FREE SAMPLE CHAPTER

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336270
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336270
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336270
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336270
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336270/Free-Sample-Chapter

Simon Sarris

HTIVILS

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

HTML5 Unleashed

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33627-0

ISBN-10: 0-672-33627-8

Library of Congress Control Number: 2013938300
Printed in the United States of America

First Printing July 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Senior Project Editor
Betsy Gratner

Copy Editor
Karen Annett

Indexer
Heather McNeill

Proofreader
Debbie Williams

Technical Editor
Spike Xavier

Editorial Assistant
Cindy Teeters

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction 1

Part | Background
1 Why HTMLS? 7
2 Important Concepts for HTMLS 15

Part I New HTML Elements
3 Getting Started with HTMLS: Semantic Tags, Forms,

and Drag and Drop 21
4 Rich Media Tags: Video and Audio 69
Part Il Canvas
2D Canvas 103
6 Making Canvas Interactive and Stateful 205
7 Canvas Performance, Tips, and Peculiarities 233
8 The Future of Canvas and 3D Canvas 263

Part IV HTML5’s JavaScript APls

9 Geolocation API 277
10 HTMLS Storage Options 301
11 Messaging and Web Workers 333
12 Network Communication: WebSockets and XMLHttpRequest

Level 2 353
13 Microdata, Other Small Things, and Beyond HTMLS 365

Index 381

Table of Contents

Introduction

Who Should Read This Book?
HTMLS and Related Technologies
Software Requirements
Code Examples
How This Book Is Organized
Part I: Background
Part II: New HTML Elements
Part III: Canvas
Part IV: HTMLS's JavaScript APIs
Links and Real-World Examples

Why HTML5?

How Did We End Up Here?
The Web Takes Off
The Rise of the Browser Plug-In
Web 2.0
HTMLS
What Exactly Is HTMLS?
The Importance of HTMLS
Are Plug-ins Dead?
Summary

Important Concepts for HTML5

The Goals of HTMLS
Improving the Native Web
More Done with Less Code
The Semantic Web
Requisites for HTMLS Development
Modern Browser Developer Tools

HTMLS Fallbacks: Shims, Shivs, and Polyfills

Feature Support and Detection
Summary

DN b kW ww NN R

O© O N N

10
11
11
12
14
14

15

15
15
16
16
16
16
17
18
19

Contents

3 Getting Started with HTML5: Semantic Tags, Forms,

and Drag and Drop

Ensuring Backward Compatibility with the New HTML Tags
The HTMLS Shim
HTMLS Boilerplate
Starting from the Top
The Doctype
Meta Character Encoding
HTMLS Syntax and Validation
How You Should Write Your HTML
Housekeeping
HTMLS Semantic Elements and Other
Presentational Tags
HTMLS Semantic Tags
Document Outlines in HTMLS
Minor Semantic and Presentational HTMLS Tags
Visual HTMLS Tags: <meters> and <progress>
HTMLS Forms
Form Input Types
New Form Input Attributes and Elements
Drag and Drop in HTMLS
The Basics
Drag Data and Effects
Drag Events
Summary

Rich Media Tags: Video and Audio

The Video Element
Video Formats and Support
Using the Video Element
The Audio Element
Audio Formats and Support
Using the Audio Element
Encoding Your Media
Conversion Tools
Supporting Older Browsers
Video and Audio Attributes
Video-Only Attributes
Attributes Shared Between Audio and Video
JavaScript API
The readystate and Starting at a Specified Time
The playbackrate and Time Control

21

21
22
23
23
23
24
24
27
29

31
31
33
35
37
40
40
47
53
53
55
58
67

69

71
71
75
77
77
79
80
81
81
82
82
85
90
92
93

Vi

HTML5 Unleashed

Loading Videos Sequentially
Custom Controls
Advantages and Disadvantages of the HTML5 Media
Tags Versus Flash
Ease of Use and Extensibility
Platform Support
Feature Support
Media Protection
Future Developments
WebRTC
WebVTT and the <track> Tag
The Full-Screen API
The Web Audio API
The Embed Element
Summary

2D Canvas

Browser Support
Internet Explorer
Testing for Support
What Canvas Can and Cannot Do
A Comparison with SVG
Where Canvas Shines
When to Not Use Canvas
Don’t Use Canvas for General Ul
Getting Started with Canvas
An HTML Page with a Canvas
Canvas Attributes
toDataURL
Context Methods and State
A Quick Look at the Properties and State Available
Understanding Drawing, Starting with Rectangles
fillstyle and strokeStyle
Paths
Understanding the Canvas Coordinate System
Line Styles
Curves
Ellipses
isPointInPath
Path Filling—The Winding Number Rule

94
95

95
95
96
96
97
97
97
98
100
100
101
101

103

104
105
105
106
107
109
109
111
111
113
115
116
117
117
118
119
120
122
125
127
133
135
135

Contents

Summary of Context State So Far
Saving and Restoring
Transformation Matrix
translate
scale
Saving and Restoring Affect How Drawing Functions
Act on a Transformed Canvas
rotate
transform and setTransform
Keeping Track of Transformations
In-Memory Canvases
Using Images and Other Canvases
Double Buffering
Image Data and Pixel Manipulation
getImageData
createImageData
putImageData
Image Security on the Canvas
CORS
But I Want to Test My Image Data Code Locally!
Gradients and Patterns
Linear Gradients
Radial Gradients
Gradient Performance and Reuse
Patterns
Shadows
Compositing
Compositing Examples
Clipping
Clearing Nonrectangular Areas
Using Text
First the Bad Parts
Drawing Text
Fonts
textBaseline
textAlign
Measuring Text
Performance
Canvas Context Recap
Styling
Shadows
State

Vil

138
140
141
141
143

143
146
150
152
154
160
161
162
162
164
164
171
172
172
173
173
175
177
179
182
184
186
189
190
192
192
194
195
197
197
198
199
200
200
200
200

viii HTML5 Unleashed

Rectangles 200
Paths 201
Image Drawing 202
Transformation 202
Compositing 202
Text 202
Image Data 203
Summary 203
6 Making Canvas Interactive and Stateful 205
Canvas Coordinates—Mouse and Touch 205
getBoundingClientRect 206
Computing Element Offset 207
Canvas Animation 210
Letting the Browser Take Control with
requestAnimationFrame 210
Animation and Timing 212
Canvas Interactivity Example: Making and
Moving Shapes 215
Getting Started 216
The Shapes We Draw 217
Keeping Track of Canvas State 218
Mouse and Touch Events 219
Getting Input Coordinates 222
Drawing 223
Complete Canvas Interactivity Example 225
Summary 231
7 Canvas Performance, Tips, and Peculiarities 233
Canvas Peculiarities and Tips 234
CSS Width and Height 234
Paths or Images Look Blurry 234
The Methods save and restore 236
Clipping Regions Can Only Get Smaller and Cannot Be Reset 237
Security Exceptions, Cross-domain Images, and Image Data 238
Transformations Affect Drawing in Addition to Paths 238
A Performance Primer 239
Tools of the Trade 240
Before We Get to Canvas 245
The DOM and Canvas 248
Caching Context Properties 248

Stop Using save and restore 250

10

Contents

Caching with Images and In-Memory Canvases
Images
Text
Shadows
Gradients
Paths
Multiple Canvases
Keeping Track of Objects
Hit Testing
Size Matters
Summary

The Future of Canvas and 3D Canvas

The Future of 2D Canvas
New in the Specification
Hints from the Browsers

3D (WebGL) Canvas
WebGL Libraries

Summary

Geolocation API

Understanding Latitude and Longitude
Types of Geolocation Data

The Old Ways

The HTMLS Way—New Methods for Geolocation
HTMLS Geolocation API

Geolocation Support

Using Geolocation

The API
Geolocation in Action

Where Am I?

A Trailblazing App
Summary

HTML5 Storage Options

Older Storage Methods
Browser Cookies
Flash Cookies

userData

Along the Way

251
252
252
253
254
255
256
257
257
260
261

263

263
264
270
271
272
275

277

278
280
280
281
282
283
283
283
288
288
293
299

301

301
301
302
302
302

HTML5 Unleashed

11

12

13

Web Storage—sessionstorage and localStorage
sessionStorage
localStorage
API
WebSQL Database
IndexedDB
Getting Started with IndexedDB
Looking Further
FileSystem API for Local Read/Write Access
FileSystem API Example
Offline Pages and the Application Cache
Using the Application Cache
Important Notes About the Application Cache
Summary

Messaging and Web Workers

The Web Messaging API and Cross-Document Messaging
Sending and Receiving Messages
Channel Messaging
Security with Web Messages
Web Workers
Getting Started with Web Workers
A Simple Example
Shared Web Workers
Web Worker Considerations
Summary

Network Communication: WebSockets and XMLHttpRequest Level 2

Real-Time Communication with WebSockets
Before WebSockets
Getting Started with WebSockets
A Complete WebSockets Example
Server-Side WebSockets
New AJAX Capabilities with XMLHttpRequest Level 2
New Features in XHR2
Summary

Microdata, Other Small Things, and Beyond HTMLS5

Microdata
Getting Started with Microdata
A Microdata Recipe Example

303
303
304
304
307
308
308
322
323
324
326
327
330
331

333

333
334
336
338
339
340
342
345
349
351

353

354
354
355
358
359
359
360
364

365

365
367
371

Contents

New Browser Features Not Covered in This Text
Honorable Mention: The File API
Other New Browser Features
The Future
The Future of Web Development
Summary

Index

373
373
375
378
379
380

381

Xi

About the Author

Simon Sarris is a web developer focusing primarily on the HTMLS Canvas. Simon has
earned a reputation as a go-to source for HTMLS answers. He contributes to the question-
and-answer website StackOverflow and has provided the most answers for both the
Canvas and HTMLS tags. Simon blogs about Canvas and JavaScript topics, and you can
find him online at www.simonsarris.com.

http://www.simonsarris.com

Dedication

To my parents

Acknowledgments

If you look at the hours involved, writing at length is decidedly a solitary act, but it would
have been impossible for me to finish this book without the support of several friends.

Book writing is not just time consuming, but life consuming, and I'd like to thank my girl-
friend, Betsy Green, for enduring with patience and support over nearly a year of research
and writing.

I'd like to express my deepest thanks to Aaron Friel, the greatest friend and colleague

I have ever known, for his encouragement and advice for my entire conscious life and
for his suggestions and reviews of draft material. I also owe huge thanks to Walter van
Roggen, for being the most important mentor of my programming career and for review-
ing large portions of this book.

I would like to sincerely thank the people at Sams, especially Neil Rowe and Betsy Gratner,
for guiding me through the book-writing process. I owe extra thanks to Spike Xavier for
his technical editing and his excellent, thoughtful suggestions.

Many thanks are due to the StackOverflow JavaScript chat room crowd for their encour-
agement, friendship, and expertise during my research and writing. Among many others
I'd like to thank are Jason Brown, Robert Lemon, Abhishek Hingnikar, Amaan Cheval, and
Florian Margaine.

My parents are not technology people, but I owe them the biggest thanks. They have
supported me from cradle through college with love and resources, allowing me to freely
learn and explore in this wonderful world.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

This is a book about the future of the Web.

For most of human history, it has proven difficult to specu-
late about the future. Only since the Industrial Revolution
have we gotten a grasp of what it might mean to predict
things years in advance. Aside from the promise of flying
cars that occurred every decade in the 1900s, the future

of technological change was often about predictable
refinement.

We can imagine that few people considered ambitious
futures in the Middle Ages, and only in the 1900s did
people begin to see an optimistic nearness: The future was
a time just 10 years away. New televisions that were more
accurate, better waste treatment, maybe even a man on the
moon.

By 1980, the future was clearly a computer-centric world,
albeit one still a few years out. By 2010, one third of the
world carried in their pockets what would have been billed
as a supercomputer in 1980.

Today, the future is near instant. New gadgets and impres-
sive technologies are released almost daily. One set of new
technologies is called HTMLS, a series of refinements to the
Web that has seen rapid adoption since 2010.

