 472-473
Release, 842
remote content, loading, with web views, 284-285
remote repositories, Git, 868-869
removeConstraints, 615
removing
annotations from map view, 724
breakpoints, 854
files and resources, Xcode projects, 37-38
objects from views, 156
repeatinterval, 793
replacing image views, Gestures project, 626
repositories
Git, 865-866
connecting to remote repositories, 868-869
creating local, 866-868
source control, 864
requestAlwaysAuthorization, 752
requesting
authorization, Core Location, 752

authorization for notifications, backgrounding,
792

orientation notifications, through UlDevice, 644
permissions, to use user's location, 737-738
plist files, 752
requestWhenlnUseAuthorization, 737, 752
resetting View Controller Simulated Size, 309
resizable interfaces, Auto Layout, 576-577
resources
adding to Xcode projects, 37

removing from Xcode projects, 37-38



responders (UIResponder), 128-129
responding
to pinch recognizer, 627-630
to rotation recognizer, 630-632
to swipe recognizer, 627
to tap gesture recognizers, 627
responding to actions, alert controllers, 321-322
responsive interfaces
designing rotatable and resizable interfaces
Auto Layout, 576-577
programming interfaces, 577
size classes, 578
swapping views, 577-578
rotation, 573-574
enabling, 574-575
restoration, pseudo preferences, 529-530
retina display, hi-res images, loading, 258
retina image assets, 41-42
Retina image files, 61
Retina-naming convention, 42
return statement, 575
ReturnMe project
application logic, 557-559
building apps, 559
designing interfaces, 548
outlets, 549
setting up, 547-548
settings bundles, creating, 549-556
returns, 142
revisions, viewing, source control, 874-877
rich media
AV Foundation framework, 676-677
AV Audio Player, 677
AV Audio Player completion, 677
AV audio recorder, 678-679

running 901

Core Image, 682
filters, 682-683
image picker, 679-680
Ul image picker controller delegate, 680-682
Media Player framework, 670-671
accessing media items, 675-676
media picker, 673-674
media picker controller delegate, 674
movie player, 671
movie player completion, 672
music player, 675
MediaPlayground project. See MediaPlayground
project
Root.plist file, 554
rootViewController, 809
rotatable interfaces, Auto Layout, 576-577
rotating, 612
simulated devices, 67
rotation, 573-574
enabling, 574-575
programming interfaces, 577
reacting to, 661
reading, with Core Motion, 645-647
screen-locking function, 578
size classes, 578
swapping views, Swapper project. See Swapper
project
rotation recognizer, 622
responding to, 630-632
rotationRate, 646
running
apps, Xcode, 53-54
iOS apps, 16-19




902 sample code

S

sample code, 137, 142
sandbox, 535
scaling, 294
scene segue logic
CustomPicker project, 438-439
DateCalc project, 424-425
scenes, 188, 351
adding, 352-353
LetsNavigate project, 461-462
LetsTab project, 472
naming, 354-355
passing data between, 375-377

scheduling notifications, backgrounding, 793-794

scolling views, Auto Layout, 311
screen orientations, 575
screen-edge panning, 612
screen-locking function, 578

