In Full Color
John Ray

code appear as
they do in Xcode 5.x

Covers 108 7, Xcode 5.,
SamsTeach Yourself iPhone, IPad, and More!

Additional files and

i0S7 W@
Application

Development

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f ¥ 8 @ ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337062
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337062
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337062
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337062
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337062/Free-Sample-Chapter

John Ray

SamsTeachYourself

10S 7 Application
Development

Sams Teach Yourself i0S 7 Application Development in 24 Hours

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-672-33706-2
ISBN-10: 0-672-33706-1

Library of Congress Control Number: 2013953997
Printed in the United States of America
First Printing January 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book or
from the use of programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand
Acquisitions Editor
Laura Norman

Development Editor

Keith Cline

Technical Editor
Rosanne Groves

Managing Editor
Kristy Hart
Project Editors

Katie Matejka
Elaine Wiley

Indexer
Brad Herriman

Proofreader
Paula Lowell

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction XV
HOUR 1 Preparing your System and iDevice for Development 1
2 Introduction to Xcode and the iOS Simulator 23
3 Discovering Objective-C: The Language of Apple Platforms 67
4 Inside Cocoa Touch 101
5 Exploring Interface Builder 131
6 Model-View-Controller Application Design 167
7 Working with Text, Keyboards, and Buttons 195
8 Handling Images, Animation, Sliders, and Steppers 229
9 Using Advanced Interface Objects and Views 257
10 Getting the User’s Attention 291
11 Implementing Multiple Scenes and Popovers 321
12 Making Choices with Toolbars and Pickers 373
13 Advanced Storyboards using Navigation and

Tab Bar Controllers 421

14 Navigating Information Using Table Views and
Split View Controllers 459
15 Reading and Writing Application Data 503
16 Building Responsive and Backward-Compatible User Interfaces 547
17 Using Advanced Touches and Gestures 593
18 Sensing Orientation and Motion 619
19 Working with Rich Media 647
20 Interacting with Other Applications 693
21 Implementing Location Services 727
22 Building Background-Ready Applications 757
23 Building Universal Applications 789
24 Application Tracing, Monitoring, and Debugging 809

Index 833

Table of Contents

Introduction

HOUR 1: Preparing Your System and iDevice for Development
Welcome to the iOS Platform
Becoming an iOS Developer
Creating and Installing a Development Provisioning Profile
Running Your First iOS App
Developer Technology Overview
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 2: Introduction to Xcode and the iOS Simulator
Using Xcode
Using the iOS Simulator
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 3: Discovering Objective-C: The Language of Apple Platforms
Object-Oriented Programming and Obijective-C
Exploring the Objective-C File Structure
Objective-C Programming Basics
Memory Management and Automatic Reference Counting
Further Exploration

Summary

XV

12
17
20
21
21
21
22
22

23
23
58
63
64
65
65
66

67
67
72
84
95
97
97

Contents

Q&A 98
Workshop 99
Activities 99
HOUR 4: Inside Cocoa Touch 101
What Is Cocoa Touch? 101
Exploring the iOS Technology Layers 103
Tracing the iOS Application Life Cycle 109
Cocoa Fundamentals 110
Exploring the iOS Frameworks with Xcode 120
Further Exploration 129
Summary 129
Q&A 129
Workshop 130
Activities 130
HOUR 5: Exploring Interface Builder 131
Understanding Interface Builder 131
Creating User Interfaces 138
Customizing the Interface Appearance 148
Connecting to Code 154
Further Exploration 164
Summary 165
Q&A 165
Workshop 166
Activities 166
HOUR 6: Model-View-Controller Application Design 167
Understanding the Model-View-Controller Design Pattern 167
How Xcode Implements MVC 169
Using the Single View Application Template 173
Further Exploration 191

Summary 192

vi Sams Teach Yourself iOS 7 Application Development in 24 Hours

Q&A
Workshop

Activities

HOUR 7: Working with Text, Keyboards, and Buttons
Basic User Input and Output
Using Text Fields, Text Views, and Buttons
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 8: Handling Images, Animation, Sliders, and Steppers
User Input and Output
Creating and Managing Image Animations, Sliders, and Steppers
Further Exploration
Summary
Q&A
Workshop

Activities

HOUR 9: Using Advanced Interface Objects and Views
User Input and Output (Continued)
Using Switches, Segmented Controls, and Web Views
Using Scrolling Views
Further Exploration
Summary
Q&A
Workshop

Activities

HOUR 10: Getting the User’s Attention
Alerting the User
Exploring User Alert Methods

Further Exploration

192
192
193

195
195
197
226
227
227
227
228

229
229
231
252
254
254
254
255

257
257
262
279
288
289
289
289
290

291
291
301
318

Contents vii

Summary 319
Q&A 319
Workshop 319
Activities 320
HOUR 11: Implementing Multiple Scenes and Popovers 321
Introducing Multiscene Storyboards 322
Understanding the iPad Popover 341
Using a Modal Segue 352
Using a Popover 364
Further Exploration 370
Summary 371
Q&A 371
Workshop 372
Activities 372
HOUR 12: Making Choices with Toolbars and Pickers 373
Understanding the Role of Toolbars 373
Exploring Pickers 377
Using the Date Picker 385
Using a Custom Picker 401
Further Exploration 417
Summary 417
Q&A 418
Workshop 418
Activities 419

HOUR 13: Advanced Storyboards Using Navigation and Tab Bar Controllers .= 421

Advanced View Controllers 421
Exploring Navigation Controllers 423
Understanding Tab Bar Controllers 429
Using a Navigation Controller 434
Using a Tab Bar Controller 445
Further Exploration 456

Summary 457

viii Sams Teach Yourself iOS 7 Application Development in 24 Hours

Q&A 457
Workshop 458
Activities 458

HOUR 14: Navigating Information Using Table Views and Split

View Controllers 459
Understanding Tables 459
Exploring the Split View Controller
(iPad Only) 468
A Simple Table View Application 471
Creating a Master-Detail Application 481
Further Exploration 499
Summary 500
Q&A 500
Workshop 501
Activities 501

HOUR 15: Reading and Writing Application Data 503
iOS Applications and Data Storage 503
Data Storage Approaches 506
Creating Implicit Preferences 514
Implementing System Settings 522
Implementing File System Storage 535
Further Exploration 543
Summary 543
Q&A 544
Workshop 544
Activities 545

HOUR 16: Building Responsive and Backward-Compatible User Interfaces 547

Responsive Interfaces 547
Using Auto Layout 552
Programmatically Defined Interfaces 575
Swapping Views on Rotation 583

Further Exploration 590

Summary
Q&A
Workshop
Activities

HOUR 17: Using Advanced Touches and Gestures

Multitouch Gesture Recognition
Adding Gesture Recognizers
Using Gesture Recognizers
Further Exploration

Summary

Q&A

Workshop

Activities

HOUR 18: Sensing Orientation and Motion
Understanding Motion Hardware
Accessing Orientation and Motion Data
Sensing Orientation
Detecting Acceleration, Tilt, and Rotation
Further Exploration
Summary
Q&A
Workshop
Activities

HOUR 19: Working with Rich Media
Exploring Rich Media
The Media Playground Application
Further Exploration
Summary
Q&A
Workshop
Activities

Contents

590
591
591
592

593
593
594
596
617
617
617
618
618

619
619
622
626
631
643
644
645
645
645

647
647
662
689
690
691
691
692

ix

Sams Teach Yourself iOS 7 Application Development in 24 Hours

HOUR 20: Interacting with Other iOS Services 693
Extending iOS Service Integration 693
Using the Address Book, Email, Social Networking, and Maps 708
Further Exploration 724
Summary 725
Q&A 725
Workshop 726
Activities 726

HOUR 21: Implementing Location Services 727
Understanding Core Location 727
Creating a Location-Aware Application 734
Using the Magnetic Compass 744
Further Exploration 754
Summary 755
Q&A 755
Workshop 756
Activities 756

HOUR 22: Building Background-Ready Applications 757
Understanding iOS Backgrounding 757
Disabling Backgrounding 763
Handling Background Suspension 764
Implementing Local Notifications 765
Using Task-Specific Background Processing 768
Completing a Long-Running Background Task 773
Performing a Background Fetch 780
Further Exploration 785
Summary 786
Q&A 786
Workshop 786

Activities 787

HOUR 23: Building Universal Applications

HOUR 24: Application Tracing, Monitoring, and Debugging

Index

Universal Application Development
Creating a Universal Application (Take 1)
Creating a Universal Application (Take 2)
Using Multiple Targets

Further Exploration

Summary

Q&A

Workshop

Activities

Instant Feedback with NSLog
Using the Xcode Debugger
Further Exploration
Summary

Q&A

Workshop

Activities

Contents

789
789
794
799
803
806
806
807
807
807

809
810
813
828
830
830
830
831

833

Xi

Dedication

This book is dedicated to being the best book that it can be. Give it a big hug.

About the Author

John Ray is currently serves as the Director of the Office of Research Information Systems
at The Ohio State University. He has written numerous books for Macmillan/Sams/Que,
including Using TCP/IP: Special Edition, Teach Yourself Dreamweaver MX in 21 Days, Mac OS

X Unleashed, My Mavericks MacBook, and Teach Yourself iOS 6 Development in 24 Hours. As a
Macintosh user since 1984, he strives to ensure that each project presents the Macintosh
with the equality and depth it deserves. Even technical titles such as Using TCP/IP contain
extensive information about the Macintosh and its applications and have garnered numer-
ous positive reviews for their straightforward approach and accessibility to beginner and
intermediate users.

You can visit his website at http://teachyourselfios.com or follow him on Twitter at
@johnemeryray or #iOSIn24.

http://teachyourselfios.com

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Mark Renfrow—
and my Tech Editor, Anne Groves, for getting me through this edition. The abject terror that
your team places within me drives me to finish. I hope someday to escape this small room
and again see the light of day. Between typing sessions, I catch raindrops on the top of my
MacBook and use them to quench my parched lips. My leather iPad case, half eaten, is my
sole source of sustenance. I know what will happen if I miss another deadline, but the tears
no longer flow, and the screams no longer come.

I hear them coming. I must go.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn't
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

When you pick up an iOS device and use it, you feel connected. Whether it be an iPad Air, an
iPhone, or an iPod, the interface acts as an extension to your fingers; it is smooth, comfortable,
and invites exploration. Other competing devices offer similar features, and even sport gadgets
such as styluses and trackpads, but they cannot match the user experience that is iOS.

The introduction of iOS 7 solidifies Apple’s commitment to user-focused design. The new oper-
ating system places content front-and-center, eliminating the glossy edges and shadows that
served as little more than a distraction. Now, depth and translucency help keep users connected
to their content and aware of the context in which they are accessing it. iOS has taken a giant
leap forward, and with it, the tools used for development.

When creating i0OS and the Xcode development tools, Apple considered everything from inter-
face to application performance and battery life. There is always the expectation that, no matter
what, the device will remain responsive and usable. As a developer, does this mean that there
are rules to follow? Absolutely. But, by following these rules, you can create applications that
are interactive works of art for your users to love—not software they will load and forget.

Through the App Store, Apple has created the ultimate digital distribution system for iOS appli-
cations. Programmers of any age or affiliation can submit their applications to the App Store
for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-feature
applications have been built for everything from pre-K education to retirement living. No matter
what the content, with a user base as large as the iPhone, iPod Touch, and iPad, an audience
exists.

Each year, Apple introduces new devices—bringing larger, faster, and higher-resolution capabili-
ties to the iOS family. With each new hardware refresh come new development opportunities
and new ways to explore the boundaries between software and art.

My hope is that this book brings iOS development to a new generation of developers. Teach
Yourself iOS 7 Development in 24 Hours provides a clear and natural progression of skills devel-
opment, from installing developer tools and registering your device with Apple, to submitting an
application to the App Store. It’s everything you need to get started in 24 one-hour lessons.

Xvi Introduction

Who Can Become an iOS Developer?

If you have an interest in learning, time to invest in exploring and practicing with Apple’s devel-
oper tools, and an Intel Macintosh computer running Mountain Lion, you have everything you
need to begin creating software for iOS.

Developing an app won’t happen overnight, but with dedication and practice, you can be writ-
ing your first applications in a matter of days. The more time you spend working with the Apple
developer tools, the more opportunities you'll discover for creating new and exciting projects.

You should approach iOS application development as creating software that you want to use,
not what you think others want. If you're solely interested in getting rich quick, you're likely to
be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of room—and
competition for top sales is fierce.) However, if you focus on building useful and unique apps,
you’re much more likely to find an appreciative audience.

Who Should Use This Book?

This book targets individuals who are new to development for iOS and have experience using
the Macintosh platform. No previous experience with Objective-C, Cocoaq, or the Apple developer
tools is required. Of course, if you do have development experience, some of the tools and tech-
niques may be easier to master, but the author does not assume that you've coded before.

That said, some things are expected of you, the reader. Specifically, you must be willing to invest
in the learning process. If you just read each hour’s lesson without working through the tutorials,
you will likely miss some fundamental concepts. In addition, you need to spend time reading

the Apple developer documentation and researching the topics presented in this book. A vast
amount of information on iOS development is available, but only limited space in this book.
Therefore, this book covers what you need to forge your own path forward.

What Is (and Isn’t) in This Book?

The material in this book specifically targets iOS release 7 and later on Xcode 5 and later.
Much of what you'll learn is common to all the iOS releases, but this book also covers several
important areas that have only come about in recent iOS releases, such as gesture recognizers,
embedded video playback with AirPlay, Core Image, social networking, multitasking, universal
(iPhone/iPad) applications, Auto Layout, and more!

Unfortunately, this is not a complete reference for the iOS application programming inter-
faces (APIs); some topics just require much more space than this book allows. Thankfully, the
Apple developer documentation is available directly within the free tools you install in Hour
1, “Preparing Your System and iDevice for Development.” In many hours, you'll find a section

What Is (and Isn’t) in This Book? xvii

titled “Further Exploration.” This identifies additional related topics of interest. Again, a willing-
ness to explore is an important quality in becoming a successful developer.

Each coding lesson is accompanied by project files that include everything you need to compile
and test an example or, preferably, follow along and build the application yourself. Be sure to
download the project files from this book’s website at http://teachyourselfios.com. If you have
issues with any projects, view the posts on this site to see whether a solution has been identified.

In addition to the support website, you can follow along on Twitter! Search for #i0SIn24 on
Twitter to receive official updates and tweets from other readers. Use the hashtag #iOSIn24 in
your tweets to join the conversation. To send me messages via Twitter, begin each tweet with @
johnemeryray.

http://teachyourselfios.com

This page intentionally left blank

This page intentionally left blank

HOUR 7

Working with Text,
Keyboards, and Buttons

What You’ll Learn in This Hour:

» How to use text fields

» Input and output in scrollable text views

» How to enable data detectors

» A way to spruce up the standard iOS buttons

In the preceding hour, you explored views and view controllers and created a simple application
that accepted user input and generated output when a button was pushed. This hour expands
on these basic building blocks. In this hour, we create an application that uses multiple differ-
ent input and output techniques. You learn how to implement and use editable text fields, text
views, and graphical buttons, and how to configure the onscreen keyboard.

This is quite a bit of material to cover in an hour, but the concepts are very similar, and you'll
quickly get the hang of these new elements.

Basic User Input and Output

iOS gives us many different ways of displaying information to a user and collecting feedback.
There are so many ways, in fact, that we’re going to be spending the next several hours working
through the tools that the iOS software development kit (§DK) provides for interacting with your
users, starting with the basics.

Buttons

One of the most common interactions you’ll have with your users is detecting and reacting

to the touch of a button (UIButton). Buttons, as you may recall, are elements of a view that
respond to an event that the user triggers in the interface, usually a Touch Up Inside event
to indicate that the user’s finger was on a button and then released it. Once an event is detected,
it can trigger an action (IBAction) within a corresponding view controller.

196 HOUR 7: Working with Text, Keyboards, and Buttons

Buttons are used for everything from providing preset answers to questions to triggering motions
within a game. Although the default iOS button style is minimalist, buttons can take on many
different forms through the use of images. Figure 7.1 shows an example of a fancy button with
gradients.

[Generate Story]

FIGURE 7.1
Buttons can be simple, fancy (like this one), or set to any arbitrary image.

Text Fields and Views

Another common input mechanism is a text field. Text fields (UITextField) give users space
to enter any information they want into a single line in the application; these are similar to
the form fields in a web form. When users enter data into a field, you can constrain their input
to numbers or text by using different iOS keyboards, something we do later this hour. You can
also enable editing of styles within the text, such as underlining and bold. Text fields, like but-
tons, can respond to events but are often implemented as passive interface elements, meaning
that their contents (provided through the text property) can be read at any time by the view
controller.

Similar to the text field is the text view (UITextView). The difference is a text view can present
a scrollable and editable block of text for the user to either read or modify. These should be used
in cases where more than a few words of input are required. Figure 7.2 shows examples of a text
field and text view.