This is a book about the future of the Web, and, fortu-
nately for us, it’s already here.

HTMLS is an umbrella term for a series of new features,
standards, and application programming interfaces (APIs)
that collectively change the way web pages are created and
used. With HTMLS, applications that were once only possi-
ble on desktops or via browser plug-ins are now natively

IN THIS CHAPTER

» Who Should Read This Book?

» HTML5 and Related
Technologies

» Software Requirements
» Code Examples
» How This Book Is Organized

» Links and Real-World
Examples

2 Introduction

possible in modern browsers. The adoption of HTMLS aims to take us to an age where the
Web is more interoperable, consistent, and easier to author.

Who Should Read This Book?

Web developers and web designers exist in a Yin-Yang of roles, sometimes filled by the
same person and sometimes by very large teams. This book is intended for both roles,

and not only the ones that deal with pure HTML and JavaScript but also the developers
and designers who have up until now exclusively worked in Flash and Silverlight. HTMLS
offers several replacement opportunities for these rich media plug-ins. The goal of HTMLS
is not to obsolete plug-ins, but the new functionality does intend to herald a web where
plug-ins, especially ones that provide now-common functionality, are much less necessary.

HTMLS has been around in some agreed-upon form since 2006 and starting in 2009 has
had the force of all major browser vendors behind its implementation. In recent years,

it has graduated from being a novelty to a set of standards in use by some of the world’s
largest websites. If you concern yourself with modern web development, then concerning
yourself with HTMLS is essential, and you should read this book.

HTMLS is not strictly HTML; it also encompasses a good deal of new JavaScript APIs.
Almost all the contents of HTMLS are relevant to both developers and designers, and even
if you do not plan on using many of the parts of HTMLS, it is a good idea to get a reading
of what is now possible to achieve natively within the browser.

This book assumes basic prior knowledge of JavaScript and HTML. This book assumes no
knowledge of JavaScript libraries, no matter how popular they may be, and this book’s
code examples do not reference or introduce any libraries except where it is necessary for
a component to reasonably function.

HTMLS5 and Related Technologies

HTMLS typically refers to two concepts:

» Technologies and changes contained within the new HTML specifications put
forth by the World Wide Web Consortium (W3C) and Web Hypertext Application
Technology Working Group (WHATWG).

» The new HTML specifications plus a larger set of new web technologies. This is
sometimes called HTMLS and friends, or HTMLS and related technologies, but is often
shortened to just HTMLS.

There are several common misconceptions about what precisely is contained within
HTMLS. Mozilla used to host a page titled, “Technologies Often Called Part of HTMLS That
Aren’t.” They have since removed that page, and instead focus on covering HTMLS5 and
related technologies like everybody else.

For those of us busy building the Web, any distinction does not matter. If a new tech-
nology is supported by enough browsers and suits your needs, then you should use it.

How This Book Is Organized 3

Therefore, like most of the HTMLS resources available today, this book encompasses
HTMLS and related technologies, and we casually call this HTMLS5.

Software Requirements

The code in this book is intended for use in development on modern browsers. When
the term modern browser is referenced in this book, it refers to the versions of any popular
desktop browser commonly available, except for Internet Explorer, where it refers to
only Internet Explorer 9 and above. Although there are less-modern fallback options for
many areas of HTMLS, it is expected that you will be using a modern browser during
development.

If there is a discrepancy in browser support, topics typically note which desktop and
mobile browsers are supported. However, no mention of browser support in this book will
be as up to date as online compatibility guides, and several websites provide compatibility
tables for HTMLS features.

Many JavaScript-centric examples make use of the browser developer console to output
data. This console is a common feature of any desktop browser and is accessible through
the browser’s developer tools. Developer tools are different for every browser, but are typi-
cally enabled via a Tools menu, or with a hotkey such as Ctrl+Shift+], or F12.

If you are a JavaScript developer or web designer and have never used the browser’s devel-
oper tools, I highly recommend seeking out a tutorial. There are several online guides on
using the developer console, such as the one for Chrome at https://developers.google.
com/chrome-developer-tools/docs/console.

Code Examples

The numbered source code listings in this book can be downloaded via the online reposi-
tory at http://github.com/simonsarris/HTMLSUnleashed or http://simonsarris.com/
HTMLSUnleashed.

Occasionally, when a line of code is too long to fit on one line in the printed book, a
code-continuation arrow (=) is used to mark the continuation.

How This Book Is Organized

This book is arranged into four parts. The first provides a briefing on the history and
terminology of HTMLS, and the other three represent the main areas of HTMLS.

HTMLS contains a very broad set of features, and it’s unlikely that a developer would find
all of them relevant for any given project. If you are totally new to HTMLS development,
it would do you well to begin with Part I. After Part I, every chapter in this book is written
to stand on its own, so that you may discover each topic as you please.

https://developers.google.com/chrome-developer-tools/docs/console
https://developers.google.com/chrome-developer-tools/docs/console
http://github.com/simonsarris/HTML5Unleashed
http://simonsarris.com/HTML5Unleashed
http://simonsarris.com/HTML5Unleashed

4 Introduction

Part I: Background

Part I contains a short history and overview of HTMLS, as well as explanations of common
conventions used in many HTMLS resources, including this book.

» Chapter 1, “Why HTMLS?”
» Chapter 2, “Important Concepts for HTMLS5”

Part Il: New HTML Elements

Part II covers most of the new (and visual) HTML elements in HTMLS. It begins with
semantic tags, new HTML element attributes, and functionality. It then covers the new
rich media tags, which enable native audio and video in the browser.

This part introduces two important concepts seen throughout HTMLS: the semantic web
(also visited in Chapter 13) and ways to achieve common functionality with less code and
fewer plug-ins.

» Chapter 3, “Getting Started with HTMLS: Semantic Tags, Forms, and Drag and Drop”
» Chapter 4, “Rich Media Tags: Video and Audio”

Part Ill: Canvas

Part III contains four chapters concerning HTMLS canvas. Those both new to and expe-
rienced with canvas will benefit from reading the first chapter, which gives a rundown

of the API with many detailed notes about canvas context functionality. Canvas has a
low-level API compared with Flash, and Chapter 6 covers basic interactivity and state
management with the element. Chapter 7 covers canvas performance, but also contains a
discussion on tips and peculiarities for canvas newcomers. Finally, Chapter 8 discusses the
newer additions to the canvas API and briefly considers the 3D canvas (WebGL) APIL.

» Chapter 5, “2D Canvas”
» Chapter 6, “Making Canvas Interactive and Stateful”
» Chapter 7, “Canvas Performance, Tips, and Peculiarities”

» Chapter 8, “The Future of Canvas and 3D Canvas”

Part IV: HTML5’s JavaScript APIs

Part IV is composed of mostly JavaScript APIs, and is more relevant to developers than
artists or designers. The topics in these chapters cover the new native solutions to needs
that have arisen over the years as the Web has progressed. The book ends with the small-
but-powerful API for adding truly semantic markup to HTML pages, and a brief look at the
future.

Links and Real-World Examples

Chapter 9, “Geolocation API”
Chapter 10, “HTMLS Storage Options”

>

>

» Chapter 11, “Messaging and Web Workers”

» Chapter 12, “Network Communication: WebSockets and XMLHttpRequest Level 2”
>

Chapter 13, “Microdata, Other Small Things, and Beyond HTMLS5”

Links and Real-World Examples

This book contains many links and real-world examples from existing websites. Links and
project mentions do not constitute endorsement, and typically only the most popular
projects and libraries are mentioned.

This book does not endorse any particular browser, but most examples try to use Chrome
or Firefox because they are the most popular cross-platform browsers and widely support
nearly every feature covered in the book.

5

This page intentionally left blank

CHAPTER 2

Important Concepts
for HTMLS

This short chapter covers some important information to
begin our path to HTMLS technologies. It explains some
vocabulary used throughout this book that may be new to
some readers, and also begins with a briefing on the recur-
rent goals you see throughout this book.

The Goals of HTML5

HTMLS was born out of visible needs in the browser
ecosystem, and the aims of its specifications are all
responses to these needs. This section details the three
most prominent goals of HTMLS, which can be thought of
as themes that you see throughout the book.

Improving the Native Web

According to the World Wide Web Consortium (W3C)
specification, HTMLS “introduces markup and APIs for
emerging idioms, such as Web applications.” More specifi-
cally, HMTLS adds syntactic features to the Web that

could previously only be accomplished with plug-ins. For
instance, if serving video on the Web is a nearly ubiquitous
expectation, web browsers ought to be able to accomplish
it without additional help. The same goes for audio and
other animated or dynamic content. Thus the <audio>,
<video>, and <canvas> elements are some of HTMLS5’s most
important additions to the Web.

HTMLS doesn’t just make plug-ins less necessary, it also
increases the browser’s functionality to be more in line
with native mobile applications. Browser vendors and
standards committees have begun work on application
programming interfaces (APIs) that expose functionality

IN THIS CHAPTER

» The Goals of HTML5

» Requisites for HTML5
Development

16 CHAPTER 2 Important Concepts for HTML5

of (mobile) devices within the browser. The most prominent example of this is the
Geolocation API, which allows browsers to retrieve geographical location much like native
phone apps do. There are several smaller niche APIs (such as one for device orientation)
that also promise to afford more utility in the browser.

More Done with Less Code

One much more subtle feature of HTMLS is the ability to do more with less code. There
are a lot of de facto standard web page features, such as placeholder text in forms, auto-
focusing on a particular input element once the page loads, client-side validation of form
input, date and time pickers, and so on.

All of these concepts are considered standard-issue stuff on a modern web page, but
every one of them requires at least a little bit of JavaScript to work. Because of this, these
concepts are implemented across websites in many different ways, and are at times buggy
or inconsistent with each other.

HTMLS simplifies these common design patterns (and more) by creating standardized
ways to accomplish them in HTML alone. This empowers designers and also reduces code
maintenance and interoperability between platforms because the given feature’s function-
ality can be more contextually handled by the browser.

The Semantic Web

The semantic web is a long-held dream of the Web’s inventor, Tim Berners-Lee. He envi-
sioned a web where content was not only readable by humans but also understood by
machines. Just as we have to write carefully for humans to comprehend, it would also take
a little footwork to make sure programs parsing web pages could pick up on meaningful
content.

HTMLS represents the first big semantic push on the Web, and there are important
semantic components discussed in Chapters 3 and 13 (“Getting Started with HTMLS:
Semantic Tags, Forms, and Drag and Drop” and “Microdata, Other Small Things, and
Beyond HTMLS,” respectively). Now web pages can be marked up to be better under-
stood and categorized by screen readers, search engines, and other web-crawling software.
Chapter 13 also contains a brief history of web semantics and their current utility.

Requisites for HTMLS Development

This section covers a few important considerations for developing HTMLS web apps.
These represent nothing new to a seasoned web developer but are otherwise important for
understanding the rest of this book.

Modern Browser Developer Tools

Browser developer tools have matured rapidly over the past six years. For both developers
and designers, it is strongly recommended that you familiarize yourself with them, as they
are referenced occasionally in this book.

Requisites for HTML5 Development 17

Specifically, this book utilizes the JavaScript console in many of its examples, which is
used to log messages. This increases the simplicity of the book’s code examples because we
can create sample output without bothering with HTML page manipulation. We output to
the console with the JavaScript method console.log (someOutput).

Developer tools are typically launched via a Settings menu, or with the command
Ctrl+Shift+], or just F12 depending on the browser. The JavaScript console is found within
most developer tools.

The developer console is very flexible, and can also be used to manipulate JavaScript on a
page or merely for JavaScript experimentation. Writing directly into the console evaluates
the statement and then provides its return value on the next line. Figure 2.1 shows the
JavaScript console within the developer tools for Chrome and Firefox, with console-access
buttons highlighted and a few commands entered.