screens

accommodating different screens, 7

iPads, 6
iPhone 5, 7
iPhone 6, 6
iPhone 6+, 6
iPhones, 6
Scroller project

application logic, 310

adding scrolling behavior, 310-311

designing interfaces, 305
adding objects, 308

adding scrolling views, 305-306

resetting View Controller Simulated Size, 309

setting freeform size, 306-307
outlets and actions, 310

scrolling behavior, adding, 310-311

scrolling options, FieldButtonFun project, 233-234
scrolling views, 286, 303-304
adding to Scroller project, 305-306
building apps, 312
implementation overview, 304-305
pagination, 308
Scroller project. See Scroller project
SDK (software development kit), 534
SDK Guides, 137
search navigator, searching code, Xcode, 46-47
searching
code, Xcode, 46-47
documentation, Xcode, 137-138
Security framework, 125
segmented controls, 133, 282-283
adding, FloraPhotographs project, 289
i0S 6, 290
sizing in FloraPhotographs project, 291
segments, adding/configuring, 289-290
Segue drop-down, 359
segue style, configuring, 370-371
segues, 351, 377, 446
adaptive segues, 358
disabling, 394
creating, 356-359
CustomPicker project, 431
DateCalc project, 417
Modal Editor project, 377
implementation overview, 377
setting up, 377-381
modal segues
creating, 359-361
presenting manually, 366
navigation events, 518-519
popover segue, configuring, 362-365
programming from scratch, 369-371



show segues, adding navigation scenes,
451-452

unwind segues, 366-368, 389
selection handles, Interface Builder (IB), 158-159
selections

empty selections, 706

music library, 705
self, OOP (object-oriented programming), 80-81
sender variable, 630
sendMail method, 741
sendTweet method, 742
sensing orientation, 647

implementation overview, 647

Orientation project

application logic, 649-651
designing interfaces, 648
outlets, 649
setting up, 647
setBackgroundHueValue method, 542-544
setDateTime, 418, 422-423
setFullscreen:animated, 689
setMessageBody:isHTML, 742
setMiminumBackgroundFetchinterval, 808
setObject:forKey, 531
setOutput method, 208
setters, 85
Settings application, 528, 546-547
implementation overview, 547
ReturnMe project, 547-548
application logic, 557-559
designing interfaces, 548
outlets, 549
setting up, 547-548
settings bundles, 549-556
settings bundles, 528, 530, 532-534, 547
creating, 549-556

Single View Application template 903

Settings icon, 61
setToRecipients method, 719
setValuesFromPreferences, 557-558
shake gestures, 634-635
shake recognizer, 632
first responders, 632-634
shaking, 612
sharing data
between navigation scenes, 452
between tab bar scenes, 457-458
show segues
adding, navigation scenes, 451-452
creating, 464-465
showing
chosen images, 698-699

detail web views, FloraPhotographs project,
298-300

survey results, Survey project, 565-567
showResults method, 566
signing identity, 17
simulated devices
adding, iOS Simulator, 69-71
rotating, 67
simulated interface attributes
FieldButtonFun project, 224
setting, 199-201
Single View Application template, 191
application logic, implementing, 208
applications, building, 208-209
designing interfaces, 199-203
implementing, 191-192
outlets and actions, 203-207
projects, 192-193
class files, 194-195
planning variables and connections, 197-199

storyboard files, 195-197




904

singleton, OOP (object-oriented programming), 80
size classes
Any, 833
configuring installed, 823
designing rotatable and resizable interfaces, 578
fonts, 826
images, 826-827
setting active size classes, 821-823
setting manually, 824-825
storyboards, 827-833
tools, 821
universal applications, 818-820
tools, 821-827
Size Inspector
editing, constraints, 582-585
Interface Builder (IB), 159-161
viewing, constraints, 582-585
sizes, matching, constraints, 598-600
sizing, 490
controls, FloraPhotographs project, 291
popovers, 363
SLComposeViewController, 720
slices, creating, 220-224
slicing, 40, 220-224
button templates, 219
adding images, 220
slider range attributes, setting, 259-261
sliders, 133, 251-252
adding, ImageHop project, 259
ImageHop project. See ImageHop project
SlowCount project
application logic, 802-804
background task processing, 804-805
designing interfaces, 802
implementation overview, 800
outlets, 802
setting up, 801

singleton, OOP (object-oriented programming)

