FREE SAMPLE CHAPTER

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336973
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336973
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336973
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336973
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336973/Free-Sample-Chapter

Some Praise for the First Edition of Windows® Presentation Foundation Unleashed

“The Nathan book is brilliant—you’ll love it. Publishers, take note: I'd sure be buying a heck of a lot
more technical books if more of them were like this one.”
—Jeff Atwood, codinghorror.com, cofounder of Stack Overflow

“Windows Presentation Foundation Unleashed is a must-have book for anyone interested in learning
and using WPF. Buy it, read it, and keep it close to your computer.”
—Josh Smith, Microsoft MVP

“As we built the feature team that delivered the new WPF presentation layer for Visual Studio 2010,
Windows Presentation Foundation Unleashed quickly became our must-read WPF reference book of
choice, over and above other books on WPF and indeed internal documentation. Highly recommended
for any developer wanting to learn how to make the most of WPF.”

—James Bartlett, senior lead program manager, Microsoft Visual Studio

“I've bought nearly all available WPF books, but the only one that’s still on my desk is Windows
Presentation Foundation Unleashed. It not only covers all WPF aspects, but it does it in the right,
concise way so that reading it was a real pleasure.”

—Corrado Cavalli, Codeworks

“Windows Presentation Foundation Unleashed is the most insightful WPF book there is. Don’t be misled
by its size; this book has the best introduction and deepest insights. This is the must-read for anyone
getting started or wanting to get the most out of WPF.”

—Jaime Rodriguez, Microsoft client evangelist for Windows, WPF, Silverlight, and Windows Phone

“I found Windows Presentation Foundation Unleashed to be an excellent and thorough introduction and
guide to programming WPF. It is clearly written, easily understood, and yet still deep enough to get a
good understanding of how WPF works and how to use it. Not a simple feat to accomplish! | heartily
recommend it to all the students who take DevelopMentor’'s WPF course! Anyone serious about doing
WPF work should have a copy in their library.”

—Mark Smith, DevelopMentor instructor, author of DevelopMentor’s Essential WPF course

“I have read Windows Presentation Foundation Unleashed from cover to cover and have found it to be
really the most comprehensive material on WPF. | can’t think of even a single instance when | have not
been able to find the solution (or a pointer to one) every time that | have picked up the book to figure
out the intricacies of WPF.”

—Durgesh Nayak, team leader, Axis Technical Group

“Windows Presentation Foundation Unleashed is the book that made WPF make so much sense for me.
Without Adam’s work, WPF would still be a mystery to me and my team. The enthusiasm for WPF is
evident from the offset and it really rubs off on the reader.”

—Peter 0’Hanlon, managing director, Lifestyle Computing Ltd

“Adam Nathan’s Windows Presentation Foundation Unleashed must surely be considered one of the

seminal books on WPF. It has everything you need to help you get to grips with the learning cliff that
is WPF. It certainly taught me loads, and even now, after several years of full-time WPF development,
Windows Presentation Foundation Unleashed is never far from my hand.”

—Sacha Barber, Microsoft MVP, CodeProject MVP, author of many WPF articles

“Of all the books published about WPF, there are only three that | recommend. Windows Presentation
Foundation Unleashed is my primary recommendation to developers looking to get up to speed quickly
with WPF.”

—Mike Brown, Microsoft MVP, Client App Development, and president of KharaSoft, Inc.

Adam Nathan

WPF 4.5

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

WPF 4.5 Unleashed
Copyright © 2014 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33697-3

ISBN-10: 0-672-33697-9

Library of Congress Control Number: 2013939232

Printed in the United States on America

First Printing July 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of

this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Senior Project Editor
Betsy Gratner

Indexer
Erika Millen

Proofreader
Kathy Ruiz

Technical Editors
Dwayne Need
Robert Hogue
Joe Castro
Jordan Parker

Publishing Coordinator

Cindy Teeters

Cover Designer
Mark Shirar

Senior Compositor
Gloria Schurick

Contents at a Glance

Part |

Part Il
4

0w N O O

Part 11l

10
11

Part IV
12
13
14

Part V
15
16
17
18

Part Vi
19

20

21

22

A

Introduction

Background
Why WPF?
XAML Demystified
WPF Fundamentals

Building a WPF Application

Sizing, Positioning, and Transforming Elements
Layout with Panels

Input Events: Keyboard, Mouse, Stylus, and Touch
Structuring and Deploying an Application
Exploiting Windows Desktop Features

Controls
Content Controls
Items Controls

Images, Text, and Other Controls

Features for Professional Developers
Resources

Data Binding

Styles, Templates, Skins, and Themes

Rich Media
2D Graphics
3D Graphics
Animation

Audio, Video, and Speech

Advanced Topics

Interoperability with Non-WPF Technologies
User Controls and Custom Controls

Layout with Custom Panels

Toast Notifications

Fun with XAML Readers and Writers

Index

17
S5S

77
97
141
177
217

241
255
309

341
361
415

473
535
605
651

671
717
747
771
783
799

Table of Contents

Part |

Introduction

Who Should Read This Book?
Software Requirements

Code Examples

How This Book Is Organized
Conventions Used in This Book

Background

Why WPF?

A Look at the Past
Enter WPF

The Evolution of WPF
Summary

XAML Demystified

XAML Defined

Elements and Attributes
Namespaces

Property Elements

Type Converters

Markup Extensions
Children of Object Elements

Mixing XAML with Procedural Code

XAML2009
XAML Keywords
Summary

WPF Fundamentals

A Tour of the Class Hierarchy
Logical and Visual Trees
Dependency Properties
Summary

AN W w N R

12
16

17

19
20
22
25
26
28
31
36
44
49
52

55

55
57
62
76

Part Il

Contents

Building a WPF Application

Sizing, Positioning, and Transforming Elements

Controlling Size
Controlling Position
Applying Transforms
Summary

Layout with Panels

Canvas

StackPanel

WrapPanel

DockPanel

Grid

Primitive Panels

Handling Content Overflow

Putting It All Together: Creating a Visual Studio-Like
Collapsible, Dockable, Resizable Pane

Summary

Input Events: Keyboard, Mouse, Stylus, and Touch

Routed Events
Keyboard Events
Mouse Events
Stylus Events
Touch Events
Commands
Summary

Structuring and Deploying an Application

Standard Desktop Applications
Navigation-Based Desktop Applications
Gadget-Style Applications

XAML Browser Applications

Loose XAML Pages

Summary

Exploiting Windows Desktop Features
Jump Lists

Taskbar Item Customizations

Aero Glass

TaskDialog

Summary

77

78
83
86
95

97

98
100
102
105
108
120
122

130
140

141

141
150
152
156
158
170
176

177

177
193
205
207
213
215

217

217
229
233
236
239

vi WPF 4.5 Unleashed

Part Il

9

10

11

Part IV

12

13

Controls

Content Controls

Buttons

Simple Containers
Containers with Headers
Summary

Items Controls

Common Functionality
Selectors

Menus

Other Items Controls
Summary

Images, Text, and Other Controls

The Image Control
Text and Ink Controls
Documents

Range Controls
Calendar Controls
Summary

Features for Professional Developers

Resources

Binary Resources
Logical Resources
Summary

Data Binding

Introducing the Binding Object

Controlling Rendering

Customizing the View of a Collection

Data Providers

Advanced Topics

Putting It All Together: The Pure-XAML Twitter Client
Summary

241

243
248
252
254

255

256
261
298
302
308

309

309
311
318
334
336
340

341

341
349
360

361

361
373
385
396
403
412
414

14

Part V

15

16

17

18

Contents

Styles, Templates, Skins, and Themes
Styles

Templates

Skins

Themes

Summary

Rich Media

2D Graphics

Drawings

Visuals

Shapes

Brushes

Effects

Improving Rendering Performance
Summary

3D Graphics

Getting Started with 3D Graphics

Cameras and Coordinate Systems
Transform3D

Model3D

Visual3D

Viewport3D

2D and 3D Coordinate System Transformation
Summary

Animation

Animations in Procedural Code
Animations in XAML

Keyframe Animations

Easing Functions

Animations and the Visual State Manager
Summary

Audio, Video, and Speech
Audio

Video

Speech

Summary

Vil

415

416
430
458
465
470

473

474
491
503
511
527
530
533

535

536
540
552
561
584
591
594
603

605

606
619
628
635
641
649

651

651
656
662
669

viii

WPF 4.5 Unleashed

Part VI

19

20

21

22

Advanced Topics

Interoperability with Non-WPF Technologies

Embedding Win32 Controls in WPF Applications
Embedding WPF Controls in Win32 Applications
Embedding Windows Forms Controls in WPF Applications
Embedding WPF Controls in Windows Forms Applications

Mixing DirectX Content with WPF Content

Embedding ActiveX Controls in WPF Applications

Summary

User Controls and Custom Controls

Creating a User Control
Creating a Custom Control
Summary

Layout with Custom Panels

Communication Between Parents and Children
Creating a SimpleCanvas

Creating a SimpleStackPanel

Creating an OverlapPanel

Creating a FanCanvas

Summary

Toast Notifications

Prerequisites

Sending a Toast Notification
Toast Templates
Notification Events
Scheduled Notifications
Summary

Fun with XAML Readers and Writers

Overview

The Node Loop
Reading XAML
Writing to Live Objects
Writing to XML
XamlServices

Index

671

673
688
695
700
704
710
714

717

719
728
746

747

748
751
756
759
764
769

771

771
774
775
778
779
780

783

783
786
787
791
793
794

799

About the Author

Adam Nathan is a principal software architect for Microsoft in the Startup Business
Group. Adam was previously the founding developer and architect for Popfly, Microsoft's
first product built on Silverlight, named one of the 25 most innovative products of 2007
by PCWorld Magazine. Having started his career on Microsoft’s Common Language
Runtime team, Adam has been at the core of .NET and WPF technologies since the very
beginning.

Adam’s books have been considered required reading by many inside Microsoft and
throughout the industry. He is the author of the best-selling WPF Unleashed (Sams, 2006)
that was nominated for a 2008 Jolt Award, WPF 4 Unleashed (Sams, 2010), Windows 8 Apps
with XAML and C# Unleashed (Sams, 2012), 101 Windows Phone 7 Apps (Sams, 2011),
Silverlight 1.0 Unleashed (Sams, 2008), and .NET and COM: The Complete Interoperability
Guide (Sams, 2002); a coauthor of ASP.NET: Tips, Tutorials, and Code (Sams, 2001); and a
contributor to books including .NET Framework Standard Library Annotated Reference,
Volume 2 (Addison-Wesley, 2005) and Windows Developer Power Tools (O’Reilly, 2006).
Adam is also the creator of PINVOKE.NET and its Visual Studio add-in. You can find him
online at www.adamnathan.net or @adamnathan on Twitter.

http://www.adamnathan.net

Dedication

To Tyler and Ryan.

Acknowledgments

Although most of the process of writing a book is very solitary, this book came together
because of the work of many talented and hard-working people. I'd like to take a moment
to thank some of them by name.

I'd like to sincerely thank Dwayne Need, senior development manager from the WPF
team. His feedback on my drafts was so thorough and insightful, the book is far better
because of him. I'd like to thank Robert Hogue, Joe Castro, and Jordan Parker for their
helpful reviews. David Teitlebaum, 3D expert from the WPF team, deserves many thanks
for agreeing to update the great 3D chapter originally written by Daniel Lehenbauer.
Having Daniel’s and David’s perspectives and advice captured on paper is a huge benefit
for any readers thinking about dabbling in 3D.

I'd also like to thank (in alphabetical order): Chris Brumme, Eileen Chan, Brian Chapman,
Beatriz de Oliveira Costa, Joe Duffy, Ifeanyi Echeruo, Dan Glick, Neil Kronlage, Rico
Mariani, Mike Mueller, Oleg Ovetchkine, Lori Pearce, S. Ramini, Rob Relyea, Tim Rice,

Ben Ronco, Eric Rudder, Adam Smith, Tim Sneath, David Treadwell, and Paramesh
Vaidyanathan.

I'd like to thank the folks at Sams—especially Neil Rowe and Betsy Gratner, who are always
a pleasure to work with. I couldn’t have asked for a better publishing team. Never once was
I told that my content was too long or too short or too different from a typical Unleashed
title. They gave me the complete freedom to write the kind of book I wanted to write.

I'd like to thank my mom, dad, and brother for opening my eyes to the world of
computer programming when I was in elementary school. If you have children, please
expose them to the magic of writing software while they're still young enough to care
about what you have to say!

Finally, I thank you for picking up a copy of this book and reading at least this far! I hope
you continue reading and find the journey of exploring WPF 4.5 as fascinating as I have!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

You can email or write me directly to let me know what you did or didn't like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Thank you for picking up WPF 4.5 Unleashed! Windows Presentation Foundation (WPF) is
Microsoft’s premier technology for creating Windows desktop apps, whether they consist
of plain forms, document-centric windows, animated cartoons, videos, immersive 3D envi-
ronments, or all of the above. WPF is a technology that makes it easier than ever to create
a broad range of applications. It’s also the basis for XAML-based Windows Store apps.

Ever since WPF was publicly announced ten years ago (with the code name “Avalon”), it
has gotten considerable attention for the ways in which it revolutionizes the process of
creating software—especially for Windows programmers used to Windows Forms and
GDI. It’s relatively easy to create fun, useful, and shareable WPF samples that demonstrate
all kinds of techniques that are difficult to accomplish in other technologies. WPF 4.5,
released in August 2012, continues to improve on previous versions of WPF in many
different dimensions.

WPF is quite a departure from previous technologies in terms of its programming model,
underlying concepts, and basic terminology. Even viewing the source code for WPF (by
cracking open its components with a tool such as .NET Reflector) is a confusing experi-
ence because the code you're looking for often doesn’t reside where you’d expect to find
it. When you combine all this with the fact that there are often several ways to accom-
plish any task in WPF, you arrive at a conclusion shared by many: WPF has a very steep
learning curve.

That’s where this book comes in. As WPF was developed, it was obvious that there would
be no shortage of WPF books in the marketplace. But it wasn't clear to me that the books
would have the right balance to guide people through the technology and its unique
concepts while showing practical ways to exploit it. Therefore, I wrote the first edition of
this book, Windows Presentation Foundation Unleashed, with the following goals in mind:

» To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

» To answer the questions most people have when learning the technology and to
show how commonly desired tasks are accomplished

» To be an authoritative source, thanks to input from members of the WPF team who
designed, implemented, and tested the technology

» To be clear about where the technology falls short rather than selling the technol-
ogy as the answer to all problems

» To be an easily navigated reference that you can constantly come back to

The first two editions of this book were far more successful than I ever imagined they
would be. Now, more than six years after the first edition, I believe that this book accom-
plishes all the same goals but with even more depth and in the context of the modern

2 WPF 4.5 Unleashed

Windows experience that includes Windows Store apps and a different design aesthetic.
Whether you’re new to WPF or a long-time WPF developer, I hope you find this book to
exhibit all these attributes.

Who Should Read This Book?

This book is for software developers who are interested in creating user interfaces for the
Windows desktop. Regardless of whether you're creating line-of-business applications,
consumer-facing applications, or reusable controls, this book contains a lot of content
that helps you get the most out of the platform. It’s designed to be understandable even
for folks who are new to the .NET Framework. And if you are already well versed in WPF,
I'm confident that this book still has information for you. At the very least, it should be
an invaluable reference for your bookshelf.

Because the technology and concepts behind WPF are the same ones behind Silverlight
and XAML-based Windows Store apps, reading this book can also make you a better
developer for Windows Phone and the Windows Store.

Although this book’s content is not optimized for graphic designers, reading this book
can be a great way to understand more of the “guts” behind a product like Blend for
Visual Studio.

To summarize, this book does the following:

» Covers everything you need to know about Extensible Application Markup
Language (XAML), the XML-based language for creating declarative user interfaces
that can be easily restyled

» Examines the WPF feature areas in incredible depth: controls, layout, resources, data
binding, styling, graphics, animation, and more

» Delves into topics that aren’t covered by most books: 3D, speech, audio/video, docu-
ments, effects, and more

» Shows how to create popular user interface elements and leverage built-in controls
such as the new Office-style Ribbon

» Demonstrates how to create sophisticated user interface mechanisms, such as Visual
Studio-like collapsible/dockable panes

» Explains how to develop and deploy all types of applications, including navigation-
based applications, applications hosted in a web browser, and applications with
great-looking nonrectangular windows

» Explains how to create first-class custom controls for WPF

» Demonstrates how to create hybrid WPF software that leverages Windows Forms,
DirectX, ActiveX, or other non-WPF technologies

» Explains how to exploit desktop features in WPF applications, such as Jump Lists
and taskbar customizations, and the same toast notifications used by Windows
Store apps

Introduction 3

This book doesn’t cover every last bit of WPE. (In particular, XML Paper Specification
[XPS] documents, which never really took off, are given only a small bit of attention.)
WPF’s surface area is so large that I don’t believe any single book can. But I think you’ll
be pleased with the breadth and depth achieved by this book.

Examples in this book appear in XAML and C#, plus C++/CLI for interoperability discus-
sions. XAML is used heavily for a number of reasons: It’s often the most concise way to
express source code, it can often be pasted into lightweight tools to see instant results
without any compilation, WPF-based tools generate XAML rather than procedural code,
and XAML is applicable no matter what .NET language you use, such as Visual Basic
instead of C#. Whenever the mapping between XAML and a language such as C# is not
obvious, examples are shown in both representations.

Software Requirements

This book targets version 4.5 of Windows Presentation Foundation, the corresponding
Windows SDK, and Visual Studio 2012.

The following software is required:
» A version of Windows that supports the .NET Framework 4.5.

» The .NET Framework 4.5, which is installed by default starting with Windows 8. For
earlier versions of Windows, you can download the .NET Framework 4.5 for free
from http://msdn.com.

In addition, the following software is recommended:

» The Windows Software Development Kit (SDK), specifically the .NET tools it
includes. This is also a free download from http://msdn.com.

» Visual Studio 2012 or later, which can be a free Express edition downloaded from
http://msdn.com.

If you want additional tool support for WPF-based graphic design, Blend for Visual Studio
can be extremely helpful.

A few examples are specific to features introduced in Windows Vista, Windows 7, and
Windows 8. Some examples require a touchscreen (or an equivalent touch digitizer). The
rest of the book applies equally to all relevant versions of Windows.

Code Examples

The source code for examples in this book can be downloaded from http://informit.com/
title/9780672336973 or http://adamnathan.net/wpf.

http://msdn.com
http://msdn.com
http://msdn.com
http://informit.com/title/9780672336973
http://informit.com/title/9780672336973
http://adamnathan.net/wpf

4 WPF 4.5 Unleashed

How This Book Is Organized

This book is arranged into six main parts, representing the progression of feature areas
that you typically need to understand to use WPF effectively. But if you're dying to jump
ahead and learn about a topic such as 3D or animation, the book is set up to allow for
nonlinear journeys as well. The following sections provide a summary of each part.

Part I: Background

This part includes the following chapters:

» Chapter 1: Why WPF?

» Chapter 2: XAML Demystified

» Chapter 3: WPF Fundamentals
Chapter 1 introduces WPF by comparing it to alternative technologies and helping you
make decisions about when WPF is appropriate for your needs. Chapter 2 explores XAML
in great depth, giving you the foundation to understand the XAML you'll encounter in

the rest of the book and in real life. Chapter 3 highlights the most unique pieces of WPF’s
programming model above and beyond what .NET programmers already understand.

Part 1l: Building a WPF Application

This part includes the following chapters:
» Chapter 4: Sizing, Positioning, and Transforming Elements
» Chapter 5: Layout with Panels
» Chapter 6: Input Events: Keyboard, Mouse, Stylus, and Touch
» Chapter 7: Structuring and Deploying an Application

» Chapter 8: Exploiting Windows Desktop Features

Part II equips you with the knowledge to assemble and deploy a traditional-looking applica-
tion (although some fancier effects, such as transforms and nonrectangular windows, are
also covered). Chapters 4 and 5 discuss arranging controls (and other elements) in a user
interface. Chapter 6 covers input events, including support for engaging touch user inter-
faces. Chapter 7 examines several different ways to package and deploy WPF-based user
interfaces to make complete applications. Chapter 8 ends this part by showing slick ways to
exploit features in the Windows desktop that can help make your application look modern.

Part 1ll: Controls
This part includes the following chapters:

» Chapter 9: Content Controls
» Chapter 10: Items Controls

» Chapter 11: Images, Text, and Other Controls

Introduction 5

Part III provides a tour of controls built into WPE. There are many that you’d expect to
have available, plus several that you might not expect. Two categories of controls—
content controls (Chapter 9) and items controls (Chapter 10)—are important and deep
enough topics to merit their own chapters. The rest of the controls are examined in
Chapter 11.

Part IV: Features for Professional Developers
This part includes the following chapters:

» Chapter 12: Resources
» Chapter 13: Data Binding
» Chapter 14: Styles, Templates, Skins, and Themes

The features covered in Part IV are not always necessary to use in WPF applications, but
they can greatly enhance the development process. Therefore, they are indispensable for
professional developers who are serious about creating maintainable and robust applica-
tions or components. These topics are less about the results visible to end users than they
are about the best practices for accomplishing these results.

