4

-

!l

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
E a8 e

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337116
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337116
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337116
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337116
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337116/Free-Sample-Chapter

Stephen Walther

Windows 8.1 Apps
with HTML5 and JavaScript

UNLEASHED

Windows® 8.1 Apps with HTML5 and JavaScript Unleashed
Copyright © 2014 by Pearson Education

All rights reserved. No part of this book shall be reproduced, 8.1d in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 978-0-672-33711-6
ISBN-10: 0-672-33711-8

Library of Congress Control Number 2013951680
Printed in the United States on America
First Printing December 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particu-
lar to your business, training goals, marketing focus, or branding interests), please
contact our corporate sales department at corpsales@pearsoned.com or

(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Elaine Wiley

Indexer
Tim Wright

Proofreader
Charlotte HKughen

Technical Editors
Jeff Burtoft
James Boddie

Publishing Coordinator
Cindy Teeters

Senior Compositor
Gloria Schurick

Contents at a Glance

© 0 N O 0~ WN PR

P B R R R R R
o a0 b WNPRP O

Introduction

Building Windows Store Apps

WinJS Fundamentals

Observables, Bindings, and Templates
Using WinJS Controls

Creating Forms

Menus and Flyouts

Using the ItemContainer, Repeater, and Flipview Controls
Using the Listview Control

Creating Data Sources

Storing Data with Windows Azure
App Events and States

Page Fragments and Navigation
Creating Share and Search Contracts
Using the Live Connect API

Graphics and Games

Creating a Task List App

Index

45

81
113
149
169
197
223
263
295
311
333
353
387
417
431
449

Table of Contents

Introduction

Updated for Windows 8.1
Prerequisites for This Book
Source Code

1 Building Windows Store Apps

What Is a Windows Store App?

Microsoft Design Style Principles
Common Features of Windows Store Apps

Creating Your First Windows Store App
Creating the Visual Studio Project
Declaring App Capabilities
Creating the HTML Page
Creating the Style Sheet
Creating the JavaScript File
Running the App

Elements of a Windows Store App
JavaScript
HTMLS5
Cascading Style Sheets 3
Windows Runtime
Windows Library for JavaScript
What About jQuery?

Building Windows Store Apps with Visual Studio
Windows Store App Project Templates
Running a Windows Store App

Debugging a Windows Store App
Using the Visual Studio JavaScript Console Window
Setting Breakpoints
Using the DOM Explorer

Publishing to the Windows Store
Register as a Windows Developer
Submitting Your App
Passing App Certification

Migrating from Windows 8 to Windows 8.1

Summary

w w N e

N oo g

13
14
15
17
18
18
21
21
21
22
22
23
23
24
26
27
31
33
33
34
35
36
36
37
39
41
42

Contents

2 WinJs Fundamentals

Namespaces, Modules, and Classes
Using Namespaces
Using the Module Pattern
Using Classes
Asynchronous Programming with Promises
Using Promises
Using then () Versus done ()
Creating Promises
Creating a Timeout Promise
Canceling Promises
Composing Promises
Retrieving DOM Elements with Query Selectors
Performing Queries with the wings.utilities.query () Method
Retrieving a Single Element with the wings.Utilities.id ()
Method
Using the wings.Utilities.children () method
Working with the QueryCollection Class
Performing Ajax Calls with the xhr Function
Specifying Different Response Types
Customizing the Properties of the xmlHttpRequest Object
Using the Scheduler to Prioritize Jobs
Setting Job Priorities
Yielding to a Higher Priority Job
Summary

Observables, Bindings, and Templates

Understanding Observables

Creating an Observable

Creating Observable Listeners

Coalescing Notifications

Bypassing Notifications

Working with the winJs.Binding.List object

Creating an Observable Collection of Observables
Understanding Declarative Data Binding

Declarative Data Binding and Observables

Capturing the Contents of an HTML Form

Declarative Data Binding and WinJS Controls

Declarative Data Binding and Binding Converters
Understanding Templates

Creating an Imperative Template

Creating a Declarative Template

45

45
46
48
51
56
57
59
60
61
62
63
63
64

66
67
68
69
72
73
75
77
77
80

81

81
82
83
85
87
88
90
91
94
96
99
101
105
105
108

Vi

Windows 8.1 Apps with HTML5 and JavaScript Unleashed

Applying a Template with a Query Selector
Creating External Templates
Summary

Using WinJs Controls

Introduction to WinJS Controls
Creating a WinJS Control Declaratively
Creating Controls Imperatively
Setting Control Options
Retrieving Controls from an HTML Document
Using the Tooltip Control
Using the contentElement Property
Styling a Tooltip
Using the Toggleswitch Control
Determining the State of a TogglesSwitch
Using the rating Control
Customizing the Ratings
Submitting a Rating
Using the patepPicker Control
Formatting the Year, Month, and Date
Displaying Only Years, Months, or Days
Capturing the Selected Date
Using the TimePicker Control
Getting and Setting the Current Time
Formatting the Hour, Minute, and Period
Using the Hub Control
Creating Hubs and Hub Sections
Handling Hub Section Navigation
Using the webview Control
Hosting a Page from the Internet with the webview Control
Handling Navigation and Navigation Events
Capturing webview Screenshots
Summary

Creating Forms

Using HTMLS Form Validation
Using the required Attribute
Using the pattern Attribute
Performing Custom Validation
Customizing the Validation Error Style
Resetting a Form

109
111
112

113

113
115
117
118
119
120
121
121
122
123
124
125
125
127
128
131
132
133
134
136
137
138
139
139
140
142
145
147

149

149
150
150
151
152
154

Contents

Using HTMLS Input Elements
Labeling Form Fields
Entering a Number
Entering a Value from a Range of Values
Entering Email Addresses, URLs, Telephone Numbers,

and Search Terms

Entering a Value from a List of Values
Selecting Files

Creating a Rich Text Editor

Displaying Progress

Summary

Menus and Flyouts

Using the Flyout Control

Using the Menu Control

Using the appBar Control
Creating a Simple App Bar
Using App Bar Commands
Showing Contextual Commands

Using the NavBar Control
Creating a Simple Nav Bar

Configuring App Settings
Creating About Page Settings
Creating Personal Settings

Displaying Windows Dialogs

Summary

Using the ItemContainer, Repeater, and FlipvView Controls

Using the rtemContainer Control
Styling an ItemContainer
Interacting with an ItemContainer
Selecting an ItemContainer
Creating Drag-and-Drop Items

Using the repeater Control
Using an External Template
Using a Nested Template
Using the rRepeater with the ItemContainer

Using the rlipview Control
Displaying Page Numbers
Creating Custom Flipview Buttons

Summary

Vil

155
157
158
159

160
162
162
164
165
167

169

169
172
176
176
178
181
184
184
186
187
189
192
195

197

197
198
200
202
204
208
210
211
214
215
219
221
222

viii Windows 8.1 Apps with HTML5 and JavaScript Unleashed

8 Using the Listview Control 223
Introduction to the Listview Control 224
Using Different Listview Layouts 228

Using Grid Layout 229
Using List Layout 231
Using Cell Spanning Layout 231
Invoking Items in a Listview Control 236
Selecting Items in a Listview Control 238
Sorting Items in a Listview Control 241
Filtering Items in a Listview Control 242
Grouping Items in a Listview Control 245
Switching Views with Semantic Zoom 248
Switching a ListView Template Dynamically 253
Using Drag and Drop 256
Reordering Items in a Listview 256
Dragging Items from ListViews 258
Summary 262

9 Creating Data Sources 263

Creating Custom Data Sources 263
Creating the Data Source Class 264
Creating a Data Adapter 264
Implementing the getcount () Method 265
Implementing the itemsFromIndex () Method 265
Implementing the insertatEnd () Method 267
Implementing the remove () Method 267
Implementing the change () Method 268
Handling Errors 268
Implementing the setNotificationHandler () Method 269

Creating a File Data Source 270
Using the File Data Source 271

Creating a Web Service Data Source 276
Creating the Data Source 276
Creating the Web Service 278
Using the Web Service Data Source 280

Creating an IndexedDB Data Source 281
Overview of IndexedDB 282
Using the 1ndexedDB Data Source 286

Summary 293

Contents

10

11

12

Using Windows Azure Mobile Services

Creating a Mobile Service
Creating a Database Table
Installing the Mobile Services for WinJS Library
Performing Inserts, Updates, and Deletes
Connecting to the Remote Database Table
Inserting Database Data
Updating Database Data
Deleting Database Data
Performing Database Queries
Looking Up a Single Database Record
Retrieving a Set of Database Records
Performing Validation
Performing Custom Actions
Debugging Script Errors
Summary

App Events and States

App Events
Handling the Activated Event
Handling the Error Event
Deferring Events with Promises
Creating Custom Events
Suspending, Terminating, and Resuming an App

Detecting When an App Is Suspended and Terminated

Detecting the Previous Execution State
Testing Application State with Visual Studio
Storing State with Session State

Designing for Different Window Sizes
Setting the Minimum App Width
Using CSS Media Queries
Using the window resize Event

Scaling Content to Fit Different Screen Resolutions
Defining a Viewport
Using the viewBox Control

Summary

Page Fragments and Navigation

Using the Htmlcontrol Control
Creating a page Control

295

295
297
298
299
299
299
300
301
301
301
302
304
306
308
309

311

311
312
313
314
315
315
316
316
317
318
320
320
321
324
326
326
329
332

333

333
336

Windows 8.1 Apps with HTML5 and JavaScript Unleashed

Creating Multi-Page Apps 340
Creating a Navigation App 340
Understanding the Navigation App default.html Page 341
Adding New Page Controls to a Navigation App 343
Navigating to Another Page 345
Understanding the Navigation API 346
Understanding the pageControlNavigator Control 347
Understanding Navigation State 347

Summary 351

13 Creating Share and Search Contracts 353

Supporting Sharing 354
Creating a Share Source 356
Creating a Share Target 360

Using the Search Charm 368
Declaring Your App as a Search Provider 369
Providing Search Suggestions 370
Handling Search Activation 372
Adding a Search Results Page 373

Using the searchBox Control 376
Adding the searchBox Control to a Page 377
Providing Search Suggestions 378
Displaying Search Results 379

Using the Windows Content Indexer 380
Understanding the Windows Content Indexer API 381
Creating an Indexer Helper 381
Using the Indexer Helper 382

Summary 385

14 Using the Live Connect API 387

Installing the Live SDK 388
Adding a Reference to the Live SDK 388
Registering Your App 389
Initializing the Live Connect SDK 391
Specifying Different Scopes 391

Authenticating a User 394
Logging a User into Live Connect 394
Creating Account Settings 396

Authentication and Windows Azure Mobile Services 401
Configuring Your Mobile Service 401
Setting Permissions for Your Mobile Service 402
Updating the Mobile Server Scripts 402

Logging Into Azure Mobile Services 404

Contents

15

16

Retrieving Basic User Information

Uploading and Downloading Files from SkyDrive

Listing SkyDrive Folders and Files

Downloading Files from SkyDrive

Uploading Files to SkyDrive
Summary

Graphics and Games

Overview of the Game
Creating the Game Tiles
Playing the Game Sounds
Creating the Game Canvas
Capturing User Interaction
Creating the Update Loop
Creating the Render Loop
Summary

Creating a Task List App

Overview of the App

Setting Up the App

Connecting to External Services
Optimistic Inserts, Updates, and Deletes
Adapting to Screen Changes

Creating a Custom Control

Using Text to Speech

Summary

Index

406
408
409
411
413
415

417

418
419
420
421
424
425
427
429

431

432
433
435
437
440
444
446
448

449

About the Author

Formerly a Senior Program Manager at Microsoft, Stephen Walther now runs his own
consulting and training company www.SuperexpertTraining.com. He flies to companies
and provides hands-on training on building Windows Store apps.

Stephen was completing his Ph.D. at MIT and teaching classes on metaphysics at MIT and
Harvard when he abruptly realized that there is no money in metaphysics. He dropped
out to help found two successful Internet startups. He created the Collegescape website, a
website used by more than 200 colleges, including Stanford, Harvard, and MIT, for online
college applications (sold to ETS). He also was a founder of CityAuction, which was one of
the first and largest auction websites (sold to CitySearch).

http://www.SuperexpertTraining.com

Dedication

This book is dedicated to Jon Robert Walther, who is a Jedi ninja.

Acknowledgments

Yikes, it takes too much work to write a technical book—don’t ever do it! I would like

to blame my editor Neil Rowe for talking me into writing another book. I also want to
blame my wife Ruth Walther for failing to talk me out of it. Finally, I want to blame my
technical editors Jeff Burtoft and James Boddie for doing such a careful job of coming up
with ways to improve the book and forcing me to spend even more time working on the
book.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

If you want to build a software application and reach the largest possible market of
customers and make the most money then it makes sense for you to build a Windows
8.1 app.

Microsoft Windows is the most popular operating system in the world. Windows accounts
for more than 90 percent of the operating system market. More than 100 million licenses

for Windows 8 were sold in its first six months of release. The size of the Windows market
dwarfs the size of every other marketplace for software applications (including the iPhone
and Android markets).

I want to own a toilet made of solid gold, Nathan Myhrvold’s jet, and a Tesla Roadster
(orange). These are modest goals, and I know that many of you reading this book share
the same goals. The most likely way for you or me (hopefully me) to reach these goals is
to build Windows 8.1 apps.

