FREE SAMPLE CHAPTER

SHARE WITH OTHERS
Ea8a8es

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336317
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336317
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336317
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336317
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336317/Free-Sample-Chapter

Alessandro Del Sole

Visual Basic’
2012

800 East 96th Street, Indianapolis, Indiana 46240 USA

Visual Basic® 2012 Unleashed
Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-10: 0-672-33631-6

ISBN-13: 978-0-672-33631-7

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America

First Printing: January 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson Education, Inc. cannot attest to the accuracy

of this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Megan Wade

Indexer
WordWise Publishing
Services

Proofreader
Debbie Williams

Technical Editor
Matt Kleinwaks

Publishing Coordinator
Cindy Teeters

Cover Designer
Anne Jones

Compositor
Nonie Ratcliff

Contents at a Glance

Part |

o 0~ WON R

Part Il
7
8
9

10
11
12
13
14
15
16
17

Part 1l
18
19
20

Part IV
21
22
23
24

Learning the Basics of VB

Introducing the .NET Framework 4.5

Getting Started with the Visual Studio 2012 IDE
The Anatomy of a Visual Basic Project

Data Types and Expressions

Debugging Visual Basic 2012 Applications
Handling Errors and Exceptions

Object-Oriented Programming with Visual Basic 2012
Class Fundamentals

Managing an Obiject’s Lifetime
Organizing Types Within Namespaces
Modules

Structures and Enumerations
Inheritance

Interfaces

Generics and Nullable Types

Delegates and Events

Working with Collections and Iterators

Creating Objects: Visual Tools and Portable Libraries

Advanced Language Features
Manipulating Files and Streams
The My Namespace

Advanced Language Features

Data Access with ADO.NET and LINQ
Introducing ADO.NET and DataSets
Introducing LINQ

LINQ to Objects

LINQ to SQL

11
63
89
179
207

225
269
283
301
305
323
347
367
379
393
423

453
477
511

539
549
557
587

Visual Basic 2012 Unleashed

25
26
27

Part V
28
29
30
31
32
33

Part VI
34
35
36
37
38

Part VII
39
40

Part Vil
41
42
43
44
45
46
47
48
49

LINQ to DataSets
Introducing ADO.NET Entity Framework
Manipulating XML Documents with LINQ and XML Literals

Building Windows Desktop Applications

Creating WPF Applications

WPF Common Controls

Brushes, Styles, Templates, and Animations in WPF
Manipulating Media and Documents

Introducing Data-Binding

Localizing Applications

Building Web Applications

Building ASP.NET Web Applications

Publishing ASP.NET Web Applications

Building Rich Internet Applications with Silverlight 5
Building and Deploying Applications for Windows Azure
Building Apps for Windows Phone 7.5

Networking and Exposing Data Through Networks
Creating and Consuming WCEF Services

Implementing and Consuming WCF Data Services

Advanced .NET Framework with VB 2012
Serialization

Processes and Multithreading

Parallel Programming and Parallel LINQ
Asynchronous Programming

Working with Assemblies

Reflection

Coding Attributes

Platform Invokes and Interoperability with the COM Architecture

Documenting the Source Code with XML Comments

621
629
671

693
725
757
793
811
841

851
883
893
929
955

991
1013

1035
1057
1069
1103
1143
1157
1181
1191
1207

Part IX
50
51

52

Part X
53
54
55
56

Applications Deployment

Understanding the Global Assembly Cache

Setup and Deployment Projects with InstallShield
for Visual Studio

Deploying Applications with ClickOnce

Mastering the Visual Studio 2012 IDE

Advanced IDE Features

Introducing the Visual Studio Extensibility

Advanced Analysis Tools

Testing Code with Unit Tests, Test-Driven Development,
and Code Contracts

Appendix

Useful Resources and Tools for Visual Basic

Index

Contents

1221

1229
1245

1261
1287
1309

1337

1357

1361

Table of Contents

Part |

Learning the Basics of VB

Introducing the .NET Framework 4.5

What Is the .NET Framework?
Where Is the .NET Framework?
The .NET Framework Architecture
Differences Between .NET 4.0 and .NET 4.5
The Common Language Runtime
Writing Managed Code
.NET Assemblies
The Base Class Library
Programming Languages Included in .NET 4.5
Additional Tools Shipping with the .NET Framework
Windows Software Development Kit
What's New in .NET Framework 4.5
How .NET Meets Windows 8 and the Windows Runtime
Summary

Getting Started with the Visual Studio 2012 IDE

What's New in Visual Studio 2012

Status Bar and Start Page
Get Started Tab
The Latest News Tab

Working with Projects and Solutions
Creating Visual Basic Projects
Multi-targeting
Accessing Recent and Online Templates
Searching for Installed Templates
Finding Code Samples on the Internet
Creating Reusable Projects and Items Templates
Creating Your First Visual Basic 2012 Project
Finding Visual Basic Projects
Working with the Code Editor

Working with Tool Windows
The Solution Explorer Window
The Error List Window

© O N NNV E R R WNN R R

11

11
12
14
14
16
16
18
19
20
21
22
22
24
24
27
28
30

Contents

The Properties Window
The Output Window
My Project
Application Tab
Compiling Projects
Debug and Release Configurations
Other Compile Options
Advanced Compile Options
Debugging Overview
Debugging an Application
Breakpoints and Data Tips
Runtime Errors
Edit and Continue
Browsing the Visual Basic and .NET Documentation
Online Help and the MSDN Library
Object Browser Window
Quick Launch Tool
Showing the Hierarchy of Method Calls
Summary

The Anatomy of a Visual Basic Project

Brief Overview of Types and Members

Classes

Properties

Methods

Modules

Structures

Inheritance

Namespaces

Accessing Members

Imports Directives

Region Directives

Attributes

Implicit Line Continuation
Visual Basic 2012 Reserved Keywords
Understanding Project Files

Dissecting My Project

Application.MyApp

AssemblyInfo.vb

Resources and the Resources.resx File

Application Settings

vii

31
31
33
34
39
40
43
46
48
48
50
53
54
55
56
56
59
60
61

63

63
64
64
64
65
65
65
66
67
68
69
69
70
72
74
74
75
76
77
81

viii Visual Basic 2012 Unleashed

Understanding References 83
Adding References to COM Libraries 85
Deploy Without PIAs 86
Final Considerations 88

Summary 88

4 Data Types and Expressions 89

Introducing the Common Type System 89
Everything Is an Object 90
Introducing Value Types and Reference Types 90
System.Object and System.ValueType 91

Understanding Value Types 92
.NET Framework Primitive Value Types 93
Using Value Types 95
Working with BigInteger 102
Building Custom Value Types 103

Understanding Reference Types 103
.NET Framework Primitive Reference Types 105

Differences Between Value Types and Reference Types 106
Memory Allocation 106
Object-Oriented Differences 107
Performance Differences 110
What Custom Type Should I Choose? 111

Converting Between Value Types and Reference Types 111
Understanding Implicit Conversions 111
Boxing and Unboxing 113
Deep Copy and Shallow Copy 115
The GetType Keyword 119

Understanding Conversion Operators 120
Widening and Narrowing Conversions 120

Working with .NET Fundamental Types 125
Working with Strings 125
Working with Dates 137
Working with Time 143
Working with TimeZone and TimeZoneInfo 144
Working with GUIDs 147
Working with Arrays 148

Common Operators 155
Arithmetic Operators 155
Assignment Operators 157

Logical, Bitwise, and Shift Operators 158

Contents

Concatenation Operators
Comparison Operators
Iterations, Loops, and Conditional Code Blocks
Iterations
Loops
Conditional Code Blocks
Constants
With..End wWith Statement
Summary

Debugging Visual Basic 2012 Applications

Preparing an Example
Debugging Instrumentation

Debugging in Steps

Mixed Mode Debugging

“TJust My Code” Debugging

Working with Breakpoints and Trace Points

Locals Window

Command Window

Call Stack Window

Watch Windows

Threads Window

Autos Window
Inspecting Object Details with Debugger Visualizers
Debugging in Code

The pebug Class

The Trace Class

Understanding Trace Listeners

Using Debug Attributes in Your Code
Summary

Handling Errors and Exceptions

Introducing Exceptions
Handling Exceptions
Tips for Visual Basic 6 Migration
System.Exception, Naming Conventions, and Specialization
Handling Exceptions with Try..catch..Finally Blocks
The Throw Keyword
Catching Exceptions Without a Variable
Summary

163
163
166
166
170
172
175
176
177

179

179
180
180
182
182
184
187
187
188
189
191
192
192
193
194
195
196
202
206

207

207
208
209
209
209
218
223
224

ix

Visual Basic 2012 Unleashed

Part Il

Object-Oriented Programming with Visual Basic 2012

Class Fundamentals

Declaring Classes
Nested Classes
Fields
Avoiding Ambiguities with Local Variables
Properties
Read-Only Properties
Write-Only Properties
Exposing Custom Types
Accessing Properties
Default Properties
Types and Members Visibility: Scope
Executing Actions with Methods
Invoking Methods
Methods Arguments: Byval and ByRef
Overloading Methods
Exit from Methods
Partial Classes
Partial Methods
Constructors
Overloading Constructors
Object Initializers
Shared Members
Shared Classes
Shared Fields
Shared Properties
Shared Methods
Shared Constructors
Common Language Specification
Where Do I Need to Apply?
Marking Assemblies and Types as CLS-Compliant
Naming Conventions
Rules About Classes
Rules About Properties
Rules About Methods
Rules About Arrays
Summary

225

225
226
227
228
229
231
231
232
232
233
234
235
236
237
242
246
248
251
252
255
258
259
259
259
260
260
262
263
263
264
264
266
267
267
267
267

10

11

Contents

Managing an Object’s Lifetime
Understanding Memory Allocation
Understanding Garbage Collection
Understanding the Finalize Method
Understanding Dispose and the IDisposable Interface
Using..End Using Statement
Putting Dispose and Finalize Together
Restoring Objects with Object Resurrection
Advanced Garbage Collection
Interacting with the Garbage Collector
Understanding Generations and Operation Modes
Summary

Organizing Types Within Namespaces

Understanding Namespaces
Organizing Types Within Namespaces
Why Are Namespaces So Useful?
Nested Namespaces
Scope
Root Namespace
Imports Directives
Namespaces and Common Language Specification
Global Namespaces and the Global Keyword
Summary

Modules

Modules Overview
Scope
Differences Between Modules and Classes
No Constructor
No Inheritance Support
No Interface Implementation
Summary

Structures and Enumerations

Understanding Structures

Assigning Structures to Variables

Passing Structures to Methods

Members’ Visibility

Inheritance Limitations and Interface Implementation

269

269
270
271
273
275
275
278
279
279
280
282

283

283
284
287
288
291
291
292
295
295
299

301

301
302
303
303
303
303
303

305

305
308
308
308
309

Xi

Xii

Visual Basic 2012 Unleashed

12

13

Memory Allocation
Organizing Structures
Overloading Operators
Overloading cType
Structures and Common Language Specification
Enumerations
Using Enumerations
Useful Methods from system.Enum
Using Enums As Return Values from Methods
Enum Values As Bit Flags

Enumerations and Common Language Specification

Summary

Inheritance

Applying Inheritance
[llustrating system.0bject in Detail
Introducing Polymorphism
Overriding Members

NotOverridable Keyword

Overloading Derived Members
Conditioning Inheritance

NotInheritable Keyword

MustInherit and MustOverride Keywords
Accessing Base Classes Members

MyBase Keyword

MyClass Keyword
Constructors’ Inheritance
Shadowing
Overriding Shared Members
Practical Inheritance: Building Custom Exceptions
Summary

Interfaces

Defining Interfaces

Implementing and Accessing Interfaces
Passing Interfaces as Method Arguments

Interfaces and Polymorphism

Interfaces Inheritance

Defining CLS-Compliant Interfaces

309
310
310
313
314
315
315
316
319
320
320
321

323

324
328
329
331
334
334
334
335
336
337
337
339
341
342
343
344
346

347

347
348
351
352
353
354

14

15

16

Contents

Most Common .NET Interfaces
The I1Enumerable Interface
The 1comparable Interface
The 1convertible Interface
The 1Formattable Interface
Summary

Generics and Nullable Types

Introducing Generics

Creating and Consuming Generics
Consuming Generic Types
Implementing Generic Methods
Understanding Constraints
Overloading Type Parameters

Introducing Nullable Types

Summary

Delegates and Events

Understanding Delegates
Declaring Delegates
Combining Delegates: Multicast Delegates
Handling Events
Registering for Events: AddHandler and RemoveHandler
Declaring Objects with the withEvents Keyword
Offering Events to the External World
Raising Events
Creating Custom Events
Summary

Working with Collections and Iterators

Understanding Collections Architecture
Working with Nongeneric Collections
The aArrayList Collection
The gueue Collection
The stack Collection
The HashTable Collection
The ListDictionary Collection
The orderedpictionary Collection
The sortednist Collection
The Hybridpictionary Collection

xiii

355
356
358
360
363
365

367

367
368
370
371
372
375
376
377

379

379
380
382
383
383
384
385
385
389
391

393

394
394
394
397
398
398
399
399
400
400

Xiv Visual Basic 2012 Unleashed

17

The stringCollection Collection
The stringDictionary Collection
The NamevalueCollection Collection
The Bitarray Collection
The Bitvector32 Collection
Working with Generic Collections
The rist (of T) Collection
Working with Collection Initializers
The rReadonlyCollection (0f T) Collection
The pictionary (0f TKey, Tvalue) Collection
The Sortedpictionary (0Of TKey, Tvalue) Collection
The observableCollection (0f T) Collection
The ReadonlyObservableCollection (0f T) Collection
The LinkedList (0f T) Collection
The gueue (0f T) and stack (0f T) Collections
Building Custom Collections
Concurrent Collections
Iterators in Visual Basic
Understanding the Benefits of Iterators in Code
Simple Iterators
Exiting from Iterators
Iterators with Try..catch..Finally
Anonymous Iterators
Implementing an Iterator Class
Summary

Creating Objects: Visual Tools and Portable Libraries

Visual Studio Class Designer
Enabling the Class Designer
Adding and Designing Objects
Implementing Derived Classes
Creating Multiple Diagrams
Exporting the Diagram
Class View Window
Generate from Usage
Generating Shared Members
On-the-Fly Code and Obiject Initializers
Generating Complex Objects
Creating Portable Classes
Creating a Sample Portable Library
Summary

400
400
401
401
402
403
403
405
406
407
408
408
410
410
412
413
413
414
415
417
418
418
419
419
422

423

424
424
425
429
431
432
432
433
436
437
437
440
442
451

Part Il

18

19

Contents

Advanced Language Features

Manipulating Files and Streams

Manipulating Directories and Pathnames
The system.10.Path Class
The system.I0.Directory Class
The system.I10.DirectoryInfo Class
The system.10.DriveInfo Class
Handling Exceptions for Directories and Pathnames
Manipulating Files
The system.10.File Class
The system.10.FileInfo Class
Handling File Exceptions
Understanding Permissions
Introducing Streams
Reading and Writing Text Files
Reading and Writing Binary Files
Using Memory Streams
Using Streams with Strings
Compressing Data with Streams
Networking with Streams
Summary

The My Namespace

Introducing the vy Namespace
My .Application
Retrieving Assembly Information
Working with Cultures
Deployment and Environment Information
My .Computer
Working with the File System
Working with the Clipboard
Playing Audio Files
Managing the Keyboard
Working with the Registry
Accessing the Network
Getting Computer Information
My .Settings
My.Settings Events
My .Resources

Getting Resources by Name in Code

XV

453

453
454
455
458
459
459
460
460
462
463
463
464
464
465
466
467
467
474
475

477

477
478
478
479
480
482
483
484
485
485
486
487
488
490
495
497
500

XVi Visual Basic 2012 Unleashed

20

Part IV

21

My .User
My .WebServices
Extending My
Extending My .Application and My.Computer
Extending My .Resources and My.Settings
My in Different Applications
Understanding Application Events
Summary

Advanced Language Features

Local Type Inference
Option Infer Directive
Local Type Inference Scope
Array Literals
Bug Fix: Return Type in Array Literals
Multidimensional and Jagged Arrays
Extension Methods
Coding Custom Extension Methods
Exporting Extension Methods
Anonymous Types
Relaxed Delegates
Lambda Expressions
Type Inference and Lambda Expressions
Multiline Lambdas
sub Lambdas
Lexical Closures
Ternary 1£ Operator
Generic Variance
Covariance
Contra Variance
Summary

Data Access with ADO.NET and LINQ

Introducing ADO.NET and DataSets

System Requirements
Introducing ADO.NET
Data Providers
Connection Modes
Understanding Connections and Data Readers
Introducing DataSets
Creating DataSets
Summary

500
502
502
504
506
506
509
510

511

511
513
514
515
515
516
517
521
523
524
526
526
529
530
531
532
533
535
535
536
537

539

539
540
540
541
541
543
543
547

22

23

24

Contents

Introducing LINQ

What Is LINQ?

LINQ Examples

Language Support
Understanding Providers
Overview of LINQ Architecture
Summary

LINQ to Objects

Introducing LINQ to Objects
Querying in Memory Obijects
Understanding Deferred Execution
Introducing Standard Query Operators
Projection Operators
Restriction Operators
Aggregation Operators
Understanding the Let Keyword
Conversion Operators
Generation Operators
Ordering Operators
Set Operators
Grouping Operators
Union Operators
Equality Operators
Quantifiers
Concatenation Operators
Elements Operators
Partitioning Operators
Summary

LINQ to SQL

Introducing LINQ to SQL
Prerequisites and Requirements for This Book
Understanding LINQ to SQL Classes
Behind the Scenes of LINQ to SQL Classes
Querying Data with LINQ to SQL
Insert/Update/Delete Operations with LINQ
Inserting Entities
Updating Entities
Deleting Entities
Mapping Stored Procedures
Using the Log

Xvii

549

549
551
552
5583
554
555

557

557
558
565
568
568
569
570
572
572
574
575
576
577
579
582
582
583
583
584
586

587

588
588
589
599
600
604
605
608
609
610
613

xviii Visual Basic 2012 Unleashed

25

26

Advanced LINQ to SQL
Custom Validations
Handling Optimistic Concurrency
Using SQL Syntax Against Entities
LINQ to SQL with SQL Server Compact Edition 3.5
Writing the Connection String
Summary

LINQ to DataSets

Querying Datasets with LINQ

Building Complex Queries with Anonymous Types
LINQ to DataSets’ Extension Methods

Understanding CopyToDataTable

Understanding Field (0f T) and setField(Of T)
Summary

Introducing ADO.NET Entity Framework

Introducing Entity Framework
Understanding Entity Data Models
Understanding the bbcontext Class: The Visual
Basic Mapping
Entity Designer Tool Windows
Insert/Update/Delete Operations for Entities
Instantiating the DbContext
Adding Entities
Deleting Entities
Updating Entities
Handling Optimistic Concurrency
Validating Data
Querying EDMs with LINQ to Entities
Querying EDMs with Entity SQL
Mapping Stored Procedures
Introducing the Code First Approach
Downloading Additions to the Entity Framework 5
Coding Your Model
Generating the Database and Executing Data Operations
Introducing Data Annotations
Introducing the Fluent APIs
Compatibility with the Past and with Other Technologies
Summary

613
614
616
617
617
619
619

621

621
623
624
624
626
627

629

629
630

638
640
645
645
646
647
648
648
650
652
653
654
657
658
659
660
663
6635
668
669

27

Part V

28

29

Contents

Manipulating XML Documents with LINQ and XML Literals

Introducing LINQ to XML
The System.xml.Ling Namespace
Writing XML Markup in VB with XML Literals
LINQ Queries with XML Literals
Understanding Embedded Expressions
XML Schema Inference
Summary

Building Windows Desktop Applications

Creating WPF Applications

What Is WPE?
Improvements in WPF 4.5
WPF and Windows 8: The Future of Desktop Development
Introducing the WPF Architecture
Building WPF Applications with Visual Studio 2012
Understanding the eXtensible Application Markup Language
Declaring and Using Controls with the Designer and XAML
Understanding Visual Tree and Logical Tree
Handling Events in WPF
A More Thorough Discussion: Introducing the Routed Events
Arranging Controls with Panels
The crid Panel
The stackpanel Panel
The wrappranel Panel
The canvas Panel
The Dockpanel Panel
The viewBox Panel
Managing Windows
Instantiating Windows at Runtime
Introducing the Application Object
Brief Overview of WPF Browser Applications
Summary

WPF Common Controls

Introducing WPF Controls Features
Understanding the contentControl
Understanding Common Controls
The Border Control
The Button Control

XiX

671

672
672
677
680
682
685
691

693

694
695
695
696
697
699
701
704
706
707
709
709
711
713
714
714
716
716
718
719
721
724

725

725
726
727
727
728

XX

Visual Basic 2012 Unleashed

30

Frame

Showing Dates with the calendar Control

Items Selection with the checkBox Control

Selecting Values from a List with the comboBox Control
Presenting Tabular Data with the patacrid Control
Selecting Dates with the patepicker Control

Viewing XPS Documents with the Documentviewer Control

Drawing Shapes: The Ellipse
Organizing Controls with the Expander

Organizing Controls with the GroupBox Control

Displaying Images with the rmage Control

Displaying Text Messages with the Label Control

Presenting Data with the ListBox Control

Presenting Data with the Listview Control

Playing Audio and Video with the MediaElement Control

Building Effective User Interfaces with the Menu Control

Entering Passwords with the passwordBox Control

Showing the Progress of an Operation with the
ProgressBar Control

Accepting User Choices with the RadioButton Control

Drawing Shapes: The Rectangle

Editing Text with the richTextBox Control

Extended View with the scrollBar Control

Scrolling the Visual Tree with the scrollviewer Control

Separating Visual Elements with the separator Control

Value Selection with the slider Control

Displaying Information with the statusbar Control

Organizing User Interfaces with the Tabcontrol Control

Presenting Text with the TextBlock Control

Entering Text with the TextBox Control

Offering Commands with the ToolBar Control

Presenting Hierarchical Data with the Treeview Control

Accessing the Web with the webBrowser Control

Windows Forms Interoperability with the
WindowsFormsHost Control

Using Common Dialogs
Summary

Brushes, Styles, Templates, and Animations in WPF

Introducing Brushes

Applying a solidColorBrush
Applying a LinearGradientBrush
Applying a RadialGradientBrush

728
729
730
731
732
733
733
734
734
735
736
736
736
738
739
740
741

743
744
745
745
745
746
746
747
747
748
749
750
750
751
752

753
754
755

757

757
759
760
762

31

32

Contents

Applying an ImageBrush
Applying selectionBrush and CaretBrush
Applying a visualBrush
Applying a DrawingBrush
Applying a BitmapCacheBrush
Introducing Styles
Styles Inheritance
Understanding Triggers
Introducing Control Templates
Introducing Transformations
Rotating Visual Elements with RotateTransform
Dynamically Resizing Visual Elements with ScaleTransform
Changing Visual Elements’ Angles with skewTransform
Dynamically Moving Visual Elements with
TranslateTransform
Applying Multiple Transforms
Introducing Animations
Applying DoubleAnimation
Applying colorAnimation
Working with Animation Events
Creating Animations with Visual Basic
Summary

Manipulating Media and Documents
Viewing Images
Playing Media
Manipulating Documents
Understanding the RichTextBox Control
Viewing XPS Documents
Summary

Introducing Data-Binding

Introducing the Data-Binding in WPF

Binding UI Elements with the Binding Markup Extension

Understanding the patacGrid and the ObservableCollection
Discussing the Drag'n’Drop Data-Binding

Creating Tabular Data Forms

Creating Master-Details Forms

Understanding Views and Binding Lists

Implementing String Formatters and Value Converters
Summary

XXi

762
765
767
768
769
770
773
773
775
778
780
780
780

781
782
782
783
786
787
789
791

793

793
795
799
806
808
809

811

811
812
814
818
819
826
830
835
840

XXii

Visual Basic 2012 Unleashed

33 Localizing Applications

Introducing .NET Localization
Windows Forms Localization
WPF Localization
Preparing the LocBaml Tool
Localizing a WPF Application
Summary

Part VI Building Web Applications

34 Building ASP.NET Web Applications

Introducing the ASP.NET Model
Understanding Page Requests
Scalability and Performance
Available Project Templates

Web Forms and Master Pages
Web Forms

ASP.NET Controls
Server Controls
HTML Controls

Handling Events

Understanding State Management
The aApplication State
The cache State
The context State
Using Cookies for Saving Information
The session State
The viewstate State

Creating a Web Application with VB 2012 with Navigation

and Data-Binding
Master Pages
Adding the Data Model
Adding a New Web Form
Adding Data Controls
Adding Filtering Capabilities
Adding Navigation Controls
Running the Application
New in ASP.NET 4.5: Strongly Typed Data Controls
and Model Binding
Configuring a Web Application for Security
Summary

841

841
842
844
845
845
850

851

851
852
852
854
855
855
858
858
859
860
861
861
862
863
863
864
864

864
865
868
868
870
873
874
875

875
879
882

35

36

37

Contents

Publishing ASP.NET Web Applications

Deployment Overview
The 1-Click Deployment
Classic Publishing
MSDeploy Publish
Understanding Packages
Web Deploy with MSDeploy
Packaging Web Applications for Manual Installation
Summary

Building Rich Internet Applications with Silverlight 5

Introducing Silverlight
Creating Silverlight Projects with Visual Basic 2012
Adding Controls and Handling Events
How Silverlight Applications Are Packaged
Playing Media
Animating UI Elements
Introducing Navigation Applications
Introducing WCF RIA Services
Adding the Data Source
Adding the Domain Service Class
Data-Binding to Controls
Running the Application
Filtering Data with the pivotviewer Control
“Out-of-Browser” Applications
Elevated Permissions and Security Considerations
XAML Debugging
Additional New Features in Silverlight 5
Summary

Building and Deploying Applications for Windows Azure

Overview of the Windows Azure Platform
Registering for the Windows Azure Developer Portal
Downloading and Installing Tools for Visual Studio
Additional Tools
Creating a Demo Project
Understanding Web Roles and Web Configuration
Building the Silverlight 5 Project
Testing the Application Locally

XXiii

883

883
884
884
886
886
887
889
891

893

894
895
897
899
900
905
908
911
912
913
916
920
920
923
926
926
928
928

929

929
931
931
932
933
934
936
942

XXiv Visual Basic 2012 Unleashed

38

Part VII

39

Deploying Applications to Windows Azure
Introducing the Windows Azure Management Portal
Summary

Building Apps for Windows Phone 7.5

Introducing Windows Phone
Developer Registration to the Windows Phone Marketplace
Downloading the Developer Tools
Training and Learning Resources
The Windows Phone 7.5 Programming Model
Creating Apps with Visual Basic
Starting and Debugging Windows Phone Apps
Understanding Pages, Orientations, and the
Navigation Framework
Using System Functionalities with Launchers
Showing Multiple Contents with the panorama Control
Local Data Storage
Understanding the Application Bar
Accessing the Pictures Hub
Understanding the Execution Model
Setting Properties, Icons, and Splash Screen
Submitting Apps to the Marketplace
Summary

Networking and Exposing Data Through Networks

Creating and Consuming WCF Services

Introducing Windows Communication Foundation
Understanding Endpoints
Address, Binding, Contract: The ABC of WCF
Implementing WCF Services
Implementing Custom Logic for the WCF Service
Consuming WCF Services
Creating the Client and Adding a Service Reference
Understanding the Proxy Class
Invoking Members from the Service
Handling Exceptions in WCF
Hosting WCEF Services in Internet Information Services
Configuring Services with the Configuration Editor
Summary

944
949
952

955

955
956
957
958
958
959
963

963
967
974
980
982
982
984
985
987
989

9291

992
992
992
993
997
1001
1002
1002
1003
1007
1008
1009
1011

40

Part VIII

41

42

Contents

Implementing and Consuming WCF Data Services

What Are Data Services?
Querying Data via HTTP Requests
Open Data Protocol for WCF Data Services
Implementing WCF Data Services
Deploying WCF Data Services to Internet
Information Services
Consuming WCF Data Services
Creating a Client Application
Querying Data
Implementing Service Operations
Implementing Query Interceptors
Understanding Query Interceptors
Understanding Change Interceptors
Understanding Server-Driven Paging
Summary

Advanced .NET Framework with VB 2012

Serialization

Obijects Serialization
Binary Serialization
SOAP Serialization
Providing Serialization for Custom Obijects
NonSerialized Events
XML Serialization
Customizing XML Serialization
Custom Serialization
Serialization Events
Serialization with XAML
Serialization in Windows Communication Foundation
JSON Serialization
Serialization in the ADO.NET Entity Framework
Summary

Processes and Multithreading

Managing Processes
Querying Existing Processes
Introducing Multithreading
Creating Threads
Passing Parameters

XXV

1013

1013
1014
1015
1016

1021
1022
1022
1026
1027
1030
1030
1032
1033
1034

1035

1036
1036
1039
1040
1042
1043
1044
1045
1047
1048
1050
1053
1053
1054

1057

1058
1059
1060
1060
1061

XXVi Visual Basic 2012 Unleashed

43

Understanding the .NET Thread Pool
Getting and Setting Information in the Thread Pool
Threads Synchronization
The syncLock. .End SyncLock Statement
Synchronization with the Monitor Class
Read/Write Locks
Summary

Parallel Programming and Parallel LINQ

Introducing Parallel Computing
What's New in .NET 4.5: Custom Task Scheduling
Introducing Parallel Classes
Understanding and Using Tasks
What Is a Task?
Running Tasks with parallel.Invoke

Creating, Running, and Managing Tasks: The Task Class

Creating Tasks That Return Values
Exception Handling
Canceling Tasks
The Barrier Class

Parallel Loops
parallel.For Loop
parallel.ForEach Loop

Debugging Tools for Parallel Tasks

Concurrent Collections
ConcurrentBag (Of T)
ConcurrentQueue (Of T)
ConcurrentStack (Of T)
ConcurrentDictionary (Of TKey, TValue)
BlockingCollection (Of T)

Introducing Parallel LINQ
Simulating an Intensive Work
Measuring Performances of a Classic LINQ Query
Measuring Performances of a PLINQ Query
Ordering Sequences
AsParallel and Binary Operators
Using parallelEnumerable
Controlling PLINQ Queries
Handling Exceptions

Summary

1061
1063
1063
1064
1065
1065
1067

1069

1070
1070
1071
1072
1072
1072
1073
1074
1075
1077
1078
1080
1081
1083
1086
1087
1088
1089
1089
1090
1091
1092
1093
1093
1095
1096
1097
1097
1097
1100
1101

44

45

Contents

Asynchronous Programming

Overview of Asynchrony
Before .NET 4.5: Event-based Asynchrony
Before .NET 4.5: The Asynchronous Programming Model
.NET 4.5: Introducing the Async Pattern
Where Do I Use Async?
When and Why to Use async/await and Comparisons
with the TPL
Getting Started with Async/aAwait
The Synchronous Approach
Event-based Asynchrony and Callbacks
Asynchrony with Async/aAwait
How Async and await Work Behind the Scenes
Documentation and Examples of the Async Pattern
Exception Handling in Async
Implementing Task-based Asynchrony
Switching Threads
Using Combinators
Cancellation and Progress
Implementing Cancellation
Reporting Progress
Asynchronous Lambda Expressions
Asynchronous I/O File Operations in .NET 4.5
Summary

Working with Assemblies

Assembly Overview

Information Stored Within Assemblies

Assembly Location

Signing Assemblies

Assembly Information and Attributes
Understanding Application Domains

Creating Application Domains and Executing Assemblies
Security Model in .NET 4.5

Implementing and Requiring Permissions

The Transparency Level 2

Sandboxing

Conditional APTCA

Migrating from Old CAS-Based Code
Summary

XXVii

1103

1104
1104
1106
1107
1111

1111
1112
1112
1116
1120
1122
1126
1127
1127
1128
1129
1131
1131
1134
1136
1137
1141

1143

1143
1144
1144
1145
1145
1145
1145
1148
1149
1150
1152
1154
1155
1155

Xxviii Visual Basic 2012 Unleashed

46 Reflection 1157
Introducing Reflection 1157
Understanding Assemblies’ Metadata 1158

Preparing a Sample Assembly 1159
Getting Assembly Information 1160
Reflecting Types 1162

Reflecting a Single Type 1167
Invoking Code Dynamically 1169
Generating Code at Runtime with Reflection.Emit 1171

Late Binding Concepts 1176
Caller Information 1177
Summary 1180

47 Coding Attributes 1181
Applying Attributes 1181
Coding Custom Attributes 1184

Applying Custom Attributes 1186

Applying Attributes Multiple Times 1187

Defining Inheritance 1187
Reflecting Attributes 1189
Summary 1190

48 Platform Invokes and Interoperability with the COM Architecture 1191

Importing and Using COM Obijects 1192
Importing COM Components into Visual Studio 1192
Using COM Objects in Code 1195
Catching Exceptions 1195
Releasing COM Obijects 1195
Calling COM Obijects from WPF 1196

Exposing .NET Objects to the COM World 1197

P/Invokes and Unmanaged Code 1199
Understanding P/Invokes 1200
Encapsulating P/Invokes 1201
Converting Types to Unmanaged 1202
The structLayout Attribute 1203
The vBFixedsString Attribute 1205
Handling Exceptions 1205

References to the Win32 API Calls 1206

Summary 1206

49

Part IX

50

51

52

Contents

Documenting the Source Code with XML Comments

Understanding XML Comments

Enabling XML Comments
Implementing XML Comments

Defining Complex Code Documentation
Generating Compiled Help Files
Summary

Applications Deployment

Understanding the Global Assembly Cache

The DIl Hell Problem

XCopy Deployment
The Global Assembly Cache

Installing and Uninstalling Assemblies

Signing Assemblies with Strong Names

Top Reasons for Installing (or Not) Assemblies to the GAC
Summary

Setup and Deployment Projects with InstallShield for
Visual Studio

Windows Installer Overview
Introducing InstallShield

Obtaining Your Copy of InstallShield LE
Creating a Setup Project

Application Information

Installation Requirements

Application Files

Application Shortcuts

Application Registry

Installation Interview

Specifying Environment Variables
Configuring the Setup Project
Building and Deploying the Windows Installer Package
Summary

Deploying Applications with ClickOnce
Introducing ClickOnce
How ClickOnce Handles Applications
When to Use ClickOnce

XXiX

1207

1208
1209
1210
1212
1220
1220

1221

1221
1222
1222
1223
1224
1227
1227

1229

1230
1231
1231
1232
1233
1234
1236
1238
1239
1241
1242
1242
1244
1244

1245

1245
1246
1246

XXX

Visual Basic 2012 Unleashed

Part X

53

54

Deploying Applications with ClickOnce

Understanding the Structure of a ClickOnce Deployment

Configuring ClickOnce
Application Files
Prerequisites
Publishing Application Updates
Options
Security Considerations
Providing Certificates
Programmatically Accessing ClickOnce
Registration-Free COM
Summary

Mastering the Visual Studio 2012 IDE

Advanced IDE Features

Exporting Templates
Exporting Project Templates
Exporting Item Templates
Customizing Visual Studio 2012
Customizing the Tools Menu
Customizing Commands and Toolbars
Managing User Settings
Exporting Settings
Importing Settings
Customizing the Toolbox
Using, Creating, and Managing Reusable Code Snippets
Consuming Code Snippets
The Code Snippet Manager
Creating and Consuming Custom Code Snippets
Managing Libraries with NuGet
Summary

Introducing Visual Studio Extensibility

Introducing Visual Studio Extensibility
About Extensibility with Visual Studio 2012
The Visual Studio 2012 SDK

Building a Visual Studio Package

Deploying Visual Studio Extensions

Managing Extensions with Extensions and Updates

1247
1250
1251
1251
1252
1252
1253
1255
1255
1257
1258
1260

1261

1261
1261
1263
1267
1267
1268
1271
1271
1273
1275
1275
1276
1278
1279
1283
1286

1287

1287
1288
1288
1289
1299
1302

55

56

Contents

Managing Add-Ins with the Add-In Manager
Extending the Code Editor
Summary

Advanced Analysis Tools

Introducing Analysis Tools
Performing Code Analysis
Calculating Code Metrics
Code Clone Detection
Profiling Applications
Profiling External Executables
Historical Debugging with IntelliTrace
IntelliTrace Options
Creating a Sample Application
Tracking Application Events and Exceptions
with IntelliTrace
Analyzing IntelliTrace Logs
Using IntelliTrace for Unit Tests
Generating Dependency Graphs
Summary

Testing Code with Unit Tests, Test-Driven Development, and
Code Contracts

Testing Code with Unit Tests
Creating Unit Tests
Running Unit Tests
Enabling Code Coverage
Introducing Test Driven Development
Creating a Test Project
Creating Unit Tests
Refactoring Code
Understanding Code Contracts
Setting Up the Environment
Setting Contracts Properties
Tools for Code Contracts
Understanding Preconditions
Post-Conditions
Invariants
Assertions and Assumptions
Contract Events
Summary

XXXi

1304
1304
1308

1309

1309
1310
1315
1317
1319
1327
1328
1329
1330

1331
1333
1334
1334
1336

1337

1337
1338
1342
1343
1344
1344
1345
1349
1350
1350
1350
1351
1352
1353
1354
1355
1355
1355

XXXii

Visual Basic 2012 Unleashed

Appendix

A Useful Resources and Tools for Visual Basic 2012

Visual Basic Resources in MSDN
Useful Developer Tools for Visual Basic
Coding Tools
Networking
Data Access
Diagnostics and Performance
Miscellaneous
Where Do I Find Additional Tools?
Index

1357

1357
1358
1358
1359
1359
1359
1359
1360
1361

Foreword

From his blog posts (in Italian and English) to his forum answers, from his online articles
to his code snippets, from his technical speeches and user-groups to his books, the breadth
of Alessandro’s reach has been astounding.

Now is a particularly good time for Alessandro to write this book, because the current
release of Visual Basic has so many new features. I'd like to tell the story behind the
most important of them, “Asynchronous Programming,” explained in Chapter 44. We
introduced this feature because everyone wants their interactive applications to be fast
and responsive, but the code to achieve this has traditionally been too convoluted. Now,
thanks to asynchronous programming, the code has become straightforward. Although
the code itself is straightforward, our small design group at Microsoft knew we were
producing something unfamiliar as we sat down to design the feature in early 2010—
something not taught in college courses, something whose success would depend on the
ability of authors like Alessandro to explain it (which he does well).

As Language Designer of VB, I implemented the initial prototype of the feature within
the VB and C# compilers. Our team first revealed it behind closed doors to MVPs (“Most
Valued Professionals”) such as Alessandro at a small gathering in New Orleans, hoping
that the attendees would see its worth but daunted by the challenge of explaining some-
thing so unusual. The MVPs understood the feature’s potential. They also asked us to
integrate it better with other parts of Visual Studio such as debugging (Chapter 5) and
unit-tests (Chapter 56), which we then did.

Indeed, there are manual useful parts to Visual Studio and .NET, and Alessandro knows
them all. In this book, he makes sure that you will know all the important ones, too, and
he sets them in context by explaining when and why to use them. I myself was happy to
learn how to do localization (Chapter 33) and deployment (Chapters 51 and 52) from this
book—both topics that I was aware of but hadn’t explored before.

Alessandro has found just the right blend of text, code, and screenshots to explain Visual
Studio effectively. Beginners and experts alike will find much of value in this book.

—Lucian Wischik
Seattle, Washington
December 2012

About the Author

Alessandro Del Sole, a Microsoft Most Valuable Professional (MVP) for Visual Basic since
2008, is well known throughout the global VB community. He is a community leader

on the Italian Visual Basic Tips and Tricks website (http://www.visual-basic.it) that serves
more than 42,000 VB developers, as well as a frequent contributor to the MSDN Visual
Basic Developer Center. He enjoys writing articles on .NET development, writing blog
posts on both his Italian and English blogs, and producing instructional videos as well as
apps for Windows 8 and Windows Phone. You can find him online in forums or news-
groups. Alessandro has been awarded MVP of the Year for Visual Basic in 2009, 2010,
and 2011.

http://www.visual-basic.it

Dedication

To my parents, I'm learning from you how one should never give up even when life becomes the
hardest possible. As usual, you taught me the most important lessons in life. The more time goes
on, the more I understand what you have done for me. Thank you!

To my best friend Nadia, who always finds a way to make me smile when things become so diffi-
cult and is always able to find positive perspectives when I cannot. You have really been one of
the most important people in my whole life for more than 10 years, and I will always be there
for you.

Acknowledgments

First of all, I would like to thank Neil Rowe, Mark Renfrow, Anne Goebel, and all at Sams
Publishing for trusting me enough to write the second edition of this book about Visual
Basic. Writing books like this is hard work, not only for the author, but also for all the
people involved in the reviews and in the production process. Working with these guys
made the process much more pleasant. Thank you!

Very special thanks to Matthew Kleinwaks, who has been the technical editor for this
book and who is a Microsoft Visual Basic MVP. Matthew did an incredible job, walking
through every single word and line of code, engaging interesting technical discussions.
His suggestions have been so important and made the content as accurate and interesting
as possible. You can visit Matthew’s blog at http://zerosandtheone.com/. Thank you so
much, Matt!

Special thanks to all the Microsoft Visual Basic Team for doing a great job; particularly I
would like to give my special thanks to Lucian Wischik, Lisa Feigenbaum, Beth Massi, and
Anthony D. Green for providing opportunities of continuous interactions and technical
discussions. They contribute and keep the passion for Visual Basic alive around the globe.

Great thanks also to the guys from the Italian subsidiary of Microsoft: Alessandro Teglia
(my MVP lead), who has a great passion for his work and for the MVP community; he did
a really great job when I had some important questions related to information required
for this book, quickly pointing me in the right direction. Also, special thanks to the

local Development and Platform Evangelism Division (Marco Agnoli, Francesca Longoni,
Francesca Marinoni, Lorenzo Barbieri, Vito Lorusso, Pietro Brambati, Mario Fontana,
Gabriele Castellani, and Irina Turcu) for their continuous support and encouragement for
my activities.

http://zerosandtheone.com/

XXXVi Visual Basic 2012 Unleashed

Thanks to Alfonso Ghiraldini and Francesco Bosticco for their cordiality.