- W] " [hwrora = |)
W Wikipedia = ia o
L C | [wwwwiipediaong 2hE € @ o wikipedia.org Bt P & & D= v femiuce >
English Espanal = "
The Free Encyciopeda La wrociouda iow C WIKIPEDIA
) “A:ww:- - [T, English Espail
2R o Deutsch The Froe Encyclpeda La snciciopeda i
- { _ =708 e frow Enzyiiopace P I
o E. 44‘ - 1570 (00e A Deutseh
v, . o
Pyccuit [- Frangais 7
Uemenss Besources Metwork |Souces | Temaline Profles Acdits Comsle o
10} Mo~ ¢ 1 o
» Wtk Expoesions + e -
* Call Seack
v Sope Varisbles
¥ Breskzeints
. “ greeting
oM “Hellal®
» R Bevakpoints. +

= Event Listener Breakpoints

O 3 8 § <toplamerv £ | lron Wamings logs Debug o >

FIGURE 2.1 Chrome and Firefox with their developer tools open, with the console showing.
Buttons to show/hide the console are indicated with arrows.

This book also mentions newer features of developer tools that specifically aid in debug-
ging some HTMLS features, like local storage and web workers. These are referenced and
explained in their respective chapters.

The importance of learning browsers’ developer tools cannot be stressed enough.
Familiarizing yourself with them is one of the most important job skills of web developers
today. Chrome’s developer tools are top notch, and Firefox has very recently (March 2013)
debuted a huge amount of useful new functionality to its toolset.

HTML5 Fallbacks: Shims, Shivs, and Polyfills

You'll find the terms shim, shiv, and polyfill peppered throughout HTMLS resources. Where
HTMLS is concerned, the three words represent roughly the same concept: a JavaScript

18 CHAPTER 2 Important Concepts for HTML5

library that provides HTMLS-like functionality to older browsers, reproducing the native
functionality as closely as possible.

In their most generous form, shims and polyfills are drop-in libraries that allow you to use
HTMLS features without worrying about proper support for older browsers. The polyfill
library detects these unsupporting browsers and attempts to re-create a particular HTMLS5
feature’s functionality through JavaScript or other means. At the least, these libraries
ensure that new HTML content is styled correctly on older browsers.

For a few years, the lack of support in older browsers stalled implementation of HTMLS
features. Today, barring impossible-to-reproduce functionality in some features, HTMLS
features can safely be used without fear of leaving older browsers in the dust.

Online, you will be able to find a good deal of these polyfill libraries and very good lists
of such libraries, such as the one in the Modernizr project: https://github.com/Modernizr/
Modernizr/wiki/HTMLS-Cross-browser-Polyfills (the project itself is mentioned later in this
chapter). Chapter 3 also contains a section on some of the most popular HTMLS polyfill
libraries.

Feature Support and Detection

Not every HTMLS feature can be reasonably supported with a polyfill. For some features,
such as complex canvas applications, it is necessary to support a different kind of fall-
back. In the case of canvas, that usually entails displaying an image instead of a dynamic
animation or a “sorry, please consider upgrading your browser” message instead of inter-
active content.

How Do | Know What Features Are Supported?

Before you use any particular HTMLS feature, it’s a good idea to look at a website of
compatibility tables to see which browser versions currently support the feature. There are
several of these websites, and the most popular ones are as follows:

» caniuse.com
» htmlSplease.com

» mobilehtml5.org

Figure 2.2 shows a typical compatibility table from caniuse.com. You can see that all
versions of Internet Explorer and many mobile browsers do not support WebGL, the 3D
specification for HTMLS canvas (2D canvas is much more widely supported).

Always Use Feature Detection

Sometimes you’ll want to use a feature even if some browsers do not support it and there
is no reasonable fallback. Instead of attempting to detect particular unsupporting brows-
ers, it is always better to detect the existence of features.

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

Summary 19

| Compatinility tables | | Browser comparison |

» Show options = Supported = Mot supportad = Partially supported = Support unknown

Show all tables

= WebGL - 3D Canvas graphics - other su‘;ﬂ“ e Gm::q_glq(,
Method of generating dynamic 30 graphics using JavaScript, accelerated through hardware Parial supporc 22.26%
Totak 53.59%
Firefox Chrome Opera o s L
2.1
2.2
2.2 2.3
4.0-4.1 3.0
8.0 4.2-4.3 4.0
2.0 19.0 25.0 5.1 5.0-5.1 4.1 7.0
Current. 10.0 20.0 26.0 6.0 121 6.0 5.0-7.0 4.2 10.0
Mear future 21.0 27.0
Farther future 22.0 28.0
Parent feature: Canvas (basic sypport]
Motes || Knownssues ({0 | Resources (8) | Feedback Edit on GitHub

Support listed as "partial” refers to the fact that not all users with these browsers have WebGL access. This ks due to the
additional requirement for users ta have up to date video drivers. This problem was solved in Chrome as of version 18. Note
that WebGL Is part of the Khronos Group, not the W3c,

FIGURE 2.2 Compatibility table from caniuse.com showing WebGL support on major browser
versions.

For instance, the HTMLS canvas element is not supported on Internet Explorer 8 or below.
To test for its support, you could create a canvas element and then check for one of the
methods that you would expect to exist:

var supportsCanvas = document.createElement ('canvas').getContext != undefined;

The variable supportscanvas will be true in Internet Explorer 9 and false in Internet
Explorer 8. Using document .createElement ('canvas') alone is not enough because it will
successfully create an element of type HTMLUnknownElement. Instead, you check to see if
the getcontext method exists on the new element.

There are many other valid ways to test for canvas support (or most HTMLS features for
that matter), and instead of bothering to find a working method for each, it is sometimes
easier to use a library. The most popular feature detection library is Modernizr (modernizr.
com), which can quickly detect all HTMLS and CSS3 (Cascading Style Sheets) features and
enable you to respond by executing some appropriate JavaScript, or even conditionally
loading different JavaScript and CSS files based on a feature’s support.

Summary

The resources in this chapter were popular when this book was written, but there may be
better (or more popular) libraries out there today. When considering any kind of library, it
is always a good idea to do a fresh search to see what’s most popular and why.

Now that you have the background and vocabulary needed for this book, it’s time to
explore the many features of HTMLS.

This page intentionally left blank

Index

Numbers

3D canvas. See WebGL canvas
45-degree rotations (canvas), 148
1990s rich media content, 69

A

AAC audio format, 78

abort event, 360

abort() method, 330

add() method, 315
addColorStop() method, 200
aligning canvas text, 197-198
altitude attribute, 284
animations, 210

cancelAnimationFrame() method, 212

canvas interactivity app example
canvas state, tracking, 218-219
<canvas> tag, 216
complete code, 225-230

doDown, doMove, and doUp events,

221-222
finished example, 231

input coordinates, retrieving, 222-223
JavaScript functionality, adding, 217
mouse and touch events, 220-222

shape constructor with prototype
methods, creating, 217-218
shapes, drawing, 223-224
frames per second, 212-213
requestAnimationFrame() method
browser support, 211-212
implementing, 210-211
syntax, 212
timing, 213-214

APIs (Application Programming Interfaces)

Application Cache, 326-327
cache files, swapping, 330
cache sections, 328
current state, checking, 329

download, stopping, 330
enabling, 327

events, handling, 330
example, 327-329

file updates, 328
manifest files, 327
specification website, 327
support, 326
troubleshooting, 330-331
updating, 330

canvas. See canvas
Device Orientation events, 378
File, 373-375

file inputs, 374

loading files, 374

objects, 374

specification website, 374
support, 374

FileSystem, 323, 375

file system access, 324
specification website, 324
support, 324

writing to files, 325-326

Full Screen, 100, 377-378
Geolocation, 278

altitude, 284

coordinate information, 284

coords object, 284-285

current location on map, displaying,
288-293

direction of travel, 285

latitude and longitude, 278-280

methods, 283-284

position changes, 285-287

PositionError object, 285

reference, 287-288

request failure, 285

support, 283

syntax, 283

timestamp object, 284

trailblazing app, 293-298

user location data, gathering, 280-282

user speed, 285

382

Google Maps
browser support, testing, 289
cellular network output, 291
example, 288-293
GPS positions, 292
source code listing, 289-291
Wi-Fi data, 291
IndexedDB, 308
closing databases, 310-312
compatibility, 309
complete example, 316-319
connecting to databases, 309-310
cursors, 319-320
database schema, upgrading, 312-314
deleting databases, 310-312
exploring databases, 319
flow of operations, 321-322
future, 323
indexes, 320-321
libraries supported, 323
object stores, creating, 312-314
output, 318
overview, 308
polyfill, 308
request events, handling, 310
resources, 322
shortcomings, 322-323
size limitations, 322
specification website, 308
support, 308
transactions, 314-316
JavaScript
custom controls, creating, 95
W3C demonstration page, 91
JavaScript media, 90-91
attributes, 90
currentTime attribute, 92-93
events, 90
methods, 90
playbackRate attribute, 93
readyState attribute, 92
sequential playlists, creating, 94-95
Media Capture, 376
Navigation Timing, 378
Page Visibility, 377
Pointer Lock, 378
Streams, 376
Web Audio, 100-101, 376

APIs (Application Programming Interfaces)

Web Messaging, 334
receiving messages, 335
security, 338
sending messages, 334-335
specification website, 334
support, 334

Web Notifications, 377

Web Storage, 303
clear() method, 305
debugging, 306
getltem() method, 304
key() method, 5
local, 304
removeltem() method, 5
session, 303
setltem() method, 304
storage event, 305-306
website, 303

WebSockets, 354

WebSQL, 307

append() method, 363
application cache, 326-327

cache files, swapping, 330

cache sections, 328

current state, checking, 329

download, stopping, 330

enabling, 327

events, handling, 330

example, 327-329

file updates, 328

manifest files, 327

specification website, 327

support, 326

troubleshooting, 330-331

updating, 330

arc() method, 127-128, 139, 201
arcs

arc() method, 127-128

arcTo() method, 128-130

rectangles, rounding, 129-130, 189-190

WHATWG specification, 129
circles, 128
pie slices, 128
rectangles, rounding, 129-130, 189-190
arcTo() method, 128-130, 139, 201
rectangles, rounding, 129-130, 189-190
WHATWG specification, 129
<article> tag, 32
<aside> tag, 33

attributes 383

asm.js project, 379 fullScreenElement, 377
attributes fullScreenEnabled, 377

altitude, 284
autolncrement, 315
autoplay, 89
binaryType, 356
bufferedAmount, 356
canvas, 115-116
canvas context
caching, 248-250
compositing, 202
image data, 203
listing of, 118
paths, 201-202
shadows, 200
styling, 200
text, 202-203
case, 27
controls
<audio> tag, 79, 86-88
<video> tag, 76, 86-88
coords object, 284-285
currentTime, 92-93
data, 335
dataTransfer
drag data, setting, 55-56
drag effects, 56-57
datePublished, 370
empty values, 25
enableHighAccuracy, 285
extensions, 356
fillRule, 264
fillStyle, 119, 138, 200
font, 195, 202
form input, 47-51
autocomplete, 51
autofocus, 50
autosave, 51
formaction, 51
formenctype, 51
formmethod, 51
formtarget, 51
min/max/step, 48
multiple, 50
novalidate, 51
pattern, 49
placeholder, 49
required, 48-49
spellcheck, 51

How can we make this index more useful? Email us at indexes@samspublishing.com

globalAlpha, 184, 202

globalCompositeOperation, 184-186, 202

heading, 285
height
canvas, 115-116
<video> tag, 83

imageSmoothingEnabled, 171

indexNames, 315
itemprop, 369
itemscope, 368
JavaScript media API, 90
keyPath, 315
latitude/longitude, 284
lineCap

defined, 139

paths, styling, 125-126, 201

lineJoin
defined, 139

paths, styling, 125-126, 202

lineWidth, 139

canvas, 125-126

paths, 201

strokeText() method, 194
location, 341
loop, 90
manifest, 327
maximumAge, 286

miterLimit, 125, 127, 139, 202

muted, 85

name, 315

origin, 335

playbackRate, 93
PositionError object, 285
poster, 84-85

preload, 89-90

protocol, 356

quotations, 25, 28
readyState, 92, 356
response, 362
responseType, 362

self, 341
sessionStorage, 303
shadowBlur, 182, 200
shadowColor, 182, 200
shadowOffsetX, 182, 200
shadowOffsetY, 182, 200
source, 335