Part V: Rich Media

This part includes the following chapters:
» Chapter 15: 2D Graphics
» Chapter 16: 3D Graphics
» Chapter 17: Animation

» Chapter 18: Audio, Video, and Speech

This part of the book covers the features in WPF that typically get the most attention. The
support for 2D and 3D graphics, animation, video, and more enable you to create a stun-
ning experience. These features—and the way they are exposed—set WPF apart from
previous systems. WPF lowers the barrier to incorporating such content in your software,
so you might try some of these features that you never would have dared to try in the
past!

Part VI: Advanced Topics

This part includes the following chapters:
» Chapter 19: Interoperability with Non-WPF Technologies
» Chapter 20: User Controls and Custom Controls

» Chapter 21: Layout with Custom Panels

v

Chapter 22: Toast Notifications

6 WPF 4.5 Unleashed

The topics covered in Part VI are relevant for advanced application developers, or devel-

opers of WPF-based controls. The fact that existing WPF controls can be radically restyled
greatly reduces the need for creating custom controls. The final chapter is especially inter-
esting because it enables your WPF apps to use a feature designed for Windows Store apps.

Conventions Used in This Book

Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occa-
sionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and command
samples, as well as filenames. In code listings, italic monospace type is
used for placeholder text.

Code listings are colorized similar to the way they are colorized in Visual Studio.
Blue monospace type is used for XML elements and C#/C++ keywords, brown
monospace type is used for XML element names and C#/C++ strings, green
monospace type is used for comments, red monospace type is used for XML
attributes, and teal monospace type is used for type names in C# and C++.

Throughout this book, you’ll find a number of sidebar elements:

DIGGING DEEPER

Q What is a FAQ sidebar? A Digging Deeper sidebar presents advanced or

more detailed information on a subject than is
provided in the surrounding text. Think of Dig-
ging Deeper material as stuff you can look into
if you're curious but can ignore if you're not.

A FAQ sidebar presents a question
readers might have regarding the subject
matter in a particular spot in the book—and
then provides a concise answer.

A tip is a bit of information that can help A warning alerts you to an action or a

you in a real-world situation. Tips often offer condition that can lead to an unexpected
shortcuts or alternative approaches to or unpredictable result—and then tells you
produce better results or to make a task how to avoid it.

easier or quicker.

This page intentionally left blank

CHAPTER 3
WPF Fundamentals

To finish Part I, “Background,” and before moving on to
the really fun topics, it’s helpful to examine some of the
main concepts that WPF introduces above and beyond
what .NET programmers are already familiar with. The
topics in this chapter are some of the main culprits respon-
sible for WPF’s notoriously steep learning curve. By famil-
iarizing yourself with these concepts now, you'll be able to
approach the rest of this book (or any other WPF docu-
mentation) with confidence.

Some of this chapter’s concepts are unique to WPF (such as
logical and visual trees), but others are just extensions of
concepts that should be quite familiar (such as properties).
As you learn about each one, you'll see how to apply it to a
very simple piece of user interface that most programs
need—an About dialog.

A Tour of the Class Hierarchy

WPF’s classes have a very deep inheritance hierarchy, so it
can be hard to get your head wrapped around the signifi-
cance of various classes and their relationships. A handful
of classes are fundamental to the inner workings of WPF
and deserve a quick explanation before we get any further
in the book. Figure 3.1 shows these important classes and
their relationships.

These 12 classes have the following significance:

» Object—The base class for all .NET classes and the
only class in the figure that isn’t WPF specific.

IN THIS CHAPTER

A Tour of the Class Hierarchy
Logical and Visual Trees

Dependency Properties

56

CHAPTER 3 WPF Fundamentals

UIElement ContentElement
FrameworkElement FrameworkContentElement

2D

3D Documents

FIGURE 3.1 The core classes that form the foundation of WPF.

DispatcherObject—The base class meant for any object that wishes to be accessed
only on the thread that created it. Most WPF classes derive from DispatcherObject
and are therefore inherently thread-unsafe. The Dispatcher part of the name refers
to WPF’s version of a Win32-like message loop, discussed further in Chapter 7,
“Structuring and Deploying an Application.”

DependencyObject—The base class for any object that can support dependency
properties, one of the main topics in this chapter.

Freezable—The base class for objects that can be “frozen” into a read-only state for
performance reasons. Freezables, once frozen, can be safely shared among multiple
threads, unlike all other DispatcherObjects. Frozen objects can never be unfrozen,
but you can clone them to create unfrozen copies. Most Freezables are graphics
primitives such as brushes, pens, and geometries or animation classes.

visual—The base class for all objects that have their own 2D visual representation.
Visuals are discussed in depth in Chapter 15, “2D Graphics.”

UIElement—The base class for all 2D visual objects with support for routed events,
command binding, layout, and focus. These features are discussed in Chapter 5,
“Layout with Panels,” and Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and
Touch.”

visual3D—The base class for all objects that have their own 3D visual representa-
tion. Visual3dDs are discussed in depth in Chapter 16, “3D Graphics.”

UIElement3D—The base class for all 3D visual objects with support for routed events,
command binding, and focus, also discussed in Chapter 16.

ContentElement—A base class similar to UIElement but for document-related pieces
of content that don’t have rendering behavior on their own. Instead,

Logical and Visual Trees 57

ContentElements are hosted in a Visual-derived class to be rendered on the screen.
Each ContentElement often requires multiple Visuals to render correctly (spanning
lines, columns, and pages).

» FrameworkElement—The base class that adds support for styles, data binding,
resources, and a few common mechanisms for controls, such as tooltips and context
menus.

> FrameworkContentElement—The analog to FrameworkElement for content. Chapter
11, “Images, Text, and Other Controls,” examines the FrameworkContentElements in
WPF.

» Control—The base class for familiar controls such as Button, ListBox, and
StatusBar. Control adds many properties to its FrameworkElement base class, such
as Foreground, Background, and FontSize, as well as the ability to be completely
restyled. Part III, “Controls,” examines WPF’s controls in depth.

Throughout the book, the simple term element is used to refer to an object that

derives from UIElement or FrameworkElement, and sometimes ContentElement or
FrameworkContentElement. The distinction between UIElement and FrameworkElement or
between ContentElement and FrameworkContentElement is not important because WPF
doesn’t ship any other public subclasses of UIELement and ContentElement.

Logical and Visual Trees

XAML is natural for representing a user interface because of its hierarchical nature. In
WPF, user interfaces are constructed from a tree of objects known as a logical tree.

Listing 3.1 defines the beginnings of a hypothetical About dialog, using a Window as the
root of the logical tree. The Window has a StackPanel child element (described in Chapter
5) containing a few simple controls plus another StackPanel that contains Buttons.

LISTING 3.1 A Simple About Dialog in XAML

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
Title="About WPF 4.5 Unleashed" SizeToContent="WidthAndHeight"
Background="0OrangeRed">
<StackPanel>
<Label FontWeight="Bold" FontSize="20" Foreground="White">
WPF 4.5 Unleashed
</Label>
<Label>® 2013 SAMS Publishing</Label>
<Label>Installed Chapters:</Label>
<ListBox>
<ListBoxItem>Chapter 1</ListBoxItem>
<ListBoxItem>Chapter 2</ListBoxItem>
</ListBox>

58 CHAPTER 3 WPF Fundamentals

LISTING 3.1 Continued

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<Button MinWidth="75" Margin="10">Help</Button>
<Button MinWidth="75" Margin="10">0K</Button>
</StackPanel>
<StatusBar>You have successfully registered this product.</StatusBar>
</StackPanel>

</Window>

Figure 3.2 shows the rendered dialog (which you can =

easily produce by pasting the content of Listing 3.1

into a tool such as the XAMLPAD2009 sample from WPF 4.5 Unleashed

the previous chapter), and Figure 3.3 illustrates the
logical tree for this dialog.

Chapter 1
Note that a logical tree exists even for WPF user inter-

faces that aren’t created in XAML. Listing 3.1 could be EE S
implemented entirely in C#, and the logical tree
would be identical.

The logical tree concept is straightforward, but why FIGURE 3.2 The rendered
should you care about it? Because just about every dialog from Listing 3.1.

aspect of WPF (properties, events, resources, and so on)

has behavior tied to the logical tree. For example, property values are sometimes propa-
gated down the tree to child elements automatically, and raised events can travel up or
down the tree. This behavior of property values is discussed later in this chapter, and this
behavior of events is discussed in Chapter 6.

StackPanel

StatusBar

FIGURE 3.3 The logical tree for Listing 3.1.

The logical tree exposed by WPF is a simplification of what is actually going on when the
elements are rendered. The entire tree of elements actually being rendered is called the

Logical and Visual Trees 59

visual tree. You can think of the visual tree as an expansion of a logical tree, in which
nodes are broken down into their core visual components. Rather than leaving each
element as a “black box,” a visual tree exposes the visual implementation details. For
example, although a ListBox is logically a single control, its default visual representation
is composed of more primitive WPF elements: a Border, two ScrollBars, and more.

Not all logical tree nodes appear in the
visual tree; only the elements that derive

from System.Windows.Media.Visual or Some lightweight XAML viewers, such as the
System.Windows.Media.Visual3D are XamlIPadX tool mentioned in the preceding
included. Other elements (and simple chapter, have functionality for exploring the
string content, as in Listing 3.1) are not visual tree (and property values) for the

included because they don’t have inher- objects that it renders from XAML.
ent rendering behavior of their own.

Figure 3.4 illustrates the default visual tree for Listing 3.1. This diagram exposes some inner
components of the user interface that are currently invisible, such as the ListBox’s two
ScrollBars and each Label’s Border. It also reveals that Button, Label, and ListBoxItem are
all composed of the same elements. (These controls have other visual differences as the
result of different default property values. For example, Button has a default Margin of 10
on all sides, whereas Label has a default Margin of 0.)

Because they enable you to peer inside the deep composition of WPF elements, visual trees
can be surprisingly complex. Fortunately, although visual trees are an essential part of the
WPF infrastructure, you often don’t need to worry about them unless you're radically
restyling controls (covered in Chapter 14, “Styles, Templates, Skins, and Themes”) or
doing low-level drawing (covered in

Chapter 15). Writing code that depends
on a specific visual tree for a Button, for
example, breaks one of WPF’s core
tenets—the separation of look and logic.
When someone restyles a control such as Whereas a logical tree is static without
Button using the techniques described in programmer intervention (such as dynami-
Chapter 14, its entire visual tree is cally adding/removing elements), a visual

replaced with something that could be trefa gan changg simply b.ecause a user
. switches to a different Windows theme!
completely different. _ Y,

Avoid writing code that depends on a
specific visual tree!

However, you can easily traverse both the logical and visual trees using the somewhat
symmetrical System.Windows.LogicalTreeHelper and System.Windows.Media.
VisualTreeHelper classes. Listing 3.2 contains a code-behind file for Listing 3.1 that,
when run under a debugger, outputs a simple depth-first representation of both the logical
and visual trees for the About dialog. (This requires adding x:Class="AboutDialog" and
the corresponding xmlns:x directive to Listing 3.1 in order to hook it up to this procedural
code.)

60 CHAPTER 3 WPF Fundamentals

AdornerDecorator

ContentPresenter

(Border J

I
[C J [C J [C J [Border] [Border J [IlemsPresenter]
| | I | | |
[TextBlock J [TextBlock J [TextBlock J [cunmeresemer] [ConteanresemerJ [DockPanel]

| | | |
[Rectangle) [ScrollCon(enthesen(el) (_ ScrollBar) [ScrollBar J [TextBlock) [TextBlock) [SlalusBarltemJ

AdornerLayer

ItemsPresenter

VirtualizingStackPanel

ContentPresenter

TextBlock

[ConlentPresemer) [Conleanresenler)

TextBlock TextBlock

FIGURE 3.4 The visual tree for Listing 3.1, with logical tree nodes emphasized.

LISTING 3.2 Walking and Printing the Logical and Visual Trees

using System;

using System.Diagnostics;
using System.Windows;

using System.Windows.Media;

public partial class AboutDialog : Window
{
public AboutDialog()
{
InitializeComponent();
PrintLogicalTree(0, this);

protected override void OnContentRendered(EventArgs e)

{
base.OnContentRendered(e);
PrintVisualTree (0, this);

Logical and Visual Trees 61

LISTING 3.2 Continued
I3

void PrintLogicalTree(int depth, object obj)

{
/] Print the object with preceding spaces that represent its depth
Debug.WriteLine(new string(' ', depth) + obj);

// Sometimes leaf nodes aren't DependencyObjects (e.g. strings)
if (!(obj is DependencyObject)) return;

/| Recursive call for each logical child

foreach (object child in LogicalTreeHelper.GetChildren(
obj as DependencyObject))
PrintLogicalTree(depth + 1, child);

void PrintVisualTree(int depth, DependencyObject obj)

{
// Print the object with preceding spaces that represent its depth
Debug.WriteLine(new string(' ', depth) + obj);

/| Recursive call for each visual child
for (int 1 = 0; 1 < VisualTreeHelper.GetChildrenCount(obj); i++)
PrintVisualTree(depth + 1, VisualTreeHelper.GetChild(obj, i));

When calling these methods with a depth of 0 and the current Window instance, the result
is a text-based tree with exactly the same nodes shown in Figures 3.2 and 3.3. Although
the logical tree can be traversed within Window’s constructor, the visual tree is empty until
the Window undergoes layout at least once. That is why PrintVisualTree is called within
OnContentRendered, which doesn’t get called until after layout occurs.

Visual trees like the one represented in Figure 3.4 are often referred to simply as element
trees, because they encompass both elements in the logical tree and elements specific to
the visual tree. The term visual tree is then used to describe any subtree that contains
visual-only (illogical?) elements. For example, most people would say that Window’s

default visual tree consists of a Border, an AdornerDecorator, an AdornerLayer, a
ContentPresenter, and nothing more. In Figure 3.4, the top-most StackPanel is generally
not considered to be the visual child of the ContentPresenter, despite the fact that

VisualTreeHelper presents it as one.
. J

62 CHAPTER 3 WPF Fundamentals

In the Visual Studio debugger, you can click the little magnifying glass next to an instance of
a Visual-derived variable to invoke WPF Visualizer, as shown in Figure 3.5. This enables you
to navigate and visualize the visual tree.

Visual Tree Properties of : Border
|search |[PrevINext]Ciear] Filter |[ctear]
4 AboutDialog % Name -~ Value Source StyleValue Declared Type ~
4 :Border AcceptsReturn False Default System.Windows.In
4 : AdomerDecorator ActualHeight 19436 Local <notset> SystemWindows.Fre
4 ; ContentPresenter
4 2 StackPane] ActualWidth 2459633333 local <notset> SystemWindows.Frz
4 :Label AllowDrap Falsz Default System.Windows.UlE
4 :Border AnnotationAlternates 0 Default System.Windows.Da
4 :ContentPresenter
 Tatilodk AreAnyTouchesCaptured False Default System Windows.UlE
4 :label AreAnyTouchesCapturedWithin ~False Default System.Windows.UlE
4 _:Border = AreAnyTouchesDirectlyOver False Default System Windows.UlE
Rendering of : Border AreAnyTouchesOver False Default System.Windows.UlE
| OrangeRed Parent] System.Windows.Co
BetweenShowDela) 100 Default System.Windows.Co
WPF 4.5 Unleashed " o e
BindingGroup null Default System.Windows.Frz
BitmapEffect null Default System.Windows.UIE
BitmapEffectinput null Default System.Windows.UlE
Chapter 1 i Unspeci Default System.Windows.Me
Chapter2 BorderBrush null Parentl System.Windows.Co
BorderThickness 0000 Parentl System.Windows.Co
[t QoK] Cachetode ol Defaut systemWindows Ul
You have successfully registered this product. Capitals Normal Default SystemWindews.Da
< >

FIGURE 3.5 The WPF Visualizer in Visual Studio reveals the visual tree and details about
each element.
. J

Navigating either tree can sometimes be done with instance methods on the elements
themselves. For example, the Visual class contains three protected members
(vVisualParent, VisualChildrenCount, and GetVisualChild) for examining its visual
parent and children. FrameworkElement, the common base class for controls such as
Button and Label, and its peer FrameworkContentElement both define a public Parent
property representing the logical parent and a protected LogicalChildren property for the
logical children. Subclasses of these two classes often publicly expose their logical chil-
dren in a variety of ways, such as in a public Children collection. Some classes, such as
Button and Label, expose a Content property and enforce that the element can have only
one logical child.

Dependency Properties

WPF introduces a type of property called a dependency property that is used throughout the
platform to enable styling, automatic data binding, animation, and more. You might first
meet this concept with skepticism, as it complicates the picture of .NET types having
simple fields, properties, methods, and events. But when you understand the problems
that dependency properties solve, you will likely accept them as a welcome addition.

Dependency Properties 63

A dependency property depends on multiple providers for determining its value at any
point in time. These providers could be an animation continuously changing its value, a
parent element whose property value propagates down to its children, and so on.
Arguably the biggest feature of a dependency property is its built-in ability to provide
change notification.

The motivation for adding such intelligence to properties is to enable rich functionality
directly from declarative markup. The key to WPF’s declarative-friendly design is its heavy
use of properties. Button, for example, has more than 100 public properties (most of
which are inherited from Control and its base classes)! Properties can be easily set in
XAML (directly or by using a design tool) without any procedural code. But without the
extra plumbing in dependency properties, it would be hard for the simple action of
setting properties to get the desired results without the need to write additional code.

In this section, we briefly look at the implementation of a dependency property to make
this discussion more concrete, and then we dig deeper into some of the ways that depen-
dency properties add value on top of plain .NET properties:

» Change notification
» Property value inheritance

» Support for multiple providers

Understanding most of the nuances of dependency properties is usually important only
for custom control authors. However, even casual users of WPF need to be aware of what
dependency properties are and how they work. For example, you can only style and
animate dependency properties. After working with WPF for a while, you might find
yourself wishing that all properties would be dependency properties!

A Dependency Property Implementation

In practice, dependency properties are just normal .NET properties hooked into some
extra WPF infrastructure. This is all accomplished via WPF APIs; no .NET languages (other
than XAML) have an intrinsic understanding of a dependency property.

Listing 3.3 demonstrates how Button effectively implements one of its dependency prop-
erties, called IsDefault.

LISTING 3.3 A Standard Dependency Property Implementation

public class Button : ButtonBase

{
// The dependency property
public static readonly DependencyProperty IsDefaultProperty;

static Button()

{
/] Register the property

64 CHAPTER 3 WPF Fundamentals

Button.IsDefaultProperty = DependencyProperty.Register("IsDefault",
typeof(bool), typeof(Button),
new FrameworkPropertyMetadata(false,
new PropertyChangedCallback(OnIsDefaultChanged)));

// A .NET property wrapper (optional)

public bool IsDefault

{
get { return (bool)GetValue(Button.IsDefaultProperty); }
set { SetValue(Button.IsDefaultProperty, value); }

// A property changed callback (optional)
private static void OnIsDefaultChanged(
DependencyObject o, DependencyPropertyChangedEventArgs e) { .. }

The static IsDefaultProperty field is the actual dependency property, represented by the
System.Windows.DependencyProperty class. By convention, all DependencyProperty fields
are public, static, and have a Property suffix. Several pieces of infrastructure require that
you follow this convention: localization tools, XAML loading, and more.

Dependency properties are usually created by calling the static
DependencyProperty.Register method, which requires a name (IsDefault), a property
type (bool), and the type of the class claiming to own the property (Button). Optionally
(via different overloads of Register), you can pass metadata that customizes how the
property is treated by WPE, as well as callbacks for handling property value changes,
coercing values, and validating values. Button calls an overload of Register in its static
constructor to give the dependency property a default value of false and to attach a dele-
gate for change notifications.

Finally, the traditional .NET property called IsDefault implements its accessors by calling
GetValue and SetValue methods inherited from System.Windows.DependencyObject, the
low-level base class from which all classes with dependency properties must derive.
GetValue returns the last value passed to SetValue or, if SetValue has never been called,
the default value registered with the property.

The IsDefault .NET property (some-
times called a property wrapper in this

context) is not strictly necessary; Visual Studio has a snippet called propdp
consumers of Button could directly call that automatically expands into a definition
the Getvalue/Setvalue methods because of a dependency property, which makes
they are exposed publicly. But the .NET defining one much faster than doing all the

property makes programmatic reading typing yourself!

Dependency Properties 65

and writing of the property much more natural for consumers, and it enables the prop-
erty to be set via XAML. WPF should, but does not, provide generic overloads of GetVvalue
and SetValue. This is primarily because dependency properties were invented before .NET
generics were widely used.

.NET property wrappers are bypassed at runtime when setting dependency prop-
erties in XAML!