I would like to thank my everyday friends who are always ready to encourage me even

if they are not developers and will never read my books. Most importantly, these people
always support me when I need their help. So my deep thanks to Roberto Bianchi,
Alessandro Ardovini, Michela Santini, Leonardo Amici, Francesca Bongiorni, Paolo Leoni,
Nadir Mariotti, Blerina Spahiu, Karin Meier, and Sara Gerevini. You guys really rock!

I'm a community leader and vice president in the Italian Visual Basic Tips and Tricks
community (www.visual-basic.it); therefore, I would like to thank all those guys who are
the right stimulus for making things better every day; all those people who visited my
blogs at least once or who read even one article of mine; and all those people who visit
our website and follow us on forums, videos, articles, and blogs. Special thanks to my
MVP colleagues Diego Cattaruzza, Antonio Catucci, Renato Marzaro, Massimo Bonanni,
Matteo Pagani, and Raffaele Rialdi for their great support and valuable suggestions. Thanks
to Marco Notari for his continuous support and encouragement.

http://www.visual-basic.it

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific technical
questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

2

Getting Started with the
Visual Studio 2012 IDE

You develop Visual Basic applications using the Visual
Studio 2012 Integrated Development Environment (IDE),
which is the place where you will spend most of your
developer life. Before diving deep into the Visual Basic
language, you need to know what instruments you need to
develop applications. Although the Visual Studio IDE is a
complex environment, this chapter provides you with an
overview of the most common tasks you will perform from
within Visual Studio 2012 and the most important tools
you will utilize so that you can feel at home within the
IDE. You get an introduction to some of the new features
introduced by the new version of the development envi-
ronment, which can provide the basis for the rest of the
book. You also learn about other advanced IDE features in
the last part of the book.

What’s New in Visual Studio 2012

The Visual Studio 2012 IDE retakes the infrastructure that
was first introduced by its predecessor, which is written in
managed code and in which several parts are based on the
Windows Presentation Foundation framework, such as the
code editor, menus, and floating windows. On the other
hand, Visual Studio 2012 has a completely different 100k,
which is now based on the Microsoft Design Style, with a
simplified approach to commands and tools via a flattened
user interface in which there are only a few colors.

IN THIS CHAPTER

» What's New in Visual Studio
2012

» Status Bar and Start Page

» Working with Projects and
Solutions

» Working with Tool Windows
» My Project
» Compiling Projects

» Browsing the Visual Basic and
.NET Documentation

» “Quick Launch” Tool

12 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

WHAT IS THE MICROSOFT DESIGN STYLE?

The Microsoft Design Style is a design language for user interfaces that Microsoft started
to introduce with the first version of Windows Phone; it is also one of the most important
characteristics of Windows 8. This design language relies on the principles of abstraction,
simplicity, and geometric shapes. Its goal is avoiding complex and overcolored user inter-
faces in favor of simple drawings. For example, it is common in the Microsoft Design Style
to find monochromatic shapes rather than drawings with millions of colors that can be
confusing. After its adoption in Windows Phone and Windows 8, Microsoft is bringing the
new design style into a number of other programs. Visual Studio 2012 is an example of
how the layout of a powerful and complex desktop application can be simplified by follow-
ing some of the Microsoft Design Style principles. You can find a more detailed explana-
tion of such principles at: http://g00.gl/ugA5V.

The goal is helping the developer focus on writing code or on designing the application,
not on the development environment. So, the environment now has fewer colors than

in the previous versions, but commands are still recognizable via familiar icons; parts of
the IDE that you interact the most with (typically the code editor and designers) are still
rich with helpful colorizations. Although this innovation is important, you will still feel
at home with the new version. This is because the instrumentation is located and behaves
the same as in the past. This chapter gives you an overview of the most common tools
you need for developing your Visual Basic applications. (Deeper details on advanced IDE
features are provided starting from Chapter 53, “Advanced IDE Features.”)

Status Bar and Start Page

When you first run Visual Studio 2012, you notice a new layout and the Start Page, as
shown in Figure 2.1.

You can immediately notice the new look of Visual Studio 2012 based on Microsoft
Design Style. The colored status bar is new in Visual Studio 2012, and its color changes
according to the particular task Visual Studio is running. Following is a list of possible
colors for the status bar (see Figure 2.2 for a graphical representation):

» Violet—This is the color for the status bar when Visual Studio is ready (for example,
at startup).

» Light blue—This is the color for the status bar at development time, which means
coding, designing the user interface, or any other task you run before compiling the
code and running the application.

» Blue—This is the color for the status bar when Visual Studio 2012 is building the
solution and compiling the code.

» Orange—This is the color for the status bar when you are running the application in
debugging mode (that is, by pressing FS).

http://goo.gl/uqA5V

Status Bar and Start Page 13

B Start Page - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl +Q) P = O X
FILE EDIT VIEW TELERIK THEME DEBUG TEAM SQL IOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
B - P Attach.. - A
StartPage +# X >
S
GETSTARTED ~ HOW-TO VIDEOS (STREAMING) LATEST NEWS

Ultimate 2012

X0Q|00| Ja1o|dx3 JaAIaS

What's New in Office & SharePoint
Development

Microsoft Office Developer Center

What's new in Microsoft Office development
Microsoft SharePoint Developer Center

What's new in Microsoft SharePoint development
Recent

siskleuy apo) MalA sse|y Jauojdxg wea| sio|dx3 uonn|os

-:. r] Creating Microsoft Office Solutions
[.‘ Getting started with Office development
Office development videos
Getting started with SharePoint development
SharePoint development videos

Learning Resources

Error List Output Find Symbol Results Call Hierarchy

FIGURE 2.1 The Start Page in Visual Studio 2012 and the new look.

enu suu
End Class

100 % =

Default Development
"WpfApplicationl.vshost.exe' (Managed (w
pplicationl.v t.exe' (Managed (w
‘WofApplicationl.vshost.exe' (Managed (v
Output Call Stack Breakpoints Command Window |Immedi
Build Debug

FIGURE 2.2 The status bar colors and related moments.

THEMES FOR VISUAL STUDIO 2012

Visual Studio 2012 ships with two themes, Light and Dark. Light is the default setting
and is also the one that is used in this book. The Dark theme reproduces the look of
Microsoft Expression Blend and is based on the black color and dark tones. You can
change the theme by going to Tools, Options and then selecting a different theme in the
Color Theme drop-down box in the Environment tab. At the time this chapter is being

14 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

written, there are no additional themes, but you can download a nice extension called
Visual Studio 2012 Color Theme Editor, available at: http://visualstudiogallery.msdn.
microsoft.com/366ad100-0003-4c9a-81a8-337d4e7ace05. This extension provides a
number of ready-to-use themes and allows creating custom ones.

The Start Page is a central point in the IDE. First, it offers a better organization of the most
common tasks, based on tabs. Tabs are located on the right side of the screen and enable
access to specific contents. On the left side of the screen you can instead find links for
creating new projects and opening existing projects, as well as the list of recently opened
projects. You can easily remove recent projects by right-clicking the project name and
then selecting the deletion command. It is worth mentioning that the Start Page relies on
the Windows Presentation Foundation technology and is completely written in XAML code.
This means that it can be customized according to your needs. Customizing the Start Page
is beyond the scope of this chapter, whereas a deeper discussion on the default settings is
absolutely necessary. The two default tabs are Get Started and Latest News. The following
paragraphs discuss them in detail.

Get Started Tab

The Get Started tab (refer to Figure 2.1) offers links to important resources, such as MSDN
Walkthroughs (which are step-by-step tutorials on specific topics related to Visual Studio
2012); community and learning resources, and extensions for the IDE; such as custom
add-ins or third-party components. (This topic is discussed later in the book.) This tab is
divided into subcategories, each related to a specific development area such as Windows 8,
Web, and Windows Azure. When you click each subcategory, you access a number of links
to resources for learning about the selected area. The Get Started tab’s purpose is to offer
links to useful resources about the development environment and to new and existing
.NET technologies.

The Latest News Tab

As in its predecessors, Visual Studio 2012 can also show a list of news based on RSS feeds
so that you can stay up-to-date with your favorite news channels. Now the list appears in
the Latest News tab, as shown in Figure 2.3.

By default, the news channel is an RSS feed pointing to the MSDN developer portal, but
you can replace it with one of your favorites. To accomplish this, you have the following
alternatives:

> Open the Latest News tab and replace the default link in the RSS feed field with a
valid XML feed link (this is the easiest way).

» Open the Options window (for example, by clicking the Settings link in the Visual
Studio tab), and then select the Startup item. In the text box named Start Page
news channel (see Figure 2.4), you can insert your favorite link. Just be sure you are
writing a valid XML feed link.

http://visualstudiogallery.msdn.microsoft.com/366ad100-0003-4c9a-81a8-337d4e7ace05
http://visualstudiogallery.msdn.microsoft.com/366ad100-0003-4c9a-81a8-337d4e7ace05

Status Bar and Start Page 15

Dd Start Page - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) p - O X

FLE EDIT VEW TELERIK THEME DEBUG TEAM SQL IOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
B - P Attach.. - A

GET STARTED HOW-TO VIDEOS (STREAMING) LATEST NEWS

Ultimate 2012

RSS feed: [http:/go.microsoft.com/fwlink/?linkid=876768&dlcid=409 | &

Final CTP for Visual Studio 2012 Update 1 lunedi, ottobre 29, 2012 10....
This release is a Consumer Technology Preview of the Visual Studio, Test
Manager, and Team Foundation Server features to be shipped in Visual
Studio Update 1. Note: Not for production machines.

X0Q|00| Ja1o|dx3 JaAIaS

Visual Studio 2012 and .NET 4.5 Launched! mercoledi, settembre 12, 2...

Get the latest news on the Visual Studio 2012 and .NET Framework 4.5 launch
from S. Somasegar.

Freaeitt Visual Studio Express 2012 for Windows Desktop is Here! mercoledi, se...
In Express for Windows Desktop, you'll be able to create the same projects

that you could in Visual Studio 2010 Express, and you can also combine C++,
C#, and Visual Basic projects into a single solution.

siskleuy apo) MalA sse|y Jauojdxg wea| sio|dx3 uonn|os

Visual Studio 2012 and .NET 4.5 Released! mercoledi, agosto 15, 2012...

Get an introduction to the new Visual Studio 2012 with S. Somasegar.

A Deep Look at Visual Studio 2012 mercoledi, agosto 15, 2012 10.34.18
Follow Jason Zander as he takes a deep dive into the new features of Visual =

Error List Output Find Symbol Results Call Hierarchy

FIGURE 2.3 The Latest News tab shows updated news from the specified RSS channel.

Documents

Extensions and Updates
Find and Replace
Fonts and Colors
Import and Export Settings
International Settings
Keyboard

Quick Launch

Startup

Tabs and Windows
Task List

‘Web Browser

[+ Projects and Solutions

Source Control

a Envirenment ~ | Atstartup:
General Show Start Page v
Add-in Security
AutoRecover Start Page news channel:

http://go.microsoft.com/fwlink/?linkid=876768clcid=409

[#] Download content every:
80 X minutes
Customize Start Page:
(Default Start Page) v

Warning: Using a custom Start Page from a source that is unknown or not trusted can
expose your computer to security threats because the page and any referenced
assemblies will run under the privileges of the current user.

. Text Editor

FIGURE 2.4 The Options window enables customizing the RSS Feeds news channel.

If you want to stay up-to-date with Visual Basic news, consider replacing the default news
channel with the Visual Basic page of the Visual Studio Developer Center, which is at the
following: http://sxp.microsoft.com/feeds/3.0/msdntn/VB_featured_resources. After this
brief overview of the Start Page, we can begin discussing the tooling that you use for creat-
ing Visual Basic projects within Visual Studio 2012.

http://sxp.microsoft.com/feeds/3.0/msdntn/VB_featured_resources

16 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

Working with Projects and Solutions

Each time you want to develop an application, you create a project. A project is a collec-
tion of files, such as code files, resources, data, and every kind of file you need to build
your final assembly. A Visual Basic project is represented by a .Vbproj file, which is an
Extensible Markup Language (XML) file containing all the information required by Visual
Studio to manage files that constitute your project. Projects are organized into solutions.
A solution is basically a container for projects. In fact, solutions can contain infinite proj-
ects of different kinds, such as Visual Basic projects, projects produced with programming
languages other than Visual Basic, class libraries, projects for Windows client applications,
Windows Communication Foundation services, and so on. In other words, a solution

can include each kind of project you can create with Visual Studio 2012. Solutions also
can contain external files, such as documents or help files, and are represented by a .SIn
file that has an XML structure and stores information required to manage all the projects
contained in the solution. Visual Studio 2012 can also open solutions created with previ-
ous versions of the IDE.

PROJECT UPGRADES AND “ROUND-TRIPPING”

You can upgrade previous versions of your solutions by simply opening them in Visual
Studio 2012. The new version of the IDE introduces the so-called project round-tripping,
which means that solutions created with Visual Studio 2010 with Service Pack 1 can

be opened in Visual Studio 2012 with no upgrades; then you can open the same solu-
tion back in Visual Studio 2010 with SP 1. For solutions created with other versions, the
Upgrade Wizard can guide you through the upgrade process in a few steps. There are
some exceptions to project round-tripping, which you can read in the specific MSDN page:
http://msdn.microsoft.com/en-us/library/hh266747(v=vs.110).aspx.

Typically you manage your projects and solutions using the Solution Explorer window
discussed later in this chapter. We now focus on the creation of Visual Basic 2012 projects.

Creating Visual Basic Projects

Creating a new Visual Basic project is a simple task. You can click either the File, New
Project command or the New Project link from the Start Page. In both cases, Visual
Studio shows the New Project window, which you can see in Figure 2.5.

As you can see, the look of the New Project window is quite different from previous
versions of Visual Studio and still retakes the Windows 8 style. To understand what kind
of Visual Basic applications you can create, you simply need to select the Visual Basic
node on the left side of the window. After you click the node, you see a lot of different
kinds of applications you can create with Visual Basic 2012, such as Windows applica-
tions, web applications, Office System customizations, Silverlight applications, Windows
Communication Foundation Services, the new Windows 8 Store Apps for Windows 8, and
SO on.

http://msdn.microsoft.com/en-us/library/hh266747(v=vs.110).aspx

Working with Projects and Solutions 17

rfre- * ' New Project (o e

b Recent NET Framework 4.5~ | Sort by: | Default =
4 |Installed

Search Installed Templates p-

Windows Forms Application

=

Unit Test Library (Metro style ap Type: Visual Basic

i}
:] WPF Application Apr‘ujetctfm creating a command-line
4 Visual Basic application

Windows Metro style [Console Application

Wind
W":] i £ ASP.NET Web Forms Application
o

Office # Class Library
Cloud
Reporting
Silverlight 7 Blank App (XAML)
Test
WCF
Workflow
Visual C#
Visual C-+

4 Templates WCF Service Application

ASP.NET Dynamic Data Entities

6 @ 2

Get Windows Azure SDK for .NE

=]

Excel 2010 Workbook

@ Portable Class Library

L

Outlook 2010 Add-in

=
=t

Word 2010 Document

57 ASP.NET MVC 3 Web Application Activity Library

il

o

ASP.NET MVC 4 Web Application

=X

WCF Workflow Service Applicat

£ Grid App (XAML)

Visual F# & Silverlight Application

SQL Server —

LightSwitch L3 Spit App (AML)

JavaScript & Silverlight Class Library

Other Project Types

Modeling Projects @ Silverlight Business Application
Samples B8 WCF RIA Services Class Library

b Online M Class Library (Metro style apps)

@ Windows Runtime Component

Name: ConsoleApglication

FIGURE 2.5 The New Project window for Visual Basic.

NOTE ABOUT AVAILABLE PROJECT TEMPLATES

The list of installed project templates can vary depending on either the Visual Studio 2012
edition or additional items installed later (for example, from the Visual Studio Gallery).

Each kind of application is represented by a specific project template, which provides

a skeleton of a project for that particular kind of application, including all the refer-
ences or the basic code files required. For example, the WPF Application project template
provides a skeleton of a project for creating a Windows application using the Windows
Presentation Foundation technology, therefore including references to the WindowsBase.
dll assembly, specific Tmports directives, and WPF objects represented by the appropriate
code files. Moreover, Visual Studio will automatically enable the WPF designer. Notice
the detailed description for each template on the right side of the window every time you
select a particular template.

NOTE

In the second part of this book you find several kinds of applications you can build with
Visual Basic 2012. For this reason, a full description of each project template will be
provided in the proper chapters. At the moment, the description provided by Visual Studio
for project templates is sufficient. Also consider that in this first part of the book the
Console Application project template is used because it is the most appropriate for learn-
ing purposes.

18 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

When you create a new project, Visual Studio usually creates a solution containing that
project. If you plan to add other projects to the solution, it can be a good idea to create a
directory for the solution. This allows for a better organization of your projects, because
one directory can contain the solution file and this directory can then contain subdirecto-
ries, each of them related to a specific project. To accomplish this, ensure that the Create
Directory for Solution check box is selected. The New Project window also offers some
interesting features: the .NET Framework multi-targeting, the ability of searching through
templates, the ability of managing templates, and finding samples on the Internet. We
now discuss each of these features.

Multi-targeting

Like in Visual Studio 2010, in Visual Studio 2012 you can choose which version of the
.NET Framework your application targets. This can be useful if you plan to develop appli-
cations with high compatibility levels and without new language features but still want to
take advantage of the new features of the IDE. You can choose one of the following:

» .NET Framework 4.5 (proposed by default)
.NET Framework 4.0
.NET Framework 3.5
.NET Framework 3.0

vV v v Vv

NET Framework 2.0

To accomplish this, just select the appropriate version from the combo box at the top of
the window, as shown in Figure 2.6.

- &, -

P Recent .NET Framework 4.5 w2

4 [nstalled NET Framework 2.0

{NET Framework 3.0
4 Templates NET Framework 3.5
4 Visual Basic NET Framework 4

Windows Metro style "NET Brammomoric A8
Windows <More Frameworks...>
Web

FIGURE 2.6 Choosing the .NET Framework version for your application.

NOTE

Remember that, depending on the version of the .NET Framework you choose, you might
not be able to use some libraries or technologies. For example, if you choose .NET
Framework 3.0 as the target version, you cannot use LINQ, which is instead exposed by
.NET Framework 3.5 and higher. So keep in mind these limitations when developing your
applications on previous Framework versions.

Working with Projects and Solutions 19

Accessing Recent and Online Templates

Visual Studio 2012 provides the capability to access the most recently used templates and
install additional templates from the Internet. You can easily access the most recently
used project templates by clicking the Recent Templates item on the left side of the New
Project window. In this way, you get a list of the recently used project templates in case
you still need them (see Figure 2.7). You can also find additional online templates and
install them to the local system. To accomplish this, simply click the Online Templates
item in the New Project window. Visual Studio checks for the availability of online
templates and shows a list of all the available templates (see Figure 2.8).

As you can see, Visual Studio is listing all the online templates for both Visual Basic and
Visual C#, showing a description of the template, information about the author, and a
small picture with ratings when available. To download and install a template, simply
double-click its name. After a few seconds you will be prompted to agree to the installa-
tion. You will be warned in the case that the new extension for Visual Studio does not
contain a digital signature. If you trust the publisher and want to continue, click Install.

After a few seconds, you will see the newly installed project templates available among the
other ones.

it " NewProject EA=
4 Recent NET Framework 4.5 | Sort by: | Most Recent T E Search Recent p-
Al @ Blank App (XAML) Type: Visual Basic

b Installed - — A single-page project for s Windows
L1 WPF Application Metro style app that has no predefined

13

Online PRI - controls or lsyout.

=
@ Blank Solution

Name: Appl

FIGURE 2.7 Accessing the most recently used projects templates.

20 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

. @ = "~ New Project m
b Recent NET Frameworkd5 | Sort by: | Most Popular v Search Online Templates pP-
© Installed <
gl 1 FeceASPNET MVC3 ® Umbraco 5 Simple Hive Provide Type: FSharp
| 4 Online ‘ Created By: DM
NuGet Packager F# Web Application (Silverlight vergon: 1.9
Pl Templates i
€ FECEMVCA B8 F#C2WebApp (Siverlight) ~ Downloads: 20421
Visual C= Rating: (2 Votes)
Visual F# B' WAF Project Template @ Umbraco4.7.1.1 Custom Data 1 More Information
Visual C++ Report Extension to Microsoft
IRl WRL Class Library @ F# Empty Web Application...
4 Other
4 Samples BB FECEMUC3] Visual C++ 2012 Debugger Lau
JavaScript
et 3 Lemoon Project Template @ Umbraco 5 Parameter Editor
Visual C= ® Umbraco 5 Hive Provider B0 F#MsTest Project
Visual C-+
", <) an ‘eb Service g o < .0 Silverlight Librai
Visual F& F# and C# Web Service (ASP.NET, F# 2.0 Silverlight Library (V5201
T WixWindows Service Setup Project A
B3 F# Windows App (WPF, MVYM)
1 F#and C# Win App (WPF, MVVM)
@ Umbraco 4.7.1.1 UserCantral
B3 F# Empty Windows App (WPF)
@ Umbraco 5 Tree
@ Umbraco 5 Property Editor
1
Name: FSharpMVC31

FIGURE 2.8 Additional online templates you can add to Visual Studio 2012.

As in the previous versions of Visual Studio, you can still export projects as reusable
project templates. We discuss this feature later in Chapter 53, “Advanced IDE Features.”

Searching for Installed Templates

Visual Studio 2012 provides lots of default project templates, and as you saw before,

you have the ability of adding your own custom ones. Therefore, finding the necessary
template at a certain moment can be difficult. Because of this, the New Project window
provides a search box that is located in the upper-right corner of the window (see Figure
2.9). Just begin typing the name of the project template you are looking for, and the New
Project window shows all the project templates that match your choice. Each time you
type a character, the window updates showing the results matching your search string. As
you can see in Figure 2.9, Visual Studio is showing all the project templates whose names
match the wor search string.

NOTE

Remember that the search functionality can retrieve all project templates related to your
search string. This means that the search result can contain not only Visual Basic proj-
ects but also every template name matching your criteria (for example, Visual C#, Visual
F#, and so on).

Working with Projects and Solutions 21

. "~ New Project [2 e

b Recent NET Framework 4.5 ~ | Sort by: | Default
4 Installed

wor -

Excel 2010 Workbook Type: Visual Basic

4 Templates - A project for creating managed code

4 VTsua\Eas\(2 EEnDm e A e e
Windows Metro style 51 Word 2010 Add-in 2UlUnorkboske
Windows
Web
Office £1 Word 2010 Document
Cloud
Reporting

FJ Word 2010 Add-in

1 Word 2010 Document

Silverlight &1 Word 2010 Template
Test -
e 5§ Word 2010 Template
Workflow w1 Activity Library
Visual C# .
Visual C++ i Activity Library
Visual F= @ WCF Workflow Service Application
SOL Server
LightSwitch & WCF Workflow Service Application
JavaSeript @ WCF Workflow Service Application
Other Project Types N
Modeling Projects & WCF Workflow Service Application
SEcee B Workflow Console Application
Samples i
B Workflow Console Application
v Online
Name: ExcelWorkbook]

FIGURE 2.9 Searching for installed project templates using the new search feature.

Finding Code Samples on the Internet

One of the great new features of Visual Studio 2012 is the ability to search for sample
code on the Internet directly from the New Project dialog box. Visual Studio performs
this search inside the MSDN Code Gallery (http://code.msdn.microsoft.com), a website
where developers can publish sample code they want to share with others. To find code
samples, click the Samples item at the bottom of the list of templates in the New Project
dialog box (see Figure 2.5). After you select this item, you will be able to browse the Code
Gallery from within the dialog box. For example, if you search for a specified language,
you will then be able to discover samples of each language based on technologies (such
as Windows, Web, Cloud, Windows Phone, and so on). For each of these categories, you
will find additional subcategories where samples are divided by framework; for instance,
Windows development samples are divided into WPF, Windows Forms, Windows
Runtime, and so on. Figure 2.10 shows how you can browse samples online from Visual
Studio 2012.

You select a sample from the list and then click OK or simply double-click the sample.
Visual Studio 2012 will download the sample to your hard disk and will ask you to accept
the license agreement that the developer who published the code added to the sample.
After it’s downloaded, the sample is opened in Visual Studio 2012 under the form of

a normal project. This is possible because, to upload a sample to the gallery, you must
supply a full project (or an entire solution) to enable other developers to reuse your code
with ease.

http://code.msdn.microsoft.com

22 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

. 7 . - T NewPraject (2
b Recent NET Framework 45~ | Sort by: | Most Popular - Search Online Samples »p-
b Installed
il £3 WPF Databinding in Visual Studio £8 Search and Highlight in TextBlo Created By: Microsoft
o Version: £0
€8 Microsoft ADO.NET Data Services... B8 WPF clipboard viewer... Pt ST
4 Templates o
L &3 Data Binding Demo (Visual Basic) %8 Implement auto-complete tetl RAtNG: (NER)
Visual C2 More Information
Visual & 68 WCF Data Senvices 5.0 (for ODsta, @8 Data paging in WPF ListView... Report Extension to Microsoft
Visual C++
. 68 WPF MVVM practice demo.. B8 Composing WPF DataGrid Calu
4 Samples €3 Irregular Shape of WRF Window... ©3 Monitor the idle time between |
JavaScript
o s 68 Application Activation and &8 Skinned Application Sample (Vi
4 Desktop &) ADO.NET Entity Framework (Visual... ©3 Mavigation over a Fixed Linear..

‘Windows Forms

R e P 3 Support multi-touch in WPF...
‘NET Framework 4.0 E3 Master-detail databinding in WPF...
WPF [f2-5=
Windows SDK €3 Introduction to Building WPF... O
Windows General £ Navigstion usage in WPF... =10
Open XML SDK 2.0
Office 2010 €3 Show GIF animation in WPF...
Visual Basic .NET B Cascade WPF DataGrid combobox..
LINQ
More... 6 WPF Muttithreading demo

Web N

o 6 WPF animated image show...

Cloud

Phone

irnat 9[2[0
Neme ADO.NET Entity Framewark

FIGURE 2.10 Browsing online code samples from Visual Studio 2012.

Creating Reusable Projects and Items Templates

As in the previous versions, in Visual Studio 2012 you can create your custom projects
and items templates, exporting them to disk and making them available within the IDE.
(This topic is discussed in Chapter 53.) Now that you have seen the main new features for
project creation, you are ready to create your first Visual Basic project.

Creating Your First Visual Basic 2012 Project

This section shows how easily you can create a Visual Basic 2012 application. If you have
experience with Visual Studio, you'll notice the differences in the development environ-
ments between the new version and the previous ones. You can create a new project for
the Console by first opening the New Project window and then selecting the Console
Application project template.

NOTE

Until Part IV, “Data Access with ADO.NET and LINQ,” all code examples, listings, and code
snippets are based on Console applications, so remember to create a Visual Basic project
for the console when testing the code.

Name the new project MyFirst2012Program and then click OK (see Figure 2.11).

Working with Projects and Solutions

*"e-9

. New Project

[2 =

b Recent

| NET Framework 4.5

| Sortby: | Default

2|

Search Installed Templates

4 |Installed

4 Templates
4 Visual Basic
Windows Metro style

VJI

Windows
Office vE
Cloud ‘ngi!
Reporting -
Silverlight o”é!
U=t VB
WCF
Workflow "’“
Visual C= .
Visual C-+ N
Visual F# Erj
SQL Server
LightSwitch “vn
JavaScript 2
Other Project Types o
Modeling Projects -~
4 Samples .
Visual Basic [T}
v Online

WPF Application

Class Library

Portable Class Library

WPF Browser Application

Empty Project

‘Windows Service

VB
7| Windows Forms Application Visual Basic

Visual Basic

i
s Console Application l Ba:

Visual Basic

Visual Basic

Visual Basic

Visual Basic

Visual Basic

'WPF Custom Control Library Visual Basic

'WPF User Control Library

Visual Basic

‘Windows Forms Control LibraryVisual Basic

Type: Visual Basic

A project for creating a command-line
application

Name: |MyFirst2012Program

FIGURE 2.11 Creating your first VB 2012 application.

After a few seconds the new project is ready to be edited. Figure 2.12 shows the result of

the project creation.

Dd MyFirst2012Program - Microsoft Visual Studio (Ad strator) Quick Launch (Ctrl+Q) p = 0O x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM SQL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
‘e~ B e W SO pStat-Debug - | A WwE VH N s
[l Modulelvb = ~ Solution Explorer - ax
2 5 Modulet - @ Main - @ o-endm o
- 1 +
g EMOdUIe Modulel ¥ Search Solution Explorer (Ctrl+&) P~
3 ~
b i [Solution ‘MyFirst2012Program’ (1 project
3 Sub Main() 4[] MyFirst2012Program
z = & My Project
" End Sub (B Appeiiy)
8 b VB Modulelvh
£
2 End Module
o
&
£

133% -~

Error List Tax

Y - 0Errors 0 Wamnings Search Error List P

Description File Line Column Project
< >

Error List | Output Solutio... | Team E.. | Class Vi.. |Properti.

Read Lnd = N

FIGURE 2.12 The creation of the first VB 2012 project.

23

24 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

As mentioned at the beginning of this chapter, the code editor and floating windows are
based on Windows Presentation Foundation. You see the new Windows 8 look for the
tooling, but this change does not modify your development experience. You should feel
at home with the new version of the environment because you can still find tools as in
the previous versions—maybe just with fewer colors. For example, you can access Solution
Explorer, the Properties window, or the Error List exactly as you did before. An interesting
feature in the code editor is that by pressing Ctrl and moving up and down the mouse
wheel, you can zoom in and out with the code editor without the need to change the font
settings each time the Visual Studio options changes. For our testing purposes, we could
add a couple of lines of code to the Main method, which is the entry point for a Console
application. Listing 2.1 shows the complete code for creating a VB 2012 application.

LISTING 2.1 Creating the First VB 2012 Application

Module Modulel

Sub Main()
Console.WriteLine ("Hello Visual Basic 2012!")
Console.ReadLine ()
End Sub
End Module

WHAT IS A CONSOLE?

In a Console application, the system.Console class is the main object for working with
the Windows console. Such a class provides methods for reading and writing from and to
the Console and for performing operations against the Console itself.

The code simply shows a message in the Console window and waits for the user to press
a key. This is obviously a basic application, but you need it as the base for understanding
other topics in this chapter.

Finding Visual Basic Projects

As in the previous versions, Visual Studio 2012 stores by default its information in a
user-level folder called Visual Studio 2012 that resides inside the My Documents folder.
Here you can find settings, add-ins, code snippets, and projects. For example, if you run
Windows Vista, Windows 7, or Windows 8, your projects should be located in C:\Users\
UserName\Documents\Visual Studio 2012\Projects, in which UserName stands for the
user logged in to Windows. Of course, you can change the default projects directory

by opening the Options window (Tools, Options command), selecting the Projects and
Solutions item on the left side, and replacing the value for the Projects location text box.

Working with the Code Editor

The code editor, together with designers, is the place where you spend most of your devel-
oper life in Visual Studio, so knowing how to get the best out of it is very important. This

Working with Projects and Solutions 25

is what I explain throughout the whole book. In this chapter you see just a few of the
code editor features because the other ones are related to specific topics discussed later.
We now focus on the zoom functionality in the code editor and IntelliSense.

Zooming the Code

You can zoom the code editor in and out by simply pressing the Ctrl key and moving
the mouse wheel up and down. This is a useful feature, particularly if you are a presenter
of technical speeches because you can enlarge the code without modifying Visual Studio
settings in the Options window. Figure 2.13 shows an example of this feature; notice how
the font for the code is greater than the default settings and how the zoom percentage is
visible at the bottom-left corner.

ﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P - B %

FLE EDIT VEW PROJECT BULD DEBUG TEAM SOL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
B-ahdE D P Start - Debug - | A _ B

[l Modulelvb® & X -8

& B (Genera) - B¥ (Declarations) - §

s +

Module Modulel =4

7

Sub Main())

Console.WriteLine("Hello Visual Basic 2012!")
Console.ReadlLine()
- End Sub

fqQ s2r35 105 X0g|00 L

i0jdxg 12
sapadoty ma sse|y B10)

End Module

214% |-
ErrorList Output

Ready Ln9 Col1 Chi INS

FIGURE 2.13 The code editor zoom feature enables real-time enlarging and reducing of the
font size of the code without changing settings in Visual Studio.

If you already used this feature in Visual Studio 2010, you might remember how the scroll
bar on the right also changed its size according to the zoom. This has been fixed in Visual
Studio 2012; the bar size is always the same and independent from the zoom.

IntelliSense Technology

IntelliSense is one of the most important technologies in the coding experience with
Visual Studio. IntelliSense is represented by a pop-up window that appears in the code
editor each time you begin typing a keyword or an identifier and shows options for auto-
completing words. Figure 2.14 shows IntelliSense in action when adding a new instruction
in code.

26 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

lﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P = 0 X
FLE EDIT VIEW PROJECT BULD DEBUG TEAM SQL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
B 2 P Stat- Debug - | A_‘=E LB N o
2 &, Modulel - @ Main - §
g
El —Module Modulel +r
S o
2 A g
3 Sub Main() -
g - Console.WriteLine("Hello Visual Basic 2012!") 3
3 console.ReadLine() &
= g
g 3
i Console.w
2 End Sub o LargestWindowWidth i
2 @ SetWindowPosition z
g End Module © SetWindowsize e
g & WindowHeight 3
E K& WindowLeft 4
& WindowTop]
& WindowWicith
@ Wiite
] Public Shared Sub WriteLine() (+ 17 overloads)
Commen | All Writes the current line terminator to the standard output stream.
133% -~
ErrorList Output
Ready Ln7 Col 18 chig INS

FIGURE 2.14 IntelliSense in action.

To auto-complete your code typing, you have the following alternatives:
» Tab—Pressing this auto-completes your words and enables you to write other code.

» Space—Pressing this auto-completes your words, adding a blank space at the end of
the added identifier and enabling you to write other code.

» Enter—Pressing this auto-completes your words, adding a couple of parentheses at
the end of the completed identifier and positioning the cursor on a new line. Use
this technique when you need to invoke a method that does not require arguments.

» Left parenthesis—Pressing this auto-completes your words, adding a left parenthesis
at the end of the completed identifier and waiting for you to supply arguments.

» Ctrl + Space—Pressing this brings up the full IntelliSense listing.

IntelliSense has been improved since Visual Studio 2008. In fact, it is activated just when
typing one character and is also active versus Visual Basic reserved words. Moreover, it
remembers the last member you supplied to an object if you invoke that particular object
more than once. For example, if you use IntelliSense to provide the writeLine method to
the console object as follows:

Console.WriteLine ()

Working with Tool Windows 27

and then try to invoke IntelliSense on the Console object again, it proposes as the first
alternative of the WriteLine method you supplied the first time. IntelliSense is important
because it lets you write code more quickly and provides suggestions on which member to
add to your code.

Working with Tool Windows

As in the previous versions, lots of the Visual Studio tools are provided via tool windows.
Tool windows are floating windows that can be docked to the IDE interface and are
responsible for a particular task. As a general rule, in the View menu you can find the

tool windows provided by Visual Studio 2012. Exceptions to this rule are the Test tool
windows and the analysis tool windows that can be invoked from the Test and Analyze
menus, respectively, and tool windows specific for debugging, available in the Debug
menu (see Chapter 5, “Debugging Visual Basic 2012 Applications”). In this book we utilize
several tool windows, and in this chapter you get an overview of the most frequently used
ones. In particular, we now focus on Solution Explorer, Error List, Properties, and Output
windows. This is because these are the tool windows you will use in each of your proj-
ects. Other tool windows will be analyzed when applied to specific topics. To dock a tool
window to the desired position in the IDE, just move the window onto the most appro-
priate arrow in the graphical cross that you see on the IDE and then release. Figure 2.15
represents this situation.

ﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P - 0 %X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
B - e b Start + Debug - A _ n
“%” Modulelvb* = X = < é
o &, Modulel 2 Main -3
= —Module Modulel + g
Sub Main() =)

= Console.WriteLine("Hello Visual Basic 2012!")
Console.ReadLine()

101dig e

p3(ap 135 05 X0q[00]

End Sub o
i
4 End Module ™ z
I =
: = i
O e an
T O ————r T
¥ - - 0 Warnings Y e ~ Search Error List P~
=l
Description File Line Column Project
==

FIGURE 2.15 Docking a floating tool window to the IDE’s interface.

28 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

Visual Studio 2012 automatically positions some tool windows in specific places of the
IDE, but you can rearrange tool windows as much as you like. We now discuss the previ-
ously mentioned tool windows.

The Solution Explorer Window

Solution Explorer is a special tool window that enables managing solutions, projects, and
files in the projects or solution. It provides a complete view of which files compose

your projects and enables adding or removing files and organizing files into subfolders.
Figure 2.16 shows how a WPF project is represented inside Solution Explorer.

Solution Explorer v I x
® e-2adBm #R
Search Solution Explorer (Crl+€) Do~

3] Solution 'WpfApplicationl' (1 project)
4[| WpfApplicationt
& My Project
9 App.config
4 [Applicationxaml
4 1) Applicationxamlvb
4 *3 Application
¥, Info As Assemblylnfo
@ InitislizeComponent()
@ Main()
4 By MainWindow.xaml
4 1) MainWindow.xaml.vb
4 *y MainWindow
ea _contentloaded As Boolean
@ InitizlizeComponent()
@ System_Windows Markup_|ComponentConnector_Connect(Integer, Object)

Solution Explorer | Team Explorer Class View Properties

FIGURE 2.16 An example of the Solution Explorer tool window.

As you can see, at the root level there is the project. Nested are code files, subfolders
containing pictures, data, and documents. You can also get a list of all the references in
the project. You use Solution Explorer for adding and managing items in your projects

as well as getting a representation of which files constitute the project itself. By default,
Solution Explorer shows only the items that compose the project. If you need a complete
view of references and auto-generated code files, you need to click the Show All Files
button located on the upper-left portion of the window. Solution Explorer has been
deeply revisited in Visual Studio 2012 and, if you had a chance of using the Power Tools
extension for Visual Studio 2010, you might notice how it retakes most of the features

of a tool window called Solution Navigator. Solution Explorer now shows the list of

Working with Tool Windows 29

types and members that a code file defines, by expanding the name of a code file. For
instance, you can see in Figure 2.16 how the MainWindow.xaml.vb code file defines a
class called Mainwindow, which exposes a field called _contentLoaded of type Boolean, and
two methods, InitializeComponent and System Windows_ Markup IComponentConnector
connect. By double-clicking a member you will be automatically redirected to its defini-
tion in the code file. The window also shows arguments and their type. This is useful
when you have hundreds of files and just need to know which types are defined within a
file without searching inside all the others. Also, Solution Explorer has a useful search box
in which you can type a search key and the IDE will search for all the items in the solu-
tion that contain the specified word(s). Another interesting feature of the new Solution
Explorer is that you can discover the following behaviors for members defined in code:

> Calls that the member makes
» Members that are calling the selected member

» Members that are using the selected member

You can simply right-click a member defined inside a code file and then select the desired
command. At that point, Solution Explorer will show the list of members that are invoked
by, are calling, or are using the selected member. To go back to the full list you simply use
the Back button in the toolbar (see Figure 2.16). The new Solution Explorer also provides
interaction with Team Foundation Server and the possibility of generating visual represen-
tation of the object graph for the selected node. To manage your project’s items, you just
need to right-click the project name and select the most appropriate command from the
pop-up menu that appears. Figure 2.17 shows this pop-up menu.

Build
Rebuild

fe

Clean
Publish...

i

Run Code Analysis
Scope to This
New Solution Explorer View
Caleculate Code Metrics
Add 3
Add Reference...
Add Service Reference...
B Manage NuGet Packages...
": View Class Diagram
Set as StartUp Project
Debug 3

o

Add Solution to Source Control...

=

i Rename

© Open Folder in Windows Explorer

Properties Alt+Enter

FIGURE 2.17 Solution items can be managed in Solution Explorer using the pop-up menu.

30 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

As you can see from Figure 2.17, the pop-up menu shows several tasks you can perform on
your projects or solutions. You can easily add new items by selecting the Add command;
you also can perform tasks against specific files if you right-click items in the solution
instead of the project’s name.

NOTE ABOUT ADDING ITEMS TO PROJECTS

In this book you will be asked lots of times to add new items to a project or to a solution,
so you should keep in mind that this can be accomplished by right-clicking the project
name in Solution Explorer and then clicking the Add, New Item command from the pop-up
menu.

You can easily find Solution Explorer by pressing Ctrl+Alt+L if it is not available yet in
the IDE. The enhancements that Visual Studio 2012 brings to Solution Explorer make this
tool window a very important productivity tool, rather than a simple project browser.

The Error List Window

The Error List tool window can show a list of all messages, including warnings and infor-
mation, which are generated by Visual Studio during the development of your applica-
tions. Figure 2.18 shows the Error List tool window.

Error List

= ceages SeanchErr Lt

Description Column Project

®)1 Argument not specified for parameter ‘arg2' of ‘Public Function Calculate(arg] As Double, arg2 As Modulel.vb.
Double) As Double'.

1.2 Function 'Calculate’ doesn't return a value on all code paths. Are you missing a ‘Return’ statement? ~ ModuleTvb ConsoleApplication1

FIGURE 2.18 The Error List tool window.

Typically the Error List window can show three kinds of messages:
» Error messages
» Warning messages

» Information messages

Error messages are related to errors that prevent your application from running—for
example, if your code cannot compile successfully. This can include any kind of problems
that Visual Studio or the background compiler encounter during the development process,
such as attempting to use an object that has not been declared, corrupted auto-generated
Windows Presentation Foundation files that must be edited in the Visual Studio designer,

Working with Tool Windows 31

or corrupted Visual Studio files in situations that throw error messages you can see in the
Error List. Another kind of message is a warning. Warnings are related to situations that
will not necessarily prevent your code from being successfully compiled or your applica-
tion from running; in such cases warnings can be simply ignored. It’s good practice to

try to solve the problems that caused these messages to be shown. For example, running
the Code Analysis tool will throw warnings on code that is not compliant with Microsoft
guidelines for writing code. This means that the application will probably work, but some-
thing in your code should be improved. In both error and warning messages, you can be
redirected to the code that caused the message by double-clicking the message itself. You
can also get some help about the message by right-clicking it and then selecting the Show
Error Help command from the pop-up menu, or simply by pressing F1. Information
messages are just to inform you about something. Usually information messages can be
ignored with regard to the code, although they could be useful for understanding what
the IDE wants to tell us. By default, the Error List shows the three kinds of messages
together, but you could also choose to view only some of them—for example, error
messages excluded and so on. To filter the Error List results, click the tab related to the
kind of message you do not want to be shown. For instance, click the Messages tab if you
want information messages to be excluded by the errors list. To include back information
messages, click the same tab again. The Errors List can also be easily invoked by pressing
Ctrl+\, Ctrl+E.