When you build a Windows 8.1 app, you can sell your app right within Windows 8.1
itself. Windows 8.1 includes the Windows Store (shown in Figure I.1) where you can list
your app for anywhere between free and $999.99. You can sell a variety of different types
of apps including productivity apps (think task lists and time trackers) and games (think
Angry Birds and Cut the Rope).

Store

Spotlight

sssss
save more,

digitalfolio

< >

FIGURE 1.1 You can sell your app in the Windows Store.

2 Introduction

This book is all about building Windows apps that you can sell in the Windows Store. In
particular, you learn how to build Windows apps using JavaScript and HTMLS.

Why JavaScript and HTMLS? You can build Windows apps using other technologies such
as C# and XAML or C++, but this book focuses exclusively on building Windows apps
with JavaScript and HTMLS.

The advantage of building Windows apps with JavaScript and HTMLS is that you can
leverage your existing skills building websites to build Windows applications. If you are
already comfortable programming with JavaScript, HTML, and Cascading Style Sheets then
you should find it easy to build Windows apps.

This book covers everything you need to know to build Windows apps. You learn how
to use the Windows Library for JavaScript (WinJS) to create JavaScript applications. In
particular, you learn how to use WinJS controls such as the rating, Menu, Repeater, and
ListView controls.

You also learn how to work with the Windows Runtime. By taking advantage of the
Windows Runtime, you can access Windows 8.1 functionality to do things that you could
not normally do in a pure web app, such as capture video and sound and convert text to
speech.

By the end of this book, you will understand how to create Windows apps, such as game
apps and productivity apps. In Chapter 15, “Graphics and Games,” you learn how to
create a simple arcade game—the Brain Eaters game. And, in Chapter 16, “Creating a Task
List App,” you learn how to build a productivity app—the MyTasks app.

Read this book, build a Windows app, sell lots of copies, and buy a jet.

Updated for Windows 8.1

This book has been extensively updated for Windows 8.1. Changes have been made to
every chapter. All of the code associated with this book has been reviewed and updated to
be compatible with Windows 8.1.

Windows 8.1 includes several important new controls, including the sub, Repeater,
ItemContainer, SearchBox, WebView, and NavBar controls. This book covers all of these
new controls in depth.

Windows 8.1 ships with a new version of the Windows Library for JavaScript (WinJS 2.0).
This new version has significant new features such as the WinJS Scheduler. I discuss the
new WinJS Scheduler in Chapter 2, “WinJS Fundamentals.”

Windows 8.1 includes important backwards breaking changes. Unlike Windows 8,
Windows 8.1 no longer supports discrete view states such as a snapped or filled state. I
discuss these changes in Chapter 11, “App Events and States.”

Finally, I added four new chapters to this book. I added a chapter that covers the new
ItemContainer and Repeater controls (Chapter 7, “Using the ItemContainer, Repeater,
and rlipview Controls”), a chapter devoted to using Windows Azure Mobile Services
(Chapter 10, “Storing Data with Windows Azure”), a chapter on implementing share and

Source Code 3

search (Chapter 13, “Creating Share and Search Contracts”), and a chapter on building a
productivity app (Chapter 16).

Prerequisites for This Book

If you can build a website using JavaScript, HTML, and Cascading Style Sheets then you
have the skills that you need to read and understand this book.

There are two software requirements for building Windows apps and using the code from
this book.

First, you must build a Windows 8.1 app on the Windows 8.1 operating system. Let me
repeat this: You must have Windows 8.1 installed on your computer to use the code from
this book.

Second, in order to use the code from this book, you need Microsoft Visual Studio 2013.
There is a free version of Visual Studio 2013—Microsoft Visual Studio Express 2013 for
Windows—which you can download from the Microsoft.com website.

Source Code

You can download all of the source code associated with this book from GitHub:
https://github.com/StephenWalther/Windows8.1AppsUnleashed

Click the Downloads link to download the latest version of the code in a zip file.

https://github.com/StephenWalther/Windows8.1AppsUnleashed

This page intentionally left blank

CHAPTER 1

Building Windows
Store Apps

In this chapter, I introduce you to the basics of build-
ing Windows Store apps. I start off by explaining how a
Windows Store app differs from a traditional Windows
desktop application. You learn what makes a Windows
Store app a Windows Store app.

Feeling fearless and bold, and hoping that you too feel fear-
less and bold, I next guide you through building your first
Windows store app. You learn how to take advantage of
the features of Microsoft Visual Studio 2013 to build, run,
and debug a Windows Store app.

Next, we dive into a discussion of the fundamental
elements of a Windows Store app. You learn how a
Windows Store app is forged out of HTMLS, JavaScript,
the Windows Library for JavaScript, and the Windows
Runtime.

Finally, we get to the money part. I explain how you can
publish your Windows Store app to the Windows Store and
start collecting those dollars.

What Is a Windows Store App?

I can still remember the first time that I used an iPhone.

When you scroll the screen on an iPhone, the screen actu-
ally bounces! And when you add an email to the trash, the
email gets sucked into the trashcan! It’s as if there is a little
universe inside an iPhone and it follows our physical laws.

For some reason—that I have not explored and that I do
not completely understand—this illusion that there is a
second universe inside my iPhone makes me happy. It
makes interacting with an iPhone fun.

IN THIS CHAPTER

What Is a Windows Store App?

Creating Your First Windows
Store App

Elements of a Windows Store
App

Building Windows Store Apps
with Visual Studio

Debugging a Windows Store
App

Publishing to the Windows
Store

Migrating from Windows 8 to
Windows 8.1

6 CHAPTER 1 Building Windows Store Apps

Now we come to Windows. Except for the dancing card thing in Windows Solitaire, I
can’t think of anything in Windows that has ever created this same sense of fun. I can’t
remember the last time that Windows made me laugh or brought me joy.

With Windows Store apps, Microsoft has finally acknowledged that user experience
matters—in a big way. The heart of Windows Store apps is a set of user experience prin-
ciples named the Microsoft design style principles. By embracing the Microsoft design style
principles, you can create Windows Store apps that seem more alive and that are a plea-
sure to use.

Microsoft Design Style Principles

The Microsoft design style principles is a set of user experience design principles devel-
oped by Microsoft in the context of building the Windows Phone, Xbox Live, and the
(now defunct) Zune. You also can see the Microsoft design principles applied to Microsoft
websites such as Microsoft SkyDrive and the Windows Azure Portal. Get ready. Here

they are:

1. Show pride in craftsmanship
» Devote time and energy to small things that are seen often by many.
» Engineer the experience to be complete and polished at every stage.
2. Do more with less

» Solve for distractions, not discoverability. Let people be immersed in what they
love and they will explore the rest.

» Create a clean and purposeful experience by leaving only the most relevant
elements on screen so people can be immersed in the content.

3. Be fast and fluid

» Let people interact directly with content, and respond to actions quickly with
matching energy.

> Bring life to the experience, create a sense of continuity and tell a story
through meaningful use of motion.

4. Be authentically digital

» Take full advantage of the digital medium. Remove physical boundaries to
create experiences that are more efficient and effortless than reality.

» Embrace the fact that we are pixels on a screen. Design with bold, vibrant and
crisp colors and images that go beyond the limits of real-world material.

What Is a Windows Store App? 7

5. Win as one

» Leverage the ecosystem and work together with other apps, devices and the
system to complete scenarios for people.

» Fit into the UI model to reduce redundancy. Take advantage of what people
already know to provide a sense of familiarity, control, and confidence.

NOTE

The Microsoft design style principles were originally known as Metro design principles. This
list of Microsoft design style principles was taken from http://msdn.microsoft.com/en-us/
library/windows/apps/hh464920 and http://msdn.microsoft.com/en-us/library/windows/
apps/hh465424 .aspx.

When I first read these principles, my initial reaction was that they seemed overly abstract
and squishy. Exactly the type of principles that would be created by beret-wearing user
experience guys.

But then, when I saw how the principles were applied in practice—when building actual
Windows Store apps—I started to develop a better appreciation for these principles.

Take the “Do more with less” design principle. One of the distinctive features of a
Windows Store app is the lack of chrome. Ironically, a Windows Store app is a Windows
app without the window. Windows Store apps are full-screen apps.

This lack of chrome makes it easier to concentrate on the content of the application. For
example, Windows 8 includes two version of Internet Explorer: a desktop version and a
full-throated Windows 8 version that follows the Microsoft design style principles.

I really prefer using the Windows 8 version of Internet Explorer over the desktop version.
When using the Windows 8 version, all you see is the web page, which is the point of the
application in the first place.

Or consider the “Be fast and fluid” principle. The reason that I like interacting with my
iPhone so much is the illusion of motion, and this illusion is created by the judicious use
of animations: On an iPhone, objects bounce and wobble.

When building a Windows Store app, you are encouraged to take advantage of anima-
tions. For example, if you use the standard ListView control—which we discuss in detail
later in this book—then you get animations when you add or remove items. When you
add an item to a ListView, it not only appears, it glides into place. When you remove an
item, it doesn’t just disappear, items above and below it collapse into place.

Common Features of Windows Store Apps

Windows Store apps are applications that follow the Microsoft design style principles.
Furthermore, Windows Store apps are designed to run on the Windows 8 or Windows RT
operating system.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464920
http://msdn.microsoft.com/en-us/library/windows/apps/hh464920
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

8 CHAPTER 1 Building Windows Store Apps

All Windows Store apps have a common set of features. Let me explain these features by
pointing them out in the context of the Bing News app that’s included with Windows 8.

NOTE

It is worth pointing out that the standard Windows 8 Bing News app discussed in this
section was written using HTML5 and JavaScript (using the same techniques described
in this book). In case you are curious, you can view the HTML and JavaScript source for
the News app by opening the hidden folder where Windows apps are installed located at
Program Files\WindowsApps.

Support for Keyboard, Mouse, Touch, and Stylus

One of the most distinctive characteristics of a Windows Store app is its oversized tiles and
buttons and generous use of whitespace. All of this user interface (UI) roominess makes
Windows Store apps friendly to fat fingers.

Windows Store apps are designed to work equally well when used on a touch-only tablet
and when used on a desktop computer with a keyboard and mouse. Windows Store apps
are designed to be gropeable.

The nice thing about how Windows 8 works is that you don’t need to put a lot of thought
into supporting touch as a developer. As long as you stick with the standard WinJS
controls, you get both keyboard and touch support for free.

Using the App Bar and Nav Bar

Figure 1.1 contains a screenshot of the Windows 8 Bing News app with the home page of
Fox News open. Notice that the only thing that you see is the content of Fox News. No
toolbars, no menus, no status bars.

© FOXNEWS

LATEST >

Royal baby buzz heats up in Zimmerman jurors keeping quiet What does the future hald for Can Republicans derail

Londaon George Zimmerman? ObamaCare?
Icentities of six women ket priate .
Media ywest it cut waiting for birth Criminal defense sttormey fose R Houne 10 vote to delay indnadusl
sounds off mandate

- - _
Did the media turn Zimmerman Robert Zimmerman, Jr: 'George Crowdfunding websites raise Grorge HW. Bush to henor

inte a ‘monster? told the truth® billions 5,000th ‘Peint of Light'
Dedense attomey lashes out at press Geoege Zimmerman's brother reacts 10 Wiliam La Jeunesse reports from Los Meil Bush prrviews White House
aher werdict werdct Angeles ceremany

FIGURE 1.1 Windows 8 Bing News app

What Is a Windows Store App? 9

In a Windows Store app, you hide all of your commands in the app bar. The app bar
appears only when you swipe from the bottom or top of the screen or you right-click
the screen.

The app bar for the Bing News app includes commands such as Pin to Start, Refresh, and
Help. You can see the app bar at the bottom of Figure 1.2.

H

abE NEWS

London George Zimmerman? ObamaCare?
Ickentities of six women lept priate

Criminal defense atormey Jose Raer Houne 1o vote to delay indnidusl
sounds off mandate

b 4 -
Did the media turn Zimmerman Robert Zimmerman, Jr.: ‘George Crowdfunding websites raise George HW. Bush to honor
inte & ‘monster? told the truth® billions 5,000th ‘Paint of Light'

FIGURE 1.2 Using the app bar and nav bar

Notice in Figure 1.2 that there is another bar at the top of the screen. This bar is called the
nav bar and you use it to navigate. In the case of the Bing News app, the nav bar enables
you to navigate to different news sources such as the Wall Street Journal, Fox News, and
the New York Times.

Using Charms
If you swipe from the right edge of the screen or mouse to either of the right corners or
press the keyboard combination Win+C then the charms are revealed (see Figure 1.3).

10 CHAPTER 1 Building Windows Store Apps

© FOXNEWS

LATEST »

Royal baby buzz heats up in Zimmerman jurors keeping quiet What does the future hald for

London Gearge Zimmerman?
Iclemtities o six women kept private
Media peest it out waiting for binth Criminal defense ttormey ase Bbe:

sounds off

Crowdfunding websit George HW. B
billions 5,000th ‘Peint of

Wiliam La Jeunesse reports from Los Meil Bush prviews.
Angeles

ceremany

FIGURE 1.3 Viewing charms

Here's a list of the standard charms:
» Search—Enables you to search content in the current app and other apps
» Share—Enables you to share content in the current app with other apps
» Start—Navigates you to the Start screen
» Devices—Enables you to connect to a device
>

Settings—Enables you to configure both app settings and system settings

These charms provide you with standard locations to place common application function-
ality. For example, all Windows Store app settings should appear in the Settings charm
(see Figure 1.4). This makes it much easier for users to find your settings.