snapshots, Xcode, 50-51
Social, 124
social networking, BestFriend project. See BestFriend
project
social networking logic, BestFriend project, 742-743
displaying compose view, 743-744
social networking sites, posting to, 720-721
sound
loading, 326-327
user notifications, 326
sound resources, 328
soundName, 793
sounds, alerting users, 327-328
soundSetting, 679
source control, 863
branching/merging, 865
committing changes, 864
downloading changes, 865
projects, 871
branching/merging, 877-880
commits, 873-874
pulls, 874
pushes, 873-874
status codes, 871-872
updates, 874
viewing revisions, 874-877
repositories, 864
working copies, 864
space, data storage, 536
speed, animation speed
ImageHop project, 270-272
incrementing, 273-274
speed output labels, adding, 262
split view controllers, 495
hierarchies, FlowerDetail project, 509
implementing, 496-497
Master-Detail Application template, 497-498



splitViewController, 497
startAnimating, 269
starting
animation, ImageHop project, 269-270
segues, 366
startUpdatingLocation method, 763
state preservation, 529-530
status bars
setting to white, 744-745
Cupertino project, 766
unreadable status bar, 274
status codes, source control, projects, 871-872
stepper range attributes, setting up, 261-262
steppers, 133-134, 252-253
adding, 261
ImageHop project. See ImageHop project
stopAnimating, 269
stopping animation, ImageHop project, 269-270
storage locations for application data, 535-536
Store Kit, 125
storeSurvey method, 564-565
storing
BackgroundColor preferences, 544-545
recent locations, 772-773
survey results, 564-565
storyboard feature, 446

storyboard files, Single View Application template,
projects, 195-197

storyboard identifiers, setting, 369
storyboard segues, 446
storyboards, 188, 351
Interface Builder (IB), 149
document outline, 149-152
document outline objects, 153-154

multiscene storyboards. See multiscene
storyboards

survey results 905

navigation controllers, 449-450

adding navigation scenes with show segues,
451-452

setting navigation bar item attributes,
450-451

size classes, 827-833
tab bar controllers, 454-455
adding tab bar scenes, 456-457
setting tab bar item attributes, 455-456
universal applications, 818
String objects, 89, 536
stringForKey, 532
strings, 90-91
structs, 88
stub methods, 178
styled buttons, adding, 234
subclasses, OOP (object-oriented programming,) 79
subversion. See SVN
subviews, 152
superclasses, OOP (object-oriented programming), 79
superviews, 152, 579
Supported Device Orientations, 59
supportedinterfaceOrientations method, 574, 602
Supporting Files group, 35
Survey project
application logic
hiding keyboards, 564
showing survey results, 565-567
storing survey results, 564-565
designing interfaces, 560-561
outlets and actions, 562-563
setting up, 560
survey results
showing, 565-567
storing, 564-565




906 suspension, backgrounding

suspension, backgrounding, 784, 790-791 expressions, 102-103
SVN, 863 ifthen-else, 103-104
branching/merging, 865 loops, 104-107
committing changes, 864 switch statements, 103-104
downloading changes, 865 memory management, 107
swapping views methods
designing rotatable and resizable interfaces, chaining, 101
577-578 closures, 102
rotation, Swapper project. See Swapper project syntax, 99-100
Swift, 23, 77, 81 object-oriented programming, 77-78
automatic reference counting, 107 properties versus variables, 189
class files, 82-83 type casting, 95
class declaration, 84 unwrapping, 97-98
constant declaration, 85 Swift optional binding, 98-99
declaring methods, 86-87 Swift type conversion, 94
ending, 87 swipe recognizer, 621
IBOutlet declarations, 85-86 swipe recognizer responding to, 627
import declaration, 83-84 swiping, 612
variable properties declarations, 84-85 switch statements, 103-104
Xcode, 88 switches, 133, 282
decision making, 102 adding, in FloraPhotographs project, 291
declaring variables and constants, 89 symbol navigator, Xcode, 43
arrays, 91-92 synchronize method, 532
Boolean values, 91 syntax
constants, 95 expressions, 103
convenience methods, 93-94 methods, 99-100
data types, 89 System Configuration, 125
dictionaries, 92-93 System framework, 125
integers and floating-point numbers, 89-90 System Sound Services, 325-326, 796
object data types, 93 accessing, 326-327
optional values, 95-97 alert sounds and vibrations, 327-328
strings, 90-91 playing, 341-342