Although the XAML compiler depends on the property wrapper at compile time, WPF calls the
underlying GetValue and SetValue methods directly at runtime! Therefore, to maintain parity
between setting a property in XAML and procedural code, it’s crucial that property wrappers
not contain any logic in addition to the GetValue/SetValue calls. If you want to add custom
logic, that’s what the registered callbacks are for. All of WPF’s built-in property wrappers
abide by this rule, so this warning is for anyone writing a custom class with its own depen-

dency properties.
_ J

On the surface, Listing 3.3 looks like an overly verbose way of representing a simple
Boolean property. However, because GetValue and SetValue internally use an efficient
sparse storage system and because IsDefaultProperty is a static field (rather than an
instance field), the dependency property implementation saves per-instance memory
compared to a typical .NET property. If all the properties on WPF controls were wrappers
around instance fields (as most .NET properties are), they would consume a significant
amount of memory because of all the local data attached to each instance. Having more
than 100 fields for each Button, more than 100 fields for each Label, and so forth would
add up quickly! Instead, almost all of Button’s and Label’s properties are dependency
properties.

The benefits of the dependency property implementation extend to more than just
memory usage, however. The implementation centralizes and standardizes a fair amount
of code that property implementers would have to write to check thread access, prompt
the containing element to be re-rendered, and so on. For example, if a property requires
its element to be re-rendered when its value changes (such as Button’s Background prop-
erty), it can simply pass the FrameworkPropertyMetadataOptions.AffectsRender flag to
an overload of DependencyProperty.Register. In addition, this implementation enables
the three features listed earlier that we’ll now examine one-by-one, starting with change
notification.

Change Notification

Whenever the value of a dependency property changes, WPF can automatically trigger

a number of actions, depending on the property’s metadata. These actions can be
re-rendering the appropriate elements, updating the current layout, refreshing data bind-
ings, and much more. One of the interesting features enabled by this built-in change
notification is property triggers, which enable you to perform your own custom actions
when a property value changes, without writing any procedural code.

66 CHAPTER 3 WPF Fundamentals

For example, imagine that you want the text in each Button from the About dialog in
Listing 3.1 to turn blue when the mouse pointer hovers over it. Without property triggers,
you can attach two event handlers to each Button, one for its MouseEnter event and one
for its MouseLeave event:

<Button MouseEnter="Button_MouseEnter" MouselLeave="Button_MouseLeave"
MinWidth="75" Margin="10">Help</Button>

<Button MouseEnter="Button_MouseEnter" MouselLeave="Button_MouseLeave"
MinWidth="75" Margin="10">0K</Button>

These two handlers could be implemented in a C# code-behind file as follows:

// Change the foreground to blue when the mouse enters the button
void Button_MouseEnter(object sender, MouseEventArgs e)
{

Button b = sender as Button;

if (b != null) b.Foreground = Brushes.Blue;

// Restore the foreground to black when the mouse exits the button
void Button_MouselLeave(object sender, MouseEventArgs e)
{

Button b = sender as Button;

if (b != null) b.Foreground = Brushes.Black;

With a property trigger, however, you can accomplish this same behavior purely in
XAML. The following concise Trigger object is just about all you need:

<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Foreground" Value="Blue"/>
</Trigger>

This trigger can act on Button’s IsMouseOver property, which becomes true at the same
time the MouseEnter event is raised and false at the same time the MouseLeave event is
raised. Note that you don’t have to worry about reverting Foreground to black when
IsMouseOver changes to false. This is automatically done by WPF!

The only trick is assigning this Trigger to each Button. Unfortunately, because of a
confusing limitation, you can’t apply property triggers directly to elements such as
Button. You can apply them only inside a Style object, so an in-depth examination of
property triggers is saved for Chapter 14. In the meantime, to experiment with property
triggers, you can apply the preceding Trigger to a Button by wrapping it in a few inter-
mediate XML elements, as follows:

<Button MinWidth="75" Margin="10">
<Button.Style>
<Style TargetType="{x:Type Button}">

Dependency Properties 67

<Style.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Foreground" Value="Blue"/>
</Trigger>
</Style.Triggers>
</Style>
</Button.Style>
0K
</Button>

Property triggers are just one of three types of triggers supported by WPE. A data trigger is a
form of property trigger that works for all .NET properties (not just dependency proper-
ties), also covered in Chapter 14. An event trigger enables you to declaratively specify
actions to take when a routed event (covered in Chapter 6) is raised. Event triggers always
involve working with animations or sounds, so they aren’t covered until Chapter 17,
“Animation.”

WARNING

Don’t be fooled by an element’s Triggers collection!

FrameworkElement’s Triggers property is a read/write collection of TriggerBase items
(the common base class for all three types of triggers), so it looks like an easy way to attach
property triggers to controls such as Button. Unfortunately, this collection can only contain
event triggers, so its name and type are misleading. Attempting to add a property trigger (or
data trigger) to the collection causes an exception to be thrown at runtime.

.

Property Value Inheritance =

The term property value inheritance (or property WPF 4.5 Unleashed
inheritance for short) doesn’t refer to tradi-
tional object-oriented class-based inheritance
but rather the flowing of property values
down the element tree. A simple example of

this can be seen in Listing 3.4, which updates
the Window from Listing 3.1 by explicitly Chap ter 1
setting its FontSize and FontStyle depen- Chapter 2

dency properties. Figure 3.6 shows the result

of this change. (Notice that the Window auto- He[p

matically resizes to fit all the content thanks

to its slick SizeToContent setting!)

FIGURE 3.6 The About dialog with
FontSize and FontStyle set on the
root Window.

68 CHAPTER 3 WPF Fundamentals

LISTING 3.4 The About Dialog with Font Properties Set on the Root Window

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"”
Title="About WPF 4.5 Unleashed" SizeToContent="WidthAndHeight"
FontSize="30" FontStyle="Italic"
Background="0OrangeRed">
<StackPanel>
<Label FontWeight="Bold" FontSize="2@" Foreground="White">
WPF 4.5 Unleashed
</Label>
<Label>® 2013 SAMS Publishing</Label>
<Label>Installed Chapters:</Label>
<ListBox>
<ListBoxItem>Chapter 1</ListBoxItem>
<ListBoxItem>Chapter 2</ListBoxItem>
</ListBox>
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<Button MinWidth="75" Margin="10">Help</Button>
<Button MinWidth="75" Margin="10">0K</Button>
</StackPanel>
<StatusBar>You have successfully registered this product.</StatusBar>
</StackPanel>
</Window>

For the most part, these two settings flow all the way down the tree and are inherited by
children. This affects even the Buttons and ListBoxItems, which are three levels down the
logical tree. The first Label’s FontSize does not change because it is explicitly marked
with a FontSize of 20, overriding the inherited value of 30. The inherited FontStyle
setting of Italic affects all Labels, ListBoxItems, and Buttons, however, because none of
them have this set explicitly.

Notice that the text in the StatusBar is unaffected by either of these values, despite the
fact that it supports these two properties just like the other controls. The behavior of
property value inheritance can be subtle in cases like this for two reasons:

» Not every dependency property participates in property value inheritance.
(Internally, dependency properties can opt in to inheritance by passing
FrameworkPropertyMetadataOptions.Inherits to DependencyProperty.Register.)

» There may be other higher-priority sources setting the property value, as explained
in the next section.

In this case, the latter reason is to blame. A few controls, such as StatusBar, Menu, and
ToolTip, internally set their font properties to match current system settings. This way,
users get the familiar experience of controlling their font via Control Panel. The result can
be confusing, however, because such controls end up “swallowing” any inheritance from

Dependency Properties 69

proceeding further down the element tree. For example, if you add a Button as a logical
child of the StatusBar in Listing 3.4, its FontSize and FontStyle would be the default
values of 12 and Normal, respectively, unlike the other Buttons outside of the StatusBar.

DIGGING DEEPER

Property Value Inheritance in Additional Places

Property value inheritance was originally designed to operate on the element tree, but it has
been extended to work in a few other contexts as well. For example, values can be passed
down to certain elements that look like children in the XML sense (because of XAML's prop-
erty element syntax) but are not children in terms of the logical or visual trees. These
pseudochildren can be an element’s triggers or the value of any property (not just Content
or Children), as long as it is an object deriving from Freezable. This may sound arbitrary
and isn’t well documented, but the intention is that several XAML-based scenarios “just

work” as you would expect, without requiring you to think about it.
o J

Support for Multiple Providers

WPF contains many powerful mechanisms that independently attempt to set the value of
dependency properties. Without a well-defined mechanism for handling these disparate
property value providers, the system would be a bit chaotic, and property values could be
unstable. Of course, as their name indicates, dependency properties were designed to
depend on these providers in a consistent and orderly manner.

Figure 3.7 illustrates the five-step process that WPF runs each dependency property
through in order to calculate its final value. This process happens automatically, thanks
to the built-in change notification in dependency properties.

Determine Evaluate Apply "
Base Value (if an Expression) Animations Coerce Validate

FIGURE 3.7 The pipeline for calculating the value of a dependency property.

Step 1: Determine the Base Value

Most of the property value providers factor into the base value calculation. The following
list reveals the ten providers that can set the value of most dependency properties, in
order from highest to lowest precedence:

1. Local value

2. Parent template trigger
3. Parent template

4. Style triggers
5

. Template triggers

70 CHAPTER 3 WPF Fundamentals

6. Style setters

7. Theme style triggers

8. Theme style setters

9. Property value inheritance

10. Default value

You've already seen some of the property value providers, such as property value inheri-
tance (#9). Local value (#1) technically means any call to DependencyObject.SetValue, but
this is typically seen with a simple property assignment in XAML or procedural code
(because of the way dependency properties are implemented, as shown previously with
Button.IsDefault). Default value (#10) refers to the initial value registered with the
dependency property, which naturally has the lowest precedence. The other providers,
which all involve styles and templates, are explained further in Chapter 14.

This order of precedence explains why StatusBar’s FontSize and FontStyle were not
impacted by property value inheritance in Listing 3.4. The setting of StatusBar’s font
properties to match system settings is done via theme style setters (#8). Although this has
precedence over property value inheritance (#9), you can still override these font settings
using any mechanism with a higher precedence, such as simply setting local values on
StatusBar.

If you can’t figure out where a given dependency property is getting its current value,

you can use the static DependencyPropertyHelper.GetValueSource method as a
debugging aid. This returns a ValueSource structure that contains a few pieces of data: a
BaseValueSource enumeration that reveals where the base value came from (step 1 in the
process) and Boolean IsExpression, IsAnimated, and IsCoerced properties that reveal
information about steps 2 through 4.

When calling this method on the StatusBar instance from Listing 3.1 or 3.4 with the
FontSize or FontStyle property, the returned BaseValueSource is DefaultStyle, revealing
that the value comes from a theme style setter. (Theme styles are sometimes referred to as
default styles. The enumeration value for a theme style trigger is DefaultStyleTrigger.)

Do not use this method in production code! Future versions of WPF could break assumptions
you’ve made about the value calculation. In addition, treating a property value differently, depend-

ing on its source, goes against the way things are supposed to work in WPF applications.
\ J

Dependency Properties 71

DIGGING DEEPER

Clearing a Local Value

The earlier “Change Notification” section demonstrates the use of procedural code to
change a Button’s Foreground to blue in response to the MouseEnter event and then
changing it back to black in response to the MouseLeave event. The problem with this
approach is that black is set as a local value inside MouselLeave, which is much different
from the Button’s initial state, in which its black Foreground comes from a setter in its
theme style. If the theme is changed and the new theme tries to change the default
Foreground color (or if other providers with higher precedence try to do the same), this
change is trumped by the local setting of black.

What you likely want to do instead is clear the local value and let WPF set the value from the
relevant provider with the next-highest precedence. Fortunately, DependencyObject provides
exactly this kind of mechanism with its ClearValue method. This can be called on a Button
b as follows in C#:

b.ClearValue(Button.ForegroundProperty);

(Button.ForegroundProperty is the static DependencyProperty field.) After calling
ClearValue, the local value is simply removed from the equation when WPF recalculates the
base value.

Note that the trigger on the IsMouseOver property from the “Change Notification” section does
not have the same problem as the implementation with event handlers. A trigger is either

active or inactive, and when it is inactive, it is simply ignored in the property value calculation.
. J

Step 2: Evaluate

If the value from step one is an expression (an object deriving from
System.Windows.Expression), WPF performs a special evaluation step to convert the
expression into a concrete result. Expressions mostly appear in data binding (the topic of
Chapter 13, “Data Binding”).

Step 3: Apply Animations

If one or more animations are running, they have the power to alter the current property
value (using the value after step 2 as input) or completely replace it. Therefore, anima-
tions (the topic of Chapter 17) can trump all other property value providers—even local
values! This is often a stumbling block for people who are new to WPE

Step 4: Coerce

After all the property value providers have had their say, WPF passes the almost-final
property value to a CoerceValueCallback delegate, if one was registered with the depen-
dency property. The callback is responsible for returning a new value, based on custom
logic. For example, built-in WPF controls such as ProgressBar use this callback to
constrain its Value dependency property to a value between its Minimum and Maximum
values, returning Minimum if the input value is less than Minimum and Maximum if the input
value is greater than Maximum. If you change your coercion logic at runtime, you can call
CoerceValue to make WPF run the new coercion and validation logic again.

72 CHAPTER 3 WPF Fundamentals

Step 5: Validate

Finally, the potentially coerced value is passed to a ValidateValueCallback delegate, if
one was registered with the dependency property. This callback must return true if the
input value is valid and false otherwise. Returning false causes an exception to be
thrown, canceling the entire process.

DependencyObject has a SetCurrentValue method that directly updates the current value
of a property without changing its value source. (The value is still subject to coercion and

validation.) This is meant for controls that set values in response to user interaction. For
example, the RadioButton control modifies the value of the IsChecked property on other
RadioButtons in the same group, based on user interaction.

Attached Properties

An attached property is a special form of dependency property that can effectively be
attached to arbitrary objects. This may sound strange at first, but this mechanism has
several applications in WPE.

For the About dialog example, imagine that rather than setting FontSize and FontStyle
for the entire Window (as is done in Listing 3.4), you would rather set them on the inner
StackPanel so they are inherited only by the two Buttons. Moving the property attributes
to the inner StackPanel element doesn’t work, however, because StackPanel doesn’t have
any font-related properties of its own! Instead, you must use the FontSize and FontStyle
attached properties that happen to be defined on a class called TextElement. Listing 3.5
demonstrates this, introducing new XAML syntax designed especially for attached proper-
ties. This enables the desired property value inheritance, as shown in Figure 3.8.

LISTING 3.5 The About Dialog with Font Properties Moved to the Inner StackPanel

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
Title="About WPF 4.5 Unleashed" SizeToContent="WidthAndHeight"
Background="0OrangeRed">
<StackPanel>
<Label FontWeight="Bold" FontSize="2@0" Foreground="White">
WPF 4.5 Unleashed
</Label>
<Label>® 2013 SAMS Publishing</Label>
<Label>Installed Chapters:</Label>
<ListBox>
<ListBoxItem>Chapter 1</ListBoxItem>
<ListBoxItem>Chapter 2</ListBoxItem>
</ListBox>

Dependency Properties 73

<StackPanel TextElement.FontSize="30" TextElement.FontStyle="Italic"
Orientation="Horizontal" HorizontalAlignment="Center">
<Button MinWidth="75" Margin="10">Help</Button>
<Button MinWidth="75" Margin="10">0K</Button>

</StackPanel>
<StatusBar>You have successfully registered this product.</StatusBar>
</StackPanel>
</Window>
TextElement.FontSize and TextElement.FontStyle | About WPF 4.5 U..
(rather than simply FontSize and FontStyle) must be WPE 4.5 Unleashed

used in the StackPanel element because StackPanel
does not have these properties. When a XAML parser

or compiler encounters this syntax, it requires that Chapter 1

TextElement (sometimes called the attached property
provider) have static methods called SetFontSize and

SetFontStyle that can set the value accordingly.

Therefore, the StackPanel declaration in Listing 3.5 is
equivalent to the following C# code:

StackPanel panel = new StackPanel(); FIGURE 3.8 The About dialog
TextElement.SetFontSize(panel, 30); with FontSize and FontStyle
TextElement.SetFontStyle(panel, FontStyles.Italic); set on both Buttons via inheri-
panel.Orientation = Orientation.Horizontal; tance from the inner StackPanel.

panel.HorizontalAlignment =
HorizontalAlignment.Center;

Button helpButton = new Button();
helpButton.MinWidth = 75;
helpButton.Margin = new Thickness(10);
helpButton.Content = "Help";

Button okButton = new Button();
okButton.MinWidth = 75;
okButton.Margin = new Thickness(10);
okButton.Content = "0K";
panel.Children.Add(helpButton);
panel.Children.Add(okButton);

Notice that the enumeration values such as FontStyles.Italic, Orientation.Horizontal,
and HorizontalAlignment.Center were previously specified in XAML simply as Italic,
Horizontal, and Center, respectively. This is possible thanks to the EnumConverter type
converter in the .NET Framework, which can convert any case-insensitive string.

Although the XAML in Listing 3.5 nicely represents the logical attachment of FontSize
and FontStyle to StackPanel, the C# code reveals that there’s no real magic here, just a
method call that associates an element with an otherwise-unrelated property. One of the
interesting things about the attached property abstraction is that no .NET property is a
part of it!

74 CHAPTER 3 WPF Fundamentals

Internally, methods such as SetFontSize simply call the same
DependencyObject.SetValue method that a normal dependency property accessor
calls, but on the passed-in DependencyObject rather than the current instance:

public static void SetFontSize(DependencyObject element, double value)

{

element.SetValue(TextElement.FontSizeProperty, value);

Similarly, attached properties also define a static GetxxX method (where XXX is the name
of the property) that calls the familiar DependencyObject.GetValue method:

public static double GetFontSize(DependencyObject element)
{

return (double)element.GetValue(TextElement.FontSizeProperty);

As with property wrappers for normal dependency properties, these GetXXX and SetXXX
methods must not do anything other than make a call to Getvalue and SetValue.

DIGGING DEEPER

Understanding the Attached Property Provider

The most confusing part about the FontSize and FontStyle attached properties used in
Listing 3.5 is that they aren’t defined by Button or even Control, the base class that
defines the normal FontSize and FontStyle dependency properties! Instead, they are
defined by the seemingly unrelated TextElement class (and also by the TextBlock class,
which could alternatively be used in the preceding examples).

How can this possibly work when TextElement.FontSizeProperty is a

separate DependencyProperty field from Control.FontSizeProperty (and
TextElement.FontStyleProperty is separate from Control.FontStyleProperty)? The
key is the way these dependency properties are internally registered. If you were to look at
the source code for TextElement, you would see something like the following:

TextElement.FontSizeProperty = DependencyProperty.RegisterAttached(
"FontSize", typeof(double), typeof(TextElement), new FrameworkPropertyMetadata(
SystemFonts.MessageFontSize, FrameworkPropertyMetadataOptions.Inherits |
FrameworkPropertyMetadataOptions.AffectsRender |
FrameworkPropertyMetadataOptions.AffectsMeasure),
new ValidateValueCallback(TextElement.IsValidFontSize));

This is similar to the earlier example of registering Button’s IsDefault dependency prop-
erty, except that the RegisterAttached method optimizes the handling of property meta-
data for attached property scenarios.

Control, on the other hand, doesn’t register its FontSize dependency property! Instead, it
calls Addowner on TextElement’s already-registered property, getting a reference to exactly
\the same instance:

Dependency Properties 75

e N\
Continued
Control.FontSizeProperty = TextElement.FontSizeProperty.AddOwner (
typeof (Control), new FrameworkPropertyMetadata(SystemFonts.MessageFontSize,
FrameworkPropertyMetadataOptions.Inherits));

Therefore, the FontSize, FontStyle, and other font-related dependency properties inherited
by all controls are the same properties exposed by TextElement!

Fortunately, in most cases, the class that exposes an attached property (the GetXXX and
SetXXX methods) is the same class that defines the normal dependency property, avoiding
this confusion.

DIGGING DEEPER

Attached Properties as an Extensibility Mechanism

As in previous technologies such as Windows Forms, many classes in WPF define a Tag
property (of type System.Object) intended for storing arbitrary custom data with each
instance. But attached properties are a more powerful and flexible mechanism for attaching
custom data to any object deriving from DependencyObject. It's often overlooked that
attached properties even enable you to effectively add custom data to instances of sealed
classes (and WPF has plenty of them)!

A further twist to the story of attached properties is that although setting them in XAML
relies on the presence of the static SetXXX method, you can bypass this method in proce-
dural code and call DependencyObject.SetValue directly. This means that you can use any
dependency property as an attached property in procedural code. For example, the following
code attaches ItemsControl’'s IsTextSearchEnabled property to a Button and assigns it a
value:

// Attach an unrelated property to a Button and set its value to true:
okButton.SetValue(ItemsControl.IsTextSearchEnabledProperty, true);

Although this seems nonsensical, and it certainly doesn’t magically enable new functionality
on this Button, you have the freedom to consume this property value in a way that makes
sense to your application or component.