The Properties Window

In the .NET development, everything has properties, which are the characteristics of a
particular item. Classes can have properties; files can have properties; and so on. For
example, the filename is a property of a file. You often need to set properties for your
code, for .NET objects you use in your code, and for your files. To make things easier,
Visual Studio provides a tool window named Properties window, which is a graphical tool
for setting items’ properties. Figure 2.19 represents the Properties window showing proper-
ties for a button in Windows Presentation Foundation.

We could define the Properties window’s structure as a two-column table, in which the
left column specifies the property and the right column gets or sets the value for the prop-
erty. Although you often need to set properties in code, the Properties window provides

a graphical way to perform this assignment and can be particularly useful when design-
ing the user interface or when you need to specify how a file must be packaged into the
executable assembly. The Properties window can be easily invoked by pressing F4.

The Output Window

Visual Studio often recurs to external tools for performing some actions. For example,
when compiling your projects, Visual Studio invokes the Visual Basic command-line
compiler, so the IDE captures the output of the tools it utilizes and redirects the output
to the Output window. The Output window’s purpose is to show results of actions that
Visual Studio has to perform or that you require to be performed by Visual Studio. So,
when you compile your projects, the Output window shows the results of the build
process. Figure 2.20 shows the Output window containing the results of the build process
of a Visual Basic project.

32 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

G} Mame <NoName> [#] #
Type Button
Search Properties P

Arrange by: Category ~

4 Brush
Background | -
BorderBrush | o
Foreground I

OpacityMask No brush o
= = 8 o
Editor O Color resources

3 R 221
iy sz
B 221
I A 100%
B~ s =Froo0D..
b
b Appearance
4 Common
Content Button]
IsCancel [} o
IsDefault [} o
Cursor -|o
DataContext |:|
IsEnabled o
ToolTip o
v
b Layout

Solution E... Team Exp.. Class View | Properties

FIGURE 2.19 The Properties window.

Output ~ax
Show output from: Build - E ta

Rebuild All started: Project: WpfApplicationl, Configuration: Debug Any CPU ------
licationl -> C:\Users\Alessandro\AppData\Local\Temporary Projects\WpfApplicationl\bin\Debug\WpfApplicationl.exe
= Rebuild All: 1 succeeded, @ failed, © skipped =======:

FIGURE 2.20 The Output window showing results of a build process.

The Output window is also interactive. To continue with the example of compiling a
program, if the compiler throws any errors, these are shown in the Output window. You
can click the Go to Next Message or Go to Previous Message button to navigate error
messages. After you do this, the current error message is highlighted. Each time you move
to another error message, you will be redirected to the code that caused the error. The
Output window can capture the output not only of the compiler, but also of other tools

My Project 33

Visual Studio needs to use, such as the debugger. By the way, you can get a list of the
available outputs by clicking the Show Output From combo box. After this first look to
the main tool windows, we can begin examining another important feature of the Visual
Studio IDE for Visual Basic: the My Project window.

My Project

My Project is a special tool that enables developers to set project properties. My Project is a
window that can be invoked by double-clicking the My Project item in Solution Explorer
or by clicking the Project, Properties command (the menu item text also includes the
current project name). Figure 2.21 shows how My Project looks regarding the sample
application we previously created.

Dd MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) p = B X
FLE EDIT MEW PROECT BULD DEBUG TEAM SOL DATA TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
o - 8- & | P Start - Debug - | A _
g e Modulel.vb c 2
Pl ~pplication g
£ T wa :
g Compile E
i
— Debug Root names; pace: -
3)
T References MyFirst2012Program H
q Target framework: Application type: £
T Services NET Framework 4.5 ~v| | Console Application © :
3 Settings Startup ghject: leon: g
o #
£ Signing Modulel v| | (Defautt Icon) v \EI =
2 My Edensions -
I
T ey Assembly Information... View Windows Settings 2
" Publish :

Code Analysis

Windows

When startup form closes

(None)

ErrorList Output

FIGURE 2.21 The My Project window.

My Project is organized in tabs; each tab represents a specific area of the project, such as
application-level properties, external references, deployment options, compile options,
debugging options, and many more. At the moment you don’t need to learn each tab of
My Project because during the rest of the book we use it a lot, learning the meaning and
purpose of each tab when appropriate. What you instead need now is to

» Understand what My Project is.
» Remember how you can open it.

> Learn the usage of the Application tab, which we will discuss first.

34 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

UNDERSTANDING MY PROJECT

Understanding My Project is also important for another reason: It provides most of the
infrastructure for the My namespace that will be discussed in Chapter 19, “The My
Namespace.” Most of settings you can specify in My Project are then accessible by invok-
ing Mmy. In Chapter 3, “The Anatomy of a Visual Basic Project,” we describe the structure
of My Project, so carefully read how it is composed.

Application Tab

Each application has some settings. Application settings can be the executable’s name,
icon, or metadata that will be grabbed by the operating system, such as the program
version, copyright information, and so on. The purpose of the Application tab in My
Project is to provide the ability to edit these kinds of settings. The Application tab is
shown by default when you first open My Project. Figure 2.21 shows the Application
tab. Some settings are common to every kind of Visual Basic project, whereas other ones
are related to specific project types. In this chapter you get an overview of the common
settings, whereas specific ones will be discussed when required in the next chapters.

Assembly Name

The Assembly name field sets the name of the compiled assembly—that is, your execut-
able. By default, Visual Studio assigns this setting based on the project name, but you can
replace it as needed.

Root Namespace

This particular field sets the root-level namespace identifier. Namespaces will be discussed
later in this book. You can think of the root namespace as the object that stores all that is
implemented by your project. According to Microsoft specifications, the root namespace
should be formed as follows: CompanyName . ProductName . Version. This convention is
optimal when developing class libraries or components but might not be necessary when
developing standalone executables. By default, Visual Studio sets the root namespace
based on the project name.

Application Type

This represents the application type (for example, Console application, Class Library,
Windows Forms application) and is automatically set by Visual Studio on the appropriate
choice. To ensure you will avoid any problems, you should not change the default setting.

Icon
This field allows setting an icon for the executable file. You can browse the disk and select
an existing .ico file as the executable icon.

My Project 35

NOTE ABOUT ICONS

Assigning an icon to the executable file will not automatically assign icons to Windows
Forms windows or WPF windows when developing client applications. In such scenar-
ios you need to explicitly assign icons for each window because the Icon item in the
Application tab will just set the icon for the executable.

Startup Object

By setting the Startup Obiject field, you can specify which object will be executed first
when running your application. For example, imagine you have a Windows Presentation
Foundation application with more than one window. You might want to decide which
window must be the application’s main window. With the Startup Object field, you can
make this decision. Notice that the startup object changes based on the project type. For
example, in a WPF application the startup object is a window object, whereas in a Console
Application the default startup object is a Module in which the sub Main method is
located. The name of the field also changes based on the project type. In a WPF applica-
tion it is called Startup URI, whereas in a Console Application it is called Startup Obiject.

CHANGING THE STARTUP OBJECT

Please be careful when changing the Startup Object. A wrong choice could cause errors on
your application and prevent it from running.

Assembly Information
By clicking the Assembly Information button, you get access to a new window called
Assembly Information, as shown in Figure 2.22.

Assemhi; infonna_linn - W
Title: My First 2012 Program
Description: My first application with VB 2012
Company: Alessandro Del Sole
Product: My First 2012 Program
| Copyright: Copyright ® 2012
Trademark:
Assembly version: |1 0 0 0
File version: 1 0 0 0
GUID: Te3ced1a-8863-4f26-8ded-938ccdf28bcl
Neutral language: | (None) w
[[] Make assembly COM-Visible
Cancel

FIGURE 2.22 The Assembly Information window.

36 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

From this window you can specify several properties for your executable that will be
visible both to the .NET Framework and to the Windows operating system. Table 2.1

explains each property.

TABLE 2.1 Assembly Information Explained

Property Description

Title The title for your application, for example, “My First 2012 Program.”

Description The description for your application, for example, “My first applica-
tion with VB 2012.”

Company Your company name.

Product The product name, for example, “Suite of My New 2012
Applications.”

Copyright Copyright information on the author.

Trademark Trademarks information.

Assembly version

File version

GUID

Neutral language

Make assembly
COM-Visible

Specifies the version number for the assembly in the style Major.
Minor.Build.Revision. This information identifies the assembly for the
.NET Framework.

Specifies the version number for the executable in the style Major.
Minor.Build.Revision. This information is visible to the Windows oper-
ating system.

A globally unique identifier assigned to the assembly. You can

replace it with a new one or leave it as the GUID provided by
the IDE.

Specifies what local culture is used as the neutral language.

.NET assemblies can be exposed to COM. By marking this flag, you
can accomplish this task later.

The Assembly Information tool is important because it enables you to specify settings
that you want to be visible to your customers and other settings needed by the .NET
Framework. Behind the scenes, all this information is translated into Visual Basic code,
which is discussed more in Chapter 3.

View Windows Settings

Starting from Windows Vista, Microsoft introduced to the Windows operating system

an important component, known as User Account Control (UAC). When enabled, this
mechanism requires the user to explicitly grant elevated permissions to applications being
run. Because of this and starting from Visual Studio 2008, you have the ability of specify-
ing the permissions level your application will require for the UAC. For example, if your
application needs to write to the Program Files folder (this is just an example and rarely

a good idea), you need to ask for elevated permissions to the UAC. You can specify UAC
settings for your application by clicking the View Windows Settings button. At this point
Visual Studio generates a new XML manifest that will be packaged into your executable
and that you can edit within the IDE. This file contains information for UAC settings and

My Project 37

for specifying the operating systems that the application is designed to work for (see the
supportedos node). Listing 2.2 shows an excerpt of the default content of the manifest,
related to the UAC settings.

LISTING 2.2 The UAC Manifest Content

<?xml version="1.0" encoding="utf-8"?>

<asmvl:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1l"

xmlns:asmvl="urn:schemas-microsoft-com:asm.v1l" xmlns:asmv2="urn:schemas-microsoft-
com:asm.v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">

<securitys
<requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
<!-- UAC Manifest Options
If you want to change the Windows User Account Control level replace the

requestedExecutionLevel node with one of the following.

<requestedExecutionlLevel level="asInvoker" uiAccess="false" />
<requestedExecutionlLevel level="requireAdministrator" uiAccess="false" />

<requestedExecutionlLevel level="highestAvailable" uiAccess="false" />

Specifying requestedExecutionLevel node will
disable file and registry virtualization.
If you want to utilize File and Registry Virtualization for backward
compatibility then delete the requestedExecutionLevel node.

-=>

<requestedExecutionLevel level="asInvoker" uiAccess="false" />

</requestedPrivileges>
</securitys>

</trustInfo>

<compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1l">
<application>
<!-- A list of all Windows versions that this application is designed
to work with.

Windows will automatically select the most compatible environment.-->

<!-- If your application is designed to work with Windows Vista, uncomment the
following supportedOS node-->
<!--<supportedOS Id="{e2011457-1546-43c5-a5fe-008deee3d3f0}"></supported0S>-->

<!-- If your application is designed to work with Windows 7, uncomment the
following supportedOS node-->
<!--<supported0S Id="{35138b9%a-5d96-4fbd-8e2d-a2440225£93a}"/>-->

38 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

<!-- If your application is designed to work with Windows 8, uncomment the
following supportedOS node-->
<!--<supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}"></supported0S>-->

</applications>
</compatibilitys>

<!-- Enable themes for Windows common controls and dialogs (Windows XP and later)
-=>
<!-- <dependencys>
<dependentAssembly>
<assemblyIdentity
type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="*"
publicKeyToken="6595b64144ccfl1df"
language="*"
/>
</dependentAssembly>

</dependency>-->

</asmvl:assembly>

Notice how a huge number of comments help you understand the file content and how
you should manage the behavior of your application according to the Windows version
that your application is going to target. The requestedExecutionLevel element enables
you to specify which permission level must be requested to the UAC. You have three
possibilities, explained in Table 2.2.

TABLE 2.2 UAC Settings

Setting Description

asInvoker Runs the application with the privileges related to the current
user. If the current user is a standard user, the application will
be launched with standard privileges. If the current user is an
administrator, the application will be launched with administra-
tive privileges. This is the default selection in the manifest.

requireAdministrator The application needs administrative privileges to be
executed.
highestAvailable Requires the highest privilege level possible for the current

user.

Compiling Projects 39

To specify a privilege level, just uncomment the line of XML code corresponding to the
desired level. You can also delete the requestedExecutionLevel node in case you want to
use file and registry virtualization for backward compatibility with older versions of the
Windows operating system.

PAY ATTENTION TO UAC REQUIREMENTS

Be careful of the combination of activities that you need to execute on the target machine
and the user privileges because bad UAC settings could cause big problems. A good prac-
tice is selecting the asInvoker level and architecting your application in a way that it will
work on user-level folders and resources. In some situations, you will need deeper control
of the target machine and administrator privileges, but these should be considered excep-
tions to the rule.

The Application Framework

In the lower part of the screen is the Enable Application Framework group, a feature that
allows executing special tasks at the beginning and at the end of the application lifetime.
For Console applications it is not available, but it is relevant to other kinds of applica-
tions; for instance, in the Windows Forms application it enables the setting of a splash
screen or establishing which form is the main application form. The application frame-
work is discussed in Chapter 19.

Target Framework

From the Target Framework combo box, you can select the version of the .NET Framework
that your application will target. The main difference with the same selection that you
can do when creating a new project is that here you can target the .NET Framework Client
Profile for versions 4.0, 3.5 Service Pack 1, and 3.5 Server Core. The .NET Framework
Client Profile is a subset of the .NET Framework that provides the infrastructure for client
applications and that can be included in your deployments instead of the full version.
Microsoft removed the .NET Framework Client Profile in version 4.5.

NOTE FOR VISUAL STUDIO 2010 USERS

Until Visual Studio 2010, the Target Framework option was available in the Advanced
Compile Options dialog box. In Visual Studio 2012 it has been moved to the Application
tab of My Project.

Compiling Projects

Compiling a project (or building according to the Visual Studio terminology) is the process
that produces a .NET assembly starting from your project and source code (according to
the .NET architecture described in Chapter 1, “Introducing the .NET Framework 4.5”).
An assembly can be a standalone application (.exe assembly) or a .NET class library

40 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

(.dll assembly). To compile your project into an assembly, you need to click the Build
command in the Build menu. Notice that the Build command is followed by the name of
your project. When invoking this command, Visual Studio launches, behind the scenes,
the Visual Basic command-line compiler (Vbc.exe) and provides this tool all the necessary
command-line options. For solutions containing different kinds of projects, Visual Studio
launches MSBuild.exe, a command-line utility that can compile entire solutions contain-
ing several projects written in different languages and of different types. At the end of the
build process, Visual Studio shows a log inside the Output window. Figure 2.23 shows the
output log of the build process for the MyFirst2012Program sample application.

Output o X

Show output from: Build

- Build started: Project: MyFirst2612Program, Configuration: Debug
irst2012Program -> C:\Users\Alessandro\AppData\Local\Temporary Projects\MyFirst2012Program\bin\Debug\MyFirst2812Progran. exe
== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

FIGURE 2.23 The Output window shows the compilation process results.

The compilation log shows useful messages that help you understand what happened.

In this case there were no errors, but in situations in which the compilation process

fails because of some errors in the code, you will be notified of the errors found by the
compiler. The Error List window shows a complete list of error messages and warnings and
enables you to easily understand where the errors happened by double-clicking the error
message. This operation redirects you to the code that generated the error. The executable
(or the executables, in the case of more than one project in the solution) will be put in a
subfolder within the project’s directory, called Bin\Debug or Bin\Release, depending on
the output configuration you chose. Configurations are discussed next.

Debug and Release Configurations

Visual Studio provides two default possibilities for compiling your projects. The first one
is related to the debugging phase in the development process and includes debug symbols
that are necessary for debugging applications. The second one is related to the end of the
development process and is the one you will use when releasing the application to your
customers. Both ways are represented by configurations. By default, Visual Studio offers
two built-in configurations: Debug and Release. When the Debug configuration is active,
the Visual Basic compiler generates debug symbols that the Visual Studio debugger can
process. Without these symbols, you cannot debug your applications with the Visual
Studio debugger. The Release configuration basically excludes debug symbols from the
build process. It is the configuration you will use when building the final version of your

Compiling Projects 41

application—that is, the executable you will release to your customers. To set the current
configuration, you have two possibilities:

» Use the combo box located on the Visual Studio toolbar.

> Access the Compile options inside the My Project window.

Figure 2.24 shows the Compile tab in My Project.

ﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P = B0 x
FLE EDIT VIEW PROJKCT BULD DEBUG TEAM SOL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
o - B e - @ - » Start - Debug - | A _
[l MyFirst2012Program = x [VERIARG - £
a ES
o Application 3 - s
b= Configuration: |Active (Debug) v| Platform: | Active (Any CPU) v o
F Compile w3
= R Build output path: ~ :
H
& References : g
g [bin\Debug)] E
3 Recties Compile Options: 2
2 Semvices) : i
& Option explicit Option strict: =
T g On v|on 2
2 signing #
‘" Option compare: Option infer: =
2 My Extensions H
z Binary v||on
S =
g Security 3
= Target CPU: R
Publish 5
AnyCPU v 2

Code Analysis
Prefer 32-bit

Warning configurations:

Condition Notification
| implicit conversion Error

Late binding; call could fail at run time Error

Implicit type; object assumed Error

Use of variable prior to assignment Werning

[] Disable all warnings

[[] Treat all warnings as errors

Generate XML documentation file

< >

ErrorList Output

Build succeeded

FIGURE 2.24 Compile options in the My Project window.

At the top of the window is a combo box called Configuration. There you can select the
most appropriate configuration for you. By default, Visual Studio 2012 is set up on the
Debug configuration. You could also consider building a custom configuration (although
both Debug and Release can be customized instead of making new ones), which will be
discussed next. For our purposes, it’s suitable to leave unchanged the selection of the
Debug configuration as the default because we will study the Visual Studio debugging
features in depth.

Creating Custom Configurations with Configuration Manager

You might have situations in which both the Debug and Release configurations are not
enough for your needs. As mentioned in the previous paragraph, with Visual Studio 2012
you can also create your custom configuration. To accomplish this, you need to access the
Configuration Manager tool (see Figure 2.25), which is reachable using the Configuration

42 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

Manager command in the Build menu. There you can edit an existing configuration or
Create a new one.

[— Configuration Manager m

Active solution configuration: Active solution platform:

Debug v| | AnyCPU v

Release P
<New..> Platform Build Deploy
<Edit...>

Ty FITStZUTZETagrarT DENUG ¥ Any CPU v

Close

FIGURE 2.25 The Configuration Manager.

To create a new custom configuration, perform the following steps:
1. Click the Active Solution Configuration combo box and select the New option.

2. In the New Solution Configuration window, specify a name for the new configura-

tion and select an existing configuration (such as Debug) from which settings will be
copied. Figure 2.26 shows an example.

New Solution Configuration M

Name:

TestConfiguration

Copy settings from:

iDebug

[¥] Create new project configurations

el

FIGURE 2.26 Creating a custom configuration that imports settings from an existing one.

3. When done, click Close.

4. Click the Advanced Compiler Options button in the Compile tab and specify
which compile options must affect the new configuration. For example, you could
decide to affect just compilations against 64-bit processors, so you would need to
change the value in the Target CPU combo box. This is the point at which you can
modify your real configuration settings and how your project should be built.

Compiling Projects 43

Such modification influences just the new configuration. Moreover, if you decide to

use the new configuration, you will have a new subfolder under the Bin subfolder

in your project’s main folder, which takes the name of your custom configuration

and contains the output of the build process made with that configuration. For our
MyFirst2012Program sample, the project folder is named MyFirst2012Program and
contains the Bin subfolder, which also contains the default Debug and Release subfold-
ers. With your custom configuration, a new TestConfiguration subfolder will be available
under Bin.

Background Compiler

Visual Basic 2012 offers a great feature: the background compiler. While you write your
code, the IDE invokes the Visual Basic compiler that will immediately compile the code
and notify you about errors that occur, writing messages in the Error List window. This
is possible because the Visual Basic compiler can compile your code on-the-fly while
you type. As you can imagine, this feature is important because you will not necessarily
need to build your project each time to understand whether your code can be success-
fully compiled. Typical examples of the background compiler in action are error messages
shown in the Error List window when typing code. Refer to Figure 2.19 to get an idea of
this feature. You can double-click the error message to be redirected to the line of code
that caused the error. Also, the IDE underlines code containing errors with squiggly lines
so that it is easier to understand where the problem is.

Other Compile Options

Visual Studio 2012 enables developers to get deep control over the build process. With
particular regard to Visual Basic, you can control other compile options that are specific to
the language. Table 2.3 lists them in detail.

TABLE 2.3 Visual Basic Compile Options

Option Meaning

Option Explicit When set to On, the developer must declare an object before using it
in code.

Option Strict When set to On, the developer must specify the type when declaring

objects. In other words, Object is not automatically assigned as the
default type. Moreover, Option Strict On disallows late binding and
conversions from one type to another where there is a loss of preci-
sion or data. You should always set Option Strict On unless required.

Option Compare Determines which method must be used when comparing strings
(Binary or Text). The Binary option enables the compiler to compare
strings based on a binary representation of the characters, while the
Text option enables string comparisons based on textual sorting,
according to the local system international settings.

Option Infer When set to On, enables local type inference (this feature is
discussed in Chapter 20, “Advanced Language Features”).

44 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

OPTION STRICT ON

By default, option Strict is Off. You can set it to on each time you create a new
project, but you can also change the default setting by clicking Tools, Options. Then in the
Options dialog box expand the Projects and Solutions node; finally select the VB Defaults
element and change the default setting.

Options shown in Table 2.3 are also considered by the background compiler, so you will
be immediately notified when your code does not match these requirements. You can also
specify how the Visual Basic compiler has to treat some kind of errors. This is what you
see next.

Target CPU

You can specify the CPU architecture your applications will target. You can choose among
32-bit architectures (x86), 64-bit architectures (x64), Itanium processors, ARM (in the

case of Windows Store Apps) or any architecture (AnyCPU). Until Visual Studio 2010 this
setting was available in the Advanced Compile Options dialog box.

Warning Configurations

Warning configurations state how the Visual Basic compiler should notify the developer

of some particular errors, if just sending warning messages (which will not prevent from
compiling the project) or error messages (which will instead prevent from completing the
build process).

DO NOT IGNORE WARNING MESSAGES

Even if warning messages will not prevent the completion of the build process, they
should never be blindly ignored. They could be suggestions of potential exceptions at
runtime. You should always accurately check why a warning message is thrown and, possi-
bly, solve the issue that caused the warning. A typical example of when warnings could be
ignored is when running code analysis on code that does not need to be compliant with
Microsoft specifications (for example, the user interface side of a WPF application). In all
other situations, you should be careful about warnings.

Depending on how you set the Visual Basic compile options discussed in the previous
paragraph, Visual Studio will propose some default scenarios for sending notifications
(and, consequently, influencing the build process). Table 2.4 lists the available warning
conditions.

TABLE 2.4 Warning Condition Details

Condition Description

Implicit conversion Checked when trying to assign an object of a type to an object of
another type. For example, the following code will cause the condi-
tion to be checked (implicit conversion from object t0 String):
Dim anObject As Object = "Hi!"

Dim aString As String = anObject

Compiling Projects 45

Condition Description

Late binding Checked when trying to assign at runtime a typed object to
another one of type object.

Implicit type Checked when not specifying the type for an object declaration. If
Option Infers is on, this condition is checked only for declarations
at class level. For example, the following class-level declaration
would cause the condition to be checked:

Private Something
This condition is determined by option Strict On.

Use of variable prior of Checked when attempting to use a variable that doesn’t have a
assignment value yet. This is typical with instance variables. The following
code causes this condition to be checked:

Dim p As Process
Console.WriteLine (
p.ProcessName.ToString)

In this case p must get an instance of the process object before
attempting to use it.

Function/operator without Checked when a Function method or an operator definition
return value performs actions without returning a value.

Unused local variable Checked when a variable is declared but never used. It's a good
practice to remove unused variables both for cleaner code and for
memory allocation.

Instance variable Checked when trying to invoke a member from an instance object
accesses shared that is instead a shared member.

members

Recursive operator or Checked when trying to use a member (properties or operators)
property access inside the code block that defines the member itself.

Duplicate or overlapping Checked when a catch clause inside a Try. .Catch. .End Try

catch blocks code block is never reached because of inheritance. The follow-
ing code causes the condition to be checked because the
FileNotFoundException inherits from Exception and therefore
should be caught before the base class; otherwise, Exception
would be always caught before derived ones:

Try

Catch ex As Exception

Catch ex As FileNotFoundException

End Try

You also have the ability to change single notifications; just select the most appropriate
notification mode for your needs. Based on the explanations provided in Table 2.4, be
careful about the consequences that this operation could cause. If you are not sure about
consequences, the best thing is leaving default options unchanged. Three other compile
options are listed at the bottom of the Compile tab and described in Table 2.5.

46 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

TABLE 2.5 Additional Compile Options

Option Description

Disable all warnings. The Visual Basic compiler will not produce warning messages.
Treat all warnings as The Visual Basic compiler will treat all warning messages as if
errors. they were errors.

Generate XML When flagged, enables Visual Studio to generate an XML file for
documentation file. documenting the source code. If XML comments are included in

the code, this file also contains descriptions and detailed docu-
mentation for the code. This is useful when you need to automate
the documentation process for your class libraries.

Advanced Compile Options

You can specify advanced settings for the build process. To accomplish this, you need to
click the Advanced Compile Options button.

COMPILER SETTINGS AND CONFIGURATIONS

Advanced compiler settings are at the configuration level. This means that the Debug
configuration has its own advanced settings, the Release configuration has its own
settings, and your custom configurations will have their own settings. Please remember
this when providing advanced settings.

Figure 2.27 shows the Advanced Compiler Settings window.

— Advanced Compiler Settings - o
Optimizations

[] Remove integer overflow checks [] Enable optimizations

DLL base address: 8:H00400000

Generate debug info: Full v

Compilation Constants

Define DEBUG constant Define TRACE constant

Custom constants:

Example: Name'="Valuel",Name2="Value2",Name3="Value3"
Generate serialization assemblies:

Auto v

Cancel

FIGURE 2.27 The Advanced Compiler Settings window.

Here you can set compiler options to drive the build process. Next we discuss options
in detail.

Compiling Projects 47

Optimizations
The Optimization tab offers options that would potentially lead to building a smaller and
faster executable. This tab is composed of four options that we discuss.

Remove Integer Overflow Checks When you make calculations in your code against
Integer OI Integer-style data types, the Visual Basic compiler checks that the result of
the calculation falls within the range of that particular data type. By default, this option is
turned off so that the compiler can do this kind of check. If you flag this check box, the
compiler will not check for such overflows, and the application execution might result
faster. Be careful about this choice, especially if your code implements calculations.

Enable Optimizations When this check box is flagged, the compiler basically removes
some opcodes that are required for interacting with the debugger. Moreover, the Just-
In-Time compilation is optimized because the runtime knows that a debugger will not

be attached. On the other hand, this can result in major difficulties when debugging
applications. For example, you might not use breakpoints at specific lines of code and,
consequently, perform debugging tasks although the optimization process could produce a
smaller and faster executable.

DLL Base Address This option is available when developing class libraries and user
controls and provides the ability to specify the Base Address for the assembly. As you
might know, the base address is the location in memory where a .dll file is loaded. By
default, Visual Studio assigns a base address and represents it in hexadecimal format. If
you need to provide a custom base address, this is the place where you can do it.

Generate Debug Information Generating debug information when building your project
allows you to use the debugger against your application. By default, this option is set to
Full, which means that full debug information is generated so that the debugger can be
fully used to debug an application. (This is the case of the Debug configuration.) If you
set this option to None, no debug information will be generated; if you set this option to
pdb-only, the compiler will produce just a .pdb file containing debug symbols and project
state information.

Compilation Constants

You can use compilation constants to conditionally compile blocks of code. Conditional
compilation relies on the evaluation to True of constants that will be included in the
final assembly. The Visual Basic compiler defines some default constants you can evaluate
within your code; you also have the ability to declare custom constants. In the Advanced
Compiler Settings window, you can specify whether the compiler needs to include the
pEBUG and TRACE constants. The first one enables you to understand if the application

is running in debug mode; in other words, if the application has been compiled using
the Debug configuration. The second one is also related to debugging tasks; particularly,
the .NET Framework exposes a class called Trace that is used in debugging and that can
send the tracing output to the Output window when the TRACE constant is defined. If
not, no output is generated because invocations versus the Trace class are ignored. A full
list of built-in constants can be found at MSDN Library at http://msdn.microsoft.com/
en-us/library/dy7yth1w(VS.110).aspx. Evaluating constants in code is simple. You can
use the #1If, #Else, #ElseIf, and #EndIf directives. For example, if you want to evaluate

http://msdn.microsoft.com/en-us/library/dy7yth1w(VS.110).aspx
http://msdn.microsoft.com/en-us/library/dy7yth1w(VS.110).aspx

48 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

whenever an application has been compiled with the Debug configuration, you could
write the following code:

#If DEBUG Then

Console.WriteLine ("You are in Debug configuration")
#Else

Console.WriteLine ("You are not in Debug configuration")
#End If

which essentially verifies if the constant is defined and takes some action at that point. In
our example, if the pEBUG constant is defined in the assembly, this means that it has been
built via the Debug configuration.

Custom Constants You can also define custom constants. This can be basically accom-
plished in two ways. The first is adding custom constants in the appropriate field of the
Advanced compiler settings window. Each constant must have the form of Name="value",
and constants are separated by commas. The second way for providing custom constants
is adding a #const directive in your code. For example, the following line of code

#Const TestConstant = True

defines a constant named TestConstant whose value is set to True. The big difference in
using a #Const directive is that it defines just private constants that have visibility within
the code file that defines them.

Generate Serialization Assemblies

As we discuss in Chapter 41, “Serialization,” serialization in .NET development is a tech-
nique that allows persisting the state of an object. Among several alternatives, this can
be accomplished using a class called xmlserializer. In such situations, the Visual Basic
compiler can optimize applications that use the xmlserializer class, generating addi-
tional assemblies for better performances. By default, this option is set to Auto so that
Visual Studio generates serialization assemblies only if you are effectively using XML seri-
alization in your code. Other options are On and Off.

Debugging Overview

In this section you get an overview of the debugging features in Visual Studio 2012 for
Visual Basic applications. Although the debugger and debugging techniques are detailed
in Chapter 5, “Debugging Visual Basic 2012 Applications,” here we provide information
on the most common debugging tasks, which is something that you need to know in this
first part of your journey through the Visual Basic programming language.

Debugging an Application

To debug a Visual Basic application, you basically need to perform two steps:
» Enable the Debug configuration in the compile options.

» Press FS to start debugging.

Debugging Overview 49

By pressing F5, Visual Studio runs your application and attaches an instance of the debug-
ger to the application. Because the Visual Studio debugger needs the debug symbols to
proceed, if you do not choose the Debug configuration, you cannot debug your applica-
tions. The instance of the debugger detaches when you shut down your application.

TIP

As an alternative you can click the Start button on the Visual Studio standard toolbar. If
the Debug configuration is selected, this action will be the equivalent of pressing F5. If
the Release configuration is selected, this is the equivalent of launching the application
with CTRL + F5.

The debugger monitors your application’s execution and notifies for runtime errors; it
allows you to take control over the execution flow as well. Figure 2.28 shows our sample
application running with the Visual Studio debugger attached.

M MyFirst2012Program (Running) - Microsaft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P = 0O x
FILE EDIT VW PROJCT BUILD DEBUG TEAM SOL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP

o - o W A_unumd ® KRR

Process: [6392] MyFirst2012Program.vshost = = 2
MyfFirst2012Program Modulelvb + X - i:
5, Module1 - © Main =

—Module Modulel +
SubMainl

o 1 fles//C:fUsers/AlessandrofAppData/Local/Temporary Projects/MyFirst2012Prog...| = | = IS

lello Visual Bagic 2012%

12101y uonnjos 3301

End|

=18

End Mod

Tas0idig w

% -
Output - 3 X

Show output from: Debug - = %

The thread 'vshost.LoadReference’ (@x10f8) has exited with code 8 (6x8).
*MyFirst2@12Program.vshost.exe' (Managed (v4.8.38319)): Loaded 'C:\Users\Alessandro\AppData\Lecal\Temporary Projects\MyFirst2812Program\b

Call Stack Breakpoints Command Window Immediate Window Output Autos Locals Watch 1

Ready Ln 20 Col 1 Ch1 INS

FIGURE 2.28 Our sample application running with an attached instance of the Visual
Studio debugger.

In the bottom area of the IDE, you can notice the availability of some tabs, such as Locals,
Watch 1, Watch 2, Call Stack, Breakpoints, Command Window, Immediate Window,

and Output. Each tab represents a tool window that has specific debugging purposes.
Also, notice how the status bar becomes orange and an orange border is placed around
the IDE, to remind the developer that the IDE is running in debugging mode. The Visual
Studio debugger is a powerful tool; next you learn the most important tasks in debugging

50 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

applications. Before explaining the tooling, it is a good idea to modify the source code of
our test application so that we can cause some errors and see the debugger in action. We
could rewrite the sub Main method’s code, as shown in Listing 2.3.

LISTING 2.3 Modifying the Sub Main for Debugging Purposes

Sub Main ()

'A text message

Dim message As String = "Hello Visual Basic 2012!"
Console.WriteLine (message)

'Attempt to read a file that does not exist

Dim getSomeText As String =

My .Computer.FileSystem.ReadAllText ("FakeFile.txt")

Console.WriteLine (getSomeText)

Console.ReadLine ()

End Sub

NEW TO VISUAL BASIC .NET?

If you are not an existing Visual Basic .NET developer, you may not know some of the
objects and keywords shown in the code listings of this chapter. The code is the simplest
possible, so it should be easy to understand; comments are also provided. The next chap-
ters guide you to the details of the programming language, so everything used here will

be explained. At the moment, it is important for you to focus on the instrumentation more
than on the code.

The code simply declares a message object of type string, containing a text message. This
message is then shown in the Console window. This is useful for understanding break-
points and other features in the code editor. The second part of the code will try to open
a text file, which effectively does not exist and store its content into a variable called
getSomeText Of type string. We need this to understand how the debugger catches errors
at runtime, together with the edit and continue feature.

Breakpoints and Data Tips

Breakpoints enable you to control the execution flow of your application. A breakpoint
breaks the execution of the application at the point where the breakpoint itself is placed
so that you can take required actions (a situation known as break mode). You can then
resume the application execution. To place a breakpoint on a specific line of code, just
place the cursor on the line of code you want to debug and then press F9.

Debugging Overview 51

TIP

To add a breakpoint, you can also right-click the line of code you want to debug and select
the Breakpoint, Insert breakpoint command from the pop-up menu or just click the left-
most column in the code window.

A breakpoint is easily recognizable because it highlights in red the selected line of code
(see Figure 2.29).

Dq MyFirst2012Program - Microsoft Visual Studio (Administrator)
ELE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL DATA TOOLS TEST ARCHITECTURE
B - F-a@ld D-0 - Pt~ TestCon- A_WFE WH N
MyFirst2012Program Modulelvb & X
&, Module1 ~ @ Main

[FModule Modulel

Sub Main()
'A text message
[] i essage As String = "Hello Visual Basic 20121"

fuag TDs ¥oqoo] J3i0(dxg ;Bmag

Console.Writeline(message)

FIGURE 2.29 Placing a breakpoint in the code editor.

To see how breakpoints work, we can run the sample application by pressing F5. When
the debugger encounters a breakpoint, it breaks the execution and highlights in yellow the
line of code that is being debugged, as shown in Figure 2.30, before the code is executed.

Dq MyFirst2012Program (Debugging) - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) £ = 0 x
EILE EDT MIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
o - @MW DT - p Cotinuer TetCon - AP0 om§ 26.6Q B WwE DD N -
Process: [6076] MyFirst2012Program.vshost ~ cnd - BB Thread: [7240] Main Thread - Y -
MyFirst2012Program [Modulelvb = | > IntelliTrace - oo v X
=, Module1 ~ @ Main - BEE B B
+
[FModule Modulel T AllCategories ~ All Threads
Search P
f‘ Sub Main() o 2 =
'A text message e S
o Dim message As String = "Hello Visual Basic 20121" Y Lfve Evendt: Breakpoint Lit
@ message Q - Nothing =
Console.bfpiteLine(message)
'Attempt to read a file that does not exist
Dim getSomeText As String =
My.Computer.FileSystem.ReadAllText ("FakeFile.txt")
Console.Writeline(getSomeText)
Console.Readline()
End Sub
End Module
21% - < > Inteli. | Soluti.. Team.. Prope..
Locals - B X Output A%
Name Value Type Show output from: Debug - k
@ getSomeText Nothing Q - String The thread 'vshost.Notifyload' (@xf44) has exited with code @ (8x8) .
@ message Nothing Q ~ Stiing The thread 'cNo Name>' (8x138c) has exited with code @ (8x8).
The thread 'vshost.lLoadReference' (@xlcfc) has exited with code @ (
‘MyFirst2612Program. vshost.exe' (Managed (v4.6.38319)): Loaded 'C:\
Call Stack Breakpoints| Command Window | Immediate Window | Autos Locals | Watch 1 >

Ready Ln7 Col18 Ch18 INS

FIGURE 2.30 When encountering a breakpoint, Visual Studio highlights the line of code that is
currently debugged.

52 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

If you take a look at Figure 2.30, you notice that, if you pass with the mouse pointer over
the message variable, IntelliSense shows the content of the variable itself, which at the
moment contains no value (in fact, it is set to Nothing). This feature is known as Data
Tips and is useful if you need to know the content of a variable or of another object in a
particular moment of the application execution.

THE VISUAL STUDIO HISTORICAL DEBUGGER

If you run the Microsoft Visual Studio 2012 Ultimate edition, you also notice another
window called IntelliTrace. This window is also known as the Visual Studio Historical
Debugger and is specific to the Visual Studio Ultimate instrumentation. It is discussed in
Chapter 55, “Advanced Analysis Tools.”

You can then execute just one line of code at a time, by pressing F11. For example,
supposing we want to check if the message variable is correctly initialized at runtime. We
could press F11 (which is a shortcut for the Step Into command in the Debug menu). The
line of code where the breakpoint is placed will now be executed, and Visual Studio will
highlight the next line of code. At that point, you can still pass the mouse pointer over
the variable to see the assignment result, as shown in Figure 2.31.

ﬂ MyFirst2012Program (Debugging) - Microsoft Visual Studio (Administrator)

Sub Main()
‘A text message

Quick Launch (Ctrl+Q) p - B X
FLE EDIT VIEW PROJECT BULD DEBUG TEAM SOL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
OR S WD P Continue - T A =5 266 B, bE HH N B
Process: [6076] MyFirst2012Program.vshost = - ¥ Thread: [7240] Main Thread - y
MyFirst2012Program | Modulelb + X | ~ IntelliTrace = 3R
=, Module1 - @ Main - BE @ T)
EModule Modulel | pryor—— e ——
1 Search »

© Debugger: Beginning of A

o P nessage As String = "Hello Visual Basic 2012!" O Debugger: Brezkpoint Hi:
‘ @ message Q - "Hello Visual Basic 20121" = > Live Event: Step Recorded
o Console.Writeline(message)
‘ 'Attempt to read a file that does not exist
Dim getSemeText As String =
‘ My.Computer.FileSystem.ReadAllText("FakeFile.txt")
Console.Writeline(getSomeText)
Console.Readline()
‘ End Sub
End Module
Di% - Intell.. | Soluti.. | Team... | Prope...
Locals - § X Output X
Name Value Type Show output from: Debug - &
@ getSomeTexdt MNothing & - String The thread 'vshost.Notifyload' (8xf44) has exited with code @ (8x8)
© message *Hello Visual Basic 20121" Q, - String The thread ‘<No Name>' (@x139c) has exited with code @ (@xe).

The thread 'vshost.LoadReference’ (@xlcfc) has exited with code @ (

‘MyFirst2012Program.vshost.exe"

(Managed (v4.6.38319)): Loaded 'C:\

The thread '<No Name>'

Call Stack Breakpoints | Command Window Immediate Window Autos Locals | Watch 1

Ready

FIGURE 2.31 Using the Step Into command lets us check whether the variable has been

assigned correctly.

(@x1818) has exited with code @ (@xe).

Col9

Debugging Overview 53

When you finish checking the assignments, you can resume the execution by pressing F5.
The execution of the application continues until another breakpoint or a runtime error is
encountered. We discuss this second scenario next.

Runtime Errors

Runtime errors are particular situations in which an error occurs during the applica-
tion execution. These are not predictable and occur due to programming errors that are
not visible at compile time. Typical examples of runtime errors are when you create an
application and you give users the ability to specify a filename, but the file is not found
on disk, or when you need to access a database and pass an incorrect SQL query string.
Obviously, in real-life applications you should predict such possibilities and implement
the appropriate error handling routines (discussed in Chapter 6, “Handling Errors and
Exceptions”), but for our learning purposes about the debugger, we need some code that
voluntarily causes an error. Continuing the debugging we began in the previous para-
graph, the application’s execution resumption causes a runtime error because our code is
searching for a file that does not exist. When the error is raised, Visual Studio breaks the
execution as shown in Figure 2.32.