What Is a Windows Store App? 11

Royal baby buzz heats up in Zimmerman jurors keeping quiet What does the future hold for
London George Zimmerman?
Icentities of six women kept priate

Media sweat it eut waitineg for binh Criminal defense attormey fose Rer
sounds off

b =
Did the media turn Zimmerman Robert Zimmerman, Jr.: 'George Crowdfunding websites raise
into a ‘monster'? told the truth’ billlons

Diefene attoaney lashes ot at press Geoege: Zimmerman's brother reacts 1o William La Jeunesse reports from Los
aler verdict werdict et

FIGURE 1.4 The Settings charm

When you are building a Windows Store app, you don’t build your own Settings menu.
Instead, you extend the Settings charm with your custom app settings. I discuss the details
of doing this in Chapter 6, “Menus and Flyouts.”

Different App Sizes and Orientations

Every Windows 8.1 app supports a minimum width of either 500 pixels or 320 pixels. For
example, if a Windows 8.1 app has a minimum horizontal size of 500 pixels then the app
can be resized to any size between 500 pixels and the maximum screen size of the device
where the app is displayed.

If you are lucky enough to have a sufficiently large screen, then you can display multiple
running apps side by side (up to four apps per monitor). For example, Figure 1.5 illustrates
three Windows 8.1 apps running side by side (the Calendar, Maps, and News apps).

You cannot display more than two 500 pixel apps on a 1,024 pixel by 768 pixel screen
because that would violate the laws of mathematics.

12 CHAPTER 1 Building Windows Store Apps

This week

QP €

0 o

)

L=

FIGURE 1.5 Three Windows 8.1 apps side by side

Windows 8, unlike Windows 8.1, supported running of no more than two apps at once.
Furthermore, when using Windows 8, one of the two running apps was required to be
snapped to a horizontal resolution of 320 pixels. Windows 8.1 is far more flexible.

A Windows Store app also must work when used with different device orientations. For
example, when an app is viewed on a tablet computer, the user always has the option of
rotating your app from a landscape to a portrait orientation.

When building Windows Store apps, you need to design the app so it works with different
screen resolutions and orientations. At any moment, the horizontal resolution of your app
could be dramatically changed. I discuss how to handle switching between different reso-
lutions in Chapter 11, “App Events and States.”

People, Not Machines, Use Windows Store Apps

When you buy a Windows Store app, the app is licensed per user and not per machine.
When you buy an app, you can use the app on up to five machines—including both
tablets and desktops—associated with your user account. You can view and install all of
your purchased apps from the Windows Store by right-clicking within the Store app and
selecting Your Apps.

Better yet, data from your apps can be shared across multiple machines (roaming applica-
tion data). So, if you are using an app to read an article on your tablet PC on the bus and
then you open the same app on your desktop PC at work, you won’t lose your place in
the article.

Creating Your First Windows Store App 13

Currently, every Windows Store app gets 100KB of roaming application data. Windows 8.1
handles synchronizing this data between different machines for you automatically.

Closing a Windows Store App

Now close a Windows Store app by moving your cursor over the x at the top-right of the
screen. Ha! Tricked you! There is no close button in a Windows Store app because there is
no chrome.

NOTE

Even though it is not obvious how to close a Windows Store app, it is possible. You can
close a Windows Store app by swiping down from the top of the screen to the very bottom
of the screen or pressing the keyboard combination Alt+F4.

When interacting with Windows Store apps, there is no obvious way to close an app.
This is intentional. Instead of closing a Windows Store app, you are encouraged to simply
switch to another running app (by swiping from the left edge of the screen) or launch a
new app (by selecting a new app from the Start screen).

When you design a Windows Store app, you must design the app with the knowledge that
a user might switch back and forth to your running app at any time. In Chapter 11
I discuss how you can gracefully resume an app after it has been suspended.

Creating Your First Windows Store App

Let’s be fearless. In this section, I guide you through building your first Windows Store
app. Doing a Hello World app would be predictable and boring. Therefore, I suggest that
we do something a little more advanced.

I'll show you how you can create an app which enables you to take pictures. When you
click the Take Picture command in the app bar, you can take a picture, and then the
picture is displayed in the app (see Figure 1.6, which shows a picture of my dog Rover).

NOTE

The code for the completed app can be found in the Chapter 1 folder with the name App1.
All of the code for this book is located in a GitHub repository at https://github.com/
StephenWalther/Windows8.1AppsUnleashed.

https://github.com/StephenWalther/Windows8.1AppsUnleashed
https://github.com/StephenWalther/Windows8.1AppsUnleashed

14 CHAPTER 1 Building Windows Store Apps

FIGURE 1.6 Your first Windows Store app

Creating the Visual Studio Project

The first step is to create a Microsoft Visual Studio Project. I used Visual Studio 2013 to
create almost all of the code samples for this book. In most cases, I used the free version of
Visual Studio—Visual Studio Express 2013 for Windows—which you can download from
Microsoft.com.

You can create Windows Store apps with either Microsoft Visual Studio 2013 or Microsoft
Blend. If you need to release to the Windows Store then | recommend using Microsoft
Visual Studio 2013.

In order to build Windows Store apps, you must use Visual Studio on Windows 8.1. If you
don’t have a dedicated Windows 8.1 computer, you can use a virtual machine running
Windows 8.1 such as VMware Player.

Go ahead and launch Visual Studio. Next, select the menu option File, New Project. On
the left-side of the New Project dialog, select JavaScript and select the Blank App project
template. Enter the name app1 for your project and click the OK button (see Figure 1.7).

Creating Your First Windows Store App 15

New Project » IEN
b Recent [.NET Frameworkd.5 | Sort by: | Default - = | Search Installed Ten 0 ~
4 Installed 35 B
= Blank App JavaScript 'ln?e. JavaSeript J
4 Templates A single-page project for a Windows Store
b Visual Basic j Grid App JavaSeript app that has no predefined controls or
i layout.
b Visual C#
35
b Visual C++ ;J Split App JavaScript
b Visual F# =
15
SQL Server .FJ Hub App JavaSeript
4 JavaScript =
IS
Windows Store EJ Navigation App JavaSeript
Python
LiahtSwitch -
b Online Click here to go online and find templates.
Name: Appl
Location: |c\users\stephem\documents\visual studio 2013\Projects -] ‘ Browse... |
Solution name: App1 [v] Create directory for solution
[] Add to source control

FIGURE 1.7 Using the Visual Studio New Project dialog

After you create your project, you can see all of the files for your project in the Solution
Explorer window (Figure 1.8). When you create a new Windows Store app, you get a
default.html file (in the root of your project), a default.js file (in the js folder), and a
default.css file (in the css folder). These three files are the starting point for your app.

Solution Explarer *O0x
co@le-auam| s
Search Solution Explorer (Ctrl+;) P-

] Solution 'App1’ (1 praject)
i App1 (Windows 8.1)
b =m References
4 @ css
default.css
4] images
[logo.scale-100.png
= smalllogo.scale-100.png
=] splashscreen.scale-100.png
[storelogoscale-100.png
4 @lis
LT defaultjs
& App1_TemporaryKey.pfic
A default.htmi
B5 package.appxmanifest

FIGURE 1.8 Windows Store app default files

Declaring App Capabilities

Before we can jump into writing code, there is one other thing that we must do first.
We are building an app that takes pictures. That is scary. Potentially, an app could take
pictures of you without your knowledge and send the pictures back to an evil hacker
lurking on the Internet (or the CEO of Microsoft).

16 CHAPTER 1 Building Windows Store Apps

When your app does something scary, you must declare that your app will do this scary
thing up front so the user can consent. You declare the capabilities of your app in your
application manifest file. You can open the editor for your application manifest by
double-clicking the package.appxmanifest file in the Solution Explorer window.

Click the Capabilities tab to view all of the declared capabilities of your application. For
example, if you want your app to be able to record from the computer microphone then
you need to select the Microphone capability, or if you want your app to be able to save
new photos in the user’s Pictures library then you need to select the Pictures Library capa-
bility. For our app, we need to enable the Webcam capability so we can take pictures (see
Figure 1.9).

Application Ul Capabilities
Use this page to specify system features or devicey

Capabilities:

Internet (Client)

[1 Internet (Client & Server)
[] Location

[] Microphone

[Music Library

[] Pictures Library

[Private Networks (Client & Server)
[Prosimity

[] Removable Storage

[T Shared User Certificates
[Videos Library

Webcam

FIGURE 1.9 Enabling the capability to take pictures

When a user first runs our app, the user will need to consent to allowing the app to access
the webcam (see Figure 1.10). The user only needs to consent once.

Can App1 use your webcam?

FIGURE 1.10 Asking for consent to access your webcam

Creating Your First Windows Store App 17

NOTE

After a user consents, the user can deny an app permission to use a particular capability
by using the Permissions setting under the Settings charm.

Creating the HTML Page

When you create a Windows Store app, you get a default.html file in the root of your
application. This is the first page that is opened when you run your app. Let’s go ahead
and customize this page for our picture app (see Listing 1.1).

LISTING 1.1 Modified default.html Page

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>Appl</title>

<!-- WindS references -->

<link href="//Microsoft.WinJS.2.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.WinJS.2.0/js/base.js"></scripts>

<script src="//Microsoft.WindS.2.0/js/ui.js"></script>

<!-- Appl references -->
<link href="/css/default.css" rel="stylesheet" />
<script src="/js/default.js"></scripts>

</head>

<body>

<!-- AppBar Control -->
<div id="appBarl"
data-win-control="WinJS.UI.AppBar">
<button data-win-control="WindS.UI.AppBarCommand"
data-win-options="{
id: 'cmdTakePicture',
label: 'Take Picture',
icon: 'camera',
tooltip: 'Take Picture'
}">
</button>
</div>
</body>
</html>

18 CHAPTER 1 Building Windows Store Apps

The HTML page in Listing 1.1 has been modified so it contains new content in the body
of the page. First, notice that the page contains an IMG tag with the ID imgPhoto. We'll
display the photo which we take from the camera here.

Notice, furthermore, that the page contains a DIV tag with a data-win-control=“Win]Js.
UL AppBar” attribute. This is an example of a WinJS control. This control renders an app
bar that contains a command for taking a picture (see Figure 1.11).

Take Picture

FIGURE 1.11 The Take Picture command in the app bar

Creating the Style Sheet

When you create a new Windows Store app, you also get a default style sheet named
default.css which is located in the css folder. You can modify this file to control the
appearance of your app.

For our app, I've modified the default.css to format the appearance of the photo. It
appears in the IMG tag like this:

#imgPhoto {
display:block;
margin: 15px auto;
border: 10px solid white;
max-width: 90%;
max-height: 90%;

Creating the JavaScript File

The third file that we need to modify is the JavaScript file named default.js which
is located in the js folder. This file contains all of the code associated with the
default.html page.

We are going to delete all of the default content of this file and start over. The complete
contents of the modified version of default.js are contained in Listing 1.2.

Creating Your First Windows Store App 19

LISTING 1.2 The default.js JavaScript file

(function () {

"use strict";

// Aliases
var capture = Windows.Media.Capture;

// Executed immediately after page content is loaded
function init () {
// Process all of the controls
WinJdS.UI.processAll () .done (function () {
// References to DOM elements
var cmdTakePicture = document.getElementById("cmdTakePicture");
var imgPhoto = document.getElementById("imgPhoto") ;

// Handle Take Picture command click
cmdTakePicture.addEventListener ("click", function () {
var captureUI = new capture.CameraCaptureUI () ;
captureUI.photoSettings.format = capture.CameraCaptureUIPhotoFormat.
=png;
captureUI.captureFileAsync (capture.CameraCaptureUIMode.photo) .
wdone (function (photo)
if (photo) {
// Use HTML5 File API to create object URL to refer to the
wphoto file
var photoUrl = URL.createObjectURL (photo) ;

// Show photo in IMG element
imgPhoto.src = photoUrl;

document .addEventListener ("DOMContentLoaded", init) ;

1O

NOTE

The JavaScript code contained in the Default.js file, which we deleted, is used to handle
app lifecycle events such as app activation and suspension. | discuss these app events in
detail in Chapter 11.

20 CHAPTER 1 Building Windows Store Apps

There is a lot of interesting stuff happening in the JavaScript code in Listing 1.2. Let’s walk
through the code.

First, I've created an init () function that is executed when the poMcontentLoaded event is
raised. The poMcontentLoaded event is a standard poM event that is raised when a browser
finishes parsing an HTML document.

I put all of my code into the init () function so the code won't be executed until the pom
is ready. Otherwise, if I attempted to access any of the HTML elements in the page then I
would get an exception because the elements would not yet exist.

The first thing that I do within the init () method is call the winJs.UI.processall ()
method. This method processes all of the controls in a page. In particular, it converts the
DIV tag with the data-win-control="WinJS.UI.AppBar” attribute into an actual app bar.

Next, I setup an event handler for the Take Picture command. When you click the

Take Picture command in the app bar, an instance of the windows.Media.Capture.
CameraCaptureUI class is created. The cameracaptureuI class is an example of a Windows
Runtime class.

The cameraCaptureUI.captureFileAsync () method displays the screen for taking a picture
(see Figure 1.12). When you click the OK button, the done () method is called and the
picture is displayed in the page.