There are more interesting ways to extend elements in this manner. For example,
FrameworkElement’s Tag property is a dependency property, so you can attach it to an
instance of GeometryModel3D (a class you'll see again in Chapter 16, that is sealed and
does not have a Tag property), as follows:

GeometryModel3D model = new GeometryModel3D();
model.SetValue(FrameworkElement.TagProperty, "my custom data");

This is just one of the ways in which WPF provides extensibility without the need for tradi-
tional inheritance.
. J

76 CHAPTER 3 WPF Fundamentals

Although the About dialog example uses attached properties for advanced property value
inheritance, attached properties are most commonly used for layout of user interface
elements. (In fact, attached properties were originally designed for WPF’s layout system.)
Various Panel-derived classes define attached properties designed to be attached to their
children for controlling how they are arranged. This way, each Panel can apply its own
custom behavior to arbitrary children without requiring all possible child elements to be
burdened with their own set of relevant properties. It also enables systems such as layout
to be easily extensible, because anyone can write a new Panel with custom attached prop-
erties. Chapter 5, “Layout with Panels,” and Chapter 21, “Layout with Custom Panels,”
have all the details.

Summary

In this chapter and the preceding two chapters, you’ve learned about all the major ways
that WPF builds on top of the foundation of the .NET Framework. The WPF team could
have exposed its features via typical .NET APIs, as in Windows Forms, and still have
created an interesting technology. Instead, the team added several fundamental concepts
that enable a wide range of features to be exposed in a way that can provide great produc-
tivity for developers and designers.

Indeed, when you focus on these core concepts, as this chapter does, you can see that the
landscape isn’t quite as simple as it used to be: There are multiple types of properties,
multiple trees, and multiple ways of achieving the same results (such as writing declara-
tive versus procedural code)! Hopefully you can now appreciate some of the value of these
new mechanisms. Throughout the rest of the book, these concepts generally fade into the
background as we focus on accomplishing specific development tasks.

This page intentionally left blank

Index

Symbols

\ (backslash), 30
{ } (curly braces), 29-30, 375
2D graphics
2D and 3D coordinate system transformation
explained, 594

Visual.TransformToAncestor method,
594-598

Visual3D.TransformToAncestor method,
598-603

Visual3D.TransformToDescendant method,
598-603

Brushes
BitmapCacheBrush class, 533
DrawingBrush class, 518-522
explained, 511
ImageBrush class, 522-523
LinearGradientBrush class, 513-516
as opacity masks, 525-527
RadialGradientBrush class, 517-518
SolidColorBrush class, 512
VisualBrush class, 523-525
drawings
clip art example, 489-490
Drawing class, 474
DrawingBrush class, 475
DrawingContext methods, 492
Drawinglmage class, 475-477
DrawingVisual class, 475
GeometryDrawing class, 474-475
GlyphRunDrawing class, 474

800 2D graphics

ImageDrawing class, 474-476 3D graphics
Pen class, 487-489 2D and 3D coordinate system transformation
VideoDrawing class, 474 explained, 594
effects, 527-529 Visual.TransformToAncestor method,
explained, 473-474 594-598
geometries V|§;a8ICZSI(D):;I' ransformToAncestor method,
aggregate geometries, 481 Visual3D.TransformToDescendant method,
Bézier curves, 478 598-603
CombinedGeometry class, 484-485 3D hit testing, 590-591
defined, 477 Cameras

EllipseGeometry class, 477
GeometryGroup class, 482-484
LineGeometry class, 477
PathGeometry class, 477-481
RectangleGeometry class, 477
representing as strings, 485-487
StreamGeometry class, 481

blind spots, 543

coordinate systems, 540-542
explained, 540

LookDirection property, 542-546
MatrixCamera, 551

OrthographicCamera versus
PerspectiveCamera, 549-551

Position property, 541-542
Transform property, 547

house example, 536

mapping to 3D, 539, 588-589
Shapes UpDirection property, 546-548

clip art based on Shapes, 510-511
Ellipse class, 506

explained, 503-504

how they work, 507

Line class, 507-508

overuse of, 505

Path class, 509-510

Polygon class, 509

Polyline class, 508

Rectangle class, 505-506

transforms. See transforms
Visuals

custom rendering, 497
displaying on screen, 494-496
DrawingContext methods, 492
DrawingVisuals, 491-494
explained, 491

visual hit testing, 497-503

WPF 3.5 enhancements, 13

Z-fighting, 543
coordinate systems, 540-542
explained, 535-536
hardware acceleration
explained, 10
GDI and, 11
house example, 536-538
Lights, 540
Materials
AmbientMaterial, 573
combining, 576
DiffuseMaterial, 570-573
EmissiveMaterial, 574
explained, 569
SpecularMaterial, 575-576
Model3Ds
explained, 561
GeometryModel3D, 569
Lights, 561-568
Model3DGroup class, 582-584

pixel boundaries, 15

resolution independence, 10

texture coordinates, 582

Transform3Ds
combining, 560
explained, 552-553
house drawing example, 553-554
MatrixTransform3D class, 552, 560
RotateTransform3D class, 552, 557-560
ScaleTransform3D class, 552, 555-557
Transform3DGroup class, 552
TranslateTransform3D class, 552-555

Viewport2DVisual3D class, 588-589

Viewport3D class, 591-594

Visual3Ds
explained, 584
ModelVisual3D class, 585-586
UIElement3D class, 586-588

WPF 3.5 enhancements, 13

3D hit testing, 590-591

A

About dialog
attached events, 147-149

with font properties moved to inner
StackPanel, 72-73

with font properties set on root window, 68
Help command, 173-174
initial code listing, 57-58
routed events, 144-146
absolute sizing, 113
accessing
binary resources
embedded in another assembly, 346
from procedural code, 347-348
at site of origin, 346-347
from XAML, 343-346
logical resources, 358

animation 801

Action property (QueryContinueDragEventArgs
class), 155

Activated event, 778-779

ActiveEditingMode property (InkCanvas control),
317

ActiveX controls, 710-714

ActualHeight property (FrameworkElements
class), 80

ActualWidth property (FrameworkElements
class), 80

AddBackEntry method, 200

AddHandler method, 142-143
AddToSchedule method, 779

advantages of WPF, 11

Aero Glass, 233-236

aggregate geometries, 481
AllowPartiallyTrustedCallers attribute, 210

AlternationCount property (ItemsControl class),
256

Alternationindex property (ItemsControl class), 256
AmbientLight, 562, 567-568
AmbientMaterial class, 573
AnchoredBlock class, 326-327
AND relationships (logical), 429-430
Angle property (RotateTransform class), 88
AngleX property (SkewTransform class), 92
AngleY property (SkewTransform class), 92
animation
animation classes

AutoReverse property, 616

BeginTime property, 614-615

By property, 614

DoubleAnimation, 609-610

Duration property, 612

EasingFunction property, 618

explained, 607-608

FillBehavior property, 619

From property, 612-614

IsAdditive property, 619

IsCumulative property, 619

lack of generics, 608-609

How can we make this index more useful? Email us at indexes@samspublishing.com

802 animation

linear interpolation, 610-611
RepeatBehavior property, 616-617
SpeedRatio property, 615
To property, 612-614
and data binding, 630
easing functions, 14
BackEase, 638
BounceEase, 638
CircleEase, 638
EasingMode property, 635
ElasticEase, 638
ExponentialEase, 638
power easing functions, 635-636
SineEase, 638
writing, 638-640
explained, 605
frame-based animation, 607
keyframe animation
discrete keyframes, 632-634
easing keyframes, 634
explained, 628
linear keyframes, 629-631
spline keyframes, 631-632
path-based animations, 635
reusing animations, 611
timer-based animation, 606-607
and Visual State Manager

button ControlTemplate with VisualStates,
641-644

transitions, 645-649
with XAMLEventTriggers/Storyboards
explained, 619-620

starting animations from property triggers,
626-627

Storyboards as Timelines, 627-628
TargetName property, 623-624
TargetProperty property, 620-623

annotations, adding to flow documents, 331-334
AnnotationService class, 331

APIs, Windows Runtime APls, 771-772
Application class
creating applications without, 186
events, 184
explained, 181-182
Properties collection, 185
Run method, 182-183
single-instance applications, 186
Windows collection, 184
application menu (Ribbon), 291-292
ApplicationCommands class, 171
ApplicationPath property (JumpTask), 222
applications
associating Jump Lists with, 218
embedding Win32 controls in
explained, 673-674
keyboard navigation, 683-687
Webcam control, 674-683
embedding Windows Forms controls
explained, 695-696
PropertyGrid, 696-699
embedding WPF controls in
Win32 applications, 688-695
Windows Forms applications, 700-704
gadget-style applications, 205-206
loose XAML pages, 213-214
multiple-document interface (MDI), 185
navigation-based desktop applications
explained, 193-194
hyperlinks, 197-198
journal, 198-200
Navigate method, 196-197
navigation containers, 194-196
navigation events, 200-201
Page elements, 194-196
returning data from pages, 203-204
sending data to pages, 202-203
standard desktop applications
Application class, 181-186
application state, 192

AxMsTscAxNotSafeForScripting control 803

ClickOnce, 192-193 attenuation, 564

common dialogs, 188-189 attributes, setting, 21

custom dialogs, 189-190 audio

explained, 177-178 embedded resources, 661

multithreaded applications, 187 explained, 651

retrieving command-line arguments in, 184 MediaElement, 654-656

single-instance applications, 186 MediaPlayer, 653-654

splash screens, 187-188 MediaTimeline, 654-656

Window class, 178-180 SoundPlayer, 652

Windows Installer, 192 SoundPlayerAction class, 652-653

XAML Browser applications speech recognition

ClickOnce caching, 208 converting spoken words into text, 665-667

deployment, 211 specifying grammar with GrammarBuilder,
668-669

explained, 207-208
full-trust XAML Browser applications, 210
integrated navigation, 210-211
limitations, 208-209
on-demand download, 212-213
security, 211
XAML Browser Applications (XBAPs), 207
Apply method, 229
AppUserModellDs, 772-773
arbitrary objects, content and, 243
ArcSegment class, 478
Arguments keyword, 47-49

specifying grammar with SRGS, 667-668
speech synthesis

explained, 662

GetlnstalledVoices method, 662

PromptBuilder class, 663-665

SelectVoice method, 662

SelectVoiceByHints method, 662

SetOutputToWaveFile method, 663

SpeakAsync method, 662

Speech Synthesis Markup Language
(SSML), 663-665

SpeechSynthesizer, 662
Arguments property (JumpTask), 222

ArrangeOverride method, 750-751
Array keyword, 52

SystemSounds class, 652
toast notifications, 778
“Auto” length, 79

associating Jump Lists with applications, 218
g P PP ! automation

asynchronous data binding, 401 automation IDs, 269
A R ki 4 . -
syncRecords keyword, 49 Ul Automation, supporting in custom controls,

attached events, 147-149 745-746

attached properties AutoReverse property (animation classes), 616
About dialog example, 72-74 autosizing, 111-113
as extensibility mechanism, 75 AxisAngleRotation3D class, 557-558
attached property providers, 74-75 AxMsTscAxNotSafeForScripting control, 712-713
defined, 72

attached property providers, 74-75

How can we make this index more useful? Email us at indexes@samspublishing.com

804 BackEase function

BackEase function, 638

backgrounds, setting, 359

backslash (\), 30

BAML (Binary Application Markup Language)
decompiling back into XAML, 43-44
defined, 41

Baml2006Reader class, 784

base values of dependency properties, calculating,
69-70

BaseValueSource enumeration, 70
BeginTime property (animation classes), 614-615
behavior
adding to custom controls
behavior, 733-735
code-behind file, 730
initial implementation, 729-733
resources, 730-731
creating for user controls, 721-723
Bézier curves, 478
BezierSegment class, 478
Binary Application Markup Language (BAML)
decompiling back into XAML, 43-44
defined, 41
binary resources
accessing
from procedural code, 347-348
resources at site of origin, 346-347

resources embedded in another
assembly, 346

from XAML, 343-346
defining, 342-343
explained, 341
localizing

creating satellite assembly with LocBaml,
349

explained, 348

marking user interfaces with localization
IDs, 349

preparing projects for multiple cultures,
348

Binding object, 361
binding
to .NET properties, 365-367
to collections, 369-372
to entire objects, 367-368
to UlElement, 368
ElementName property, 364
INotifyDataErrorinfo interface, 408-409
IsAsync property, 401
in procedural code, 361-363
RelativeSource property, 365
removing, 363
sharing source with DataContext, 372-373
StringFormat property, 374
TargetNullValue property, 364
UpdateSourceExceptionFilter property, 408
UpdateSourceTrigger property, 404
validation rules, 405-409
ValidationRules property, 406
in XAML, 363-365
binding. See data binding
Binding.DoNothing values, 384
BindingMode enumeration, 403
BitmapCache class, 531-533
BitmapCacheBrush class, 533
BitmapEffect, 528
bitmaps
BitmapCache class, 531-533
BitmapCacheBrush class, 533
BitmapEffect, 528
nearest-neighbor bitmap scaling, 310
WriteableBitmap class, 13
BitmapScalingMode property (RenderOptions), 306

BlackoutDates property (Calendar control),
338-339

Blend, 12

blind spots (cameras), 543

Block TextElements
AnchoredBlock class, 326-327
BlockUIContainer, 321

List, 320

Paragraph, 320

sample code listing, 321-324

Section, 320

Table, 320
BlockUIContainer Blocks, 321
BlurEffect, 527-528
Boolean keyword, 49
BooleanToVisibilityConverter, 382-383
Bottom property (Canvas), 98
BounceEase function, 638
BrushConverter type converter, 28
brushes

applying without logical resources, 350-351

BitmapCacheBrush class, 533

consolidating with logical resources, 351-353

explained, 511
ImageBrush class, 522-523
as opacity masks, 525-527
LinearGradientBrush class, 513-516
RadialGradientBrush class, 517-522
SolidColorBrush class, 512
VisualBrush class, 523-525
bubbling, 143
BuildWindowCore class, 680
built-in commands, 171-175
Button class, 63-64, 244-245
ButtonAutomationPeer class, 245
ButtonBase class, 243-244
buttons
Button class, 244-245

button ControlTemplate with VisualStates,
641-644

ButtonAutomationPeer class, 245
ButtonBase class, 243-244
CheckBox class, 246

defined, 243

RadioButton class, 246-248
RepeatButton class, 245

Canvas

styling with built-in animations, 624-626
ToggleButton class, 245-246
By property (animation classes), 614

Byte keyword, 49

C

C++/CLI, 677-678
cached composition
BitmapCache class, 531-533
BitmapCacheBrush class, 533
Viewport2DVisual3D support for, 589
caching (ClickOnce), 208
Calendar control, 336-339
calendar controls
Calendar, 336-339
DatePicker, 339-340
Cameras
blind spots, 543
coordinate systems, 540-542
explained, 540
LookDirection property, 542-546
MatrixCamera, 551

OrthographicCamera versus
PerspectiveCamera, 549-551

Position property, 541-542
Transform property, 547
UpDirection property, 546-548
Zfighting, 543

805

CAML (Compiled Application Markup Language),

42
cancel buttons, 244
Cancel method, 167
canceling toast notifications, 780
CanExecute method, 171
CanExecuteChanged method, 171
CanUserAddRows property (DataGrid), 278
CanUserDeleteRows property (DataGrid), 278
Canvas, 98-100, 119. See also SimpleCanvas

How can we make this index more useful? Email us at indexes@samspublishing.com

806 capturing mouse events

capturing mouse events, 155-156
cells (DataGrid), selecting, 275
Center property (RadialGradientBrush), 517
CenterX property
RotateTransform class, 88-90
SkewTransform class, 92
CenterY property
RotateTransform class, 88-90
SkewTransform class, 92

change notification (dependency properties), 65-67

Char keyword, 50

CheckBox class, 246

child object elements
content property, 31-32
dictionaries, 33-34
lists, 32-33
processing rules, 36

values type-converted to object elements, 34

/clr compiler option, 682
CircleEase function, 638
class hierarchy, 55-57
Class keyword, 40-41, 50
ClassAttributes keyword, 50
classes. See specific classes
ClassModifier keyword, 50
ClearAlIBindings method, 363
ClearBinding method, 363
ClearHighlightsCommand, 331
clearing

bindings, 363

local values, 71
ClearValue method, 71
CLI (Common Language Infrastructure), 677
Click event, 243-244
clickable cube example, 586-588

ClickCount property (MouseButtonEventArgs), 154

ClickMode property (ButtonBase class), 243
ClickOnce, 192-193

ClickOnce caching, 208

with unmanaged code, 193

clients, pure-XAML Twitter client, 412-414
clip art example, 489-490
clip art based on Shapes, 510-511
drawing-based implementation, 489-490

DrawingContext-based implementation, 493-

494
WindowHostingVisual.cs file, 495
clipboard interaction (DataGrid), 276
ClipboardCopyMode property (DataGrid), 276
clipping, 122-124
ClipToBounds property (panels), 123
clr-namespace directive, 35
Code keyword, 50
code-behind files, 40, 730
CoerceValueCallback delegate, 71
cold start time, 187
Collapsed value (Visibility enumeration), 82
collections
binding to, 369-372
customizing collection views
creating new views, 393-395
explained, 385
filtering, 391
grouping, 387-390
navigating, 391-392
sorting, 385-387
dictionaries, 33-34
ltemsSource, 277
lists, 32-33
Properties, 185
SortDescriptions, 386
Triggers, 67
Windows, 184
CollectionViewSource class, 393
color

color brushes

applying without logical resources, 350-351

consolidating with logical resources,
351-353

LinearGradientBrush class, 513-516
RadialGradientBrush class, 517-518
SolidColorBrush class, 512
color space profiles, 513
toast notifications, 775
color brushes
applying without logical resources, 350-351
consolidating with logical resources, 351-353
LinearGradientBrush class, 513-516
RadialGradientBrush class, 517-518
SolidColorBrush class, 512
Color structure, 512
columns
DataGrid
auto-generated columns, 274-275
column types, 273-274
freezing, 277
Grid
sharing row/column sizes, 117-119
sizing, 112-116
CombinedGeometry class, 484-485
combining
Materials, 576
Transform3Ds, 560
transforms, 94
ComboBox control
ComboBoxItem objects, 266-267
customizing selection box, 262-265
events, 262
explained, 262
IsEditable property, 262
IsReadOnly property, 262
SelectionChanged event, 266
ComboBoxltem objects, 266-267
ComCtI32.dll, 238-239
command-line arguments, retrieving, 184
commands. See also specific commands
built-in commands, 171-175

controls with built-in command bindings,
175176

content controls 807

executing with input gestures, 175
explained, 170-171
implementing with custom controls, 741
commas in geometry strings, 487
common dialogs, 188-189
Common Language Infrastructure (CLI), 677
Compiled Application Markup Language, 42
compiling XAML, 39-41
Complete method, 167
CompleteQuadraticEase class, 640
ComponentCommands class, 172
CompositeCollection class, 410
CompositionTarget_Rendering event handler, 709
conflicting triggers, 429
Connectionld keyword, 50
consolidating routed event handlers, 149-150
ConstantAttenuation property (PointLights), 564
containers
Expander class, 253-254
Frame class, 251-252
GroupBox class, 253
Label class, 248
navigation containers, 194-196
ToolTop class, 249-251
ContainerUlElement3D class, 588
Content build action, 342
content controls
and arbitrary objects, 243
buttons
Button class, 244-245
ButtonBase class, 243-244
CheckBox class, 246
defined, 243
RadioButton class, 246-248
RepeatButton class, 245
ToggleButton class, 245-246
containers
Expander class, 253-254
Frame class, 251-252

How can we make this index more useful? Email us at indexes@samspublishing.com

808 content controls

GroupBox class, 253
Label class, 248
ToolTip class, 249-251
ContentControl class, 242
defined, 242
content overflow, handling
clipping, 122-124
explained, 122
scaling, 126-130
scrolling, 124-126
content property, 31-32
ContentControl class, 435-437
Frame class, 252
ContentControl class, 242, 435-437
ContentElement class, 56
ContextMenu control, 301-302
ContextMenuService class, 302
contextual tabs, 294-295

ContextualTabGroupHeader property
(RibbonTab), 294

Control class, 57

control parts, 740-741

control states, 741-745

control templates
editing, 457-458
explained, 430-431
mixing with styles, 456-457
named elements, 434
reusability of, 438-440
simple control template, 431-432
target type, restricting, 434-435

templated parent properties, respecting
Content property (ContentControl class),

435-437

hijacking existing properties for new pur-

poses, 441
other properties, 438-440
triggers, 432-434
visual states

respecting with triggers, 442-446
respecting with VSM (Visual State

Manager), 447-455

controls

ActiveX controls, 710-714
built-in command bindings, 175-176
buttons
Button class, 244-245
ButtonBase class, 243-244
CheckBox class, 246
defined, 243
RadioButton class, 246-248
RepeatButton class, 245
ToggleButton class, 245-246
Calendar, 336-339
ComboBox
ComboBoxItem objects, 266-267

customizing selection box, 262-265

events, 262

explained, 262

IsEditable property, 262

IsReadOnly property, 262

SelectionChanged event, 266
containers

Expander class, 253-254

Frame class, 251-252

GroupBox class, 253

Label class, 248

ToolTip class, 249-251
ContextMenu, 301-302
control parts, 447-449
control states, 449-455
custom controls, creating, 10

behavior, 729-735

code-behind file, 730

commands, 741

control parts, 740-741

control states, 741-745

explained, 717-718

generic resources, 737-738

resources, 730-731

Ul Automation, 745-746

user controls versus custom controls, 718
user interfaces, 735-738

DataGrid
auto-generated columns, 274-275
CanUserAddRows property, 278
CanUserDeleteRows property, 278
clipboard interaction, 276
ClipboardCopyMode property, 276
column types, 273-274
displaying row details, 276-277
editing data, 277-278
EnableColumnVirtualization property, 276
EnableRowVirtualization property, 276
example, 272-273
freezing columns, 277
FrozenColumnCount property, 277
RowDetailsVisibilityMode property, 277
selecting rows/cells, 275
SelectionMode property, 275
SelectionUnit property, 275
virtualization, 276