Dd MyFirst2012Program (Debugging) - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) p = B X%
FLE EDIT MEW PROECT BULD DEBUG TEAM SOL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
o - =5 I R e P Continue ~ A LI~} 266c % BwEHYH|N "
Process: [6076] MyFirst2012Program.vshost = 8 Thread: [7240] Main Thread - |\¥3 =
MyfFirst2012Program [Modulelvb = x| -
=, Module1 + @ Main -
—Module Modulel +
Sub Main()
T 'A text message
[] L l¥message As String = "Hello Visual Basic 20121"|

Console.Writeline(message)

‘Attempt to read a file that does not exist
=4 Dim getSomeText As String = |
_ Ly bl Remh L (et Al i)

saadosy si0jdig wes) Jmioidég uonnjos 33e 1P|

. . % FileNotFoundException was unhandled x
Console.Writel ine(getSomeText)
o R she Could not find file ‘C:\Users\Alessandro\Documents\Visual Studio 2012\Projects
0 \MyFirst201 TestC i le ot
End Sub
Troubleshooting tips:
When using relative paths, make sure the current directory is correct. ~
End Module Verify that the file exists in the specified location.
Get general help for this exception. "

Search for more Help Online...

Exception settings:
[] Break when this exception type is thrown

Actions:
View Detail...
121% - Copy exception detail to the clipboard

Output Call Stack Breakpoints Command Window Immediate Window Autos | OPEn exception settings

Ready Ln10 Col 13. Ch13 INS

FIGURE 2.32 The Visual Studio debugger encounters a runtime error.

As you can see, the line of code that caused the error appears highlighted. You also can
see a pop-up window that shows some information about the error. In our example, the
code searched for a file that does not exist, so a FileNotFoundException was thrown and
was not handled by error handling routines; therefore, the execution of the application

54 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

was broken. Visual Studio also shows a description of the error message. (In our example
it communicates that the code could not find the FakeFile.txt file.) Visual Studio also
shows some suggestions. For example, the Troubleshooting tips suggest some tasks you
could perform at this point, such as verifying that the file exists in the specified loca-
tion, checking the pathname, or getting general help about the error. By clicking a tip,
you are redirected to the MSDN documentation about the error. This can be useful when
you don’t exactly know what an error message means. There are other options within
the Actions group. The most important is View Detail. This enables you to open the
View Detail window, which is represented in Figure 2.33. Notice how the StackTrace item
shows the hierarchy of calls to classes and methods that effectively produced the error.
Another interesting item is the InnerException. In our example it is set to Nothing, but
it’s not unusual for this item to show a kind of exceptions tree that enables you to better
understand what actually caused an error. For example, think of working with data. You
might want to connect to SQL Server and fetch data from a database. You could not have
sufficient rights to access the database, and the runtime might return a data access excep-
tion that does not allow you to immediately understand what the problem is. Browsing
the InnerException can help you understand that the problem was caused by insufficient
rights. Going back to the code, this is the point where you can fix it and where the Edit
and Continue features comes in.

View Detail [2 s
Exception snapshot:

4 System.|O.FileNotFoundException {"Could not find file ‘C:\Users\Alessandro\Documents\Visual Studio 2012\Projects\MyFirst2012Program\MyFirst2012
Data {System.CollectionsListDictionarylnternal}
FileName CA\Users\Alessandro\Documents\Visual Studio 2012\Projects\MyFirst2012Pragram’\MyFirst2012Program\bin\TestCa
FusionLog Mothing
HelpLink Nothing
HResult -2147024894
InnerException Nothing
Message Could not find file 'C:\Users\Alessandro'\Documents\Visual Studio 2012\Projects\MyFirst2012Program\MyFirst2012R
Source mscorlib

at System.0._Error. WinlOError(Int32 errorCode, String maybeFullPath) st System.|0.FileStream.Init(String pat| v

TargetSite {Void WinlQError(Int32, System.String)}

FIGURE 2.33 The View Detail window enables developers to examine what caused an
exception.

Edit and Continue

The Edit and Continue features enable you to fix bad code and resume the application
execution from the point where it was broken, without having to restart the application.
You just need to run the application by pressing F5; then you can break its execution by
pressing Ctrl+Alt+Break or either selecting the Break All command in the Debug menu
or pressing Pause on the Debug toolbar.

Browsing the Visual Basic and .NET Documentation 55

AVAILABILITY OF EDIT AND CONTINUE

Generally, you can use the Edit and Continue features, but there are situations in which
you will not. For example, if fixing your code might influence the general application behav-
ior, you need to restart the application. Also, Edit and Continue is not available when
running configurations that target 64-bit CPUs nor in Silverlight applications.

In our example we need to fix the code that searches for a not existing file. We can
replace the line of code with this one:

Dim getSomeText As String = "Fixed code"

This replaces the search of a file with a text message. At this point we can press F5 (or

F11 if we want to just execute the line of code and debug the next one) to resume the
execution. Figure 2.34 shows how the application now runs correctly. The Edit and
Continue feature completes the overview of the debugging features in Visual Studio. As we
mentioned before, this topic is covered in detail in Chapter 6.

5 file:///C:{Users/Alessandro/Documents/Visual Studio 2012/Projects/MyFirst2012... .= = SN

ello Uisual Basic 2812%
[Fixed Code

FIGURE 2.34 The sample application running correctly after fixing errors.

After this brief overview of the debugging features in Visual Studio 2012, it’s time to talk
about another important topic for letting you feel at home within the Visual Studio 2012
IDE when developing applications: getting help and documentation.

Browsing the Visual Basic and .NET Documentation

The .NET Framework Base Class Library is very large, and remembering all the objects

that you can use in your applications (or the ones that .NET Framework relies on) is not
possible. What is instead important is to know where to search for information. You have
different tools available to browse the .NET Framework and its documentation, for Visual
Basic, too. Because the goal of this chapter is to provide information on the primary tools
you need for developing Visual Basic applications, getting help with the language and
with the tooling is absolutely one of the primary necessities, as discussed next.

56 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

Online Help and the MISDN Library

Visual Studio 2012 ships with the MSDN Library, which is the place where you can find
documentation for Visual Basic 2012 and the .NET Framework 4.5. There are basically two
ways to access the MSDN Library: offline and online. To access the MSDN Library offline,
you have the following alternatives:

» Click the View Help command from the Help menu in Visual Studio.
» Press F1 from wherever you are.

» Open the Microsoft Help Viewer shortcut in Windows'’s Start, All Programs,
Microsoft Visual Studio 2012 menu; this launches the local help viewer.

If you are writing code or performing a particular task on a tool within the IDE, press-

ing F1 is the best choice because you will be redirected to the help page related to that
instruction, code statement, or tool. If you are instead searching for information about a
particular technology or framework, such as WPF or the Visual Studio Tools for Office, you
could consider one of the other choices. To access the MSDN Library online, you just need
an Internet connection. Then you can specify to always use the online help by select-

ing Help, Set Help Preference and then clicking Launch in Browser or Launch Help
Viewer, or you can manually open one of the following websites, which are the main
points of interest for a Visual Basic developer:

» The MSDN Library portal at http://msdn.microsoft.com/en-us/library/default.aspx

» The .NET Framework reference at http://msdn.microsoft.com/en-us/library/
w0x726¢2(VS.110).aspx

» The Visual Basic page on the Visual Studio Developer Center at http://msdn.com/
vbasic

You can also quickly find information on particular objects using built-in tools, such as
the Object Browser.

MANAGING HELP CONTENTS

You can download additional documentation or remove documentation that is already on
your system by selecting Help, Add or Remove Help Content.

Object Browser Window

The Object Browser is a special tool window that enables you to browse the .NET
Framework class library as well as any referenced libraries and types defined in your proj-
ects. You can get a hierarchical view of the Base Class Library and of all the types defined
in your solution, including types defined in referenced external assemblies. The Object
Browser can be activated by pressing CTRL+ALT+]; it is useful because you can under-
stand how a type is defined, which members it exposes, which interfaces it implements,

http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2(VS.110).aspx
http://msdn.microsoft.com/en-us/library/w0x726c2(VS.110).aspx
http://msdn.com/vbasic
http://msdn.com/vbasic

Browsing the Visual Basic and .NET Documentation 57

and which other classes it derives from. If the types are documented, you can get a
description for each object or member.

Figure 2.35 represents, as an example, the Object Browser showing members of the
System.Windows.ContentElement class.

ﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P = B x
ELE EDIT VIEW PROJCT BULD DEBUG TEAM SOL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
o - A - . P Start - TestCom - | A _
& Browse: All Components .| e ot - g
g <Search> - p 1;1
_, b vB PresentationCore [30.0.0] A @ [AddHandler](System Windows RoutedEvent, System.Delegate) Al
g 4 *a PresentationCore [4.0.0.0] @ [AddHandler] Wind stem.Delegate, Boolean) =
g b {} System.O.Packaging @ [RaiseEvent](System.\Windows.RoutedEventArgs) 4
; 4 {} System.Windows @ [RemoveHandler Wind stem.Delegate) g
8 b “3 AutoResizedEventArgs @ AddT Windh stem Wind o
g b & AutoResizedEventHandler @ App o Windows.D JProperty, System WindowsMedi &
3 b & BasclincAlignment @ App o Windows.D: yProperty, SystemWindowsMedi 0
2 b # Clipboard @ Windows.D: yProperty, SystemWindows Medis Anir
2 PRM ContentElement] @ MWindows.D: yProperty, System. Windows.Media.Anir &'
o b [Base Types @ NewD £
3 4 &l Derived Types @, OnD Windows.D: =
b b *#3 FrameworkContentElement @, OnDragLeave(System.Windows.DragEventArgs) 3
b *#3 ContentOperations @, OnDragOr Windows.D &
b % CulturelnfoletflanguageTagConverter @, OnDrop(System.Windows.DragEventArgs)
b %z DataFormat @ Windaws v
b %z DataFormats b id
b #3 DataObject Public Class ContentElement
b *3 DataObjectCopyingEventArgs Inherits System.Windows. DependencyObject
b & DataObjectCopyingEventHandler Member of System.Windows
b %z DataObjectEventArgs
b % DataObjectPastingEventhrgs Summary:
b & DataObjectPastingEventHandier Provides a WPF core-level base class for content elements. Content elements are
b %3 DataObjectSettingDataEventArgs designed for flow-style presentation, using an intuitive markup-oriented layout model
= and a deliberately simple object model.
b & DataObjectSettingDataEventHandler
b < DragAction
b #3 DragDrop
b & DragDropEffects
b & DragDropKeyStates
b %3 DragEventArgs
b & DragEventHandler v
< >
ErrorList Output

FIGURE 2.35 The Object Browser enables exploring .NET objects showing information.

The right side of the window lists methods and properties exposed by the selected object.
When you click on a method or on a member of the object in the left side of the window,
a short description of the object should appear in the bottom-right side of the Object
Browser. If the description is not useful enough to understand the meaning of an object or
of one of its members, you can press F1, and Visual Studio shows the online help (if avail-
able) for the object or member. The Object Browser also provides links to objects used by
the one you are exploring. Considering the example shown in Figure 2.35, you not only
can see the description of a method, but also can also click the parameters’ identifiers to
be redirected to the definition of the parameter. The Object Browser can also be invoked
when writing code, as discussed next.

Invoking the Object Browser from the Code Editor

Often you need to know how particular .NET objects or members are structured or

how they work. Visual Studio 2012 provides the ability of invoking the Object Browser
directly from the code editor by right-clicking the object you want to browse and select-
ing the Go to Definition command from the pop-up menu. For example, imagine you

58 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

want to know how the console class is defined. To accomplish this, you can revisit the
MyFirst2012Program example. When in the code editor, right-click the console object and
select Go To Definition. By doing this, Visual Studio opens the Object Browser that auto-
matically selects the console class, showing its methods on the right side of the screen
(see Figure 2.36).

B MyFirst2012Program - Microsoft Visual Studio (Administrator) Quick Launch (Ctr+Q) p = B X%
FLE EDIT VIEW PROJKCT BULD DEBUG TEAM SOL DATA TOOLS TEST ARCHITECTURE ANALVZE WINDOW HELP
(< B - e P Stert = TestCom = | A _ n =
im Browse: All Components .| O in O3~ §
2 2
S <Search» -PE I
o (3 Console A @ Beep) ~ B
3 I # ConsoleCancelEventArgs @ Beep(integer, Integer) =)
g & ConsoleCancelEventHandler @ Clear) H
= & ConsoleColar @ MoveBufferArea(integer, Integer, Integer, Integer, Integer, Integer) o
8 & ConsoleKey @ MoveBufferArea(integer, Integer, Integer, Integer, Integer, Integer, Char, System.Conse &
% T ConsoleKeyinfo @ ResetColor) 8
H & ConsoleModifiers @ SetBufferSizellnteger, Integer) o
2 & ConsoleSpecialKey @ SetCursorPosition(integer, Integer) g
I I # ContextBoundObject @ SetError(System.|0.TextWriter) 5
o b # ContextMarshalException @ Setin(System.I0.TextReader) .
Z b %: ContextStaticAttribute @ SetOut(System.I0.TetWriter) 3
2 b *3 Convert @ SetWindowPosition(Integer, Integer) R
& Converter(Of Tinput, TOutput) @ SetWindowSize(lnteger, Integer) §
& CrossAppDomainDelegate @ Wiite(Boolean)
b #: DatsMisalignedException @ WritafCharm v
b = DeteTime b 2
= DateTimeKind Public Notinheritable Class Console
b 55 DateTimeOffset Inherits System.Object
& DayOfWeek Member of System
b *z DBNull Summane
b = Decimal Represents the standard input, output, and error streams for console applications.
b Gy This class cannot be inherited
b * DivideByZeroException
b *3 DilNotFoundException
b = Double
b * DuplicateWaitObjectException
b * EntryPointNotFoundException
b #z Enum
b #z Environment
& Environment.SpecialFolder v
< >
ErrorList Output

FIGURE 2.36 The Object Browser can be invoked from the code editor by clicking the Go to
Definition command.

This technique works with shared classes or, more generally, with declarations of nonin-
stance classes; however, in some situations you might want to learn about data types or
instance members’ definitions. For example, consider the following code:

Dim text As String

text = "Hi!"

If you try to run the Go to Definition command for the text identifier, you will be redi-
rected to the first line of code, which effectively defines the text object. But what if

you want to browse the string object? Fortunately there is another command you can
choose in such situations—Go to Type Definition. It is still available in the pop-up menu.
Invoking Go to Type Definition redirects to the definition of the type that characterizes
the object you declared (in our example, String). The result will be the same as in

Figure 2.36, of course referring to the selected type.

Quick Launch Tool 59

NOTE

Instance and shared members are discussed in detail in Chapter 7, “Class
Fundamentals.”

Although the Object Browser’s purpose is not typically to provide help, it is a good place
for learning about .NET objects, both if you need information on their structure and if
you need descriptions on their usage.

Quick Launch Tool

Visual Studio 2012 introduces a new tool called Quick Launch. The purpose of this tool is
making it easy to find commands, options, and recently opened files. The tool is available
through a search box located at the upper right corner of the IDE. For example, imagine
you need to launch the SQL Server Object Explorer window but do not remember where
the command for launching such a window is and do not want to waste time browsing
every menu. If you type “SQL” in the Quick Launch search box, Visual Studio will show
all menu commands, options, and recently opened files (if any) containing the “SQL”
word. As you can see from Figure 2.37 the SQL Server Object Explorer is the first search
result, so you can simply click it to open the desired tool.

ﬂ MyFirst2012Program - Microsoft Visual Studio (Administrator) sql x = B X
FILE EDIT VIEW PROJKCT BUILD DEBUG TEAM SOL DATA 1 Menus(4)
[B-a e <~ b Start - TestCom - | A _ [View — SOL Server Object Explorer (Ctrl+, Ctrl+)

1@ SQL — Add SQL Server...
& SQL — Schema Compare — New Schema Comparison.
‘i SQL — Transact-SQL Editor — New Query.
Qptions (16)
i+ SQL Server Tools — Transact-5QL Editor — General
i+ SQL Server Tools — Transact-SQL Editor — Query Execution — General
i+ SQL Server Tools — Transact-5QL Editor — Query Execution — Advanced
ik SQL Server Tools — Transact-5QL Editor — Query Execution — ANS|
i+ SQL Server Tools — Transact-SQL Editor — Query Results — General
SQL Server Tools — Transact-5QL Editor — Query Results — Results To Grid
i+ SQL Server Tools — Transact-SQL Editor — Query Results — Results To Text
4+ SQL Server Tools — Transact-SQL Editor — Editor Tab and Status Bar
£+ Text Editor — SQL Server Tools — IntelliSense.
i Text Editor — SQL Server Tools — General
i Text Editor — SQL Server Tools — Tabs
£ SQL Server Tools — General
£} SQL Server Tools — Online Editing
£+ Text Editor — T-5QL90 — General
£+ Text Editor — T-S0L90 — Tabs
i+ Database Tools — Data Connections (Change SOL Server default instance n.

1210/dx3 192090 245 DS X0g100) I2:0]d] 1A
sapadorg maipssepy ssiojdig wes] ssiojdxg uonnjas

Press Ctrl+Q to show 'Menus' results. Q

ErrorList Output

FIGURE 2.37 Finding commands and options with Quick Launch.

60 CHAPTER 2 Getting Started with the Visual Studio 2012 IDE

To understand how it works, repeat the search and select the SQL Server Tools -> General
option from the list. You will see how Visual Studio will open the Options dialog box
pointing to the requested setting. This is a useful tool that can save a lot of time in
finding the necessary tools.

Showing the Hierarchy of Method Calls

Visual Studio 2012 brings to Visual Basic a tool window named Call Hierarchy, which

was already introduced for Visual C# in Visual Studio 2010. As its name implies, Call
Hierarchy enables the showing of the hierarchy of calls to and from one or more methods.
To understand how it works, let’s consider the following code:

Module Modulel

Sub Main ()
DoSomething ()
End Sub

Sub DoSomething()
DoSomethingElse ()
End Sub

Sub DoSomethingElse ()
DoNothing ()
End Sub

Sub DoNothing ()

End Sub
End Module

The code defines some method, without performing any particular tasks, but it demon-
strates a nested hierarchy of method calls. If you right-click one of the method’s names
and then select View Call Hierarchy from the pop-up menu, you will be able to see the
method call hierarchy as demonstrated in Figure 2.38.

As you can see from Figure 2.38, the tool shows the first level hierarchy, but you can also
expand method names to show the full hierarchy, including nested method calls. On the
right side of the window is the line number in the code file where the selected method is
defined. Also, if you double-click a method name in Call Hierarchy, the code editor will
automatically focus on the method definition.

Call Hierarchy
My Solutian M (2] @
4 © DoSomething() (ConsoleApplication1.Modulel) Call Sites

4 @ Calls To 'DoSomething’
b @ MainQ (ConsoleApplication] ModuleT)
4 @ Calls From 'DoSomething’
4 © DoSomethingElse() (ConsoleApplication ModuleT)
4] Calls To 'DoSomethingElse’
e Dosometing) (ConsoieAppistion osl)
4 @ Calls From 'DoSomethingElse’
b @ DoNothing((ConsoleApplicationl.ModuleT)

DoSomethingElse()

Location &
Modulel.vb - (8, 9)

Summary

FIGURE 2.38 Analyzing method calls with Call Hierarchy.

Summary

61

In this chapter we discussed basic things you need to know as a Visual Basic developer to

feel at home within the Visual Studio 2012 Integrated Development Environment. Tasks
such as creating projects, compiling projects, debugging applications, and searching for
documentation and tools are the most common in a developer’s life, and this chapter
offers a fast way to understand all the primary tools you need for building applications
with Visual Basic 2012. You also saw some new tools introduced by Visual Studio 2012,

such as Quick Launch and Call Hierarchy. Now that you know how you can move inside
the IDE, it’s time to begin working with the Visual Basic programming language.

This page intentionally left blank

Index

NUMBERS

1-Click deployment, 884
3-D graphics, Silverlight applications, 908
64-bit browsers, support, 928

SYMBOLS

* (multiplication) operator, 155

+ (addition) operator, 155, 313

- (pointer to address in memory) keyword, 95
- (subtraction) operator, 155, 313

/ (division) operator, 155, 313

<> (inequality) operator, 104, 164, 313

< (less than) operator, 164, 313

<< (left-shift) operator, 162, 313

<= (less than or equal to) operator, 164, 313
= (equality) operator, 126, 164, 313, 570

> (greater than) operator, 164, 313

>= (greater than to equal to) operator,
164, 313

>> (right-shift) operator, 162, 313

\ (integer division) operator, 155, 313

A (exponentiation) operator, 155, 313
_(underscore) character, 70, 265, 355, 552

A

ABC (Address, Binding, and Contract)
properties, 992

abstract classes, 336

CLS, 337

code, 427

contra variance, 536

inheritance, 337

interfaces, implementing, 428
accepting licenses, NuGet, 1285

Access (Microsoft), 541
accessing
base class members, 337-341
CAS, 1148
ClickOnce, 1257-1258
databases, 540
Developer Center (Windows Phone), 987
directories, 455
Generate from Usage feature, 433-439
interfaces, 348-352
LINQ, 550. See also LINQ
LINQ to SQL, 589, 618
local file systems, 926
members, Visual Basic 2012 projects,
67-68
MSDN Library, 56
My.Resources property, 500
properties, 45, 229-234, 232
Registry, 486-487
resources, 81
role configuration options, 935
System.l0.Drivelnfo class, 459
templates, 19-20
Visual Basic 2012 tools, 1359
WCF RIA Services, 911-923
Access property, 428
accounts
Storage Account service, 930
UAC, configuring, 36-39
actions
methods, executing with, 235-247
XBAP, 722
Activated event, 509
Activity log (Windows Azure), 947
AddAfter method, 410
AddAfterSelf method, 674
AddBeforeSelf method, 674
Add command, 424
AddFirst method, 410, 674
AddHandler keyword, 383-384

1362 adding

adding. See also insert operations
breakpoints, 51
class diagrams, 431
classes, LINQ to SQL, 589
code snippets, 1282
columns, 710
controls, 870-873
Silverlight applications, 897-900
XAML, 701
DataSets, LINQ to DataSets, 622
Domain Service Class, 913-916
EDMs, 631
environment variables, 1242
expressions to Watch windows, 190
filtering, 873-874
forms, 868-869
Imports directives, 286
ink notes, 806
items
to projects, 30
to templates, 1265
members to interfaces, 426
models, 868
multiple roles, 936
navigation controls, 874

objects, Visual Studio Class Designer,
425-428

Option Infer directives, 513
output to projects (InstallShield), 1236
pages, Windows Phone, 966
references
to COM libraries, 85-86
to Data Services, 1023
resources, 498
services, 1002, 1016
setup projects (InstallShield), 1232
sources, Silverlight applications, 912-913
stored procedures to EDMs, 654
strong names to projects, 1225
Windows Forms, 1193
XML schemas, 1112
Add-in Manager tool, 1304
add-ins
deploying, 1300
managing, 1304
Windows Phone, 957

addition (+) operator, 155, 313
AddLast method, 410
AddMemoryPressure method, 280
Add method, 370, 394, 660
concurrent collections, 1087
Add New Item dialog box, 589, 1267
AddNew method, 833
AddParticipant method, 1080
AddParticipants method, 1080
AddProduct method, 606
AddRange method, 395
Add Reference command, 84

Address, Binding, and Contract properties.
See ABC properties, 992

addresses, ABC properties, 992
AddressOf clause, 381
Add Service Reference dialog box, 1002
AdHost class, 1194
Adjust Shapes Width command, 424
ADO.NET, 539
connection modes, 541
databases, connecting, 541-543
data providers, 540-541
disconnected modes, 541
Entity Framework, 629
Code First approach, 657
compatibility, 668-669
delete operations, 647-648
downloading additions to, 658
EDMs, 630-643
Fluent APls, 665-668
handling optimistic concurrency, 648-650
insert operations, 646-647
instantiating, 645

LINQ to Entities, querying EDMs with,
652-653

mapping stored procedures, 654-657
modifying, 645-652
overview of, 629-630
SQL, querying EDMs with, 653-654
update operations, 648
validating data, 650-652

overview of, 540-543

partial methods, 251

serialization, 1053-1054

AdRotator control, 858
Advanced Compile Options dialog box, 44
Advanced Compiler Settings window, 46-47
advanced features, IDEs, 1261
advanced garbage collection, 279-281
advanced LINQ to SQL, 613-617
agents, Windows Phone, 960-963
Aggregate clause, 570
AggregateException, 1076, 1101
Aggregate method, 519
aggregation operators, 570-572
Ajax

applications, 1015

controls, 854
aligning text, 802
All method, 519
allocating memory

objects, managing, 269-270

reference types/value types, comparing,

106-108

structures, 309

value types, 94
AllowMultiple property, 1187
AllowPartiallyTrustedCallers attribute, 1154

ambiguities in namespaces, avoiding, 284,
294-295

analysis tools (Visual Studio 2012), 1309
Code Analysis, 1309-1315
Code Clone Detection, 1310, 1317-1319
Code Metrics, 1309, 1315

Dependency Graphs, generating, 1334-1335

IntelliTrace, 1310, 1328-1334

overview of, 1309-1310

Profiler, 1310, 1319-1328
analyzing

code, 264

error messages, 208

method calls, 61

Microsoft code analysis rules, 1311

value types, 100
AndAlso operator, 158-159, 570
And operator, 158-162, 313, 570
angles, modifying elements, 780

Applicationlcon.png 1363

animations
ColorAnimation, applying, 786-788
DoubleAnimation, applying, 783-785
events, 787-789

Silverlight applications. See Silverlight
applications

Ul elements, 905-908
Visual Basic 2012, 789-790
Windows Phone, 959
WPF, 782-790
annotations
applying, 805
Data Annotations, Code First approach,
663-665
flow documents, 803
services, implementing, 804
anonymous iterators, 419
anonymous types
languages, 524-525
LINQ, 552
LINQ to DataSets, 623
LINQ to SQL, 603
AnyCPU, 44
Any method, 519
APIs (application programming
interfaces), 1191

Fluent APIs, Entity Framework (ADO.NET),
665-668

structures, passing, 310
Win32 API calls, references to, 1206

APM (Asynchronous Programming Model),
1106-1107

App.Current property, 924
AppDomain class, 1146
AppDomain.CreateDomain method, 1147
AppDomainUnloadedException, 1147
ApplicationBar class, Windows Phone
applications (apps), 982
Application Building Blocks, 930
Application class, members, 720
ApplicationDeployment class, 1257
Application Deployment tool, 957
Application Files (ClickOnce), 1251
Application Files group (InstallShield),
Applicationlcon.png, 986

How can we make this index more useful? Email us at indexes@samspublishing.com

1364 Application Information group (InstallShield)

Application Information group
(InstallShield), 1233

Application.myapp file, 75-76
Application object, 719-721
Application Registry (InstallShield), 1239
applications (apps)
AJAX, 1015
animations, 782-790
application-level only settings, 492-493
ASP.NET, 851. See also ASP.NET
configuring security, 879-882
controls, 858-860

creating with Visual Basic 2012,
864-862

deploying, 883-884
handling events, 860-861
MSDeploy, 886-891
overview of, 851-855
publishing, 883, 884-885
state management, 861-864
web forms, 855-857
breakpoints, 50-53
ClickOnce, 1245. See also ClickOnce
accessing, 1257-1258
applying, 1246-1247
configuring, 1251-1255
deploying, 1247-1251
overview of, 1246
Registration-Free COM, 1258-1259
security, 1255
updating, 1252-1253
clients
ClickOnce, 1247
creating, 1022-1027
instances, 606
code, debugging, 193-206
Console, 24, 622
data services, hosting, 1016
desktop, Transparency Level 2, 1151
domains, assemblies, 1145-1147
Edit and Continue feature, 54-55
events, 509-510
exceptions, 207-208, 224
frameworks
My.Application property, 478
WPF, 508

HTTP, 8
InstallShield, 1229. See also InstallShield
IntelliTrace, 1330-1331
localizing, 841

.NET Framework, 841-842

Windows Forms, 842-843

WPF, 844-850
logs

managing, 199-200

writing entries to, 481-482
Metro-style. See Metro-style apps, 7-8, 407
multi-targeting, 18
My namespace, applying, 506-510

.NET Framework, 2. See also .NET
Framework

PlAs, deploying without, 86-87
project templates, 17-18
references, GAC, 1227
root namespaces, 291-292
running, 875
runtime errors, 53-54
serialization, 1035
ADO.NET, 1053-1054
customizing, 1045-1048
objects, 1036-1042
WCF, 1050-1053
XAML, 1048-1050
settings, Visual Basic 2012 projects, 81-83

Silverlight, 55, 893. See also Silverlight
applications

debugging XAML, 926-927
deploying, 899

drag'n'drop data-binding, 916-919
new features, 898, 928
out-of-browser applications, 923-926
overview of, 894

packages, 899

permissions, 926

security, 926

Silverlight Navigation Applications,
908-910

Visual Basic 2012, 895-897
WCF RIA Services, 911-923
Store (Windows 8), 1111
types, My Project, 34
video, playing, 798

Visual Basic 2012

applying breakpoints/trace points,
184-187

Autos window, 192
Call Stack window, 188-189
Command window, 187-188
debugging, 179-180
inspecting objects, 192-193
Just My Code debugging, 182-184
Locals window, 187
Mixed Mode debugging, 182
Threads window, 191-192
tools for debugging, 180-192
Watch windows, 189-191

Visual Studio 2012, 11. See also Visual
Studio 2010

Visual Studio 2012 Express for Web, 932
web, deploying, 887-888
Windows Azure, 929
creating demo projects, 933-944
deploying, 944-952
Management Portal, 949-952
overview of, 929-931
registering the Developer Portal, 931
testing, 942-944
Windows Phone, 955
ApplicationBar class, 982
customizing, 985-987
debugging, 963-964
executing, 984-985
launchers, 967-720
local data storage, 980-981
overview of, 955-956
pages, 963-966
panorama controls, 974-980
Pictures Hub, 982-984
programming models, 958-959
starting, 963-964
submitting to Marketplace, 987-989
tools, 957-958
Visual Basic 2012, 959-985
WPF
Application object, 719-721
architecture, 696-697
arranging controls with panels, 709-716

applying 1365

Browser Applications, 721-724
contra variance, 536

controls, 725. See also controls
creating, 693

handling events, 706-709

Logical Tree/Visual Tree, 704-705
managing windows, 716-719
overview of, 694-695

Visual Studio 2012, 697-699
XAML, 699-704

Application Shortcuts group (InstallShield),
1238-1239

Application state, 861
Application tab (My Project), 34-39
applying
annotations, 805
arrays, 148-155
Async pattern, 1111
attributes, 1181-1187
Biginteger, 102-103
BitmapCacheBrush, 769-771
breakpoints, 184-187
brush properties, 758
CaretBrush, 765-767
ClickOnce, 1246-1247
Code Contracts, 1350-1355
code editor, 24-27
Code First approach, 657-668
collections
generics, 403-412
nongeneric, 394-403
ColorAnimation, 786-788
CoM
objects, 1192-1196
P/Invoke, 1200
combinators, 1129-1131
constants, 175-176
cookies, 863
CopyToDataTable method, 624-626
Createlnstance, 154
CSS, 856
dates, 137-143
DoubleAnimation, 783-785
DrawingBrush, 768
EDMs, 630-643

How can we make this index more useful? Email us at indexes@samspublishing.com

1366 applying

embedded expressions, 682-685
enumerations, 315
Expression Blend, 775
fields, 227
Finalize method, 271-272
fundamental types, 125-155
GUIDs, 147-148
highlights, 805
ImageBrush, 762-765
inheritance, 324-327
initializers, objects, 558-559
iterations, 166-170
iterators, LINQ, 562-565
LinearGradientBrush, 760-761
logs, SQL, 613
loops, 95-172
multiple transforms, 782
My.Application property, 478-482
My namespace, 506-510
My Project, 33-39
Object Browser tool, 394
projects, Visual Studio 2010, 16-27
query interceptors, 1030-1033
RadialGradientBrush, 762
reference types, 103-106
reserved words as keywords, 72
SelectionBrush, 765-767
SolidColorBrush, 759-760
streams

memory, 466

strings, 467
strings, 125-137
structures, 305-308
tasks, parallel computing, 1072-1080
time, 143-144
trace listeners, 196-202
value types, 92-103
VisualBrush, 767-768

Visual Studio 2012 Express for Web, 932

With..End With statements, 176-177

architecture

collections, 394
CPUs, 44

interoperability between COM/.NET, 86

LINQ, 554

.NET Framework, 2-3

WPF, 696-697
archives (Zip)

support, 8

Visual Basic 2012, 472-474
AreEqual method, 1341
AreNotEqual method, 1341
AreSame method, 1341
ArgumentException, 359, 459, 614

ArgumentNullException, 218-219, 223,

459, 615
arguments
command-line, retrieving, 482
empty strings, passing, 221
lambda expressions, 518
methods, 237-242, 351
nullable, 241
ParamArray, 239-240
stringToPrint, 238
arithmetic operators, 155-157
ArrayList collection, 394-397
Array literals, 151, 515-516
arrays
applying, 148-155
collections, comparing, 148-149
copying, 152-155
formatting, 152-155
generics, 369-370
initializing, 150
inspecting, 152-155
iterators, 169
jagged, 151-152, 516
multidimensional, 151, 516
passing, 239
rules, 267
sorting, 152-155
support, 8
zero-based, 149
As clause, 96, 373, 525
AsDataView method, 623
AsEnumerable method, 517-519
AsNoTracking method, 654
AsParallel, invoking, 1097

ASP.NET, 6
Administration tool, 879
applications, 851
configuring security, 879-882
controls, 858-860

creating with Visual Basic 2012,
864-862

deploying, 883-884
handling events, 860-861
MSDeploy, 886-891
publishing, 883-885
state management, 861-864
web forms, 855-857

handlers in, 8

overview of, 851-855

page requests, 852

scalability, 852-853

templates, 854-855

assemblies, 3, 1143

application domains, 1145-1147

attributes, 1145, 1184

Base Addresses for, 47

BCL (GAC), 1223

Caller Information, 1177-1180

CLS, 264

COM, registering for interoperability, 1197

GAC, 84
installing/uninstalling, 1223-1224
signing with strong names, 1224-1226

inspecting, 1161

locations, 1144

metadata, 1158-1160

MsCorlib.dll, 6

My.Application property, retrieving

information, 478-479

.NET Framework, 4-5

overview of, 1143-1145

PlAs, 86-87

Portable Class Library, 441

references, 84

reflection, 1158. See also reflection
invoking dynamic code, 1169-1171
retrieving information from, 1160-1162
types, 1162-1169

sandboxed models, 1152-1154

asynchronous programming 1367

security models, 1148-1155
serialization, generating, 48
sharing, 853
signing, 1145
types, 1144
versions, 1144
Assembly Information dialog box, 77
Assembly Information window (My Project),
35-36
Assemblylnfo.vb file, 76-77
Assembly name field (My Project), 34
Assertion dialog box, 196
assertions, contracts, 1355
Assert method, 194
Asset class, methods, 1341
assigning
field inlines, 228
identifiers, 72
images to PictureBoxes, 499
scope, 234
structures to variables, 308
styles to buttons, 771
value types, 98-99
variables, 45
assignment operators, 157-158
associations, 593
assumptions, contracts, 1355
asynchronous calls, 1109
asynchronous programming, 466, 1103
APM, 1106-1107

Async pattern, 1107-1112, 1120-1122.
See also Async pattern

canceling, 1131-1134

exception handling, 1127
callbacks, 1116-1120
EAP, 1104-1106
event-based asynchrony, 1116-1120
input/output (1/0), 8
1/0 file operations (.NET 4.5), 1137-1141
lambda expressions, 1136-1137
overview of, 1104
requests, 853
synchronous approach to, 1112-1116
task-based asynchrony, 1127-1131

How can we make this index more useful? Email us at indexes@samspublishing.com

1368 Asynchronous Programming Model

Asynchronous Programming Model. See APM, StringLength, 664

1106-1107
Async pattern, 1107-1112

asynchronous programming, 1120-1122

canceling, 1131-1134
documentation, 1126
exception handling, 1127
progress, reporting, 1134-1136
attributes
AllowPartiallyTrustedCallers, 1154
applying, 1181-1184
assemblies, 1145
CallerMemberName, 1179
Changelnterceptor, 1032
CLSCompliant, 70, 336, 1182
code, 1181, 1184-1188
Column, 664
ComVisible, 1198
connectionString, 660
customizing, 428
Data Annotations, 664
DebuggerBrowsable, 202-203
DebuggerDisplay, 202-203
DebuggerStepperBoundary, 202-203
DebuggerTypeProxy, 202, 205
DebuggerVisualizer, 202
debugging, 202-206
DocumentProperties, 1187
Flags, 320
ForeignKey, 664
getting/setting, 456
inheritance, defining, 1187
Just My Code, 183
Key, 664
MaxLength, 664
MinLength, 664
parameters, types, 1185
Querylnterceptor, 1030
reflection, 1189-1190
Required, 650, 664
security, 1151
SecurityCritical, 1151
SecurityRules, 1151
SecuritySafeCritical, 1151
SecurityTransparent, 1151,
Serializable, 70, 1182

StructLayout, 310, 1203-1204
Table, 664
VBFixedString, 1205
Visual Basic 2012 projects, 69-70
WebGet, 1028
Weblnvoke, 1028
XmlIRoot, 1045
audio, 77
playing, 485
Audio property, 482, 485
Authenticode certificate, 1255
auto-completing code, 26
auto-generating
complex types/function imports, 657
contracts, 995-996
partial classes, 248
XAML code for details, 827
auto-implementing properties, 229-231
Autos window, 192
availability
Async patterns, 1111
For..Each, 168
of templates, 19-20
Average method, 519
avoiding

ambiguities with local variables, 228-229

boxing/unboxing, 115
awaiters, customizing, 1141
Await keyword, 1109

asynchronous programming, 1120-1122

Azure. See Windows Azure

B

Background property, 717
backgrounds

compilers, 43

images (Windows Phone), 986
BAML (Binary Application Markup

Language), 844

Barrier class, 1078-1080
Base Addresses for assemblies, 47
BaseClassDemo class, 340

base classes
contra variance, 536
members, accessing, 337-341
Base Class Library. See BCL
BasicHttpBinding, 1005
BasicHttpContextBinding, 1005
BCL (Base Class Library), 2, 5-6
assemblies (GAC), 1223
documentation, 55
generics, customizing types, 368
namespaces, 284
reference types, 105
Silverlight, 897
viewing, 57
BeginRead method, 464
BeginWrite method, 464
behavior
extension methods, 521
members, 29
Biginteger, applying, 102-103
Binary Application Markup Language.
See BAML, 844
binary files
reading, 465
writing, 465
BinaryFormatter class, 1036
binary numbers, 160-162
binary operators, invoking AsParallel, 1097
Binary Rewriter, 1351
BinarySearch method, 153
binary serialization, 1036-1038
binding. See also late binding, 45, 115, 1176
ABC properties, 992
assemblies, 1144
data-binding. See data-binding
WCF, 1005
Binding markup extension, 812-813
Bing, searching, 972
BingMapsDirectionsTask, 967
BingMapsTask, 967-969
BitArray collection, 401
bit flags, enumeration values as, 320
BitmapCacheBrush, 758, 769-771
Bitvector32 collection, 402-403
bitwise operators, 160-162

building 1369

Blob Storage, 930-931
blocks
catch, 45
Class..End Class, 348
conditional code, 172-175
If..Then..Else code, 172-173
Interface..End Interface, 348
Namespace..End Namespace, 284, 288
nested Try..Catch..Finally, 217-218
Structure..End Structure, 305
Try..Catch..Finally, 1127
handling exceptions, 209
iterators, 418-419
Boolean keyword, 95
Boolean user-level settings, 491
Boolean values, operators, 164
Border control, 727
BoundedCapacity property, 1091
boxing types, converting reference/value, 113
breakpoints
applications, 50-53
applying, 184-187
XAML, placing in, 926
Breakpoints window, 184
Browse command, 492
Browser Applications (WPF), 721-724
Browser for a Destination dialog box, 1238
brushes
properties, applying to, 758
WPF, 757-771
bubbling strategy, 708
bug fixes, return types, 515
build engines, 7
building
applications

.NET Framework, 2. See also .NET
Framework

Visual Studio 2012 Express for
Web, 932

CLS-compliant structures, 314
code snippets, 1281
InstallShield packages, 1244
MSBuild.exe, 40

packages, Visual Studio 2012 extensibility,
1289-1299

projects, Silverlight applications, 936-942

How can we make this index more useful? Email us at indexes@samspublishing.com

1370 build processes, viewing results

build processes, viewing results, 31
built-in extension methods, 519
BulletedList control, 859

Button controls, 728, 859

buttons, assigning styles, 771
ByRef keyword, 237-242

Byte keyword, 95

ByVal keyword, 237-242

C

caches
events, 856-857
GAC, 84, 1144, 1221
InstallShield, 1237
overview of, 1222-1227
troubleshooting DLLs, 1221-1222
Cache state, 862-863
CalculateDiscount method, 354
CalculatePerimeter method, 1349
calculating

arithmetic operators, 156. See also
arithmetic operators, 155-157

Code Metrics, 1309, 1315
Calendar control, 728-729, 859

callbacks, asynchronous programming,
1116-1120

Caller Information assemblies, 1177-1180
CallerMemberName attribute, 1179
calls
asynchronous, 1109
from COM objects WPF, 1196
methods, hierarchies, 60
synchronous, 1108
Win32 API calls, references to, 1206
Call Stack window, 188-189

cameras, capturing Silverlight applications, 904

canceling
Async pattern, 1131-1134
PLINQ queries, 870
tasks, 1077-1078

CancellationTokenSource class, 1077, 1134

Cancel property, 496

CanfFilter property, 832
CanGoBack property, 965
CanGoForward property, 965
CanGroup property, 832
CannotUnloadAppDomainException, 1147
CanRead method, 464
CanSeek method, 464
CanSort property, 832
CanUserAddRows property, 818
CanUserRemoveRows property, 818
CanUserReorderColumns property, 818
CanUserResizeColumns property, 818
CanUserResizeRows property, 818
CanUserSortColumns property, 818
Canvas panel, 714
CanWrite method, 464
Capacity property, 394
capturing cameras (Silverlight
applications), 904
CaretBrush, 758, 765-767
CAS (Code Access Security), 1148
migrating old CAS-based code, 1155
Cascade Style Sheets. See CSS, 856
case sensitivity
Select Case statements, 174-175
Visual Basic 2012, 72
XML comments, 1213
Cassini Web Server, 852
Cast method, 519
catch blocks, 45
catching
events, 383-385
exceptions, 217
COM, 1195
without variables, 223-224
Catch statement, 210
Category class, 592, 595
CBool function, 121
CByte function, 121
CChar function, 121
CDate function, 121
CDbl function, 121
certificates
ClickOnce, 1255
X.509, 926