FIGURE 1.12 The camera capture Ul screen

An object URL is created for the photo blob (the actual image data) returned by the
captureFileAsync () method by calling the URL.createobjectURL () method. This
createObjectURL () method is part of the HTMLS File API.

Elements of a Windows Store App 21

The photo is displayed in the HTML page with the following line of code:

// Show photo in IMG element
imgPhoto.src = photoUrl;

And that is all there is to it! We built an app that enables us to take pictures from our
computer and display the pictures in an HTML page.

Notice that our JavaScript file contains a combination of standard JavaScript methods,
HTMLS methods, Windows Library for JavaScript methods, and Windows Runtime
methods. This is normal for all of the JavaScript files that you create when creating a
Windows Store app.

Running the App

After you create the app, you can run it by pressing the green Run button in the Visual
Studio toolbar (see Figure 1.13) or just press the F5 key.

Dq App1 - Microsoft Visual Studio
FILE EDT WEW GIT PROJECT BULD DEBUG TEAM saL T
s i = - - P Local Machine - Debug -

FIGURE 1.13 Running a Windows Store app

Assuming that your laptop or tablet has a camera, you can start taking pictures.

WARNING

Remember that the Take Picture command is contained in the app bar and the app bar
does not appear by default. You need to either right-click the app or swipe from the top or
bottom edge of your computer to display the app bar.

Elements of a Windows Store App

As we saw in the previous section, a Windows Store app is built using several technologies.
A Windows Store app is built out of a combination of open and familiar web technologies,
such as HTMLS, JavaScript, and CSS3 and Microsoft technologies such as the Windows
Library for JavaScript and the Windows Runtime. Let me say a little more about each of
these elements of a Windows Store app.

JavaScript
This book is all about writing Windows Store apps using JavaScript. As an alternative to
JavaScript, you also could write Windows Store apps using C#, Visual Basic, or even C++.

When writing Windows Store apps, you can take advantage of the features of ECMAScript
5 which is the latest version of JavaScript. This means that you can use the new JavaScript

22

CHAPTER 1 Building Windows Store Apps

Array methods such as indexof () and forEach (). You also can use property setters and
getters and the use strict statement.

HTMLS5

When writing Windows Store apps, you can take advantage of many of the new features
of HTMLS and related standards. Here is a list of some of the most important of these new
features:

>

Form Validation Attributes—You can take advantage of the new validation attri-

butes in the HTMLS standard to perform form validation. I discuss these new vali-
dation attributes and how you can use them in a Windows Store app in Chapter 5,
“Creating Forms.”

data-*—The data dash star standard enables you to add custom attributes to exist-
ing HTMLS elements. The Win]JS library uses data-* for declarative data-binding and
declarative control instantiation.

Indexed Database API (IndexedDB)—The Indexed Database API exposes a data-
base in the browser. If you need to store a list of products in a database within a
Windows Store app, then you can take advantage of IndexedDB. I explain how to
use IndexedDB in Chapter 9, “Creating Data Sources.”

File API—The HTMLS File API enables you work with files in the browser. We used
the HTMLS API in the previous section when building our first Windows Store app
(the URL.createObjectURL () method).

Canvas—Enables you to draw graphics using JavaScript. I provide you with an intro-
duction to Canvas in Chapter 15, “Graphics and Games.”

Web Workers—Enables you to execute background tasks without blocking the user
interface thread.

WebGL—This is new with Windows 8.1. WebGL enables you to build 3D games
with JavaScript.

Cascading Style Sheets 3

When you build Windows Store apps, you can take advantage of several new features of
the Cascading Style Sheets 3 standard (and related standards) including the following:

>

>

>

Media Queries—Enables you to apply different styles depending on the character-
istics of a device, such as the height, width, or orientation of the device. I discuss
Media Queries in Chapter 11.

CSS3 Grid Layout—Enables you to lay out HTML content in columns and rows
without using HTML tables.

CSS3 Flexible Box Layout (FlexBox)—Enables you to preserve relative element
position and size when displaying HTML content in different devices.

Elements of a Windows Store App 23

Windows Runtime

The Windows Runtime (WinRT) contains a class library that you can use in your Windows
Store apps. These classes are projected directly into JavaScript, so they appear to be built-in
JavaScript objects.

For example, when we wrote our first Windows Store app, we took advantage of
the WinRT windows .Media.Capture.CameraCaptureUI class. When we called the
CameraCaptureUI.captureFileAsync () method, we were able to take a picture.

All of the WiIinRT classes are exposed in JavaScript from the root Windows namespace. For
example, you create an instance of the cameracaptureuI class with the following code:

var captureUI = new Windows.Media.Capture.CameraCaptureUI () ;

NOTE

Notice that WinRT class names can get silly long. For this reason, it is a good idea to
alias the namespaces like this:

var capture = Windows.Media.Capture;

The WinRT classes extend JavaScript with all of the functionality that you need when
building a Windows application. These classes enable you to do fun and amazing things
such as:

» Geolocation—Use the WinRT windows.Devices.Geolocation.Geolocator class to
get your current latitude and longitude.

» File Access—Read and write to the file system by taking advantage of the WinRT
classes in the windows.Storage namespace.

» Compass—Always know the direction of True North with the windows.Devices.

Sensors.Compass class.

» Print—Print from your Windows Store app by using the windows.Printing.
PrintManager class.

» Compress Files—Compress and decompress files using the classes in the WinRT
Windows.Storage.Compression namespace.

Windows Library for JavaScript

The Windows Library for JavaScript (Win]JS) is a pure JavaScript library created by
Microsoft specifically for building Windows Store apps. Understanding how to use this
library is the primary focus of this book.

24 CHAPTER 1 Building Windows Store Apps

The Win]JS library contains all of the WinJS controls. These are the controls that you use
to build the user interface for your Windows Store app. For example, the WinJS library
includes a DatePicker control that displays a user interface widget for selecting a date.

What About jQuery?
jQuery is the most popular JavaScript library in the universe. An obvious question, there-
fore, is can you use jQuery when building Windows store apps?

NOTE

According to BuiltWith, more than 57% of the top 10,000 websites use jQuery. This is (by
a wide margin) the most common JavaScript framework used on websites. See http://

trends.BuiltWith.com/javascript.

The answer is yes. You can use jQuery when building Windows Store apps. Let me
show you.

The easiest way to add jQuery to a Windows Store app project is to use the Library
Package Manager in Visual Studio. Select the menu option Tools, Library Package
Manager, Package Manager Console. Enter the command install-package jQuery into
the Package Manager Console window (see Figure 1.14).

Package Manager Console

Package source: |NuGet official package source '| o I Default project:

PM> Install-Package jQuery

Installing 'jQuery 2.0.2°'.

Successfully installed 'jQuery 2.8.2°'.

Adding 'jQuery 2.8.2' to jQueryWindowss.
Successfully added 'jQuery 2.8.2' to jQueryWindowss.

PM> |
100% -

FIGURE 1.14 Adding jQuery with the Library Package Manager Console

Executing the install-package jQuery command adds a Scripts folder with four files: the
full version of jQuery, the minified version of jQuery, an IntelliSense file, and a source
map. The IntelliSense file enables Visual Studio to provide jQuery intellisense when you
use jQuery methods and the source map provides debugging support.

Listing 1.3 contains a combined HTML and JavaScript file that uses jQuery.

http://trends.BuiltWith.com/javascript
http://trends.BuiltWith.com/javascript

Elements of a Windows Store App

LISTING 1.3 Using jQuery in a Windows Store App

25

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>jQueryWindows8</title>

<!-- WindS references -->

<link href="//Microsoft.WinJS.2.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.WindS.2.0/js/base.js"></scripts>

<script src="//Microsoft.WindS.2.0/js/ui.js"></script>

<!-- jQueryWindows8 references -->

<script type="text/javascript" src="Scripts/jquery-2.0.2.js"></script>

<style type="text/css">
#divMessage {
display:none;
padding:10px;
border: solid 1lpx white;
background-color: #f££6a00;
}
</style>
</head>
<body>
<button id="btnShow">Click Here</buttons>
<div id="divMessage">
Secret Message

</div>

<script type="text/javascript"s
$ ("#btnShow") .click (function () {
S ("#divMessage") .fadeToggle ("slow") ;
1

</script>

</body>
</html>

The page in Listing 1.3 contains a Button and a DIV element. The contents of the DIV
element are hidden by default (with display:none). When you click the button, the
contents of the DIV fade slowly into view (see Figure 1.15).

26 CHAPTER 1 Building Windows Store Apps

Click Here

Secret Message

FIGURE 1.15 Using jQuery to animate a DIV element

The code in Listing 1.3 is contained in the Chapter 1 folder in a folder named
jQueryWindows8.

Microsoft worked directly with the jQuery team to ensure that jQuery 2.0 works correctly
with Windows Store apps. As long as you are using a version of jQuery more recent than
jQuery 2.0 then you should not encounter any issues.

The fact that Windows Store apps are compatible with jQuery does not mean that
Windows Store apps are compatible with every jQuery plugin or popular JavaScript library.

In a Windows Store app, JavaScript code executed in the local context has extra security
restrictions to prevent script injection attacks. In particular, you cannot assign HTML to
the innerHTML property, which contains potentially dangerous content such as scripts or
malformed HTML.

If you are using a JavaScript library that was not written with these security restrictions

in mind then you will need to modify the library to work with a Windows Store app. If you
trust the content being assigned to the innerHTML property then instead of using the
innerHTML property, you can use the WinJs.Utilities.setInnerHTMLUnsafe () method.

Building Windows Store Apps with Visual Studio

This book focuses on building Windows Store apps with Visual Studio. In this section, I
want to devote a few pages to describing the features of Visual Studio that matter when
building Windows Store apps. You learn how to select a project template for a Windows
Store app, how to run a Windows Store app, and how to debug a Windows Store app.

Building Windows Store Apps with Visual Studio 27

Windows Store App Project Templates

When you select the File, New Project menu option in Visual Studio, you can select from
five different project templates as your starting point for your Windows Store app:

1. Blank App—The simplest of the templates. Contains a single default.html,
default.css, and default.js file.

Navigation App—Use this template for apps that require multiple pages.
Grid App—Contains three pages for displaying groups of items.

Split App—Contains two pages for displaying groups of items.

AR S

Hub App—Contains three pages. One page displays a navigation hub and the
other two pages display section and item detail. This project template is new with
Windows 8.1.

We already used the Blank App project template when creating our first Windows app. Let
me discuss the other project templates in more detail.

Navigation App Project Template

The Blank App template is a good template to use when building a simple, single-page
app. If you need to support multiple pages, on the other hand, then you should use the
Navigation App template.

The Navigation App project template includes a single page named home. You can add
additional pages by adding new Page Controls to the pages subfolder (see Figure 1.16).
I describe how you can create multi-page applications in detail in Chapter 12, “Page
Fragments and Navigation.”

Solution Explorer *Aax
cofle-snam|R
Search Solution Explorer (Ctrl+;) o~
5[] Solution 'NavigationApp1' (1 project)
4 #[15] NavigationApp1 (Windows 8.1)
b =m References
b Ml css
b B images
b Ml s
4 @] home
&[@ home.css
+ homehtml
5 LT homejs
+ [default.html
a4 NavigationApp1_TemporaryKey.pfi
<B5) package.appxmanifest

FIGURE 1.16 Creating a multi-page app with the Navigation App project template

The next three project templates—the Grid App, the Split App, and the Hub App project
templates—are built on top of the Navigation App template. In other words, these project
templates are multi-page apps with additional pages.

28 CHAPTER 1 Building Windows Store Apps

Grid App Project Template

The Grid App project template contains three pages. The main page displays groups of
items in a horizontal scrolling grid. You can click a group to view group details or click an
item to view item details.

Imagine, for example, that you are creating a product catalog. In that case, you might
create different product categories such as Beverages and Fruit. Each category is a group
and each category contains a set of product items.

You can use the Grid App groupedItems page to display a horizontal scrolling grid of the
product categories and associated products (see Figure 1.17). If you click a product cate-
gory then you can view details for that category (see Figure 1.18). If you click a product
then you can view details for that product (see Figure 1.19).

GridApp1

Beverages > Fruit >

Apples

Item Subtitl

Lemons

Item Subtitle: 2

FIGURE 1.17 The Grid App groupedltems page

Building Windows Store Apps with Visual Studio 29

Beverages

Group Subtitle: 2

interdum vehicula urn|
venenatis dui odio in

Item tle: 2
Item Description: Pellg
interdum vehicula urn|
venenatis dui odio in

=
Coffee
Group Description: Lorem ipsum dolor sit amet, consectetur adipiscing Item 3
elit. Vivamus tempor scelerisque lorem in vehicula. Aliquam tincidunt, ? Item Description: Pell
lacus ut sagittis tristique, turpis massa volutpat augue, eu rutrum ligula ¥ interdum vehicula urn|

ante a ante 3 | venenatis dui odio in

FIGURE 1.18 The Grid App groupDetail page

®© Strawberries

FIGURE 1.19 The Grid App itemDetail page

Split App Project Template

The Split App project template also can be used to display groups of items such as prod-
ucts grouped into product categories. The Split App project template has two pages: items
and split.

The items page displays the list of groups. For example, in Figure 1.20, the items page
displays the product categories.