DatePicker, 339-340

explained, 241-243

GridView, 270-271

InkCanvas, 316-318

ltemsControl class, 255-256
AlternationCount property, 256
Alternationindex property, 256
DisplayMemberPath property, 256-257
Hasltems property, 256
IsGrouping property, 256
IsTextSearchCaseSensitive property, 265
IsTextSearchEnabled property, 265
Items property, 255
ItemsPanel property, 256-260
ItemsSource property, 256
scrolling behavior, controlling, 260-261

controls 809

ListBox
automation IDs, 269
example, 267-268
scrolling, 269
SelectionMode property, 268
sorting items in, 269
support for multiple selections, 268

ListView, 270-271

Menu, 298-301

PasswordBox, 316

ProgressBar, 335

Ribbon
application menu, 291-292
contextual tabs, 294-295
example, 278-281
galleries, 297-298
IsDropDownOpen property, 280
IsHostedInRibbonWindow property, 281
IsMinimized property, 280
key tips, 289-290
minimizing, 280
Quick Access toolbar, 292-294
resizing, 284-289
ribbon controls, 281-284, 288-289
RibbonGroup, 279, 286-288
RibbonTab, 279, 285-286
RibbonWindow, 280-281
ScreenTips, 295-296
WindowlconVisibility property, 281

RichTextBox, 316

ScrollViewer, 124-126

Selector class, 261

Slider, 335-336

StatusBar, 307-308

TabControl, 271-272

TextBlock
explained, 313
explicit versus implicit runs, 314
properties, 313
support for multiple lines of text, 315
whitespace, 314

How can we make this index more useful? Email us at indexes@samspublishing.com

810 controls

TextBox, 315

ToolBar, 304-306

TreeView, 302-304

user controls, creating
behavior, 721-723
dependency properties, 724-727
explained, 717-718

protecting controls from accidental usage,
723724

routed events, 727-728
user controls versus custom controls, 718
user interfaces, 719-721
ControlTemplate class

ControlTemplate with triggers, 432-434

editing, 457-458

mixing with styles, 456-457

named elements, 434

simple ControlTemplate, 431-432

TargetType property, 434-435

templated parent properties, respecting,
435-437

Convert method, 381
converting spoken words into text, 665-667
ConvertXmlStringToObjectGraph method, 795
coordinate systems, 540-542
CountToBackgroundConverter class, 380-383
CreateBitmapSourceFromHBitmap method, 704
CreateHighlightCommand, 331
CreatelnkStickyNoteCommand, 331
CreateTextStickyNoteCommand, 331
CreateToastNotifier method, 775
CreateWindow method, 681
Cube example

clickable cube, 586-588

cube button style, 592-593

cube of buttons and small purple cube,
595-597

initial code listing, 583-584
TextBlocks, 599-602

culture, preparing projects for multiple
cultures, 348

curly braces ({}), 29-30
Currentltem property (ICollectionView), 391
curves, Bézier, 478
CustomCategory property (JumpTask), 223-224
customizing
advantages/disadvantages, 416
collection views
creating new views, 393-395
explained, 385
filtering, 391
grouping, 387-390
navigating, 391-392
sorting, 385-387
color space profiles, 513
controls, creating, 10
behavior, 729-735
commands, 741
control parts, 740-741
control states, 741-745
explained, 717-718
generic resources, 737-738
Ul Automation, 745-746
user controls versus custom controls, 718
user interfaces, 735-738
data display, 383-384
data flow, 403-405
dialogs, 189-190
JumpTask behavior, 221-224
keyboard navigation, 306
panels

communication between parents and
children, 748-751

explained, 747-748
rendering, 497
selection boxes (ComboBox control), 262-265
sorting, 387
taskbar
explained, 230
taskbar item progress bars, 230

taskbar overlays, 231
thumb buttons, 232-233
thumbnail content, 231

D3DImage class, 704-710
DashStyle class, 488-489
DashStyle property (Pen class), 488
data binding
animation and, 630
asynchronous data binding, 401
Binding object
binding to .NET properties, 365-367
binding to collections, 369-372
binding to entire objects, 367-368
binding to UIElement, 368
ElementName property, 364
INotifyDataErrorinfo interface, 408-409
IsAsync property, 401
in procedural code, 361-363
RelativeSource property, 365
removing, 363
sharing source with DataContext, 372-373
StringFormat property, 374
TargetNullValue property, 364
UpdateSourceExceptionFilter property, 408
UpdateSourceTrigger property, 404
validation rules, 405-409
ValidationRules property, 406
in XAML, 363-365
canceling temporarily, 384
collection views, customizing
creating new views, 393-395
explained, 385
filtering, 391

DataContext property 811

grouping, 387-390
navigating, 391-392
sorting, 385-387
CompositeCollection class, 410
data flow, customizing, 403-405
data providers
explained, 396
ObjectDataProvider class, 400-402
XmlDataProvider class, 396-400
defined, 361
Language Integrated Query (LINQ), 396
to methods, 402
MultiBinding class, 410-411
PriorityBinding class, 411-412
pure-XAML Twitter client, 412-414
rendering, controlling
data templates, 376-379
explained, 373-374
string formatting, 374-376
value converters, 380-385
troubleshooting, 383
WPF 3.5 features, 13
WPF 4.5 enhancements, 15
data flow, customizing, 403-405
Data property (DragEventArgs class), 154
data providers
explained, 396
ObjectDataProvider class, 400-402
XmlDataProvider class, 396-400
data templates, 376-379
HierarchicalDataTemplate, 398-399
template selectors, 380
data triggers, 67, 427-428
data types
bridging incompatible data types, 380-383
DateTime, 780
DateTimeOffset, 780
in XAML2009, 46
DataContext property, 372-373

How can we make this index more useful? Email us at indexes@samspublishing.com

812 DataGrid control

DataGrid control
CanUserAddRows property, 278
CanUserDeleteRows property, 278
clipboard interaction, 276
ClipboardCopyMode property, 276
column types, 273-275
displaying row details, 276-277
editing data, 277-278
EnableColumnVirtualization property, 276
EnableRowVirtualization property, 276
example, 272-273
freezing columns, 277
FrozenColumnCount property, 277
RowDetailsVisibilityMode property, 277
selecting rows/cells, 275
SelectionMode property, 275
SelectionUnit property, 275
virtualization, 276

DataGridCheckBoxColumn, 274

DataGridComboBoxColumn, 274

DataGridHyperlinkColumn, 273

DataGridTemplateColumn, 274

DataGridTextColumn, 273

DataTrigger class, 427-428

DatePicker control, 339-340

DateTime data type, 780

DateTimeOffset data type, 780

DateValidationError event, 340

DayOfWeek enumeration, 339

DeadCharProcessedKey property (KeyEventArgs
event), 150

debugger (Visual C++), 691
Decimal keyword, 50
declaration context, 373
declarative programming, 10
decorators, 127

default buttons, 244

default styles, 70

defining
binary resources, 342-343
object elements, 21
properties, 49
delegates
CoerceValueCallback, 71
delegate contravariance, 150
ValidateValueCallback, 72
DeleteStickyNotesCommand, 331
dependency properties, 419-420
adding to user controls, 724-727
attached properties
About dialog example, 72-74
as extensibility mechanism, 75
attached property providers, 74-75
defined, 72
attached property providers, 74-75
change notification, 65-67
explained, 62-63
hijacking, 441
implementation, 63-65
property triggers, 65-67
property value inheritance, 67-69
support for multiple providers
applying animations, 71
coercion, 71
determining base values, 69-70
evaluating, 71
explained, 69
validation, 72
DependencyObject class, 56, 64
DependencyPropertyHelper class, 70
deployment
ClickOnce, 192-193
Windows Installer, 192
WPF 3.5 enhancements, 14
WPF 4 enhancements, 15
XAMLBrowser applications, 211

DesiredSize property (FrameworkElements
class), 79

desktop applications. See Windows
desktop applications

desktop features. See Windows desktop features
DestroyWindowCore class, 680
device-independent pixels, 82
DialogFunction method, 690
dialogs

About dialog

with font properties moved to inner
StackPanel, 72-73

with font properties set on root window, 68
initial code listing, 57-58

common dialogs, 188-189

custom dialogs, 189-190

dialog results, 190

modal dialogs
launching from Win32 applications, 695

launching from Windows Forms
applications, 704

launching from WPF applications, 688, 699
modeless dialogs, 178
TaskDialogs, 236-239

dictionaries, 33-34, 46
DiffuseMaterial, 570-573
direct routing, 143
Direct3D, 10
Direction property
DirectionalLight, 562
PointLights, 566
DirectionalLight, 562-563
directives. See specific directives
DirectX
development of, 8
versus WPF, 11-12
when to use, 11-12
WPF interoperability, 13, 704-710
discrete keyframes, 632-634
Dismissed event, 779
DispatcherObject class, 56

DispatcherPriority enumeration, 187

drawings 813

DispatcherTimer class, 606-607
DisplayDateEnd property (Calendar control), 337
DisplayDateStart property (Calendar control), 337
displaying

flow documents, 329-331

Visuals on screen, 494-496
DisplayMemberPath property, 256-257, 369
Dock property (DockPanel), 105
DockPanel

examples, 105-107

explained, 105

interaction with child layout properties,
107-108

mimicking with Grid, 119
properties, 105
documents, flow documents
annotations, 331-334
Blocks, 320-327
creating, 318-319
defined, 318
displaying, 329-331
Inlines, 324-329
DoNothing value (Binding), 384
Double keyword, 50
DoubleAnimation class, 609-610
download groups, 212
DownloadFileGroupAsync method, 213
drag-and-drop events, 154-155
DragEventArgs class, 154-155
Drawing class, 474
DrawingBrush class, 475, 518-522
DrawingContext class
clip art example, 493-494
methods, 492
Drawinglmage class, 475-477
drawings
clip art example, 489-490
Drawing class, 474
DrawingBrush class, 475
DrawingContext methods, 492

How can we make this index more useful? Email us at indexes@samspublishing.com

814 drawings

Drawinglmage class, 475-477

DrawingVisual class, 475

geometries. See geometries

GeometryDrawing class, 474-475

GlyphRunDrawing class, 474

ImageDrawing class, 474-476

Pen class, 487-489

VideoDrawing class, 474
DrawingVisual class, 475

explained, 491

filling with content, 491-494
DropDownOpened event, 262
DropShadowEffect, 527-528
duration of animations, controlling, 612
Duration property (animation classes), 612
DwmExtendFramelntoClientArea method, 233-235
dynamic versus static resources, 353-355

DynamicResource markup extension, 354-355

Ease method, 638
Easeln method, 640-641
EaselnOut method, 640-641
easing functions, 14
easing keyframes, 634
EasingFunction property (animation classes), 618
EasingFunctionBase class, 639
EasingMode property (easing functions), 635
editing
control templates, 457-458
DataGrid data, 277-278
EditingCommands class, 172
EditingMode property (InkCanvas control), 317

EditingModelnverted property (InkCanvas
control), 317

effects, 527-529

ElasticEase function, 638

element trees. See trees
ElementHost class, 700-702
ElementName property (Binding object), 364
elements. See object elements; property elements
EllipseGeometry class, 477
embedded resources, 661
EmbeddedResource build action, 343
embedding
ActiveX controls in WPF applications, 710-714
Win32 controls in WPF applications
explained, 673-674
keyboard navigation, 683-687
Webcam control, 674-683
Windows Forms controls in WPF applications
explained, 695-696
PropertyGrid, 696-699
WPF controls in Win32 applications
HwndSource class, 688-691
layout, 692-695
WPF controls in Windows Forms applications

converting between two representatives,
703-704

ElementHost class, 700-702
launching modal dialogs, 704
EmissiveMaterial class, 574

EnableClearType property (BitmapCache
class), 532

EnableColumnVirtualization property
(DataGrid), 276

EnableRowVirtualization property (DataGrid), 276
EnableVisualStyles method, 699
EndLineCap property (Pen class), 487
EndMember value (NodeType property), 787
EndObject value (NodeType property), 787
EndPoint property (LinearGradientBrush), 514
enumerations

BaseValueSource, 70

BindingMode, 403

DayOfWeek, 339

DispatcherPriority, 187

GeometryCombineMode, 484

GradientSpreadMethod, 515

JumpltemRejectionReason, 228

Key, 150-152

MouseButtonState, 153

PixelFormats, 311

RoutingStrategy, 143

ShutdownMode, 184

Stretch, 127

StretchDirection, 127

TileMode, 521

UpdateSourceTrigger, 404

Visibility, 82-83
EraseByPoint value (InkCanvasEditingMode), 318
EraseByStroke value (InkCanvasEditingMode), 318
error handling, 407-408
Error ProgressState, 230
ErrorsChanged event, 408

EscapePressed property
(QueryContinueDragEventArgs class), 155

Euler angles, 558
EvenOdd fill (FillRule property), 480
events
attributes, 21
Click, 243-244
DateValidationError, 340
DropDownOpened, 262
event handlers, 49
event wrappers, 142
JumpltemsRejected, 228
JumpltemsRemovedByUser, 228
keyboard events, 150-152
mouse events
capturing, 155-156
drag-and-drop events, 154-155
explained, 152-153
MouseButtonEventArgs, 154
MouseEventArgs, 153-154
MouseWheelEventArgs, 154
transparent and null regions, 153
navigation events, 200-201

extensibility mechanisms 815

order of processing, 22

rendering, 607

routed events
About dialog example, 144-146
adding to user controls, 727-728
attached events, 147-149

consolidating routed event handlers,
149-150

defined, 141
explained, 141-142
implementation, 142-143
RoutedEventArgs class, 144
routing strategies, 143-144
stopping, 147
SelectedDatesChanged, 340
SelectionChanged, 261, 266
stylus events, 156-158
toast notification events, 778-779
touch events
basic touch events, 159-162
explained, 158
manipulation events, 162-170
triggers, 67
WPF 4.5 enhancements, 15
wrappers, 142
EventTriggers, 619-620
evolution of WPF. See releases of WPF
ExceptionValidationRule object, 407
Execute method, 171
executing commands with input gestures, 175
Expander class, 253-254
Expansion property (ManipulationDelta class), 163
explicit sizes, avoiding, 79
explicit versus implicit runs, 314
ExponentialEase function, 638
Expression Blend, 12
expressions, 71
ExtendGlassFrame method, 235

extensibility mechanisms, attached
properties as, 75

How can we make this index more useful? Email us at indexes@samspublishing.com

816 extensibility of XAML

extensibility of XAML, 35

sample code listing, 321-324

Extensible Application Markup Language. Section, 320
See XAML Table, 320
creating, 318-319
defined, 318
F displaying, 329-331
Inlines

AnchoredBlock, 326-327
defined, 324-325
InlineUIContainer, 329
LineBreak, 327

Span, 325-326

FlowDirection property (FrameworkElements
class), 85-86

FlowDocument element, 318

factoring XAML, 355-356
FactoryMethod keyword, 47-50
Failed event, 779
FanCanvas, 764-768
FieldModifier keyword, 50
FileInputBox control

behavior, 721-723

dependency properties, 724-727
FlowDocumentPageViewer control, 329

FlowDocumentReader, 331-333

protecting from accidental usage, 723-724
routed events, 727-728
user interface, 719-721
files. See also specific files
code-behind files, 40
MainWindow.xaml.cs, 160-161, 168-169
raw project files, opening in Visual Studio, 348
VisualStudioLikePanes.xaml, 134-136
VisualStudioLikePanes.xaml.cs, 136-140
FillBehavior property (animation classes), 619
FillRule property (PathGeometry class), 480-481
Filter property (ICollectionView), 391
filtering, 391
finding type converters, 28
FindResource method, 357
FirstDayOfWeek property (Calendar control), 339
Flat line cap (Pen), 488
flow documents
annotations, 331-334
Blocks
AnchoredBlock class, 326-327
BlockUIContainer, 321
List, 320
Paragraph, 320

FlowDocumentReader control, 329
FlowDocumentScrollViewer control, 329
FontSizeConverter type converter, 28
Form1.cs file, 700-703
FormatConvertedBitmap class, 310
formatting strings, 374-376
Frame class, 194-196, 251-252
frame-based animation, 607
FrameworkContentElement class, 57, 62, 318
FrameworkElement class, 62

explained, 57

Triggers property, 67
FrameworkElements class

ActualHeight property, 80

ActualWidth property, 80

DesiredSize property, 79

FlowDirection property, 85-86

Height property, 78-80

HorizontalAlignment property, 83-84

HorizontalContentAlignment property, 84-86

LayoutTransform property, 86

Margin property, 80-82

Padding property, 80-82

RenderSize property, 79
RenderTransform property, 86
VerticalAlignment property, 83-85
Visibility property, 82-83
Width property, 78-80
FrameworkPropertyMetadata, 727
Freezable class, 56
freezing columns, 277
From property (animation classes), 612-614
FromArgb method, 703
FrozenColumnCount property (DataGrid), 277
full-trust XAML Browser applications, 210
functions. See specific functions

gadget-style applications, 205-206
galleries, RibbonGallery control, 297-298
GDI (graphics device interface), 8
hardware acceleration and, 11
GDI+, 8
generated source code, 42
generic dictionaries, 467, 737-738
generics support (XAML2009), 45
geometries
aggregate geometries, 481
Bézier curves, 478
CombinedGeometry class, 484-485
defined, 477
EllipseGeometry class, 477
Geometry3D class, 576
GeometryGroup class, 482-484
LineGeometry class, 477
MeshGeometry3D class, 576-577
Normals property, 579-581
Positions property, 577
TextureCoordinates property, 581
Trianglelndices property, 578-579

GetGeometry method 817

PathGeometry class
ArcSegment, 478
BezierSegment, 478
example, 478-480
explained, 477
FillRule property, 480-481
LineSegment, 478
PolyBezierSegment, 478
PolyLineSegment, 478
PolyQuadraticBezierSegment, 478
QuadraticBezierSegment, 478
RectangleGeometry class, 477
representing as strings, 485-487
StreamGeometry class, 481
Geometry3D class, 576
GeometryCombineMode enumeration, 484
GeometryDrawing class, 474-475
GeometryGroup class, 482-484
GeometryModel3D
defined, 561
explained, 569
Geometry3D class, 576
Materials
AmbientMaterial, 573
combining, 576
DiffuseMaterial, 570-573
EmissiveMaterial, 574
explained, 569
SpecularMaterial, 575-576
MeshGeometry3D class, 576-577
Normals property, 579-581
Positions property, 577
TextureCoordinates property, 581
TriangleIndices property, 578-579
GestureOnly value (InkCanvasEditingMode), 318
GetCommandLineArgs method, 184
GetErrors method, 408
GetExceptionForHR method, 47
GetGeometry method, 477

How can we make this index more useful? Email us at indexes@samspublishing.com

818 GetHbitmap function

GetHbitmap function, 704
GetlnstalledVoices method, 662
GetIntermediateTouchPoints method, 159
GetObject value (NodeType property), 787
GetPosition method, 153-155, 157
GetTouchPoint method, 159
GetValueSource method, 70
GetVisualChild method, 495-496
GlyphRunDrawing class, 474

GradientOrigin property (RadialGradientBrush),
517

gradients
GradientStop objects, 513
LinearGradientBrush class, 513-516
RadialGradientBrush class, 517-518
transparent colors, 518
GradientSpreadMethod enumeration, 515
GradientStop objects, 513
GrammarBuilder class, 668-669
grammars
GrammarBuilder class, 668-669

Speech Recognition Grammar Specification
(SRGS), 667-668

graphics device interface (GDI), 8
graphics hardware, 9
graphics. See 2D graphics; 3D graphics
Grid
cell properties, 111
compared to other panels, 119
explained, 108
interaction with child layout properties, 120
interactive sizing with GridSplitter, 115-116
mimicking Canvas with, 119
mimicking DockPanel with, 119
mimicking StackPanel with, 119
sharing row/column sizes, 117-119
ShowGridLines property, 112
sizing rows/columns, 112-115
absolute sizing, 113
autosizing, 113

GridLength structures, 114-115
percentage sizing, 114
proportional sizing, 113
start page with Grid, 108-112
GridLength structures, 114-115
GridLengthConverter, 114
GridSplitter class, 115-116
GridView control, 270-271
GridViewColumn object, 270
GroupBox class, 253
GroupDescriptions property (ICollectionView), 387
grouping, 387-390
GroupName property (RadioButton class), 247