ChangeConflictException, 616
ChangeExtension method, 454
Changelnterceptor attribute, 1032
change interceptors, 1032
Change Members Format command, 424
channels, RSS, 15
characters
LINQ queries, 552
literal type, 98
underscore (_), 70, 265, 355
Char keyword, 95
CheckBox control, 729-730, 859
CheckBoxList control, 859
CheckMailAddress method, 381
CIL (Common Intermediate Language), 5
Cint function, 121
Class..End Class statements, 225, 348
classes, 225
abstract, 336
CLS, 337
code, 427
implementing interfaces, 428
inheritance, 337
AdHost, 1194
AppDomain, 1146
Application, members, 720
ApplicationBar, Windows Phone applications
(apps), 982
ApplicationDeployment, 1257
Asset, methods, 1341
Barrier, 1078-1080
BaseClassDemo, 340
BCL, 2, 5-6
BinaryFormatter, 1036
CancellationTokenSource, 1077, 1134
Category, 592, 595
CLS, 263-267
CompositeType, 997
ConcurrentExclusiveSchedulerPair, 852
constructors, 252-259
Contacts, 358
contra variance, 536
control properties, 428
Culturelnfo, 842
CustomConverter, 839

classes 1371

DataContext, 600, 619
DataContractSerializer, 1050
DataServiceContext, 1026
DbContext, 638-640, 645
DbSet, 653
Debug, 194-195
declaring, 225-227
diagrams

adding, 431

files, 425
Document, 348, 352
Domain Service Class, adding, 913-916
DownloadStringCompletedEventArgs, 1106
DropCreateDatabaselfModelChanges, 665
fields, 227-229
File, 461
FileStream, 68
generating, 437
generics, defining, 370
ILGenerator, 1175
inheritance, preventing, 335
interfaces, defining, 348
Iterator, implementing, 419-422
LastNameChangedEventArgs, 388
libraries, 226
LINQ to SQL, 589-599
mapping, 1335
methods

executing actions with, 235-247

partial methods, 251-252
modules, comparing, 303
Monitor, synchronization, 1065
namespaces, 284
NavigationService, 965
nested, 226-227, 348
NestedClass, 227
NetworkStream, 474
ObjectContext, 916
ObservableCollectionHelper, 503
Page, 856
Parallel, 1071
ParallelEnumerable, 1097
parallelism, 1071
ParallelLoopState, 1085
ParallelOptions, 1071

How can we make this index more useful? Email us at indexes@samspublishing.com

1372 classes

partial, 248-251

portable, creating, 440-451
Portable Class Libraries, 7, 440-451
ProcessStartinfo, 1058
properties, 229-234

proxy, WCF, 1002

reference types, 90, 103-106
requirements for COM exposure, 1197
ResourceManager, 80, 500
ResurrectDemo, 279

rules, 266

scope, 234-235

shared members, 259-263
SoapFormatter, 1039
SqglCommand, 541

Stream, methods, 1138
StreamWriter, 464

Style, 771

support, 301

System.Array, 105, 152-155
System.Attribute, 69
System.Boolean, 95
System.Byte, 95

System.Char, 95
System.Collections, 394
System.Convert, methods, 123
System.DateTime, 95, 139
System.Decimal, 95
System.Delegate, 380
System.Diagnostics.Process, 1058
System.Double, 95

System.Enum, applying methods from,
316-319

System.l0.Path, 454-455
System.l0.Stream, 105, 464
System.Math, 157
System.Numerics.Biglnteger, 95
System.Object, 90, 105
inheritance, 325-329
methods, 92
naming, 91
WPF, 696
System.SByte, 95
System.SerializableAttribute, 70
System.Single, 95
System.String, 105, 126
System.Threading.ThreadPool, 1062
System.TimeSpan, 95, 142
System.TimeZone, 95
System.Unt16, 95
System.Unt32, 95
System.Unt64, 95
System.ValueType, 91-92
System.Windows.ContentElement, 57
TaskFactory, 1071
TaskScheduler, 1071
Test, 227
TextRange, 807
Trace, 195
Visual Basic 2012 projects, 64
Visual Studio Class Designer, 424-432
Window, 928
XamlServices, 1048
XDocument, members, 674
XmlSerialization, 1043
XmlSerializer, 48

System.Exception, 105, 209, 214-216, 344
System.GC, 270
System.Guid, 95
System.Int16, 95

XmlIWriterTracelListener, 196-197
XpsDocument, 808

Class Library, 226

Class View window, 432-433

System.Int32, 95 clauses
System.Int64, 95 As, 96, 373, 525
System.IntPtr, 95 Into, 570
System.l0.Directory, 455-458 AddressOf, 381
System.l0.Directorylnfo, 458-459 Aggregate, 570
System.l0.Drivelnfo, 459 Handles, 385
System.lO.File, 293, 460-461 OrderBy, 916

System.l0.FileInfo, 462-463

Clear method, 396, 404, 410, 484
ClickOnce, 1229
accessing, 1257-1258
applications
applying, 1246-1247
deploying, 1247-1251
overview of, 1246
certificates, 1255
configuring, 1251-1255
overview of, 1245-1247
Registration-Free COM, 1258-1259
security, 1255
updating, 1252-1253
ClientBin, 899
clients
applications
ClickOnce, 1247
creating, 1022-1027
exception handling, 220
formatting, 1002
instances, 606
validating, 1004
WCF, configuring, 1004
Clipboard property, 482
Clone method, 117, 352, 374
clones, searching code, 1310, 1317-1319
Close method, 194, 464
CloudBerry Explorer for Windows Azure, 932
cloud services
settings, 946

Windows Azure, 930. See also Windows
Azure

Cloud Storage Studio (Cerebrata), 932
CLR (Common Language Runtime), 2-5, 1191
assemblies, 1144-1147
deferred execution, 565-568
exceptions, 207
Finalize method, 272
finalizers, 110
LINQ, 552
LINQ to SQL, 588
managed code, writing, 4
metadata, 1158
namespaces, 284
objects, invoking destructors, 270

code 1373

POCO, 640
programming languages, 7

Stack, comparing reference types/value
types, 106-108

structures, allocating memory, 309
value types, 92
WPF, 696

CLS (Common Language Specification), 72,

263-267
abstract classes, 337
assemblies, 264
Assemblylnfo.vb file, 77
Code Analysis, 1310
enumerations, 320-321
inheritance, 327
interfaces, 354-355
namespaces, 295
naming conventions, 264-266
rules
arrays, 267
classes, 266
methods, 267
properties, 267
structures, 314
types, 264

CLSCompliant attribute, 70, 336, 1182
CObj function, 121
code. See also languages; programming

abstract classes, 427
analysis, 264
attributes, 1181
applying, 1181-1184
customizing, 1184-1188
reflection, 1189-1190
auto-complete, 26
clones, searching, 1310, 1317-1319
CcoM
components, 87
objects, 1195
compiling, 5
components, applying in code, 87
conditional code blocks, 172-175

documentation, 1207. See also XML
comments

How can we make this index more useful? Email us at indexes@samspublishing.com

1374 code

dynamic
creating at runtime, 1147
invoking, 1169-1171
editors
creating projects, 24
extending, 1304-1307
placing breakpoints in, 51
extension methods, customizing, 521-523
files
Visual Basic 2012 projects, 72-83
Visual Studio 2012 packages, 1293
Imports directives, positioning, 293
iterators, benefits of, 415-417
lambda expressions, 528
LINQ, examples, 551-552
LocBaml, 844-845
managed, writing, 4
MediaElement control, 797
Microsoft code analysis rules, 1311
models, Code First approach, 659-660
MSBuild.exe, localization, 847
MSDN Code Gallery, 1303
old CAS-based code, migrating from, 1155
on-the-fly, compiling, 1297
opposed, 1175
refactoring, 1349
resources, accessing by name, 500
reusing, 368
samples, searching, 21
shippets
deploying, 1300
reusing, 1275-1283
SQL, database objects, 655

System.Reflection.Emit namespace,
11711177

testing, 1337
applying Code Contracts, 1350-1355
TDD, 1344-1349
unit tests, 1337-1344
tools, Visual Basic 2012, 1358
unmanaged
COM, 1199
writing, 4

Visual Basic 2012
debugging, 179-180
debugging in, 193-206

XAML, 700

zooming, 25

Code Access Security. See CAS, 1148, 1155

Code Analysis, 1309, 1310-1315. See also
analyzing

codebases, assemblies, 1144

Code Clone Detection, 1310, 1317-1319

Code Contracts, applying, 1350-1355

Code Coverage, enabling, 1343

code editors, applying, 24-27

Code First approach, 630, 657

Data Annotations, 663-665

databases, generating, 660-663

migrating, 665

WCF Data Services, 1016

Code Gallery, 21
Code Metrics, 1309, 1315
Result tool window, 1317
CodePlex, 6, 932
CodeRush Xpress, 1358
Code Snippet Editor, 1358
Code Snippet Manager, 1278
code tag (XML comments), 1214
coercion, 244
CollectionChanged event, 816
collections, 393

architecture, 394

ArrayList, 394-397

arrays, comparing, 148-149

BitArray, 401

Bitvector32, 402-403

concurrent, 413

customizing, 413

debugging, 405

Dictionary (Of TKey, TValue), 407

generics
applying, 403-412
optimizing, 395
serialization, 1049

HashTable, 398-399

HybridDictionary, 400

initializers, 405-406

in-memory, querying, 558

iterators, 169, 415. See also iterators
LinkedList (Of T), 410-412

List (Of T), 403-405

ListDictionary, 399
NameValueCollection, 401
nongeneric, 394-403, 406

ObservableCollection (Of T), 408-410,
814-818

OrderedDictionary, 399
parallel computing, 1087-1092
Queue, 397-398
Queue (Of T), 412
ReadOnlyCollection (Of T), 406-407
SortedDictionary (Of TKey, TValue), 408
SortedList, 400
Stack, 398
Stack (Of T), 412
StringCollection, 400
StringDictionary, 400
CollectionViewSource objects, 830
Collect method, 279
ColorAnimation, 786-788, 905
colors
Microsoft Design Style, 11
Start Page, 12
Color Theme drop-down box, 14
Color Theme Editor (Visual Studio 2012), 14
Column attribute, 664
ColumnGap property, 803
columns
adding, 710
design, 823
foreign keys, support, 633
tabular data forms, formatting, 819-825
COM (Component Object Model), 1191

assemblies, registering for
interoperability, 1197

Automation, 926

components, applying in code, 87
exceptions, catching, 1195
libraries, adding references, 85-86

Command Window 1375

objects
applying, 1192-1196
exposing, 1197-1199
P/Invoke, 1200

converting types to unmanaged,
1202-1203

encapsulating, 1201-1202
handling exceptions, 1205-1206

Registration-Free (ClickOnce), 1258-1259

unmanaged code, 1199

Win32 API calls, references to, 1206
combinators, 1129-1131
combining delegates, 382-383
ComboBox control, 730-732
command-line

arguments, retrieving, 482

tools, 7
commands. See also functions

Add, 424

Add Reference, 84

Adjust Shapes Width, 424

Browse, 492

Change Members Format, 424

customizing, 1268-1270

Export Diagram as Image, 424

Generate Database from Model, 657

Generate Other, 434

Go to Definition, 58

Group Members, 424

Hit Count, 185

Insert breakpoint, 51

Install ApplicationName onto This
Computer, 924

Layout Diagram, 424
New Event Handler, 706
New Item, 30
Run to Cursor, 181
Settings, 433
Show Data Sources, 917
Step Into, 181
Step Out, 181
Step Over, 181
When Hit, 186
Zoom, 424

Command window, 187-188

How can we make this index more useful? Email us at indexes@samspublishing.com

1376 comments

comments

Data Annotations, Code First approach,
663-665

resources, 80
XML, 1207
generating Help files, 1220
implementing, 1210-1219
overview of, 1208-1209
common dialogs, WPF, 754-755
Common Intermediate Language. See CIL, 5
Common Language Runtime. See CLR
Common Language Specification. See CLS
Common Type System, 89-93
objects, 90
reference types, 90-93
value types, 90-93
Compare method, 127
comparing
arrays/collections, 148-149
classes/modules, 303
reference types/value types, 106-111
strings, 126-128
comparison operators, 163-165
compatibility
Entity Framework (ADO.NET), 668-669
Windows Forms, 75
compilers, backgrounds, 43
compiling, 5
constants, 47-48
Help files, generating, 1220
multicore JIT compilation, 853
namespaces, 6
on-the-fly code, 1297
options, 41-44
Output window, 33
projects, 39-48
types, local type inference, 512
Visual Basic Compiler (vbc.exe), 2
complex objects, generating, 437-439
complex types, auto-generating, 657
compliance, CLS, 264. See also CLS
Component Object Model. See COM
components
COM, importing, 1192-1194
Windows Media Player, 86-87

CompositeType class, 997
compressing data with streams, 467-474
Compute Emulator, 943
ComVisible attribute, 1198
concatenating
concatenation operators, 163, 583
strings, 136-137
Concat method, 519

Conceptual Schema Definition Language.
See CSDL, 634

concurrency
concurrent collections, 413, 1087-1092
concurrent operations, managing, 1129
handling, 648-650
optimistic, 616

ConcurrentBag (Of T), 1087

ConcurrentDictionary (Of TKey, TValue),
1090-1092

ConcurrentExclusiveSchedulerPair class, 852
ConcurrentQueue (Of T), 1089
ConcurrentStack (Of T), 1089
conditional code blocks, 172-175

conditional exception handling, 222. See also
exceptions

conditioning
attribute inheritance, 1188
inheritance, 334-337
conditions
contracts
post-conditions, 1353-1354
preconditions, 1352-1353
debugging, 187
warnings, 45
configuration files
listener settings, 200-202
naming, 493-495
Configuration Manager, 42
configuring
Advanced Compiler Settings window, 46
ClickOnce, 1251-1255
clients, WCF, 1004
Code Analysis, 1312
contracts, properties, 1350-1351
Data Source Configuration Wizard, 544
Debug configuration, 49

contracts 1377

Debug configuration (Visual Studio constraints
2012), 40-43 generics, 372-374
Domain Service Class, 913 methods, 373
IIS servers, 994 multiple, 374
InstallShield, 1229. See also InstallShield New keyword, 373
item properties, 31 types, 373
MSDeploy, 889-888 constructors, 252-259
out-of-browser, enabling, 923 defaults, viewing, 253
project-level default Imports directives, 294 inheritance, 341-342
Release configuration (Visual Studio 2012), modules, 303
40-43 overloading, 255-257
roles, 881 private, 257
security, ASP.NET applications, 879-882 types, comparing reference
settings, 490 types/value, 110
toolbars, 1271 consuming
UAC, 36-39 code snippets, 1276-1277
users, 881, 1271-1273 Data Services, 1022-1027
View Windows Settings (My Project), 36-39 generics, 370-375
Visual Studio 2012 projects, 1289-1299 WCF services, 1001-1007
warnings, 44-46 Contacts class, 358
WCF Service Configuration Editor, Contains method, 396, 410, 519
1009-1010

ContainsAudio method, 484
ContainsData method, 484
ContainsFileDropList method, 484
Containslmage method, 484

Windows Azure subscriptions, 944

conflicts, avoiding with different
namespaces, 287

connecting .
ADO.NET, 541 ConttalrtlsText rgetf;od, gii
EDMs, 632 T

ContentFrame_Navigated event handlers, 910
Content property, 726
context, objects, 645
Context state, 579
continuation
implicit line, 552, 1182
LINQ, 559-561
contracts
ABC properties, 992
auto-generating, 995-996
Code Contracts, applying, 1350-1355
customizing, 997-1001
events, 1355
invariants, 1354
post-conditions, 1353-1354
preconditions, 1352-1353
properties, configuring, 1350-1351
WCF, 993

LINQ to DataSets, 622

LINQ to SQL, 618

strings, writing, 619
ConnectionSettingsTask, 967, 970
connectionString attribute, 660
Console

Application project template, 22

applications, 24

Entity Framework 5, 658

LINQ to DataSets, 622

value types, applying, 96
ConsoleTracelListener, 196, 200
Console.Writeline statement, 181, 186
constants, 175-176

compiling, 47-48

customizing, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

1378 contra variance

contra variance, 536-537. See also ListBox, 859
covariance, 535 managing, 702
controls MediaElement, 795, 900
adding, 870-873 MultiView, 859
AdRotator, 859 navigation, adding, 874
Ajax, 854 Panel, 859

ASP.NET, 858-860
BulletedList, 859

Button, 859

Calendar, 859

CheckBox, 859
CheckBoxList, 859
data-binding, WCF RIA Services, 916-919
DataGrid, data-binding, 814-818
DatalList, 859

DataPager, 919

DetailsView, 859
DocumentViewer, 808
DomainDataSource, 919-921
DropDownlList, 859
FileUpload, 859
FlowDocumentReader, 799, 802
GridView, 859

HiddenField, 859

HTML, 858-860

HtmlAnchor, 858
HtmIButton, 858

HtmlIForm, 858
HtmlGenericControl, 858
HtmllnputButton, 858
HtmllinputCheckBox, 858
HtmllnputFile, 858
HtmlinputHidden, 858
Htmllinputimage, 858
HtmllinputRadioButton, 858
HtmlinputText, 858
HtmITable, 858
HtmITableCell, 858
HtmlITableRow, 858
HtmITextArea, 858
HyperLink, 859

Image, 793-795, 858-859
ImageButton, 859
ImageMap, 859

Label, 859

LinkButton, 859

panels, managing, 709-716
PictureBox, 499
PivotViewer, filtering data with, 920-923
properties, binding, 813
RadioButton, 859
RadioButtonList, 859
RangeValidator, 859
RequiredFieldValidator, 859
resizing, 711
RichTextBox, 806-808
servers, 858
Silverlight applications, 726, 897-900
strongly typed data, 875-862
Substitution, 859
Table, 859
TextBox, 812, 857-859
View, 859
VirtualizingStackPanel, 714
WindowsFormsHost, 1196
Wizard, 859
WPF, 725
Border, 727
Button, 728
Calendar, 728-729
CheckBox, 729-730
ComboBox, 730-732
ContentControl, 726-727
DataGrid, 731
DatePicker, 733
DocumentViewer, 733
Expander, 734
features, 725-726
Frame, 734-735
GroupBox, 735
Image, 736
Label, 736
ListBox, 736
ListView, 738
MediaElement, 739

Menu, 740
PasswordBox, 741
ProgressBar, 743
RadioButton, 744
Rectangle, 745
ScrollViewer, 746
Separator, 746
StatusBar, 747
TabControl, 748
templates, 775-778
TextBlock, 749
TextBox, 750
ToolBar, 750
TreeView, 751
WebBrowser, 735, 753
WindowsFormsHost, 753
XAML, adding, 701
Xml, 859
conventions
Code First, 663
CType, 314
naming, 8
CLS, 264-266
Code Analysis, 1314
exceptions, 209, 345
identifiers, 72
interfaces, 355
value types, 94
Pascal, 355
conversion operators, 120-125, 572-574
widening/narrowing, 120-125
Converter property, 840
converting
dates to strings, 138-139

between decimal and binary numbers,
160-162

implicit conversions, 45

IValueConverter interfaces, implementing,
between reference types/value types,
111-119

types to unmanaged code, 1202-1203

values, 835-840
ConvertTimeBySystemZoneld method, 147
cookies, applying, 863

Custom Event keywords combination 1379

copying
arrays, 152-155
objects with serialization, 1038
strings, 131
CopyToAsync method, 1138
CopyToDataTable method, applying, 624-626
CopyTo method, 396, 410
Counter property, 343
Count method, 307, 396, 519
Count property, 410
covariance, 535

CPUs (central processing units),
architecture, 44

Create Directory for Solution check box, 18
Createlnstance, applying, 154

create/read/update/delete. See CRUD,
913, 1014

cref tag (XML comments), 1214
CRUD (create/read/update/delete), 913, 1014
CSByte function, 121

CSDL (Conceptual Schema Definition
Language), 634

CShort function, 121

CSng function, 121

CSS (Cascade Style Sheets), 856

CStr function, 121

c tag (XML comments), 1214

.ctor method, 216

CType, 112, 117, 123-125
overloading, 312-314

CUInt function, 121

CULong function, 121

Culturelnfo class, 842

Culture property, 479

cultures, My.Application property, 479-480

Current property, 720

CurrentCell property, 818

CurrentDeployment property, 1257

Currentltem property, 832

CurrentPhaseNumber property, 1080

CurrentPosition property, 832

CurrentPrincipal method, 500

CUShort function, 121

CustomConverter class, 839

Custom Event keywords combination, 389

How can we make this index more useful? Email us at indexes@samspublishing.com

1380 customizing

customizing D
applications (Windows Phone), 985-987
attributes, 428 Dark theme (Visual Studio 2012), 14
awaiters, implementing, 1141 Data Annotations, Code First approach,
code attributes, 1184-1188 663-665
collections, 413 Database First, 657
commands, 1268-1270 databases. See also LINQ
compiling, 43-44 ADO.NET, overview of, 540-543
configurations, 42-43 Code First approach, generating, 660-663
constants, 48 connecting, 541-543
contracts, 997-1001 data sources, adding, 912-913
dates, formatting, 138 EDMs, formatting from existing, 631
Debug configurations, 41 LINQ, 550. See also LINQ
debugger visualizers, 193 LINQ to DataSets, 622
events, 389-391 LINQ to SQL, accessing, 589
exceptions, inheritance, 344-346 objects, adding, 655
extensions products, saving, 607
libraries, testing, 524 schemes, modifying, 664-665
methods, 521-523 SQL Server 2012 (Local DB), 882
formats (symbols), 130 data-binding, 811
generic types, 368 ASP.NET applications, creating with Visual
InstallShield, 1244 Basic 2012, 864-862
IntelliTrace, 1329 controls, WCF RIA Services, 916-919
item templates, 1264 drag'n'drop, 818-840
object serialization, 1040-1042 modes, 813
operators, structures, 310-314 overview of, 811-818
out-of-browser applications, 924 strings, formatting, 835-840
prerequisites, 1252 values, converting, 835-840
properties, deploying packages, 1301 views, 830-835
Release configurations, 41 Visual Basic 2012, 814
RSS Feeds news channel, 14 data centers, 929
serialization, 1045-1048 DataContext class, 600, 619
tasks, scheduling, 1070 DataContext.Log property, 613
templates, 519 DataContract, 993
text, 898 DataContractSerializer class, 1050
themes, 14 data controls, adding, 870-873
toolbars, 1268-1270 DataGrid control, 731, 814-818
toolboxes, 1275 Datalist control, 859
types data models, adding, 868
exposing, 232 data operations, executing, 660-663
local type inference, 513 DataPager control, 919
selecting, 111 Data property, 214
validations, 614-616 data providers, ADO.NET, 540-541
value types, 103 DataServiceContext class, 1026

Visual Studio 2012, 1267-1270, 1289-1299
XML serialization, 1044-1045

DataServiceException, 1031
Data Services (WCF)
consuming, 1022-1027
1IS, deploying, 1021
implementing, 1013, 1016-1021
overview of, 1013-1015
querying data, 1026
query interceptors, applying, 1030-1033
server-driving paging, 1033-1034
DataSets, 539
data-binding to, 834
formatting, 543-547
LINQ to, 621
extension methods, 624-627
queries, 621-624
overview of, 543-547
Data Source Configuration Wizard, 544
data sources
adding (Silverlight applications), 912-913
Show Data Sources command, 917
Data Source window, 820
data types, 89
arrays, applying, 148-155
Common Type System, 89-93
conditional code blocks, 172-175
constants, 175-176

converting between reference types/value,
111-119

dates, applying, 137-143

extension methods, 517-524

fundamental types, 125-155

GUIDs, applying, 147-148

iterations, 166-170

loops, 95-172

objects, 90

operators, 155-165
arithmetic, 155-157
assignment, 157-158
bitwise, 160-162
comparison, 163-165
concatenation, 163
logical, 158-159
shift, 162-163
short-circuiting, 159-160

debugging 1381

reference types, 90-93
applying, 103-106
primitive, 105-106
time, applying, 143-144
TimeZone, 144-147
TimeZonelnfo, 144-147
value types, 90-93
applying, 92-103
conversion operators, 120-125
customizing, 103

differences between reference
types/value types, 106-111

methods, 100-101
.NET Framework, 93-94
optimizing, 101
With..End With statements, 176-177
data validations, customizing, 614-616
DatePicker control, 733
dates
applying, 137-143
formatting, 139-142
strings, converting to, 138-139
subtracting, 142-143
DbContext class, 638-640
instantiating, 645
dbentityvalidationexception, 651
DbSet class, 653
DbUpdateConcurrencyException, 649
Deactivated event, 509
deallocating memory, 110. See also allocating
Debug class, 194-195
Debug configuration, 40-43, 49
DebuggerBrowsable attribute, 202-203
DebuggerDisplay attribute, 202-203
DebuggerHidden attribute, 183
DebuggerNonUserCode attribute, 183
DebuggerStepperBoundary attribute, 202-203
DebuggerStepThrough attribute, 183
DebuggerTypeProxy attribute, 202, 205
DebuggerVisualizer attribute, 202
debugging
applications
breakpoints, 50-53
Visual Basic 2012, 50

How can we make this index more useful? Email us at indexes@samspublishing.com

1382 debugging

attributes, 202-206
collections, 405
debug information, generating, 47
Edit and Continue feature, 54-55
IntelliTrace, 1310, 1328-1334
Output window, 33
processes, 180-182
runtime errors, 53-54
tasks, 1086
Visual Basic 2012, 179
applying breakpoints/trace points,
184-187
Autos window, 192
Call Stack window, 188-189
in code, 193-206
Command window, 187-188
inspecting objects, 192-193
Just My Code debugging, 182-184
Locals window, 187
Mixed Mode debugging, 182
preparing examples for, 179-180
Threads window, 191-192
tools, 180-192
Watch windows, 189-191
Visual Studio 2010, 48-55
Windows Phone applications, 963-964
XAML (Silverlight applications), 926-927
Debug menu (Visual Studio 2012), 181
Decimal keyword, 95
decimal numbers, converting, 160-162
declarative mode, XAML, 703
declaring
anonymous types, 524
classes, 225-227
constants, 176
controls, 726
delegates, 380-382
events, 386
instances, LINQ to SQL, 600
interfaces, media players, 796
objects, WithEvents keyword, 384-385
properties, 64
reference types, 110
structures, 65, 306
variables, storing value types, 96

decompressing streams, 468
deep copy
serialization, 1038

types, converting between reference/value,
115-118

Default.Aspx pages, replacing, 950
default constructors, viewing, 253
DefaultifEmpty method, 519
Default keyword, 233
Default mode, 813
default properties, 233-234
DefaultTracelistener, 196
default types, selecting, 493
default values
for optional arguments, 241
thread pools, 1063
deferred execution, LINQ, 565-568
defining
complex code documentation, 1212-1213
default properties, 233
generics, 370
inheritance, 1187
interfaces, 347-348
media players, 796
multiple modules, 302
resources, 77
settings, 492
Settings property, 83
styles, 771
views
models, 446
Silverlight applications, 449
WPF, 448
DeflateStream object, 467
Delegate keyword, 380
delegates, 379
combining, 382-383
declaring, 380-382
generating, 437
generics, defining, 370
namespaces, 284
overview of, 379-383
ParameterizedThreadStart, 1061
relaxed, 526

Delete method, 457
DeleteObject method, 1025
delete operations
databases, 542
DataSets, 547
Entity Framework (ADO.NET), 647-648
LINQ to SQL, 609
deleting
directories, 457
integer overflow checks, 47
toolbars, 1270
DelimitedListTraceListener, 196-197

demo projects, creating (Windows Azure),
933-944

Dependency Graphs, generating, 1334-1335
deploying

1-Click deployment, 884

add-ins, 1300

applications
Windows Azure, 944-952
without PIAs, 86-87

ASP.NET applications, 883-884

ClickOnce, 1229
accessing, 1257-1258
applications, 1247-1251
configuring, 1251-1255
overview of, 1245-1247
Registration-Free COM, 1258-1259
security, 1255
updating, 1252-1253

code snippets, 1300

InstallShield. See also InstallShield
overview, 1231
packages, 1244

MSDeploy, 884-891

My.Application property, 480-482

portable libraries, 451

Silverlight applications, 899

Visual Studio 2012 extensibility, 1299-1302

WCF Data Services to 1IS, 1021

web applications, 887-888

Windows Azure, viewing status, 947

Windows Installer, 1230

XBAP, 724

XCopy deployment, 1144, 1222

Device Emulator 1383

Deployment Label (Windows Azure), 947
Deploy Without PIAs feature, enabling, 88
Dequeue method, 398
deriving

classes, Visual Studio Class Designer,

429-431

members, overriding, 334
Descendants method, 675
deserialization

binary files, 1036

events, 1047
design

ClickOnce, 1251-1255

Code Analysis, 1312

columns, 823

DataSets, 544

EDMs, 640

Installation Requirements (InstallShield),
1234

LINQ to SQL, 590
Microsoft Design Style, 11-12
Resources Designer, 497
settings, 490
templates, customizing, 519
tools
adding columns, 710
XAML, 699
Visual Studio Class Designer, 424-432
XML schemas, 689
desktop applications (apps), 8
Transparency Level 2, 1151
destructors
Finalize method, 271-272
implementing, 275
invoking, 270
DetailsView control, 859

Developer Center (Windows Phone),
accessing, 987
Developer Portal (Windows Azure),
registering, 931
development
TDD, 1344-1349
Windows 8 (WPF), 695
Windows Phone tools, 957-958
Device Emulator, 957

How can we make this index more useful? Email us at indexes@samspublishing.com

1384 diagnostics (Visual Basic 2012 tools)

diagnostics (Visual Basic 2012 tools), 1359.
See also troubleshooting

diagrams
classes
adding, 431
files, 425
exporting, 432
formatting, 431
dialog boxes
Add New Item, 589, 1267
Add Service Reference, 1002
Advanced Compile Options, 44
Assembly Information, 77
Assertion, 196
Browser for a Destination, 1238
common dialogs (WPF), 754-755
Export Diagram as Image, 424, 432
Extension and Updates, 1302
External Tools, 1268
Generate New Type, 438, 1346
Infer XML Schema Set from XML, 687
Manage NuGet Packages, 658
New Interface, 425
New Project, 21, 854, 1263
Options, 513
Prerequisites, 1252
Publish Web, 887
Reference Manager, 84-85, 936
Visual Studio Output Selector, 1236
Dictionary (Of TKey, TValue) collection, 407
Dim keyword, 308
DirectCast, 123-125
directives
Imports, 17
adding, 286
multithreading, 1060
namespaces, 292-295
System.Globalization, 843
Visual Basic 2012 projects, 68-69
Option Infer, 513
Region (Visual Basic 2012 projects), 69
directories
deleting, 457
exceptions, handling, 459

modifying, 453-459
System.l0.Directory class, 455-458
System.l0.Directorylnfo class, 458-459
DirectoryNotFoundException, 459
direct routing strategy, 708
DirectX (WPF), 696
disabling
Just My Code, 183, 1078
warnings, 44
disconnected modes (ADO.NET), 541
Dispatcher property, 720
DispatcherUnhandledException, 509
Dispose interface, implementing, 273-278
Dispose method, 271, 275-276, 347, 404
Distinct method, 519
Divide method, 533
division (/) operator, 155, 313
DLLs (dynamic link libraries), 2
Base Addresses for assemblies, 47
Interop.AssemblyName.dll, 86
Interop.WMPLib.dIl, 87
Microsoft Core Library (MsCorlib.dll), 6
System.ServiceModel.dll, 6
troubleshooting, 1221-1222
WMPLIib.dIl, 86
DoCancel method, 873
docking tool windows, 27
DockPanel panel, 714
documentation
Async pattern, 1126
code, 1207. See also XML comments
external files, 1217-1218
.NET Framework, 55-59
permission requirements, 1219
Visual Basic 2012, 55-59
Document class, 348, 352
Document Outline window, 704
DocumentProperties attribute, 1187
documents
flow
implementing, 799
viewing, 803

modifying, 799-808

RichTextBox control, 806-808

spell check, implementing, 808

WPF, 793

XML, formatting, 672

XPS, viewing, 808-809
Document Type Definition. See DTD, 672
DocumentViewer control, 733, 808
Do..Loops, 170-171
DomainDataSource control, 919-921
domains

applications, assemblies, 1145-1147

Domain Service Class, adding, 913-916
DoSomething method, 229
DoubleAnimation, 783-785, 905
Double keyword, 95
DownloadFile method, 487
downloading

InstallShield, 1231

IronPython, 6

subscriptions (Windows Azure), 945

templates, 19

Visual Studio 2012 tools (Windows Azure),

931-932

DownloadStringCompletedEventArgs
class, 1106

DownloadString method, 1115
drag'n'drop data-binding, 818-840
Silverlight applications, 916-919
DrawingBrush, 758, 768
drives
System.l0.Drivelnfo class, 459
Windows Azure, 931

DropCreateDatabaselfModelChanges
class, 665

DropDownlList control, 859
DTD (Document Type Definition), 672
duplicate catch blocks, 45
dynamic code
reflection, running, 1169-1171
runtime, creating at, 1147
dynamic link libraries. See DLLs
DynamicResource, 772

elements

E

EAP (Event-based Asynchronous Pattern),
1104-1106

early binding, 115
Edit and Continue feature, 54-55
Edit Breakpoints Labels window, 184
editing
breakpoints, 184
code, placing breakpoints in, 51
code editors
applying, 24-27
extending, 1304-1307

1385

Color Theme Editor (Visual Studio 2012), 14

localization, 848

root namespaces, 292

spell check, implementing, 808

strings, 106, 133-136

Visual Studio 2012 built-in image
editors, 498

WCF Service Configuration Editor,
1009-1010

XAML, 700. See also XAML
EDMs (Entity Data Models), 630
adding, 868
applying, 630-643
LINQ to SQL, exposing, 1001
mapping, 638-640, 1335
Navigation Properties, 640
Open Data Protocol (OData), 1015
queries with LINQ to Entities, 652-653
serialization, 1054
Silverlight applications, 912
viewing, 820
efficiency, optimizing structures, 310
ElementAt method, 519
ElementAtOrDefault method, 519
Element method, 674
ElementName property, 812
elements
angles, modifying, 780
Ellipse, 733
moving, 781
operators, 583-584

How can we make this index more useful? Email us at indexes@samspublishing.com

1386 elements

resizing, 780
rotating, 780
ul
adding to Silverlight applications, 897
animating, 905-908
Logical Tree, 704
XML comments, 1215-1217
elevated privileges (Visual Studio 2012), 933
Ellipse element, 733
EmailComposeTask, 967, 971
embedding expressions, applying, 682-685
Embed Interop Types property, 87
empty strings
checking for, 128
passing, 221

Empty Web Application template
(ASP.NET), 855

Enable Application Framework group
(My Project), 39
enabling
Code Coverage, 1343
Deploy Without PIAs feature, 88
InstallShield, 1231
Just My Code debugging, 183
media players, content reproduction, 901
optimization, 47
out-of-browser settings, 923
spell check, 808
tracing, 1010
View All Files, 638
Visual Studio Class Designer, 424-425
XML comments, 1209
encapsulating P/Invoke, 1201-1202
endpoints (WCF services), 992
EndRead method, 464
EndWrite method, 1107
entities
LINQ to SQL
delete operations, 609
insert operations, 605-608
update operations, 608-607
serialization, 1054
SQL, applying against, 617
EntityClient, 540
Entity Data Models. See EDMs

Entity Data Model Wizard, 630
Entity Framework (ADO.NET), 629
Code First approach, 657
compatibility, 668-669
delete operations, 647-648
downloading additions to, 658
EDMs, 630-643
LINQ to Entities queries, 652-653
SQL queries, 653-654
Fluent APIs, 665-668
insert operations, 646-647
instantiating, 645
modifying, 645-652
optimistic concurrency, handling, 648-650
overview of, 629-630
stored procedures, mapping, 654-657
update operations, 648
validating data, 650-652
enumerations, 305, 315-321
applying, 315
CLS, 320-321
generating, 437
namespaces, 284
RefreshMode members, 616

return methods, applying as from
methods, 319-320

System.Enum class, applying methods
from, 316-319

values as bit flags, 320
environments

instrumentation, debugging, 180-192

My.Application property, 480-482

variables, retrieving, 481
Environment tab, 14

Environment Variables element
(InstallShield), 1242

equality (=) operator, 126, 164, 313, 570
Equals method, 309, 314, 328
ErrorCode property, 1205
ErrorDialog property, 1058
Error Lists, 24
projects, compiling, 40
windows, navigating, 30-31

errors
Code Analysis, 1314
correction options, 112
FormatException, 100
handling, 207
messages, 30
Microsoft code analysis rules, 1313
runtime, debugging, 53-54
type conversion, 103
warnings, treating as, 44

evaluating expressions, 190

event, Navigated, 965

Event-based Asynchronous Pattern. See EAP,
1104-1106

event-based asynchrony, asynchronous
programming, 1116-1120

Event keyword, 386
EventLogTracelListener, 196
events, 379
Activated, 509
animations, 787-789
applications, 509-510
caches, 856-857
CollectionChanged, 816
contracts, 1355
customizing, 389-391
Deactivated, 509
deserialization, 1047
DispatcherUnhandledException, 509
Exit, 510
FragmentNavigation, 510
garbage collection, registering, 281
handling, 383-385
ASP.NET, 860-861

ContentFrame_Navigated event
handlers, 910

implementing, 385-389

Init, 856

IntelliTrace, 1331-1333

Load, 856

LoadCompleted, 510
MediaFailed, 798

My.Settings property, 495-496
Navigated, 510

Navigating, 510, 965
NavigationFailed, 510, 965

exceptions 1387

NavigationProcess, 510
NavigationStopped, 510, 965
NetworkAvailabilityChanged, 509
NonSerialized, 1042
pages, 856
passing, 387-389
postback, 856-857
PreRender, 856
ProgressChanged, 1106, 1134
PropertyChanged, 387, 495
registering, 383-384
routing, 707-708
serialization, 1047-1048
SessionEnding, 510
SettingChanging, 495
SettingsLoaded, 495
SettingsSaving, 495
ShutDown, 509
Silverlight applications, handling, 899
Startup, 509-510
StartupNextInstance, 509
TextChanged, 857
UnhandledException, 509
Windows Event Log, 199
WPF
applications, 706-709
handling, 694
EventSchemaTraceListener, 196
Event viewer, 199
examples
of LINQ, 551-552
Visual Basic 2012, debugging, 179-180
example tag (XML comments), 1214

Excel (Microsoft), exporting code metrics
to, 1317

exceptions
AggregateException, 1076
AppDomainUnloadedException, 1147
ArgumentException, 359, 459, 614

ArgumentNullException, 218-219, 223,
459, 615

CannotUnloadAppDomainException, 1147
ChangeConflictException, 616

COM, catching, 1195
DataServiceException, 1031

How can we make this index more useful? Email us at indexes@samspublishing.com

1388 exceptions

DbEntityValidationException, 651 variables, catching without, 223-224
DbUpdateConcurrencyException, 649 Visual Basic 6 migration, 209
directories, handling, 459 WCF, handling, 1007-1008
DirectoryNotFoundException, 459 exception tag (XML comments), 1214
DispatcherUnhandledException, 509 Except method, 519
FaultException, 1007-1008 executable (.EXE) files, profiling, 1327
FileNoteFound, 160, 209, 219 ExecuteAssembly method, 1146
FormatException, 100, 209 ExecuteCommand method, 617
handling, 207-224 Execute (Of T) method, 1026

Async pattern, 1127 ExecuteReader method, 543

files, 463 executing

parallel computing, 1075-1077 actions with methods, 235-247

P/Invoke, 1205-1206 applications
hierarchies, 212-213 debugging, 49
IndexOutOfRange, 153, 209, 626 managing, 4
inheritance, customizing, 344-346 Windows Phone, 984-985
IntelliTrace, 1331-1333 assemblies, 1145-1147
InvalidCastException, 123-125, 373, 626 data operations, 660-663
InvalidOperationException, 252, 584, debugging, 180-182

612, 1091 deferred execution (LINQ), 565-568

|OEXC€pti0n, 455, 459 processes, 5
MethodAccessException, 1152 existing settings, importing, 1273
MissinglLastNameException, 345-346 existing toolbars, customizing, 1268
naming conventions, 345 Exit event, 510
NotImplementException, 436 exiting
NullReferenceException, 626 iterators, 418
OperationCanceledException, 1078, 1134 methods, 246-247
overview of, 207-208 Exit Try statements, 218
pathnames, handling, 459 Expander control, 734
PathTooLongException, 459 explicit bounds, arrays, 150
PLINQ, handling, 1100-1101 exponentiation (A) operator, 155
rethrowing, 219 Export Diagram as Image dialog box, 424, 432
SecurityException, 463 exporting
SEHEXxception, 1205 code metrics to Excel, 1317
serialization, handling, 1037 diagrams (Visual Studio Class
SerializationException, 1037 Designer), 432
SqlClient.SqlException, 606 extension methods, 523-524
System.Exception class, 209 images, 432
System.Net.Exception, 488 services, metadata, 999
System.Security.SecurityException, 1150 templates, 1261-1265
task-specific, 220 Export Settings Wizard, 1271-1273
throwing, 218-220 exposing
Try..Catch..Finally blocks, 209 COM objects, 1197-1199
UnauthorizedAccessException, 459 custom types, 232