384 attributes

speed, 285 source file URL, specifying, 85-86
src, 85-86 specified start times, 92-93
strokeStyle, 119, 138, 200 <audio> tag, 79-80

textAlign, 197-198, 202 attributes

textBaseline, 197, 202 autoplay, 89
timeout, 286, 364 controls, 86-88
transaction, 315 loop, 90

type, 77 preload, 89-90
url, 356 src, 85-86

video-only, 82-85 canPlayType() method, 79
whitespace characters, 25 autocomplete attribute, 51
width autofocus attribute, 50
canvas, 115-116 autolncrement attribute, 315
<video> tag, 83 autoplay attribute, 89
withCredentials, 362 autosave attribute, 51
audio
<audio> tag, 79-80
controls, 86-88
conversion tools, 81 B
custom controls, creating, 95
encoding, 80-81
fallback options, 81-82
Flash comparison, 95
ease of use, 95-96
feature support, 96-97
flexibility, 96
media protection, 97
platform support, 96
formats
browser compatibility, 78
current support, 78
listing of, 77-78
testing, 78-79
future development
Web Audio API, 100-101
WebRTC, 98
JavaScript API, 90-91
attributes, 90

backward compatibility, 22
HTML5 Boilerplate templates, 23
Webshims library, 22-23

baselines (canvas text), 197

<bdi> tag, 37

beginPath() method, 138, 201

benchmarking, 240-244
Benchmark.js, 240-242
jsPerf.com, 242-244

Benchmark.js, 240-242

Berners-Lee, Tim, 7
semantic web vision, 366-367
W3C, 9
World Wide Web, creating, 7-8

Bespin app, 192

Bezier curves, 130-133
creating, 131-133

currentTime attribute, 92-93 cubic, 130

defined, 130
events, 90 # g 123
methods, 90 ellipses, drawing,

quadratic, 130
bezierCurveTo() method, 130, 139, 201
Bi-directional Isolation tag, 37
binaryType attribute, 356
Bing microdata visualization tool, 373
<blink> tag, 30
Blob object, 374
blobs, 269
<body> tag, 25

playbackRate attribute, 93
readyState attribute, 92
W3C demonstration page, 91
looping, 90
older browser support, 81-82
playback rates, 93
playing automatically, 89
preloading, 89-90

Boilerplate templates, 23

 tag, 25

browsers

canvas
hints, 270-271
support, 104-105
compatibility

application cache, 326
audio formats, 78
CSS3, 375
Device Orientation events, 378
drag and drop, 67
feature detection, 18-19
File API, 374
FileSystem API, 324
Geolocation API, 283
IndexedDB, 309
Media Capture APls, 376
Navigation Timing API, 378
Page Visibility API, 377

requestAnimationFrame() method,

211-212
shared workers, 345
tables, 18-19
video formats, 73
Web Audio API, 376
Web Messaging API, 334
Web Notifications, 377
web workers, 339
WebGL canvas, 272
WebRTC, 376
WebSockets, 354
XHR2, 360
cookies, 301
development tools, 16-17
Google. See Google
Internet Explorer
canvas support, 105
drag and drop compatibility, 67
media
control appearance, 88
fallback options, 81-82
support, 81-82
Mosaic, 8
new features
CSS3, 375
Device Orientation events, 378
File API, 373-375

canvas

FileSystem API, 375

Full Screen API, 377-378

Navigation Timing, 378

page visibility, 377

Pointer Lock API, 378

Web Audio API, 376

web notifications, 377

WebRTC, 376
performance profilers, 244-245
plug-ins

future, 14

origins, 10

bufferedAmount attribute, 356

C

caching
canvas context attributes, 248-250
images, 251
text, 252
Cailliau, Robert, 8
cancelAnimationFrame() method, 212
canPlayType() method
<audio> tag, 79
<video> tag, 74
canvas
advantages, 109
animations, 210

cancelAnimationFrame() method, 212

frames per second, 212-213

requestAnimationFrame() method,

210-212

timing, 213-214
applications, 103
attributes, sizing, 115-116
browser support, 104

Internet Explorer, 105

testing, 105
<canvas> tag

content, 112

syntax, 111
clearing, 151-152
clipping region, 189

385

nonrectangular areas, clearing, 191-192

overview, 189
resetting, 269

How can we make this index more useful? Email us at indexes@samspublishing.com

386 canvas

rounded corner images, drawing,
189-190

setting, 189

troubleshooting, 237-238
compatibility, 19
compositing, 184

attributes, 202

globalAlpha attribute, 184

globalCompositeOperation attribute,

184-186

hollow paths, 187-188

opaque image portions, filling, 186
context. See context (canvas)
coordinate system, 122-124
creating, 114-115
curves, 127

arc() method, 127-128

arcTo() method, 128-130

Bezier, 130-133

circles, 128

pie slices, 128

rectangles, rounding, 129-130, 189-190

data URL, creating, 116-117
double-buffering, 162
ellipses
creating, 133-134
future, 266
examples, 113-114
fallback content, 112-113
fillRect() method, 115
full-screen API, 100
future, 263-264
blobs, 269
browser hints, 270-271
clipping region, resetting, 269
dashed lines, 266-267
ellipses, 266
fill rules, 264
hit testing, 267-268
image data, 269-270
methods, 270
path primitives, 264-265
text along paths, drawing, 267
text metrics, 269
transformation matrix, 268
gradients, 173

efficient way to fill multiple objects with

same gradient, 178179
linear, 173-175

performance, 254-255
poor way to fill multiple objects with
same gradient, 177-178
radial, 175-177
gridlines, 124
history, 103
image data
blurring with nearest-neighbor
interpolation, 169
cross-origin, troubleshooting, 238
future, 269-270
putting back onto canvas, 164-166
retrieving, 162-164
image security, 171-173
CORS, 172
drawlmage() method with image from
different domain, 171
information leakage, 171-172
local file access without restrictions,
172-173
origin-clean flag, 171
images, drawing, 160
implementations to avoid, 110-111
in-memory, 154-159
creating, 154
drawing app with proper transparency
example, 157-159
patterns, creating, 180
performance, 155
simple drawing app with transparency
problems example, 155-157
interactivity app example
canvas state, tracking, 218-219
<canvas> tag, 216
complete code, 225-230
doDown, doMove, and doUp events,
221-222
finished example, 231
input coordinates, retrieving, 222-223
JavaScript functionality, adding, 217
mouse and touch events, 220-222
shape constructor with prototype
methods, creating, 217-218
shapes, drawing, 223-224
JavaScript app protection, 106
line styles, 125-127
corners, 126
ending points, 125-126
mitering ratio, 127
width, 125-126

mouse and touch inputs, 206
getPos() method, 206-207
getPos2() method, 207-209
mouse versus touch events, 209-210

multiple, 256-257

nonzero winding number rule, 135-138
three subpaths example, 136-137
two subpaths example, 135

overhead, 106

overview, 103-104

page interaction, 106

paths, 120-122
attributes, 201-202
closing, 139
filling, 122, 139
lines, adding, 139
methods, 201-202
performance, 255-256
primitives, 264-265
starting, 138
stroking, 120-122
subpaths, creating, 139
text along, drawing, 267
tracing, 139
troubleshooting, 235

patterns, 179-182
CanvasPattern object, 179
creating, 180
text, filling, 180

performance, 109, 239
benchmarking, 240-244
browser performance profilers, 244-245
clearing and redrawing, 260-261
context attributes, caching, 248-250
DOM, 248
double-buffering, 162
drawing on integers, 252
gradients, 254-255
hit testing, 257-260
image caching, 251
in-memory canvases, 155
loops, 245-246
math, 246-247
multiple canvases, 256-257
object tracking, 257
paths, 255-256
save()/restore() methods, 250-251
scaling images, 252
scope, 246

canvas 387

shadows, 253
size, 260
text, 252-253
pixel manipulation
color examples, 167-169
fillRect() versus putlmageData()
method, 166
image smoothing, 171
ImageData objects, creating, 164
rectangles
clearing, 138
drawing, 115, 118-119
filling, 138
methods, 200-201
outlining, 138
rect() method, 139
rounding, 129-130
saving, 140-141
shadows, 182
attributes, 182, 200
blur, 254
clipping region problems, 183
faking, 254
methods, 200
performance, 253
precomputing, 254
transformation effects on offsets,
182-183
zoom scale effects, 184
SVG, compared, 104, 107-109
text, 192
attributes, 202-203
accessibility problems, 192
alignment, 197-198
along paths, drawing, 267
alphabetic baseline, 194
methods, 202-203
baselines, 197, 269
bounding box, 269
caching, 252
drawing, 194-195
fonts, 195-196
future metrics, 269
Greeking, 253
kerning problems, 193-194
measuring, 198-199, 253
performance, 199, 252-253
transformation problems, 193
width, 194-195

How can we make this index more useful? Email us at indexes@samspublishing.com

388 canvas

transformations character encoding, 24
canvas, clearing, 151-152 Chrome
current matrix, transforming, 151 JavaScript console tutorial, 3
current path disproportionate WebGL resource website, 275
scaling, 146 circles, drawing, 128
flipping, 145 circular hit testing, 258
future, 268 clear() method, 305, 315
matrix written form, 150 clearing canvas, 260-261
methods, 202 clearRect() method, 119, 138, 201
resetting, 151 clearWatch() method, 284
rotations, 146-149 client/server communication
save() and restore() methods placement, pre-WebSockets, 354-355
143-144 WebSockets, 354
scaling, 143 API, 354
text problems, 193 attributes, 356
tracking, 152-154 connections, creating, 355-356
translations, 141-142 errors, 357-358
troubleshooting, 239 events, 356-357
troubleshooting sample page, 358-359
blurred images, 235-236 sent data, limiting, 357
blurred paths, 235 server-side, 359
clipping regions, 237-238 specification, 354
cross-origin image data, 238 support, 354
CSS width and height, 234-235 XHR2, 359-360
restore() method, 236-237 binary data, 362-363
save() method, 236-237 cross-origin credentials, 362
transformations, 239 cross-origin requests, 361
WebGL, 271-272 FormData objects, 363
libraries, 272-274 progress events, 360-361
resources, 275 timeouts, 363-364
support, 272 clip() method, 201
website, 271 clipping regions, 189
<canvas> tag nonrectangular areas, clearing, 191-192
content, 112 overview, 189
fallback content, 112-113 resetting, 269
fillRect() method, 115 rounded corner images, drawing, 189-190
syntax, 111 setting, 189
CanvasGradient object, 173 troubleshooting, 237-238
CanvasPattern object, 179 close event, 356
case sensitivity (attributes/tags), 25, 27 close() method
cell phone history, 278 web workers, 341
cellular network geolocation, 282, 291 WebSockets, 357
channel messaging, 336 closePath() method, 139, 201
example closing databases, 310-312
first iFrame, 337 closures (tags), 25, 28-29
parent frame, 337-338 code, reducing, 16
second iFrame, 338 CoffeeScript, 379

ports, 336 color input (forms), 44-45

<command> tag, 35
commands. See methods
compatibility
application cache, 326
audio formats, 78
backward, 22
HTML5 Boilerplate templates, 23
Webshims library, 22-23
canvas, 104-105
CSS3, 375
Device Orientation events, 378
drag and drop, 67
feature detection, 18-19
File API, 374
FileSystem API, 324
Geolocation API, 283
IndexedDB, 309, 323
Media CaptureAPls, 376
Navigation Timing API, 378
Page Visibility API, 377

requestAnimationFrame() method, 211-212

shared workers, 345
tables, 18-19
video formats, 73
Web Audio API, 376
Web Messaging API, 334
Web Notifications, 377
web workers, 339
WebGL, 272
WebRTC, 376
WebSockets, 354
XHR2, 360
compositing, 184
attributes, 202
globalAlpha, 184
globalCompositeOperation, 184-186
hollow paths, 187-188
opaque image portions, filling, 186
confusing elements, 29
connections
databases, 309-310
WebSocket, creating, 355-356
context (canvas)
attributes
caching, 248-250
compositing, 202
fillRule, 264
fillStyle, 138
font, 195

context (canvas) 389

image data, 203
lineCap, 139
lineJoin, 139
lineWidth, 139, 194
listing of, 118
miterLimit, 139
paths, 201-202
shadows, 200
strokeStyle, 138
styling, 200
text, 202-203
textAlign, 197-198
textBaseline, 197
clipping region, 189
nonrectangular areas, clearing, 191-192
overview, 189
rounded corner images, drawing,
189-190
setting, 189
compositing, 184
globalAlpha attribute, 184
globalCompositeOperation attribute,
184-186
hollow paths, 187-188
opaque image portions, filling, 186
coordinate system, 122-124
curves, 127
arc() method, 127-128
arcTo() method, 128-130
Bezier, 130-133
circles, 128
pie slices, 128
rectangles, rounding, 129-130, 189-190
ellipses, 133-134
fillStyle attribute, 119
future
blobs, 269
browser hints, 270-271
clipping regions, resetting, 269
dashed lines, 266-267
ellipses, 266
fill rules, 264
hit testing, 267-268
image data, 269-270
methods, 270
path primitives, 264-265
text along paths, 267
text metrics, 269
transformation matrix, 268