GroupSizeDefinitions property (RibbonGroup),
286-288

GroupSizeReductionOrder property
(RibbonTab), 285

Handled property (RoutedEventArgs class), 144
HandleRef, 680
hardware acceleration
explained, 10
GDland, 11
HasContent property (ContentControl class), 242
Hasltems property (ItemsControl class), 256
Header property (ToolBar), 306
HeaderedltemsControl class, 299
headers
containers with headers
Expander class, 253-254
GroupBox class, 253
headered items controls, 279, 299
Height property (FrameworkElements class), 78-80
Help command, 173-174
Hidden value (Visibility enumeration), 82
HierarchicalDataTemplate, 379, 398-399

hijacking dependency properties, 441
Hillberg, Mike, 383
hit testing
3D hit testing, 590-591
input hit testing
explained, 497
InputHitTest method, 511
visual hit testing
callback methods, 503
explained, 497
simple hit testing, 497-498
with multiple Visuals, 498-501
with overlapping Visuals, 501-503
HitTest method, 500-503
HitTestCore method, 503
HitTestFilterCallback delegate, 502
HitTestResultCallback delegates, 501
HorizontalAlignment property
Canvas, 99
DockPanel, 108
FrameworkElements, 83-84
Grid, 120
StackPanel, 101
WrapPanel, 104

HorizontalContentAlignment property
(FrameworkElements class), 84-85

HostingWin32.cpp file, 681
HostingWPF.cpp file, 689-693
house drawing, 536-537

2D drawing, 536

3D drawing, 537-538

Transform3Ds, 553-554
HwndHost class, 681
HwndSource class, 688-691
HwndSource variable, 693-694
hyperlinks, 197-198

Inline elements 819

ICC (International Color Consortium), 513
ICollectionViewLiveShaping interface, 395
ICommand interface, 171

Icon property (Menultem class), 299
IconResourcelndex property (JumpTask), 222
IconResourcePath property (JumpTask), 222
ICustomTypeDescriptor interface, 366

IDs, AppUserModellDs, 772-773
|EasingFunction interface, 638

IList interface, 32

Image control, 309-311

ImageBrush class, 522-523

ImageDrawing class, 474-476

images. See 2D graphics; 3D graphics
ImageSource class, 310
ImageSourceConverter type converter, 309

ImeProcessedKey property (KeyEventArgs
event), 150

immediate mode systems, 12, 473
implicit .NET namespaces, 23
implicit styles, creating, 421-422
implicit versus explicit runs, 314
InAir property (StylusDevice class), 157
Indeterminate ProgressState, 230
inertia, enabling, 165-170
Ingebretsen, Robby, 19
inheritance
class hierarchy, 55-57
property value inheritance, 67-69
styles, 418
InitializeComponent method, 42, 44, 180
InitialShowDelay property (ToolTip class), 250
InkAndGesture value (InkCanvasEditingMode), 318
InkCanvas control, 316-318
Inline elements
AnchoredBlock, 326-327
defined, 324-325
InlineUIContainer, 329

How can we make this index more useful? Email us at indexes@samspublishing.com

820 Inline elements

LineBreak, 327
Span, 325-326
Inlines property (TextBlock control), 314
InlineUlContainer class, 329
InnerConeAngle property (PointLights), 566
INotifyDataErrorinfo interface, 408-409
input gestures, 175
input hit testing
explained, 497
InputHitTest method, 511
InputGestureText property (Menultem class), 300
InputHitTest method, 511
inspecting WPF elements, 12
instantiating objects
with factory methods, 47-48
with non-default constructors, 47
Int16 keyword, 50
Int32 keyword, 50
Int64 keyword, 50
integration of WPF, 9
IntelliSense, 53
intensity of lights, 563
interfaces. See specific interfaces
International Color Consortium (ICC), 513
interoperability (WPF)
ActiveX content, 710-714
C++/CLI, 677
DirectX, 13, 704-710
explained, 671-673
overlapping content, 673
Win32 controls
explained, 673-674
HwndSource class, 688-691
keyboard navigation, 683-687
launching modal dialogs, 688, 695
layout, 692-695
Webcam control, 674-683
Windows Forms controls

converting between two representatives,
703-704

ElementHost class, 700-702

explained, 695-696
launching modal dialogs, 699, 704
PropertyGrid, 696-699

Invaliditem value (JumpltemRejectionReason
enumeration), 228

Inverted property (StylusDevice class), 157
IsAdditive property (animation classes), 619
IsAsync property (Binding object), 401
IsCheckable property (Menultem class), 300
IsChecked property (ToggleButton class), 245
IsCumulative property (animation classes), 619
IsDefault property (Button class), 63-64, 244
IsDefaulted property (Button class), 244

IsDown property (KeyEventArgs event), 151
IsDropDownOpen property (Ribbon), 280
IsEditable property (ComboBox), 262
IsFrontBufferAvailableChanged event handler, 708
IsGrouping property (ltemsControl class), 256
IsHostedInRibbonWindow property (Ribbon), 281

Isindeterminate property (ProgressBar control),
335

IskeyboardFocused property (UIElements
class), 152

IskeyDown method, 152
IsMinimized property (Ribbon), 280

IsMouseDirectlyOver property (UIElements
class), 153

IsNetworkDeployed method, 213

isolated storage, 191-192

IsolatedStorage namespace, 192
IsolatedStorageFile class, 192
IsolatedStorageFileStream class, 192
IsPressed property (ButtonBase class), 243
IsReadOnly property (ComboBox), 262
IsRepeat property (KeyEventArgs event), 151
IsSelected property (Selector class), 261
IsSelectionActive property (Selector class), 261
IsSynchronizedWithCurrentltem method, 372

IsSynchronizedWithCurrentltem property
(Selector), 371

IsTextSearchCaseSensitive property (ItemsControl
class), 265

IsTextSearchEnabled property (ItemsControl
class), 265

IsThreeState property (ToggleButton class), 245
IsToggled property (KeyEventArgs event), 151
IsUp property (KeyEventArgs event), 151
ItemHeight property (WrapPanel), 102
items controls
ComboBox
ComboBoxItem objects, 266-267
customizing selection box, 262-265
events, 262
explained, 262
IsEditable property, 262
IsReadOnly property, 262
SelectionChanged event, 266
ContextMenu, 301-302
DataGrid
auto-generated columns, 274-275
CanUserAddRows property, 278
CanUserDeleteRows property, 278
clipboard interaction, 276
ClipboardCopyMode property, 276
column types, 273-274
displaying row details, 276-277
editing data, 277-278
EnableColumnVirtualization property, 276
EnableRowVirtualization property, 276
example, 272-273
freezing columns, 277
FrozenColumnCount property, 277
RowDetailsVisibilityMode property, 277
selecting rows/cells, 275
SelectionMode property, 275
SelectionUnit property, 275
virtualization, 276
GridView, 270-271
IltemsControl class, 255-256
AlternationCount property, 256
Alternationindex property, 256
DisplayMemberPath property, 256-257

items controls 821

Hasltems property, 256
IsGrouping property, 256
IsTextSearchCaseSensitive property, 265
IsTextSearchEnabled property, 265
Items property, 255
ItemsPanel property, 256-260
ItemsSource property, 256
ListBox
automation IDs, 269
example, 267-268
scrolling, 269
SelectionMode property, 268
sorting items in, 269
support for multiple selections, 268
ListView, 270-271
Menu, 298-301
Ribbon
application menu, 291-292
contextual tabs, 294-295
example, 278-281
galleries, 297-298
IsDropDownOpen property, 280
IsHostedInRibbonWindow property, 281
IsMinimized property, 280
key tips, 289-290
minimizing, 280
Quick Access toolbar, 292-294
resizing, 284-289
ribbon controls, 281-284, 288-289
RibbonGroup, 279, 286-288
RibbonTab, 279, 285-286
RibbonWindow, 280-281
ScreenTips, 295-296
WindowlconVisibility property, 281
scrolling behavior, controlling, 260-261
Selector class, 261
StatusBar, 307-308
TabControl, 271-272

How can we make this index more useful? Email us at indexes@samspublishing.com

822 items controls

ToolBar, 304-306
TreeView, 302-304
items panels, 258
Items property (ItemsControl class), 255, 371
ItemsCollection object, 269
ItemsControl class, 255-256
AlternationCount property, 256
Alternationindex property, 256
DisplayMemberPath property, 256-257
Hasltems property, 256
IsGrouping property, 256
IsTextSearchCaseSensitive property, 265
IsTextSearchEnabled property, 265
Iltems property, 255
ItemsPanel property, 256-260
ItemsSource property, 256
scrolling behavior, controlling, 260-261
ItemsPanel property (ItemsControl class), 256-260
ItemsSource collection, 277

ItemsSource property (ItemsControl class),
256, 371

ItemWidth property (WrapPanel), 102
IValueConverter interface, 380-382
IXamlLinelnfo interface, 788

J

journal, 198-200
JournalOwnership property (Frame class), 198-199
Jump Lists
associating with applications, 218
explained, 218
JumpPaths
adding, 226-227
explained, 225
recent and frequent JumpPaths, 227-228

responding to rejected or removed
items, 228

JumpTasks
customizing behavior of, 221-224
example, 218-219
explained, 218
and Visual Studio debugger, 220
JumpltemRejectionReason enumeration, 228
JumpltemsRejected event, 228
JumpltemsRemovedByUser event, 228
Jumplist class. See Jump Lists
JumpPaths
adding, 226-227
explained, 225
recent and frequent JumpPaths, 227-228
responding to rejected or removed items, 228
JumpTasks
customizing behavior of, 221-224
example, 218-219
explained, 218

K

Kaxaml, 18-19
Key enumeration, 150-152
Key keyword, 50, 352
Key property (KeyEventArgs event), 150
key tips, 289-290
keyboard events, 150-152
keyboard navigation
customizing, 306
supporting in Win32 controls, 683-684
access keys, 687
tabbing in/out of Win32 content, 684-686
keyboard support for CheckBox control, 246

KeyboardDevice property (KeyEventArgs event),
151

KeyboardNavigation class, 306
KeyDown event, 150
KeyEventArgs event, 150-151
keyframe animation
discrete keyframes, 632-634
easing keyframes, 634

layout 823

explained, 628 explained, 77-78
linear keyframes, 629-631 panels, 77
spline keyframes, 631-632 Canvas, 98-100
keyless resources, 422-423 DockPanel, 105-108
KeyStates property explained, 97-98
KeyEventArgs event, 151 Grid. See Grid
QueryContinueDragEventArgs class, 155 SelectiveScrollingGrid, 121-122
KeyTip property (ribbon controls), 289-290 StackPanel, 100-101
KeyUp event, 150 TabPanel, 120
keywords. See specific keywords ToolBarOverflowPanel, 121

ToolBarPanel, 121
ToolBarTray, 121
UniformGrid, 121

L WrapPanel, 102-105

positioning elements
Label class, 248

Label property (ribbon controls), 283
Language Integrated Query (LINQ), 396

content alignment, 84-85
explained, 83
flow direction, 85-86

LargelmageSource property (ribbon controls), 283
horizontal and vertical alignment, 83-84

LastChildFill property (DockPanel), 105

. . stretch alignment, 84
launching modal dialogs -
X o sizing elements
from Win32 applications, 695
i o explained, 78
from Windows Forms applications, 704

o explicit sizes, avoiding, 79
from WPF applications, 688, 699

height and width, 78-80

layout
. margin and padding, 80-82
content overflow, handling
- visibility, 82-83
clipping, 122-124
. transforms
explained, 122
. applying, 86-88
scaling, 126-130
) combining, 94
scrolling, 124-126
explained, 86
custom panels
o MatrixTransform, 93
communication between parents and
children, 748-751 RotateTransform, 88-90

explained, 747-748 ScaleTransform, 90-92

FanCanvas, 764-768 SkewTransform, 92

OverlapPanel, 759-764 support for, 94-95

SimpleCanvas, 751-756 TranslateTransform, 92-93

SimpleStackPanel, 756-759 Visual Studio-like panes, creating
embedding WPF controls in Win32 applica- sequential states of user interface,

tions, 692-695 130-134

VisualStudioLikePanes.xaml, 134-136
VisualStudioLikePanes.xaml.cs, 136-140

How can we make this index more useful? Email us at indexes@samspublishing.com

824 LayoutTransform property

LayoutTransform property
Canvas panel, 99
DockPanel, 108
FrameworkElements, 86
Grid, 120
StackPanel, 101
WrapPanel, 105
Left property (Canvas), 98
LengthConverter type converter, 82
Light and Fluffy skin example, 463-464
Light objects
AmbientLight, 562, 567-568
defined, 561
DirectionalLight, 562-563
explained, 540, 561
intensity of, 563
PointLight, 562-564
SpotLight, 562-566
Line class, 507-508
linear interpolation, 610-611
linear keyframes, 629-631
LinearAttenuation property (PointLights), 564
LinearGradientBrush class, 513-516
LineBreak class, 327
LineGeometry class, 477
LineJoin property (Pen class), 488
LineSegment class, 478
LINQ (Language Integrated Query), 396
List Blocks, 320
ListBox control
arranging items horizontally, 259
automation IDs, 269
example, 267-268

placing PlayingCards custom control into, 738

scrolling, 269

SelectionMode property, 268
sorting items in, 269

support for multiple selections, 268

lists, 32-33

Jump Lists
and Visual Studio debugger, 220
associating with applications, 218
explained, 218
JumpPaths, 225-228
JumpTasks, 218-224

List Blocks, 320

ListBox
arranging items horizontally, 259
automation IDs, 269
example, 267-268

placing PlayingCards custom control
into, 738

scrolling, 269
SelectionMode property, 268
sorting items in, 269
support for multiple selections, 268
ListView, 270-271
ListView control, 270-271
live objects, writing to, 791-793
live shaping, 385, 395
Load method, 36-37, 794
LoadAsync method (XamIReader), 37
LoadComponent method, 43
loading XAML at runtime, 36-37
Lobo, Lester, 19
local values, clearing, 71

localization IDs, marking user interfaces with, 349

localizing binary resources, 348-349
LocBaml, creating satellite assembly with, 349
locking D3DImage, 709
logical AND relationships, 429-430
logical OR relationships, 429
logical resources

accessing directly, 358

consolidating color brushes with, 351-353

defining and applying in procedural code,
357-358

explained, 349-350

interaction with system resources, 358-359
resource lookup, 353
resources without sharing, 356
static versus dynamic resources, 353-355
logical trees, 57-62
LogicalChildren property, 62
LogicalTreeHelper class, 59
LookDirection property (Cameras), 542-546
lookup (resource), 353
loose XAML pages, 213-214

mage.exe command-line tool, 192
mageUl.exe graphical tool, 192
Main method, 181-183
MainWindow class, 179-180
MainWindow.xaml file, 706

MainWindow.xaml.cs file, 160-161, 168-169,
706-708

malicious skins, preventing, 464-465
managed code, mixing with unmanaged code, 678
manipulation events

adding inertia with, 165-170

enabling panning/rotating/zooming
with, 164-165

explained, 162-163
ManipulationCompleted, 163
ManipulationDelta, 163
ManipulationStarted, 163
ManipulationStarting, 163
ManipulationBoundaryFeedback event, 167
ManipulationCompleted event, 163
ManipulationDelta event, 163-165
ManipulationDeltaEventArgs instance, 163
ManipulationlnertiaStarting event, 165, 169
ManipulationStarted event, 163
ManipulationStarting event, 163

MergedDictionaries property 825

Margin property

Canvas panel, 99

DockPanel, 108

FrameworkElements, 80-82

Grid, 120

StackPanel, 101

WrapPanel, 104
markup compatibility, 791
markup extensions

explained, 28-31

parameters, 29

in procedural code, 31
Materials

AmbientMaterial, 573

combining, 576

DiffuseMaterial, 570-573

EmissiveMaterial, 574

explained, 569

SpecularMaterial, 575-576
MatrixCamera class, 551
MatrixTransform, 93
MatrixTransform3D class, 560
MDI (multiple-document interface), 185
MeasureOverride method, 748-750
MediaCommands class, 172
MediaElement class

playing audio, 654-656

playing video, 656-658
MediaPlayer class, 653-654
MediaTimeline class

playing audio, 654-656

playing video, 659-660
Members keyword, 49-50
Menu control, 298-301
Menultem class, 299
menus

ContextMenu control, 301-302

Menu control, 298-301

MergedDictionaries property (ResourceDictionary
class), 355

How can we make this index more useful? Email us at indexes@samspublishing.com

826 MeshGeometry3D class

MeshGeometry3D class, 576-577
Normals property, 579-581
Positions property, 577
TextureCoordinates property, 581
TriangleIndices property, 578-579

methods. See specific methods

minimizing Ribbon, 280

missing styles, troubleshooting, 461

mnemonics, 687

modal dialogs

launching from Win32 applications, 695

launching from Windows Forms
applications, 704

launching from WPF applications, 688, 699

Model3DGroup, defined, 561
Model3DGroup class, 582-584
Model3Ds
explained, 561
GeometryModel3D
defined, 561
explained, 569
Geometry3D class, 576
Materials, 569-576
MeshGeometry3D class, 576-581
Lights
AmbientLight, 562, 567-568
DirectionalLight, 562-563
explained, 561
intensity of, 563
PointLight, 562-564
SpotLight, 562-566
Model3DGroup, 561, 582-584
modeless dialogs, 178
ModelUlElement3D class, 586-588
ModelVisual3D class, 585-586
Modifiers property (KeyboardDevice), 151

Mouse class, 155

mouse events
capturing, 155-156
drag-and-drop events, 154-155
explained, 152-153
MouseButtonEventArgs, 154
MouseEventArgs, 153-154
MouseWheelEventArgs, 154
transparent and null regions, 153
MouseButtonEventArgs class, 154
MouseButtonState enumeration, 153
MouseEventArgs class, 153-154

MouseOverBackground property (ribbon
controls), 283

MouseOverBorderBrush property (ribbon
controls), 283

MouseWheelEventArgs class, 154
MultiBinding class, 410-411
multiple providers, support for

applying animations, 71

coercion, 71

determining base values, 69-70

evaluating, 71

explained, 69

validation, 72
multiple visuals, hit testing with, 498-501
multiple-document interface (MDI), 185
MultipleRange value (SelectionMode), 337
MultiPoint Mouse SDK, 158
multithreaded applications, 187
MyHwndHost class, 680-682

Name keyword, 38, 50
named elements, 434
named styles, 421-422

NamespaceDeclaration value (NodeType
property), 788

namespaces
explained, 22-24
implicit .NET namespaces, 23
mapping, 22
naming elements, 38-39
Navigate method, 196-197

navigation

keyboard navigation, supporting in Win32

controls, 683-687

views, 391-392

XAMLBrowser applications, 210-211
navigation-based desktop applications

explained, 193-194

hyperlinks, 197-198

journal, 198-200

Navigate method, 196-197

navigation containers, 194-196

navigation events, 200-201

Page elements, 194-196

returning data from pages, 203-204

sending data to pages, 202-203
NavigationCommands class, 172
NavigationProgress event, 201
NavigationStopped event, 201
NavigationWindow class, 194-196
nearest-neighbor bitmap scaling, 310
.NET properties, binding to, 365-367
NodeType property (XAML), 787-788
None ProgressState, 230
None value

InkCanvasEditingMode, 318

NodeType property, 788

SelectionMode, 337
nonprinciple axis, scaling about, 557
NonZero fill (FillRule property), 480
NoRegisteredHandler value

(JumpltemRejectionReason enumeration), 228

Normal ProgressState, 230
normals, 579

Normals property (MeshGeometry3D class),

579-581

object elements

notifications (toast)
audio, 778
canceling, 780
changing color of, 775
notification events, 778-779
prerequisites, 771-773
scheduled notifications, 779-780
sending, 774-775
templates, 775-778
NotificationsExtensions project, 777
Null keyword, 52
null regions and mouse events, 153

o

Object class, 55
object elements
attributes, 21
content property, 31-32
declaring, 21
dictionaries, 33-34
explained, 20-21
lists, 32-33
naming, 38-39
positioning
content alignment, 84-85
explained, 83
flow direction, 85-86

horizontal and vertical alignment, 83-84

stretch alignment, 84
processing child elements, 36
sizing

explained, 78

explicit sizes, avoiding, 79

height and width, 78-80

margin and padding, 80-82

visibility, 82-83

How can we make this index more useful? Email us at indexes@samspublishing.com

827

828 object elements

transforms
applying, 86-88
combining, 94
explained, 86
MatrixTransform, 93
RotateTransform, 88-90
ScaleTransform, 90-92
SkewTransform, 92
support for, 94-95
TranslateTransform, 92-93

values type-converted to object elements, 34

Object keyword, 51
ObjectDataProvider class, 400-402
objects
binding to, 367-368
instantiating via factory methods, 47-48

instantiating with non-default constructors, 47

live objects, writing to, 791-793

logical trees, 57-58

visual trees, 58-62
on-demand download, 212-213
OneTime binding, 403
OneWay binding, 403
OneWayToSource binding, 403-404
OnMnemonic method, 687
OnNoMoreTabStops method, 686
opacity masks, brushes as, 525-527
Opacity property (brushes), 525
OpacityMask property (brushes), 525-527
OpenGL, 8
opening project files in Visual Studio, 348
OR relationships (logical), 429
order of property and event processing, 22
Orientation property