Labels

The final interface feature that we're going to be using here and throughout this book is the
label (UILabel). Labels are used to display strings within a view by setting their text property.

The text within a label can be controlled via a wide range of label attributes, such as font and
text size, alignment, and color. As you'll see, labels are useful both for static text in a view and
for presenting dynamic output that you generate in your code.

Now that you have basic insight into the input and output tools we’ll be using in this hour, let’s
go ahead and get started with our project: a simple substitution-style story generator.

Using Text Fields, Text Views, and Buttons 197

A Simple Text Field

A Scrollable Text View. Lorem ipsum
dolor sit er elit lamet, consectetaur
cillium adipisicing pecu, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu

FIGURE 7.2
Text fields and text views provide a means for entering text using a device’s virtual keyboard.

Using Text Fields, Text Views, and Buttons

Although not everyone will agree with my sentiment, I enjoy entering text on my iPhone and
iPad. The virtual keyboard is responsive and simple to navigate. What'’s more, the input process
can be altered to constrain the user’s input to only numbers, only letters, or other variations.
(This varies depending on device.) You can have iOS automatically correct simple misspellings,
allow text styling, or capitalize letters—all without a line of code. This project reviews many
aspects of the text input process.

Implementation Overview

In this project, we create a Mad Libs-style story creator. Users enter a noun (place), verb, and
number through three text fields (UITextField). They may also enter or modify a template
that contains the outline of the story to be generated. Because the template can be several lines
long, we use a text view (UITextView) to present this information. A button press (UIButton)
triggers an action that generates the story and outputs the finished text in another text view,
demonstrated in Figure 7.3.

Although not directly part of the input or output process, we also investigate how to implement
the now-expected “touch the background to make the keyboard disappear” interface standard,
along with a few other important points. In other words, pay attention!

We'll name this tutorial project FieldButtonFun. You may certainly use something more creative
if you want.

198 Working with Text, Keyboards, and Buttons

Carrier 7:15 PM

Place: Wakeman
Verb:

Number:

Template:

The iOS developers descended upon
<place>. They vowed to <verb>
night and day, until all <cnumber>
Android users came to their senses.
<place> would never be the same

again.

Story:

The iOS developers descended upon
Wakeman. They vowed to snore
night and day, until all 3 Android
users came to their senses.
Wakeman would never be the same
again.

Generate Story

FIGURE 7.3
The tutorial app in this hour uses two types of text input objects.

Setting Up the Project

This project uses the same Single View Application template as the preceding hour. If it isn't
already running, launch Xcode, and then complete these steps:

1. Choose File, New, Project.
2. Select the iOS application project type.

3. Find and select the Single View Application option in the Template list, and then click
Next to continue.

4. Enter the project name, FieldButtonFun, be sure that your device is chosen, and then
click Next.

5. Choose your save location and click Create to set up the new project.

Using Text Fields, Text Views, and Buttons 199

As before, we focus on the view, which has been created in Main.storyboard, and the view con-
troller class ViewController.

Planning the Properties and Connections

This project contains a total of six input areas that must connect to our code via outlets. Three
text fields are used to collect the place, verb, and number values. We’ll access these through
private properties named thePlace, theVerb, and theNumber, respectively. The project also
requires two text views: one to hold the editable story template, theTemplate; and the other to
contain the output, theStory.

NOTE

Yes, we’ll use a text view for output as well as for input. Text views provide a built-in scrolling
behavior and can be set to read-only, making them convenient for both collecting and displaying
information.

Finally, a single button is used to trigger a method, createStory, which serves as an action
and creates the story text, unlike the preceding hour’s example.

TIP

If Ul elements are used only to trigger actions; they do not need outlets. If your application needs to
manipulate an object, however—such as setting its label, color, size, position, and so on—it needs
an outlet and corresponding instance variable/property defined.

Now that you understand the objects we’ll add and how we’ll refer to them, let’s turn our atten-
tion to building the user interface (UI) and creating our connections to code.

Preparing Button Templates with Slicing

In the preceding hour’s lesson, you created a button (UIButton) and connected it to the imple-
mentation of an action (IBAction) within a view controller. Nothing to it, right? Working with
buttons is relatively straightforward, but what you may have noticed is that, by default, the
buttons you create in the Interface Builder (IB) are, well, not very button-like. To create visually
appealing graphical buttons that don’t require a new image for each button, we can prepare a
button template using a technique called slicing.

The Xcode slicing tool is used to define areas of an image that can be resized when the image

is stretched. You can choose to create both vertical and horizontal slices to accommodate both
vertical and horizontal stretching. We can use this to create graphically rich buttons that take on
any size and look great.

200 HOUR 7: Working with Text, Keyboards, and Buttons

Adding the Images

Slices are added using a tool within the Xcode asset catalog. So, our first task is to add some
images.

Inside this hour’s Projects directory is an Images folder with two Apple-created button templates:
whiteButton.png and blueButton.png. Within the Xcode project navigator, click the Images.
xcassets assets catalog icon. Next, drag the Images folder from the OS X Finder into the left
column of the asset catalog in Xcode. Your display should resemble Figure 7.4.

8eoe [™ FieldButtonFun.xcodeproj — (5] Images.xcassets e
> | AF) [10 Device | Build FieldButtanFun: Succeeded | Today at 9:51 PM No Issues I = =2} | |HE=NN
m T Q A = > 8 ||« b [-Feldiuronfun [] FleidButtonFun) (5] Images.xcassets) (1] Images

vH FieldButtonFun _ Applcon
2 targets, i0S SDK 7.0

w [_|FieldButtonFun] Efdelition
(i} Appoeegicl 0| whiteButton
[m AppDelegate.m o)
Launchimage
[Bl Main.storyboard = - -
|h| ViewContraller.h
m] ViewController.m Universal
i —
» (| Supporting Files
» [_|FieldButtonFunTests whiteButton
» [|Frameworks

» (products O O
1x 2x

Universal

blueButton

(=7 Images.xcass

+ | ®@Aa@®)+ - (@®

FIGURE 7.4
To use custom buttons, drag the project images folder into the Images.xcassets folder in Xcode.

Creating Slices

Slicing may sound complicated, but it is easy to understand, and even easier to perform. When
creating a slice, you visually specify a horizontal or vertical (or both) stripe of pixels within an
image. This is the “slice,” and it will be repeated to fill in space if the image needs to grow. You'll
also (optionally) get to choose a portion (also a stripe of pixels) that is replaced by the slice when
the image resizes.

To create your slices, first make sure that you’ve opened the asset catalog by selecting the
Images.xcassets icon in the project navigator, and then follow these steps:

1. Expand the Images folder within the asset catalog.

2. Select one of the button images to slice; I'm starting with whiteButton.

Using Text Fields, Text Views, and Buttons 201

3. Click the Show Slicing button in the lower-right corner of the asset catalog content area, as
shown in Figure 7.5.

806 [% FieldButtonFun.xcodeproj — (5] Images.xcassets ._i
’ B | A @ iPhone Ret.. | Running FieldButtonFun on iPhone Retina (4-inch) Nousu;—s} =l [N BR=QN |
M T Q A S = = 8 |[#|<4 » | [H-FeldButonfun) [] FieldButtonFun [E5] Images.xcassets (1] Images) [0 whiteButton
_ FieldButtonFun i Applcan h h
B = whiteButton
2 targets, {0 SDK 7.0 v [trages
L Ao] Fle\dBun\:nFurl i 0 blueButton
% """g’:"‘:e' [whiteButton
ApoDeledate m |_| Launchimage -
Main.storyboard 1% 2x

[h| ViewContralier.n
Universal

» | FieldButtonFunTests
» [| Frameworks

» (] Products
s e e— show slicing =—— Show Slicing
+ @8 @ @ ® u o & & |7 |- Feldsuttonfun
FIGURE 7.5

Use the Show Slicing button to start the slicing process.

4. The screen refreshes to show an enlarged copy of the graphic (both non-Retina and Retina,
if available). Click the Start Slicing button on the non-Retina image to begin.

5. Xcode prompts for the type of slicing. Use the buttons, as demonstrated in Figure 7.6, to
choose between Horizontal, Horizontal & Vertical, or just Vertical slicing. For our button,
we want both horizontal and vertical.

6. The slicing editor displays three dragging lines in the horizontal/vertical directions. The
horizontal lines determine the vertical slicing, and the vertical lines determine the horizon-
tal slicing.

The first and second lines (going left to right/top to bottom) determine the slice that can
grow. The second and third lines define the area that will be replaced by copies of the slic-
ing when the image resizes, as shown in Figure 7.7. The second and third lines can be posi-
tioned right next to one another if you simply want the stripe to stretch without replacing
any other parts of the image.

202 HOUR 7: Working with Text, Keyboards, and Buttons

Horizontal Slicing
Horizontal and Vertical Slicing

Vertical Slicing

FIGURE 7.6
Choose the type of slicing you want to perform.

Horizontal Slice

Horizontal replacement area

Vertical Slice

Vertical replacement area

FIGURE 7.7
Use the lines to choose your slices.

10.

Using Text Fields, Text Views, and Buttons 203

For the button template, we want the pretty, curvy corners to always stay the same; so they
aren’t resized. The portion we want to grow is a stripe about 12 pixels in (horizontally and
vertically), and can just be a single pixel wide. Drag the first vertical line about

12 pixels in.

Drag the second vertical line so that creates a 1-pixel-wide stripe (that is, about

13 pixels in).

Drag the third vertical line so that it is right next to the second line; there’s no reason to
replace any portion of the image with the repeated stripe. You've just completed the hori-
zontal slice.

Repeat steps 7-9 for the horizontal lines, creating the vertical slice. Your finished slicing
layout should look almost identical to Figure 7.8.

FIGURE 7.8
The finished slicing.

TIP

To fine-tune your slices, open the Attributes Inspector while slicing. This shows the position of the
slice in pixels and enables you to manually enter X and Y values.

204 HOUR 7: Working with Text, Keyboards, and Buttons

After you've finished the slicing for the non-Retina white button, do the same for the Retina ver-
sion. You'll need to position your slices about 24 pixels in (versus 12 on the non-Retina). Next,
repeat the process for the blue button assets.

When you finish, you've created images that can be resized to create attractive buttons regard-
less of how large the button needs to be. When it comes time to use the images in a few min-
utes, you'll treat them like any other image; the slicing is applied automatically when they are
resized.

TIP

Slicing works great for buttons, but can be used for any image that you may want to resize. Just set
the slicing for the graphics and when you stretch them, they’ll resize using your slicing preferences.

Designing the Interface

In the preceding hour, you learned that the Main.storyboard is loaded when the application
launches and that it instantiates the default view controller, which subsequently loads its view
from the storyboard file. Locate MainStoryboard.storyboard in the project’s code folder, and click
to select it and open the IB editor.

When IB has started, be sure that the document outline area is visible (Editor, Show Document
Outline), hide the navigation area if you need room, and open the Object Library (View, Utilities,
Show Object Library).

Adding Text Fields

Begin creating the Ul by adding three text fields to the top of the view. To add a field, locate the
Text Field object (UITextField) in the library and drag it into the view. Repeat this two more
times for the other two fields.

Stack the fields on top of one another, leaving enough room so that the user can easily tap a
field without hitting all of them. To help the user differentiate between the three fields, add
labels to the view. Click and drag the label (UILabel) object from the library into the view.
Align three labels directly across from the three fields. Double-click the label within the view
to set its text. I labeled my fields Place, Verb, and Number, from top to bottom, as shown in
Figure 7.9.

Using Text Fields, Text Views, and Buttons 205

8006 [FieldButtonFun.xcodeproj — [Main.storyboard ol
> | 7AF) W iOsDevice | Build FieldButtonfun: Succeeded | Today at 9:06 PM No Issues J = == =l |
wia > B (& un) [Main » [Main (Base) No Selection
w [El View Controller Scene
v (B View Controller - -
[Top Layout Guide -
|/ Battom Layout Guide
v View Place: |
[Label - Place: |
|| Label - Verb: |
| Label - Number. Verb: |
|| Round Style Text Field
|| Round Style Text Field Number:
|| Round Style Text Field |
@ First Responder
B exic |
N
— .
|
|
|
|
|
®] (E]E+mE|(al=a]

Add text fields and labels to differentiate between them.

Editing Text Field Attributes

The fields that you've created are technically fine as is, but you can adjust their appearance
and behavior to create a better user experience. To view the field attributes, click a field, and
then press Option-Command-4 (View, Utilities, Show Attributes Inspector) to open the Attributes
Inspector (see Figure 7.10).

For example, you can use the Placeholder field to enter text that appears in the background of
the field until the user begins editing. This can be a helpful tip or an additional explanation of
what the user should be entering.

You may also choose to activate the Clear button. The Clear button is a small X icon added to a
field that the user can touch to quickly erase the contents. To add the Clear button, just choose
one of the visibility options from the Clear button pop-up menu; the functionality is added for
free to your application. Note that you may also choose to automatically clear the field when
the user taps it to start editing. Just check the Clear When Editing Begins check box.

206 Working with Text, Keyboards, and Buttons

[™ FieldButtonFun.xcodeproj — [E| Main.storyboard e
Build FieldButtonFun: Succeeded | 7/25/13 at 1012 P No lssue EEF., | =1
) E’ 3 = BY -] . View » | Round Style Text Field - The name of a place D B g ¥ +« ©
Text Field
Text | Plain &)
- [Text —1— Default Content
z Color | NSNS | Default
Place: o The narr ra place 0 ey
Font | System 14.0 ID &
Ali = = = |
Verb: [
Placeholder | The name of a place —— Placeholder Content
Number: Background | Backaround Image X

Disabled | Disabled Background Image v

Border Style | {1 _ = D]

Clear Buttan | Appears while editing :_+— Clear Button
|| Clear when editing begins

Min Font Size 17|}
™ Adjust to Fit

Capitalization | None

Correction | Default

J
)
Keyboard | Default &l
J
J

Appearance | Default

Return Key | Done
M Auto-enable Return Key
"] Secure

FIGURE 7.10
Editing a field’s attributes can help create a better Ul.

Add these features to the three fields within the view. Figure 7.11 shows how they appear in the
application.

Carrier = 7:17 PM

Place: Wakeman

Verb:

Number:

FIGURE 7.11
Placeholder text can provide helpful cues to the user, and the Clear button makes it simple to remove a value
from a field.

Using Text Fields, Text Views, and Buttons 207

TIP

Placeholder text also helps identify which field is which within the IB editor area. It can make creat-
ing your connections much easier down the road.

In addition to these changes, attributes can adjust the text alignment, font and size, and other
visual options. Part of the fun of working in the IB editor is that you can explore the tools and
make tweaks (and undo them) without having to edit your code.

Attributed Versus Plain Text

In many of controls that allow the display of text, you'll find the Text drop-down menu that can
toggle between Plain or Attributed options. In general, you want to leave this on Plain, but by
setting it to Attributed, you can gain much finer control over the layout of the text, as shown in
Figure 7.12.

Using this feature, you can provide more richly styled text output and even enable user editing
of the text style by simply checking the Allows Editing Attributes check box.

ann [xcodepro) — & Main.s]
: AR Bl FieldButranfun: Succeeded | 7/25/11 at 1012 PM =0l 2
=4 » | [Breesumearun) 0 B B = © 1 L] oew | [Round Sryie Texs Feld - The rame of place | DEE »& 0
Attributed/Plain
- [Enable Editing Attributes
Place; n?m name of a uim‘p |
o
" 1 "— Attributed Opti
—— tckground [e — ttributed Options
Datied [0 Soacing
et | ™in n‘eaﬁ I MH[:;: 2
Lol (e Emery Stiezvon [
= Soacing efore i
M orasze || Emeey Selecnon 3]
P = 5 Spacing .Mm
-1 Capaiznien | N Indet Emay |3 h:'“-:?'
= Head I
Comectin L} emany 1] | emety i
rastourd [8 Firsz Line b
Appastarst B pymeration Empey Salecnon [
Retum Gy | 8 Factar 5
& e oy Seicion)
I | Tightening Factor
Contrad | teaseriet Emery Salectinn |3)
Aigemment [y ey
O g O [m)
Vertical
Comem | Selected Enatied

Wiew

- won [SedeTamii 3]
- —

imeraction (& User interaction Enabled
| Matipie Touth

IE |1|H‘-' i A|a = a

FIGURE 7.12
Attributed text fields and other Ul elements offer more detailed control over presentation.

208 HOUR 7: Working with Text, Keyboards, and Buttons

Customizing the Keyboard Display with Text Input Traits Probably the most important
attributes that you can set for an input field are the “text input traits,” or simply, how the key-
board is going to be shown onscreen. Seven different traits appear at the bottom of the text field
attributes section:

» Capitalize: Controls whether iOS automatically capitalizes words, sentences, or all the
characters entered into a field.

» Correction: If explicitly set to on or off, the input field corrects (on) or ignores (off) com-
mon spelling errors. If left to the defaults, it inherits the behavior of the iOS settings.