UnhandledException, 509 EDMs, 1001

files 1389

generics in WCF, 1001 Extensible Markup Language. See XML
LINQ to SQL, 1001 Extension and Updates tool, 1302
serializable objects from WCF extension methods, 125, 517-524
services, 1050 behavior, 521
shared members, 259 built-in, 519
Expression Blend customizing, 521-523
applying, 775 Data Services (WCF), 1025
for Windows Phone, 957 exporting, 523-524
Expression combo box, 191 LINQ, 552
expressions, 89 LINQ to DataSets, 624-627
embedding, applying, 682-685 members, 403
evaluating, 190 overloading, 523
lambda, 526-533 extensions
arguments, 518 Binding markup, 812-813
asynchronous programming, 1136-1137 FrontPage, 883
creating threads with, 1060 installing, 1301
lexical closures, 532-533 external documentation files, 1217-1218
LINQ, 552 external executable (.EXE) files, profiling, 1327
local type inference, 529 External Tools dialog box, 1268
multiline, 530-531
Sub, 531-532
ternary If operators, 533-534
queries, 551 F
regular, 251-252, 999
extending Fail method, 194-195, 1341
data types, 90, 517-524 FaultException, 1007-1008
LINQ, 554 feeds, RSS, 14-15
My.Application property, 504-505 Fiddler, 1359
My.Computer property, 505-506 Field (Of T) method, 626-627
My namespace, 502-506 fields
My.Resources namespace, 506 classes, 227-229
My.Settings property, 506 generating, 437
extensibility. See also extensions File class, 461
Visual Studio 2012, 1287 File.Delete method, 197
building packages, 1289-1299 FileNotFoundException, 160, 209, 219
deploying, 1299-1302 files
extending code editors, 1304-1307 Application Files (ClickOnce), 1251
managing, 1302-1303 Application Files group (InstallShield),
optimizing add-ins, 1304 Application.myapp, 75-76
overview, 1287-1289 assemblies. See assemblies
XML. See XML Assemblyinfo.vb, 76-77
eXtensible Application Markup Language. audio, playing, 485
See XAML BAML, 844

Extensible Hypertext Markup Language.
See XHTML, 855, 860

How can we make this index more useful? Email us at indexes@samspublishing.com

1390 files

binary
reading, 465
writing, 465
classes, diagrams, 425
code
Visual Basic 2012 projects, 72-83
Visual Studio 2012 packages, 1293
configuration files
listener settings, 200-202
naming, 493-495
CSS, 856
exceptions, handling, 463
executable (.EXE), profiling, 1327
external documentation, 1217-1218
Help, generating, 1220
images, exporting, 432
1/0 file operations, asynchronous
programming, 1137-1141
modifying, 453, 460-463
overwriting, 197-199
permissions, 463
Resources.resx (Visual Basic 2012
projects), 77-81
searching, 3
Settings.settings, 83
Solution Explorer windows, 28-30
System.lO.File class, 460-461
System.lO.FileInfo class, 462-463
text
reading, 464-465
writing, 464-465
.Vbproj file (project files), 16
web.config (WCF), 995
XAP, 988
XML, 16, 44
FileStream class, 68
FileSystem property, 482-484
file systems
accessing, 926
ClickOnce, publishing to, 1247
My.Computer property, 483-484
File Transfer Protocol. See FTP, 884
FileUpload control, 859

filtering
adding, 873-874
data with PivotViewer control, 920-923
IntelliTrace, 1331-1333

Finalize method, 271-272, 276, 328

finalizers, comparing reference
types/value, 110

Finally block, unlocking resources, 211
FindAll method, 405
FindResource method, 720
Firefox, 852

Fiddler, 1359
firewalls, deploying web applications, 885
First method, 519, 1025
FirstNode property, 674
FirstOrDefault method, 519
First property, 410
flags, enumeration values as bit, 320
Flags attribute, 320
floating-point numbers, 156
floating windows, creating projects, 24
FlowDocument objects, 799
FlowDocumentReader control, 799, 802
flow documents

implementing, 799

viewing, 803

Fluent APIs, Entity Framework (ADO.NET),
665-668

FlushAsync method, 1138
Flush method, 194
folders. See also files
formatting, 793
permissions, configuring, 881
For Each loops, 150, 168-169, 358, 1059
ForeignKey attribute, 664
foreign keys, support, 633
FormatException, 100, 209
formatting
applications
clients, 1022-1027
domains, 1145-1147
WPF, 693. See also WPF
arrays, 152-155
classes, portable, 440-451
clients, 1002

CSS, 856

DataSets, 543-547

dates, 139-142

EDMs from existing databases, 631
folders, 793

generics, 368-375

hit counts, 185

master-details forms, 826-830
MSDeploy, 889-888

multicast delegates, 382

multiple diagrams (Visual Studio Class
Designer), 431

passwords, 1226
projects
InstallShield, 1232-1242
TDD, 1344-1345
Visual Basic 2012, 16-18
Visual Studio 2010, 16-27
shortcuts (InstallShield), 1238

Silverlight applications with Visual Basic
2012, 895-897

strings, 128-129, 835-840
symbols, 129

tabular data forms, 819-825
tasks, 1073-1075

text, aligning, 802

threads, 1060-1061

toolbars, customizing, 1269-1270
unit tests, 1338-1349

Visual Basic 2012 (ASP.NET applications),
864-862

Windows Phone applications (Visual Basic
2012), 959-985

XML
documents, 672-674
schemas, 689
forms
adding, 868-869
ASP.NET applications, 855-857
master-details, formatting, 826-830
tabular data, formatting, 819-825
Windows Forms
adding, 1193
application frameworks, 507
compatibility, 75
localizing applications, 842-843

functions 1391

formulas, 157. See also arithmetic
operators, 155-157

For..Next loops, 166-168
Forth, 7

Fortran, 7

FragmentNavigation event, 510
Frame control, 734-735
frameworks

ADO.NET Entity Framework, 629. See also
ADO.NET

applications
My.Application property, 478
Windows Forms, 507
WPF, 508

Managed Extensibility Framework, 1288

navigation (Windows Phone applications),
963-966

.NET Framework. See .NET Framework
Silverlight Navigation Applications, 908-910
WCF
Data Services, 1013
RIA Services, 911-923
XNA (Windows Phone), 959
Friend qualifiers, 308
inheritance, 327
interfaces, 348
modifier, 225, 234
From keyword, 553
FrontPage, 883

FTP (File Transfer Protocol), publishing web
applications, 884

FullName method, 325, 333, 435
Function keyword, 527
functions

CBool, 121

CByte, 121

CChar, 121

CDate, 121

CDbhl, 121

Cint, 121

CLng, 121

CObj, 121

CSByte, 121

CShort, 121

CSng, 121

CStr, 121

How can we make this index more useful? Email us at indexes@samspublishing.com

1392 functions

CUint, 121

CULong, 121

CUShort, 121

importing, auto-generating, 657

return values, 45
fundamental types

applying, 125-155

arrays, 148-155

dates, 137-143

GUIDs, 147-148

strings, 125-137

time, 143-144

TimeZone, 144-147

TimeZonelnfo, 144-147

G

GAC (Global Assembly Cache), 84, 1144, 1221

assemblies

installing/uninstalling, 1223-1224
signing with strong names, 1224-1226

DLLs, troubleshooting, 1221-1222

InstallShield, 1237

overview of, 1222-1227
Garbage Collection, 8, 106

advanced, 279-281

ASP.NET, 853

events, registering, 281

Finalize method, 272

finalizers, 110

generations, 280-281

interacting with, 279-280

objects, managing, 270-271

operation modes, 280-281

structures, allocating memory, 309
GC.ReRegisterForFinalize method, 279
GC.SuppressFinalize method, 278
Generate Database from Model command, 657
Generate from Usage feature, 433-439
Generate New Type dialog box, 1346
Generate New Type window, 438
Generate Other command, 434

generating

code, System.Reflection.Emit namespace,
1171-1177

complex objects, 437-439

databases, Code First approach, 660-663
debug information, 47

Dependency Graphs, 1334-1335

Help files, 1220

methods, stubs, 436

on-the-fly objects, Generate from Usage
feature, 433-439

property stubs, 1347
serialization assemblies, 48
shared members, 436
types, 437
XML files, 44
generations
garbage collection, 280-281
operators, 574-575
generics, 244, 367
collections, 394
applying, 403-412
optimizing, 395
serialization, 1049
constraints, 372-374
delegates, 380
formatting, 368-375
IComparable(Of T) interface, 359
methods, implementing, 371-372
nullable types. See nullable types
overview of, 367-368
types, 8, 368
variances, 535-537
WCF, exposing in, 1001
XML comments, 1219
geospatial data in WCF Data Services, 1015
GetAssembly method, 1160
GetAudioStream method, 484
GetCallingAssembly method, 1160
GetCreationTime method, 455
GetCurrentDirectory method, 458
GetCustomerQuery method, 825
GetCustomers method, 502
GetData method, 484

GetDataObject method, 484
GetEntryAssembly method, 1160
GetEnumerator method, 420
GetExecutingAssembly method, 1160
GetExportedTypes method, 1162
GetExtension method, 454
GetFileDropDownList method, 484
GetFiles method, 456
GetHashCode method, 309, 314, 328
GetlLGenerator method, 1175
Getlmage method, 484
GetlLogicalDrives method, 457
GetLowerBound method, 153
GetModules method, 1162
GetName method, 317
GetNames method, 316-317
GetObjectData method, 1046
GetOrders method, 916
GetRange method, 396
Get Started tab (Visual Studio 2010), 14
GetSystemTimeZones method, 145
GetText method, 484
getting/setting attributes, 456
GetType method, 119, 328
GetTypes method, 1163
GetUpperBound method, 153
GetValidationErrors method, 651
GetValue method, 155
GetValues method, 316-317
Global Assembly Cache. See GAC
Global keyword, namespaces, 295-299
GoBack method, 965
GoForward method, 965
Go to Definition command, 58
graphics

3-D (Silverlight applications), 908

animations, 782-790
graphs, Dependency Graphs, 1334-1335
greater than (>) operator, 164, 313

greater than or equal to (>=) operator,
164, 313

Grid panel, 709-711, 1261
GridView control, 859
GroupBox control, 735

HashTable collection 1393

GroupBy method, 519

GroupJoin method, 519

Group Members command, 424

groups (InstallShield)
Application Files,
Application Information, 1233
Application Shortcuts, 1238-1239
Installation Interview, 1241
Installation Requirements, 1234-1236
operators, 577-579

Guid.NewGuid method, 147

GUIDs (globally unique identifiers), 147-148

GZip identifiers, 68

GZipStream objects, 467

H

handlers in ASP.NET, 8
Handles clause, 385
handling
errors, 207
events, 383-385
animations, 787-789
ASP.NET, 860-861

ContentFrame_Navigated event
handlers, 910

Silverlight applications, 899
WPF, 694, 706-709
exceptions, 207-224
Async pattern, 1127
directories, 459
files, 463
parallel computing, 1075-1077
pathnames, 459
P/Invoke, 1205-1206
PLINQ, 1100-1101
Try..Catch..Finally blocks, 209
WCF, 1007-1008
optimistic concurrency, 616, 648-650
serialization exceptions, 1037
HasExtension method, 454
HashTable collection, 398-399

How can we make this index more useful? Email us at indexes@samspublishing.com

1394 Heap

Heap
boxing, 114
reference types, 90, 108
Help
generating, 1220
navigating, 56
properties, 214
HiddenField control, 859
hierarchies
exceptions, 212-213
Logical Tree, 704
method calls, 60
shortcuts, 1238
of types, 90
highlights, applying, 805
historical debugging (with IntelliTrace), 1310,
13281334

Hit Count command, 185
hit counts, formatting, 185
hosting
data services, 1016
WCF in 1IS, 1008-1009
HTML (Hypertext Markup Language), 8, 852
controls, 858-860
Silverlight applications, 894
support, 8
HtmlAnchor control, 858
HtmIButton control, 858
HtmlIForm control, 858
HtmIGenericControl control, 858
HtmllnputButton control, 858
HtmllinputCheckBox control, 858
HtmlInputFile control, 858
HtmlInputHidden control, 858
HtmlInputimage control, 858
HtmllinputRadioButton control, 858
HtmllinputText control, 858
HtmITableCell control, 858
HtmlITable control, 858
HtmITableRow control, 858
HtmITextArea control, 858
HTTP (Hypertext Transfer Protocol), 991
applications, 8
GET requests, 1030
requests, querying data via, 1014-1015

HybridDictionary collection, 400
HyperLink control, 859

Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

IAsyncResult.AsyncState property, 1107
IBookService contract, 998

ICloneable interface, 115, 118, 355
ICollection interface, 394

ICommand interface, 908

IComparer interface, 359-360

IComparable interface, 109, 355,
358-359, 373

icons, 77

Applicationlcon.png, 986

My Project, 34
IConvertible interface, 355, 360-363
|IDataErrorinfo interface, 616

IDEs (Integrated Development
Environments), 11

advanced features, 1261

code snippets, reusing, 1275-1283
events, generating handlers, 707
NuGet, managing libraries, 1283-1286
Silverlight applications, 895

tabs, navigating, 50

templates, exporting, 1261-1265

tool windows, docking, 27

user settings, managing, 1271-1273

Visual Studio 2012, 11, 1267-1270.
See also Visual Studio 2010

WPF projects, 699

identifiers
assigning, 72
CLS naming conventions, 265
constants, 176
GUIDs, applying, 147-148
GZip, 68
MyCollectionsUtils, 502
naming conventions, 72
reserved words, applying as, 72
root namespaces, 292

IDeserializationCallBack interface, 1041

IDictionary interface, 1049

IDisposable interface, 404
templates, 1264

IDispose interface, 347, 355
implementing, 273-278
polymorphism, 352

IDocument interface, 348
polymorphism, 352

IDs, threads, 1074

IEnumerable interface, 355-358, 394,
420, 551

IEnumeratror interface, 356

If operators
LINQ, 553
ternary, 533-534

IFormattable interface, 355, 363-365

If statements, 181

If..Then code block, 159

If..Then..Else code block, 172-173

IIf operator, 173-174

linvoice interface, 353

IS (Internet Information Services), 852, 883
Data Services (WCF), deploying, 1021
WCF, hosting in, 1008-1009
web applications, publishing, 885

IL (Intermediate Language), 263
metadata, 1158

ILGenerator class, 1175

IList interface, 352, 1049

ImageBrush, 758, 762-765

ImageButton control, 859

Image control, 736, 793-795, 858-859

ImageMap control, 859

images, 77
backgrounds (Windows Phone), 986
exporting, 432
Pictures Hub (Windows Phone), 982-984
viewing, 793-795
Visual Studio 2012 built-in image editors,

498

implementing
annotations, services, 804
custom awaiters, 1141

Imports directives 1395

custom contracts, 997

Data Services (WCF), 1013, 1016-1021

destructors, 275

Dispose interfaces, 273-278

Dispose method, 276

DoubleAnimation, 905

events, 385-389

Finalize method, 276

flow documents, 799

generics, methods, 371-372

ICloneable interface, 118

IDispose interface, 273-278

interfaces, 348-352
abstract classes, 428

comparing reference types/value types,
109-110

structures, 309

Iterator class, 419-422

IValueConverter interfaces,

media players, 900

nested namespaces, 288-291

permissions, 1149

services, operations, 1027-1029

spell check, 808

Tool window, 1296

WCF services, 993-1001

XML comments, 1210-1219
Implements keyword, 309, 348

implicit conversions, 45, 111-113. See also
converting

implicit line continuation, 552, 1182
LINQ, 559-561
Visual Basic 2012 projects, 70-71
implicit types, 45
importing
COM objects, 1192-1196
existing settings, 1273
functions, auto-generating, 657
XML namespaces, 293, 689
Imports directives, 17
adding, 286
multithreading, 1060
namespaces, 292-295
Visual Basic 2012 projects, 68-69

How can we make this index more useful? Email us at indexes@samspublishing.com

1396 Imports System.Globalization directive

Imports System.Globalization directive, 843
Include method, 653, 667
include tag (XML comments), 1214
Inconclusive method, 1341
increaseCounter method, 384
Indent method, 194
indexers, 234
indexes, Code Metrics, 1315
IndexOf method, 153, 396
IndexOutOfRange exception, 153, 209
Field (Of T) method, 626
inequality (<>) operator, 104, 164, 313, 570
inference, local types, 511-514
lambda expressions, 529
LINQ, 552
Open Infer directives, 513
scope, 514

Infer XML Schema Set from XML dialog
box, 687

Info property, 483, 488-490, 720
information messages, 30
infrastructure (WCF), 6
inheritance, 323-324
abstract classes, 337
applying, 324-327
base classes, accessing members, 337-341
classes, preventing, 335
CLS, 327
conditioning, 334-337
constraints, 374
constructors, 341-342
defining, 1187
Dispose interfaces, 275
exceptions, customizing, 344-346
interfaces, 353-354
members, 327, 331-334
modifiers, 428
modules, 303
polymorphism, 329-331
serialization, 1047
shadowing, 342-343
shared members, overriding, 343-344
structures, limitations of, 309
styles, 773
System.Object class, 328-329

types, comparing reference/value, 108-109
Visual Basic 2012 projects, 65-66
Inherits keyword, 66, 303, 309, 354
Init event, 856
initializers
collections, 405-406
objects, 258259, 437
applying, 558-559
LINQ, 553
InitializeService method, 1018
InitializeWithWindowsUser method, 500
initializing
arrays, 150
fields, 228
ink notes, adding, 806
inline initialization
arrays, 150
fields, 228
InnerException property, 214, 1101

INotifyPropertyChanged interface, 387,
1042, 1178

Insert breakpoint command, 51
Insert method, 395
insert operations
databases, 541
DataSets, 546
Entity Framework (ADO.NET), 646-647
LINQ to SQL, 605-608
InsertRange method, 395
inspecting
arrays, 152-155
assemblies, 1161
objects with debugger visualizers, 192-193
strings, 131-133
Install ApplicationName onto This Computer
command, 924
Installation Interview group (InstallShield), 1241
installing
ClickOnce, 1229
extensions, 1301-1303
GAC assemblies, 1223-1224

InstallShield Installation Requirements
group, 1234-1236

local installation options, running out-of-
browser applications, 925

.NET Framework, 2-3

SDKs, 7
templates, 19

Visual Studio 2012 tools (Windows Azure),
931-932

web applications, packaging for, 888-891
Windows Installer, 1230

InstallShield, 1229
Application Files group,
Application Information group, 1233
Application Registry, 1239
downloading, 1231
Environment Variables element, 1242
groups. See groups
Installation Interview group, 1241

Installation Requirements group, 1234-1236

overview, 1231
packages, deploying, 1244
projects
creating, 1232-1242
formatting, 1242
instances
clients, 606
declaring (LINQ to SQL), 600
variables, 45
instantiating
Entity Framework (ADO.NET), 645
proxy classes, 1003
windows at runtime, 718
instrumentation, debugging, 180-192
integer division (\) operator, 155, 313
Integer keyword, 95
integers, removing overflow checks, 47
Integrated Development Environment. See IDE
integration, media, 696
IntelliSense
code editors, 25-27
collections, 405
enumerations, 315
events
customizing, 389
generating handlers, 706
exception handling, 210
extension methods, 518
generics, 368-370

interfaces 1397

members, overriding, 332
methods, overloading, 244
namespaces, 292

partial classes, 250
uncommented members, 1208
With..End With statements, 176
XAML code editors, 701

XML

comments, 1210. See also XML
comments

importing namespaces, 689
IntelliTrace, 52, 1310, 1328-1334
interacting

with garbage collectors, 279-280

with operating systems, 4
interceptors

change, 1032

queries, 1030-1033
Interface..End Interface block, 348
interfaces, 11, 347

abstract classes, implementing, 428

accessing, 348-352

APls. See APIs

CLS, 354-355

defining, 347-348

Dispose, implementing, 273-278

Fiddler, 1359

Fluent APIs, Entity Framework (ADO.NET),
665-668

generating, 437

generics, defining, 370

ICloneable, 115, 118, 355

ICollection, 394

ICommand, 908

IComparable, 109, 355, 358-359

IComparer, 359-360

IConvertible, 355, 360-363

|DataErrorinfo, 616

IDeserializationCallBack, 1041

IDictionary, 1049

IDisposable, 404, 1264

IDispose, 347, 355
implementing, 273-278
polymorphism, 352

How can we make this index more useful? Email us at indexes@samspublishing.com

1398 interfaces

IDocument, 348, 352

IEnumerable, 355-358, 394, 420, 551

IEnumeratror, 356

IFormattable, 355, 363-365

linvoice, 353

IList, 352, 1049

implementing, 109-110, 348-352

inheritance, 353-354

INotifyPropertyChanged, 387, 1042, 1178

IPerson, 427

ISerializable, 1046

IServicel, 996

IValueConverter, implementing, 835-838

media players, 796

members, adding, 426

method arguments, passing as, 351

method constraints, 373

Modern style (Windows Phone), 956

modules, 303

namespaces, 284

nested classes, 348

.NET Framework, 355-365

polymorphism, 352-353

scope, 348

selecting, 348

structures, implementing, 309

System.IProgress (Of T), 1134

Tool window, implementing, 1296

Visual Studio 2012, 439

Windows Phone, 12

WPF, 694, 721-724. See also WPF

XBAP, 722

XML schemas, 685-690
Intermediate Language. See IL, 263, 1158
Internet code samples, searching, 21
Internet Explorer, 852

Fiddler, 1359

XML serialization, 1043
Internet Information Services. See IIS
Interop.AssemblyName.dll, 86
interoperability

COM assemblies, registering for, 1197

between COM/.NET architectures, 86
Interop.WMPLib.dIl, 87

Intersect method, 519

Into clause, 570

InvalidCastException, 123-125, 373
Field (Of T) method, 626

InvalidOperationException, 252, 584,
612, 1091

invariants, contracts, 1354
Invoke method, 380
invoking
AsParallel, 1097
constructors, 254
destructors, 270
dynamic code, 1169-1171
members, 29, 1003-1007
methods, 236-237, 308
Object Browsers from code editors, 57
1/0 (input/output)
asynchronous programming, 8, 1137-1141
Windows Phone, 959
I0Exception, 455, 459
IPerson interface, 427
IronPython, 6-7
IronRuby, 6-7
IsAddingCompleted property, 1091
IsAuthenticated method, 500
IsCompleted property, 1075, 1091
|Serializable interface, 1046
IServicel interface, 996
IsFalse method, 1341
IsFalse operator, 158
IsInRole method, 500
IsInstanceOfType method, 1341
IsNetworkAvailable property, 487
IsNetworkDeployed property, 480
IsNotinstanceOfType method, 1341
IsNotNull method, 1341
IsNot operator, 164-165, 570
IsNull method, 1341
Is operator, 164-165, 570
IsRunningOutOfBrowser property, 924
IsTrue method, 1341
IsTrue operator, 158
Item method, 396

items
projects, adding, 30
properties, configuring, 31
references, specifying in, 1266
templates, exporting, 1263-1265
IltemSource property, 823
iterations, 166-170
Iterator class, implementing, 419-422
iterators, 169, 393
anonymous, 419
exiting, 418
LINQ, applying, 562-565
simple, 417-418
Try..Catch..Finally blocks, 418-419
Visual Basic 2012, 414-422
XML literals, 685

IValueConverter interfaces, implementing,
835-838

J

jagged arrays, 151-152, 516
JavaScript, 8, 894

JavaScript Object Notation. See JSON,
1015, 1053

JIT (Just-In-Time), 5
multicore JIT compilation, 853
optimizing, 47
Join method, 519
JSON (JavaScript Object Notation), 1015
serialization, 1053
JustDecompile, 1359
JustIn-Time. See JIT, 5, 47, 853
Just My Code
debugging, 182-184
disabling, 1078

K

KeepChanges, 616
KeepCurrentValues, 616
Key attribute, 664

Keyboard property, 482, 485

keywords 1399

keyboard shortcuts, Debug menu (Visual Studio
2012), 181

keys, foreign, 633
keywords

From, 553

Of, 368

- (pointer to address in memory), 95

AddHandler, 383-384

Await, 1109, 1120-1122

Boolean, 95

ByRef, 237-242

Byte, 95

ByVal, 237-242

Char, 95

Decimal, 95

Default, 233

Delegate, 380

Dim, 308

Double, 95

Event, 386

Function, 527

GetType, 119

Global, namespaces, 295-299

Implements, 309, 348

Inherits, 66, 303, 309, 354

Integer, 95

Let, 572

Long, 95

Me, 229

MustInherit, 303, 336

MustOverride, 336

MyBase, 332, 337-339

MyClass, 339-341

New, 67, 136, 252
constraints, 373
structures, 438

Notlnheritable, 303, 335-336

NotOverridable, 334

Optional, 240-241

Overloads, 255, 334

Overrides, 332

Partial, 614

ReadOnly, 231

ReDim, 150-151

RemoveHandler, 383-384

How can we make this index more useful? Email us at indexes@samspublishing.com

1400 keywords

reserved (Visual Basic 2012 projects), 72
SByte, 95
Select, 553
Shared, 259
Short, 95
Single, 95
Structure, 374
Throw, 218-220
Ulntenger, 95
ULong, 95
unreserved (Visual Basic 2012 projects), 74
UShort, 95
value types, 94
When, 222-223
Where, 553
WithEvents, 384-385
Kill method, 1059

L

Label controls, 736, 859
labels, editing breakpoints, 184
lambda expressions, 526-533
arguments, 518
asynchronous programming, 1136-1137
lexical closures, 532-533
LINQ, 552
local type inference, 529
multiline, 530-531
Sub, 531-532
ternary If operators, 533-534
threads, creating with, 1060
languages
anonymous types, 524-525
Array literals feature, 515-516
BAML, 844
CIL, 5
CLS, 263-267
Common Type System, 89-93
CSDL, 634
design, 12
exceptions, 207-208, 224
extension methods, 517-524

features, 511
generic variances, 535-537
lambda expressions, 526-533
LINQ, support, 552-553
local type inference, 511-514
Mapping Definition Language, 637
.NET Framework, 6-7
relaxed delegates, 526
SSDL, 636
ternary If operators, 533-534
WDSL, 991
XAML. See XAML
XHTML, 855
XML. See XML
LastEdit property, 1185
Last-In, First-Out. See LIFO, 398
Last method, 519
LastNameChangedEventArgs class, 388
LastName method, 325
LastName property, 534
LastNode property, 674
LastOrDefault method, 519
Last property, 410
late binding, 45, 115
reflection, 1176
Latest News tab (Visual Studio 2010), 14-15
launchers (Windows Phone), 967-720
Launch Performance Wizard, 1320
layers
architecture (LINQ), 554
.NET architecture, 2-3
User32 (WPF), 696
Layout Diagram command, 424
learning resources (Windows Phone), 958
left-shift (<<) operator, 162, 313
Length method, 464
less than (<) operator, 164, 313
less than or equal to (<=) operator, 164, 313
Let keyword, 572
levels
scope (Visual Basic 2012), 234
Transparency Level 2, 1150-1152
trust for roles, 935
lexical closures, lambda expressions, 532-533

libraries
BCL, 2, 5-6, 57
classes, 226
Code Contract, 1350-1355
COM, adding references, 85-86
DirectX (WPF), 696
DLLs, 2
extensions, testing, 524
Microsoft Core Library (MsCorlib.dll), 6
MSDN Library, 48
navigating, 56
publishing web applications, 890
NuGet, managing, 1283-1286
Open Data Protocol (OData), 1015
portable, 423
Portable Class Libraries, 7, 440-451
TPL, 413
licenses (NuGet), 1285
lifetimes
objects
finalizers, 110
managing, 269
pages, 856
LIFO (Last-In, First-Out), 398
limitations
of ClickOnce, 1246
of drag'n'drop data-binding, 818
of inheritance, structures, 309
of LINQ, 550
of XML serialization, 1043
LinearGradientBrush, 758-761
LineHeight property, 899
lines
grid, viewing, 711
implicit line continuation, 70-71, 552,
559-561, 1182
Line Stacking Strategy, 899
LinkButton control, 859
LinkedList (Of T) collection, 410-412
links, specifying resources to, 1219
LINQ, 6, 549
architecture, 554
to DataSets, 621
extension methods, 624-627
queries, 621-624

listeners 1401

deferred execution, 565-568
examples of, 551-552
extending, 554
iterators, applying, 562-565
language support, 552-553
limitations of, 550
to Objects, 557
overview of, 557-558
querying in memory objects, 558-568
overview of, 549-551
parallel, 1069
partial methods, 251
PLINQ, 1092
providers, 553-554
queries
anonymous types, 524
measuring performances, 1093-1095
standard query operators, 568-585
LINQPad, 1359
LINQ to Data Services, 1027
LINQ to Entities, querying with EDMs, 652-653
LINQ to SQL, 587
advanced, 613-617
applying logs, 613
classes, 589-599
deleting entities, 609
EDMs, exposing, 1001
inserting entities, 605-608
mapping stored procedures, 610-613
overview of, 588-599
queries, 600-604
SQL Server Compact Edition 3.5, 617-619
updating entities, 608-607
LINQ to XML
interface schemas, 685-690
modifying, 671
overview of, 672-677
querying, 676-677
ListBox control, 736, 859
List (Of T) collection, 403-405
ListDictionary collection, 399
listeners
configuration file settings, 200-202
trace, applying, 196-202

How can we make this index more useful? Email us at indexes@samspublishing.com

1402 lists

lists

data-binding views, 830-835

Error Lists, 24

tags (XML comments), 1214

XML comments, 1218
ListView control, 738
literals

Array Literals, 151

Array literals feature, 515-516

XML

LINQ, 553
writing XML markup in, 677-685

literal type characters, 98
Live Tiles, 956
LNG function, 121
LoadCompleted event, 510
LoadComponent method, 720
LoadedAssemblies property, 479
LoadedBehavior property, 797
Load event, 856
LoadFile method, 1160
LoadFrom method, 1160
loading

assemblies, 1160

RSS feeds, 1116

XML documents, 674
Load method, 1160
LoadVideoAsync method, 1133
local data access (LINQ to SQL), 618

local data storage (Windows Phone), 980-981

Local DB (SQL Server 2012) system
requirements, 539-540

local file systems, accessing, 926

local installation options, running out-of-browser

applications, 925

localizing applications, 841
.NET Framework, 841-842
Windows Forms, 842-843
WPF, 844-850

Local property, 667

Local Storage, 930

Locals window, 187

local type inference, 511-514
lambda expressions, 529
LINQ, 552

Open Infer directives, 513
scope, 514
local variables
ambiguities, avoiding, 228-229
local type inference, 511-514
unused, 45
locations. See also storage
assemblies, 1144
breakpoints, 185
ClickOnce deployments, 1247
GAC, 1223
IronPython, 6-7
IronRuby, 6-7
memory, data types, 90
.NET Framework, 2
projects, searching, 24
SDKs, 7
services (Windows Phone), 959
templates, 20
LocBaml.exe, 844-845
locks, read/write, 1065-1066
logical operators, 158-159
Logical Tree (WPF), 704-705
logs
Activity log (Windows Azure), 947
applications
managing, 199-200
writing entries to, 481-482
Caller Information, 1178
compilation, 40
IntelliTrace, 1333-1334
SQL, applying, 613
Windows Event Log, 199
LongCount method, 519
Long keyword, 95
loops, 95-172
Do..Loops, 170-171
For Each, 150, 168-169, 358, 1059
For..Next, 166-168
iterators, 417
local type inference, 513
parallel computing, 1080-1086
scaling, 1080
While..End While, 171-172
loss of precision, 122-123

M

Main method, 24, 106, 434, 720
MainWindow property, 720
MainWindow.xaml.vb code file, 29
managed code

ClickOnce, accessing, 1257-1258

writing, 4
Managed Extensibility Framework, 8,

442, 1288

Managed Heap, 90, 106
Management Portal, 946

Windows Azure, 949-952
Manage NuGet Packages dialog box, 658
managing

add-ins, 1304

applications

logs, 199-200
.NET Framework, 2. See also .NET
Framework

breakpoints, 184

Code Snippet Manager, 1278

concurrent operations, 1129

Configuration Manager, 42

controls, 702, 709-716

extensions (Visual Studio 2012),
1302-1303

Help contents, 56
indexes, 233
keyboards, 485
libraries (NuGet), 1283-1286
Memory Manager, 106
namespaces
Global keyword, 295-299
overview of, 283-284
objects
advanced garbage collection, 279-281
allocating memory, 269-270
Finalize method, 271-272
garbage collection, 270-271
implementing Dispose/IDisposable
interfaces, 273-278
lifetimes, 269
resurrecting, 278-279
permissions, 881

measuring performance 1403

PLINQ queries, 1097-74

processes, 1058-1060

projects, items, 29

Reference Manager dialog box, 84-85

ResourceManager class, 80, 500

Solution Explorer windows, 28-30

state, 861-864

structures, 310

tasks, 1073-1074

templates, 18

types within namespaces, 283-295

user settings, 1271-1273

windows, 716-719

Windows Azure Management Tool, 1360
manifest options, ClickOnce, 1254
manual installation, packaging for web

applications, 888-891

mapping

classes, 1335

EDMs, 638-640, 1335

resources, 500

stored procedures, 610-613, 654-657
Mapping Definition Language, 637
Mapping Details window, 640
Marketplace (Windows Phone)

applications (apps), submitting, 987-989

registering, 956
MarketPlaceDetailsTask, 967
MarketPlaceHubTask, 967, 974
MarketPlaceReviewTask, 967
MarketPlaceSearchTask, 967
markup

BAML, 844

Binding markup extension, 812-813

XAML. See XAML

XML, writing, 677-685
master-details forms, formatting, 826-830
master pages, 855-857, 865-868
MaxLength attribute, 664
Max method, 519
MaxValue property, 101, 137, 143-144
measuring performance

LINQ queries, 1093-1095

PLINQ queries, 1095-1085

How can we make this index more useful? Email us at indexes@samspublishing.com

1404 media

media
animations, 782-790
images, viewing, 793-795
integration, 696
playing, 795-798
Silverlight applications, playing, 900-905
Windows Phone, 959
WPF, 793
MediaElement control, 739, 795, 900
MediaFailed event, 798
MediaPlayerLauncher, 967-969
media players
content reproduction, 901
implementing, 900
Me keyword, 229
members
accessing (Visual Basic 2012 projects),
67-68
Application class, 720
ArrayList collections, 396
base classes, accessing, 337-341
behavior, 29
deriving, overriding, 334
extension methods, 403
inheritance, 327, 331-334
interfaces
adding, 426
defining, 348
LinkedList (Of T) collection, 410
My.Application property, 478
My.Computer.Clipboard, 484
My.User property, 500
NavigationService class, 965
RefreshMode enumeration, 616
scope, 327
services, invoking from, 1003-1007
sharing, 45
classes, 259-263
generating, 436
overriding, 343-344
streams, 461, 464
structures, 308
visibility, 234-235
Visual Basic 2012 projects, 63-71

Visual Studio 2010, generating based on
interfaces, 350

XDocument class, 674
MemberwiseClone method, 116, 328
memory

allocating

comparing reference types/value types,
106-108

managing objects, 269-270
deallocating, 110
locations, data types, 90
objects, queries, 558-568
streams, 466
structures, 309
value types, 90, 94
Memory Manager, 106
Menu control, 740
menus
Debug (Visual Studio 2012), 181

Tools (Visual Studio 2012), customizing,
1267-1268

MessageContract, 993
Message property, 214
messages
errors, 30
Code Analysis, 1314
implicit conversions, 113
information, 30
text, 972
warnings, 30
metadata, 5
assemblies, 1158-1160
attributes, 1183
reflection, 1158. See also reflection
services, exporting, 999
MethodAccessException, 1152
methods
Add, 370, 394, 660, 1087
AddAfter, 410
AddAfterSelf, 674
AddBefore, 410
AddBeforeSelf, 674
AddFirst, 410, 674
AddLast, 410

AddMemoryPressure, 280
AddNew, 833
AddParticipant, 1080
AddParticipants, 1080
AddProduct, 606
AddRange, 395
Aggregate, 519

All, 519

Any, 519
AppDomain.CreateDomain, 1147
AreEqual, 1341
AreNotEqual, 1341
AreSame, 1341
arguments, 237-242, 351
AsDataView, 623
AsEnumerable, 517-519
AsNoTracking, 654
Assert, 194

Asset class, 1341
Average, 519

BeginRead, 464
BeginWrite, 464
BinarySearch, 153
CalculateDiscount, 354
CalculatePerimeter, 1349
calling, 60

CanRead, 464

CanSeek, 464

CanWrite, 464

Cast, 519
ChangeExtension, 454
CheckMailAddress, 381
classes, executing actions with, 235-247
Clear, 396, 404, 410, 484
Clone, 117, 352, 374
Close, 194, 464

Collect, 279

Compare, 127

Concat, 519

constraints, 373
constructors, 252-259
Contains, 396, 410, 519
ContainsAudio, 484
ContainsData, 484
ContainsFileDropList, 484

methods

Containsimage, 484
ContainsText, 484
ConvertTimeBySystemZoneld, 147
CopyTo, 396, 410
CopyToAsync, 1138
CopyToDataTable, 624-626
Count, 307, 396, 519
.ctor, 216
CurrentPrincipal, 500
Debug class, 194-195
DefaultifEmpty, 519
Delete, 457
DeleteObject, 1025
Dequeue, 398
Descendants, 674
Dispose, 271, 275-276, 347, 404
Distinct, 519
Divide, 533
DoCancel, 873
DoSomething, 229
DownloadFile, 487
DownloadString, 1115
Element, 674
ElementAt, 519
ElementAtOrDefault, 519
EndRead, 464
EndWrite, 1107
Equals, 309, 314, 328
Except, 519
Execute (Of T), 1026
ExecuteAssembly, 1146
ExecuteCommand, 617
ExecuteReader, 543
exiting, 246-247
extension, 517-524
behavior, 521
built-in, 519
customizing, 521-523
Data Services (WCF), 1025
exporting, 523-524
LINQ, 552
LINQ to DataSets, 624-627
members, 403
overloading, 523

How can we make this index more useful? Email us at indexes@samspublishing.com

1405

1406 methods

Fail, 194-195, 1341
Field (Of T), 626-627
File.Delete, 197
Finalize, 271-272, 276, 328
FindAll, 405
FindResource, 720
First, 519, 1025
FirstOrDefault, 519
Fluent APls, 667
Flush, 194
FlushAsync, 1138
FullName, 325, 333, 435
GC.ReRegisterForFinalize, 279
GC.SuppressFinalize, 278
generating, 437
generics
defining, 370
implementing, 371-372
GetAssembly, 1160
GetAudioStream, 484
GetCallingAssembly, 1160
GetCreationTime, 455
GetCurrentDirectory, 458
GetCustomerQuery, 825
GetCustomers, 502
GetData, 484
GetDataObject, 484
GetEntryAssembly, 1160
GetEnumerator, 420
GetExecutingAssembly, 1160
GetExportedTypes, 1162
GetExtension, 454
GetFileDropDownlList, 484
GetFiles, 456
GetHashCode, 309, 314, 328
GetlLGenerator, 1175
Getlmage, 484
GetLogicalDrives, 457
GetLowerBound, 153
GetModules, 1162
GetName, 317
GetNames, 316-317
GetObjectData, 1046
GetOrders, 916
GetRange, 396

GetSystemTimeZones, 145
GetText, 484

GetType, 119, 328
GetTypes, 1163
GetUpperBound, 153
GetValidationErrors, 651
GetValue, 155
GetValues, 316-317
GoBack, 965
GoForward, 965
GroupBy, 519
GrouplJoin, 519
Guid.NewGuid, 147
HasExtension, 454
Include, 653, 667
Inconclusive, 1341
increaseCounter, 384
Indent, 194

IndexOf, 153, 396
InitializeService, 1018
InitializeWithWindowsUser, 500
Insert, 395
InsertRange, 395
Intersect, 519

Invoke, 380

invoking, 236-237
IsAuthenticated, 500
IsFalse, 1341

IsInRole, 500
IslnstanceOfType, 1341
IsNotlnstanceOfType, 1341
IsNotNull, 1341

IsNull, 1341

IsTrue, 1341

Item, 396

Join, 519

Kill, 1059

Last, 519

LastName, 325
LastOrDefault, 519
Length, 464

Load, 1160
LoadComponent, 720
LoadFile, 1160
LoadFrom, 1160

LoadVideoAsync, 1133
LongCount, 519

Main, 24, 106, 434, 720
Max, 519
MemberwiseClone, 116, 328
Min, 519

Move, 455

MoveCurrentTo, 832
MoveCurrentToFirst, 832
MoveCurrentTolLast, 832
MoveCurrentToNext, 832
MoveCurrentToPrevious, 832
Name, 500

Navigate, 965

New, 255, 328

OffType, 519
OnCreateMainForm, 76
OnDeserialization, 1041
OnModelCreating, 666
OrderBy, 519
OrderByDescending, 519
overloading, 242-246
Parallel.For, 1080-1083
Parallel.ForEach, 1080, 1083-1084
Parallel.Invoke, 1072

Parse, 100, 139, 318-319
partial, 251-252

Peek, 398

Position, 464

Print, 194

PrintString, 237
QueryVideosAsync, 1132
Read, 464

ReadAllText, 160
ReadAsync, 1138

ReadByte, 464
ReadLineAsync, 1138
ReadToEndAsync, 1138
ReferenceEquals, 328
ReflectionOnlyLoad, 1160
ReflectionOnlyLoadFrom, 1160
Remove, 410, 660, 674
RemoveFirst, 410
Removelast, 410
RemoveMemoryPressure, 280

methods

RemoveNodes, 674
RemoveParticipant, 1080
RemoveParticipants, 1080
ReplaceWith, 674
ReRegisterForFinalize, 279
ReturnFullName, 243
Reverse, 396, 519

Root, 674

rules, 267

Run, 720

SaveChanges, 833

Seek, 464

Select, 519

SelectMany, 519
SequenceEquals, 519
Serialize, 1036

SetAudio, 484
SetCreationTime, 455
SetCurrentDirectory, 458
SetData, 484
SetDataObject, 484
SetField (Of T), 626-627
Setlmage, 484
SetlLastError, 1206
SetText, 484

ShowDialog, 755
Shutdown, 720
SimulateProcessing, 1081
Single, 519, 1025
SingleOrDefault, 519
Skip, 519

SkipWhile, 519

Sort, 396

Start, 1058

StopLoading, 965

Stream class, 1138
structures, passing to, 308
stubs, generating, 436
Sub Main, 35

Subtract, 142

Sum, 519
SuppressFinalize, 279
System.Array class, 153
System.Convert class, 123
System.Enum class, 316-319

How can we make this index more useful? Email us at indexes@samspublishing.com

1407

1408 methods

System.GC.Collect, 271 Trace.Listener.Clear, 197
System.Object class, 92, 328 TrimToSize, 396
System.Object.ToString, 66 TryParse, 100, 139