ProgressBar control, 335

StackPanel, 100

WrapPanel, 102

OriginalSource property (RoutedEventArgs
class), 144

OrthographicCamera class
blind spots, 543

compared to PerspectiveCamera class,
549-551

LookDirection property, 542-546
Position property, 541-542
UpDirection property, 546-548
ZAfighting, 543
OuterConeAngle property (PointLights), 566
OverlapPanel, 759-764
overlapping content, 673
overlapping visuals, hit testing with, 501-503
Overlay property (Taskbarlteminfo), 231
overlays, adding to taskbar items, 231
overriding
ArrangeOverride method, 750-751
MeasureOverride method, 748-750

P

packageURI, 347

Padding property (FrameworkElements
class), 80-82

Page elements, 194-196
PageFunction class, 203-204
pages
loose XAML pages, 213-214
Page elements, 194-196
refreshing, 199
returning data from, 203-204
sending data to, 202-203
stopping loading, 199
panels, 77
Canvas, 98-100, 119
content overflow, handling
clipping, 122-124
explained, 122
scaling, 126-130
scrolling, 124-126
custom panels

communication between parents and
children, 748-751

explained, 747-748
FanCanvas, 764-768
OverlapPanel, 759-764
SimpleCanvas, 751-756
SimpleStackPanel, 756-759
DockPanel
examples, 105-107
explained, 105

interaction with child layout properties,
107-108

mimicking with Grid, 119
properties, 105
explained, 97-98
Grid
cell properties, 111
compared to other panels, 119
explained, 108
interaction with child layout properties, 120
interactive sizing with GridSplitter, 115-116
mimicking Canvas with, 119
mimicking DockPanel with, 119
mimicking StackPanel with, 119
sharing row/column sizes, 117-119
ShowGridLines property, 112
sizing rows/columns, 112-115
start page with Grid, 108-112
SelectiveScrollingGrid, 121-122
StackPanel
explained, 100
interaction with child layout properties, 101
mimicking with Grid, 119
TabPanel, 120
ToolBarOverflowPanel, 121
ToolBarPanel, 121
ToolBarTray, 121
UniformGrid, 121
Visual Studio-like panes, creating

sequential states of user interface,
130-134

VisualStudioLikePanes.xaml, 134-136
VisualStudioLikePanes.xaml.cs, 136-140

performance 829

WrapPanel
and right-to-left environments, 104
examples, 103-104
explained, 102

interaction with child layout properties,
104-105

properties, 102
panning
enabling with touch events, 164-165
with inertia, 166-167
Paragraph Blocks, 320
Parse method, 794
parsing XAML at runtime, 36-38
partial keyword, 40
partial-trust applications, 13
parts (control), 447-449
PasswordBox control, 316
Path class, 509-510
path-based animations, 635
PathGeometry class
ArcSegment, 478
BezierSegment, 478
example, 478-480
explained, 477
FillRule property, 480-481
LineSegment, 478
PolyBezierSegment, 478
PolyLineSegment, 478
PolyQuadraticBezierSegment, 478
QuadraticBezierSegment, 478
Paused ProgressState, 230
Pen class, 487-489
percentage sizing, 114
performance
cached composition
BitmapCache class, 531-533
BitmapCacheBrush class, 533
Viewport2DVisual3D support for, 589

How can we make this index more useful? Email us at indexes@samspublishing.com

830 performance

improving rendering performance
BitmapCache class, 531-533
BitmapCacheBrush class, 533
RenderTargetBitmap class, 530-531
XAML, 53
WPF 3.5 enhancements, 14
WPF 4 enhancements, 15
WPF 4.5 enhancements, 16
persisting application state, 192
PerspectiveCamera class
blind spots, 543

compared to OrthographicCamera class,
549-551

LookDirection property, 542-546
Position property, 542
UpDirection property, 546-548
ZAfighting, 543
Petzold, Charles, 19
PinToStart() method, 773
PixelFormats enumeration, 311
pixels
device-independent pixels, 82
pixel boundaries, 15
pixel shaders, 529
Play method, 652
PlayingCard control
behavior
code-behind file, 730
final implementation, 733-735
initial implementation, 729-733
resources, 730-731
generic resources, 737-738
placing into ListBox, 738
user interface, 735-738
PointLight, 562-564
PolyBezierSegment class, 478
Polygon class, 509
Polyline class, 508
PolyLineSegment class, 478

PolyQuadraticBezierSegment class, 478
Position property (Cameras), 541-542
positioning elements

content alignment, 84-85

explained, 83

flow direction, 85-86

horizontal and vertical alignment, 83-84

stretch alignment, 84

Positions property (MeshGeometry3D class), 577

power easing functions, 635-636

PreferUnconvertedDictionaryKeys property, 46

PressureFactor property (StylusPoint object), 157

PreviewKeyDown event, 150
PreviewKeyUp event, 150
printing logical/visual trees, 60-61
PrintLogicalTree method, 61
PrintVisualTree method, 60
PriorityBinding class, 411-412
procedural code
accessing binary resources from, 347-348
animation classes
AutoReverse property, 616
BeginTime property, 614-615
DoubleAnimation, 609-610
Duration property, 612
EasingFunction property, 618
explained, 606-608
FillBehavior property, 619
From property, 612-614
IsAdditive property, 619
IsCumulative property, 619
lack of generics, 608-609
linear interpolation, 610-611
RepeatBehavior property, 616-617
reusing animations, 611
SpeedRatio property, 615
To property, 612-614
Binding object in, 361-363

compared to XAML, 20

defining and applying resources in, 357-358
embedding PropertyGrid with, 696-698
frame-based animation, 607

markup extensions in, 31

mixing XAML with

BAML (Binary Application Markup
Language), 41-44

CAML (Compiled Application Markup
Language), 42

compiling XAML, 39-41
generated source code, 42

loading and parsing XAML at runtime,
36-38

naming XAML elements, 38-39
procedural code inside XAML, 43
skins, 462
timer-based animation, 606
type converters in, 27
procedural code, timer-based animation, 607
ProgressBar control, 335
adding to taskbars, 230
pie chart control template, 442-444, 453-455
ProgressState property (Taskbarlteminfo), 230
ProgressValue property (Taskbarlteminfo), 230
project files, opening in Visual Studio, 348
PromptBuilder class, 663-665
properties. See also specific properties
attributes, 21
dependency properties
attached properties, 72-75
attached property providers, 74-75
change notification, 65-67
explained, 62-63
implementation, 63-65
property value inheritance, 67-69
support for multiple providers, 69-72
.NET properties, binding to, 365-367
order of processing, 22
property triggers, 65-67
property wrappers, 64-65

RadiusY property 831

Properties collection, 185
property elements, 25-26
Property keyword, 49-51
property paths, 257
property triggers, 65-67, 424-427, 626-627
property value inheritance, 67-69
property wrappers, 64-65
PropertyGrid
embedding with procedural code, 696-698
embedding with XAML, 698-699
PropertyGroupDescription class, 389
proportional sizing, 113

protecting controls from accidental usage,
723-724

pure-XAML Twitter client, 412-414

Q

QuadraticAttenuation property (PointLights), 564
QuadraticBezierSegment class, 478
QuaternionRotation3D class, 557
QueryContinueDragEventArgs class, 155

Quick Access toolbar, 292-294

RadialGradientBrush class, 517-518

RadioButton class, 246-248

RadiusX property
RadialGradientBrush, 517
Rectangle, 505

RadiusY property
RadialGradientBrush, 517
Rectangle, 505

How can we make this index more useful? Email us at indexes@samspublishing.com

832 range controls

range controls
explained, 334
ProgressBar, 335
Slider, 335-336
Range property (PointLights), 564
raw project files, opening in Visual Studio, 348
readers (XAML)
explained, 783-785
markup compatibility, 791
node loops, 786-787
NodeType property, 787-788
sample XAML content, 789
XAML node stream, 789-791
XamlServices class, 794-797
recent and frequent JumpPaths, 227-228
Rectangle class, 505-506
RectangleGeometry class, 477
Reference keyword, 52
Refresh method, 199
refreshing pages, 199
Register method, 64
rejected items, reponding to, 228
RelativeSource property (Binding object), 365
releases of WPF
WPF 3.0, 12
WPF 3.5, 12-14
WPF 3.5 SP1, 13-14
WPF 4, 14-15
WPF 4.5, 12, 15-16
WPF Toolkit, 12
removed items, reponding to, 228

RemovedByUser value (JumpltemRejectionReason
enumeration), 228

RemoveFromSchedule method, 780
RemoveHandler method, 142-143
RenderAtScale property (BitmapCache class), 531
rendering
controlling
data templates, 376-379
explained, 373-374
string formatting, 374-376
value converters, 380-384

custom rendering, 497
performance, improving
BitmapCache class, 531-533
BitmapCacheBrush class, 533
RenderTargetBitmap class, 530-531
text, 15, 312
Rendering event, 607

RenderSize property (FrameworkElements
class), 79

RenderTargetBitmap class, 530-531

RenderTransform property (FrameworkElements
class), 86

RenderTransformOrigin property (UIElement
class), 87

RepeatBehavior property (animation classes),
616-617

RepeatButton class, 245
ResizeBehavior property (GridSplitter), 116
ResizeDirection property (GridSplitter), 116
resizing Ribbon
resizing behavior, 284-285
ribbon controls, 288-289
RibbonGroup, 286-288
RibbonTab, 285-286
resolution independence, 10
Resource build action, 342-343
ResourceDictionary, 33-34, 355
ResourceDictionaryLocation parameter, 467
resources
binary resources
accessing, 343-348
defining, 342-343
explained, 341
localizing, 348-349
defined, 341
keyless resources, 422-423
logical resources
accessing directly, 358
consolidating color brushes with, 351-353

defining and applying in procedural code,
357-358

explained, 349-350

interaction with system resources, 358-359
resource lookup, 353
resources without sharing, 356
static versus dynamic resources, 353-355
for PlayingCard custom control, 730-731
Resources property, 350
responding to rejected or removed items, 228
restoring application state, 192
restricting style usage, 420-421
retained mode systems, 12
retained-mode graphics systems, 473-474
returning data from pages, 203-204
reusing animations, 611
Ribbon control, 15
application menu, 291-292
contextual tabs, 294-295
example, 278-281
galleries, 297-298
IsDropDownOpen property, 280
IsHostedInRibbonWindow property, 281
IsMinimized property, 280
key tips, 289-290
minimizing, 280
Quick Access toolbar, 292-294
resizing
resizing behavior, 284-285
ribbon controls, 288-289
RibbonGroup, 286-288
RibbonTab, 285-286
ribbon controls
examples, 282-283
overview, 281
properties, 283-284
resizing, 288-289
RibbonGroup, 279, 286-288
RibbonTab, 279, 285-286
RibbonWindow, 280-281
ScreenTips, 295-296

routed events 833

RibbonApplicationMenu class, 291-292
RibbonButton, 281-283
RibbonCheckBox, 281
RibbonComboBox, 282
RibbonGallery control, 297-298
RibbonGroup, 279, 286-288
RibbonQuickAccessToolBar control, 292-294
RibbonRadioButton, 281
RibbonSeparator, 282
RibbonSplitButton, 282
RibbonTab, 279, 285-286
RibbonTextBox, 282
RibbonToggleButton, 282
RibbonToolTip control, 295-296
RibbonTwoLineText, 282
RibbonWindow, 280-281
RichTextBox control, 316
Right property (Canvas), 98
right-hand rule, 541, 578
right-handed coordinate systems, 541-542
RotateTransform, 88-90
RotateTransform3D, 557-560
rotation
enabling with touch events, 164-165
with inertia, 166-167
RotateTransform3D class, 557-560
Rotation property (ManipulationDelta class), 163
routed events
About dialog example, 144-146
adding to user controls, 727-728
attached events, 147-149
consolidating routed event handlers, 149-150
defined, 141
explained, 141-142
implementation, 142-143
RoutedEventArgs class, 144
routing strategies, 143-144
stopping, 147

How can we make this index more useful? Email us at indexes@samspublishing.com

834 RoutedEvent property

RoutedEvent property (RoutedEventArgs class),
144

RoutedEventArgs class, 144
RoutedUICommand objects, 172
routing strategies, 143-144
RoutingStrategy enumeration, 143
RowDetailsVisibilityMode property (DataGrid), 277
rows
DataGrid
displaying row details, 276-277
selecting, 275
Grid
sharing row/column sizes, 117-119
sizing, 112-116
Run method, 182-183
runtime, loading and parsing XAML at, 36-38

S

satellite assemblies, creating with LocBaml, 349
Save method, 795
Scale property (ManipulationDelta class), 163
ScaleTransform, 90-92, 127
ScaleTransform3D class, 555-557
ScaleX property (RotateTransform class), 90
ScaleY property (RotateTransform class), 90
scaling, 126-130
about nonprinciple axis, 557
nearest-neighbor bitmap scaling, 310
ScaleTransform3D class, 555-557
ScheduledToastNotification object, 779-780
scheduling toast notifications, 779-780
scope of typed styles, 421
ScreenTips with Ribbon control, 295-296
scRGB color space, 512
ScrollBars, 125-126
scrolling, 124-126
controlling in items controls, 260-261
ListBox control, 269

ScrollViewer control, 124-126

Section Blocks, 320

security in XAMLBrowser applications, 211
Select value (InkCanvasEditingMode), 318
SelectedDatesChanged event, 340
SelectedIndex property (Selector class), 261
Selectedltem property (Selector class), 261
SelectedValue property (Selector class), 261
selecting rows/cells, 275

selection boxes (ComboBox control), customizing,
262-265

SelectionChanged event, 261, 266
SelectionMode property

Calendar control, 337

DataGrid, 275

ListBox, 268
SelectionUnit property (DataGrid), 275
SelectiveScrollingGrid, 121-122
Selector class, 261
selectors (data template), 380
SelectVoice method, 662
SelectVoiceByHints method, 662
sending

data to pages, 202-203

toast notifications, 774-775
SendToast() method, 774, 777
Separator control, 299
SetBinding method, 363
SetCurrentValue method, 72
SetOutputToDefaultAudioDevice method, 663
SetOutputToWaveFile method, 663
SetResourceReference method, 357
Setters, 419-420
Settings class, 192
ShaderEffect, 529
Shapes

clip art based on Shapes, 510-511

Ellipse class, 506

explained, 503-504

how they work, 507

Line class, 507-508
overuse of, 505
Path class, 509-510
Polygon class, 509
Polyline class, 508
Rectangle class, 505-506
Shared keyword, 51, 356
sharing
data source with DataContext, 372-373
Grid row/column sizes, 117-119
resources without sharing, 356
styles, 418-420
shortcuts, AppUserModellDs, 772-773
ShowDialog method, 190-191
ShowDuration property (ToolTip class), 250

ShowFrequentCategory property (JumpList
class), 227

ShowGridLines property (Grid), 112

ShowOnDisabled property
ContextMenuService class, 302
ToolTipService class, 251

ShowRecentCategory property (JumpList
class), 227

ShutdownMode enumeration, 184
Silicon Graphics OpenGL, 8
SimpleCanvas, 751-756
SimpleQuadraticEase class, 639
SimpleStackPanel, 756-759
SineEase function, 638
Single keyword, 51
single-instance applications, 186
single-threaded apartment (STA), 181
SingleDate value (SelectionMode), 337
SingleRange value (SelectionMode), 337
sizing. See also resizing Ribbon
elements

explained, 78

explicit sizes, avoiding, 79

height and width, 78-80

SourceName property 835

margin and padding, 80-82
visibility, 82-83
Grid rows/columns, 112-115
absolute sizing, 113
autosizing, 113
GridLength structures, 114-115
interactive sizing with GridSplitter, 115-116
percentage sizing, 114
proportional sizing, 113
sharing row/column sizes, 117-119
SkewTransform, 92
skins
defined, 415
examples, 459-461
explained, 458-462
Light and Fluffy skin example, 463-464
malicious skins, preventing, 464-465
missing styles, troubleshooting, 461
procedural code, 462
Skip method, 793
Slider control, 335-336
SmalllmageSource property (ribbon controls), 283
snapshots of individual video frames, taking, 658
SnapsToDevicePixels property, 15, 532
Snoop, 12
shooze interval (toast notifications), 780
SolidColorBrush class, 512
SortDescription class, 394
SortDescriptions collection, 386
SortDescriptions property
ICollectionView, 385
IltemsCollection, 269
sorting, 269, 385-387
SoundPlayer class, 652
SoundPlayerAction class, 652-653
Source property
MediaElement class, 654
RoutedEventArgs class, 144
SourceName property (Trigger class), 433

How can we make this index more useful? Email us at indexes@samspublishing.com

836 spaces in geometry strings

spaces in geometry strings, 487
spans, 325-326
SpeakAsync method, 662
SpeakAsyncCancelAll method, 662
SpecularMaterial class, 575-576
speech recognition

converting spoken words into text, 665-667

specifying grammar with GrammarBuilder,
668-669

specifying grammar with SRGS, 667-668

Speech Recognition Grammar Specification
(SRGS), 667-668

speech synthesis
explained, 662
GetlnstalledVoices method, 662
PromptBuilder class, 663-665
SelectVoice method, 662
SelectVoiceByHints method, 662
SetOutputToWaveFile method, 663
SpeakAsync method, 662

Speech Synthesis Markup Language (SSML),
663-665

SpeechSynthesizer, 662

Speech Synthesis Markup Language (SSML),
663-665

SpeechRecognitionEngine class, 667
SpeechSynthesizer, 662

SpeedRatio property (animation classes), 615
spell checking in TextBoxes, 315

Spinning Prize Wheel, 168-169

splash screens, 187-188

spline keyframes, 631-632

SpotLight, 562-566

SpreadMethod property (LinearGradientBrush),
515

Square line cap (Pen), 488
sRGB color space, 512

SRGS (Speech Recognition Grammar
Specification), 667-668

SSML (Speech Synthesis Markup Language),
663-665

STA (single-threaded apartment), 181
StackPanel, 101. See also SimpleStackPanel
explained, 100
interaction with child layout properties, 101
with Menu control, 300
mimicking with Grid, 119
setting font properties on, 72-73
standard desktop applications
Application class
creating applications without, 186
events, 184
explained, 181-182
Properties collection, 185
Run method, 182-183
Windows collection, 184
application state, 192
ClickOnce, 192-193
common dialogs, 188-189
custom dialogs, 189-190
explained, 177-178
multiple-document interface (MDI), 185
multithreaded applications, 187
retrieving command-line arguments in, 184
single-instance applications, 186
splash screens, 187-188
Window class, 178-180
Windows Installer, 192
start pages, building with Grid, 108-112
Start screen shortcuts, 772-773

starting animations from property triggers,
626-627

StartLineCap property (Pen class), 487
StartMember value (NodeType property), 787
StartObject value (NodeType property), 787
StartPoint property (LinearGradientBrush), 514
StartupUri property (Application class), 182-183
state groups, 450
states
control states, 449-455, 741-745
persisting and restoring, 192

state groups, 450
visual states
respecting with triggers, 442-446

respecting with VSM (Visual State
Manager), 447-455

STAThreadAttribute, 691
Static keyword, 52
static versus dynamic resources, 353-355
StaticResource markup extension, 353-355
StatusBar control, 307-308
StopLoading method, 199
stopping
page loading, 199
routed events, 147
Storyboards
EventTriggers containing Storyboards, 619-620
TargetName property, 623-624
TargetProperty property, 620-623
as Timelines, 627-628
StreamGeometry class, 481
Stretch alignment, 84
Stretch enumeration, 127
Stretch property
DrawingBrush class, 519
MediaElement class, 656
StretchDirection enumeration, 127

StretchDirection property (MediaElement
class), 656

String keyword, 51
StringFormat property (Binding object), 374
strings
formatting, 374-376
representing geometries as, 485-487
Stroke objects, 317
Style class. See styles
styles
consolidating property assignments in, 417
default styles, 70
defined, 415

SystemSounds class 837

explained, 416-418
implicit styles, creating, 421-422
inheritance, 418
keyless resources, 422-423
missing styles, troubleshooting, 461
mixing with control templates, 456-457
named styles, 421-422
pertheme styles and templates, 466-469
restricting usage of, 420-421
Setter behavior, 419-420
sharing, 418-420
theme styles, 70
triggers
conflicting triggers, 429
data triggers, 427-428
explained, 423-424
expressing logic with, 428-430
property triggers, 424-427
respecting visual states with, 442-446
typed styles, 421-422
stylus events, 156-158
StylusButtonEventArgs instance, 158
StylusButtons property (StylusDevice class), 157
StylusDevice class, 156-157
StylusDownEventArgs instance, 158
StylusEventArgs class, 158
StylusPoint objects, 157
StylusSystemGestureEventArgs instance, 158
Subclass keyword, 51
Surface Toolkit for Windows Touch, 170
SynchronousMode keyword, 51

system resources, interaction with logical
resources, 358-359

system-defined background, setting, 359
SystemHKey property (KeyEventArgs event), 150
SystemSounds class, 652