30 CHAPTER 1 Building Windows Store Apps

NellivAVelel

FIGURE 1.20 The Split App items page

If you click a group then you navigate to the split page. This page displays a list of items
in the group—the products in the category—and enables you to select an item to see item
details (see Figure 1.21).

©

© Fruit
H Apples

|
) Charrias
3)

"
| =l

Strawberries

@p | Lemons

FIGURE 1.21 The Split App split page

Hub App Project Template

The Hub App project template is new with Windows 8.1. The Hub App template consists
of three pages. The main page contains a Hub control and displays a horizontal list of
sections (see Figure 1.22). If you click a section title then you navigate to the section page.
If you click an item then you navigate to the item page.

The Hub control is covered in Chapter 4, “Using WinJS Controls.”

Building Windows Store Apps with Visual Studio 31

The special thing about the Hub App template is that you can display anything you want
within the Hub sections. You can display a list of items, you can display a paragraph of
text, or you can display anything else which you heart desires.

For example, in Figure 1.22, Section 1 contains a paragraph of text and Section 2 contains
a list of items. Each Hub section can contain different types of content.

HubApp1

Section 1

FIGURE 1.22 The Hub App template

Running a Windows Store App

Visual Studio provides you with three different options for running a Windows Store app:
» Local Machine
» Simulator

» Remote Machine

The Local Machine option runs a Windows Store app as if the app was installed on the
local machine. The Windows Store app will run using the screen resolution and capabili-
ties of your development machine (the machine running Visual Studio).

The Simulator option runs your app in a separate window (see Figure 1.23). The advantage
of using the simulator is that you can simulate different types of devices. For example,
you can switch from mouse mode to basic touch mode to simulate a touch device such as a
tablet PC. You also can switch to different screen resolutions to test your app at different
resolutions.

The final option is to deploy and run your Windows Store app on a remote machine.
Before you can run your app on a remote machine, you must first specify the remote
machine name in the Project Property Pages window (see Figure 1.24).

32 CHAPTER 1 Building Windows Store Apps

Products

Beverages

o3 :
q@L) '~
. |

Wk

Cherries Straw

FIGURE 1.23 Using the Visual Studio simulator

GridApp1 Property Pages |M

Configuration: | Active(Debug) | Platform: | Active({Any CPU) ¥| | Configuration Manager..
4 Configuration Properties Debugger to launch:
Genel Remote Machine v
Debugging
Launch Application Yes
Allow Local Network Loopback Yes
Debugger Type Script Only
MetroPC w
Require Authentication Yes

Machine Name
Specifies the name of the machine to use when debugging remotely, Use the drop-down to find nearby machines,

oK Cancel Apply

FIGURE 1.24 Specifying the remote machine name

Debugging a Windows Store App 33

After you specify the name of the remote machine, you can deploy and run your app on
the remote machine by picking this option from the Visual Studio toolbar.

To deploy and run an app on a remote machine, you need to install the Remote Tools for
Visual Studio 2013 on the remote machine. You can download the Remote Tools from the
Microsoft.com website.

Debugging a Windows Store App

I'm always optimistic and believe that any code that I write will run without error the first
time that I run it. To date, that has never happened. I spend a significant amount of my
time debugging code that does not do what I want it to do.

In this section, I discuss the tools in Visual Studio that you can use to debug your code.
I discuss how you can use the JavaScript Console window, use breakpoints, and use the
DOM Explorer.

Using the Visual Studio JavaScript Console Window

When I write JavaScript code for pages used in websites, I use the JavaScript console
window to view JavaScript errors. I also write custom messages to the console window
using console.log () so I can debug my code. (See Figure 1.25.)

L.‘_@Elemen\: E]Reuurm @Nﬂworx Iii.suurm @Tlmeﬁne &‘mmﬁlu @Audh"ﬁcmi

¥ Object
name: "Laptop"
price: B.93
»__proto__t Object
@ Uncaught ReferenceError: product2 is not defined
2

FIGURE 1.25 Debugging with the Google Chrome JavaScript console

When running a Windows Store app, you don’t have access to the browser JavaScript
console. Instead of using the browser JavaScript console, you need to use the Visual Studio
JavaScript Console (see Figure 1.26).

34 CHAPTER 1 Building Windows Store Apps

JavaScript Console -ox

X cor

ﬂ JavaScript Console is attached and accepting commands.
QSCR[FTSBAI: Exception is about to be caught by JavaScript 1i
File: default.js, Line: 18, Column: 9
) HmL13e8: Navigation occurred.
File: default.html

<
> X b =2

FIGURE 1.26 The Visual Studio JavaScript Console Window

You can view JavaScript errors and write debug messages to the Visual Studio JavaScript
console window by using console.log() in exactly the same way as you would write to a
browser console window.

If you hit an error and you want to display the value of a JavaScript variable then you can
enter the variable name in the bottom of the JavaScript Console (see Figure 1.27).

JavaSeript Console > O
e
> product
< 4 [object Object] {name: “Laptop”, price: 455.22)
b [functions]
b __proto [object Object] {...}
name "Laptop™
price 455,22
» product X p 2

FIGURE 1.27 Dumping a JavaScript variable to the JavaScript Console window

NOTE

The Visual Studio Console window only appears when an app is running. If you can’t find
the window, use the menu option Debug, Windows, JavaScript Console.

Setting Breakpoints

If you are building a Windows Store app, and the Windows Store app is behaving in ways
that you don’t understand, then it is useful to set breakpoints and step through your code.

You set a breakpoint by clicking in the left gutter of the Visual Studio code editor next

to the line that you want to break on (see Figure 1.28). When you run your app in debug
mode, and the breakpoint is hit, you can examine the values of your variables by hovering
over them with a mouse.

Debugging a Windows Store App 35

getCount: function () {
var that = this;
return new WindS.Promise(function (complete, error) {
that._getObjectStore().then(function (store) {
var regCount;
if (that._cursorOptions) {
war cursorOptions = that._cursorOptions;
var index = store.index(cursorOptions.indexName);
war keyRange = that. createKeyRange(cursorOptions);
< FegCount 5 @ keyRange (. ingel;
} else { @ lower Q - “Scifi"
reqCount = @ |owerOpen false %
@ upper Q ~ "SciFi
reqCount.onerrcg upperOpen false
E reqCount.onsuccess = TUnCTIoNn (Evt) {
complete(evt.target.result);
b

1o H

m-m—m—|

i5H

FIGURE 1.28 Setting a breakpoint

You can step through your code, line by line, by using the Step Into toolbar button or by
pressing F11.

NOTE

As an alternative to setting a breakpoint with Visual Studio, you can create a breakpoint in
code by using the JavaScript debugger statement.

Using the DOM Explorer

Another of my favorite browser developer tools is the HTML inspector (this is a feature, for
example, of Firebug). You can use this tool to view the live HTML and CSS in a document.

Visual Studio supports a similar tool named the DOM Explorer. You can use the DOM
Explorer to inspect the property of any HTML element in a running Windows Store app.

After running a Windows store app in Visual Studio, you can view the DOM Explorer

window by selecting the menu option Debug, Windows, DOM Explorer. Within the DOM
Explorer window, you can click any element and view all of the properties of the element
including information about all of the styles associated with the element (see Figure 1.29).

36 CHAPTER 1 Building Windows Store Apps

DOM Explorer & X
<!DOCTYPE html>» Styles Trace Computed Layout Events
Ashiele 4 Intinz style [
b <head>..</head>
4 tbody>
| |(p>Cnr|t=r|t goes here</p> !
</body>» 4 rselection { JMic...
</ntmly Mbmesmanncalon gkl 1100
e O—
I
4 abbr, acronym, address, blockquote, cite, dl, dd, I, of, //Mic.|
pgtdtr {
& fant-weight: 300;
I
Inherited from body
4 body, .win-type-xx-large, .win-type-x-large, win- //Mic...
type-large, .win-type-medium, .win-type-small, \win-
type-x-small, .win-type-xx-small, input, textarea,
.win-textarea, button, select, option {
< > @ font-family: “Segoe UI", "Ebrima”, "Nirmala UI", "Gadugi"
html body» Ul Emaji*, *Segae Ul Symbal®, “Meiryo UI",

FIGURE 1.29 Using the DOM Explorer Window

If you click an element associated with a WinJS control then you can see all of the HTML
attributes and elements rendered by the control. Adding a Listview control to a page, for
example, adds a lot of new DIV elements to the page.

Publishing to the Windows Store

One of the main motivations for building a Windows Store app is to sell your app in the
Windows Store for either fame or profit. In this section, I discuss the steps you need to
follow to publish your Windows Store app to the Windows Store.

You can distribute your app without publishing to the Windows Store by taking advantage
of a feature called sideloading. In order to take advantage of sideloading, you must sign
your app and configure the right group policy settings on the target computers. You can
learn about sideloading by visiting http://technet.microsoft.com/en-us/library/hh852635.
aspx.

Register as a Windows Developer

Before you can publish an app to the Windows Store, you must first register as a Windows
Store developer. You can sign up at the Windows Store Dashboard on the Windows Dev
Center by selecting the menu option Project, Store, Open Developer Account within
Visual Studio (see Figure 1.30).

http://technet.microsoft.com/en-us/library/hh852635.aspx
http://technet.microsoft.com/en-us/library/hh852635.aspx

Publishing to the Windows Store 37

The sign-up procedure is painless. Currently, it costs either $49 (for an individual account)
or $99 (for a company account) a year to become a registered Windows Store developer, or
it is free with a MSDN subscription.

e Center - Windows %20

4 < ¢ | B nitps//appdev.microsoftcom/StorePaortals/en-Us/ Account/signupy/start ek E

% | D Center - Windows Stare apps D Caatar o

DASHEOSAD GETSTAATED DESIGN DEVELOR MARKET SUPRORT

5 Become a Windows Store

E developer!

In your Windows Store developer account, you How to register

can;

1. Lag i wting ihe Mi yeur

s i il e Viderers Sleee deeedemer mceuunt. Use the dame Micresedl seeount
that ey i i antt # you
® Offes trish versians te bulld exciterment. want ta link ther.
* el o P 2. Pick wheth you want 16 ciaste an indisidusl o 4 comjuing Secount,
00 purchases. Wyou link be your Micresef Developer Senvices sccsant, your

\Wandowt Steak devlopar account will ba the tama type,
® Jein thevibrant Winsews Stere develeper communiy,
3 Tell us sbout you. i you link to your Microscoft Developer Services
Track yous sales aved custirmr leedback in the dashbosnd, secount, well eopy that infa to yeusr Windows Stere developes
sccount.

4 Reier the berems of use end your sccount detsls,

5 Have pour credn card maddy.

in1 =13 ~

FIGURE 1.30 Register as a Windows Store developer

Submitting Your App

After you register, you can access the Windows Store dashboard and submit a new app.
The process of submitting an app is broken down into 8 steps (see Figure 1.31).

One of the most important steps is selecting the name for your app. You can reserve an
app name in the Windows Store even before you have finished creating the app. Picking
an app name is similar to picking a domain name—so I recommend that you acquire the
name that you want as soon as possible.

You also need to decide on how much you want to charge for your app. Currently, you
can charge anywhere from $1.49 to $999.99. Or, you have the option of providing your
app for free. You also have the option of providing your app with a limited free trial or
making your app free with advertising.

38

NOTE

There are iPhone apps that sell for $999.99 dollars. For example, the iVIP Black iPhone
app sells for $999.99. But to purchase it, you need to prove that you are a “High Net

CHAPTER 1 Building Windows Store Apps

Worth” individual with “assets and/or income in excess of £1 million.”

MyNotes

App name
Selling details
Services

Age rating
Cryptography
Packages
Description
Notes to testers

News

New Windows Dev Center
Get your app noticed
Age ratings

Latest Windows ACK

: Release 1

v

Compiste

®©

5 minutes
®©
®©
®©

App name

You reserved an app name.

You can also reserve another name for your app to use in another language or to change your app's name.
Learn mare

Selling details
Pick your app's price, listing categories, and where you want to sell it
Leam mare

Services
Add push natifications, authenticate users, enable cloud storage, and define in-app offers.
Leamn more

Age rating and rating certificates
Describe the audience for your app and upload your rating certificates.
Learn more

Cryptography
Declare whether your app uses cryptography and enable package upload.
Learn mare

Packages

Upload yaur app to the Windaws Store,

To enable this step, complete the Cryptography page.
Learn more

Description
Briefly describe for your customers what your app does.
Learn mare

Notes to testers
Add notes sbout this release for the people who will review your app.
Leam more

FIGURE 1.31 Submitting an app to the Windows Store

When you reach the sixth step, the Packages step, you can upload your finished Windows
Store app to the Windows Store. Within Visual Studio, use the menu option Project, Store,
Create App Package to package up your Windows Store app (see Figure 1.32). Next, you

can click the Packages step to upload the package.

Publishing to the Windows Store 39

m Create Your Packages

Do you want to build packages to upload to the Windows Store?

® Yes
Q Ne

Visual Studio will the required ir ion for the packages to be uploaded to the Store]

computer that has a developer license installed or meets the requirements for sideloading Windo
P L. R i . bt L iy th o N1

FIGURE 1.32 Creating your app package

Passing App Certification

Microsoft must review your app before it gets published to the Windows Store. In other
words, your app must go through a certification process. Part of this certification process is
automated and part of the certification process must be done by a human.