SystemSoundIDs, 796




T

tab bar controller classes, adding, 471
tab bar controllers, 445, 452-453
adding, 471-472
projects, 469
LetsTab project. See LetsTab project
storyboards, 454-455
adding tab bar scenes, 456-457
setting tab bar item attributes, 455-456
tab bar items, 453-454
tab bars, 453-454
tab bar images, 456
tab bar item attributes, setting, 455-456
tab bar item badge, incrementing, 477-478
tab bar item images, adding, 471
tab bar items, 453-454
tab bar relationships, creating, 472-473
tab bar scenes
adding, 456-457
sharing data, 457-458
tab bars, 453-454
Tabbed Application, 454
tabbed editing, Xcode, 50
table attributes, setting, 488-489
table cells, 487
creating, 516-517
table section constants, 499
table view controllers, 486
table view data methods, creating, 515-516
table view data source protocols, FlowerColorTable
project, 503-505
table view delegate protocols, FlowerColorTable
project, 505-507

task-specific background processing 907

table views, 486
adding, 488
data source protocols, 491-494
delegate protocols, 494-495
prototype cell attributes, 489-491
setting table attributes, 488-489
tables
FlowerColorTable project
implementation overview, 499
setting up, 499
grouped tables, 486
indexed tables, 486
plain tables, 486

table view app, FlowerColorTable project. See
FlowerColorTable project

tableView:cellForRowAtindexPath, 491
tableView:numberOfRowsInSection, 491
tableView:titleForHeaderInSection, 491
tap gesture recognizers, responding to, 627
tap recognizer, 619-620
tapping, 612-613
task completion for long-running tasks,
backgrounding, 785-786
task-specific background processing, 785, 795
adding audio, 795-796
background modes, adding, 799-800

Cupertino project, adding audio directions,
796-799

templates
button templates. See button templates

Master-Detail Application template. See Master-
Detail Application template




908 templates

Single View Application template. See Single
View Application template

Tabbed Application, 454

testing
apps, FloraPhotographs project, 303
conditions, i0S Simulator, 68-69
transformations, Playground feature, 632-633
user notifications, 324-325
web views, 285-286

text, plain versus attributed, 227

text field attributes, customizing keyboard displays,
228-229

text fields, 134, 216
adding, to FieldbuttonFun project, 225
editing attributes, 225-227
text view attributes, editing, 231-232
text views, 216, 219
adding to FieldbuttonFun project, 230-231
tilt, 642
ColorTilt project. See ColorTilt project
Time, date picker attributes, 406
timelntervalSinceDate, 420
timers, initializing, 803
timeZone, 793
TODO, 47-48
toggleAnimation method, 269
toggleFlowerDetail, 288
toggleSwitch, 540
toggling to universal applications, 392-393
toolbar, Xcode, 33
toolbars, 401
bar button items, 403-404
role of, 401-402

tools
Apple Developer tools, 23
Cocoa Touch, 24
Model-View-Controller (MVC), 24
Swift, 23
bar button items, attributes, 404
editing tools. See editing tools
size classes, 821
Top Layout Guide, 151
top/bottom layout guides, 581
touch
background touch, keyboard hiding, 242
gesture recognizers, adding, 612-613
tracing
iOS application lifecycle, 126-127
lifecycle of iOS apps, 126-127
trailing, 579
trailing space, 581
Traits attributes, 166
transformations, Playground feature, 632-633
transition styles, segues, 370
transition types, 360
transitioning, to fullscreen view, media player, 671
triggering counter updates, LetsTab project, 478-479
tutorials, accessing, 880-884
tweaking interfaces, FlowerDetail project, 510-512
updating detail scenes, 511-512
updating master scenes, 510
web view outlets, 512
type casting, 95
type conversion, 94

type method, OOP (object-oriented programming), 80



unwinding back to the initial scene, Modal Editor project 909

U

Ul elements, 401

pickers. See pickers

toolbars. See toolbars
Ul image picker controller delegate, 680-682
UlAlertController, 318
UlApplication, 128
UlBackgroundTaskldentifier, 801
UlButton class, 132, 282
UlColor object, 540
UlControl, 129
UlDatePicker. See date pickers, 134
UlDevice, requesting orientation notifications, 644
UlDeviceOrientation, 644