System.String class, 126
Take, 519

TakeWhile, 519
Task.Run, 1128
Task.Wait, 1075

Test, 181, 187
TestAccessFile, 222
Testlnstance, 374
ThenBy, 519
ThenByDescending, 519
Thread.Start, 1061
ToArray, 396, 519
ToBool, 123

ToByte, 123

ToChar, 123
ToDateTime, 123
ToDecimal, 123
ToDictionary, 519
ToDouble, 123
ToFileTime, 141
ToFileTimeUtc, 141
Tolnt16, 123

Tolnt32, 123

Tolnt64, 123

TolList, 519
TolLocalTime, 141
ToLongDateString, 141
ToLongTimeString, 141
TolLookup, 519
ToOADate, 141
ToSByte, 123
ToShortDateString, 141
ToShortTimeString, 141
ToSingle, 123
ToString, 121, 309

enumerations, 318-319

reflection, 1163

System.Object class, 328

ToUInt16, 123
ToUInt32, 123
ToUInt64, 123
ToUniversalTime, 141

Unindent, 194
Union, 519
UpdateProduct, 648
Upgrade, 495
validatebook, 998
value types, 100-101
Visual Basic 2012 projects, 64-65
WaitForPendingFinalizers, 279
WhenAll, 1129
WhenAny, 1129-1131
Where, 519
WithDegreeOfParallelism, 1098
WithMergeOptions, 1098
Write, 194, 464
WriteAllBytes, 460
WriteAsync, 1138
WriteByte, 464
Writelf, 194
WriteLine, 26, 194
WriteLinelf, 194
metrics, Code Metrics, 1309, 1315

Metro interface. See Modern style interface
(Windows Phone), 956

Metro-style applications, 8. See also Windows 8
NET for, 7
ObservableCollection (Of T) collection, 407
Microsoft Access, 541
Microsoft code analysis rules, 1311
Microsoft Core Library (MsCorlib.dll), 6
Microsoft Design Style, 11-12
Microsoft Developer Network. See also MSDN

Microsoft Excel, exporting code metrics
to, 1317

Microsoft Expression Blend, 14
Microsoft Silverlight. See Silverlight applications

Microsoft SQL Server, LINQ to SQL, 588.
See also LINQ

migrating
Code First approach, 665
from old CAS-based code, 1155
Visual Basic 6, 209

from Visual Studio 2010 to Visual
Studio 2012, 3

MIME (Multipurpose Internet Mail
Extensions), 80

MinLength attribute, 664
Min method, 519
MinValue property, 101, 137, 143-144
MissinglLastNameException, 345-346
Mixed Mode debugging, 182
mobile phones, 955. See also Windows Phone
Model Browser window, 640, 656
Model First, 657
models
adding, 868
APM, 1106-1107
ASP.NET, 851. See also ASP.NET
Code First approach, 659-660
COoMm, 1191
EDMs, viewing, 820
MVVM, 443, 811, 913
objects, EDMs, 630
programming (Windows Phone), 958-959
sandboxed, 1149, 1152-1154
security in .NET 4.5, 1148-1155
transparency, 1148-1149
views, defining, 446
Model-View-Controller. See MVC, 854

Model-View-View Model. See MVVM, 443,
811, 913

Modern style interface (Windows Phone), 956
modes
connection (ADO.NET), 541
data-binding, 813
declarative, XAML, 703
disconnected (ADO.NET), 541
operation, garbage collection, 280-281
profiling, 1320
modifiers
Friend, 225, 234
inheritance, 428
Private, 225, 234
Protected, 225, 234
Protected Friend, 225, 234
Public, 225, 234
modifying
database schemes, 664-665
debugging, 50

MSDeploy 1409

default values, thread pools, 1063
directories, 453-459
System.l0.Directory class, 455-458
System.l0.Directorylnfo class, 458-459
documents, 799-808
elements, angles, 780
Entity Framework (ADO.NET), 645-652
files, 453, 460-463
permissions, 463
System.lO.File class, 460-461
System.lO.FileInfo class, 462-463
LINQ to XML, 671-677
pathnames, 453-459
properties, notifications, 387
Registry, 486-487
Startup objects, 35
streams, 453
Mod operator, 155, 570
modules, 301
classes, comparing, 303
namespaces, 284
overview of, 301-303
Visual Basic 2012 projects, 65
Monitor class, synchronization, 1065
Mouse property, 482
MoveCurrentToFirst method, 832
MoveCurrentToLast method, 832
MoveCurrentTo method, 832
MoveCurrentToNext method, 832
MoveCurrentToPrevious method, 832
Move method, 455
moving
breakpoints, 185
drag'n'drop data-binding, 818-840
elements, 781
XML namespaces, 293
MSBuild.exe, 7, 40, 847
MsCorlib.dll, 6
MSDeploy, 884
publishing, 886-891
settings, 889-888

How can we make this index more useful? Email us at indexes@samspublishing.com

1410 MSDN (Microsoft Developer Network)

MSDN (Microsoft Developer Network)
Code Gallery, 1303
Library, 48
navigating, 56

Visual Basic 2012 resources,
1357-1358

web applications, publishing, 890
MSIL. See CIL, 5
MsmaqlntegrationBinding, 1005
multicast delegates, 382-383
multicore JIT compilation, 853
multicore processor architectures, Parallel JIT
Compilation, 5
multidimensional arrays, 151, 516
multiline lambda expressions, 530-531
multimedia animation, 782-790
multiple applications, references (GAC), 1227
multiple constraints, 374
multiple diagrams, formatting, 431
multiple interface implementations, 350
multiple modules, 302
multiple roles, adding, 936
multiple scopes, 8
multiple times, applying attributes, 1187
multiple transforms, 782
multiplication (*) operator, 155, 313

Multipurpose Internet Mail Extensions.
See MIME, 80

multi-targeting, 18
multithreading, 1057, 1060-1061
MultiView control, 859
MustInherit keyword, 303, 336
MustOverride keyword, 336
MVC (Model-View-Controller), 854
MVVM (Model-View-View Model), 443, 811
Silverlight applications, 913
My.Application property, 477
assemblies, retrieving information, 478-479
cultures, 479-480
deploying, 480-482
extending, 504-505
MyBase keyword, 332, 337-339
MyClass keyword, 339-341
MyCollectionsUtils identifier, 502

My.Computer property, 478, 482-490
Audio property, 485
Clipboard property, 484-485
extending, 505-506
file systems, 483-484
Keyboard property, 485
Name property, 488-490
Network property, 487
Registry property, 486-487
My namespace, 477
applying, 506-510
extending, 502-506
My.Application property, 478-482
cultures, 479-480
deploying, 480-482
My.Computer property, 482-490
Audio property, 485
Clipboard property, 484-485
Keyboard property, 485
Name property, 488-490
Network property, 487
Registry property, 486-487
My namespace, 478-482
My.Resources property, 497-500
My.Settings property, 490-496
application-level only settings, 492-493
events, 495-496
naming configuration files, 493-495
My.User property, 500-502
My.WebServices property, 502
overview of, 477-478
My Project, 33-39
compiling options, 41
navigating, 72-75
resources, 78
Settings tab, 82
WPF applications, 699
My.Resources namespace, 478, 506
My.Resources property, 497-500
My.Settings property, 478, 490-496
application-level only settings, 492-493
events, 495-496
extending, 506
naming configuration files, 493-495

MySQL, 541
My.User property, 478, 500-502
My.WebServices property, 478, 502

N

Name method, 500
Name property, 428, 488-490
names
configuration files, 493-495
conventions, 8
CLS, 264-266
Code Analysis, 1314
exceptions, 209, 345
identifiers, 72
interfaces, 355
value types, 94
enumerations, 316-317
pathnames
modifying, 453-459
System.l0.Path class, 454-455
resources, 80

strong names, signing GAC assemblies with,
1224-1226

System.Object class, 91
Namespace..End Namespace blocks, 284, 288
namespaces

CLS, 295

compiling, 6

Global keyword, 295-299

Imports directives, 292-295

My namespace. See My namespace

My.Resources, 478, 506

nested, implementing, 288-291

purpose of, 287-288

root, 34, 291-292

scope, 291

System.Collections, 394

System.Collections.Concurrent, 413

System.DataSet.DataSetExtensions, 622

System.Diagnostics, 197

nested types 1411

System.Globalization, 842

System.l0, 8, 293

System.Reflection, 1158

System.Reflection.Emit, 1171-1177

System.Runtime.CompilerServices, 1177

System.Runtime.InteropServices, 310

System.Windows.Controls, 6

System.Xml.Linq, 672-674

System.Xml.Serialization, 1043

types

managing, 283-295
overview of, 283-284

Visual Basic 2012 projects, 66-67

XML, importing, 293, 689
NameValueCollection collection, 401
narrowing conversions, 120-125
Navigated event, 510, 965
Navigate method, 965
NavigateUri property, 806, 910
navigating

ASP.NET applications, 864-862

controls, adding, 874

IDE tabs, 50

MSDN Library, 56

My Project, 33-39, 72-75

Object Browser window, 56-59

Online Help, 56

Silverlight Navigation Applications, 908-910

Solution Explorer windows, 28-30

Visual Studio 2012, 11

windows, Error Lists, 30-31

Windows Phone applications, 963-966
Navigating event, 510, 965
NavigationFailed event, 510, 965
NavigationProcess event, 510
Navigation Properties, EDMs, 640
NavigationService class, 965
NavigationStopped event, 510, 965
NestedClass class, 227
nested classes, 226-227, 348
nested constructor invocations, 256-257
nested namespaces, implementing, 288-291
nested Try..Catch..Finally blocks, 217-218
nested types, 374

How can we make this index more useful? Email us at indexes@samspublishing.com

1412 .NET Framework

.NET Framework
ADO.NET, 539
connecting databases, 541-543
connection modes, 541
data providers, 540-541
overview of, 540-543
anonymous types, 524
applications
ASP.NET, 851

InstallShield, 1229. See also
InstallShield

localizing, 841-842
architecture, 2-3
arrays, applying, 148-155
assemblies, 4-5, 1143
application domains, 1145-1147
overview of, 1143-1145
security models, 1148-1155
asynchronous programming
APM, 1106-1107
Async pattern, 1107-1112
EAP, 1104-1106
overview of, 1104

attributes
applying, 1181-1184
coding, 1181

customizing code, 1184-1188
reflection, 1189-1190
BCL, 5-6
classes, 225
CLS, 263-267
constructors, 252-259
declaring, 225-227
executing actions with methods, 235-247
fields, 227-229
partial, 248-251
partial methods, 251-252
properties, 229-234
scope, 234-235
shared members, 259-263
ClickOnce, 1229, 1245-1247
CLR, 45
Code Analysis, 1310
Code Contract, 1350-1355

code documentation, 1207. See also XML
comments

collections, 393
architecture, 394
ArrayList, 394-397
BitArray, 401
Bitvector32, 402-403
concurrent, 413
customizing, 413
Dictionary (Of TKey, TValue), 407
HashTable, 398-399
HybridDictionary, 400
initializers, 405-406
ListDictionary, 399
NameValueCollection, 401
nongeneric, 394-403, 406
ObservableCollection (Of T), 408-410
OrderedDictionary, 399
Queue, 397-398
Queue (Of T), 412

SortedDictionary (Of TKey, TValue), 408

SortedList, 400
Stack, 398
Stack (Of T), 412
StringCollection, 400
StringDictionary, 400
Common Type System, 89-93
conditional code blocks, 172-175
constants, 175-176
DataSets, 539, 543-547
data types

converting between reference
types/value, 111-119

fundamental types, 125-155
dates, applying, 137-143
delegates, 379

combining, 382-383

declaring, 380-382

overview of, 379-383
differences between 4.0/4.5, 3
documentation, 55-59
Entity Framework (ADO.NET)

EDMs, 630-643

overview of, 629-630
enumerations, 305, 315-321
error handling, 207

events, 379
customizing, 389-391
handling, 383-385
registering, 383-384
exception handling, 207-208, 224
files
modifying, 460-463
permissions, 463
Finalize method, 271-272
GAC, 1221
generics, 367
formatting, 368-375
overview of, 367-368
GUIDs, applying, 147-148
inheritance, 323-324

accessing base classes members,
337-341

applying, 324-327
conditioning, 334-337
constructors, 341-342
customizing exceptions, 344-346
overriding members, 331-334, 343-344
polymorphism, 329-331
shadowing, 342-343
System.Object class, 328-329
interfaces, 347, 355-365
CLS, 354-355
defining, 347-348
implementing, 348-352
inheritance, 353-354
polymorphism, 352-353
1/0 file operations, 1137-1141
iterations, 166-170
iterators, 393, 414-422
lambda expressions, 526-533
LINQ. See also LINQ
architecture, 554
examples, 551-552
language support, 552
LINQ to Objects, 557
overview of, 549-551
providers, 553-554
loops, 95-172
methods, 64. See also methods
multi-targeting, 18

.NET Framework 1413

multithreading, 1057, 1060-1061

My namespace, 477-478. See also My
namespace

namespaces, 283-284
new features, 7-8
nullable types, 367, 376-377
objects
advanced garbage collection, 279-281
allocating memory, 269-270
garbage collection, 270-271
resurrecting, 278-279
structures, 65
operators, 155-165
arithmetic, 155-157
assignment, 157-158
bitwise, 160-162
comparison, 163-165
concatenation, 163
logical, 158-159
shift, 162-163
short-circuiting, 159-160
optimization, 272
overview of, 1-3
partitioning, 1085-1086
primitive reference types, 105-106
processes, 1057-1060
programming languages, 6-7
reflection, 1143-1157
serialization, 1035
ADO.NET, 1053-1054
customizing, 1045-1048
objects, 1036-1042
WCF, 1050-1053
XAML, 1048-1050
starting, 2
streams, 464-475
strongly typed objects, 104-105
structures, 305
allocating memory, 309
assigning to variables, 308
CLS, 314
implementing interfaces, 309
inheritance limitations, 309
managing, 310
member visibility, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

1414 .NET Framework

overloading operators, 310-314

overview of, 305-308

passing to methods, 308
System.l0.Directory class, 455-458

System.l0.DirectoryInfo class, 458-459

System.l0.Drivelnfo class, 459
System.lO.File class, 460-461
System.lO.FileInfo class, 462-463
System.l0.Path class, 454-455
threads

pools, 1061-1063

synchronization, 1063-1066
time, applying, 143-144
TimeZone type, 144-147
TimeZonelnfo type, 144-147
tools, 7
types, managing within namespaces,

283-295

value types

conversion operators, 120-125

differences between reference
types/value types, 106-111

primitive, 93-94

versions, selecting, 18

Windows 8, 8

WinRT, 8

With..End With statements, 176-177
NetMsmgBinding, 1005
NetNamedPipeBinding, 1005
NetPeerTcpBinding, 1005
NetTcpBinding, 1005
NetTcpContextBinding, 1005
NetworkAvailabilityChanged event, 509
Network property, 482, 487
networks

streams, 474

Visual Basic 2012 tools, 1359
NetworkStream class, 474
New Event Handler command, 706
new features

.NET Framework, 7-8

Silverlight, 898

Silverlight applications, 928

Visual Studio 2010, 11-12

WPF, 695

NewGuid method, 147
New Interface dialog box, 425
New Item command, 30
New keyword, 67, 136, 252
constraints, 373
structures
New method, 255
System.Object class, 328
New Project dialog box, 21, 854, 1263
New Project window, 17-19
New Solution Configuration window, 42
New With statement, 525
NextNode property, 674
nongeneric collections, 394-403, 406
NonSerialized events, 1042
Northwind databases, 589. See also databases
data sources, adding, 912-913
data validation, 614
LINQ to DataSets, 622
tables, 590
notation, JSON, 1015
notifications
properties, modifying, 387
push, 959
tiles, 959
NotimplementException, 436
NotInheritable keyword, 303, 335-336
Not operator, 158-162
NotOverridable keyword, 334
NuGet, managing libraries, 1283-1286
nullable arguments, 241
nullable types, 101, 367, 376-377, 553
NullReferenceException, 1101
Field (Of T) method, 626
null strings, checking for, 128
numbers
binary, 160-162
dates, applying, 137-143
floating-point, 156
time
applying, 143-144
zones, 144-147

0

Object Browser tool, applying, 394
Object Browser window, 56-59
System.Object class, 91
ObjectContext class, 916
object-oriented programming. See OOP
objects
adding
databases, 655
Visual Studio Class Designer, 425-428
Application, 719-721
CollectionViewSource, 830
COM
applying, 1192-1196
exposing, 1197-1199
comparison operators, 164-165
complex, generating, 437-439
contexts, 645
databases, adding, 655
data types, 90
DeflateStream, 467
EDMs, 630
events, 379. See also events
FlowDocument, 799
Generate from Usage feature, 433-439
GZipStream, 467
initializers, 258-259, 437
applying, 558-559
LINQ, 553
JSON, 1015
lifetimes
finalizers, 110
managing, 269
LINQ to Objects, 557. See also LINQ
overview of, 557-558
querying in memory objects, 558-568
managing
advanced garbage collection, 279-281
allocating memory, 269-270
Finalize method, 271-272
garbage collection, 270-271
implementing Dispose/IDisposable
interfaces, 273-278
resurrecting, 278-279

online templates, accessing 1415

.NET

structures, 65

viewing, 57
POCO, 640
polymorphism, 329-331
serialization, 1036-1042
serialization, copying with, 1038
shortcuts, 477. See also My namespace
Startup, modifying, 35
StringBuilder, 136
StringComparison, 127
strongly typed, 104-105
System.Timers.Timer, 383

visualizers, inspecting with debuggers,
192-193

Visual Studio Class Designer, 424-432

WithEvents keyword, declaring with,
384-385

XAttribute, 672
XCData, 672
XComment, 672
XContainer, 672
XDeclaration, 672
XDocument, 672
XDocumentType, 672
XElement, 672
XName, 672
XNamespace, 672
XNode, 672
XText, 672

ObservableCollection (Of T) collection, 408-410,
814-818

ObservableCollectionHelper class, 503
ODBC (open database connectivity), 540
OffType method, 519

Of keyword, 368

old CAS-based code, migrating, 1155
OleDb, 540

OnCreateMainForm method, 76
OnDeserialization method, 1041
OneTime mode, 813

one-to-many relationships, 605
OneWay mode, 813

OneWayToSource mode, 813

Online Help, navigating, 56

online templates, accessing, 19-20

How can we make this index more useful? Email us at indexes@samspublishing.com

1416 OnModelCreating method

OnModelCreating method, 666
on-the-fly code, 1297

anonymous iterators, 419

compiling, 5
on-the-fly objects, Generate from Usage feature,

433-439

OOP (object-oriented programming), 225

polymorphism, 329-331

types, comparing reference/value, 107-110
OpCodes, 1175
open database connectivity. See ODBC, 540
Open Data Protocol (OData), 1015, 1112
opening

.NET Framework, 2

Object Browser, 57

Quick Launch tool, 59-60

Visual Studio Class Designer, 424
operating systems

interacting with, 4

.NET Framework, 1

Windows 8. See Windows 8

Windows Phone, 955. See also Windows
Phone

OperationCanceledException, 1078, 1134
operation modes, Garbage Collection, 280-281
operations, implementing services, 1027-1029
operators, 155-165

And, 158-162, 313, 570

addition (+), 155, 313

aggregation, 570-572

AndAlso, 158-159, 570

arithmetic, 155-157

assignment, 157-158

binary, invoking AsParallel, 1097

bitwise, 160-162

comparison, 163-165

concatenation, 163

concatenation operators, 583

conversion, 103, 120-125, 572-574

division (/), 155, 313

elements, 583-584

equality (=), 126, 164, 313, 570

exponentiation (#), 155, 313

generation, 574-575

greater than (>), 164, 313

greater than or equal to (>=), 164, 313
grouping, 577-579
If

LINQ, 553

ternary, 533-534
IIf, 173-174
inequality (<>), 104, 164, 313, 570
integer division (\), 155, 313
Is, 164-165, 570
IsFalse, 158
IsNot, 164-165, 570
IsTrue, 158
left-shift (<<), 162, 313
less than (<), 164, 313
less than or equal to (<=), 164, 313
LINQ to DataSets, 623
logical, 158-159
Mod, 155, 570
multiplication (*), 155, 313
Not, 158-162
Or, 158-162, 313, 570
ordering, 575-576
OrElse, 158-159, 570
partitioning, 584-585
polymorphism, 330
precedence, 165
projection, 568-569
recursive, 45
restriction operators, 569-570
return values, 45
right-shift (>>), 162, 313
set, 576-577
shift, 162-163
short-circuiting, 159-160
standard query, 568-585

standard query operators (LINQ to
Entities), 652

structures, overloading, 310-314
subtraction (-), 155, 313
TypeOf, 125, 164-165
union, 579-582
Xor, 158-162, 313
optimistic concurrency, 616, 648-650
Optimization tab (Visual Studio 2010), 47

optimizing
collections, generics, 395
enabling, 47
IntelliTrace, 1329
.NET Framework, 272
performance (Silverlight applications), 928
structures, 310
value types, 101
Optional keyword, 240-241
optional nullable arguments, 241
Option Infer directives, 513
options
ClickOnce, 1253-1255
compiling, 41-44
IntelliTrace, 1329
item templates, 1264

local installation, running out-of-browser
applications, 925

role configuration, accessing, 935

toolboxes, 1275

Visual Studio 2012, 1267-1270, 1289-1299
Options button (ClickOnce), 1253-1255
Options dialog box, 513
Option Strict settings, 113

arrays, 149

LINQ to XML, 682

reflection, 1177
Oracle, 540
OrderBy clause, 916
OrderBy method, 519
OrderByDescending method, 519
OrderDescription property, 309
OrderedDictionary collection, 399
ordering

operators, 575-576

sequences (PLINQ), 1096
OrElse operator, 158-159, 570

orientation, Windows Phone applications,
963-966

Or operator, 158-162, 313, 570

out-of-browser applications (Silverlight
applications), 923-926

out of scope objects, 271
output
debugging, 198
to projects (InstallShield), adding, 1236

pages 1417

Output window, 31-33

compilation process results, viewing, 40

debugging, 194
overflow checks, removing integers, 47
overhead, performance, 222
overlapping catch blocks, 45
overloading

constructors, 255-257

CType, 312-314

extension methods, 523

methods, 242-246

operators, structures, 310-314

parameters, 245

properties, 246

types, parameters, 375
Overloads keyword, 255, 334
Overrides keyword, 332
overriding

members

deriving, 334
inheritance, 331-334

shared members, 343-344
OverwriteCurrentValues, 616
overwriting files, 197-199

P

packages
InstallShield, 1234, 1244
MSDeploy, 886
Silverlight applications, 899
Visual Studio 2012 extensibility, 1289-1299
VSIX, 1300
web applications, installing, 888-891
Page class, 856
pages. See also web pages, 852, 856, 1249
events, 856
lifetimes, 856
master, 865-868
requests, 852

server-driving paging, Data Services (WCF),
1033-1034

Windows Phone applications, 963-966

How can we make this index more useful? Email us at indexes@samspublishing.com

1418 Panel control

Panel control, 859
panels
Canvas, 714
controls, managing, 709-716
DockPanel, 714
Grid, 709-711, 1261
StackPanel, 711-712
ViewBox, 716
WrapPanel, 713-714
panorama controls, Windows Phone
applications (apps), 974-980
Parallel class, 1071
parallel classes, 1071
parallel computing, 1069-1071
concurrent collections, 1087-1092
exception handling, 1075-1077
loops, 1080-1086
tasks
applying, 1072-1080
debugging, 1086
ParallelEnumerable class, 1097
Parallel.ForEach method, 1080-1084
Parallel.For method, 1080-1083
Parallel.Invoke method, 1072
Parallel JIT Compilation, 5
Parallel LINQ. See PLINQ
ParallelLoopState class, 1085
ParallelOptions class, 1071
Parallel Stacks window, 1087
Parallel Tasks window, 1086
ParamArray arguments, 239-240
ParameterizedThreadStart delegate, 1061
parameters
attributes, types, 1185
overloading, 245
passing, 1061
types, 233, 375
paramref tag (XML comments), 1213
param tag (XML comments), 1213
para tag (XML comments), 1213
Parse method, 100, 139
enumerations, 318-319
parsing XML documents, 674
partial classes, 248-251
Partial keyword, 614

partial methods, 251-252
ParticipantCount property, 859
ParticipantsRemaining property, 1080
partitioning
.NET Framework, 1085-1086
operators, 584-585
Pascal, 7, 355
passing
arguments by value, 238
arrays, 239
empty strings, 221
events, 387-389
interfaces as method arguments, 351
parameters, 1061
reference types, 111, 238
structures
allocating memory, 309
APls, 310
values, 238
PasswordBox control, 741
passwords
formatting, 1226
saving, 1226
pathnames
exception handling, 459
modifying, 453-459
System.l0.Path class, 454-455
PathTooLongException, 459
patterns

Async, 1107-1112. See also Async pattern

canceling, 1131-1134
documentation, 1126
MVVM, 443
regular expressions, 999
Peek method, 398
performance
ASP.NET, 852-853
exceptions, catching, 217
generics, 368
iterators, 416
Launch Performance Wizard, 1320
LINQ queries, measuring, 1093-1095
overhead, 222
PLINQ queries, measuring, 1095

Silverlight applications, 928
types, comparing reference/value, 110
Visual Basic 2012 tools, 1359
permissions
assemblies, 1149
files, 463
folders, configuring, 881
implementing, 1149
requirements, documentation, 1219
Silverlight applications, 926
tags (XML comments), 1214
PhoneCallTask, 967, 972
PIAs (Primary Interoperability Assemblies),
86-87
PictureBox control, 499
Pictures Hub, Windows Phone applications
(apps), 982-984
P/Invoke (Platform Invoke), 4
COM, 1200

converting types to unmanaged,
1202-1203

handling exceptions, 1205-1206
encapsulating, 1201-1202
Interop Assistant, 1358
Silverlight, 928
PivotViewer control, filtering data with, 920-923
Plain Old CLR Object. See POCO, 640, 1053
platforms, Windows Azure, 929-931. See also
Windows Azure
playing
audio, 485
media, 795-798
Silverlight applications, 900-905
Windows Phone, 959
PLINQ (Parallel LINQ), 1092
exception handling, 1100-1101
queries
managing, 1097
measuring performances, 1095
sequences, ordering, 1096
POCO (Plain Old CLR Object), 640, 1053
PointAnimation, 905
policies, CAS, 1149
polymorphism, 329-331, 352-353
pools, threads, 1061-1063
portable classes, creating, 440-451

programming 1419

Portable Class Libraries, 7, 226, 440-451
portable libraries, 423

Ports property, 483

positioning breakpoints, 185

Position method, 464

postback events, 856-857
post-conditions, contracts, 1353-1354
PostgreSQL, 541

Power Tools (Visual Studio 2010), 29
precedence, operators, 165
preconditions, contracts, 1352-1353
PreRender event, 856

prerequisites, LINQ to SQL, 588
Prerequisites dialog box, 1252
PresentationCore, 696
PresentationFramework, 696
PreviousNode property, 674

Primary Interoperability Assemblies.
See PlAs, 86-87

primary output, adding (InstallShield), 1236.
See also output, 198

primitive reference types, 105-106
primitive value types, 93-94
Print method, 194
PrintString method, 237
private constructors, 257
Private qualifiers, 225, 234, 308
private variables, 265
privileges (Visual Studio 2012), 933
probing assemblies, 1144
procedures
LINQ to SQL, mapping, 610-613
stored, mapping, 654-657
processes, 1057
debugging, 180-182
executing, 5
managing, 1058-1060
queries, 1059-1060
ProcessStartinfo class, 1058
products, saving databases, 607
Profiler, 1310
programming
asynchronous, 1103
APM, 1106-1107
Async pattern, 1107-1112, 1120-1122
callbacks, 1116-1120

How can we make this index more useful? Email us at indexes@samspublishing.com

1420 programming

EAP, 1104-1106
event-based asynchrony, 1116-1120
overview of, 1104
synchronous approach to, 1112-1116
task-based asynchrony, 1127-1131
attributes, 1183. See also attributes
ClickOnce, accessing, 1257-1258
parallel computing, 1069. See also parallel
computing
TDD, 1344-1349

programming languages, 6-7. See also
languages

programming models, Windows Phone
applications (apps), 958-959

progress, reporting Async patterns, 1134-1136

ProgressBar control, 743

ProgressChanged event, 1106, 1134

projection operators, 568-569

project-level default Imports directives, 294

projects

Assemblylnfo.vb file, 76-77
attributes, 69-70

classes, 64

code files, 72-83

creating, 16-18

implicit line continuation, 70-71
Imports directives, 68-69
inheritance, 65-66
methods, 64-65

modules, 65

namespaces, 66-67
navigating My Project, 72-75
properties, 64

references, 83-88

Region directives, 69
reserved keywords, 72
resources, 77-81
structures, 65

unreserved keywords, 74

Visual Studio 2010, applying, 16-27

compiling, 39-48
pifing Windows Azure, creating, 933-944

Console Application project template, 22
data services, adding, 1016
InstallShield, 1229
creating, 1232-1242
formatting, 1242
items, adding, 30
My Project. See My Project
reusing, 22
searching, 24
Silverlight

creating with Visual Basic 2012,
895-897

Windows Azure, 936-942
Solution Explorer windows, 28-30
strong names, adding, 1225
TDD, 1344-1345
templates, 17-18. See also templates

exporting, 1261-1263

WCF, 993

WPF, 698-697
upgrading, 16
Visual Basic 2012, 63

accessing members, 67-68

Application.myapp file, 75-76

application settings, 81-83

Windows Forms, adding, 1193

properties

Access, 428

accessing, 45, 232
AllowMultiple, 1187
App.Current, 924

Audio, 482
auto-implemented, 229-231
Background, 717
BoundedCapacity, 1091
brushes, applying to, 758
Cancel, 496

CanfFilter, 832

CanGoBack, 965
CanGoForward, 965
CanGroup, 832

CanSort, 832
CanUserAddRows, 818
CanUserRemoveRows, 818
CanUserReorderColumns, 818
CanUserResizeColumns, 818
CanUserResizeRows, 818
CanUserSortColumns, 818
Capacity, 394

classes, 229-234
Clipboard, 482-485
ColumnGap, 803

Content, 726

contracts, configuring, 1350-1351
controls, binding, 813
Converter, 840

Count, 410

Counter, 343

Culture, 479

Current, 720

CurrentCell, 818
CurrentDeployment, 1257
Currentltem, 832
CurrentPhaseNumber, 1080
CurrentPosition, 832
customizing, 1301

Data, 214
DataContext.Log, 613
default, 233-234
Dispatcher, 720
ElementName, 812
Embed Interop Types, 87
ErrorCode, 1205
ErrorDialog, 1058
FileSystem, 482-484

First, 410

FirstNode, 674

generating, 437

Help, 214
IAsyncResult.AsyncState, 1107
Info, 483, 488-490, 720
InnerException, 214, 1101
IsAddingCompleted, 1091
IsCompleted, 1075, 1091
IsNetworkAvailable, 487
IsNetworkDeployed, 480
IsRunningOutOfBrowser, 924
ItemSource, 823
Keyboard, 482

Last, 410

LastEdit, 1185

LastName, 534

LastNode, 674

LineHeight, 899

properties

LoadedAssemblies, 479

LoadedBehavior, 797

Local, 667

MainWindow, 720

MaxValue, 101, 137, 143-144

Message, 214

MinValue, 101, 143-144

modifying, 387

Mouse, 482

My.Application, 477
applying, 478-482
cultures, 479-480
deploying, 480-482
extending, 504-505
retrieving information, 478-479

My.Computer, 478, 482-490
Audio property, 485
Clipboard property, 484-485
extending, 505-506
file systems, 483-484
Keyboard property, 485
Name property, 488-490
Network property, 487
Registry property, 486-487

My.Resources, 497-500

My.Settings, 478, 490-496

1421

application-level only settings, 492-493

events, 495-496
extending, 506

naming configuration files, 493-495

My.User, 478, 500-502
My.WebServices, 478, 502
Name, 428

NavigateUri, 806, 910
Navigation Properties, EDMs, 640
Network, 482

NextNode, 674
OrderDescription, 309
overloading, 246
ParticipantCount, 859
ParticipantsRemaining, 1080
Ports, 483

PreviousNode, 674
QuantityPerUnit, 643
read-only, 231

How can we make this index more useful? Email us at indexes@samspublishing.com

1422 properties

Registry, 482

Resource, 720

RowStyle, 818

rules, 267

scalar, 643

Screen, 483

Selectedltem, 818

Settings, defining, 83

ShowGridLines, 711

ShowlInTaskBar, 717

ShutdownMode, 720

Source, 214, 965

StackTrace, 54, 214

StartupUri, 720

Stretch, 794

stubs, generating, 1347

System.Drawing.Bitmap, 498

System.Exception class, 214-216

TargetSite, 214

Task.Result, 1074

Test, 340

Title, 717

TopMost, 717

UlCulture, 479

View, 830-835

Visual Basic 2012, 64

Windows, 717, 720

Windows Phone, customizing, 986

WindowStartupLocation, 717

WindowState, 717

WindowStyle, 717

write-only, 231-232
Properties window, 31, 642, 702
PropertyChanged event, 387, 495
Protected Friend members, inheritance, 327
Protected Friend modifier, 225, 234
Protected members, inheritance, 327
Protected modifier, 225, 234
protocols

FTP, 884

HTTP, 8, 991

OData, 1015, 1112

SOAP, 1039-1040

TCP, 991

providers (LINQ), 553-554
providers, .NET data, 540-541
proxy classes (WCF), 1002
public keys (GAC), 1224
public modules, 303. See also modules
Public qualifiers, 308
inheritance, 327
interfaces, 348
modifiers, 225, 234
Public Shared Operator statement, 311
Publish.htm web page, 1249
publishing
ASP.NET applications, 883-885
extensions, 1302
MSDeploy, 886-891
Windows Phone Marketplace, 956
Publish Web dialog box, 887

Publish Windows Azure Application wizard, 944

Publish Wizard, 1247
purpose of namespaces, 287-288
push notifications, 959

Q

qualifiers
Friend, 308, 348
Private, 308
Public, 308, 348
writing, 434
quantifiers, 582-583
QuantityPerUnit property, 643
queries
Code First models, 661
databases, 542
Data Services (WCF), 1026
DataSets, 547
EDMs
with LINQ to Entities, 652-653
with SQL, 653-654
expressions, 551
interceptors, applying, 1030-1033

LINQ, 565. See also LINQ
anonymous types, 524

measuring performances, 1093-1095
standard query operators, 568-585

LINQPad, 1359
LINQ to DataSets, 621-624
LINQ to SQL, 600-604

LINQ to XML, 676-677, 680-682

memory, objects, 558-568
PLINQ
managing, 1097-74

measuring performances, 1095

processes, 1059-1060
thread pools, 1063

via HTTP requests, 1014-1015

Querylnterceptor attribute, 1030
QueryVideosAsync method, 1132
Queue collection, 397-398
Queue (Of T) collection, 412
Queues Storage, 931

Quick Launch tool, 59-60

Quick Watch window, 191

R

RadialGradientBrush, 758, 762
RadioButton control, 744, 859
RadioButtonList control, 859
raising events, 385-389
RangeValidator control, 859
ReadAllText method, 160
read-and-write operations, 229
ReadAsync method, 1138
ReadByte method, 464
reading

binary files, 465

text, 464-465
ReadLineAsync method, 1138
Read method, 464

ReadOnlyCollection (Of T) collection, 406-407

ReadOnly keyword, 231
read-only properties, 231
ReadToEndAsync method, 1138

How can we make this index more useful? Email us at indexes@samspublishing.com

ReflectionOnlyLoadFrom method

read/write locks, 1065-1066
ready-to-use themes, 14

really simple syndication. See RSS
recent templates, accessing, 19-20

Rectangle control, 745
recursive clones, 118
recursive operators, 45
ReDim keyword, 150-151
refactoring code, 1349
ReferenceEquals method, 328

1423

Reference Manager dialog box, 84-85, 936

references
COM libraries, adding, 85-86

Data Services, adding to, 1023

delegates, 382
GAC, 1227
items, specifying in, 1266
reference types, passing, 238
services, adding, 1002
Solution Explorer, 85
types, 90-93

applying, 103-106

conversion operators, 120-125

primitive, 105-106
value types

converting between, 111-119
differences between, 106-111
Visual Basic 2012 projects, 83-88

Win32 API calls, 1206
Reflection, 500
reflection, 1143-1157

assemblies

Caller Information, 1177-1180

metadata, 1158-1160

retrieving information from, 1160-1162

attributes, 1189-1190

dynamic code, running, 1169-1171

late binding, 1176
overview of, 1157
security, 1169

System.Reflection.Emit namespace,

11711177
types, 1162-1169

ReflectionOnlyLoad method, 1160
ReflectionOnlyLoadFrom method, 1160

1424 RefreshMode enumeration members

RefreshMode enumeration members, 616
regional settings, 844
Region directives (Visual Basic 2012), 69
registering
assemblies for COM interoperability, 1197
Developer Portal (Windows Azure), 931
for events, 383-384
garbage collection events, 281
Marketplace (Windows Phone), 956
Registration-Free COM (ClickOnce), 1258-1259
Registry
Application Registry (InstallShield), 1239
modifying, 486-487
Registry property, 482
regular expressions, 251-252
patterns, 999
relationships
LINQ to SQL, 593
one-to-many, 605
relaxed delegates, 526
Release configuration (Visual Studio 2012),
40-43
releasing COM objects, 1195
remarks tag (XML comments), 1214
RemoveFirst method, 410
RemoveHandler keyword, 383-384
Removelast method, 410
RemoveMemoryPressure method, 280
Remove method, 410, 660, 674
RemoveNodes method, 674
RemoveParticipant method, 1080
RemoveParticipants method, 1080
removing. See deleting, 47, 457, 1270
ReplaceWith method, 674
replacing
Default.Aspx pages, 950
Latest News tabs, 14
reporting progress, Async patterns, 1134-1136

REpresentational State Transfer.
See REST, 1014

reproduction of content, 901
requests
asynchronous, 853
HTTP
GET, 1030
querying data via, 1014-1015

pages (ASP.NET), 852
Required attribute, 650, 664
RequiredFieldValidator control, 859
requirements
classes for COM exposure, 1197
InstallShield installations, 1234-1236
LINQ to SQL, 588
memory, value types, 94
permissions, 1149, 1219

system, Local DB (SQL Server 2012),
539-540

ReRegisterForFinalize method, 279
reserved keywords

Await, 1109

My namespace. See My namespace

Visual Basic 2012 projects, 72
resizing

elements, 780

windows, 711
ResourceManager class, 80, 500
Resource property, 720
resources, 8

adding, 498

code, accessing by hame, 500

localization, editing, 848

mapping, 500

My.Resources property, 497-500

specifying links to, 1219

unlocking, 211

Visual Basic 2012, 77-81, 1357-1358

WPF, 497-500
Resources Designer, 497
Resources.resx file (Visual Basic 2012), 77-81
REST (REpresentational State Transfer), 1014
restriction operators, 569-570
restyling windows, 777. See also styles
results

of build processes, viewing, 31

Code Coverage, enabling, 1343

IntelliTrace, 1331-1333

serialization, 1037

value types, assigning, 99
ResurrectDemo class, 279
resurrecting objects, 278-279
ResurrectionDemo type, 279
rethrowing exceptions, 219

retrieving
command-line arguments, 482
environment variables, 481
Return instruction, 560
return methods, 319-320
returns tag (XML comments), 1214
Return statement, 319
return types, array literals, 515
return values, 45, 1074-1075
ReturnFullName method, 243
reusing
code
generics, 368
snippets, 1275-1283
data types, 90
projects, 22
templates, 1246
Reverse method, 396, 519

RIAs (rich Internet applications), 893. See also
Silverlight applications; Visual Basic 2012

RichTextBox control, 806-808
right-shift (>>) operator, 162, 313
roles
configuring, 881
web, 934-936
Root method, 674
root namespaces, 34, 291-292
RotateTransform, 780
rotating elements, 780
round-tripping projects, 16
routing
events, 707-708
strategies, 708-709
RowStyle property, 818
RSS (really simple syndication)
asynchronous programming, 1112-1116
Latest News tab (Visual Studio 2012), 14
loading, 1116
reading view, closing, 1018
rules
arrays, 267
classes, 266
methods, 267

scaling loops 1425

Microsoft code analysis, 1311
properties, 267
security, Transparency Level 2, 1150-1152
Run method, 720
running
applications, 875
assemblies, 4-5

.NET Framework, 2. See also .NET
Framework

dynamic code, 1169-1171
out-of-browser applications, 925
sandboxed assemblies, 1154
tasks, 1073-1074
unit tests, 1342-1343, 1348
WCF RIA Services, 920
runtime
assemblies, 5
code, generating at, 1171
Code Contract, 1350-1355
dynamic code, creating at, 1147
errors, debugging, 53-54
windows, instantiating at, 718
WInRT, 8, 1191
Runtime Callable Wrapper, 1192
Run to Cursor command, 181

S

samples, searching code, 21
sandboxed models, 1149, 1152-1154
SaveChanges method, 833
saving

cookies, applying, 863

passwords, 1226

products to databases, 607
SByte keyword, 95
scalability (ASP.NET), 852-853
scalar properties, 643
ScaleTransform, 780
scaling loops, 1080