» Keyboard: Sets a predefined keyboard for providing input. By default, the input keyboard
lets you type letters, numbers, and symbols. A total of 10 different keyboards are available,
ranging from Number Pad to Web Search. If the option Number Pad is chosen, for exam-
ple, only numbers can be entered. Similarly, the Email Address option constrains the input
to strings that look like email addresses.

» Appearance: Changes the appearance of the keyboard to look more like an alert view
(which you learn about in a later hour).

» Return Key: If the keyboard has a Return key, it is set to this label. Values include Done,
Search, Next, Go, and so on.

» Auto-Enable Return Key: Disables the Return key on the keyboard unless the user has
entered at least a single character of input into the field.

» Secure: Treats the field as a password, hiding each character as it is typed.

Of the three fields that we’ve added to the view, the Number field can definitely benefit from set-
ting an input trait. With the Attributes Inspector still open, select the Number field in the view,

and then choose the Number Pad option from the Keyboard pop-up menu (see Figure 7.13).

You may also want to alter the capitalization and correction options on the other two fields and
set the Return key to Done. Again, all this functionality is gained “for free.” So, you can return
to edit the interface and experiment all you want later on. For now, let’s call these fields “done”
and move on to the text areas.

Copy and Paste

Your text entry areas automatically gain copy and paste without your having to add anything
to your code. For advanced applications, you can override the protocol methods defined in
UIResponderStandardEditActions to customize the copy, paste, and selection process.

Using Text Fields, Text Views, and Buttons 209

[™ FieldButtonFun.xcodeproj — [E] Main.storyboard o
id FieldButtonFun: Succeeded | 7/25/13 at 10:12 PM No Issues ' El E .|. EL.\E_ D
b Wy @ vy View | | Round Style Text Field - A small number 0D B B w 0%‘
Text Field

T G T — |

] [fee]

Color | W Default ¢

P : Font[Sysem 180

Al = | =

Verb:

Placeholder ’W‘

Nurmber: rjA small number D Background WE|

—— Disabled | Disabled Background Imagq:l
Border Style | £ O [(=jr="

Clear Button | Appears while editing :

[_] Clear when editing begins

Min Fant Size 17]

:D | Default
Capitalizatif ASCIl Capable l

Numbers and Punctuation
Correctit oy

oo TR — Keyboard Type
Forrre | Phone Pad)

| Name Phone Pad
Return K E-mail Address l

(@D

Decimal Pad
Twitter
-CW‘ Web Search 1
A.I'lgnmen{E- — =]
Horizontal
B = |
Vertical
Content [_| Selected ™ Enabled
("] Hightighted

FIGURE 7.13
Choosing a keyboard type will help constrain a user’s input.

Adding Text Views

Now that you know the ins and outs of text fields, let's move on to the two text views
(UITextView) present in this project. Text views, for the most part, can be used just like text
fields. You can access their contents the same way, and they support many of the same attri-
butes as text fields, including text input traits.

To add a text view, find the Text View object (UITextView) and drag it into the view. Doing so
adds a block to the view, complete with Greeked text (Lorem ipsum...) that represents the input
area. Using the resizing handles on the sizes of the block, you can shrink or expand the object
to best fit the view. Because this project calls for two text views, drag two into the view and size
them to fit underneath the existing three text fields.

As with the text fields, the views themselves don’t convey much information about their purpose
to the user. To clarify their use, add two text labels above each of the views: Template for the
first, and Story for the second. Your view should now resemble Figure 7.14.

210

HOUR 7: Working with Text, Keyboards, and Buttons

Fi j — [Bi Main.storyboard "
Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues EE¥E | OO
LitonFun) [B] Main.storyboard » [Main.storyboard (Base) » No Selection B ¥ & O

]

No Selection
Place:
Verb:

Ol & =
Number:

\L——! Collection Reusable View -
Defines the attributes and behaviar of

Template: reusable views in a collection view,...

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Story:

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laberis nisi ut aliquip ex ea

Image View - Displays a single
image, or an animation described by
an array of images.

‘m

Text View - Displays multiple lines
af editable text and sends an action
message to a target object when...

Web View - Displays embedded web
content and enables cantent
navigation.

Ny

‘ e

‘ I Scroll View - Provides a mechanism

Map View - Displays maps and
provides an embeddahle interface to
navigate map content.

to display content that Is larger than
| the size of the application's window.

Date Picker - Displays multiple
== rotating wheels to allow users ta
select dates and times.

Picker View - Displays a spinning-
whee! or slot-machine motif of
values,

@ bu &

Ad BannerView - The
ADBannerview class provides a view
that displays banner advertisements...

EREEIIEEE

Q]

FIGURE 7.14
Add labels to clarify your text views.

CAUTION

Size Doesn’t Matter (For Now)

The size of your iPhone design doesn’t matter at this stage. In Hour 16, “Building Responsive and
Backward-Compatible User Interfaces,” you learn how a single layout can work on the multiple
screen sizes as well as multiple versions of i0S. Right now, be aware that when you position con-
trols, they probably won’t adjust correctly to work on other devices or earlier versions of iOS. In
addition, your layout might not exactly match my screenshots. That’s okay. | don’t want you to get
caught up in the details of Ul design while you're still learning to program!

Editing Text View Attributes Text view attributes provide many of the same visual controls
as text fields, including plain and attributed modes. Select a view, and then open the Attributes
Inspector (Option-Command-4) to see the available options, as shown in Figure 7.15.

Using Text Fields, Text Views, and Buttons 211

[™ FieldButtonFun.xcodeproj — (5| Main.storyboard o
Build FieldButtonFun: Succeeded | 7/25/13 at 10:12 PM No Issues l = "} [| =N |
) E Main...) E_Maln,.. ,_\ﬁ:w,,._« @ view.. » [view) | Text View —— ﬁ IE_ = -@. - g =
Text View
Text[Pain =
C_1 Lorem ipsum dalor sit er elit

lamet, consectetaur dillium
adipisicing pecu, sed do
elusmod tempor incididunt ut
labore et dolore magna
aliqua. Ut enim ad minim
Verb: veniam, guis nostrud
exercitation ullamea laboris
nisi ut aliquip ex ea
Number: commodo consequat. Duis
aute irure dalor in
reprehenderit in voluptate

Place:

Template: velit esse cillum dolore eu
o o o fugiat nulla pariatur.
Lorem ipsum dolor sit er elit lamet, Excepteur sint occaecat
cupidatat non proident, sunt
consectetaur cillium adipisicing pecu, in culpa qui officia deserunt
Sed do elusmod tempor incididunt ut mollit anim id est labarum.
Nam liber te conscient to
labore et dolore magna aliqua. Ut enim piE e
ad minim veniam, quis nostrud adiogue civiuda.
(@xercitation ullamcgaboris nisi ut o Color [MENM | Default 3|
Fant [System 14.0 @
Story: Alignment | = | = = |
Lorem ipsum dolor sit er elit lamet, Behavior @ Editable @ Selectable
consectetaur clllium adipisicing pecu, Detection [] Links [] Addresses
sed do eiusmod tempor incididunt ut (] Phone Numbers
labore et dolore magna aliqua. Ut enim (] Events
ad minim veniam, quis nostrud G |
exercitation ullamco laboris nisi ut Correction | Default

Keyboard | Default

Return Key | Default
(] Auto-enable Return Key

() Secure

@ 3 = Scroll View

View

FIGURE 7.15
Edit the attributes of each text view to prepare them for input and output.

To start, we need to update the default content to remove the initial Greeked text and provide
our own input. For the top field, which will act as the template, select the content within the Text
attribute of the Attributes Inspector (this is directly below the Plain/Attributed drop-down menu),
and then clear it. Enter the following text, which will be available within the application as the
default:

The i0S developers descended upon <place>. They vowed to <verb> night and day,
until all <number> Android users came to their senses. <place> would never be the
same again.

When we implement the logic behind this interface, the placeholders (<place>, <verbs,
<number>) are replaced with the user’s input.

Next, select the “story” text view, and then again use the Attributes Inspector to clear the con-
tents entirely. Because the contents of this text view are generated automatically, we can leave it
empty. This view is a read-only view, as well, so uncheck the Editable attribute.

212 HOUR 7: Working with Text, Keyboards, and Buttons

In this example, to help provide some additional contrast between these two areas, I set the
background color of the template to a light red and the story to a light green. To do this in
your copy, simply select the text view to stylize, and then click the Attributes Inspector’s View
Background attribute to open a color chooser. Figure 7.16 shows our final text views.

[FieldButtonFun.xcodeproj — [E Main.storyboard

Place:

Verb: rk

Number:

Template:
The iOS developers descended upon
<place>. They vowed to <verb>
night and day, until all <snumbers>
‘Android users came to their senses.

;JL> <place> would never be the same
again.

Story:

[B)(el+eiE](a =]

Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues | 7l i
) [B Mainst..) [B Mainst..) B ViewC..) @ View C... » || View) || Text View n E % & O
Text View
Tee(Pin %)
Text

fone[spem 10 @)
Agmen L= = | = |
Behavior () Editable Selectable

Detection (] Links () Addresses
(] Phone Numbers.
(] Events

C: [Sentences
Correction [Default
Keyboard | Default

Appearance [Default

Return Key [Default
(] Auto-enable Return Key
() secure

an[|an |0

s

Seroll View

View

Made [ScaleToFill %]
w0l

Interaction @ User interaction Enabled

& Multiple Touch

P —
Background [——] | 1|

Drawing M Opague (] Hidden

(¥ Clears Graphics Context

™ Clip Subviews
& Autoresize Subviews.

R l—
— | —

Width Height

0Ol @ =

FIGURE 7.16

When completed, the text views should differ in color, editability, and content.

Using Data Detectors

Data detectors automatically analyze the content within onscreen controls and provide helpful links
based on what they find. Phone numbers, for example, can be touched to dial the phone; detected
web addresses can be set to launch Safari when tapped by the user. All of this occurs without your
application having to do a thing. No need to parse out strings that look like URLs or phone numbers.

In fact, all you need to do is click a button.

Using Text Fields, Text Views, and Buttons 213

To enable data detectors on a text view, select the view and return to the Attributes Inspector
(Command-1). Within the Text View Attributes area, click the check boxes under Detection: Phone
Numbers to identify any sequence of numbers that looks like a phone number, Addresses for mail-
ing addresses, Events for text that references a day/time, and Links to provide a clickable link for
web and email addresses.

CAUTION

Practice Moderation!

Data detectors are a great convenience for users, but can be overused. If you enable data detec-
tors in your projects, be sure they make sense. For example, if you are calculating numbers and
outputting them to the user, chances are you don’t want the digits to be recognized as telephone
numbers.

Setting Scrolling Options When editing the text view attributes, you'll notice that a range of
options exist that are specifically related to its ability to scroll, as shown in Figure 7.17.

Using these features, you can set the color of the scroll indicator (black or white), choose whether
both horizontal and vertical scrolling are enabled, and even choose whether the scrolling area
should have the rubber band “bounce” effect when it reaches the ends of the scrollable content.

Adding Styled Buttons

We need a single button in this project, so drag an instance of a button (UIButton) from the
Objects Library to the bottom of the view. Title the button Generate Story. Figure 7.18 shows the
final view and document outline, with a default button.

Although you're certainly welcome to use the standard buttons, our goal is do to something a bit
more “flashy.” Before we get to the details, let’s see what we can configure using the Xcode but-
ton attributes.

214 HOUR 7: Working with Text, Keyboards, and Buttons
j — [B Main.storyboard "l
J Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues = E 7 =R P
| > B Mainst.. » B Mainst..) E\ﬁewc‘,. » D View C... » || View) || Text View DEBRB W & ©
Text View
Scroll View
Style | Default *:
— Seroll Indicators (@ Shows Horizantal Indicator
@ shows Vertical Indicator
Place: r Scrolling @ Scrolling Enabled
(] Paging Enabled
(] Direction Lock Enabled
Verb:
Bounce (¥ Bounces
[C] Bounce Horizontally
Number: bl (] Bounce Vertically
P o —
Template: Min Max
Touch @ Bounces Zoom
Tl'\;za ios d%!]alnpars dez:landt:: upon @ Delays Content Touches
<place>. They vowed to <verb>
SIaEt ot dity, et el S @ Cancellable Content Touches.
‘Android users came to their senses. Keyboard | Do not dismiss i
ﬁj> <place> would never be the same
again. View
Story:

(BB m] (] = a] Dl o =

FIGURE 7.17
Scrolling regions have a number of attributes that can change their behavior.

Editing Button Attributes To edit a button’s appearance, your first stop is, once again, the

Attributes Inspector (Option-Command-4). Using the Attributes Inspector, you can dramatically

change the appearance of the button. Use the Type drop-down menu, shown in Figure 7.19, to
choose common button types:

»

>

System: The default iOS 7 button style.
Detail Disclosure: An arrow button used to indicate additional information is available.

Info Light: An i icon, typically used to display additional information about an applica-
tion or item. The light version is intended for dark backgrounds.

Info Dark: The dark (light background) version of the Info Light button.

Add Contact: A + button, often used to indicate the addition of a contact to the address
book.

Custom: A button that has no default appearance. Usually used with button images.

Using Text Fields, Text Views, and Buttons 215

en0o FieldButtonFun.xcodeproj — [B Main.storyboard "
P [| 7l iPhone Retina (4... I Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues = O =
wla > B) @) [B Mai » B Main.staryb » [B View Controlle...) () View Controller) || View) |_| Button - Generate Story
v [E View Controller Scene
v (@ View Controller
) Top Layout Guide
[Cl] Battom Layout Guide =
v _|View
[Label - Place: Place:
|| Label - Verb:
|_| Label - Number:
[Round Style Text Field - The name of a place Verb:
|| Round Style Text Field - A verb
|| Round Style Text Field — A small number Number:
|| Label - Template:
L] Label = Stary: Template:
2] Text View
/TRt e The iOS developers descended upon
|| Button - Generate Stary <place>. They vowed to <verb>
@ First Respander night and day, until all <number>
B e Android users came to their senses.
:D <place> would never be the same
again.
Story:
o o o
o Generate Story o
a a a
®@ v &
& 1 (A (ET=ls[E][a=]a]

The default button style is little more than a label.

In addition to choosing a button type, you can make the button change depending on the cur-
rent state of user interaction, a concept known as changing state. For instance, when a button

is displayed before being touched, it is considered to be in its default state. When a user touches
a button, it changes to show that it has been touched; this is the highlighted state. Use the State
Config menu to select the button state you want to set up, and then use the various button attri-
butes (images, colors, fonts, and so on) that should be applied in that state.

Other options include the ability to create shadowed text (Shadow Offset), show a tinted color
when the button is highlighted, or display a “glow” around a user’s finger when he or she
touches a button (Shows Touch on Highlight).

Setting Custom Button Images Even with all the settings available to configure your but-
tons, to create truly custom controls, you need to make custom images, including versions for
the highlighted on state and the default off state. These can be any shape or size, but the PNG
format is recommended because of its compression and transparency features.

216 HOUR 7: Working with Text, Keyboards, and Buttons

™ FieldButtonFun.xcodeproj — [B| Main.staryboard ol
[Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues =l E J E ED
o) B Mal..) B Mai..) B Vie...) @ Vie... |_| View) || Button - Generate Story DEE ® ¢ O
Eutton Custom
Ty,
= | Detail Disclosure E
State (ur\ll Infa Light |
Place: Tit Info Dark a
| Add Contact "l
Verb: Fant | System Bald 15.0 @)
Text Color | EEEEN | Default +
Number: Shadaw Color | EESSI | Default =
Image | Default Image by
Template‘ Background yaiujzgkground lmagg:l
The IOS developers descended upon shadowoffse [0.0](J 0.0](]
<place>. They vowed to <verb> e Height
night and day, until all <number> [Reverses On Highlight
Android users came to their senses. Drawing [_] Shows Touch On Highlight
4|> <place> would never be the same ™ Highlighted Adjusts Image
again. g Disabled Adjusts Image
Line Break | Truncate Middle |
Story: Edge | Content 3
Inset 0 .@ 0 .@
~ Top Bomom
_______ i) 6 I 6
Left Right
Contral
View
o o o
o Generate Story o
o o o
FIGURE 7.19

The Attributes Inspector gives several options for common button types and even a custom option.

After you've added these to the project through Xcode, you can select the image from the Image
or Background drop-down menus in the Attributes Inspector. Using the Image menu sets an
image that appears inside the button alongside the button title. This option enables you to deco-
rate a button with an icon.

Using the Background menu sets an image that is stretched to fill the entire background of the
button. The option lets you create a custom image as the entire button, but you must size your
button exactly to match the image (or define slices for the image using the Xcode asset catalog).
Do you get where we're heading with this?

Assuming you followed the steps for defining button templates earlier, you should already have
images that can resize to create “pretty” buttons. To create the fancy button for our project,
select the UIButton you've added to the layout, make sure that the Attributes Inspector is open
(Option+Command+4), and then complete these steps:

Using Text Fields, Text Views, and Buttons 217

1. Set the button type to Custom. You can try using the default system type, but it applies its
own highlighting effect that (in my opinion) looks “off” when applied to images.