There are many requirements for certification. Some of these requirements are obvious.
For example, your app can’t contain programming errors that cause it to immediately
crash and your app cannot simply be a big ad for your business.

Some of the certification requirements are not so obvious. For example, to be certified,
your app cannot unexpectedly transport large amounts of data over a metered network
connection, your app must start up quickly, and your app must be complete (no “coming
soon” features). Also, if your app links to the Internet, you must provide a privacy policy.

NOTE

The Windows Store certification requirements are detailed at http://msdn.microsoft.com/
en-us/library/windows/apps/hh694083.aspx.

You can use the Windows App Certification Kit to run the automated certification tests on
your app before you upload your package to the Windows Store. The easiest way to run
the Windows Certification Kit is to package your app within Visual Studio by selecting the
menu option Package, Store, Create App Package. The last step in the Create App Package
Wizard enables you to launch the Windows App Certification Kit (Figure 1.33).

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

40 CHAPTER 1 Building Windows Store Apps

m Package Creation Completed

Output location:

C\Users\Stephen\Documents\Visual Studio 2013\Projects\debug\debu Packages

To test whether your app complies with Windows Store requirements, click "Launch Windows App Certification Kit.”

Select a target device to run validation:
@ Local machine

() Remote machine: Y EI Test Connection

Package that will be validated:

C\Users\Stephen\DocumentsiVisual Studio 2013\Projects\debug\debu Packages\debug 1.1.0.0 AnyCPU Test
\debug 1.1.0.0 AnyCPU.appx

@ validation might take a few minutes or longer depending on the size of your app.
D One or more tests require the app to run in full sereen.

1 Do not interact with the machine until you see the test results.

@ The existing version of your app on the lacal machine will be removed,

|5 Launch Windows App Certification kit| | Close

FIGURE 1.33 Launching the Windows App Certification Kit

NOTE

The Windows App Certification Kit is installed at the same time as you install Visual
Studio. You can run it independently of Visual Studio by launching the Windows App Cert
Kit from the Start screen.

When you run the Windows App Certification Kit, the App Certification Kit launches and
runs your app and then, after your computer does crazy stuff for a while, a report is gener-
ated that details whether your app passes or fails (see Figure 1.34).

If you are using Team Foundation Server, you can even integrate the Windows App
Certification Kit into your build process. Every time you do a new build of your app, you
can run the technical certification tests automatically.

Migrating from Windows 8 to Windows 8.1 41

—TEN
| aox T

@@| 5] CaUsers\Stephen\AppL O = © | & Windows App Certification .. X
Windows App Certification Kit - Test Results

App name: Gratitude

App publisher: Superexpert

App version: 1.1.0.2

OS5 Version: Microsoft Windows 8.1 Pro Preview (6.3.9431.0)
Kit Version: 3.0

Report time: 7/16/2013 6:51:06 PM

Overall result: PASSED

Crashes and hangs test

PASSED Crashes and hangs

App manifest compliance test

PASSED App manifest

Windows securily features test

PASSED Binary analyzer

FIGURE 1.34 A (successful) certification report generated by the Windows App Certification Kit

After your app passes all the certification requirements—after it has been approved by
Microsoft—your app appears in the Windows Store and you can start collecting money.
When anyone buys your app, money is added to a payout account, which you set up on
the Windows Store dashboard.

Migrating from Windows 8 to Windows 8.1

Windows 8.1 is the second release of Windows 8. There are already tens of thousands of
apps written for Windows 8.

If you already created a Windows Store app for Windows 8 and you want to migrate the
app to Windows 8.1 then the process is dead easy. When you open your Windows 8 app
in Visual Studio 2013, Visual Studio recommends retargeting your app to Windows 8.1
(see Figure 1.35).

42 CHAPTER 1 Building Windows Store Apps

Review Project And Solution Changes

i Retarget to Windows 8.1 recommended

Projects that target Windows 8 will open in this version of Visual Studio. However, to take advantage of new features that
are available in Windows 8., you can retarget your Windows 8 prajects to Windows 8.1 by performing the fallowing
steps:

1, Create backups of your Windows 8 projects,

2. Open and retarget a copy of your projects to Windows 8.1,

3. Update your assets to run on Windows 8.1,

For detailed guidance, see Windows Store retargeting guidance.

FIGURE 1.35 Retargeting to Windows 8.1

You can right-click your project in the Solution Explorer window and select the menu
option Retarget to Windows 8.1 to migrate your app to Windows 8.1.

Retargeting your app updates all of your script references to point to the Windows Library
for JavaScript 2.0 instead of the Windows Library for JavaScript 1.0. If you prefer, you
could do this by hand by adding a reference to the Windows Library for JavaScript 2.0 to
your project and updating the <script> tags in all of your HTML pages.

After you retarget your app, you might need to make code changes. For example, as I
mentioned earlier in this chapter, Windows 8.1, unlike Windows 8, no longer supports a
snapped view state. A list of all of the deprecated Windows 8 application programming
interface (APIs) is displayed after you retarget your app.

You need Visual Studio 2013 Professional, Premium, or Ultimate to edit an existing
Windows 8 app. Visual Studio 2013 Express requires you to retarget a Windows 8 app to
Windows 8.1 before you can modify it.

This might be obvious, but I am going to say it anyway. Apps written for Windows 8.1
won’t run on Windows 8. The Windows Runtime in Windows 8.1 has changed so you
won't see Windows 8.1 apps in the Windows Store on a computer running Windows 8.
You still can use Windows 8 apps, on the other hand, with Windows 8.1—you can
install both Windows 8 and Windows 8.1 apps from the Windows Store on a computer
running Windows 8.1.

Summary

The goal of this chapter was to introduce you to Windows Store apps. I started this
chapter by providing you with an overview of the Microsoft design style principles. You
also learned about the standard features of Windows Store apps such as the app bar and
charms.

Summary 43

I then led you, step by step, through the process of building your first Windows Store
app. We created a really cool camera app that you could never create as a standard web
application.

You also learned about the standard elements of a Windows Store app. You learned how
a Windows Store app is composed of standard HTMLS, JavaScript, and CSS3. You also
learned how Windows Store apps take advantage of Microsoft technologies such as the
Windows Runtime and the Windows Library for JavaScript.

I also explained how you can take advantage of the features of Visual Studio when build-
ing a Windows Store app. You learned how to run a Windows Store app using the simula-
tor. You also learned how to debug a Windows Store app by using breakpoints and the
Visual Studio JavaScript Console window.

Finally, you learned how you can make money from your Windows Store app by publish-
ing your app to the Windows Store. You learned how to register your app, submit your
app, and pass certification.

This page intentionally left blank

Symbols

@-ms-viewport rules, 326, 329

A

About Page settings, creating, 187-189
account settings, creating, 396-401
activated events, app events, 312-325

adapting to screen changes (MyTasks app),
440-443

addEventListener(), 315
adding
Page Controls to Navigation App, 343-345
search results pages, 373-376
SearchBox control to pages, 377-378
Ajax calls, performing with xhr() function, 69-74
response types, specifying, 72-73
alert.css file, 338
alert.js file, 338
any() method, 63
app bar, 89
app events, 311-312
activated events, 312-325
creating custom, 315
deferring events, 314-315
designing apps for different window sizes
CSS media queries, 321-324
error events, 313-314
logging, 312
AppBar control, 176-184
commands, 178-181
contextual commands, 181-184

application keys, retrieving Mobile Services,
297

application state, testing with Visual Studio,
317-318

ApplicationExecutionState, 317

applying templates with query selectors,
109-111

apps, 315-316
declaring as share targets, 361-362

designing for different window sizes,
320-325

Index

detecting previous execution state, 316-317

detecting suspended and terminated apps,
316

multi-page apps. See multi-page apps
scaling to fit screen resolutions

defining viewports, 326-329

ViewBox control, 329-332
storing state with session state, 318-320

testing application state with Visual Studio,
317-318

articles, displaying with FlipView control,
215-218

assigning format strings to DatePicker control,
128-130

asynchronous programming, promises, 56-63
canceling, 62-63
composing, 63
creating, 60-61
timeout promises, 61-62
audio (Brain Eaters game), playing, 420-421
authentication, 394-401
account settings, creating, 396-401
logging in users to Live Connect, 394-396

Azure Mobile Services. See also Mobile
Services

configuring, 401

logging into, 404-406

mobile server scripts, updating, 402-404
permissions, setting, 402

B

back(), 346
beforenavigate, Navigation API, 347
binding converters, 101-105
creating, 103
date and price converters, creating, 104-105
bindings
declarative data binding, 81, 91-105
binding converters, 101-105
data context, 94
data-win-bind attribute, 92

HTML forms, capturing contents of,
96-98

450 bindings

observables, 94-96
root element, 94
and WinJS controls, 99-100

object properties, binding to a listener,
83-85

WinJS.Binding.List object, 88-90, 224-226
blog feeds, binding ListView control to, 226-228
Brain Eaters, 417-418

Canvas, creating, 421-423

overview, 418419

render loop, creating, 427-429

sounds, playing, 420-421

tiles, creating, 419-420

update loop, creating, 425-427

user interaction, capturing, 424-425
breakpoints, setting, 34-35

buttons, creating FlipView custom buttons,
221-222

bypassing notifications, 87-88

C

callbacks, 57
promises, 57-58
canceling, 62-63
composing, 63
WinJS.xhr() method, 58
canceling promises, 62-63
canGoBack, 347
canGoForward, 347
Canvas, 22
Brain Eaters game, creating, 421-423
capturing
contents of HTML forms, 96-98

selected date with DatePicker control,
132-133

user interaction (Brain Eaters game),
424-425

WebView screenshots, 145-146

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

cell spanning layout (ListView control), 231-236
certification, Windows Store, 39-40
chaining, 59
change() method, implementing, 268
charms, 9-11
Settings charm, 186-187

classes, 51-56
creating, 51-52
QueryCollection class, 68-69
Windows RT, 23
win-item, 199
win-itembox, 199
win-itemcontainer, 199
clearing user ratings, 124-125
closing Windows Store apps, 13
coalescing notifications, 85-87
collections, observable collections, 90-91
commands
app bar commands, 178-181
contextual commands, 181-184
SQL TRUNCATE TABLE, 308
common features of Windows Store apps, 7-13
app bar, 89
charms, 9-11
nav bar, 9
CommonlJS website, 57
composing promises, 63
configuring Azure Mobile Services, 401

connecting Mobile Services to remote database
tables, 299

console.log(), 309
containers. See ItemContainer
contenteditable attribute, 164-165
contentElement property (ToolTip control), 121
Contentindexer, 381
ContentindexerQuery, 381
contextual commands, 181-184
controls, 113-120
AppBar control, 176-184
commands, 178-181
contextual commands, 181-184
creating declaratively, 115-117
creating imperatively, 117-118
DatePicker control, 127-133
declaring, 128
format strings, assigning, 128-130
selected date, capturing, 132-133
declaring, 113-114
FlipView
custom buttons, 221-222
displaying articles with, 215-218
displaying page numbers with, 219-220
explained, 197

Flyout control, 169-171

Hub control, 137-139
sections, navigating, 139

IltemContainer

combining with Repeater control,
214-215

dragging and dropping, 204-208

explained, 197

invoking, 200-202

selecting, 202-204

simple example, 197-198

styling, 198-200

swipeBehavior property, 202

tabBehavior property, 202
ListView control, 223

binding to a blog feed, 226-228

dragging and dropping, 256-262

filtering items, 242-244

grouping items, 245-247

invoking items, 236-238

selecting items, 238-241

sorting items, 241-242

templates, switching, 253-255

views, switching with Semantic Zoom,
248-253

WinJS.Binding.List data source, 224-226
Menu control, 172-174
NavBar control, 184-186
options, setting, 118-119
Rating control, 124-127

declaring, 124-125

events, 125-127

ratings, customizing, 125

ratings, submitting, 125-127
references, adding, 114-115
Repeater

explained, 197

external templates, 210-211

with ItemContainer, 214-215

nested templates, 211-213

simple example, 208-210
retrieving from HTML documents, 119-120
TimePicker control, 133-136

current time, setting, 134-136

creating 451

declaring, 133-134
time, formatting, 136
ToggleSwitch control, 122-124
declaring, 122
state of, determining, 123-124
ToolTip control, 120-121
contentElement property, 121
declaring, 120
styling, 121
WebView control, 139-146
events, 142
navigation, handling, 142-144
screenshots, capturing, 145-146
web pages, hosting, 140-142
winControl property, 99-100

CORS (W3C Cross-Origin Resource Sharing)

standard, 71

createObjectURL() method, 20
creating

About Page settings, 187-189
AppBar control, 176-178
binding converters, 103
Brain Eaters game tiles, 419-420
classes, 51-52
custom data sources, 263-270
change() method, implementing, 268
error handling, 268-269
getCount() method, implementing, 265

itemsFromIndex() method, implementing,
265-267

remove() method, implementing, 267-268

setNotificationHandler() method,
implementing, 269-270

data adapters, 264-265
data sources
file data sources, 270-276
IndexedDB data sources, 281-293
indexes, 284-286
JavaScript file, 18-21
MyTasks app, 431-432
observable collection of observables, 90-91
observables, 82-83
personal settings, 189-192
promises, 60-61