UlDeviceOrientationDidChange
Notification, 649

Ullmage initialization method, 268
UlKit, 120

UlLabel, 93, 132
UlLocalNotification, 784-785, 792
UlLongPressGestureRecognizer, 612
Uint32(), 327
UIPanGestureRecognizer, 612
UlPicker, 134
UlPickerViewDelegate, 409
UIPinchGestureRecognizer, 612
UlPopoverPresenationController, 134-135

UlPopoverPresentationController
Delegate Protocol, 374

UIResponder, 128-129
UlRotationGestureRecognizer, 612, 622

UlScreenEdgePanGesture
Recognizer, 612

UlScrollView, 312

UlSegmentedControl, 133
UliSlider, 133
UlStepper), 133-134
UlStoryboardSegue, 376
UISwipeGestureRecognizer, 612
UlSwitch, 133
UlTabBar, 453
UlTabBarltem, 453
UlTableViewDataSource, 491
UlTapGestureRecognizer, 612
UlTextField, 134
UlTextView, 134
UlView, 128
UlViewController, 129
UlWebView, 312
UlWindow, 128
universal applications, 574, 815-816
app icons, 817
configuring projects as, 816-817
device models, 819
launch screens, 818
size classes, 818-820
storyboards, 827-833
tools, 821-827
storyboards, 818
targets, 819
toggling to universal applications, 392-393
unreadable status bar, ImageHop project, 274
unwind, 351
unwind destinations, determining dynamically, 368
unwind segues, 366-368, 389

unwinding back to the initial scene, Modal Editor
project, 386




910 unwrapping

unwrapping, 97-98
exclamation mark (!), 284
update filters, Core Location, 756
Update Frames, 382
updates, source control projects, 874
updating
counters, 803-804
Cupertino project, application logic, 771-776
date output, 422-423
detail scenes, 511-512
displaying, 803-804
master scenes, 510
plist files, 766
user interfaces, Cupertino project, 769-770
URLs (NSURL), 131
user defaults, 530-531
reading/writing, 531-532
user interfaces
adding object to views, 156-157
Object Library, 154-155
updating, Cupertino project, 769-770
user notifications, 317
alert controllers, 318
action sheets, 322-324
alerts, 318-321
responding to actions, 321-322
GettingAttention project. See GettingAttention
project
System Sound Services, 325-326
accessing, 326-327
alert sounds and vibrations, 327-328
testing, 324-325
vibrations, 341-343
userAcceleration, 646

utility, Xcode, 33

Vv

Values property, 552, 556
Variable List, accessing, 852-853
variable properties declarations, 84-85
variable property
for image view size, adding, 616-617
OOP (object-oriented programming), 80
variable states, debuggers, 847-848
variables
AllinCode project, 602
BestFriend project, 730-731
ColorTilt project, 652-653
Cupertino project, 759, 769
CustomPicker project, 427-428
DateCalc project, 414-415
declaring, 89
arrays, 91-92
Boolean values, 91
convenience methods, 93-94
data types, 89
dictionaries, 92-93
integers and floating-point numbers, 89-90
object data types, 93
optional values, 95-97
strings, 90-91
FloraPhotographs project, 288
FlowerColorTable project, 499
FlowerDetail project, 509-510
Gestures project, 616
ImageHop project, 255
LetsNavigate project, 463
LetsTab project, 472
MediaPlayground project, 685