Set the State Config drop-down to Default.
Use the Text Color drop-down to choose Black Color.

Use the Background drop-down to pick the whiteButton image.

@ & w BN

Your layout should immediately update to show the fancy button. Figure 7.20 shows the
button appearance and settings. Be sure to try resizing the button so you can see how the
slicing comes into play.

[FieldButtonFun.xcodeproj — [Bl Main.storyboard %
Build FieldButtonFun: Succeeded | Today at 7:14 PM No Issues = z I | [F=Am |

& Mal...) [E Mai..) B vie...) @ Vie..) || View) || Button - Generate Stary nDBEE Wws O

=3 Type (LCustoM—"
State Config | Default &

Place: far Tile (Pain &
Verb: font [System Bold 15,0 (1J]2)
Text Color [WENM | Black Color %
Number: L Shadow Color | BHEE | Default 3
image [Defaultimage v

Template: [whiteButon v

The iOS developers descended upon Shadow Dffsat 0.0][7)] 0.0(3)
<places. They vowed to <verb> Width Height
night and day, until all <number> () Reverses On Highlight
‘Android users came to their senses. Drawing [_] Shows Touch On Highlight
:D <place> would never be the same # Highlighted Adjusts Image
again. Disabled Adjusts Image

Line Break [Truncate Middle +

Story: Edge | Content |

met o[o3
Top Bottom

‘ o) olt)
Right

Left

Control
View

(B[l E](al=a] L TR

FIGURE 7.20
The “pretty” button appears, thanks to your earlier slicing.

6. Repeat steps 3-5, this time with the State Config set to Highlighted, and choosing white as
the text color and blueButton for the image.

218 HOUR 7: Working with Text, Keyboards, and Buttons

Because of the Xcode 5 slicing tools, everything “just works.” Your button looks great, regard-
less of the size, and you don’t have to write a single line of code to completely customize what it
looks like!

NOTE

Prior to Xcode 5, we had to define resizable images using code, and then add those images to a
button through code. For a peek inside this process, | provide you with these two lines from the pre-
vious edition of this book:

UIImage *normallImage = [[UIImage imageNamed:@"whiteButton.png"]
resizableImageWithCapInsets:UIEdgeInsetsMake (0, 12, 0, 12)

[self.theButton setBackgroundImage:normallmage
forState:UIControlStateNormal] ;

If you find this interesting, be sure to read more about the UI Image method resizableImage
WithCapInsets and the UIButton method setBackgroundImage: forState in the Xcode
documentation system.

Creating and Connecting the Outlets and Actions

With the interface finished, we now have a total of six text input/output areas that we need to
access through our view controller code. In addition, we must create an action for the button
that will trigger the generation of our story using the template and field contents.

In summary, a total of six outlets and one action require creation and connection:
» Place field (UITextField): thePlace
» Verb field (UITextField): theVerb
» Number field (UITextField): theNumber
> Template Text view (UITextView): theTemplate

» Story Text view (UITextView): theStory

v

Action triggered from Generate Story button: createStory

Making sure that the MainStoryboard.storyboard file is open in the IB editor, use the editor
toolbar buttons to switch to the assistant mode. You should now see your Ul design and the
ViewController.m file where you will be making your connections side by side.

Adding the Outlets

Start by Control-dragging from the Place text field to the line following the @interface
directive in the ViewController.m file. When prompted, be sure to configure the connection
as an outlet and the name as thePlace, leaving the other values set to their defaults (type
UITextfield, storage weak), as shown in Figure 7.21.

Using Text Fields, Text Views, and Buttons

nonon

FIGURE 7.21

2l BEEBEBEO OO0

— & Main, =

Build FieddbuttonFun: Succeeded | Today a8 7:14 PM No Hiwes

i 7]
l i

Round Style Text fiekd - Te name of aplace B | 4 = | (] Avtomavc - i ViewConurotierm [@énuerface ViewConuoierd (4 2 » 0 0

£ VisdContralier.m
£ Fieldbuttonfyn

i
3
-
| o S wj?“;h:;‘JnM[ﬂl Al
¢ # Copyright (c ol ! rights reserved,
Place: ﬂh!ﬂ Connectien | Outer I
Do £ View Conwroller b #import “ViewController.h®
i i
Verb: name pintertace ViewController ()
Typt | Uentrield | ff aend
Number: Srorage: | -
e T 2 1 aimptesentation ¥imontrotier
_ Cantel Connect | |
Template: ol
1 » [super viewbidload]:
The 10S developers upon }
 Thay vowed 1o <verbcs 1
night and day, until all <naimbers u 3 [voldldidReceivelonoryWarning
e : n
‘Android users came to thair senses. Isuper didfeceivelesorydarning];
«place> would never be the same » // Dispose of mny resources that can be recreated.
:;
-_‘ tend
Story:

Create and connect outlets for each input/output element.

Repeat the process for the Verb and Number fields, connecting them to theverb and

theNumber outlets, this time dragging to just below the @property directive created when
you added the first output. Connect the text views to theTemplate and theStory outlets.

The process is identical (but the type is UITextView.)

That does it for the outlets. Now let’s create our action.

Adding the Action

In this project, we add an action for a method we will call createStory. This action is triggered

when the user clicks the Generate Story button. To create the action and generate an empty

219

method that we can implement later, Control-drag from the Generate Story button to below the

last @property directive in the ViewController.m file.

Name the action createStory, when prompted, as shown in Figure 7.22.

The connections to our interface are complete. The resulting ViewController.m file should have

an @interface block at the top resembling the following:

@interface ViewController ()

@property
@property
@property
@property
@property

nonatomic)
nonatomic)
nonatomic)
nonatomic)

nonatomic)

- (IBAction)createStory: (id)

@end

IBOutlet
IBOutlet
IBOutlet
IBOutlet
IBOutlet

sender;

UITextField *thePlace;
UITextField *theVerb;
UlITextField *theNumber;
UITextView *theTemplate;
UlITextView *theStory;

220 HOUR 7: Working with Text, Keyboards, and Buttons

e 7 = B ™ainstaryboard =

inch) [Build FieldButionFun: Succeeded | Today at 7:14 PM Mo bswes |

e g
|| View | |Bumen - GenerateStory B | o > [Avtomanc E ViewConrraller.m - No Selection

"
£ Viewlontroller.s

- gl 1 4 FicldBurtenfun
41 Crested by John Ray on 7/25/10.
Place & f/ Cepyright (e) 2013 John E. Ray. ALl rights reserved.
1
Vearh: #impart "VirwContraller.h®
ginterface ViewController ()
. gproperty [wrak, nanaromic) TROutiet UTTextField wthePlace;
R Boroperty (weak, nonstomic] IUDutlet ULTextPield stheverd:
Eoroperty [wesk, nonatumic] IB0utlet UITextField wthebusber;
. @property [wrak, nanatomic) TROutiet UITextView wtheTerplote;
Template: @property [weak, nonatusic) TB0utlet UITextView wtheStory;
The 08 dovelopers dosg R
<place=. They vowed ta 5
might and day, until all <n Pisplementation ViewController
users came to th
I, - (unid}vieubidioad
o R

«place= would never ba',
_L")] again. [super viewDidLosd];

= fviid) didReceiveesaryRarning

Story:

[super digfeceiveMesor
#f Dispuse of any resources That can Be recreated,

3 pend

FIGURE 7.22
Create the action that will ultimately be used to generate our story.

Implementing Keyboard Hiding

Before completing the application by implementing the view controller logic to construct the
story, we need to look at a “problem” that is inherent to applications with character entry: key-
boards that won't go away! To see what we mean, start the application again either on your
device or in the iOS Simulator.

With your app up and running, click in a field. The keyboard appears. Now what? Click in
another field; the keyboard changes to match the text input traits you set up, but it remains
onscreen. Touch the word Done. Nothing happens. And even if it did, what about the number
pad that doesn’t include a Done button? If you try to use this app, you’ll also find a keyboard
that sticks around and that covers up the Generate Story button, making it impossible to fully
utilize the UI. So, what's the problem?

Hour 4, “Inside Cocoa Touch,” described responders as objects that process input. The first
responder is the first object that has a shot at handling user input. In the case of a text field or
text view, when it gains first-responder status, the keyboard is shown and remains onscreen until
the field gives up or resigns first-responder status. What does this look like in code? For the field

Using Text Fields, Text Views, and Buttons 221

thePlace, we could resign first-responder status and get rid of the keyboard with this line
of code:

[self.thePlace resignFirstResponder] ;

Calling the resignFirstResponder method tells the input object to give up its claim to the
input; as a result, the keyboard disappears.

Hiding with the Done Button

The most common trigger for hiding the keyboard in iOS applications is through the bid End
on Exit event of the field. This event occurs when the Done (or similar) keyboard button is
pressed.

We'll implement a new action method called hideKeyboard that is activated by the Did End
on Exit events from our fields.

Turn your attention back to the Main.storyboard file and open the assistant editor. Control-drag
from the Place field to the line just below the createStory action in the ViewController.h file.
When prompted, configure a new action, hideKeyboard, for the Did End on Exit event.
Leave all the other defaults the same, as shown in Figure 7.23.

OF j — [E| Main.story e
7 Field..) [Phone Retina (a-inch) | suild FeldButtonfun: Succeeded | Today at 7:14 PM No issues | EEFE | OEO
s Lt S st L E2EUE] | L -l i
B & » @ [V.) || Round Style Text Field - The name of aplace & | 4 | [Auto... / |m| ViewController.m / [& @implementation ViewCantroller |4 2 | £ @
1 7
2 // ViewController.m
= 3 // FieldButtonFun
e i
. - 1, - s // Created by John Ray on 7/25/13.
Place: r“.[ThE name ol a place 3 6 // Copyright (c) 2013 John E. Ray. All rights reserved.
7l s
8
Verb: 9 simport “viewController.h®
10
1 @interface ViewController ()
Number: Hi= 12 @property (weak, nonatomic) IBOutlet UITextField wthePlace;
g ST N @property (weak, nonatomic) IBOutlet UITextField stheVerb;
Connection (Action ¢) @property (weak, nonatomic) IBOutlet UITextField theNumber;
. Object (@ View Control @property (weak, nonatomic) IBOutlet UITextView wtheTemplate;
Ternplate. 2 W Controlle: Eproperty (weak, nonatomic) IBOutlet UITextView »theStory;
Name | hideKeyboard
- (IBAct: teSte 2 {dd der;
m; ios d_tla_\'r‘slnpsmd = e {XBACEion)erantsSEsrys (1d] seniiars
<place>. ey vowed ——— @end
night and day, until all bent (MAEdOnBl
Android users came to Arguments (Sender ¢ @implementation ViewController
{> <place> would neverbe| (Cancel Connect <ix funid) it dicad
again. sl <
= [super viewDidLead];
8
Story: - (void)didReceiveMenoryWarning
3 ES
[super didReceiveMemoryWarning];
/7 Dispose of any resources that ean be recreated.

FIGURE 7.23
Add a new action method for hiding the keyboard.

Now you must connect the Verb field to the newly defined hideKeyboard action. There are
many different ways to make connections to existing actions, but only a few enable us to target
specific events. We'll use the technique you learned about in the tutorials in Hour 5, “Exploring
Interface Builder”: the Connections Inspector.

222 HOUR 7: Working with Text, Keyboards, and Buttons

First switch back to the standard editor and make sure that the document outline is visible
(Editor, Show Document Outline). Select the Verb field, and open the Connections Inspector by
pressing Option-Command-6 (or choosing View, Utilities, Connections Inspector). Drag from the
circle beside Did End on Exit to the View Controller icon in the document outline area. Release
your mouse button and choose hideKeyboard when prompted, as shown in Figure 7.24.

8ano B — & Main]
3 iy | bulld FieidbursanFun: Swccesded | Today at 7:14 P No fmawes ial =g

o R R
B anst B VewGe...) B Vewa..) [Vew) I TvsdSifeTened-Av | D B @ % 2 ©

— S
Place: [Menaime ol aplacy | O Cabec e

Vert: [a\ ity J 0 e On

LI abel - verb:
L tabel - Number: T .
| Round Style Test Fleid - The name of a place Number: |“\'m==lmm‘hw ‘] Ky 0 L

L Round Style Text Field - & small number
| Label - Template:
| Label = Story:
| Taxt View
|| Bezon - Cenerate Story
@ First Responder

[

f
4
Cco0 © |0O® [00OCOOOCOO0OCEe O O O

| [E] (B[it @] (& = a]

® Oilem

FIGURE 7.24
Connect the Verb field to the hideKeyboard action.

Unfortunately, now we run into a problem. The number input doesn’t have a Done button, and
the text view doesn’t support the Did End on Exit event, so how do we hide the keyboard for
these variations?

Hiding with a Background Touch

A popular iOS interface convention is that if a keyboard is open and you touch the background
(outside of a field) the keyboard disappears. This is the approach we need to take for the
number-input text field and the text view—and functionality that we need to add to all the
other fields to keep things consistent.

Wondering how we detect an event outside of a field? Nothing special: All we do is create a big
invisible button that sits behind all the other controls, and then attach it to the hideKeyboard
action method.

Using Text Fields, Text Views, and Buttons 223

Within the IB editor, access the Object Library (View, Utilities, Object Library) and drag a new
button (UIButton) from the library into the view.

Because this button needs to be invisible, make sure that it is selected, and then open the
Attributes Inspector (Option-Command-4) and set the type to Custom and delete the button title.
This makes the button entirely transparent. Use the selection handles to size the button to fill the
entire view. With the button selected, choose Editor, Arrange, Send to Back to position the button
in the back of the interface.

TIP

You can also drag an object to the top of the view hierarchy in the document outline to position it in
the back. The objects are layered from the top (back) to the bottom (front).

To connect the button to the hideKeyboard method, it’s easiest to use the document outline.
Select the custom button you created (it should be at the top of the view hierarchy list), and
then Control-drag from the button to the View Controller line. When prompted, choose the
hideKeyboard method.

Nicely done. You're now ready to implement the hideKeyboard so that the Place and Verb
fields can hide the keyboard when Done is touched, or the background can be touched to hide
the keyboard in any situation.

Adding the Keyboard-Hiding Code

Because the user could be making changes in four potential places (thePlace, theVerb,
theNumber, theTemplate), we must either identify the field the user is editing or simply resign
first-responder status on all of them. As it turns out, if you resign first-responder status on a field
that isn’t the first responder, it doesn’t matter. That makes implementing the hideKeyboard
method as simple as sending the resignFirstResponder message to each of the properties
representing our editable UI elements.

Scroll to the bottom of the ViewController.m file to find the hideKeyboard method stub that
Xcode inserted for us when we created the IBAction. Edit the method so that it reads as shown
in Listing 7.1.

LISTING 7.1 Hiding the Keyboard

- (IBAction)hideKeyboard: (id) sender {
[self.thePlace resignFirstResponder] ;

[self.theVerb resignFirstResponder] ;
[self.theNumber resignFirstResponder] ;
[self.theTemplate resignFirstResponder] ;

224 HOUR 7: Working with Text, Keyboards, and Buttons

TIP

You might be asking yourself whether the sender variable isn’t the field that is generating the
event. Couldn’t we just resign the responder status of the sender? Yes, absolutely. This would work
just fine, but we also need the hideKeyboard method to work when sender isn’t necessarily the
field (for example, when the background button triggers the method).

Save your work, and then try running the application again. This time, when you click outside
of a field or the text view or use the Done button, the keyboard disappears.

TIP

Starting in i0S 7, you can choose what happens to an onscreen keyboard as you scroll within a
view, such as the text views used in this tutorial. To access the keyboard options for a scrolling
view, select the view, and then open the Attributes Inspector and look for the Keyboard setting

within the Scroll View section.

Implementing the Application Logic

To finish off FieldButtonFun, we need to fill in the createStory method within the view
controller (ViewController.m). This method searches the template text for the <place>, <verbs,
and <number> placeholders, and then replaces them with the user’s input, storing the results

in the text view. We’ll make use of the NSString instance method stringByReplacing
OccurrencesOfString:WithString to do the heavy lifting. This method performs a search
and replace on a given string and returns the results in a new string.

For example, if the variable myString contains "Hello town", and you want to replace
town with world, returning the result in a new variable called myNewString, you might use the
following:

myNewString=[myString stringByReplacingOccurrencesOfString:@"town"
withString:@"world"] ;

In the case of our application, our strings are the text properties of the text fields and text
views (self.thePlace.text, self.theVerb.text, self.theNumber.text,
self.theTemplate.text, and self.theStory.text).

Add the final method implementation, shown in Listing 7.2, to ViewController.m within the
createStory method stub that Xcode generated for us.