How can we make this index more useful? Email us at indexes@samspublishing.com

452 creating

rich text editor, 164-165
style sheet, 18
templates
declarative templates, 108-109
external templates, 111-112
imperative templates, 105-108
Visual Studio project, 14-15
app capabilities, declaring, 15-17
web service data sources, 276-281
WinJS controls
creating declaratively, 115-117
creating imperatively, 117-118
cross-origin requests, 71
CSS (Cascading Style Sheets)
IltemContainer
styling, 198-200
media queries, 321-324
selectors, 64
CSS3 (Cascading Style Sheets 3), 22

current time, setting with TimePicker control,
134-136

custom actions, performing with Mobile
Services, 306-308

custom app events, creating, 315
custom buttons, creating in FlipView, 221-222
custom data sources, creating, 263-270
change() method, implementing, 268
error handling, 268-269
getCount() method, implementing, 265
remove() method, implementing, 267-268

setNotificationHandler() method,
implementing, 269-270

customizing
Rating control ratings, 125
validation error style, 152-154

D

data adapters, creating, 264-265
data context, 94
data sources
creating, 263-270
change() method, implementing, 268
getCount() method, implementing, 265

itemsFromIndex() method, implementing,
265-267

setNotificationHandler() method,
implementing, 269-270

file data sources, creating, 270-276
IndexedDB data sources, creating, 281-293
web service data sources, creating, 276-281
data-*, 22
database data
deleting in Mobile Services, 301
inserting in Mobile Services, 299-300
updating with Mobile Services, 300

database tables, creating in Mobile Services,
297-298

DataPackage, 358
DataPackageView class, 366
datarequested handler, 358
data-win-bind attribute, 92
binding converters, 101-105
date and price converters, creating, 104-105
DatePicker control, 127-133
days, hiding from display, 131-132
declaring, 128
format strings, assigning, 128-130
selected date, capturing, 132-133
years, hiding from display, 131-132

days, omitting from DatePicker control,
131-132

debugging
script errors, Mobile Services, 308-309
Windows Store apps in Visual Studio, 33-36
breakpoints, setting, 34-35
DOM Explorer, 35-36
JavaScript Console window, 33-34
declarative data binding, 81, 91-105
binding converters, 101-105
creating, 103

date and price converters, creating,
104-105

data context, 94
data-win-bind attribute, 92
HTML forms, capturing contents of, 96-98
observables, 94-96
root element, 94
and WinJS controls, 99-100
declarative templates, creating, 108-109
declaring
apps
capabilities, 15-17
as search providers, 369-370
as share targets, 361-362

WinJS controls, 113-114
DatePicker control, 128
Rating control, 124-125
TimePicker control, 133-134
ToggleSwitch control, 122
ToolTip control, 120
default.html page, Navigation App, 341-342
default.js file, creating, 1821
deferring app events, 314-315
del() method, 301
deleting database data (Mobile Services), 301
designing apps for different window sizes, 320
CSS media queries, 321-324
setting minimum app width, 320-321
window resize events, 324-325
detecting
previous execution state of apps, 316-317
suspended and terminated apps, 316
determinate progress indicator, displaying, 167
dialogs, displaying, 192-194
displaying
articles with FlipView control, 215-218
dialogs, 192-194
Flyout controls, 169-171

page numbers with FlipView control,
219-220

progress indicator, 165-167

DOM element, retrieving WinJS controls from,
119-120

DOM Explorer, 35-36

done() method, 59-60

downloading files from SkyDrive, 411-413

dragend event, 204

dragenter event, 204

dragging and dropping
ltemContainer, 204-208
ListView control items, 256-262

dragleave event, 204

dragover event, 204

dragstart event, 204

FlipView 453

E

elements of Windows Store apps, 21-26
CSS3, 22
HTML5, 22
JavaScript, 21-22
JQuery, 24-26
Windows Library for JavaScript, 23-24
Windows RT, 23

email addresses, entering in forms, 160-161

embedding web pages in Windows Store apps,
139-146

encapsulating methods, 49-51
error handlers
app events, 313-314
custom data sources, 268-269
insert() function, 305
events
app events, deferring, 314-315
dragend, 204
dragenter, 204
dragleave, 204
dragover, 204
dragstart, 204
iteminvoked, 200
for Ratings control, 125-127
selectionchanged, 202
selectionchanging event, 202
external templates
creating, 111-112
with Repeater control, 210-211

F

File API, 22
file data sources, creating, 270-276
files, SkyDrive

downloading from, 411-413

listing, 409-411

uploading, 413-415
filtering ListView control items, 242-244
FlipView

custom buttons, 221-222

displaying articles with, 215-218

How can we make this index more useful? Email us at indexes@samspublishing.com

454 FlipView

displaying page numbers with, 219-220
explained, 197

Flyout control, 169-171
SettingsFlyout, 190-192

folders (SkyDrive), listing, 409-411

format strings, assigning to DatePicker control,
128-130

formatting time (TimePicker control), 136
forms
fields, labeling, 157-158
HTML, capturing contents of, 96-98
input elements, 155-164
email addresses, entering, 160-161
files, selecting, 162-164
numbers, entering, 158-159
search terms, entering, 160-161
telephone numbers, entering, 160-161
URLs, entering, 160-161

values from a list of values, entering,
162

values from a range, entering, 159-160
progress indicator, displaying, 165-167
resetting, 154-155
rich text editor, creating, 164-165
validation attributes

custom validation, performing, 151-152

pattern attribute, 150-151

required attribute, 150

validation error style, customizing,
152-154

forward(), 347
functions, 49-51
init(), 20
xhr(), performing Ajax calls with, 69-74

G

games, Brain Eaters, 417-418
overview, 418-419
tiles, creating, 419-420
getBitmapAsync(), 367
getCount() method, implementing, 265
getDataAsync(formatld), 367
getHtmIFormatAsync(), 367
getRtfAsync(), 367
getSTorageltemsAsync(), 367
getTextAsync(), 367

getWebLinkasync(), 367

Grid App project template, 28

grid layout (ListView control), 229-230
grouping ListView control items, 245-247

H

handling navigation with WebView control,
142-144

hiding years and days from DatePicker control,
131-132

higher priority jobs, yielding to, 77-80
history, 347

hosting web pages with WebView control,
140-142

HTML page, creating, 17-18
HTML5, 22
Canvas, 22
data-*, 22
declarative data binding, 91-105
binding converters, 101-105
data context, 94
data-win-bind attribute, 92

HTML forms, capturing contents of,
96-98

observables, 94-96
root element, 94

File API, 22

forms
email addresses, entering, 160-161
fields, labeling, 157-158
files, selecting, 162-164
numbers, entering, 158-159
progress indicator, displaying, 165-167
resetting, 154-155
rich text editor, creating, 164-165
search terms, entering, 160-161
telephone numbers, entering, 160-161
URLs, entering, 160-161

values from a list of values, entering,
162

values from a range, entering, 159-160
Indexed Database API, 22
input elements, 155-164
templates
applying with query selector, 109-111
declarative templates, 108-109

ListView control 455

external templates, creating, 111-112 invokeApi(), 308
imperative templates, 105-108 invoking
validation attributes, 22 ltemContainer, 200-202
custom validation, performing, 151-152 ListView control items, 236-238
pattern attribute, 150-151 ltemContainer
required attribute, 150 combining with Repeater control, 214-215
validation error style, customizing, dragging and dropping, 204-208
152-154 explained, 197
Web Workers, 22 invoking, 200-202
WebGL, 22 selecting, 202-204
HtmlIControl, 333-336 simple example, 197-198
Hub App project template, 28-30 styling, 198-200
Hub control, 137-139 swipeBehavior property, 202
sections, navigating, 139 tabBehavior property, 202

iteminvoked event, 200

itemsFromIndex() method, implementing,
265-267

imperative templates, creating, 105-108 itemTemplate property, FlipView control, 218

indeterminate progress indicator, displaying,

165-166

IndexableContent, 381 .J'K

Indexed Database API, 22 JavaScript, 21-22

IndexedDB data sources, creating, 281-293 JavaScript file, creating, 1821

Indexer Helper, 382-383 jobs, prioritizing with Scheduler, 75-80

Indexer helper object, creating, 381-382 join() method, 63

Indexer query() method, 384 JQuery, 2426

indexes, creating, 284-286

init() function, 20 L

initializing Live Connect API connection, 391

input elements, 155-164 labeling form fields, 157-158
email addresses, entering, 160-161 launching Windows App Certification kit, 40-41
files, selecting, 162-164 layouts for ListView control
numbers, entering, 158-159 cell spanning layout, 231-236
search terms, entering, 160-161 grid layout, 229-230
telephone numbers, entering, 160-161 list layout, 231
URLs, entering, 160-161 light dismiss, 169
values from a list of values, entering, 162 list layout (ListView control), 231
values from a range, entering, 159-160 listeners

insert() function, 305 binding object properties to, 83-85
error handlers, 305 notifications, coalescing, 85-87

insert() method, 300 observables, 81-91

inserting database data, Mobile Services, creating, 82-85

299-300 registering, 83

installing listing SkyDrive files and folders, 409-411

Live SDK, 388-393 ListView control, 223, 349

Mobile Services for WinJS library, 298-299

How can we make this index more useful? Email us at indexes@samspublishing.com

456 ListView control

binding to a blog feed, 226-228
dragging and dropping, 256-262
filtering items, 242-244
grouping items, 245-247
invoking items, 236-238
layouts

cell spanning layout, 231-236

grid layout, 229-230

list layout, 231
reordering items, 256
selecting items, 238-241
sorting items, 241-242
templates, switching, 253-255

views, switching with Semantic Zoom,
248-253

WinJS.Binding.List data source, 224-226
Live Connect API, 387
apps, registering, 389-391
authentication, 394-401
account settings, creating, 396-401
logging in users, 394-396
Azure Mobile Services
configuring, 401
logging into, 404-406

mobile server scripts, updating, 402-404

permissions, setting, 402

connection, initializing, 391

scopes, specifying, 391-393

user information, retrieving, 406-408
Live SDK

installing, 388-393

references, adding, 388
Live Services, 387
location, 347
logging in users to Live Connect, 394-396
logging into Azure Mobile Services, 404-406
logging WinJS app events, 312
looking up a single database record, 301-302

M

make.js, 307
media queries, CSS media queries, 321-324
Menu control, 172-174

methods
any(), 63
chaining, 59
createObjectURL(), 20
done(), 59-60
encapsulating, 49-51
join(), 63
private methods, 49
processAll(), 219
public methods, 48
in QueryCollection class, 68-69
then(), 59-60
WinJS.Class.definge(), 51-52
WinJS.Class.derive(), 53-54
WinJS.Class.mix(), 54-56
WinJS.Namespace.define(), 46-48
WinJS.Namespace.defineWithParent(), 48
WinJS.Ul.processAll(), 20
WinJS.Utilities.children(), 67-68
WinJS.Utilities.id(), 66-67
WinJS.Utilities.query(), 64-66
WinJS.xhr(), 58

Metro design principles. See Microsoft design
style principles

Microsoft design style principles, 6-7

migrating from Windows 8 to Windows 8.1,
40-42

minimum app width, setting, 320-321
mixins, 54-56
Mobile Services, 295
application keys, retrieving, 297
configuring, 401
connecting to remote database tables, 299
creating, 295-297
database tables, creating, 297-298
debugging script errors, 308-309
deleting database data, 301
inserting database data, 299-300
installing for WinJS library, 298-299
performing
custom actions, 306-308
validation, 304-306
permissions, setting, 402
queries

looking up a single database record,
301-302

retrieving a set of database records,
302-304

scripts, updating, 402-404
updating database data, 300
MobileServiceClient invokeApi() method, 308
MobileServiceTable object, 302
modal dialogs, displaying, 192-194
modules, 48-51
multi-page apps, 340
navigating to another page, 345-346
Navigation API, 346-347
Navigation App
adding Page Controls, 343-345
creating, 340-341
default.html page, 341-342
Navigation state, 347-351
PageControlNavigator control, 347
My Notes app, 353
MyTasks app, 432-433
creating, 431-432
custom control, creating, 444-446
external services, connecting to, 435-437
optimistic inserts, 437-439
screen changes, adapting to, 440-443
setting up, 433-434
Text-to-Speech API, 446-448

N

namespaces, 46-48
WinJS.Namespace.define() method, 46-48

WinJS.Namespace.defineWithParent()
method, 48

nav bar, 9
NavBar control, 184-186
navigate(), 347
navigating
hub sections, 139
Navigation API, 347
to other pages in multi-page apps, 345-346

navigation, controlling with WebView control,
142-144

Navigation API, 346-347
Navigation App
adding Page Controls, 343-345

orientation 457

creating, 340-341

default.html page, 341-342
Navigation App project template, 27
Navigation state, multi-page apps, 347-351

nested templates with Repeater control,
211-213

notifications
bypassing, 87-88
coalescing, 85-87
numbers, entering in forms, 158-159