Modal Editor project, 381
OOP (object-oriented programming), 80
Orientation project, 647
planning, 197-199
versus properties, 189
SlowCount project, 801
verifying connections, Connections Inspector, 625
Version editor, viewing revisions, 875-876
vertical constraints, 581
verticalAccuracy, 753
vibrations, 326-328, 341-343
View Controller icon, 150-151
View Controller Scene, 150
View Controller Simulated Size, resetting, 309
view controller subclasses, 355-356
view controllers, 129, 351, 445-446
associating, 461-462
LetsTab project, 472
with new scenes, 379-380
exits, 381
mail compose view controller delegate, 719
multiscene development, 446
MVC (Model-View-Controller), 188
@IBAction, 189-190
@IBOutlet, 188-189
view hierarchy, checking, 856-858
View icon, 151
ViewController.swift, 194
viewDidAppear method, 438, 690
viewDidLoad, 439, 545, 626, 843-844
viewing
constraints, via Size Inspector, 582-585
NSLog output, 839-841
provisioning profiles, 22

revisions, source control projects, 874-877

Wi-Fi 911

views, 351
adding gesture recognizers, 619-622
creating in Swapper project,
designing, Cupertino project, 760-761
MVC (Model-View-Controller), 187-188
scrolling views. See scrolling views, 286

swapping, designing rotatable and resizable
interfaces, 577-578

web views, 283
loading remote content, 284-285
supported content types, 284
testing, 285-286
views (UlView), 128
virtual keyboards, 217

Voiceover, 165

w

waitView outlet, 762
warnings, fixing, with issue navigator, 54-57
watchpoints, 851-852
web view outlets, FlowerDetail project, 512
web views, 283
adding in FloraPhotographs project, 292
detail web views, hiding/showing, 298-300
loading remote content, 284-285

setting attributes, FloraPhotographs project,
293-294

supported content types, 284
testing, 285-286
while loops, 106-107
whiteButton.png, 220
Wi-Fi, 9




912

willRotateTolnterfaceOrientation:duration method,

578
windows object (UIWindow), 128
Windows options for development, 10
working copies
Git, 870-871
source control, 864
writing
code, Interface Builder (IB), 178
data, direct file system access, 537-538
user defaults, 531-532

X-Y-Z

Xcode, 24, 29-30, 207
app icons, 60-62
building apps, 52
choosing build scheme, 52-53

correcting errors with issue navigator, 54-57

running, 53-54
code

activating tabbed editing, 50

adding marks, to do’s and fix me’s, 47-48

assistant editor, 48-49
code completion, 44-46
editing, 42

navigating, 42

searching with search navigator, 46-47

willRotateTolnterfaceOrientation:duration method

snapshots, 50-51
symbol navigator, 43
constraints, 579
device orientations, 59
documentation, 135-136
browsing, 138
navigating, 139-140
searching, 137-138

setting up documentation downloads,
136-137

installing, 14-16
launch images/screens, 62-63
managing project properties, 58
projects, 30
adding new assets catalogs, 38
adding resources, 37
choosing project types, 30-32
getting your bearings, 33-34
navigating, 34-35
removing files and resources, 37-38
Xcode Asset Catalog, 38
Quick Help, 140-141

activating Quick Help Inspector, 141-142

interpreting results, 142-143
resources, 180
settings bundles, creating, 549-556
Xcode 6 Debug View Hierarchy, 856
Xcode Asset Catalog, 38
Xcode editor, 42
Xcode slicing tool, 219



	Table of Contents
	Introduction
	HOUR 3: Discovering Swift and the iOS Playground
	Object-Oriented Programming and Swift
	The Terminology of Object-Oriented Development
	Exploring the Swift File Structure
	Swift Programming Basics
	Memory Management and Automatic Reference Counting
	Introducing the iOS Playground
	Further Exploration
	Summary
	Q&A
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
  >>
  /ExportLayers /ExportVisiblePrintableLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        13.500000
        13.500000
        13.500000
        13.500000
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 30
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