How can we make this index more useful? Email us at indexes@samspublishing.com

390

context (canvas)

gradients, 128-173

efficient way to fill multiple objects with
same gradient, 178179

linear, 173-175

poor way to fill multiple objects with
same gradient, 177-178

radial, 175-177

gridlines, 124
isPointInPath() method, 135
line styles, 125-127

corners, 126

ending points, 125-126
mitering ratio, 127
width, 125-126

methods

arc(), 139

arcTo(), 139

beginPath(), 138
bezierCurveTo(), 139
clearRect(), 119, 138
closePath(), 139
createlmageData(), 164
createLinearGradient(), 173
createPattern(), 179
createRadialGradient(), 175
fill(), 139

fillRect(), 138

fillText(), 194
getlmageData(), 162-164
image data, 203

image drawing, 202
isPointInPath(), 139
lineTo(), 139
measureText(), 198-199
moveTo(), 139

paths, 201-202
putimageData(), 164-166
quadraticCurveTo(), 139
rect(), 139

rectangles, 200-201
rotate(), 148-149
scale(), 143
setTransform(), 151
state(), 200

stroke(), 139
strokeRect, 138
strokeText(), 194

styling, 200

text(), 202-203
transform(), 151
transformations, 202
translate(), 141-142

nonzero winding number rule, 135-138

three subpaths example, 136-137
two subpaths example, 135

paths, 120-122

filling, 122
stroking, 120-122

patterns, 179-182
saving/restoring state, 140-141
shadows, 182-184

state, 117-118

strokeStyle attribute, 119

text, 192

accessibility problems, 192
alignment, 197-198
alphabetic baseline, 194
baselines, 197

drawing, 194-195

fonts, 195-196

kerning problems, 193-194
measuring, 198-199
performance, 199
transformation problems, 193
width, 194-195

transformations

canvas, clearing, 151-152

current matrix, transforming, 151

current path disproportionate
scaling, 146

flipping, 145

matrix written form, 150

resetting, 151

rotations, 146-149

save() and restore() methods placement,
143-144

scaling, 143

text problems, 193

tracking, 152-154

translations, 141-142

controls attribute
<audio> tag, 79, 86-88
<video> tag, 76, 86-88
cookie recipe microdata example, 371-372
marking with microdata, 372
skeleton, 371

cookies
browser, 301
Flash, 302
coordinate system (canvas), 122-124
coords object, 284-285
CORS (Cross-Origin Resource Sharing),
172, 361
createElement() method, 154
createlmageData() method, 164, 203
createlLinearGradient() method, 173, 200
createPattern() method, 179, 200
createRadialGradient() method, 175, 200
CreativeWork types, 370
cross-document messaging. See messaging
Cross-Origin Resource Sharing (CORS),
172, 361
CSS, 41-43
CSS3, 375
cubic Bezier curves, 130
current rich media content, 71
currentTime attribute, 92-93
cursors (IndexedDB), 319-320
curves, 127
arcs
arc() method, 127-128
arcTo() method, 128-130
Bezier, 130-133
creating, 131-133
cubic, 130
defined, 130
ellipses, drawing, 133
quadratic, 130
circles, 128
pie slices, 128
rectangles, rounding, 129-130, 189-190

D

Dart, 379

dashed lines, 266-267

data attribute, 335

data URLs, creating, 116-117

databases
closing, 310-312
connecting, 309-310
deleting, 310-312
exploring, 319

drawEllipse() method

schema, upgrading, 312-314
transactions, 314-316
data: URLs, 350
<datalist> tag, 51-52
dataTransfer attribute
drag data, setting, 55-56
drag effects, 56-57
datePublished attribute, 370
dates and times
form input, 44-46
ISO 8601, 370
microdata, 370
datetime attribute, 37
db.js library, 323
debugging. See troubleshooting
declaring Doctypes, 23-24
delete() method, 315
deleting databases, 310-312
<details> tag, 35-36
developer tools, 16-17
development future. See Web,
development future
Device Orientation events, 378
Doctypes, declaring, 23-24
document outlines, 33-35
DOM, canvas performance, 248
double-buffering (canvas), 162
drag and drop, 53
browser compatibility, 67
dragging
data, 55-56
effects, 56-57
events, 58
requirements, 53-55
example, 59-60
complete sample script, 63-66
effects, adding, 62-63
necessary events, 60-62
oddities, 58-59
dragend events, 58
dragenter events
defined, 58
example, 61
dragleave events, 58
dragover events
defined, 58
example, 61
dragstart event, 58, 60
drawEllipse() method, 133

How can we make this index more useful? Email us at indexes@samspublishing.com

391

392 drawlmage() method

drawlmage() method, 159-160, 202
drawing. See canvas
drawPath() method, 157
drop events
defined, 58
example, 61

E

ECMAScript 6 (ES6), 379
effects (drag)
adding, 62-63
overview, 56-57
ellipse() method, 134, 266
ellipses
drawing, 133-134
future, 266
email input (forms), 46-47
<embed> tag, 101
embedding web workers, 350
empty values (attributes), 25
enableHighAccuracy attribute, 285
encoding media, 80-81
equator, 279
errors
event, 356, 360
web workers, 350
WebSockets, 357-358
ES6 (ECMAScript 6), 379
events
abort, 360
application cache, handling, 330
canvas mouse and touch, handling,
220-222
close, 356
Device Orientation, 378
drag
complete sample script, 63-66
data, setting, 55-56
effects, 56-57, 62-63
listing of, 58
necessary, 60-62
oddities, 58-59
error, 356, 360
IDBRequest, handling, 310
JavaScript media API, 90
load, 360

loadend, 360

loadstart, 360

message, 356

message listeners, 335

mouse versus touch, 209-210

oncached, 330

onchecking, 330

ondownloading, 330

onerror, 330

onnoupdate, 330

onobsolete, 330

onprogress, 330

onupdateready, 330

onupgradeneeded, 313

open, 356

progress, 360-361

storage, 305-306

timeout, 360, 364

WebSockets, 356-357
Example.html, 113
exitFullScreen() method, 377
Extensible Hypertext Markup Language

(XHTML), 9

Extensible Markup Language (XML), 9
extensions attribute, 356

F

fallbacks. See polyfills
feature detection library, 19
feature support
browser compatibility tables, 18-19
detection, 18-19
ffmpeg command-line tool, 81
Fibonacci numbers web worker example,
342-345
HTML code, 343
worker code, 344-345
<figcaption> tag, 36
<figure> tag, 36
File API, 373-375
file inputs, 374
loading files, 374
objects, 374
specification website, 374
support, 374

File object, 374
FileList objects, 374
FileReader objects, 374
FileSystem API, 323, 375
file system access, 324
specification website, 324
support, 324
writing to files, 325-326
fill() method, 122, 139, 201
fill rules, 264
fillRect() method, 115, 138, 200
fillRule attribute, 264
fillStyle attribute, 119, 138, 200
fillText() method, 194, 203
Flash
cookies, 302
future, 14

media elements, compared, 95

ease of use, 95-96
feature support, 96-97
flexibility, 96
media protection, 97
platform support, 96
origins, 10
flipping images (canvas), 145
font attribute, 195, 202
fonts, 195-196
<footer> tag, 32
<form> tags, 50
formaction attribute, 51
formats
audio
browser compatibility, 78
current support, 78
listing of, 77-78
testing, 78-79
video, 71
browser compatibility, 73
current support, 74
MP4, 72
testing, 74-75
Theora, 72
WebM, 72
FormData object, 363
formenctype attribute, 51
formmethod attribute, 51

future

forms
input attributes, 47-51
autocomplete, 51
autofocus, 50
autosave, 51
formaction, 51
formenctype, 51
formmethod, 51
formtarget, 51
min/max, 48
multiple, 50
nesting in <form> tags, 50
novalidate, 51
pattern, 49
placeholder, 49
required, 48-49
spellcheck, 51
step, 48
input types, 41-47
color, 44-45
CSS styling to current state, 41-43
dates and times, 44-46
email, 46-47
no presentational differences, 41
number, 43-44
presentational differences, 41
range, 44
search, 47
telephone numbers, 47
new features, 40
<datalist> tag, 51-52
<kegen> tag, 53
<output> tag, 52
formtarget attribute, 51
frames per second animations, 212-213
frames/framesets, 29
Full Screen API, 100, 377-378
fullScreenElement attribute, 377
fullScreenEnabled attribute, 377
functions. See methods
future
canvas, 263-264
blobs, 269
browser hints, 270-271
clipping region, resetting, 269
dashed lines, 266-267
ellipses, 266

How can we make this index more useful? Email us at indexes@samspublishing.com

393

394 future

fill rules, 264
hit testing, 267-268
image data, 269-270
methods, 270
path primitives, 264-265
text along paths, drawing, 267
text metrics, 269
transformation matrix, 268
WebGL, 271-275
IndexedDB, 323
web development, 379
asmjs project, 379
CoffeeScript, 379
Dart, 379

G

geo.html, 289-291
Geolocation API, 278

altitude, 284

coordinate information, 284

coords object, 284-285

current location on map, displaying,

288-293

browser support, testing, 289
cellular network, 291
GPS positions, 292
source code listing, 289-291
Wi-Fi data, 291

direction of travel, 285

latitude and longitude, 278-280

methods, 283-284

position changes, monitoring, 286-287

position options, 285-286

PositionError object, 285

reference, 287-288

request failure, 285

support, 283

syntax, 283

timestamp object, 284

trailblazing app, 293-298
accuracy restrictions, turning off, 298
code listing, 294-297
coordinate data accuracy, 294
device sleeping/losing focus, 298

DOM content, 293
map updates, 294
state, 294
walking around action, displaying, 297
user location data, gathering
cellular networks, 282
GPS coordinates, 282
IP addresses, 281
user entry, 281
Wi-Fi, 282
user speed, 285
get() method, 315
getBoundingClientRect() method, 206-207
getCurrentPosition() method, 283
getimageData() method, 162-164, 203
getltem() method, 304
getPos() method, 206
getPos2() method, 207-209
GLGE library, 274
globalAlpha attribute, 184, 202
globalCompositeOperation attribute,
184-186, 202
goals (HTML5)
code reduction, 16
native web, improving, 15-16
semantic web, 16
Google
Chrome
JavaScript console tutorial, 3
WebGL resource website, 275
Dart, 379
Gears browser extension, 302
Maps API
cellular network output, 291
GPS positions, 292
Wi-Fi data, 291
Maps APl example, 288-293
browser support, testing, 289
source code listing, 289-291
microdata, visualizing, 373
GPS, 282, 292
gradients, 173
filling multiple objects with same gradient
efficient example, 178-179
poor example, 177-178

linear, 173-175
creating, 173
entire canvas example, 173-174
small shapes example, 175
performance, 254-255
radial, 175-177
Greeking text, 253
gridlines (canvas), 124