LISTING 7.2 Implementing the createStory Method

1:- (IBAction)createStory: (id)sender {

2: self.theStory.text=[self.theTemplate.text

3 stringByReplacingOccurrencesOfString:@"<place>"
4 withString:self.thePlace.text];

Using Text Fields, Text Views, and Buttons 225

self.theStory.text=[self.theStory.text
stringByReplacingOccurrencesOfString:@"<verb>"
withString:self.theVerb.text];

self.theStory.text=[self.theStory.text
stringByReplacingOccurrencesOfString:@"<numbers>"

withString:self.theNumber.text];

P O W 0 J & WUl

o

Lines 2—4 replace the <place> placeholder in the template with the contents of the thePlace
field, storing the results in the story text view. Lines 5-7 then update the story text view by
replacing the <verb> placeholder with the appropriate user input. This is repeated again in
lines 8-10 for the <number> placeholder. The end result is a completed story, output in the
theStory text view.

Our application is finally complete.

Building the Application

To view and test the FieldButtonFun, click the Run icon in the Xcode toolbar. Your finished app
should look similar to Figure 7.25, fancy button and all!

Carrier ¥ 7:15 PM

Place: Wakeman
Verb: snore

Number:

Template:

The iOS developers descended upon
<place>. They vowed to <verb>
night and day, until all <number>
Android users came to their senses.
<place> would never be the same

again.

Story:

The iOS developers descended upon
Wakeman. They vowed to snore
night and day, until all 3 Android
users came to their senses.
Wakeman would never be the same
again.

Generate Story
T — FIGURE 7.25
The finished application includes scrolling views, text
editing, and a pretty button. What more could we want?

4

226 HOUR 7: Working with Text, Keyboards, and Buttons

This project provided a starting point for looking through the different properties and attributes
that can alter how objects look and behave within an iOS interface. The takeaway message:
Don't assume anything about an object until you’ve reviewed how it can be configured.

CAUTION

Plain Is Pretty, Pretty Is Pretty

In this tutorial, we built a button that looks nothing like the default iOS 7 (or even iOS 6) buttons. Be
careful, though, when creating “graphically rich” Uls for iOS 7 apps. Apple is embracing a simple and
subtle approach to its Uls, so you might want to follow its lead. Create your Ul to best fit with the
application experience you want for your users.

Further Exploration

Throughout the next few hours, you'll explore a large number of UI objects, so your next steps
should be to concentrate on the features you've learned in this hour—specifically, the object
properties, methods, and events that they respond to.

For text fields and text views, the base object mostly provides for customization of

appearance. However, you may also implement a delegate (UITextFieldDelegate,
UlITextViewDelegate) that responds to changes in editing status, such as starting or end-

ing editing. You'll learn more about implementing delegates in Hour 10, “Getting the User’s
Attention,” but you can start looking ahead to the additional functionality that can be provided
in your applications through the use of a delegate.

In addition, keep in mind that although there are plenty of properties to explore for these
objects, there are additional properties and methods that are inherited from their superclasses.
All UI elements, for example, inherit from UIControl, UIView, and UIResponder, which
bring additional features to the table, such as properties for manipulating size and location of
the object’s onscreen display, as well as for customizing the copy and paste process (through the
UIResponderStandardEditActions protocol). By accessing these lower-level methods, you
can customize the object beyond what might be immediately obvious.

Apple Tutorials

Apple has provided a sample project that includes examples of almost all the available iOS Ul
controls:

UlCatalog (accessible via the Xcode documentation): This project also includes a wide variety of
graphic samples, such as the button images used in this hour’s tutorial. It's an excellent playground
for experimenting with the Ul.

Workshop 227

Summary

This hour described the use of common input features and a few important output options. You
learned that text fields and text views both enable the user to enter arbitrary input constrained
by a variety of different virtual keyboards. Unlike text fields, however, text views can handle
multiline input as well as scrolling, making them the choice for working with large amounts of
text. We also covered the use of buttons and button states, including how buttons can be manip-
ulated through code.

We continue to use the same techniques you used in this hour throughout the rest of the book,
so don't be surprised when you see these elements again.

Q&A

Q. Why can’t | use a UILabel in place of a UITextView for multiline output?

A. You certainly can. The text view, however, provides scrolling functionality “for free,” whereas
the label displays only the amount of text that fits within its bounds.

Q. Why doesn’t Apple just handle hiding text input keyboards for us?

A. Although | can imagine some circumstances where it would be nice if this were an auto-
matic action, it isn’t difficult to implement a method to hide the keyboard. This gives you
total control over the application interface—something you’ll grow to appreciate.

Q. Are text views (UITextView) the only way to implement scrolling content?

A. No. You'll learn about implementing general scrolling behavior in Hour 9, “Using Advanced
Interface Objects and Views.”

Workshop

Quiz
1. What tool will you use to create resizable images?

2. How do you get rid of an onscreen keyboard?

3. Are text views used for text input or output?

228 HOUR 7: Working with Text, Keyboards, and Buttons

Answers
1. To define images that can be resized, you’ll use the Xcode slicing tool, found within your
asset catalog.

2. To clear the onscreen keyboard, you must send the resignFirstResponder message to
the object that currently controls the keyboard (such as a text field).

3. Text views (UITextView) can be implemented as scrollable output areas or multiline input
fields. It’s entirely up to you.

Activities
1. Expand the story creator with additional placeholders, word types, and styled text edit-

ing. Use the same string manipulation functions described in this lesson to add the new
functionality.

2. Modify the story creator to use a graphical button of your design. Use either an entirely
graphical button or the stretchable image approach described in this hour’s tutorial.

This page intentionally left blank

Symbols

#import directive, 73-74, 81
sharing properties and
methods, 329-330

@class directive, sharing
properties and methods,
329-330

@implementation directive, 81
@import directive, 73-74
@interface directive, 74-75
@property directive, 76-78, 171

A

Accelerate framework (Core 0S
layer), 108

acceleration
detecting, 631-643
handling data, 640-641

reading, Core Motion,
624-626

accelerometers, 620-622

Accessibility options, IB (Interface
Builder), 150-151

Accounts framework (Core
Services layer), 106

action sheets, 295-298

button press response,
314-316

implementing, 313-316
actions

BackgroundColor project,
creating and connecting,
516-518

BestFriend project, creating
and connecting, 711-712
ColorTilt project, creating and

connecting, 633-635
CustomPicker project,
creating and connecting,
406-407
DateCalc project, creating
and connecting, 391-392
FieldButtonFun project,
creating and connecting,
219
FlowerWeb project, creating
and connecting, 271-274
Gestures project, creating
and connecting, 605-607
GettingAttention project,
creating and connecting,
303-305
HelloNoun project, creating
and connecting, 186-188
IB (Interface Builder),
connecting to, 159-161
ImageHop project, creating
and connecting, 242-246
LetsNavigate project, creating
and connecting, 442-443
LetsTab project, creating and
connecting, 450-452
ModalEditor project, creating
and connecting, 360-361
Scroller project, creating and
connecting, 285-286
Survey project, creating and
connecting, 536-539
Address Book, 693-697, 708-725
framework, 104, 106, 697
implementing logic, 712-717

Index

people picker delegate,
695-697

Ul Framework, 694-695
alerts, 291-319

action sheets, implementing,
313-316

multibutton, creating, 306-309

System Sound Services,
298-300, 316-318

views, 292-295
action sheets, 295-298

button press response,
309-310

fields, 310-312
implementing, 305-312
AllinCode project, 577-583
building, 582-583
interface

enabling orientation
changes, 577

programming, 577-582

planning properties and
connections, 577

allocation, objects, 86-88
animations
loading, 247-248
resources, adding, 233
speed
incrementing, 251
setting, 249-251

starting and stopping,
248-249

annotations, maps, 703-705
Apple, codec support, 648-650

834

Apple Developer Program, 6-9

development provisioning
profile, 13

creating, 12-16
Apple developer tools, 20

application data sources,
implementing, 488-492

application logic, 229
Address Book, implementing,
712-717

BackgroundColor project,
implementing, 518-521

BackgroundDownload project,
implementing, 782-784

ColorTilt project,
implementing, 635-642
Cupertino project
implementing, 738-742
updating, 747-753
FieldButtonFun project,
implementing, 224-225
FlowerColorTable project,
implementing, 476-481
FlowerWeb project,
implementing, 274-278
Gestures project,
implementing, 607-616
ImageHop project,
implementing, 246-252

LetsTab project, implementing,

452-455

Maps, implementing, 717-719

ModalEditor project,
implementing, 362-363
Orientation project,
implementing, 628-630
PopoverEditor project,
implementing, 368-370
ReturnMe project,
implementing, 532-534

Scroller project, implementing,

286-287

SlowCount project,
implementing, 776-778

Apple Developer Program

Survey project, implementing
application logic, 539-543
Swapper project,
implementing, 587-589
Universal project,
implementing, 797-798
UniversalToo project,
implementing, 802

application resource constraints, 4
applications. See also projects

backgrounding, 757-762
disabling, 763

life-cycle methods,
761-762

types, 758-760
data storage, 503-505

direct file system access,
510-514

settings bundles, 508-510

user defaults, 507-508
debugging, 809, 828-830

Xcode debugger, 813-828
HelloXcode, 26

adding new code files
to, 28

adding resources to, 28-32
building, 46-51

code completion, 38-40
managing properties, 51
navigating, 28-30
navigating code, 35-37
pragma marks, 41-42

removing files and
resources, 32

searching code, 40-41

launching, Simulator,
59-60

life cycle, tracing, 109-110

logic, implementing, 189-190

MVC (Model-View-Controller),
167-168

Single View Application
template, 173-190

structured design,
168-169

Xcode implementation,
169-172

running first, 17-18

sliders, adding, 236-238

steppers, adding, 239-240

suspension, 758

tracing, 809
NSLog function, 810

universal, 789, 805
creating, 794-803
development, 789-794
multiple targets, 804-805
setup changes, 791-794
templates, 791-792

applicationWillEnterForeground
method, 764

apps. See applications

ARC (Automatic Reference
Counting), 662
Objective-C, 96-97
Archives and Serializations

Programming Guide for
Cocoa, 543

asset catalogs (Xcode), 32-35
assistant editor (Xcode), 42-44
attitude
displaying data, 639-640
reading, Core Motion,
624-626

attributed text fields, versus
plain, 207-209
attributes
bar button items, 376-377
buttons, editing, 214-215
date pickers, 378379
tables, setting, 462
text fields
editing, 205-207
traits, 207
text views, editing, 210-212
Attributes Inspector (IB), 149-150

audio, Cupertino project,
preparing for, 768-773
Auto Layout, 548, 550, 597-598

building responsive interfaces,
552-575

constraints, 552-562
centering, 562-565

Constraints object, navigating,
554-562

expanding controls, 567-572
Auto Layout system (IB), 145-148

Automatic Reference Counting
(ARC). See ARC (Automatic
Reference Counting)

AV Audio Player, 655

controlling audio playback,
675677

handling playback completion,
656

implementing, 674-675
AV Audio Recorder, 656-657
implementing, 670-674

AV Foundation framework, 105,
655-657

AV Audio Player, 655

controlling playback,
675677

handling playback
completion, 656

implementing, 674-675
AV Audio Recorder, 656-657
implementing, 670-674

background fetches, 760
performing, 780-784
background processing
local notifications, 758-759
implementing, 765-767
task-specific, 759, 768-773

background suspension, 758
handling, 764-765
background tasks, 785-786

completing long-running,
773-780

processing, enabling, 778-780

BackgroundColor project, 544

application logic,
implementing, 518-521

building, 521-522

designing interface, 515

outlets and actions, creating
and connecting, 516-518

setting up, 515
BackgroundDownload project
building, 784

creating and connecting
outlet, 782

designing interface, 781
implementing application
logic, 782-784
setting up, 780-781
backgrounding, 757-762
disabling, 763
life-cycle methods, 761-762
types, 758-760
bar button items, 375-376
attributes, 376-377

navigation controllers,

424-425
BestFriend project

Address Book, implementing
logic, 712-717

building, 723-724

designing interface, 745

email logic, implementing,
720-721

Maps, implementing logic,
717-719

outlets and actions, creating
and connecting, 711-712

setting up, 708-709

categories 835

social networking logic,
implementing, 721-723

status bar, setting to white,
723

blocks, 90-91

blur effect (i0S 7), adding, 743
blurring effect, 278, 525
bookmarks, setting, 124-125

breakpoint navigator, Xcode
debugger, 826-828

breakpoints, setting, 816-818

browsing, documentation,
123-124

building applications, Xcode,
46-51

button templates, preparing with
slicing, 199-204

buttons, 195-196, 226-227

action sheets, button press
response, 314-316

alert views, button press
response, 309-310

attributes, editing, 214-215
bar button items, 375-376

attributes, 376-377
images

adding to, 200

setting custom, 215-218
styled, adding, 212

templates, preparing with
slicing, 199-204

C

calculateDateDifference method,
398-400

case sensitivity, Objective-C, 72
Castillo, Cesar Pinto, 275
categories

classes, 70

defining, 82-83

How can we make this index more useful? Email us at indexes@samspublishing.com

836 cells, tables

cells, tables, 460
creating, 493-494
disabling editing, 495
centering constraints, Auto
Layout, 562-565

CFNetwork framework (Core
Services layer), 106

chooselmage method, 677-678
class methods, 70
classes, 69
categories, 70
Cocoa Touch, 110-111
core application, 111-113
data type, 113-117
interface, 117-120
GenericViewController, 440
MPMedialtem, 648
MPMedialtemCollection, 648
MPMediaPickerController, 648
MPMoviePlayerController, 648

MPMusicPlayerController,
648-650

NSArray, 113-114

NSDate, 116
NSDecimalNumber, 115-116
NSDictionary, 114-115
NSMutableArray, 113-114

NSMutableDictionary,
114-115

NSMutableString, 113
NSNumber, 115-116
NSObject, 111
NSString, 113
NSURL, 116-117
singletons, 69
subclasses, 69
superclasses, 69
UlActionSheet, 295-298
UlAlertView, 292-295
UlApplication, 111
UIBarButtonltem, 375

UlButton, 117, 195,
199-204, 231

UlControl, 112

UlDatePicker, 119, 377-378,
417

UlDevice, 623-624
UlGestureRecognizer, 617
UlimagePickerController, 648
UlimageView, 231, 681
UlLabel, 117, 196, 231

UlLongPressGesture
Recognizer, 594, 617

UlPanGestureRecognizer,
594, 617

UlPicker, 119
UlPickerView, 377, 417

UIPinchGestureRecognizer,
594

UlPopoverController, 120,
347-348, 373

UIResponder, 112

UIRotationGestureRecognizer,
594

UlScrollView, 261, 279, 288
UlIScrollViewDelegate, 288

UISegmentedControl, 118,
259, 288

UlSlider, 118, 230-231, 252

UlStepper, 118, 230-231,
252

UISwipeGestureRecognizer,
594

UISwitch, 118, 258, 288
UlTapGestureRecognizer, 594
UlTextField, 119, 196
UlTextFieldDelegate, 226
UlTextView, 119, 196
UlTextViewDelegate, 226
UlView, 112, 259
UlViewController, 113
UlWebView, 288
UIWindow, 112
ViewController, 436, 446
Cocoa, versus Cocoa Touch, 103

Cocoa Touch, 20, 101-103, 129

application life cycle, tracing,
109-110

classes, 110-111
core application, 111-113
data type, 113-117
interface, 117-120
versus Cocoa, 103
functionality, 102-103

iOS technology layers,
104-105

code
HelloXcode app

adding pragma marks,
41-42

searching, 40-41
loops, 93-95
setting breakpoints, 816-818
stepping through, 820-822
writing
IB (Interface Builder),
162-163
Xcode, 188
code files, Xcode projects, adding
to, 28-32
code listings

Accessing Properties from
the Popover Upon
Dismissal, 348

Accessing the Popover’'s
contentViewController, 368

Activating Interface Rotation,
549

Adding a Method in
GenericViewController.m
to Update Each Scene’s
Counter, 455

Adding Audio Feedback When
the Heading Updates,
771772

Adding the foundRotation
Method, 613

Adding the getFlower
Implementation, 276

Applying a Filter to the Image
in the UllmageView, 681

Asking to Become a First
Responder, 615-616

Calculating a Heading to a
Destination, 750-751

Calculating the Date
Difference, 400

Calculating the Difference
Between Two Dates,
398-399

Calculating the Distance When
the Location Updates, 741

Calling the NSLog Function,
810

Centering the Map and Adding
an Annotation, 718

Changing the Label as the
Orientation Changes,
629-630

Cleaning Up After the Movie
Player, 670

Completed setOutput Method,
190

Completed setSpeed Method,
249-250

Completed ViewController.h
Interface File, 246

Completing the recordAudio
Method, 676

Configuring a Cell to Display in
the Table View, 478

Configuring and Displaying the
Mail Compose View, 720

Configuring the Detail View
Using the detailltem, 497

Configuring the Sections and
Row Count for the Table
View, 465

Creating a Method to Display
the User’s Selection,
414-415

Creating and Initializing the
Audio Recorder, 672-673

Creating the Location Manager
Instance, 739

Customizing the Annotation
View, 705, 719

Defining the Minimum
Background Fetch Interval,
783

Detecting and Displaying the
Active Device, 798

Disabling Editing of Table
Cells, 495

Disabling Editing of the Ul,
495

Disabling Interface Rotation,
642

Disabling the Upside-Down
Orientation, 584

Disallowing Drilldown Past an
Individual Contact, 714

Dismissing the Mail Compose
View, 721

Dismissing the Modal Scene,
396, 409

Dismissing the People Picker,
695

Displaying the Media Picker,
685-686

doAlertinput Implementation,
311

Editing the viewDidLoad
Method, 815

Enabling iPhone Access to the
Detail View Controller, 499

Enabling Scrolling in Your
Scroll View, 287

Enabling the Ability to Be a
First Responder, 615

Example of the Tap Gesture
Recognizer, 594-595

Final viewDidLoad
Implementation, 684-685

Finishing the Background
Fetch by Implementing
application:performFetch
WithCompletionHandler, 783