How can we make this index more useful? Email us at indexes@samspublishing.com

1426 scheduling

scheduling
tasks, customizing, 1070
Task Scheduler, 1070
schemas
EDMs, 638
XML
adding, 1112
interfaces, 685-690
schemes, modifying databases, 664-665
SciTech Memory Profiler, 1359
scope
assemblies, 1144
classes, 234-235
of fields, 228
interfaces, 348
iterators, 414
levels (Visual Basic 2012), 234
local type inference, 514
members, 327
modules, 302
multiple, 8
namespaces, 291
out of scope objects, 271
Screen property, 483
ScrollViewer control, 746
SDKs (Software Development Kits), 7
Visual Studio 2012, 1288-1289
Windows Phone, 957-958
searching
Bing, 972
code
clones, 1310, 1317-1319
samples, 21
files, 3
IronPython, 6-7
IronRuby, 6-7
probing, 1144
projects, 24
templates, 20
tools, 1360
SearchTask, 967, 972
sections of EDMs, 633

security

ASP.NET applications, configuring, 879-882

assemblies (.NET 4.5), 1148-1155
attributes, 1151
CAS, 1148
ClickOnce, 1255
GAC, 1224, 1227
managed code, writing, 4
permissions, 463
reflection, 1169
Silverlight applications, 926
Transparency Level 2, 1150-1152
SecurityCritical attribute, 1151
SecurityException, 463
SecurityRules attribute, 1151
SecuritySafeCritical attribute, 1151
SecurityTransparent attribute, 1151-1152
Security Zones, 4
Seealso tag (XML comments), 1214
Seek method, 464
See tag (XML comments), 1214
SEHException, 1205
Select Case statement, 174-175
Selectedltem property, 818
selecting
code editor extension templates, 1305
components (Windows Media Player), 86
default types, 493
interfaces, 348
locations (ClickOnce), 1247
.NET Framework versions, 18
objects, EDMs, 632
Silverlight applications, 721
types, customizing, 111
SelectionBrush, 758, 765-767
Select keyword, 553
SelectMany method, 519
Select method, 519
Select Tool window, 1291
Separator control, 746
SequenceEquals method, 519
sequences, ordering PLINQ, 1096
Serializable attribute, 70, 1182

serialization, 117, 1035
ADO.NET, 1053-1054
assemblies, generating, 48
binary, 1036-1038
customizing, 1045-1048
events, 1047-1048
JSON, 1053
objects, 1036-1042
SOAP, 1039-1040
WCF, 1050-1053
XAML, 1048-1050
XML, 1043-1045

SerializationException, 1037

Serialize method, 1036

server-driving paging, Data Services (WCF),
1033-1034

Server Explorer, 589
servers, 929

controls, 858

11S, configuring, 994

WCF service operations, implementing,
1027-1029

ServiceContract, 993, 996
services
annotations, implementing, 804
cloud. See cloud services, 930, 946
Data Services (WCF)
consuming, 1022-1027
implementing, 1013, 1016-1021
overview of, 1013-1015
Domain Service Class, adding, 913-916
locations (Windows Phone), 959
members, invoking from, 1003-1007
metadata, exporting, 999
operations, implementing, 1027-1029
references, adding, 1002
Storage Account, 930
WCF, 991. See also WCF
consuming, 1001-1007
implementing, 993-1001
overview of, 992

WCF RIA Services (Silverlight applications),
911-923

web, 502
SessionEnding event, 510
Session state, 864

shadowing inheritance 1427

SetAudio method, 484
SetCreationTime method, 455
SetCurrentDirectory method, 458
SetData method, 484
SetDataObject method, 484
SetField (Of T) method, 626-627
Setlmage method, 484
SetLastError method, 1206
Set Next Statement, 181
set operators, 576-577
SetText method, 484
SettingChanging event, 495
settings. See also configuring
applications (Visual Basic 2012), 81-83
Boolean user-level, 491
cloud services, 946
contracts, properties, 1350-1351
Domain Service Class, 913
existing, importing, 1273
Export Settings Wizard, 1271-1273
InstallShield, 1229. See also InstallShield
listeners, configuration files, 200-202
manual package generation, 890
MSDeploy, 889-888
My.Settings property, 490-496
Option Strict, 113
arrays, 149
LINQ to XML, 682
reflection, 1177
out-of-browser, enabling, 923
project-level default Imports directives, 294
regional, 844
StartState, 83
users, managing, 1271-1273
Visual Studio 2012 projects, 1289-1299
Windows Azure subscriptions, 944
Settings command, 433
Settings Designer, 492
SettingsLoaded event, 495
Settings property, defining, 83
SettingsSaving event, 495
Settings.settings file, 83
Settings tab (My Project), 82
setup. See configuring; settings
shadowing inheritance, 342-343

How can we make this index more useful? Email us at indexes@samspublishing.com

1428 shallow copy, converting between reference/value types

shallow copy, converting between reference/
value types, 116-117

shapes (Microsoft Design Style), 12
Shared keyword, 259
SharelinkTask, 967, 973
ShareStatusTask, 967, 973
sharing
assemblies, 853
classes, 259
constructors, 262-263
fields, 259
libraries with NuGet, 1286
members, 45
classes, 259-263
generating, 436
overriding, 343-344
methods, 260-262
properties, 260
shift operators, 162-163
short-circuiting operators, 159-160
shortcuts

Application Shortcuts group (InstallShield),
1238-1239

objects, 477. See also My namespace
Short keyword, 95
Show Data Sources command, 917
ShowDialog method, 755
ShowGridLines property, 711
ShowlInTaskBar property, 717
Show Next Statement, 182
Show Output From combo box, 33
ShutDown event, 509
Shutdown method, 720
ShutdownMode property, 720
signing

assemblies, 1145

GAC assemblies with strong names,
1224-1226

Silverlight applications, 55, 699, 893
3-D graphics, 908
controls, 726, 897-900
data sources, adding, 912-913
deploying, 899
drag'n'drop data-binding, 916-919
event handling, 899
media, playing, 900-905

new features, 898, 928
ObservableCollection (Of T) collection, 407
out-of-browser applications, 923-926
overview of, 894
packages, 899
permissions, 926
security, 926
selecting, 721
Silverlight Navigation Applications, 908-910
Ul elements, animating, 905-908
views, defining, 449
Visual Basic 2012, creating with, 895-897
WCF RIA Services, 911-923
Windows Azure, building projects, 936-942
Windows Phone, 959
XAML, 700, 926-927

simple iterators, 417-418

Simple Object Access Protocol. See SOAP,
1039-1040

SimulateProcessing method, 1081
Single keyword, 95
Single method, 519, 1025
SingleOrDefault method, 519
single types, reflecting, 1167-1169
sizing

controls, 711

windows, 711
SkewTransform, 780
Skip method, 519
SkipWhile method, 519
SmsComposeTask, 967, 972
snippets, code

deploying, 1300

reusing, 1275-1283
SoapFormatter class, 1039

SOAP (Simple Object Access Protocol)
serialization, 1039-1040

Software Development Kit. See SDK
SolidColorBrush, 758-760
Solution Explorer, 24, 589
InstallShield, 1232
references, 85
windows, navigating, 28-30
solutions
Solution Explorer windows, 28-30
Visual Studio 2010, 16-27

SortedDictionary (Of TKey, TValue)
collection, 408

SortedList collection, 400
sorting
arrays, 152-155
data with PivotViewer control, 922
Sort method, 396
source code, 5. See also code; programming
Source property, 214, 965
specialization, exceptions, 209
specifying links to resources, 1219
spell check, implementing, 808
splash screens
Windows Phone, 985
SQL (Server Query Language)
code, database objects, 655
EDMs, querying with, 653-654
entities, applying against, 617
LINQ to, 587. See also LINQ
overview of, 588-599

SQL Server Compact Edition 3.5,
617-619

logs, applying, 613
SqlClient.SqlException, 606
SqlCommand class, 541
SQL Server 2012 (Local DB), 882

system requirements, 539-540
SQL Server Object Explorer window, 59, 662
SSDL (Store Schema Definition Language), 636
Stack, 90

boxing, 114

reference types, addresses, 108

value types, 90, 106-108
Stack collection, 398
Stack (Of T) collection, 412
StackPanel panel, 711-712
StackTrace property, 54, 214
standard query operators

aggregation operators, 570-572

concatenation operators, 583

conversion operators, 572-574

element operators, 583-584

generation operators, 574-575

grouping, 577-579

Let keyword, 572

statements

LINQ, 568-585

LINQ to DataSets, 623

LINQ to Entities, 652

ordering operators, 575-576

partitioning operators, 584-585

projection operators, 568-569

quantifiers, 582-583

restriction operators, 569-570

set operators, 576-577

union operators, 579-582
starting

Data Service (WCF), 1017

.NET Framework, 2

Object Browser, 57

Quick Launch tool, 59-60

Visual Studio Class Designer, 424

Windows Phone applications, 963-964
Start method, 1058
Start Pages (Visual Studio 2010), 12-14
StartState setting, 83
Startup event, 509-510
StartupNextinstance event, 509
Startup Object field (My Project), 35
StartupUri property, 720
state

Application, 861

Cache, 862-863

Context, 579

managing, 861-864

Session, 864

ViewState, 864
statements

breakpoints, 186

Catch, 210

Class..End Class, 225

Console.Writeline, 181

Exit Try, 218

If, 181

New With, 525

Public Shared Operator, 311

Return, 319

Select Case, 174-175

Set Next Statement, 181

Show Next Statement, 182

SyncLock..End SyncLock, 1064

How can we make this index more useful? Email us at indexes@samspublishing.com

1429

1430 statements

Using..End Using, 275

With..End With, 176-177

Yield, 419
Static Checker, 1351
StaticResource, 772
status, Windows Azure deployment, 947
StatusBar control, 747
status bars (Visual Studio 2012), 12
Step Into command, 181
Step Out command, 181
Step Over command, 181
StopLoading method, 965

storage. See also cloud computing; Windows

Azure
tools, 7
value types, 90, 96
Windows Phone, 980-981
Storage Account service, 930
Storage Emulator, 944
Store (Windows 8) applications, 1111
stored procedures
LINQ to SQL, mapping, 610-613
mapping, 654-657

Store Schema Definition Language.
See SSDL, 636

Storyboard events, 787
strategies, routing, 708-709
Stream class methods, 1138
streams, 464-475

data, compressing with, 467-474

members, 461, 464

memory, 466

modifying, 453

networks, 474

strings, applying, 467

Windows Phone, 960-963
StreamWriter class, 464
Stretch property, 794
StringBuilder objects, 136
StringCollection collection, 400
StringComparison object, 127
StringDictionary collection, 400
StringLength attribute, 664
strings, 77

applying, 125-137

comparing, 126-128

comparison operators, 164

concatenating, 136-137

connection, writing, 619

copying, 131

dates, converting to, 138-139

editing, 106, 133-136

formatting, 128-129, 835-840

inspecting, 131-133

streams, applying, 467
stringToPrint argument, 238
strongly typed data controls, 875-862
strongly typed objects, 104-105

strong names, signing GAC assemblies with,
1224-1226

StructLayout attribute, 310, 1203-1204
Structure..End Structure block, 305
Structure keyword, 374
structures, 305
APIs, passing, 310
ClickOnce deployments, 1250-1251
CLS, 314
declaring, 306
generating, 437
generics, defining, 370
inheritance limitations, 309
interfaces, implementing, 309
managing, 310
members, visibility, 308
memory allocation, 309
metadata, 1158
methods, passing to, 308
namespaces, 284
operators, overloading, 310-314
overview of, 305-308
variables, assigning, 308
Visual Basic 2012 projects, 65
stubs
methods, generating, 436
properties, generating, 1347
Style class, 771
styles
CSS, 856
inheritance, 773
Microsoft Design Style, 11-12
triggers, 773-775
WPF, 770-775

Sub lambda expressions, 531-532
Sub Main method, 35

submitting applications (apps) to Marketplace

(Windows Phone), 987-989
subscriptions (Windows Azure), 945
Substitution control, 859
subtracting dates, 142-143
subtraction (-) operator, 155, 313
Subtract method, 142
summary tag (XML comments), 1214
Sum method, 519
support

3-D graphics, 908

64-bit browsers, 928

arrays, 8

classes, 301

COM Automation, 926

delegates, generics, 380

foreign keys, 633

HTML5, 8

IntelliSense, XAML code editors, 701

languages, LINQ, 552-553

.NET operating systems, 1

P/Invoke (Silverlight applications), 928

Windows Azure, 928

ZIP archives, 8
SuppressFinalize method, 279
Suppress Message, 1314
switching threads, 1128-1129
symbols

dates, formatting, 140

format, 129
synchronization

Monitor class, 1065

read/write locks, 1065-1066

threads, 1063-1066
synchronous calls, 1108
SyncLock..End SyncLock statement, 1064
System.Array class, 105, 152-155
System.Attribute class, 69
System.Boolean class, 95
System.Byte class, 95
System.Char class, 95
System.Collections class, 394

System.Reflection namespace 1431

System.Collections.Concurrent
namespace, 413

System.Convert class methods, 123

System.DataSet.DataSetExtensions
namespace, 622

System.DateTime class, 95, 139
System.Decimal class, 95
System.Delegate class, 380
System.Diagnostics namespace, 197
System.Diagnostics.Process class, 1058
System.Double class, 95
System.Drawing.Bitmap property, 498
System.Enum class methods, 316-319

System.Exception class, 105, 209,
214-216, 344

System.GC class, 270
System.GC.Collect method, 271
System.Globalization namespace, 842
System.Guid class, 95
System.Int16 class, 95
System.Int32 class, 95
System.Int64 class, 95
System.IntPtr class, 95
System.l0.Directory class, 455-458
System.l0.Directorylnfo class, 458-459
System.l0.Drivelnfo class, 459
System.lOException, 209
System.lO.File class, 293, 460-461
System.lO.FileInfo class, 462-463
System.lO namespace, 8, 293
System.l0.Path class, 454-455
System.l0.Stream class, 105, 464
System.IProgress (Of T) interface, 1134
System.Math class, 157
System.Net.Exception, 488
System.Numerics.Biglinteger class, 95
System.Object class, 90, 105

implicit conversions, 111

inheritance, 325-329

methods, 92

naming, 91

WPF, 696
System.Object.ToString method, 66
System.Reflection.Emit namespace, 1171-1177
System.Reflection namespace, 1158

How can we make this index more useful? Email us at indexes@samspublishing.com

1432 system requirements, Local DB (SQL Server 2012)

system requirements, Local DB (SQL Server
2012), 539-540

System.Runtime.CompilerServices
namespace, 1177

System.Runtime.InteropServices
namespaces, 310

System.SByte class, 95
System.Security.SecurityException, 1150
System.SerializableAttribute class, 70
System.ServiceModel.dll, 6

System.Single class, 95

System.String class, 105, 126
System.Threading.ThreadPool class, 1062
System.Timers.Timer object, 383
System.TimeSpan class, 95, 142
System.TimeZone class, 95
System.Unt16 class, 95

System.Unt32 class, 95

System.Unt64 class, 95
System.ValueType class, 91-92
System.Windows.ContentElement class, 57
System.Windows.Controls namespace, 6

System.Windows.Media.MediaCommands
enumeration, 902

System.Windows.RoutedEventArgs type, 707
System.Xml.Ling namespace, 672-674
System.Xml.Serialization namespace, 1043

T

TabControl control, 748

Table attribute, 664

Table control, 859

tables, Northwind databases, 590

Tables Storage, 930

tabs
Application (My Project), 34-39
Get Started (Visual Studio 2010), 14
IDE, navigating, 50
Latest News (Visual Studio 2010), 14-15
Optimization (Visual Studio 2010), 47
Settings (My Project), 82

tabular data forms, formatting, 819-825
tags
Grid panel, 1261
XML comments, 1214
Take method, 519
TakeWhile method, 519
target CPU, 44
Target CPU combo box, 42
Target Framework (My Project), 39
targets, multi-targeting, 18
TargetSite property, 214
task-based asynchrony, 1127-1131
TaskFactory class, 1071
Task Parallel Library. See TPL, 413, 1070
Task.Result property, 1074
Task.Run method, 1128
tasks
canceling, 1077-1078
debugging, 1086
parallel computing, 1072-1080
return values, formatting, 1074-1075
running, 1073-1074
scheduling, customizing, 1070
Task Scheduler, 1070
TaskScheduler class, 1071
task-specific exceptions, 220
Task.Wait method, 1075
TCP (Transmission Control Protocol), 991
TDD (Test Driven Development), 1344-1349
templates
accessing, 19-20
ASP.NET, 854-855
code editor extension, selecting, 1305
Console Application project, 22
Domain Service Class, 913
exporting, 1261-1265
items, exporting, 1263-1265
projects, 17-18, 993
searching, 20
Silverlight applications, 895
Visual Studio 2012 extensibility, 1289
WCF RIA Service, 912
Windows Phone, 957

WPF
controls, 775-778
projects, 698-697
XML to Schema item, 686
ternary If operators, 533-534
LINQ, 553
TestAccessFile method, 222
Test class, 227

Test Driven Development. See TDD, 1344-1349

Test Explorer window, 1342
testing

applications (Windows Azure), 942-944

code, 1337

applying Code Contracts, 1350-1355

TDD, 1344-1349
custom extension libraries, 524
IntelliTrace, 1334
unit tests, 1337-1349
TestInstance method, 374
Test method, 181, 187
Test property, 340
text
aligning, 802
customizing, 898

Data Annotations (Code First approach),

663-665

messages, 972

modifying, 799-808

output, debugging, 198

reading, 464-465

RichTextBox control, 806-808

spell check, implementing, 808

writing, 464-465
TextBlock control, 749
TextBox control, 750, 812, 857-859
TextChanged event, 857
TextRange class, 807
TextWriterTracelistener, 196-197
themes

CSS, 856

Visual Studio 2012, 13-14
ThenByDescending method, 519
ThenBy method, 519

third-party programming languages, 7

toolbars

threads
Async pattern/Await keyword, 1110
formatting, 1060-1061
IDs, 1074
localization, 842
pools, 1061-1063
switching, 1128-1129
synchronization, 1063-1066
thread-safe collections, 1087
Thread.Start method, 1061
Threads window, 191-192
throwing exceptions, 218-220
Throw keyword, 218-220
time
adding time to, 142-143
applying, 143-144
zones, 144-147
TimeZonelnfo type, 144-147
TimeZone type, 144-147
Title property, 717
ToArray method, 396, 519
ToBool method, 123
ToByte method, 123
ToChar method, 123
ToDateTime method, 123
ToDecimal method, 123
ToDictionary method, 519
ToDouble method, 123
ToFileTime method, 141
ToFileTimeUtc method, 141
Tolnt16 method, 123
Tolnt32 method, 123
Tolnt64 method, 123
Tolist method, 519
TolLocalTime method, 141
ToLongDateString method, 141
ToLongTimeString method, 141
ToLookup method, 519
ToOADate method, 141
ToolBar control, 750
toolbars
configuring, 1271
customizing, 1268-1270
deleting, 1270

How can we make this index more useful? Email us at indexes@samspublishing.com

1433

1434 Toolbox, adding controls

Toolbox, adding controls, 701
toolboxes, customizing, 1275
tools, 3
Add-in Manager, 1304
ASP.NET Administration, 879
Binary Rewriter, 1351
Call Hierarchy, 60
Class View window, 432-433
code contracts, 1351-1352
Code Snippet Manager, 1278
code snippets, generating, 1283
columns, adding, 710
design
EDMs, 640
XAML, 699
Document Outline, 704
Extension and Updates, 1302
Generate from Usage feature, 433-439
InstallShield. See InstallShield
LocBaml, 841-845
MSDeploy, 884-891
My Project, 33-39
.NET Framework, 7
NuGet, 1283-1286
Object Browser, applying, 394
Parallel Tasks window, 1086
Quick Launch, 59-60
searching, 1360
Server Explorer, 589

Silverlight applications (Visual Studio
2012), 894

Solution Explorer, 589
Static Checker, 1351
visual, 423
Visual Basic 2012, 1357
coding tools, 1358
data access, 1359
debugging, 180-192
developer tools, 1358
diagnostics/performance, 1359
JustDecompile, 1359
networks, 1359
Windows Azure Management Tool, 1360
Visual Basic Compiler (vbc.exe), 2

Visual Studio 2010
applying windows, 27-33
Code Metrics, 1309, 1315
Visual Studio 2012, 1309
Code Analysis, 1309, 1310-1315
Code Clone Detection, 1310, 1317-1319

generating Dependency Graphs,
1334-1335

IntelliTrace, 1310, 1328-1334
overview of, 1309-1310
Profiler, 1310, 1319-1328
Windows Azure, 931-932
Visual Studio Class Designer, 424-432
Visual Studio Historical Debuggers, 52
windows
Error List, 30-31
Output, 31-33
Properties, 31
Solution Explorer, 28-30
Windows Phone, 957-958
WPF, 757
brushes, 757-771
styles, 770-775

Tools menu (Visual Studio 2012), customizing,
1267-1268

Tool window, implementing, 1296
TopMost property, 717
ToSByte method, 123
ToShortDateString method, 141
ToShortTimeString method, 141
ToSingle method, 123
ToString method, 121, 309
enumerations, 318-319
reflection, 1163
System.Object class, 328
ToUInt16 method, 123
ToUInt32 method, 123
ToUInt64 method, 123
ToUniversalTime method, 141

TPL (Task Parallel Library), 413, 1070. See also
parallel computing

Trace class, 195
Trace.Listener.Clear method, 197
trace listeners, applying, 196-202
trace points, applying, 184-187
tracing, enabling, 1010

tracking (IntelliTrace), 1331-1333
training resources (Windows Phone), 958
transformations (WPF), 778-782
TranslateTransform, 781
Transmission Control Protocol. See TCP, 991
Transparency Level 2, 1150-1152
transparency models, 1148-1149
trees (WPF), 704-705
TreeView control, 751
triggers, styles, 773-775
TrimToSize method, 396
troubleshooting
Code Analysis, 1315
DLLs, 1221-1222
exceptions, 207-208
return types, array literals, 515
System.Diagnostics namespace, 197
unit tests, 1342
Visual Basic 2012
compiler fixes, 169-170
tools, 1359
trust levels
ClickOnce, 1255
for roles, 935
TryCast, 123-125
Try..Catch..Finally blocks, 1127
exception handling, 209
iterators, 418-419
TryParse method, 100, 139
tunneling strategies, 708
TwoWay mode, 813
Type Metadata, 1158
TypeOf operator, 125, 164-165
polymorphism, 330
typeparam tag (XML comments), 1214
types
anonymous, 524-525
building with LINQ to DataSets, 623
LINQ, 552
LINQ to SQL, 603
applications (My Project), 34
arrays, applying, 148-155
assemblies, 1144
attribute parameters, 1185
in BCL, 6

types 1435

CLS, 264

COM libraries, adding references, 85-86
Common Type System, 89-93
conditional code blocks, 172-175
constants, 175-176

constraints, 373

converting between reference types/value,
111-119

customizing
exposing, 232
selecting, 111
data, 89. See also data types
dates, applying, 137-143
default, selecting, 493
fundamental types, 125-155
generating, 437
generics, 8, 368. See also generics
GUIDs, applying, 147-148
IEnumerable interface, 358
implicit, 45
iterations, 166-170
literal type characters, 98
local
inference, 511-514
LINQ, 552
loops, 95-172
MIME, 80
namespaces
managing, 283-295
overview of, 283-284
nested, 374
nullable, 101, 376-377. See also nullable
types
LINQ, 553
OOP, comparing reference/value, 107-110
operators, 155-165
arithmetic, 155-157
assignment, 157-158
bitwise, 160-162
comparison, 163-165
concatenation, 163
logical, 158-159
shift, 162-163
short-circuiting, 159-160

How can we make this index more useful? Email us at indexes@samspublishing.com

1436 types

parameters, 233, 375
reference types, 90-93

applying, 103-106

passing references, 238

primitive, 105-106
reflection, 1162-1169
ResurrectionDemo, 279
strongly typed data controls, 875-862
strongly typed objects, 104-105
System.Windows.RoutedEventArgs, 707
time, applying, 143-144
TimeZone, 144-147
TimeZonelnfo, 144-147
unmanaged code, converting, 1202-1203
values, enumerations. See enumerations
value types, 90-93

analyzing, 100

applying, 92-103

assigning, 98-99

conversion operators, 120-125

customizing, 103

differences between reference types/
value types, 106-111

methods, 100-101
.NET Framework, 93-94
optimizing, 101
passing values, 238
visibility, 234-235
Visual Basic 2012 projects, 63-71
With..End With statements, 176-177

U

UAC (User Account Control), 36-39
Ul (user interface), 11, 551. See also interfaces
data-binding, 812. See also data-binding
data validation and, 615
elements
adding to Silverlight applications, 897
animating, 905-908
localization, 841-850
Logical Tree, 704

UlCulture property, 479

Ulntenger keyword, 95

ULong keyword, 95
UnauthorizedAccessException, 459

unboxing types, converting reference/value,
114-115

underscore (_) character, 70, 265, 355, 552
UnhandledException, 509
Unindent method, 194
uninstalling GAC assemblies, 1223-1224
Union method, 519
union operators, 579-582
unit tests, 1337-1344
creating, 1345-1349
IntelliTrace, 1334
unlocking resources, 211
unmanaged code
COM, 1199
types, converting, 1202-1203
writing, 4
unreserved keywords (Visual Basic 2012), 74
unused local variables, 45
update operations
databases, 542
DataSets, 546
Entity Framework (ADO.NET), 648
LINQ to SQL, 608-607
UpdateProduct method, 648
updating
ClickOnce, 1252-1253
Extension and Updates tool, 1302
Solution Explorer, references, 85
Upgrade method, 495
Upgrade Wizard, 16
upgrading
projects, 16
from Visual Basic 6, 94
URIs (uniform resource indicators), 993, 1014
server-driving paging (WCF), 1033-1034
User32 layers (WPF), 696
User Account Control. See UAC, 36-39
user interface. See Ul

users
configuring, 881
My.User property, 500-502
settings, managing, 1271-1273
UShort keyword, 95
Using..End Using statement, 275

V

ValidateBook method, 998
validating
clients, 1004
customizing, 614-616
Entity Framework (ADO.NET), 650-652
values
Boolean operators, 164
converting, 835-840
dates, adding to, 142
default for optional arguments, 241
enumerations as bit flags, 320
IValueConverter interfaces,
passing, 238
resources, 80
return, 45, 319-320

System.Windows.Media.MediaCommands
enumeration, 902

value tags (XML comments), 1214
value types, 90-93
analyzing, 100
applying, 92-103
assigning, 98-99
conversion operators, 120-125
customizing, 103
enumerations. See enumerations
literal type characters, 98
memory requirements, 94
methods, 100-101
optimizing, 101
primitive, 93-94
reference types
converting between, 111-119
differences between, 106-111
values, passing, 238

viewing 1437

variables
assigning, 45
declaring, storing value types, 96
environments, retrieving, 481
exceptions, catching without, 223-224
instances, 45
local
avoiding ambiguities, 228-229
local type inference, 511-514
private, 265
structures, assigning, 308
unused local, 45
variances, generics, 535-537
VBFixedString attribute, 1205
.Vbproj file (project files), 16
versions
assemblies, 1144
GAC, 1227
.NET Framework, selecting, 18
video, playing, 798. See also media
View All Files, enabling, 638
View control, 859
View Detail window, 54
ViewBox panel, 716
viewing
arrays, 152-155
BCL, 57
build process results, 31
code snippets, 1279
debugger visualizers, 193
default constructors, 253
EDMs, 820
Event viewer, 199
flow documents, 803
grid lines, 711
hierarchies, Logical Tree, 704
images, 793-795
MyClass keyword, 340

panorama controls (Windows Phone),
974-980

server-driving paging, Data Services (WCF),
1033-1034

settings, 82
strings, 131-133
System.Object class, 91

How can we make this index more useful? Email us at indexes@samspublishing.com

1438 viewing

unit test results, 1344
XPS documents, 808-809
View property, 830-835
views
data-binding, 830-835
models, defining, 446
Silverlight applications, defining, 449
WPF, defining, 448
ViewState state, 864
View Windows Settings (My Project), 36-39
VirtualizingStackPanel control, 714
virtual machines. See VMs, 930, 936
visibility
members, 234-235, 308
types, 234-235
Visual Basic 6
migration, 209
upgrading from, 94
Visual Basic 2010, Array literals feature, 515
Visual Basic 2012, 6
animations, 789-790
applications, debugging, 50
Array literals feature, 515
ASP.NET applications, 864-862
bindings, creating, 814
compiler fixes, 169-170
conversion functions, 121
covariance, 535
debugging, 179
applying breakpoints/trace points,
184-187
Autos window, 192
Call Stack window, 188-189
in code, 193-206
Command window, 187-188
implementing tools, 180-192
inspecting objects, 192-193
Just My Code debugging, 182-184
Locals window, 187
Mixed Mode debugging, 182
preparing examples for, 179-180
Threads window, 191-192
Watch windows, 189-191
documentation, 55-59
extension methods, 517-524

iterations, 98-170
iterators, 414-422
keywords, value types, 94
modules, 301
comparing classes and, 303
overview of, 301-303
projects, 63
accessing members, 67-68
Application.myapp file, 75-76
application settings, 81-83
Assemblylnfo.vb file, 76-77
attributes, 69-70
classes, 64
code files, 72-83
creating, 16-18
implicit line continuation, 70-71
Imports directives, 68-69
inheritance, 65-66
methods, 64-65
modules, 65
namespaces, 66-67
navigating My Project, 72-75
properties, 64
references, 83-88
Region directives, 69
reserved keywords, 72
resources, 77-81
structures, 65
unreserved keywords, 74
resources, 1357-1358
scope levels, 234

Silverlight applications, creating with,
895-897

SyncLock..End SyncLock statement, 1064
tools, 1357

coding tools, 1358

data access, 1359

developer tools, 1358

diagnostics/performance, 1359

JustDecompile, 1359

networks, 1359

searching, 1360

Windows Azure Management Tool, 1360
WindowsFormsLocalization, 842

Windows Phone applications (apps),
959-985

Zip archives, 472-474
Visual Basic Compiler (vbc.exe), 2, 7
VisualBrush, 758, 767-768
Visual C# 5.0, 6
compiler (Csc.exe), 7
Visual C++ 2012, 6
Visual F# 2012, 6

visualizers, inspecting objects with debuggers,
192-193

Visual Studio 2010, 3
add-ins (Windows Phone), 957
Call Hierarchy, 60
code editor, applying, 24-27
debugging, 48-55
Error List windows, 30-31
exceptions, 208
Get Started tab, 14
GUIDs, creating, 148
Latest News tab, 14-15

members, generating based on
interfaces, 350

My Project, 33-39
My.Settings property, 495
new features, 11-12
online code samples, searching, 21
Output window, 31-33
projects. See also projects
applying, 16-27
compiling, 39-48
Properties window, 31
Quick Launch tool, 59-60
Start Pages, 12-14
tools, applying windows, 27-33
Visual Studio 2012
analysis tools, 1309
Code Analysis, 1309-1315
Code Clone Detection, 1310, 1317-1319
Code Metrics, 1309, 1315

generating Dependency Graphs,
1334-1335

IntelliTrace, 1310, 1328-1334
overview of, 1309-1310
Profiler, 1310, 1319-1328

VSIX packages 1439

applications
deploying, 883
WPF, 697-699
built-in image editors, 498
code snippets, reusing, 1275-1283
columns, formatting, 823
COM components, importing, 1192-1194
customizing, 1267-1270
Debug configuration, 40-43
Express for Web, 932
extensibility, 1287
building packages, 1289-1299
deploying, 1299-1302
extending code editors, 1304-1307
managing, 1302-1303
optimizing add-ins, 1304
overview, 1287-1289
Generate from Usage feature, 433-439
IDE, 11
InstallShield, 1229. See also InstallShield
interfaces, 439
NuGet, managing libraries, 1283-1286
parallel loops/tasks, debugging, 1086
privileges, 933
Release configuration, 40-43
SDKs, 1288-1289
Silverlight application tools, 894
templates, exporting, 1261-1265
unit tests, 1337-1344
Visual Studio Class Designer, 424-432

Windows Azure, downloading/installing
tools, 931-932

Windows Installer, 1230
Visual Studio Express for Windows Phone, 957
Visual Studio Gallery
Extension Manager, 1307
extensions, publishing, 1302
Visual Studio Historical Debuggers, 52
Visual Studio Output Selector dialog box, 1236
visual tools, 423
Visual Tree (WPF), 704-705
VMs (virtual machines), 930
Windows Azure, 936
Vsi Builder 2012, 1358
VSIX packages, 1300

How can we make this index more useful? Email us at indexes@samspublishing.com

1440 WaitForPendingFinalizers method

W

WaitForPendingFinalizers method, 279
waiting for tasks to complete, 1075
warnings
configurations, 44-46
messages, 30
Watch windows, 189-191
WCF (Windows Communication Foundation), 6
binding, 1005
clients, configuring, 1004
contracts, 993, 997-1001
Data Services
applying query interceptors, 1030-1033
consuming, 1022-1027
implementing, 1013, 1016-1021
overview of, 1013-1015
querying data, 1026
server-driving paging, 1033-1034
exception handling, 1007-1008
Fiddler, 1359
generics, exposing in, 1001
IIS, hosting in, 1008-1009
overview of, 992
portable libraries, creating, 443
project templates, 993
SDKs, 7
serialization, 1050-1053
Service Configuration Editor, 1009-1010

service operations, implementing,
1027-1029

services, 991
consuming, 1001-1007
implementing, 993-1001
WCF RIA Services
controls, data-binding, 916-919
running, 920
Silverlight applications, 911-923
web applications, 8
ASP.NET, 851-855
data services, hosting, 1016
deploying, 887-888
publishing, 884-885
WebBrowser control, 735, 753

WebBrowserTask, 967-968
WebClient class, 1105
web.config files (WCF), 995
web forms
adding, 868-869
ASP.NET applications, 855-857

Web Forms Application template
(ASP.NET), 855

Web Form template (ASP.NET), 855
WebGet attribute, 1028
WebHttpBinding, 1005
Weblnvoke attribute, 1028
web pages

events, 856

lifetimes, 856

Publish.htm, 1249

requests, 852
web roles, 934-936

Web-service Definition Language.
See WSDL, 999

web services, 502
websites, Windows Azure, 930
WhenAll method, 1129
WhenAny method, 1129-1131
When Hit command, 186
When keyword, 222-223
Where keyword, 553
Where method, 519
While..End While loops, 171-172
widening conversions, 120
Win32 API calls, references to, 1206
Window class, 928
windows
Advanced Compiler Settings, 46-47
Assembly Information (My Project), 35-36
Autos, 192
Breakpoints, 184
Call Stack, 188-189
Class View, 432-433
Code Metrics Result tool, 1317
Command, 187-188
Data Source, 820
Document Outline, 704
Edit Breakpoints Labels, 184
Error Lists, 30-31

floating, creating projects, 24
Generate New Type, 438
Locals, 187
managing, 716-719
Mapping Details, 640
Model Browser, 640, 656
My Project, 33-39
New Project, 17-19
New Solution Configuration, 42
Object Browser, 56-59, 91
Output, 31-33, 194
Parallel Stacks, 1087
Parallel Tasks, 1086
Properties, 31, 642, 702
properties, 717
Quick Watch, 191
resizing, 711
restyling, 777
runtime, instantiating at, 718
Select Tool, 1291
Solution Explorer, navigating, 28-30
SQL Server Object Explorer, 59, 662
Test Explorer, 1342
Threads, 191-192
Tool, implementing, 1296
tools
Call Hierarchy, 60
Visual Studio 2010, 27-33
View Detail, 54
Watch, 189-191
Windows 8, 956
.NET Framework, 8
Store apps, 1111
unit tests, 1338
WPF and, 695
Windows Azure
Activity log, 947
applications, 929
creating demo projects, 933-944
deploying, 944-952
testing, 942-944
Developer Portal, registering, 931
drives, 931
Management Portal, 949-952
overview of, 929-931

Windows Phone 1441

Silverlight applications, building projects,
936-942

Storage Explorer, 932
support, 928

Visual Studio 2012, downloading/installing
tools, 931-932

Windows Azure Management Tool, 1360
Windows Communication Foundation. See WCF
Windows Event Log, 199
Windows Explorer (GAC), 1223
Windows Forms
adding, 1193
applications
frameworks, 507
localizing, 842-843
compatibility, 75
WindowsFormsHost control, 753, 1196
Windows Installer, 1230. See also InstallShield
Windows Media Player, 86-87
Windows Performance Toolkit, 1359
Windows Phone
applications, 955
ApplicationBar class, 982
customizing, 985-987
debugging, 963-964
executing, 984-985
local data storage, 980-981
pages, 963-966
panorama controls, 974-980
Pictures Hub, 982-984
programming models, 958-959
starting, 963-964
submitting to Marketplace, 987-989
Visual Basic 2012, 959-985
Developer Center, accessing, 987
Emulator, 964
interfaces, 12
launchers, 967-720
LINQ to SQL, 618
Marketplace, registering, 956
overview of, 955-956
Registration tool, 957
thread pools, 1062
tools, 957-958

How can we make this index more useful? Email us at indexes@samspublishing.com

1442 Windows Presentation Foundation

Windows Presentation Foundation. See WPF

Windows property, 720
Windows Runtime. See WIinRT, 8, 1191

Windows SDK (Software Development Kit), 7

WindowStartupLocation property, 717
WindowState property, 717
WindowStyle property, 717
WinRT (Windows Runtime), 8, 1191
WithDegreeOfParallelism method, 1098
With..End With statement, 176-177
WithEvents keyword, 384-385
WithMergeOptions method, 1098
Wizard control, 859
wizards
Data Source Configuration Wizard, 544
Entity Data Model Wizard, 630
Export Settings Wizard, 1271-1273
Launch Performance Wizard, 1320

Publish Windows Azure Application
Wizard, 944

Publish Wizard, 1247
Upgrade Wizard, 16
WMPLib.dll, 86

WPF (Windows Presentation Foundation), 6

animations, 782-790
applications
Application object, 719-721

arranging controls with panels, 709-716

Browser Applications, 721-724
contra variance, 536
creating, 693
frameworks, 508
handling events, 706-709
localizing, 844-850
Logical Tree/Visual Tree, 704-705
managing windows, 716-719
Visual Studio 2012, 697-699
XAML, 699-704

architecture, 696-697

brushes, 757-771

code editors, 1308

common dialogs, 754-755

COM objects, calling from, 1196

controls, 725
Border, 727
Button, 728
Calendar, 728-729
CheckBox, 729-730
ComboBox, 730-732
ContentControl, 726-727
DataGrid, 731
DatePicker, 733
DocumentViewer, 733
Expander, 734
features, 725-726
Frame, 734-735
GroupBox, 735
Image, 736
Label, 736
ListBox, 736
ListView, 738
MediaElement, 739
Menu, 740
PasswordBox, 741
ProgressBar, 743
RadioButton, 744
Rectangle, 745
ScrollViewer, 746
Separator, 746
StatusBar, 747
TabControl, 748
templates, 775-778
TextBlock, 749
TextBox, 750
ToolBar, 750
TreeView, 751
WebBrowser, 735, 753
WindowsFormsHost, 753
data-binding, 811
converting values, 835-840
drag'n'drop, 818-840
formatting strings, 835-840
overview of, 811-818
views, 830-835
documents, 793, 799-808
Error List windows, 31
events, routing, 707-708
images, viewing, 793-795

XHTML (Extensible Hypertext Markup Language) 1443

media, 793-798
My namespace, 478
new features, 695
ObservableCollection (Of T) collection, 407
overview of, 694-695
projects
creating, 24
templates, 17
resources, 497-500

Silverlight applications, 897. See also
Silverlight applications

styles, 770-775

tools, 757

transformations, 778-782

views, defining, 448

Visual Studio 2012

new features, 11
Start Pages, 14

Windows Forms, adding, 1193

XPS documents, viewing, 808-809
WrapPanel panel, 713-714
Write method, 194, 464
WriteAllBytes method, 460
WriteAsync method, 1138
WriteByte method, 464
Writelf method, 194
WriteLinelf method, 194
WriteLine method, 26, 194
write-only properties, 231-232
writing

binary files, 465

connection strings, 619

custom attributes, 1184

Data Annotations (Code First approach),
663-665

debug information to Output windows, 195
entries to application logs, 481-482
enumerations, 315

Fluent APIs, 665-668

managed code, 4

qualifiers, 434

read-and-write operations, 229

reserved keywords, 72

text, 464-465

unmanaged code, 4

XAML code, 703

XML markup, 677-685
WSDL (Web-service Definition Language), 999
WSDualHttpBinding, 1005
WSFederationHttpBinding, 1005
WSHttpBinding, 1005
WSHttpContextBinding, 1005

X

X.509 certificates, 926

XAML (eXtensible Application Markup
Language), 699

Binding markup extension, 812-813
Browser Applications (XBAP), 721-724
code editors, 536
controls, 725
media players, implementing, 900
MSBuild.exe, localization, 847
RichTextBox control, 806
serialization, 1048-1050
Silverlight applications, debugging, 926-927
WPF, 696, 699-704

XamlServices class, 1048

XAP files, 988

XAttribute object, 672

XBAP (XAML Browser Applications), 721-724

XCData object, 672

XComment object, 672

XContainer object, 672

XCopy deployment, 1144, 1222

XDeclaration object, 672

XDocument class
members, 674
objects, 672

XDocumentType object, 672

XElement object, 672

XHTML (Extensible Hypertext Markup
Language), 855

event handling, 860

How can we make this index more useful? Email us at indexes@samspublishing.com

1444 XML (Extensible Markup Language)

XML (Extensible Markup Language), 16 Y_Z
Application.myapp file, 75-76
comments, 1207

generating Help files, 1220

implementing, 1210-1219

overview of, 1208-1209
files, generating, 44

Yield statement, 419

zero-based arrays, 149

Zi hi
LINQ, literals, 553 'psanp'ﬁs .
LINQ to XML) e
Visual Basic 2012, 472-474
modifying, 671

zones, time, 144-147
Zoom command, 424
zooming code, 25

overview of, 672-677
querying, 676-677
markup, writing, 677-685
namespaces, importing, 293, 689
schemas
adding, 1112
interfaces, 685-690
serialization, 1043-1045
viewing, 82
Xml control, 859
XmlRoot attribute, 1045
XmlSerialization class, 1043
XmlSerializer class, 48
XmlWriterTracelListener class, 196-197
XNA framework (Windows Phone), 959
XNA Game Studio, 957
XName object, 672
XNamespace object, 672
XNode object, 672
Xor operator, 158-162, 313
XpsDocument class, 808
XPS documents, viewing, 808-809
XText object, 672

	Table of Contents
	2 Getting Started with the Visual Studio 2012 IDE
	What’s New in Visual Studio 2012
	Status Bar and Start Page
	Working with Projects and Solutions
	Working with Tool Windows
	My Project
	Compiling Projects
	Debugging Overview
	Browsing the Visual Basic and .NET Documentation
	Quick Launch Tool
	Showing the Hierarchy of Method Calls
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