H

<head> tag, 25
<header> tag, 32
heading attribute, 285
height attribute
canvas, 115-116
<video> tag, 83
<hgroup> tag, 33
history
canvas, 103
cell phones, 278
client/server communication, 354-355
rich media content
1990s, 69
current, 71
storage
browser cookies, 301
Flash cookies, 302
Google Gears browser extension, 302
userData object, 302
Web Storage. See Web, storage
WebSQL, 307
Web
browser plug-ins, 10
creation, 7-8
HTML elements, 9
HTMLD5, introduction, 11-12
Web 2.0, 10
WHATWG, 11
XML/XHTML acceptance, 9
hit testing, 257-260
approximation, 258
circular, 258
future, 267-268
pixel-perfect, 259-260
rectangular, 258

images

hollow paths, creating, 187-188
<html> tag, 25
HTML4
HTML5, compared, 30
specifications removed, 29
HTML5
creation, 11
future, 14
goals
code reduction, 16
native web, improving, 15-16
semantic web, 16
Media Project, 82, 96
overview, 11-12
popularity, 12-14
specifications, 12
hypertext, 7

IDB. See IndexedDB
IDBObjectStore object, 314-315
IDBRequest events, handling, 310
IDBTransaction object, 314
<iframe> tag, 29
ImageData object
creating
blank, 164
current canvas bitmap, 162-164
putting data back on canvas, 164-166
images
caching, 251
data
blurring with nearest-neighbor
interpolation, 169
cross-origin, troubleshooting, 238
future, 269-270
putting back onto canvas, 164-166
retrieving, 162-164
drawing, 160
future, 269-270
performance
drawing on integers, 252
scaling, 252

How can we make this index more useful? Email us at indexes@samspublishing.com

395

396 images

security, 171-173
CORS, 172

drawlmage() method with image from

different domain, 171
information leakage, 171-172

local file access without restrictions,

172173
origin-clean flag, 171
smoothing, 171

imageSmoothingEnabled attribute, 171

 tag, 25
importScript() method, 349
IndexedDB, 308
compatibility, 309
complete example, 316-319
cursors, 319-320
databases
closing, 310-312
connecting, 309-310
deleting, 310-312
exploring, 319
schema, upgrading, 312-314
flow of operations, 321-322
future, 323
indexes, 320-321
libraries supported, 323
object stores, creating, 312-314
output, 318
overview, 308
polyfill, 308
read-only attributes, 315
request events, handling, 310
resources, 322
shortcomings, 322-323
size limitations, 322
specification website, 308
support, 308
transactions, 314-316
example, 315-316
IDBTransaction object, 314
modes, 314

object stores, accessing, 314-315

indexNames attribute, 315
in-memory canvases, 154-159
creating, 154
drawing app example
proper transparency, 157-159

transparency problems, 155-157

patterns, creating, 180
performance, 155
input (forms)
attributes, 47-51
autocomplete, 51
autofocus, 50
autosave, 51
formaction, 51
formenctype, 51
formmethod, 51
formtarget, 51
min/max, 48
multiple, 50
nesting in <form> tags, 50
novalidate, 51
pattern, 49
placeholder, 49
required, 48-49
spellcheck, 51
step, 48
types, 41-47
color, 44-45
CSS styling to current state, 41-43
dates and times, 44-46
email, 46-47
no presentational differences, 41
number, 43-44
presentational differences, 41
range, 44
search, 47
telephone numbers, 47
Internet Explorer
canvas support, 105
drag and drop compatibility, 67
invalid pseudoclass, 42
IP address geolocation, 281
ISO 8601, 370
isPointInPath() method, 135, 139, 202
itemprop attributes, 369
itemscope attribute, 368

J

J3D library, 274
JavaScript

animations, 210
cancelAnimationFrame() method, 212
frames per second, 212-213
requestAnimationFrame() method,

210-212

timing, 213-214

application cache, 329

asm.js project, 379

benchmarking, 240-244
Benchmark.js, 240-242
jsPerf.com, 242-244

canvas attributes, 115-116

canvas interactivity app example
CanvasState constructor, 218-219
complete code, 225-230
input coordinates, retrieving, 222-223
mouse and touch events, 220-222
Shape constructor, 217-218
shapes, drawing, 223-224

canvas transformations, tracking, 152-154

channel messaging example
first iFrame, 337
parent frame, 337-338
second iFrame, 338

Chrome console tutorial, 3

console, 17

Geolocation APl minimum, 283

HTML5 Media Project, 82

media API, 90-91
attributes, 90
currentTime attribute, 92-93
custom controls, creating, 95
events, 90
methods, 90
playbackRate attribute, 93
readyState attribute, 92
sequential playlists, creating, 94-95
W3C demonstration page, 91

MediaElement.js library, 82

performance optimization
loops, 245-246
math, 246-247
scope, 246

linear gradients

shared worker script, 348-349
web worker example, 341-342

397

WebSocket connections, creating, 355-356

jQuery-IndexedDB library, 323
jsPerf.com, 242-244

K

kappa, 134

<kegen> tag, 53

key() method, 305
keyPath attribute, 315
Khronos, 271

L

latitude and longitude, 278-280
latitude attribute, 284
libraries
Benchmark.js, 240-242
db.js, 323
feature detection, 19
HTML5 Media Project, 82, 96
IndexedDB supported, 323
jQuery-IndexedDB, 323
MediaElement.js, 82
polyfill, 18
PouchDB, 323
WebGL, 272-274
GLGE, 274
J3D, 274
PhiloGL, 274
ScenelS, 274
Three.js, 272-274
Webshims, 22-23
line styles (canvas), 125-127
corners, 126
ending points, 125-126
mitering ratio, 127
width, 125-126
linear gradients, 173-175
creating, 173
entire canvas example, 173-174
small shapes example, 175

How can we make this index more useful? Email us at indexes@samspublishing.com

398 lineCap attribute

lineCap attribute, 125-126, 139, 201
lineJoin attribute, 125-126, 139, 202
lineTo() method, 139, 201
lineWidth attribute, 139
canvas, 125-126
paths, 201
strokeText() method, 194
<link> tag, 25
linters, 27
listings
animations
frames per second, 213
requestAnimationFrame() method
polyfill, 211-212
timing, 214
audio formats, testing, 79
canvas
Bezier curves, 131
bitmap manipulation examples, 167-169
blurring image data with nearest-neighbor
interpolation, 169
drawlmage and fillText, comparing,
241-242
efficient way to fill multiple objects with
same gradient, 178179
ellipses, drawing, 133
examples, 113-114
fallback content, 113
filling text with patterns, 180
flipping images, 145
getPos() method, 206
getPos2() method, 208-209
gridlines, 124
hollow paths, creating, 187-188
image data, retrieving, 163
ImageData.html, 165
in-memory canvases drawing app,
157-159
line widths, 125
opaque portions of image, filling with
compositing, 186
patterns, creating, 180
pie slice, 128
poor way to fill multiple objects with
same gradient, 177-178
radial gradients, 176
rotations around the center, 149
rounded corner images, drawing,
189-190

simple drawing app with transparency
problems, 155-157
three subpaths nonzero winding number
rule, 136-137
transformation examples, 146-147
transformations, tracking, 152-154
two subpaths nonzero winding number
rule, 135
canvas interactivity app example
canvas events, 220-221
complete code, 225-230
doDown, doMove, and doUp events,
221-222
input coordinates, retrieving, 223
shape constructor with prototype
methods, creating, 217-218
shapes, drawing, 224
channel messaging
first iFrame, 337
parent frame, 337-338
second iFrame, 338
closing databases, 311
cookie recipe
marking with microdata, 372
skeleton, 371
download website, 3
drag and drop
complete code example, 64-66
dragenter events, 61
dragging requirements, 54
dragover events, 57, 61
dragstart event, 57, 60
Fibonacci numbers web worker example
HTML code, 343
worker code, 344-345
FileSystem API, writing to files, 325-326
Geolocation
mapping source code example, 289-291
reference, 287-288
IDBRequest events, handling, 310
IndexedDB
complete example, 316-319
cursors, 319-320
indexes, 321
object stores, creating, 313-314
transaction, 315-316
microdata person description, 368
poorly-written-but-valid HTML5 page, 25
responseType attribute, 362

sequential playlists, creating, 94
shared worker example
JavaScript code, 348-349
nested iFrame, 347-348
parent page, 346-347
Three.js, 273-274
trailblazing app
code listing, 294-297
DOM content, 293
video format support, testing, 74
web worker JavaScript example, 341-342
Webshims library, loading, 22
WebSockets sample page, 358-359
XHR
progress event, 361
timeouts, 364
load event, 360
load() method, 90
loadend event, 360
loadstart event, 360
local Web storage, 304
location attribute, 341
longitude attribute, 284
long-polling, 355
loop attribute, 90
looping audio/video, 90
loops, 245-246

M

manifest attribute, 327
manual entry Geolocation, 281
<mark> tag, 36-37
max attribute, 48
maximumAge attribute, 286
measureText() method, 198-199, 203
measuring text (canvas), 198-199
Media Capture APls, 376
media elements
1990s, 69
audio
attributes, 85-90
<audio> tag, 79-80
formats, 77-79
source file URL, specifying, 85-86
controls, 86-88
conversion tools, 81

MessagePort objects

current, 71
custom controls, creating, 95
<embed> tag, 101
encoding, 80-81
fallback options, 82
Flash comparison, 95
ease of use, 95-96
feature support, 96-97
flexibility, 96
media protection, 97
platform support, 96
future developments
full-screen API, 100
Web Audio API, 100-101

399

WebRTC (Real-Time Communication), 98

WebVTT, 98-100
JavaScript API, 90-91
attributes, 90
currentTime attribute, 92
events, 90
methods, 90
playbackRate attribute, 93
readyState attribute, 92
sequential playlists, creating, 94-95
W3C demonstration page, 91
looping, 90
older browser support, 81-82
playback rates, 93
playing automatically, 89
preloading, 89-90
specified start times, 92-93
video
browser compatibility, 73
controls, adding, 76
current support, 74
download image, setting, 84-85
formats, 71
muting, 85
sequential playlists, creating, 94-95
source file URL, specifying, 85-86
support, testing, 74-75
<video> tag, 75-77
video-only attributes, 82-85
MediaElement.js library, 82, 95
<menu> tag, 35
meridians, 279
message events, 335, 356
MessageChannel object, 336
MessagePort objects, 336