Forward Geocoding, 706

Grabbing and Configuring the
UlPopoverController, 347

code listings 837

Handling a Row Selection
Event, 480

Handling a User’s Music
Selection, 686

Handling Button Touches, 582

Handling Drilling Down to
Individual Properties, 696

Handling Empty Selections in
the Media Picker, 687

Handling Heading Updates,
734

Handling Location Manager
Errors, 740

Handling Playback Completion,
656

Handling Rotation in
didRotateFrominterface
Orientation, 582

Handling the Alert View Input
Fields, 312

Handling the Canceling of the
People Picker Display, 713

Handling the Cancellation of a
Media Selection, 652

Handling the Cancellation
of an Image Selection,
660, 680

Handling the Composition
Completion, 700

Handling the Dismissal of the
Popover, 370

Handling the Heading
Updates, 752

Handling the Notification of
Playback Completion, 651

Handling the Selection of a
Contact, 715

Handling the Selection of an
Address Book Record, 696

Handling the Selection of an
Image, 659

Handling the Selection of
Media Items, 653

Handling the User’s Selection
of an Image, 679

Hiding the Keyboard, 223

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings

Hiding the Keyboard When It
Isn’t Needed, 539

Hiding the Keyboard When lIts
Done Key Is Pressed, 363

Implementation File, 79

Implementing a Custom

Picker Data Source Protocol,
380-381

Implementing a Custom Picker
Delegate Protocol, 382

Implementing a Simple Tweet
Compose View, 722-723

Implementing a UlActionSheet
Class, 295

Implementing a UlAlertView
Object, 293

Implementing Location
Updates, 729

Implementing playAudio
Method, 675

Implementing the
applicationWillEnter
Foreground Method, 764

Implementing the
chooselmage Method,
677678

Implementing the control
Hardware Method, 637

Implementing the createStory
Method, 224-225

Implementing the describe
Integer Method, 815

Implementing the
doAcceleration Method,
640-641

Implementing the
doActionSheet Method, 313

Implementing the doAlert
Method, 306

Implementing the doAttitude
Method, 640

Implementing the doRotation
Method, 641

Implementing the doSound
Method, 317

Implementing the doVibration
Method, 318

Implementing the Final
setBackgroundHueValue
Method, 519

Implementing the foundPinch
Method, 610-611

Implementing the foundSwipe
Method, 610

Implementing the foundTap
Method, 609

Implementing the
incrementCount Method,
444

Implementing the Initial
doMultipleButtonAlert
Method, 308

Implementing the Initial
setBackgroundHueValue
Method, 518

Implementing the iPad’s
Popover-Enabled
chooselmage Method,
678-679

Implementing the newBFF
Method, 713

Implementing the playMusic
Method, 688

Implementing the
setincrement Method, 251

Implementing the
setValuesFromPreferences
Method, 533

Implementing the showResults
Method, 541

Implementing the storeSurvey
Method, 540

Implementing the
toggleFlowerDetail Method,
275

Implementing the
viewDidAppear Method,
608-609

Implementing updatelnterface,
580

Initializing the Interface When
the Application Loads, 581

Initializing the Motion
Manager, 637

Initializing the Movie Player,
668

Initializing the Sound File
References in viewDidLoad,
770

Initiating Movie Playback, 669
Loading and Playing a
Sound, 299
Loading the Animation, 247
Loading the Data Required for
the Picker View, 410
Loading the Settings When
the Initial View Loads, 534

Performing a Default
Calculation When the
Date Chooser Is First
Displayed, 400

Placing an Annotation, 704

Populating the Field with the
Current Email Address, 362

Populating the Flower
Arrays, 476

Populating the Flower Data
Structures, 489-490

Preparing and Showing the
Compose Dialog, 699

Preparing the Audio Player
with a Default Sound,
674-675

Preparing the Interface
(But Don’t Display It Yet),
578579

Preparing to Post to Facebook,
701

Presenting the Picker with
Custom Views, 383-384

Processing a Climage with a
ClFilter, 661

Providing a Custom View
for Each Possible Picker
Element, 412

Reacting to a User’s
Selection, 415

Reacting to a User’s Touch,
467-468

Reacting to Core Location
Errors, 731

Requesting Heading Updates,
747-748

Responding to a Shake
Gesture, 616

Responding to an Action
Sheet, 298

Responding to an Action
Sheet Button Press, 314

Responding to an Alert View,
295

Responding to an Alert View
Button Press, 310

Returning a Count of the Rows
(Array Elements) in Each
Section, 477

Returning a Heading for Each
Section, 478

Returning the Number of
Components, 411

Returning the Number of
Elements per Component,
411

Returning the Number of
Sections in the Table, 477

Reverse Geocoding, 707

Rotating the View into the
Proper Orientation, 589

Sample Interface File, 73

Scheduling a Timer When the
Application Starts, 777

Setting a Custom Height
and Width for the Picker
Components and Rows,
413-414

Setting a Default Selection,
416

Setting the Delegate During
the Segue, 394, 408

Setting the Detail View
Controller’s detailltem, 496

Setting the End of Background
Processing, 779

Setting the Initial Scene’s
Label to the Editor Scene’s
Field, 363

Setting the Start of
Background Processing, 779

Setting the Status
Bar Appearance in
preferredStatusBarStyle,
252, 742

Setting Up and Displaying the
Image Picker, 658

Showing the Animal Chooser
Scene, If Needed, 408

Showing the Date Chooser
Scene, If Needed, 395

Silly Implementation of table
View:cellForRowAtindexPath,
466-467

Starting and Stopping
the Animation in
toggleAnimation, 248

Storing the Recently Received
Location for Later Use,
748-749

Supporting All Interface
Orientations, 577

Toggling the Animal Chooser’s
Visibility Flag to NO, 408

Toggling the Date Chooser’s
Visibility Flag to NO, 395

Typical Setup and Display of a
Media Picker, 652

Updating doAlert to Register a
Local Notification, 766-767

Updating the Counter, 778

Updating the Display in
viewWillAppear:animated,
445

Updating the Display Using
the Counter Values, 453

Updating the Initial
recordAudio Method, 673

Updating the Settings in
viewDidLoad, 520

constraints 839

Updating the Tab Bar Item’s
Badge, 454

Updating the viewDidLoad
Method to Set the Initial
Display, 277

Updating viewDidLoad to Loop
2,000 Times, 823-824

Using prepareForSegue:sender
to Grab the View Controllers,
340

Using the Motion Manager,
625

Watching for Orientation
Changes, 629
Your First Code Exercise,
38-39
codec support, Apple Developer
Program, 648-650
ColorTilt project, 631-632
building, 642-643

creating and connecting
outlets and actions,
633-635

designing interface, 633-634

implementing application
logic, 635-642

setting up, 632-633

commands, File menu, New
Project, 24

compass, 744-753

configuring devices for
development, 13-16

connections

AllinCode project, planning,
577

editing, Quick Inspector,
161-162

Single View Application
template (MVC), planning,
179-182

connectivity, i0S devices, 5
constraints
Auto Layout, 552-562
centering, 562-565

IB Auto Layout system,
145-148

How can we make this index more useful? Email us at indexes@samspublishing.com

840

controlHardware method,
637-638

controller delegate
Image Picker, 659-660
Media Picker, 652-653
controllers
detail view

fixing broken reference,
498-499

implementing, 496-498
master view, implementing,
492-496
navigation, 423-428,
434-445, 456-457

bar button items, 424-425

storyboards, 425-428
segmented, 288-289
split view, 499
tab bar, 429-434, 445-457

creating relationships,
448-449

storyboards, 430-434
view, 323, 421-422

multiscene development,
422

MVC (Model-View-
Controller), 170-172

relationships, 323

storyboards, adding
supporting subclasses,
326-329

controls

expanding, Auto Layout,
567-572

segmented, 258-259
convenience methods, 87

core application classes (Cocoa
Touch), 111-113

Core Audio framework (Media
layer), 105

Core Bluetooth framework (Core
OS layer), 108

Core Data, 106, 543

controlHardware method

Core Data Core Competencies
tutorial, 543

Core Foundation framework (Core

Services layer), 107

Core Graphics framework (Media
layer), 105

Core Image, 105, 660-662
filters, 660-661, 681-682

Core Location, 107, 727,
734-735, 754-755

headings, obtaining, 732-734

location manager, 728-730
creating instance, 739

implementing delegate,
739

preparing, 738-739
locations

accuracy and update
filter, 732

handling errors, 730-731
obtaining, 727-732
Core Motion, 107, 643-644
motion manager, initializing,
636-637

Core OS technology layer (i0S),
108-109

Core Services technology layer
(i0S), 106-108

Core Text framework (Media
layer), 105

CPUs (central processing units),
monitoring, 828

createFlowerData method,
489, 491

createStory method,
implementing, 224-225

Cupertino project, 735

adding background modes,
773

application logic, updating,
747-753
building, 742-743, 753

creating and connecting
outlets, 737, 747

designing view, 736-738

implementing application
logic, 738-742

preparing for audio, 768-773

setting up, 735-736, 744-745

updating user interface,
745-746

custom images, buttons, setting,
215-218

custom pickers, 401-416
CustomPicker project, 401-402
building, 416
creating segues, 406

custom picker view,
implementing, 409-416

designing interface, 404-406

outlets and actions, creating
and connecting, 406-407

scene segue logic,
implementing, 407-409

setting up, 402-403

data detectors, 213

data models, MVC (Model-View-
Controller), 172

data source outlets,
FlowerColorTable project,
connecting, 474-475

data storage, 503-505

direct file system access,
510-514

file system storage,
implementing, 535-543

locations, 511-512
settings bundles, 508-510
user defaults, 507-508

data type classes (Cocoa Touch),
113-117

data types, 85-86
primitive, 85

date format strings, 397
date pickers, 378-379, 385-401
DateCalc project, 386

building, 400-401

creating segue, 389-391

date calculation logic,
implementing, 396-400

designing interface, 388-389

outlets and actions, creating
and connecting, 391-392

scene segue logic,
implementing, 393-396

setting up, 386-388

debug navigator, Xcode debugger,
826-828

debugging applications, 809,
828-830
Xcode debugger, 813-828
declaring variables, 84-86
defining methods, 78-79

delegate protocols, picker view,
381-383

delegates

FlowerColorTable project,
connecting, 474-475
segues, setting, 408
describelnteger method, 815
designing applications, MVC
(Model-View-Controller), 167-168

Single View Application
template, 173-190

structured design, 168-169

Xcode implementation,
169-172

detail scene, updating, 484-488
detail view controllers

fixing broken reference,
498-499

implementing, 496-498

detailltem public property,
496-497

developers (i0S), becoming, 6-12

External Accessory framework (Core OS layer) 841

development provisioning
profile, 13

creating, 12-16
Device command (Simulator), 62

Device iOS Version command
(Simulator), 63
devices (i0S), 1-2
application resource
constraints, 4
configuring for development,
13-16
connectivity, 5
devices, display and graphics,
2-3
input and feedback
mechanisms, 5
orientations, setting, 53

direct file system access, data
storage, 510-514

directives, 74
#import, 73-74, 81
@implementation, 81
@import, 73-74
@interface, 74-75
@property, 76-78, 171
disabling
backgrounding, 763
editing of table cells, 495
editing of the Ul, 495
interface rotation, 642

dismissals, popovers, responding
to, 346-348

displaying
media picker, 685-686
popovers manually, 346
displays
iOS devices, 2-3

popovers, programming,
349-352

doAcceleration method, 640-641
doActionSheet method, 313

doAlert method, 305-306, 311
doAttitude method, 639-640

document outlines, IB (Interface
Builder) storyboards, 133-137

documentation
browsing, 123-124
downloading, 121
searching, 121-122

documentation system,
Xcode, 121-125

documents

navigating, 124-125

sharing, 125
doRotation method, 641-642
downloading documentation, 121

editing
button attributes, 214-215
text field attributes, 205-207
text view attributes, 210-212

tools, IB (Interface Builder),
141-145

email messages
composing, 698-700
logic, implementing, 720-721
Event Kit framework (Core
Services layer), 107

Event Kit Ul framework (Cocoa
Touch), 104

events, multi-touch, generating,
61

exits, scenes, 323, 334-336
expressions, 91-95

External Accessory framework
(Core OS layer), 108

How can we make this index more useful? Email us at indexes@samspublishing.com

842 Facebook, posting to,

F

Facebook, posting to, 701-702

feedback mechanisms, i0S
devices, 5

fetches, background, 760
performing, 780-784
FieldButtonFun project, 197

actions, creating and
connecting, 219

application logic,
implementing, 224-225
building, 225-226
designing interface, 204-218
keyboard hiding,
implementing, 220-224
outlets, creating and
connecting, 218-219
preparing button templates
with slicing, 199-204
setting up, 198-199

fields, alert views, adding to,
310-312

File menu commands, New
Project, 24

file patches, obtaining, 512-513

file structure, Objective-C, 72-84

file system access, data storage,
510-514

file system storage, implementing,
535-543

files
header, 73-80
ending, 79-80
implementation, 79-82
Xcode projects, removing, 32
filters, Core Image, 660-661
FlowerColorTable project, 471-481
application logic,
implementing, 476-481
building, 481
connecting delegates and

data source outlets,
474-475

designing interface, 473-475

FlowerWeb project

actions, creating and
connecting, 271-274

application logic,
implementing, 274-278

building, 278-279

designing interface, 263-270

outlets, creating and
connecting, 270-272

setting up, 263

Foundation framework (Core
Services layer), 107

frameworks, 101

Cocoa Touch technology layer,

104-105
Media Player, 648-654

Game Kit framework (Cocoa
Touch), 104

GenericViewController class, 440
geocoding, 705-708
gesture recognizers

adding, 594-595

adding to views, 601-605

tap gesture recognizer,
594-595

using, 596-617
gestures, 593, 617
gesture recognizers
adding, 594-595
adding to views, 601-605

tap gesture recognizer,
594-595

using, 596-617
long pressing, 594

multi-touch gesture
recognition, 593-594

panning, 594
pinching, 594
rotating, 594

shaking, 594

swiping, 594

tapping, 594

Gestures project, 596-598

application logic,
implementing, 607-616

building, 607-616

designing interface, 599-601

gesture recognizers, adding to
views, 601-605

outlets and actions, creating
and connecting, 605-607

setting up, 598-599

Getting Started with Audio &
Video, 689-691

GettingAttention project

action sheets, implementing,
313-316

actions and outlets, creating
and connecting, 303-305

alert views, implementing,
305-312

designing interface, 302-303
setting up, 301-302
graphics, iOS devices, 2-3
GUI (graphical user interface), 131
guides (IB), 141-142
gyroscopes, 622-623

hardware, motion, 619-623
accelerometers, 620-622
gyroscopes, 622-623

header files, 73-80
ending, 79-80

headings, Core Location,
obtaining, 732-734

HelloNoun project

actions, creating and
connecting, 186-188

building, 190

designing interface, 182-185

implementing application
logic, 189-190

outlets, creating and
connecting, 184-188

planning properties and
connections, 179-182

setting up, 174-179

HelloXcode app, 26

adding new code files to, 28
adding resources to, 28-32
assistant editor, 42-44
building, 46-51
code
completion, 38-40
navigating, 35-37
pragma marks, 41-42
searching, 40-41
managing properties, 51
navigating, 28-30
removing files and
resources, 32

hiding keyboard, 223, 363, 539
Home command (Simulator), 63

interfaces
creating, 137-148

customizing appearance,
148-153

previewing, 151-153
Object Library, 137-139
outlets, 156-158
projects, opening, 154-155
resources, 164-165
storyboard, 133-137

views, adding objects to,
140-141

writing code with, 162-163
Identity Inspector (IB), 150-151

object identity, 163
if-then-else statements, 91-93

Image 1/0 framework (Media
layer), 105

Image Picker, 657-660
controller delegate, 659-660
implementing, 677-681

image views, 231

ImageHop project, 231-253
application logic,

implementing, 246-252
building, 252-253
designing interface, 234-243

implementing animated image
views, 246-248

interfaces 843

implicit preferences, creating,
514-522

incrementCount method, 444

Information Property List Key
Reference, 543

initialization, objects, 86-88
input mechanisms, iOS devices, 5
Inspector (Quick Help), 127-128
installation, Xcode, 9-12
instance method, 70
instance variables, 70

versus properties, 439
instantiation, 70

Interface Builder (IB). See IB
(Interface Builder)

interface classes (Cocoa Touch),
117-120

interface files, 73-80
ending, 79-80

interfaces, 547-548. See also
motion; orientation
BackgroundColor project,
designing, 515
BackgroundDownload project,
designing, 781
building responsive, Auto
Layout, 552-575
buttons
adding, 212
editing attributes, 214-215

iAD framework (Cocoa Touch), outlets and actions, creating . .
105 and connecting, 242-246 S‘g?ggﬁfom images,
IB (Interface Builder), 131-132, setting up, 233-234 . . L
165 . ColorTilt project, designing,
images 633-634