O

objects
observable collections, creating, 90-91
properties, binding to a listener, 83-85
objects stores
adding objects to, 283
determining number of items in, 283-284
observable collections, 90-91
observables, 81-91
and declarative data binding, 94-96
listeners
creating, 83-85
notifications, bypassing, 87-88
notifications, coalescing, 85-87
observable collections, 90-91
OData, 303-304

omitting years and days from DatePicker
control, 131-132

onShareSubmit() method, 365
optimistic inserts (MyTasks app), 437-439
options, setting for WinJS controls, 118-119
organizing code

classes, 51-56

modules, 48-51

namespaces, 46-48

WinJS.Namespace.define() method,
46-48

WinJS.Namespace.defineWithParent()
method, 48

orientation
media queries, 18
of Windows Store apps, 11-12

How can we make this index more useful? Email us at indexes@samspublishing.com

458 Page Controls

P

Page Controls, 333
adding to Navigation App, 343-345
creating, 336-340

page numbers, displaying with FlipView control,
219-220

PageControlNavigator, 333
PageControlNavigator control, 347
pages adding, SearchBox control, 377-378
passing app certification, 39-40
pattern attribute, 150-151
performing
custom actions (Mobile Services), 306-308
validation (Mobile Services), 304-306

permissions, revoking for Windows Store apps,
393

personal settings, creating, 189-192
popups, Flyout control, 169-171
price converter, creating, 104-105
prioritizing jobs with Scheduler, 75-80
private methods, 49
processAll() method, 219
progress indicator, displaying, 165-167
promises, 56-63

canceling, 62-63

chaining, 59

composing, 63

creating, 60-61

done() method, 59-60

then() method, 59-60

timeout promise, creating, 61-62

WinJS.xhr() method, 58
properties

binding to a listener, 83-85

declarative data binding, binding converters,
101-105

observables, 81-91
creating, 82-83

winControl property, 99-100

public methods, 48

publishing to the Windows Store, 36-40
passing app certification, 39-40
registering as Windows Developer, 36
submitting your app, 37-38

Q

queries (Mobile Services)

looking up a single database record,
301-302

retrieving a set of database records,
302-304

query selectors, 63-69
QueryCollection class, 68-69
templates, applying, 109-111
WinJS.Utilities.children() method, 67-68
WinJS.Utilities.id() method, 66-67
WinJS.Utilities.query() method, 64-66

QueryCollection class, 68-69

querying Windows Index, 383-384

R

Rating control, 124-127
declaring, 124-125
events, 125-127
ratings
customizing, 125
submitting, 125-127
references
adding to controls, 114-115
adding to Live SDK, 388
registering
apps with Live Connect, 389-391
listeners, 83
as Windows Developer, 36

remote database tables, connecting (Mobile
Services), 299

remove() method, implementing, 267-268

render loop (Brain Eaters game), creating,
427-429

reordering ListView items, 256
Repeater
explained, 197
external templates, 210-211
with ItemContainer, 214-215
nested templates, 211-213
simple example, 208-210
required attribute, 150
resetting forms, 154-155

resolution, 323
scaling apps to fit
defining viewports, 326-329
ViewBox control, 329-332
retargeting to Windows 8.1, 40-42
retrieving
Mobile Service application keys, 297
sets of database records, 302-304
user information, 406-408

WinJS controls from HTML documents,
119-120

revoking Windows Store app permissions, 393
rich text editor, creating, 164-165

root element, 94

running apps, 21

S

SaveNote(), 368
scaling apps to fit screen resolutions
defining viewports, 326-329
ViewBox control, 329-332
Scheduler, 75-80
scopes, specifying for Windows apps, 391-393

screen changes, adapting to (MyTasks app),
440-443

screen resolution, 323
of Windows Store apps, 11-12
screenshots (WebView), capturing, 145-146

script errors, debugging with Mobile Services,
308-309

search activation, Search charm, 372-373
Search charm, 368-369

declaring apps as search providers,
369-370

search activation, 372-373
search results pages, adding, 373-376
search suggestions, 370-372

search results, displaying (SearchBox control),
379

search results pages, adding, 373-376
search suggestions

Search charm, 370-372

SearchBox control, 378-379
search terms, entering in forms, 160-161

sharing 459

SearchBox control, 376-377
adding to pages, 377-378
search results, displaying, 379
search suggestions, 378-379
sections (hub), navigating, 139
security, user authentication, 394-401
account settings, creating, 396-401
logging in users to Live Connect, 394-396
selecting
ltemContainer, 202-204
ListView control items, 238-241
selectionchanged event, 202
selectionchanging event, 202
selectors, 63-69
QueryCollection class, 68-69
templates, applying, 109-111
WinJS.Utilities.children() method, 67-68
WinJS.Utilities.id() method, 66-67
WinJS.Utilities.query() method, 64-66
Semantic Zoom, 248-253
server insert.js script, 305
session states, storing with states, 318-320
sessionState/sessionState.js, 318-319
setHtmIFormat(), 359

setNotificationHandler() method, implementing,
269-270

sets of database records, retrieving with Mobile
Services, 302-304

setText, 359
setting breakpoints, 34-35
settings
About Page settings, creating, 187-189
personal settings, creating, 189-192
Settings charm, 186-187
Settings flyout, 190-192
Share charm, 355-356
Share Contract Target JavaScript file, 364-365
share pages, creating, 362-368
share sources, creating, 356-360
share targets
creating, 360-368
declaring apps as, 361-362
sharing, 354-356
share pages, creating, 362-368
share sources, creating, 356-360

How can we make this index more useful? Email us at indexes@samspublishing.com

460 sharing

share targets
creating, 360-368
declaring apps as, 361-362
Windows Store apps across devices, 12-13
SkyDrive
files
downloading, 411-413
listing, 409-411
uploading, 413-415
folders, listing, 409-411
sorting ListView control items, 241-242
sounds (Brain Eaters game), playing, 420-421
Split App project template, 29-30

SQL Azure database tables, creating new,
297-298

SQL TRUNCATE TABLE, 308

SSML (Speech Synthesis Markup Language),
448

state, 347
storing with session state, 318-320

state of ToggleSwitch control, determining,
123-124

storing state with session state, 318-320
style sheets, creating, 18
styling

ltemContainer, 198-200

ToolTip control, 121
submitting

apps to the Windows Store, 37-38

user ratings, 125-127
suspended apps, detecting, 316
swipeBehavior property (ItemContainer), 202
switching

ListView templates, 253-255

views with Semantic Zoom, 248-253
synchronous programming, 57

T

tabBehavior property (ItemContainer), 202
task list app
creating, 431-432
custom control, creating, 444-446
external services, connecting to, 435-437
optimistic inserts, 437-439
screen changes, adapting to, 440-443
setting up, 433-434
Text-to-Speech API, 446-448

telephone numbers, entering in forms, 160-161
templates, 105-112
applying with query selector, 109-111
declarative templates, creating, 108-109
external templates, creating, 111-112
imperative templates, creating, 105-108
ListView templates, switching, 253-255
Repeater templates
external templates, 210-211
nested templates, 211-213
Windows Store app project templates, 27-30
Grid App project template, 28
Hub App project template, 28-30
Navigation App project template, 27
Split App project template, 29-30
WinJS, 81
terminateApp(), 313
terminated apps, detecting, 316

testing application state with Visual Studio,
317-318

Text-to-Speech API, 446-448
then() method, 59-60
threads, prioritizing jobs with Scheduler, 75-80
tiles (Brain Eaters game), creating, 419-420
timeout promises, 61-62
TimePicker control, 133-136

current time, setting, 134-136

declaring, 133-134

time, formatting, 136

Timing Control for Script-Based Animation stan-
dard, 429

ToggleSwitch control, 122-124
declaring, 122
state of, determining, 123-124
ToolTip control, 120-121
contentElement property, 121
declaring, 120
styling, 121

U

update loop (Brain Eaters game), creating,
425-427

updating database data (Mobile Services), 300
uploading files to SkyDrive, 413-415
URLs, entering in forms, 160-161

user experience, Microsoft design style
principles, 6-7

user information, retrieving, 406-408
user ratings

clearing, 124-125

submitting, 125-127

\%

validation, performing with Mobile Services,
304-306

validation attributes, 22
custom validation, performing, 151-152
error style, customizing, 152-154
pattern attribute, 150-151
required attribute, 150
validation error style, customizing, 152-154

values from a range, entering in forms,
159-160

ViewBox control, scaling apps to fit different
resolutions, 329-332

viewports, defining, 326-329
views, FlipView
custom buttons, 221-222
displaying articles with, 215-218
displaying page numbers with, 219-220
explained, 197
Visual Studio
breakpoints, setting, 34-35
DOM Explorer, 35-36
JavaScript Console window, 33-34
projects
app capabilities, declaring, 15-17
apps, running, 21
creating, 14-15
HTML page, creating, 17-18
JavaScript file, creating, 18-21
JQuery, adding, 24-26
style sheet, creating, 18
testing application states, 317-318
Windows Store app project templates, 27-30
Grid App project template, 28
Hub App project template, 28-30
Navigation App project template, 27
Split App project template, 29-30
Windows Store apps, running, 31-33

Windows Store apps 461

W

W3C selector standard, 64
warnings, Flyout controls, 169-171
web pages
embedding in Windows Store app, 139-146
hosting with WebView control, 140-142
web service data sources, creating, 276-281
Web Workers, 22
WebGL, 22
websites, CommonJS, 57
WebView control, 139-146
events, 142
navigation, handling, 142-144
screenshots, capturing, 145-146
web pages
hosting, 140-142
winControl property, 99-100
window resize events, 324-325

windows, designing apps for different window
sizes, 320

CSS media queries, 321-324

setting minimum app width, 320-321

window resize events, 324-325
Windows 8, migrating to Windows 8.1, 40-42
Windows 8.1, migrating from Windows 8, 40-42
Windows App Certification kit, launching, 40-41

Windows Azure Management Portal, creating
Mobile Services, 295-297

Windows Content Indexer API, 381
Windows Developer, registering as, 36
Windows Index, 380
Indexer Helper, 382-383
Indexer helper object, creating, 381-382
querying, 383-384
Windows RT, 23
Windows Store apps, 5-13
app bar, 89
app capabilities, declaring, 15-17
charms, 9-11
closing, 13
common features of, 7-13
debugging in Visual Studio, 33-36
DOM Explorer, 35-36
JavaScript Console window, 33-34

How can we make this index more useful? Email us at indexes@samspublishing.com

462 Windows Store apps

elements of, 21-26
CSS3, 22
HTML5, 22
JavaScript, 21-22
Windows RT, 23
WinJS, 23-24
elements of Windows Store apps
JQuery, 24-26
Microsoft design style principles, 6-7
nav bar, 9
orientations, 11-12
running in Visual Studio, 31-33
scopes, specifying, 391-393
screen resolutions, 11-12
sharing across multiple devices, 12-13
Visual Studio project
creating, 14-15
web pages, embedding, 139-146
Windows Store, publishing to, 36-40
passing app certification, 39-40
submitting your app, 37-38
Windows Developer, registering as, 36
win-item class, 199
win-itembox class, 199
win-itemcontainer class, 199

WinJS (Windows Library for JavaScript),
23-24, 45

classes, 51-52

controls, 113-120
AppBar control, 176-184
creating declaratively, 115-117
creating imperatively, 117-118
DatePicker control, 127-133
and declarative data binding, 99-100
declaring, 113-114
Hub control, 137-139
ListView control, 223
Menu control, 172-174
NavBar control, 184-186
options, setting, 118-119
Rating control, 124-127
references, adding, 114-115

retrieving from HTML documents,
119-120

TimePicker control, 133-136
ToggleSwitch control, 122-124
ToolTip control, 120-121
WebView control, 139-146
modules, 48-51
namespaces, 46-48
promises, 56-63
canceling, 62-63
composing, 63
creating, 60-61
timeout promises, 61-62
query selectors, 63-69
QueryCollection class, 68-69
WinJS.Utilities.children() method, 67-68
WinJS.Utilities.id() method, 66-67
WinJS.Utilities.query() method, 64-66
Scheduler, 75-80
templates, 81

WinJS library, installing Mobile Services for,
298-299

WinJS.Application.errors, 312
WinJS.Application.settings, 312
WinJS.Application.unload, 311
WinJS.Binding.List object, 88-90
WinJS.Class.define() method, 51-52
WinJS.Class.derive() method, 53-54
WinJS.Class.mix() method, 54-56
WinJS.Namespace.define() method, 46-48

WinJS.Namespace.defineWithParent()
method, 48

WinJS.Ul.processAll() method, 20
WinJS.Utilities.children() method, 67-68
WinJS.Utilities.id() method, 66-67
WinJS.Utilities.query() method, 64-66
WinJS.xhr() method, 58, 69-74

xhr() function, performing Ajax calls with, 69-74
response types, specifying, 72-73
XmIHttpRequest object, 72-74

years, omitting from DatePicker control,
131-132

yielding to higher priority jobs, 77-80

	Table of Contents
	Introduction
	Updated for Windows 8.1
	Prerequisites for This Book
	Source Code
	1 Building Windows Store Apps
	What Is a Windows Store App?
	Microsoft Design Style Principles
	Common Features of Windows Store Apps

	Creating Your First Windows Store App
	Creating the Visual Studio Project
	Declaring App Capabilities
	Creating the HTML Page
	Creating the Style Sheet
	Creating the JavaScript File
	Running the App

	Elements of a Windows Store App
	JavaScript
	HTML5
	Cascading Style Sheets 3
	Windows Runtime
	Windows Library for JavaScript
	What About jQuery?

	Building Windows Store Apps with Visual Studio
	Windows Store App Project Templates
	Running a Windows Store App

	Debugging a Windows Store App
	Using the Visual Studio JavaScript Console Window
	Setting Breakpoints
	Using the DOM Explorer

	Publishing to the Windows Store
	Register as a Windows Developer
	Submitting Your App
	Passing App Certification

	Migrating from Windows 8 to Windows 8.1
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