How can we make this index more useful? Email us at indexes@samspublishing.com

400 messaging

messaging
channel, 336
first iFrame example, 337
parent frame, 337-338
ports, 336
second iFrame, 338
web, 334
receiving messages, 335
security, 338
sending messages, 334-335
<meta> tag, 24
<meter> tag, 38-39
methods
abort(), 330
add(), 315
addColorStop(), 200
append(), 363
arc(), 127-128, 139, 201
arcTo(), 128-130, 139, 201

rectangles, rounding, 129-130, 189-190

WHATWG specification, 129
beginPath(), 138, 201
bezierCurveTo(), 130, 139, 201
cancelAnimationFrame(), 212
canPlayType(), 74, 79
canvas context

image data, 203

image drawing, 202

paths, 201-202

rectangles, 200-201

styling, 200

text, 202-203

transformations, 202
clear(), 305, 315
clearRect(), 119, 138, 201
clearWatch(), 284
clip(), 201
close()

web workers, 341

WebSockets, 357
closePath(), 139, 201
createElement(), 154
createlmageData(), 164, 203

createLinearGradient(), 173, 200

createPattern(), 179, 200

createRadialGradient(), 175, 200

delete(), 315
drawEllipse(), 133
drawlmage(), 159-160, 202

drawPath(), 157

ellipse(), 134, 266

exitFullScreen(), 377

fill(), 122, 139, 201

fillRect(), 115, 138, 200

fillText(), 194, 203

Geolocation API, 283-284

get(), 315

getBoundingClientRect(), 206-207

getCurrentPosition(), 283

getimageData(), 162-164, 203

getltem(), 304

getPos(), 206

getPos2(), 207-209

importScript(), 349

isPointinPath(), 135, 139, 202

key(), 305

lineTo(), 139, 201

load(), 90

loading files, 374

measureText(), 198-199, 203

moveTo(), 139, 201

open(), 309

openCursor(), 315

postMessage()
channel messaging, 336
web messaging, 334

put(), 315

putlmageData(), 164-166, 203

quadraticCurveTo(), 130, 139, 201

rect(), 139, 201

removeltem(), 5

requestAnimationFrame()
browser support, 211-212
frames per second, 212-213
implementing, 210-211
syntax, 212
timing, 213-214

requestFullScreen(), 377

resetClip(), 191

resetTransform(), 151, 268

restore() (canvas), 236-237
performance, 250-251
state, 140-141, 200

rotate(), 148-149, 202

save() (canvas), 236-237
performance, 250-251
state, 140-141, 200

scale(), 143, 202

new browser features 401

send(), 357 shape constructor with prototype
setltem(), 304 methods, creating, 217-218
setTransform(), 151, 202, 268 shapes, drawing, 223-224
SharedWorker(), 345 getPos() method, 206-207

stroke(), 120-122, 139, 201 getPos2() method, 207-209
strokeRect(), 138, 200 mouse versus touch events, 209-210
strokeText(), 194 moveTo() method, 139, 201
swapCache(), 330 Mozilla, 9

terminate(), 341 validator, 26

toblob(), 269 WebGL resource website, 275
toDataURL(), 116-117, 203 MP3 audio format, 77

transform(), 151, 202 MP4 video format, 72

translate(), 141-142, 202 multiple attribute, 50

update(), 330 multiple canvases performance, 256-257
watchPosition(), 283, 286-287 muted attribute, 85

Worker(), 340 muting video, 85

microdata, 367
cookie recipe example, 371-372
marking with microdata, 372
skeleton, 371 N
CreativeWork types, 370
dates, 370
nesting, 369
nonvisible, 370
person description example, 368-369
reviews, 370
schema hierarchy, 370
types supported website, 370
visualizing, 373
vocabulary, 367
microformats, 367
min attribute, 48
MinimalExample.html, 114
Miro Video Converter, 81
miterLimit attribute, 125, 127, 139, 202
Modernizr feature detection library, 19
Mosaic web browser, 8
mouse and touch inputs, 206
canvas interactivity app example
canvas state, tracking, 218-219
<canvas> tag, 216
complete code, 225-230
doDown, doMove and doUp events,
221-222
finished example, 231
input coordinates, retrieving, 222-223
JavaScript functionality, adding, 217
mouse and touch events, 220-222

name attribute, 315
<nav> tag, 32
Navigation Timing API, 378
nesting
microdata, 369
web workers, 350
new browser features
CSS3, 375
Device Orientation events, 378
File API, 373-375
file inputs, 374
loading files, 374
objects, 374
specification website, 374
support, 374
FileSystem API, 375
Full Screen API, 377-378
Media Capture APls, 376
Navigation Timing, 378
page visibility, 377
Pointer Lock API, 378
Streams API, 376
Web Audio API, 376
web notifications, 377
WebRTC, 376

How can we make this index more useful? Email us at indexes@samspublishing.com

402 new features

new features

Doctypes, 23-24
document outlines, 33-35
drag and drop, 53
browser compatibility, 67
drag data, 55-56
drag effects, 56-57
drag events, 58

dragging requirements, 53-55

oddities, 58-59
forms, 40
<datalist> tag, 51-52
input attributes, 47-51
input types, 41-47
<keygen> tag, 53
<output> tag, 52
frames/framesets, 29
HTML4
HTML5, compared, 30
specifications removed, 29
meta character encoding, 24
obsolete features, 29-30
semantic tags, 31-33
<article>, 32
<aside>, 33
<bdi>, 37
<command>, 35
<details>, 35-36
<figcaption>, 36
<figure>, 36
<header> and footer>, 32
<hgroup>, 33
<mark>, 36-37
<menu>, 35
<nav>, 32
<ruby>/<rt>/<rp>, 37
<section>, 32
<summary>, 35-36
<time>, 37
syntax, 25
validation, 25-27
visual tags, 37-40
<meter>, 38-39
<progress>, 39-40

nonvisible microdata, 370

nonzero winding number rule, 135-138
three subpaths example, 136-137
red directional arrows, blue crossing
lines, 138
separating, 137
two subpaths example, 135
novalidate attribute, 51
numeric input (forms), 43-44

O

object stores, creating, 312-314
objects
Blob, 374
CanvasGradient, 173
CanvasPattern, 179
coords, 284-285
File, 374
FileList, 374
FileReader, 374
FormData, 363
IDBObjectStore, 314-315
IDBTransaction, 314
ImageData
creating blank, 164
creating with current canvas bitmap,
162-164
putting data back on canvas, 164-166
MessageChannel, 336
MessagePort, 336
PositionError, 285
TextMetrics, 199
timestamp, 284
tracking, 257
userData, 302
obsolete features, 29-30
offline pages. See application cache
0Ogg audio format, 77
oncached event, 330
onchecking event, 330
ondownloading event, 330
onerror events, 330
onnoupdate event, 330
onobsolete event, 330

onprogress event, 330
onupdateready event, 330
onupgradeneeded event, 313
open event, 356

open() method, 309
openCursor() method, 315
optional pseudoclass, 41
O’Reilly, Tim, 10

origin attribute, 335
<output> tag, 52

P

Page Visibility API, 377
paths, 120-122
attributes, 201-202
blurred, troubleshooting, 235
closing, 139
filling, 122, 139
hollow, creating, 187-188
lines, adding, 139
methods, 201-202
performance, 255-256
primitives, 264-265
starting, 138
stroking, 120-122
subpaths, creating, 139
text along, drawing, 267
tracing, 139
pattern attribute, 49
patterns, 179-182
CanvasPattern object, 179
creating, 180
text, filling, 180
performance
canvas, 109, 239
benchmarking, 240-244
browser performance profilers, 244-245
clearing and redrawing, 260-261
context attributes, caching, 248-250
DOM, 248
double-buffering, 162
drawing on integers, 252
gradients, 254-255
hit testing, 257-260
image caching, 251
in-memory canvases, 155

postMessage() method 403

loops, 245-246
math, 246-247
multiple canvases, 256-257
object tracking, 257
paths, 255-256
save()/restore() methods, 250-251
scaling images, 252
scope, 246
shadows, 253
size, 260
text, 199, 252-253
gradients
efficient way to fill multiple objects with
same gradient, 178-179
poor way to fill multiple objects with
same gradient, 177-178
performance profilers, 244-245
PhiloGL library, 274
pie slices, drawing, 128
pixel manipulations
blurring image data with nearest-neighbor
interpolation, 169
color examples, 167-169
fillRect() versus putlmageData()
method, 166
image data
putting back onto canvas, 164-166
retrieving, 162-164
image smoothing, 171
ImageData objects, creating, 164
placeholder attribute (forms), 49
playbackRate attribute, 93
Playr, 99-100
plug-ins. See browsers, plug-ins
Pointer Lock API, 378
polling servers, 354-355
polyfills
<canvas> tag content, 112-113
defined, 18
IndexedDBShim, 308
Modernizr project website, 18
requestAnimationFrame() method, 211-212
Webshims library, 22-23
poorly-written-but-valid HTML5 page listing, 25
ports (channel messaging), 336
PositionError object, 285
poster attribute, 84-85
postMessage() method
channel messaging, 336
web messaging, 334

How can we make this index more useful? Email us at indexes@samspublishing.com

404 PouchDB library

PouchDB library, 323
preload attribute, 89-90
presentation tags
<article>, 32
<aside>, 33
<bdi>, 37
<command>, 35
<details>, 35-36
<document outlines, 33-35
<figcaption>, 36
<figure>, 36
<header> and footer>, 32
<mark>, 36-37
<menu>, 35
<meter>, 38-39
<nav>, 32
<progress>, 39-40
<ruby>/<rt>/<rp>, 37
<section>, 32
<summary>, 35-36
<time>, 37
prime meridian, 279
progress events, 360-361
<progress> tag, 39-40
properties. See attributes
protocol attribute, 356
put() method, 315
putlmageData() method, 164-166, 203

Q

quadratic Bezier curves, 130
quadraticCurveTo() method, 130, 139, 201
quotations (syntax), 25, 28

R

radial gradients, 175-177
range input (forms), 44
read-only attributes, 315
readyState attribute, 92, 356
receiving messages, 335
rect() method, 139, 201

rectangles
clearing, 138
drawing, 115, 118-119
filling, 138
methods, 200-201
outlining, 138
rect() method, 139

rounded corner, drawing, 129-130, 189-190

rectangular hit testing, 258
removeltem() method, 5
requestAnimationFrame() method

browser support, 211-212

frames per second, 212-213

implementing, 210-211

syntax, 212

timing, 213-214
requestFullScreen() method, 377
required attribute, 48-49
requirements

dragging, 53-55

pseudoclass, 41

software, 3
resetClip() method, 191
resetting canvas transformations, 151
resetTransform() method, 151, 268
resources

IndexedDB, 322

server-side WebSockets, 359

WebGL canvas, 275
response attribute, 362
responseType attribute, 362
restore() method (canvas)

performance, 250-251

state, 140-141, 200

troubleshooting, 236-237
reviews (microdata), 370
rotate() method, 148-149, 202
rotations (canvas), 146-149

around the center, 149

entire drawn scenes, 148
rounded rectangles, drawing, 129-130,

189-190

Royal Observatory at Greenwich (London), 279

<rp> tag, 37

<rt> tag, 37

Ruby annotations tags, 37
<ruby> tag, 37

S

save() method (canvas)
performance, 250-251
state, 140-141, 200
troubleshooting, 236-237
Scalable Vector Graphics (SVG), 104
scale() method, 143, 202
scaling
canvas, 143
images, 252
ScenelS library, 274
scope (canvas performance), 246
<script> tag, 25
search input (forms), 47
<section> tag, 32
security
canvas images, 171-173
CORS, 172
drawlmage() method with image from
different domain, 171
information leakage, 171-172
local file access without restrictions,
172-173
origin-clean flag, 171
web messaging, 338
self attribute, 341
self-closing tags syntax, 25
semantic tags, 31-33
<article>, 32
<aside>, 33
<bdi>, 37
<command>, 35
<details>, 35-36
<figcaption>, 36
<figure>, 36
<header> and footer>, 32
<hgroup>, 33
<mark>, 36-37
<menu>, 35
<nav>, 32
<ruby>/<rt>/<rp>, 37
<section>, 32
<summary>, 35-36
<time>, 37

shared workers 405

semantic web, 16
Berners-Lee vision, 366-367
microdata, 367
cookie recipe example, 371-372
CreativeWork types, 370
dates, 370
nesting, 369
nonvisible, 370
person description example, 368-369
reviews, 370
schema hierarchy, 370
types supported website, 370
visualizing, 373
vocabulary, 367
search engine results, 366
send() method, 357
sending messages, 334-335
servers
long-polling, 355
polling, 354-355
server-side WebSockets, 359
session storage, 303
sessionStorage attribute, 303
setltem() method, 304
setTransform() method, 151, 202, 268
shadowBlur attribute, 182, 200
shadowColor attribute, 182, 200
shadowOffsetX attribute, 182, 200
shadowOffsetY attribute, 182, 200
shadows, 182
attributes, 182, 200
clipping region problems, 183
performance, 253
blur, 254
faking, 254
precomputing, 254
transformation effects on offsets, 182-183
zoom scale effects, 184
shared workers, 345
constructor, 345
example, 346-349
JavaScript code, 348-349
nested iFrame, 347-348
output, 349
parent page, 346-347
names, 345-346
support, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