Accessibility options, 150-151

actions, connecting to,
159-161

Attributes Inspector, 149-150
Auto Layout system, 145-148

editing connections, Quick
Inspector, 161-162

editing tools, 141-145
Identity Inspector, 150-151
object identity, 163

adding to asset catalogs,
33-35

adding to buttons, 200

buttons, setting custom,
215-218

retina image assets, 35

imperative development, OOP
(object-oriented programming),
68

implementation files, 79-82

controls, segmented, 258-259

creating, 137-148

Cupertino project, updating,
745-746

customizing appearance,
148153

CustomPicker project,
designing, 404-406

DateCalc project, designing,
388-389

How can we make this index more useful? Email us at indexes@samspublishing.com

844 interfaces

disabling rotation, 642

FieldButtonFun project,
designing, 204-218

FlowerColorTable project,
designing, 473-475

FlowerWeb project, designing,
263-270

Gestures project, designing,
599-601

GettingAttention project,
designing, 302-303

HelloNoun project, designing,
182-185

ImageHop project, designing,
234-243

iPad, tweaking, 484-486

iPhone, tweaking, 486-488

keyboard hiding,
implementing, 220-224
LetsNavigate project,
designing, 440-442
LetsTab project, designing,
449-451
MediaPlayground project,
designing, 664-665
modal, 292
ModalEditor project,
designing, 356-358
orientation changes, enabling,
577
Orientation project, designing,
627-628
pickers, 373, 377-378
custom, 401-416
date, 378-379, 385-401
views, 379-385
PopoverEditor project,
designing, 366
previewing, 151-153

programatically defined,
574-583

programming, 577-582
resizable, designing, 550-552

ReturnMe project, designing,
523-525

rotatable, designing, 550-552
rotation, 590
enabling, 548-549

swapping views on,
582-590

rotation events, 624

Scroller project, designing,
280-285

scrolling options, setting, 212
scrolling views, 261, 279-288
sliders, 230
SlowCount project,
designing, 775
steppers, 230-231
Survey project, designing,
535-537
Swapper project, designing,
584-585
switches, 258
adding, 266-267
text fields
adding, 204-205
attribute traits, 207
editing attributes, 205-207
text views
adding, 209-210
editing attributes, 210-212
toolbars, 373-377
bar button items, 375-377

Universal project, designing,
796-797

UniversalToo project,
designing, 801-802

web views, 259-261

adding, 267
Xcode, 27-28
i0S

application life cycle, tracing,

109-110

devices, 1-2
application resource
constraints, 4

configuring for
development, 13-16

connectivity, 5

display and graphics, 2-3

input and feedback
mechanisms, 5

screen, accommodating
different sizes, 3

technology layers, 103
Cocoa Touch, 104-105
Core 0S, 108-109
Core Services, 106-108
Media, 105-106
version detection, 583
iOS Simulator, 23, 58-63

generating multi-touch
events, 61

Hardware menu commands,
62-64

launching applications, 59-60
rotating device, 62

iPad
interface, tweaking, 484-486

popovers, 315, 341-352,
364-370
creating segues, 343-346
displaying manually, 346
preparing, 342-343
programming displays,
349-352

responding to dismissals,
346-348

screen, 2
split view controllers, 468-469
targets, 804-805

iPhone
interface, tweaking, 486-488
screen, 2
targets, 804-805

K-L

keyboard hiding, 363

interfaces, implementing,
220-224

labels, 196
launch images, setting, 57-58
launching applications, Simulator,
59-60
LetsNavigate project
building, 445
designing interface, 440-442

outlets and actions, creating
and connecting, 442-443

push segues, creating,
440-441

setting up, 436-440
LetsTab project
application logic,
implementing, 452-455
building, 455-456
designing interface, 449-451

outlets and actions, creating
and connecting, 450-452

setting up, 446-448

libraries, IB (Interface Builder),
Object Library, 137-139

life-cycle methods,
background-aware, 761-762

listings. See code listings
local notifications

background processing,
758-759

implementing, 765-767
LocateMe, 754

location manager (Core Location),
728-730

delegate, implementing,
740-742

instance, creating, 739
preparing, 738-739
locations

accuracy and update filter,
732

adding constants, 736
compass, 744-753

data storage, 511-512
handling errors, 730-731
obtaining, 727-732

Lock command (Simulator), 63
logic, 229

Address Book, implementing,
712-717

BackgroundColor project,
implementing, 518-521

BackgroundDownload project,
implementing, 782-784

ColorTilt project,
implementing, 635-642

Cupertino project
implementing, 738-742
updating, 747-753

FieldButtonFun project,
implementing, 224-225

FlowerColorTable project,
implementing, 476-481

FlowerWeb project,
implementing, 274-278

Gestures project,
implementing, 607-616

ImageHop project,
implementing, 246-252

LetsTab project, implementing,
452-455

Maps, implementing, 717-719

ModalEditor project,
implementing, 362-363

Orientation project,
implementing, 628-630

PopoverEditor project,
implementing, 368-370

ReturnMe project,
implementing, 532-534

Scroller project, implementing,
286-287

SlowCount project,
implementing, 776-778

Media layer (i0OS) 845

Survey project, implementing
application logic, 539-543

Swapper project,
implementing, 587-589

Universal project,
implementing, 797-798

UniversalToo project,
implementing, 802

long pressing, 594

long-running background tasks,
completing, 773-780

long-running tasks, completing,
759-760

loops, 93-95

magnetic compass, 744-753

Mail, 698-700

Manage Ul framework (Cocoa
Touch), 104

manually controlling modal
segues, 333-334
manually displaying popover
segues, 346
Map Kit, 104, 724-725, 727
mapping, 702-708
annotations, 703-705
geocoding, 705-708
Maps, logic, implementing,
717-719
master scene, updating, 484-487

master view controllers,
implementing, 492-496

Master-Detail Application
template, 500

creating, 481-499
split view controllers, 471

media items, accessing, Media
Player, 654

Media layer (i0S), 105-106

How can we make this index more useful? Email us at indexes@samspublishing.com

846 Media Picker

Media Picker, 651-652
controller delegate, 652-653
displaying, 685-686
preparing, 683-684

Media Player framework, 106,

648-654

accessing media items, 654
Media Picker, 651-652

controller delegate,
652-653

Movie Player, 648-650

handling playback
completion, 650-651

implementing, 667-671
Music Player, 653-654

MediaPlayground project,
662-663

audio playback
controlling, 675-677
implementing, 674-675

audio recording, implementing,
670674

Core Image filter,
implementing, 681-682

designing interface, 664-665

Movie Player, implementing,
667-671

music libraries, accessing and
playing, 683-688

outlets and actions, creating
and connecting, 665-667

photo library, implementing,
677-681

setting up, 663-664
memory management,
Objective-C, 95-97
memory usage, monitoring, 828
messages, 70, 88-91
nested messaging, 89-90
methods, 88-91
applicationWillEnter
Foreground, 764
background-aware application
life cycle, 761-762

calculateDateDifference,
398-400

chooselmage, 677-678
class, 70
controlHardware, 637-638
convenience, 87
createFlowerData, 489, 491
createStory, 224-225
defining, 78-79
describelnteger, 815
doAcceleration, 640-641
doActionSheet, 313
doAlert, 305-306
doAttitude, 639-640
doRotation, 641-642
implementing, 81-82
incrementCount, 444
instance, 70

newBFF, 713

playAudio, 675

playMusic, 688

prepareForSegue:sender,
339-340

recordAudio, 673, 676

setBackgroundHueValue,
519-520

setincrement, 251
setSpeed, 249-251

setValuesFromPreferences,
533-534

showFromRect, 315
showResults, 541
storeSurvey, 539-540

tableView:titleForHeaderIn
Section, 466-467

toggleAnimation, 248-249
toggleFlowerDetail, 275

viewDidLoad, 275, 520-521,
815, 823-824

viewWillAppear:animated, 445

modal scene switches,
programming, 336-339

modal segues, 352-364
controlling manually, 333-334
creating, 358

modal user interfaces, 292

modal views, 323

ModalEditor project

actions and outlets, creating
and connecting, 360-361

application logic,
implementing, 362-363

building, 364

designing interface, 356-358

modal segues, creating, 358

setting up, 352-356

Model-View-Controller (MVC). See
MVC (Model-View-Controller)

motion

acceleration, detecting,
631-643

accessing data, 624-626

Core Motion, reading
acceleration, rotation, and
attitude, 624-626

hardware, 619-623
accelerometers, 620-622
gyroscopes, 622-623

managing updates, 637-638

methods, preparing, 638-639

rotation, detecting, 631-643

tilt, detecting, 631-643

motion manager (Core Motion),
624-626, 643-644

initializing, 636-637
motion sensing, Nintendo
Wii, 619
Movie Player, 648-650

handling playback completion,
650-651

implementing, 667-671
MPMedialtem class, 648
MPMedialtemCollection

class, 648
MPMediaPickerController
class, 648

MPMoviePlayerController
class, 648

MPMusicPlayerController class,
648-650

multibutton alerts, creating,
306-309

multiple targets, universal
applications, 803-805

multiscene storyboards, 322-341
preparing, 324-330
scenes
adding, 324
configuring segues,
332-333
creating segues, 330-333

manually controlling modal
segues, 333-334

naming, 326-327

passing data between,
339-341

programming modal scene
switches, 336-339

unwind segues, 334-336
view controllers, adding
supporting subclasses,
326-329
multi-touch events, generating,
Simulator, 61
multi-touch gesture recognition,
593-594
Music Player, 653-654
MVC (Model-View-Controller), 21,
167-168, 191-192
data models, 172
Single View Application
template, 173-190
creating and connecting
outlets and connections,
184-188
designing interface,
182-185
implementing application
logic, 189-190

planning properties and
connections, 179-182

setting up project,
174-179

structured application design,
168-169

view controllers, 170-172
views, 169-170

Xcode implementation,
169-172

naming scenes, 326-327
navigating
documents, 124-125
Xcode projects, 28-30
navigation bars, 424-425

navigation controllers, 423-428,
434-445, 456-457

bar button items, 424-425
storyboards, 425-428

navigation scenes, sharing data
between, 428

navigators, Xcode debugger,
826-828

nested messaging, 89-90

New Project command (File
menu), 24

newBFF method, 713

Newsstand framework (Core
Services layer), 107

NeXTSTEP, 103

Nintendo Wii, motion
sensing, 619

NSArray class, 113-114

NSDate class, 116
NSDecimalNumber class, 115-116
NSDictionary class, 114-115
NSLog function, 810-812

Objective-C Phrasebook 847

NSMutableArray class, 113-114

NSMutableDictionary class,
114-115

NSMutableString class, 113
NSNumber class, 115-116
NSObject class, 111
NSString class, 113

NSURL class, 116-117

o

Object Library (I1B), 137-139
Objective-C, 20, 67, 71-72, 97-98
ARC (Automatic Reference
Counting), 96-97
blocks, 90-91
case sensitivity, 72
categories, defining, 82-83
decision making, 91-95
expressions, 91-95
file structure, 72-84
header files, 73-80
implementation files,
79-82
loops, 93-95
memory management, 95-97
messages, 88-91
methods, 88-91
objects
allocating, 86-88
initializing, 86-88
OOP (object-oriented
programming), 67-72
protocols, creating, 84
syntax, 72
typecasting, 88
variables, declaring, 84-86
Objective-C Phrasebook, 97

How can we make this index more useful? Email us at indexes@samspublishing.com

848

object-oriented programming

(OOP). See OOP (object-oriented

programming)
objects, 70, 489
allocating, 86-88
identifying, IB (Interface

Builder), 163
initializing, 86-88
self, 71

OOP (object-oriented
programming)

classes, 69

categories, 70
imperative development, 68
instance method, 70
instance variables, 70
instantiation, 70
messages, 70
Objective-C, 67-72
objects, 70

self, 71
parameters, 70
properties, 70
singletons, 69
subclasses, 69
superclasses, 69
variables, 70

OpenGL ES framework (Media
layer), 106

OpenStep, 103

orientation
accessing data, 622-624
devices, setting, 53

interfaces, enabling changes,
577

preventing changes, 642

registering for updates,
628-629

rotation, swapping views on,
582-590

sensing, 626-631
upside-down, disabling, 584

object-oriented programming (OOP)

Orientation project, 626-631

building, 631

creating and connecting
outlet, 627

designing interface, 627-628

implementing application
logic, 628-630

setting up, 627

outlets

BackgroundColor project,
creating and connecting,
516-518

BestFriend project, creating
and connecting, 711-712

ColorTilt project, creating and
connecting, 633-635

Cupertino project, creating
and connecting, 737, 747

CustomPicker project, creating
and connecting, 406-407

DateCalc project, creating and
connecting, 391-392

FieldButtonFun project,
creating and connecting,
218219

FlowerWeb project, creating
and connecting, 270-272
Gestures project, creating and

connecting, 605-607
GettingAttention project,
creating and connecting,
303-305
HelloNoun project, creating
and connecting, 184-188
IB (Interface Builder), 156-158
ImageHop project, creating
and connecting, 242-246
LetsNavigate project, creating
and connecting, 442-443
LetsTab project, creating and
connecting, 450-452
ModalEditor project, creating
and connecting, 360-361
Orientation project, creating
and connecting, 627

PopoverEditor project, creating
and connecting, 367-368

ReturnMe project, creating
and connecting, 524

Scroller project, creating and
connecting, 285-286

SlowCount project, creating
and connecting, 776

Survey project, creating and
connecting, 536-539

Swapper project, creating and
connecting, 586

Universal project, creating and
connecting, 796-797

UniversalToo project, creating
and connecting, 802

panning, 594
parameters, 70
parent classes, 69

Pass Kit framework (Core Services
layer), 107

passing data between scenes,
339-341

people picker, Address Book,
695-697

pickers, 373, 377-378, 417-418
custom, 401-416
date, 378-379, 385-401
Image Picker, 657-660

controller delegate,
659-660

implementing, 677-681
Media Picker, 651-652

controller delegate,
652-653

displaying, 685-686
preparing, 683-684
views, 379-385
pinching, 594

plain text fields, versus attributed,

207
playAudio method, 675
playback

AV Audio Player, handling
completion, 656

Movie Player, handling
completion, 650-651

playMusic method, 688
pointers, 85-86
PopoverEditor project
application logic,
implementing, 368-370
building, 370

creating popover segue,
366-367

designing interface, 366

outlets, creating and
connecting, 367-368

setting up, 365-366
popovers, 341-352, 364-370
creating segues, 343-346

dismissals, responding to,
346-348

displaying manually, 346
iPad, 315
preparing, 342-343
programming displays,
349-352
segues, creating, 366-367
pragma marks, code, Xcode
projects, 41-42
preferences, implicit, creating,
514-522

Preferences and Settings
Programming Guide, 543

prepareForSegue:sender method,
339-340

primitive data types, 85

programatically defined
interfaces, 574-583

Programming in Objective-C 2.0,
Third Edition, 97

projects

AllinCode, 577-583
building, 582-583

enabling orientation
changes, 577

planning properties and
connections, 577

programming interface,
577-582

BackgroundColor, 544
building, 521-522

creating and connecting
outlets and actions,
516-518

designing interface, 515
implementing application
logic, 518-521
setting up, 515
BackgroundDownload
building, 784
designing interface, 781
implementing application
logic, 782-784
setting up, 780-781
BestFriend