How can we make this index more useful? Email us at indexes@samspublishing.com

838 TabControl control

T

TabControl control, 271-272
Tabinto method, 684
Table Blocks, 320
TabletDevice property (StylusDevice class), 157
TabPanel, 120
TargetName property (Storyboards), 623-624
TargetNullValue property (Binding object), 364
TargetProperty property (Storyboards), 620-623
TargetType property

ControlTemplate class, 434-435

Style class, 420-421
taskbar, customizing

explained, 230

taskbar item overlays, 231

taskbar item progress bars, 230

thumb buttons, 232-233

thumbnail content, 231
TaskDialogs, 236-239
TemplateBindingExtension class, 435-437

templated parent properties, respecting, 435-441

Content property (ContentControl class),
435-437

hijacking existing properties for new
purposes, 441

other properties, 440
templates

control templates
editing, 457-458
mixing with styles, 456-457
named elements, 434
resuability of, 438-440
simple control template, 431-432
target type, restricting, 434-435

templated parent properties, respecting,
435-441

other properties, 438-439
triggers, 432-434

visual states, respecting with triggers,
442-446

visual states, respecting with VSM (Visual

State Manager), 447-455

DataTemplates, 376-379, 398-399
defined, 415

explained, 430-431

pertheme styles and templates, 466-469
template selectors, 380

toast notification templates, 775-778
Windows themes, 470

temporarily canceling data binding, 384
testing

3D hit testing, 590-591
input hit testing
explained, 497
InputHitTest method, 511
visual hit testing
callback methods, 503
explained, 497
with multiple Visuals, 498-501
with overlapping Visuals, 501-503
simple hit testing, 497-498

text

converting spoken words into, 665-667
InkCanvas control, 316-318
PasswordBox control, 316
rendering, 15
RichTextBox control, 316
TextBlock control
explained, 313-314
explicit versus implicit runs, 314
properties, 313
support for multiple lines of text, 315
whitespace, 314
TextBox control, 315
TextOptions class, 312
WPF 3.5 enhancements, 13
WPF 4 enhancements, 15

text-to-speech

explained, 662
GetlnstalledVoices method, 662

PromptBuilder class, 663-665
SelectVoice method, 662
SelectVoiceByHints method, 662
SetOutputToWaveFile method, 663
SpeakAsync method, 662

Speech Synthesis Markup Language (SSML),
663-665

SpeechSynthesizer, 662
TextBlock control
explained, 313-314
explicit versus implicit runs, 314
properties, 313
support for multiple lines of text, 315
whitespace, 314
TextBox control, 315
TextElement class, 319-320
Blocks
AnchoredBlock class, 326-327
BlockUIContainer, 321
List, 320
Paragraph, 320
sample code listing, 321-324
Section, 320
Table, 320
Inlines
AnchoredBlock, 326-327
defined, 324-325
InlineUIContainer, 329
LineBreak, 327
Span, 325-326
TextFormattingMode property (TextOptions), 312
TextHintingMode property (TextOptions), 312
TextOptions class, 312
TextRenderingMode property (TextOptions), 312
texture coordinates, 582

TextureCoordinates property (MeshGeometry3D
class), 581

theme dictionaries, 466
theme styles, 70

ThemeDictionaryExtension, 468

ToastNotification object 839

ThemelnfoAttribute, 467-468

themes
defined, 415, 465
generic dictionaries, 467
pertheme styles and templates, 466-469
system colors, fonts, and parameters, 465-466
theme dictionaries, 466
theme styles, 70

Thickness class, 80-82

ThicknessConverter type converter, 82

thumb buttons (taskbar), adding, 232-233

ThumbButtoninfo property (Taskbarlteminfo),
232-233

thumbnail content (taskbar), customizing, 231

ThumbnailClipMargin property
(Taskbarlteminfo), 231

tile brushes
DrawingBrush class, 518-522
ImageBrush class, 522-523
VisualBrush class, 523-525
TileMode enumeration, 521
TileMode property (DrawingBrush class), 519-521
Timelines, Storyboards as, 627-628
timer-based animation, 606-607
TimeSpan keyword, 51
To property (animation classes), 612-614
toast element, 778
toast notifications
audio, 778
canceling, 780
changing color of, 775
notification events, 778-779
prerequisites, 771-773
scheduled notifications, 779-780
sending, 774-775
templates, 775-778
ToastNotification object
Activated event, 778-779
Dismissed event, 779
Failed event, 779
sending, 774-775

How can we make this index more useful? Email us at indexes@samspublishing.com

840 ToastNotifier object

ToastNotifier object, 774
ToggleButton class, 245-246
ToolBar control, 304-306
ToolBarOverflowPanel, 121
ToolBarPanel, 121
ToolBarTray, 121, 305
ToolTip class, 249-251
ToolTip property (ribbon controls), 295-296
ToolTipService class, 251
Top property (Canvas), 98
touch events, 159-162
basic touch events, 159-162
explained, 158
manipulation events
adding inertia with, 165-170
explained, 162-163
ManipulationCompleted, 163
ManipulationDelta, 163
ManipulationStarted, 163
ManipulationStarting, 163
panning/rotating/zooming with, 164-165
WPF 4 enhancements, 14
TouchDevice property (TouchEventArgs class), 159
TouchDown event, 160-162
TouchEventArgs class, 159
TouchMove event, 160-162
TouchUp event, 160-162
TraceSource object, 383
Transform method, 795
Transform property (Cameras), 547
Transform3Ds
combining, 560
explained, 552-553
house drawing example, 553-554
MatrixTransform3D class, 552, 560
RotateTransform3D class, 552, 557-560
ScaleTransform3D class, 552, 555-557
Transform3DGroup class, 552
TranslateTransform3D class, 552-555

TransformConverter type converter, 93
transforms
applying, 86-88
clipping and, 124
combining, 94
explained, 86
MatrixTransform, 93
RotateTransform, 88-90
ScaleTransform, 90-92
SkewTransform, 92
support for, 94-95
Transform3Ds
combining, 560
explained, 552-553
house drawing example, 553-554
MatrixTransform3D class, 552, 560
RotateTransform3D class, 552, 557-560
ScaleTransform3D class, 552, 555-557
Transform3DGroup class, 552
TranslateTransform3D class, 552-555
TranslateTransform, 92-93
TransformToAncestor method, 594-603
TransformToDescendant method, 598-603
transitions (animation), 645-649
Transitions property (VisualStateGroup class), 455
TranslateAccelerator method, 685-687
TranslateTransform, 92-93
TranslateTransform3D class, 554-555
Translation property (ManipulationDelta class), 163
transparent colors, 518
transparent regions, 153
trees
logical trees, 57-58
visual trees, 58-62
TreeView control, 302-304
TreeViewltem class, 303-304

Trianglelndices property (MeshGeometry3D class),
578-579

Trigger class. See triggers
TriggerBase class, 67

triggers
conflicting triggers, 429
in control templates, 432-434
data triggers, 67, 427-428
event triggers, 67
explained, 423-424
expressing logic with, 428
logical AND, 429-430
logical OR, 429
property triggers, 65-67, 424-427
respecting visual states with, 442-446
Triggers collection, 67
Triggers property (FrameworkElement class), 67
troubleshooting
data binding, 383
missing styles, 461
TryFindResource method, 357
tunneling, 143
turning off type conversion, 46
Twitter, pure-XAML Twitter client, 412-414
TwoWay binding, 403
type conversion, turning off, 46
type converters
BrushConverter, 28
explained, 26-27
finding, 28
FontSizeConverter, 28
GridLengthConverter, 114
ImageSourceConverter, 309
LengthConverter, 82
in procedural code, 27
ThicknessConverter, 82
TransformConverter, 93

values type-converted to object elements, 34

Type keyword, 52
TypeArguments keyword, 45, 51
typed styles, 421-422

user controls

U

Ul Automation, supporting in custom controls,
745-746

UlCulture element, 348
Uid keyword, 51, 349
UlElement class
binding to, 368
explained, 56
properties
IskeyboardFocused, 152
IsMouseDirectlyOver, 153
RenderTransformOrigin property, 87
UlElement3D base class, 13
UIElement3D class
ContainerUIElement3D, 588
explained, 56
ModelUIElement3D, 586-588
uniform scale, 555
UniformGrid, 121

841

unmanaged code, mixing with managed code, 678

UpdateLayout method, 80

UpdateSourceExceptionFilter property (Binding
object), 408

UpdateSourceTrigger enumeration, 404

UpdateSourceTrigger property (Binding object), 404

UpDirection property (Cameras), 546-548
Uri keyword, 51
URIs

package URI, 347

URIs for accessing binary resources, 344-345

usage context, 373
UseLayoutRounding property, 15
user controls

behavior, 721-723

dependency properties, 724-727

explained, 717-718

protecting controls from accidental usage,
723724

routed events, 727-728
user controls versus custom controls, 718
user interfaces, 719-721

How can we make this index more useful? Email us at indexes@samspublishing.com

842 user interfaces

user interfaces

creating for PlayingCard custom control,
735-738

creating for user controls, 719-721
marking with localization IDs, 349
USER subsystems, 8

Vv

ValidatesOnNotifyDataErrors property (Binding
object), 408-409

ValidateValueCallback delegate, 72
validation rules
adding to Binding object in, 405-409
INotifyDataErrorinfo interface, 408-409
ValidationRules property (Binding object), 406
value converters, 385
Binding.DoNothing values, 384
bridging incompatible data types, 380-383
customizing data display, 383-384
explained, 380
temporarily canceling data binding, 384
ValueMinMaxTolsLargeArcConverter, 445-446
ValueMinMaxToPointConverter, 445-446
Value value (NodeType property), 788
ValueMinMaxTolsLargeArcConverter, 445-446
ValueMinMaxToPointConverter, 445-446
ValueSource structure, 70
variables, HwndSource, 693-694
vector graphics, 10
verbosity of XAML, 53
versions of WPF
WPF 3.0, 12
WPF 3.5, 12-14
WPF 3.5 SP1, 13-14
WPF 4, 14-15
WPF 4.5, 12, 15-16
WPF Toolkit, 12

VerticalAlignment property
Canvas panel, 99
Grid, 120
StackPanel, 101
WrapPanel, 104

VerticalAlignment property (FrameworkElements
class), 83-85

video support
controlling underlying media, 659-660
embedded resources, 661
explained, 656
MediaElement, 656-658

taking snapshots of individual video frames, 658

Windows Media Player, 656
VideoDrawing class, 474
Viewbox class, 127-130
Viewbox property (DrawingBrush class), 521-522
Viewport2DVisual3D class, 13, 588-589
Viewport3D class, 591-594
Viewport3DVisual class, 594
views
collection views, customizing
creating new views, 393-395
explained, 385
filtering, 391
grouping, 387-390
navigating, 391-392
sorting, 385-387
TreeView control, 302-304
viewSource_Filter method, 394
virtualization, 269, 276
VirtualizingPanel class, 102
VirtualizingStackPanel, 102, 259

Visibility property (FrameworkElements class),
82-83

Visible value (Visibility enumeration), 82
Visual C++, 678, 691
Visual class, 62

explained, 56

TransformToAncestor method, 594-598

visual effects, 527-529
visual hit testing
callback methods, 503
explained, 497
with multiple Visuals, 498-501
with overlapping Visuals, 501-503
simple hit testing, 497-498
Visual State Manager. See VSM
visual states
respecting with triggers, 442-446
respecting with VSM (Visual State Manager)
control parts, 447-449
control states, 449-455
Visual Studio debugger, Jump Lists and, 220
Visual Studio-like panes, creating
sequential states of user interface, 130-134
VisualStudioLikePanes.xaml, 134-136
VisualStudioLikePanes.xaml.cs, 136-140
Visual3D class
explained, 56
TransformToAncestor method, 598-603
TransformToDescendant method, 598-603
Visual3Ds
explained, 584
ModelVisual3D class, 585-586
UIElement3D class, 586
ContainerUIElement3D, 588
ModelUIElement3D, 586-588
Visual3D class
explained, 56
TransformToAncestor method, 598-603
TransformToDescendant method, 598-603
VisualBrush class, 523-525
VisualChildrenCount method, 495-496
Visuals
custom rendering, 497
displaying on screen, 494-496
DrawingContext methods, 492

Width property 843

DrawingVisuals
explained, 491
filling with content, 491-494
explained, 491
visual hit testing
callback methods, 503
explained, 497
with multiple Visuals, 498-501
with overlapping Visuals, 501-503
simple hit testing, 497-498
VisualStateGroup class, 455
VisualStateManager. See VSM
VisualStudioLikePanes.xaml file, 134-136
VisualStudioLikePanes.xaml.cs file, 136-140
VisualTransition objects, 645-649
VisualTreeHelper class, 59
vshost32.exe, 220
VSM (Visual State Manager), 14
animations and

button ControlTemplate with VisualStates,
641-644

transitions, 645-649
respecting visual states with
control parts, 447-449

control states, 449-455

w

WCF (Windows Communication Foundation), 13
Webcam control (Win32)
HostingWin32.cpp file, 681-683
Webcam.cpp file, 674-677
Webcam.h file, 674
Window1.h file, 679-680
Webcam.cpp file, 675-677
Webcam.h file, 674
websites, wpf.codeplex.com, 12
whitespace, TextBlock control, 314

Width property (FrameworkElements class), 78-80

How can we make this index more useful? Email us at indexes@samspublishing.com

844 Win32 controls

Win32 controls, WPF interoperability
explained, 673-674
HwndSource class, 688-691
keyboard navigation, 683-687
launching modal dialogs, 688, 695
layout, 692-695
Webcam control, 674-683
winding order (mesh), 577-578
Window class, 178-180
Window1.h file, 679
Window1.xaml file, 713
Window1.xaml.cs file, 712
WindowHostingVisual.cs file, 493-495
WindowlconVisibility property (Ribbon), 281
WindowlinteropHelper class, 704
Windows collection, 184
Windows Communication Foundation (WCF), 13

Windows desktop applications. See also Windows
desktop features

multiple-document interface (MDI), 185
navigation-based desktop applications

explained, 193-194

hyperlinks, 197-198

journal, 198-200

Navigate method, 196-197

navigation containers, 194-196

navigation events, 200-201

Page elements, 194-196

returning data from pages, 203-204

sending data to pages, 202-203
single-instance applications, 186
standard desktop applications

Application class, 181-186

application state, 192

ClickOnce, 192-193

common dialogs, 188-189

custom dialogs, 189-190

explained, 177-178

multithreaded applications, 187

retrieving command-line arguments in, 184

splash screens, 187-188
Window class, 178-180
Windows Installer, 192

Windows Runtime APIs in, 771-772

Windows desktop features

Aero Glass, 233-236

Jump Lists
and Visual Studio debugger, 220
associating with applications, 218
explained, 218
JumpPaths, 225-228
JumpTasks, 218-219, 221-224

taskbar item customizations
explained, 230
taskbar item overlays, 231
taskbar item progress bars, 230
thumb buttons, 232-233
thumbnail content, 231

TaskDialogs, 236-239

Windows Forms, WPF interoperability

converting between two representatives,
703-704

ElementHost class, 700-702
explained, 695-696
launching modal dialogs, 699, 704
PropertyGrid, 696-699
Windows Installer, 192
Windows Media Player, 656
Windows Runtime APIs, 771-772
Windows themes, 470
Windows XP, WPF differences on, 16
WindowsFormsHost class, 698
WinFX, 24
WorkingDirectory property (JumpTask), 222
WPF 3.0, 12
WPF 3.5, 12-14
WPF 3.5 SP1, 13-14
WPF 4, 14-15
WPF 4.5,12, 15-16
WPF Toolkit, 12

XAML (Extensible Application Markup Language) 845

wpf.codeplex.com website, 12
WrapPanel
examples, 103-104
explained, 102

interaction with child layout properties,
104-105

properties, 102
right-to-left environments, 104
WriteableBitmap class, 13
writers (XAML)
explained, 783-785
node loops, 786-787
writing to live objects, 791-793
writing to XML, 793-794
XamlServices class, 794-797

X

X property
StylusPoint object, 157
TranslateTransform class, 92
x:Arguments keyword, 47, 49
x:Array keyword, 52
x:AsyncRecords keyword, 49
x:Boolean keyword, 49
x:Byte keyword, 49
x:Char keyword, 50
x:Class keyword, 40-41, 50
x:ClassAttributes keyword, 50
x:ClassModifier keyword, 50
x:Code keyword, 50
x:Connectionld keyword, 50
x:Decimal keyword, 50
x:Double keyword, 50
x:FactoryMethod keyword, 47-50
x:FieldModifier keyword, 50
x:Int16 keyword, 50
x:Int32 keyword, 50
x:Int64 keyword, 50

x:Key keyword, 50, 352
x:Members keyword, 49-50, 52
x:Name keyword, 38, 50, 434
x:Null keyword, 52

x:Object keyword, 51

x:Property keyword, 49, 51
x:Reference keyword, 52, 699
x:Shared keyword, 51, 356
x:Single keyword, 51

x:Static keyword, 52

x:String keyword, 51

x:Subclass keyword, 51
x:SynchronousMode keyword, 51
x:-TimeSpan keyword, 51

x:Type keyword, 52
x:TypeArguments keyword, 45, 51
x:Uid keyword, 51, 349

x:Uri keyword, 51

x:XData keyword, 51

XAML (Extensible Application Markup
Language), 10

{} escape sequence, 375
accessing binary resources from, 343-346
advantages of, 18
advantages over procedural code, 20
animation

explained, 619-620

starting animations from property triggers,
626-627

Storyboards as Timelines, 627-628
TargetName property, 623-624
TargetProperty property, 620-623

BAML (Binary Application Markup Language)
decompiling back into XAML, 43-44
defined, 41

Binding object in, 363-365

CAML (Compiled Application Markup
Language), 42

common complaints about, 52-53
compiling, 39-41
defined, 19-20

How can we make this index more useful? Email us at indexes@samspublishing.com

846

embedding PropertyGrid with, 698-699
explained, 17-18
extensibility, 35
factoring, 355-356
generated source code, 42
keywords, 49-52
loading and parsing at runtime, 36-38
loose XAML pages, 213-214
markup extensions

explained, 28-31

parameters, 29

in procedural code, 31
namespaces

explained, 22-24

implicit .NET namespaces, 23

mapping, 22
object elements

attributes, 21

content property, 31-32

declaring, 21

dictionaries, 33-34

explained, 20-21

lists, 32-33

naming, 38-39

processing child elements, 36

values type-converted to object elements, 34

order of property and event processing, 22
procedural code inside, 43
property elements, 25-26
pure-XAML Twitter client, 412-414
readers
explained, 783-785
markup compatibility, 791
node loops, 786-787
NodeType property, 787-788
sample XAML content, 789
XAML node stream, 789-791
XamlServices class, 794-797
running XAML examples, 18

XAML (Extensible Application Markup Language)

specifications, 20

type converters
BrushConverter, 28
explained, 26-27
finding, 28
FontSizeConverter, 28
in procedural code, 27

values type-converted to object elements,
34

writers
explained, 783-785
node loops, 786-787
writing to live objects, 791-793
writing to XML, 793-794
XamlServices class, 794-797
XAML Browser Applications (XBAPs), 207
ClickOnce caching, 208
deployment, 211
explained, 207-208
full-trust XAML Browser applications, 210
integrated navigation, 210-211
limitations, 208-209
on-demand download, 212-213
security, 211
XAML2009
built-in data types, 46
dictionary keys, 46
event handler flexibility, 48
explained, 44-45
full generics support, 45

object instantiation via factory methods,
A47-48

object instantiation with non-default
constructors, 47

properties, defining, 49
XAML Browser Applications (XBAPs), 13, 207
ClickOnce caching, 208
deployment, 211
explained, 207-208
full-trust XAML Browser applications, 210

integrated navigation, 210-211
limitations, 208-209
on-demand download, 212-213
security, 211

XAML Cruncher, 19

XAML2009
built-in data types, 46
dictionary keys, 46
event handler flexibility, 48
explained, 44-45
full generics support, 45
object instantiation via factory methods, 47-48

object instantiation with non-default
constructors, 47

properties, defining, 49
XamlBackgroundReader class, 784
XamIMember class, 788
XamlObjectReader class, 783
XamlObjectWriter class, 784
XamlPad, 19
XAMLPAD2009, 18-19
XamlPadX, 19, 59
XamlReader class

explained, 783-785

Load method, 36-37

LoadAsync method, 37
XamlServices class, 794-797
XamlType class, 788
XamlWriter class, 44, 783-785
XamlIXmIReader class, 783-786

markup compatibility, 791

sample XAML content, 789

XAML node stream, 789-791
XamIXmlWriter class, 784
XBAPs. See XAML Browser Applications

zooming 847

XData keyword, 51

XML, writing to, 793-794

XML Paper Specification (XPS), 319
xml:lang attibute, 49

xml:space attribute, 49
XmlDataProvider class, 396-400
XPath (XML PAth Language), 397
XPS (XML Paper Specification), 319

Y-Z

Y property
StylusPoint object, 157
TranslateTransform class, 92

Z order, 99-100

Z-fighting, 543

zooming
enabling with touch events, 164-165
with inertia, 166-167

How can we make this index more useful? Email us at indexes@samspublishing.com