Address Book logic,
712-717

building, 723-724

creating and connecting
outlets and actions,
711-712

implementing email logic,
720-721

implementing social
networking logic,
721-723

Maps logic, 712-717

setting to white, 723

setting up, 708-709, 745

ColorTilt, 631-632
building, 642-643

creating and connecting
outlets and actions,
633-635

projects 849

designing interface,
633-634
implementing application
logic, 635-642
setting up, 632-633
Cupertino, 735

adding background modes,
773

building, 742-743, 753

creating and connecting
outlets, 737, 747

designing view, 736-738

implementing application
logic, 738-742

preparing for audio,
768-773

setting up, 735-736,
744-745

updating application logic,
747-753

updating user interface,
745-746

CustomPicker, 401-402
building, 416

creating and connecting
outlets and actions,
406-407

creating segues, 406

designing interface,
404-406

implementing custom
picker view, 409-416

implementing scene segue
logic, 407-409

setting up, 402-403

DateCalc, 386

building, 400-401

creating and connecting
outlets and actions,
391-392

creating segue, 389-391

designing interface,
388-389

How can we make this index more useful? Email us at indexes@samspublishing.com

850 projects

implementing date
calculation logic,
396-400

implementing scene segue
logic, 393-396
setting up, 386-388
FieldButtonFun, 197
building, 225-226

creating and connecting
outlets and actions,
218-219

designing interface,
204-218
implementing application
logic, 224-225
implementing keyboard
hiding, 220-224
preparing button templates
with slicing, 199-204
setting up, 198-199
FlowerColorTable, 471-481
application logic, 476-481
building, 481

connecting delegates and
data source outlets,
474-475

designing interface,
473-475
FlowerWeb
building, 278-279

creating and connecting
actions, 271-274

creating and connecting
outlets, 270-272

designing interface,
263-270

implementing application
logic, 274-278

setting up, 263

Gestures, 596-598

adding gesture recognizers
to views, 601-605
creating and connecting

outlets and actions,
605-607

designing interface,
599-601
implementing, 607-616
implementing application
logic, 607-616
setting up, 598-599
GettingAttention

creating and connecting
actions and outlets,
303-305

designing interface,
302-303

implementing action
sheets, 313-316

implementing alert views,
305-312

setting up, 301-302

IB (Interface Builder), opening
154-155

ImageHop, 233-234
building, 252-253

creating and connecting
outlets and actions,
242-246

designing interface,
234-243
implementing application
logic, 246-252
LetsNavigate, 445

creating and connecting
outlets and actions,
442-443

creating push segues,
440-441

designing interface,
440-442

setting up, 436-440

LetsTab

building, 455-456

creating and connecting
outlets and actions,
450-452

designing interface,
449-451

implementing application
logic, 452-455
setting up, 446-448

Master-Detail Application
template, creating, 481-499

MediaPlayground, 662-663

accessing and playing
music library, 683-688

controlling audio playback,
675-677

creating and connecting
outlets and actions,
665-667

designing interface,
664-665

implementing audio
playback, 674-675

implementing audio
recording, 670-674

implementing camera,
677-681

implementing Core Image
filter, 681-682

implementing Movie
Player, 667-671

implementing photo library,
677-681

setting up, 663-664
ModalEditor
building, 364

creating and connecting
actions and outlets,
360-361

creating modal segues,
358

designing interface,
356-358
implementing application
logic, 362-363
setting up, 352-356
Orientation
building, 631

creating and connecting
outlet, 627

designing interface,
627-628
implementing application
logic, 628-630
setting up, 627
PopoverEditor
building, 370

creating and connecting
outlets, 367-368

creating popover segue,
366-367

designing interface, 366
implementing application
logic, 368-370
setting up, 365-366
ReturnMe, 544

creating and connecting,
524

creating settings bundles,
524-531

designing interface,
523-525

implementing application
logic, 532-534
setting up, 522-523
Scroller
building, 287-288

creating and connecting
outlets and actions,
285-286

designing interface,
280-285
implementing application
logic, 286-287
setting up, 279
SlowCount
building, 780

creating and connecting
outlets, 776

designing interface, 775
enabling background task
processing, 778-780

implementing application
logic, 776-778
setting up, 774-775

Survey, 544

creating and connecting
outlets and actions,
536-539

designing interface,
535-537
implementing application
logic, 539-543
setting up, 535
Swapper
building, 590

creating and connecting
outlets, 586

designing interface,
584-585
implementing application
logic, 587-589
setting up, 582-584
Universal
building, 799

creating and connecting
outlets, 796-797

designing interface,
796-797

implementing application
logic, 797-798

setting up, 796

UniversalToo, 803

creating and connecting
outlets, 802

designing interface,
801-802
implementing application
logic, 802
setting up, 799-801
Xcode

adding new code files to,
28

adding resources to, 28-32
assistant editor, 42-44
choosing type, 24-27

code completion, 38-40
creating, 24-28

managing properties, 51

relationships 851

navigating, 28-30
navigating code, 35-37
pragma marks, 41-42

removing files and
resources, 32

searching code, 40-41
properties, 70
AllinCode project, planning,
577

detailltem, 496-497

versus instance variables,
439

respecting point of, 771

Single View Application
template (MVC), planning,
179-182

protocols, 70, 75
creating, 84
pseudo preferences, 506
push segues, creating, 440-441

Q

Quartz Core framework (Media
layer), 106

Quick Help (Xcode), 125-129

Quick Inspector (IB), editing
connections, 161-162

Quick Look framework (Core
Services layer), 107

range attributes
sliders, setting, 237-239
steppers, setting, 240-241
recordAudio method, 673, 676
relationships
tab bar, creating, 448-449
view controllers, 323

How can we make this index more useful? Email us at indexes@samspublishing.com

852 resizable interfaces, designing

resizable interfaces, designing,
550-552

resources, Xcode projects
adding to, 28-32
removing, 32

responsive interfaces, 547-548

building, Auto Layout,
552-575

designing rotatable and
resizeable, 550-552

rotation, enabling, 548-549
Retina display, 2
retina image assets, 35
ReturnMe project, 544
application logic,
implementing, 532-534
designing interface, 523-525
outlets, creating and
connecting, 524
setting up, 522-523

settings bundles, creating,
524-531

tich media, 647-648, 689-691

AV Foundation framework,
655-657

Core Image framework,
660-662

Image Picker, 657-660

Media Player framework,
648-654

rotatable interfaces, designing,
550-552

rotation, 594
detecting, 631-643
interfaces, 590
enabling, 548-549

swapping views on,
582-590

reacting to, 641-642

reading, Core Motion,
624-626

swapping views on, 582-590
running first app, 17-18

S

scenes, 323
exits, 323

modal, programming switches,
336-339

multiscene storyboards,
adding to, 324

naming, 326-327

navigation, sharing data
between, 428

passing data between,
339-341

segues, 323
configuring, 332-333

controlling modal manually,
333-334

creating, 330-333, 406
creating push, 440-441
implementing logic,
393-396, 407-409
modal, 352-364
unwind, 323, 334-336

tab bar, sharing data between,
430-434

scroll views, 288-289
Scroller project

actions and outlets, creating
and connecting, 285-286

application logic,
implementing, 286-287

building, 287-288

designing interface, 280-285

setting up, 279

scrolling options, interfaces,
setting, 212

scrolling views, 261, 279-288

SDK (software development kit),
6, 321

search navigator (Xcode), 40-41

searching documentation,
121-122

Security framework (Core 0S
layer), 108

segmented controls, 258-259,
288-289

segues, 370-371
creating, 389-391, 406
modal, 352-364
creating, 358

popovers, creating, 343-346,
366-367

push, creating, 440-441
scenes
configuring, 332-333

controlling modal manually,
333-334

creating, 330-333
implementing logic,
393-396
unwind, 323, 334-336
setting delegates, 408
selection handles (IB), 142-144
services

Address Book, 693-697,
724-725

email, 698-700
mapping, 702-708

posting to social networking
sites, 700-702

setBackgroundHueValue method,
519-520

setincrement method, 251
setSpeed method, 249-251
settings bundles

creating, 524-531

data storage, 508-510

setValuesFromPreferences
method, 533-534

Shake Gesture command
(Simulator), 63

shaking devices, 594
showFromRect method, 315
showResults method, 541

Simulate Hardware Keyboard
command (Simulator), 63

Simulate Memory Warning
command (Simulator), 63

Simulator (i0S), 58-63

generating multi-touch
events, 61

Hardware menu commands,
62-64

launching applications, 59-60
rotating device, 62

Single View Application template,
table views, 471-481

Single View Application template
(MVC), 173-190

creating and connecting
outlets and connections,
184-188

designing interface, 182-185
implementing application
logic, 189-190
planning properties and
connections, 179-182
setting up project, 174-179
singletons, 69
Size Inspector (IB), 143-145

slicing, preparing button
templates, 199-204

sliders, 230, 252-253
applications, adding, 236-238

setting range attributes,
237-239

SlowCount project

background task processing,
enabling, 778-780

building, 780

creating and connecting
outlets, 776

designing interface, 775

implementing application
logic, 776-778

setting up, 774-775

Social framework (Core Services
layer), 108

social networking platforms,
posting to, 700-702

software development kit (SDK),
6, 321

split view controllers, 468-469,
499

implementing, 469-471

Master-Detail Application
template, 471

state preservation, 506
statements
if-then-else, 91-93
switch, 91-93
status bar, setting display, 54-58
steppers, 230-231, 252-253
applications, adding to,
239-240

range attributes, setting,
240-241

stepping through code, 820-822

Store Kit framework (Core
Services layer), 108

storeSurvey method, 539-540
storyboards, 323, 370-371, 421
IB (Interface Builder), 133-137
multiscene, 322-341
adding scenes, 324
configuring segues,
332-333
creating segues, 330-333

manually controlling modal
segues, 333-334

naming scenes, 326-327

passing data between
scenes, 339-341

preparing, 324-330
programming modal scene
switches, 336-339
unwind segues, 334-336
navigation controllers,
425-428
tab bar controllers, 430-434
view controllers, adding
supporting subclasses,
326-329

System Sound Services

853

strings, date format, 397

structured application design,
MVC (Model-View-Controller),
168-169

styled buttons, adding, 212
subclasses, 69
superclasses, 69
Survey project, 544
application logic,
implementing, 539-543
designing interface, 535-537

outlets and actions, creating
and connecting, 536-539

setting up, 535
suspension, background, 758
handling, 764-765
Swapper project
application logic,
implementing, 587-589
building, 590

creating and connecting
outlets, 586

interface, designing, 584-585
setting up, 582-584
swiping, 594
switch statements, 91-93
switches, 258, 288-289
adding, 266-267

modal scene, programming,
336-339
setting default state, 267
symbol navigator (Xcode), 37
syntax, Objective-C expressions,
91-95
System Configuration framework
(Core Services layer), 108
System framework (Core 0S
layer), 109
system settings, implementing,
522-534
System Sound Services, 298-300,
647

How can we make this index more useful? Email us at indexes@samspublishing.com

854 tab bar controllers

T

tab bar controllers, 429-434,
445-457

creating relationships,
448-449

storyboards, 430-434

tab bar scenes, sharing data
between, 430-434

tabbed editing, Xcode, 44
table views, 459, 471-481, 499
adding, 461-468
tables, 459-460
appearance, 460-461
attributes, setting, 462
cells, 460
creating, 493-494
disabling editing, 495
setting prototype
attributes, 463-464

tableView:titleForHeaderInSection
method, 466-467
tap gesture recognizer, 594-595
tapping, 594
targets, multiple, universal
applications, 803-805
tasks
background, 785-786
completing long-running,
773-780

enabling processing,
778-780

long-running, completion,
759-760

task-specific background
processing, 759, 768-773

technology layers (i0S), 103
Cocoa Touch, 104-105
Core 0OS, 108-109
Core Services, 106-108
Media, 105-106

templates

button, preparing with slicing,
199-204

Master-Detail Application, 500
creating, 481-499

universal applications,
791-792

text fields, 196-197, 226-227
adding, 204-205

attributed versus plain,
207-209

attributes
editing, 205-207
traits, 207
text views, 196, 226-227
adding, 209-210
attributes, editing, 210-212
tilt, detecting, 631-643

Toggle In-Call Status Bar
command (Simulator), 63

toggleAnimation method,
248-249

toggleFlowerDetail method, 275
toolbars, 373-377, 417-418
bar button items, 375-376
attributes, 376-377

touch, multi-touch gesture
recognition, 593-594

tracing
application life cycle, 109-110
applications, 809, 828-830
NSLog function, 810
TV Out command (Simulator), 63
typecasting, 88

Ul Framework, Address Book,
694-695

UlActionSheet class, 295-298
UlAlertView class, 292-295

UlApplication class, 111
UlBarButtonltem class, 375

UlButton class, 117, 195,
199-204, 231

UlControl class, 112

UlDatePicker class, 119,
377-378, 417

UlDevice class, requesting
orientation notifications through,
623-624

UlGestureRecognizer class, 617

UlimagePickerController class,
648

UlimagePickerControllerDelegate
protocol, 659-660

UllimageView class, 231, 681

UIKit framework (Cocoa Touch),
104

UlLabel class, 117, 196, 231

UlLongPressGestureRecognizer
class, 594, 617

UIPanGestureRecognizer class,
594, 617

UlPicker class, 119
UlPickerView class, 377, 417

UIPinchGestureRecognizer class,
594

UIPopoverController class, 120,
347-348, 373

UIResponder class, 112

UIRotationGestureRecognizer
class, 594

UlScrollView class, 261, 279, 288
UlScrollViewDelegate class, 288

UlSegmentedControl class, 118,
259, 288

UlSlider class, 118, 230-231,
252

UlStepper, 252
UlStepper class, 118, 230-231

UISwipeGestureRecognizer
class, 594

UlSwitch class, 118, 258, 288

UlTapGestureRecognizer class,
594

UlTextField class, 119, 196
UlTextFieldDelegate class, 226
UlTextView class, 119, 196
UlTextViewDelegate class, 226
UlView class, 112, 259
UlViewController class, 113
UlWebView class, 288
UlWindow class, 112
universal applications, 789, 805
creating, 794-803
development, 789-794
multiple targets, 804-805
setup changes, 791-794
templates, 791-792
Universal project
application logic,
implementing, 797-798
building, 799
designing interface, 796-797

outlets, creating and
connecting, 796-797

setting up, 796
UniversalToo project

application logic,
implementing, 802

building, 803

designing interface, 801-802

outlets, creating and
connecting, 802

setting up, 799-801

unwind segues, scenes, 323,
334-336

updates
motion, managing, 637-638

orientation, registering for,
628-629

upside-down orientation,
disabling, 584

user alerts, 291-319

multibutton, creating, 306-309

System Sound Services,
298-300, 316-318

views, 292-295
action sheets, 295-298
implementing, 305-312

user defaults, data storage,
507-508

user input, 195, 257-258
buttons, 195-196
implementation, 197
labels, 196
text fields, 196-197
text views, 196

user interfaces. See interfaces

user locations

accuracy and update filter,
732

adding constants, 736
compass, 744-753
handling errors, 730-731
obtaining, 727-732

Vv

variable list, Xcode debugger,
accessing, 823-824

variables, 70
declaring, 84-86
instance, 70
version detection, i0S, 583
vibrations, alerts, 317
view controllers, 323, 421-422
multiscene development, 422

MVC (Model-View-Controller),
170-172

relationships, 323
storyboards, adding
supporting subclasses,
326-329
ViewController class, 436, 446
viewDidLoad method, 275,
520-521, 815, 823-824

Xcode 855

views, 323
alert, 292-295

button press response,
309-310

fields, 310-312
implementing, 305-312
Cupertino project, designing,
736-738

gesture recognizers, adding
to, 601-605

image, 231
modal, 323

MVC (Model-View-Controller),
169-170

objects, adding to, 140-141
pickers, 379-385

rotation, swapping on,
582-590

scrolling, 261, 279-288
split view controllers, 468-469
implementing, 469-471

Master-Detail Application
template, 471

table views, 459
adding, 461-468

web, 259-261
adding, 267

viewWillAppear:animated method,
445

W- X-Y-Z

web views, 259-261, 288-289
adding, 267
Xcode, 21, 23-58, 63-64

animation resources, adding,
233

asset catalogs, 32-35
assistant editor, 42-44

How can we make this index more useful? Email us at indexes@samspublishing.com

856 Xcode

debugger, 813-828 Quick Help, 125-129
accessing variable list, Single View Application option,
823-824 174
navigators, 826-828 tabbed editing, 44
setting breakpoints, writing code with, 188
816-818 Xcode 4 Unleashed, 97
steeping through code,
820-822
devices, setting orientations,
53
documentation system,
121-125
installing, 9-12

interface, 27-28
iOS frameworks, 120-129
iOS Simulator, 58-63

generating multi-touch
events, 61
launching applications,
59-60
managing snapshots, 45

MVC (Model-View-Controller),
implementation, 169-172

projects

adding new code files
to, 28

adding resources to, 28-32

building applications,
46-51

choosing type, 24-27

code completion, 38-40

creating, 24-28

managing properties, 51

navigating, 28-30

navigating code, 35-37

pragma marks, 41-42

removing files and
resources, 32

searching code, 40-41

setting status bar display,
54-58

	Table of Contents
	Introduction
	HOUR 7: Working with Text, Keyboards, and Buttons
	Basic User Input and Output
	Using Text Fields, Text Views, and Buttons
	Further Exploration
	Summary
	Q&A
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