406 SharedWorker() method

SharedWorker() method, 345
shims/shivs. See polyfills
size (canvas), 260
Skywriter, 192
smartphones, 278
software requirements, 3
source attribute, 335
specifications, 12
speed attribute, 285
spellcheck attribute, 51
src attribute, 85-86
starting web workers, 340-341
state (canvas), saving/restoring, 117-118,
140-141
step attribute, 48
stopping web workers, 341
storage
application cache, 326-327
cache files, swapping, 330
cache sections, 328
current state, checking, 329
download, stopping, 330
enabling, 327
events, handling, 330
example, 327-329
file updates, 328
manifest files, 327
specification website, 327
support, 326
troubleshooting, 330-331
updating, 330
event, 305-306
FileSystem API, 323
file system access, 324
specification website, 324
support, 324
writing to files, 325-326
history
browser cookies, 301
Flash cookies, 302

Google Gears browser extension, 302

userData object, 302

IndexedDB, 308
closing databases, 310-312
compatibility, 309
complete example, 316-319
connecting to databases, 309-310

cursors, 319-320

database schema, upgrading, 312-314

deleting databases, 310-312
exploring databases, 319
flow of operations, 321-322
future, 323
indexes, 320-321
libraries supported, 323
object stores, creating, 312-314
output, 318
overview, 308
polyfill, 308
read-only attributes, 315
request events, handling, 310
resources, 322
shortcomings, 322-323
size limitations, 322
specification website, 308
support, 308
transactions, 314-316
Web, 303
clear() method, 305
debugging, 306
getltem() method, 304
key() method, 305
local, 304
removeltem() method, 305
session, 303
setltem() method, 304
storage event, 305-306
website, 303
WebSQL, 307
Streams API, 376
stroke() method, 120-122, 139, 201
strokeRect() method, 138, 200
strokeStyle attribute, 119, 138, 200
strokeText() method, 194
styling methods/attributes (canvas
context), 200
stylistic syntax
case, 27
quotations, 28
tag closures, 28-29
subpaths, creating, 139
<summary> tag, 35-36

SVG (Scalable Vector Graphics), 104, 107-109

swapCache() method, 330

syntax

new features, 25
stylistic
case, 27
quotations, 28
tag closures, 2829

tags

<audio>, 79-80
attributes, 85-90
canPlayType() method, 79
backward compatibility, 22
HTML5 Boilerplate templates, 23
Webshims library, 22-23
<blink>, 30
<body>, 25

, 25
<canvas>

text

document outlines, 33-35
<figcaption>, 36
<figure>, 36
<header> and footer>, 32
<hgroup>, 33
<mark>, 36-37
<menu>, 35
<nav>, 32
<ruby>/<rt>/<rp>, 37
<section>, 32
<summary>, 35-36
<time>, 37

<video>, 75-77
audio shared attributes, 85-90
canPlayType() method, 74
controls attribute, 76
source element type attribute,

specifying, 77

syntax, 75
video-only attributes, 82-85

visual, 37-40
<meter>, 38-39
<progress>, 39-40

407

content, 112
fallback content, 112-113
fillRect() method, 115
syntax, 111

case, 25, 27

telephone numbers (forms), 47
templates, 23

terminate() method, 341
testing

closing tags syntax, 25
closures, 28-29
<datalist>, 51-52
document outlines, 33-35
<embed>, 101
<form>, 50
<head>, 25
<html>, 25
<iframe>, 29
, 25
<keygen>, 53
<link>, 25
<meta>, 24
<output>, 52
quotations, 25
<script>, 25
semantic, 31-33
<article>, 32
<aside>, 33
<bdi>, 37
<command>, 35
<details>, 35-36

audio formats, 78-79
canvas support, 105
hit
approximation, 258
circular, 258
pixel-perfect, 259-260
rectangular, 258
video formats, 74-75

text, 192

accessibility problems, 192
alignment, 197-198

along paths, drawing, 267
alphabetic baseline, 194
attributes, 202-203
baselines, 197, 269
bounding box, 269
caching, 252

drawing, 194-195

fonts, 195-196

future metrics, 269
Greeking, 253

kerning problems, 193-194

How can we make this index more useful? Email us at indexes@samspublishing.com

408 text

measuring, 198-199, 253
methods, 202-203
patterns, filling, 180
performance, 199, 252-253
transformation problems, 193
width, 194-195
textAlign attribute, 197-198, 202
textBaseline attribute, 197, 202
TextMetrics objects, 199
Theora video format, 72
Three.js, 272-274
<time> tag, 37
timeout attribute, 286, 364
timeout event, 360, 364
timeouts (XHR2), 363-364
times. See dates and times
timestamp object, 284
timing animations, 213-214
toblob() method, 269
toDataURL() method, 116-117, 203
tools
benchmarking
Benchmark.js, 240-242
jsPerf.com, 242-244
browser
developer, 16-17
performance profilers, 244-245
ffmpeg command-line, 81
linters, 27
media conversion, 81
microdata, visualizing, 373
validators, 26
touch input coordinates. See mouse and
touch inputs
tracking canvas
objects, 257
transformations, 152-154
trailblazing app, 293-298
accuracy restrictions, turning off, 298
code listing, 294-297
coordinate data accuracy, 294
device sleeping/losing focus, 298
DOM content, 293
map updates, 294
state, 294
walking around action, displaying, 297
transaction attribute, 315

transactions (IndexedDB), 314-316
IDBTransaction object, 314
modes, 314
object stores, accessing, 314-315
sample, 315-316

transform() method, 151, 202

transformations
canvas, clearing, 151-152
current matrix, transforming, 151

current path disproportionate scaling, 146

flipping, 145
future, 268
matrix written form, 150
methods, 202
resetting, 151
restore() method placement, 143-144
rotations, 146-149
around the center, 149
entire drawn scenes, 148
save() method placement, 143-144
scaling, 143
shadow offsets, 182-183
text problems, 193
tracking, 152-154
translating, 141-142
troubleshooting, 239
Transform.js, 152-154
translate() method, 141-142, 202
translations (canvas), 141-142
troubleshooting
application cache, 330-331
canvas
blurred images, 235-236
blurred paths, 235
clipping regions, 237-238
cross-origin image data, 238
CSS width and height, 234-235
restore() method, 236-237
save() method, 236-237
transformations, 239
Web Storage, 306
web workers, 350
type attribute, 77

U

update() method, 330
updating application cache, 330
upgrading database schema, 312-314
url attribute, 356
user location data, gathering
GPS coordinates, 282
new methods
cellular networks, 282
Wi-Fi, 282
old ways
IP addresses, 281
user entry, 281
userData object, 302

\%

valid pseudoclass, 42
validation
new features, 25-27
validators, 26
versions (HTML), 9
video
attributes, 82-85
controls, 76, 86-88
conversion tools, 81
custom controls, creating, 95
download image, setting, 84-85
encoding, 80-81
fallback options, 81-82
Flash comparison, 95
ease of use, 95-96
feature support, 96-97
flexibility, 96
media protection, 97
platform support, 96
formats, 71
browser compatibility, 73
current support, 74
MP4, 72
testing, 74-75
Theora, 72
WebM, 72

VLC media player 409

future developments
full-screen API, 100
WebRTC, 98
WebVTT, 98-100
JavaScript API, 90-91
attributes, 90
currentTime attribute, 92-93
events, 90
methods, 90
playbackRate attribute, 93
readyState attribute, 92
W3C demonstration page, 91
looping, 90
muting, 85
older browser support, 81-82
playback rates, 93
playing automatically, 89
preloading, 89-90
sequential playlists, creating, 94-95
sources, specifying
URLs, 85-86
types, 77
specified start times, 92-93
<video> tag, 75-77
<video> tag, 75-77
attributes, 82-90
autoplay, 89
controls, 86-88
height, 83
loop, 90
muted, 85
poster, 84-85
preload, 89-90
src, 85-86
width, 83
canPlayType() method, 74
controls attribute, 76
source element type attribute, specifying, 77
syntax, 75
Video.js, 95
visual tags, 37-40
<meter>, 38-39
<progress>, 39-40
visualizing microdata, 373
VLC media player, 81

How can we make this index more useful? Email us at indexes@samspublishing.com

410 W3C (World Wide Web Consortium)

W

W3C (World Wide Web Consortium)
Doctypes, 24
HTML versions, 9
HTML5
specifications, 12
stable/complete declaration, 14
JavaScript media APl demonstration
page, 91
origins, 9
validator, 26
WHATWG, 11
XML/XHTML acceptance, 9
watchPosition() method, 283, 286-287
WAV audio format, 78
Web
Audio API, 100-101, 376
development future, 379
asm.js project, 379
CoffeeScript, 379
Dart, 379
improving, 15-16
messaging, 334
receiving messages, 335
security, 338
sending messages, 334-335
specification website, 334
support, 334
notifications, 377
origins
browser plug-ins, 10
creation, 7-8
HTML elements, history, 9
HTML5, introduction, 11-12
Web 2.0, 10
WHATWG, 11
XML/XHTML acceptance, 9
semantic. See semantic web
storage, 303
debugging, 306
local, 304
methods
clear(), 305
getltem(), 304
key(), 305
removeltem(), 5
setltem(), 304

session, 303
storage event, 305-306
website, 303
Web 2.0, 10
Web Hypertext Application Technology Working
Group. See WHATWG
web workers, 339-340
compatibility table, 339
creating, 340
debugging, 350
embedding, 350
errors, 350
Fibonacci numbers example, 342-345
HTML code, 343
worker code, 344-345
global scope, 341
Google Chrome file access error, 340
importing scripts, 349-350
JavaScript example, 341-342
nesting, 350
shared, 345
constructor, 345
example, 346-349
names, 345-346
support, 345
source file location, 341
specification website, 340
starting, 340-341
stopping, 341
worker information, receiving, 340
WebGL canvas, 271-272
libraries, 272-274
GLGE, 274
J3D, 274
PhiloGL, 274
ScenelS, 274
Three.js, 272-274
resources, 275
support, 272
website, 271
WebM video format, 72
WebRTC (Real-Time Communication), 98, 376
Webshims library, 22-23
websites
application cache specification, 327
Benchmark.js, 240
Berners-Lee semantic web vision, 367
Bing microdata visualization tool, 373
browser compatibility tables, 18-19

Chrome JavaScript console tutorial, 3
cross-origin resource sharing, 361
CSS3, 375
db.js, 323
Device Orientation events specification, 378
File API specification, 374
FileSystem API specification, 324, 375
Full Screen API specification, 378
GLGE, 274
Google structured data testing tool, 373
HTML4 versus HTML5, 30
HTML5

Boilerplate templates, 23

Media Project library, 82, 96
IndexedDB

resources, 322

specification, 308
IndexedDBShim, 308
ISO 8601, 370
J3D, 274
jQuery-IndexedDB, 323
linter, 27
Media Capture APIs specifications, 376
MediaElement.js library, 82, 95
microdata

CreativeWork types, 370

schema hierarchy, 370

types supported, 370
microformats, 367
Miro Video Converter, 81
Mozilla validator, 26
Navigation Timing specification, 378
obsolete features, 30
Page Visibility specification, 377
PhiloGL library, 274
Playr, 99
Pointer Lock specifications, 378
polyfill libraries, 18
PouchDB, 323
ScenelS, 274
server-side WebSockets, 359
shared worker compatibility, 345
source code listings downloads, 3
Streams API specification, 376
Three.js repository, 274
Video.js, 95
VLC media player, 81

WorldWideWeb project 411

W3C (World Wide Web Consortium)
JavaScript media APl demonstration, 91
validator, 26

Web
Audio API, 101, 376
Messaging API specification, 334
Notifications specification, 377
Storage API, 303

web worker specification, 340

WebGL canvas, 271
resources, 275
support, 272

WebRTC, 98, 376

Webshims library, 23

WebSockets, 354

WebSQL specification, 307

WebSockets, 354

attributes, 356

connections, creating, 355-356

errors, 357-358

events, 356-357

sample page, 358-359

sent data, limiting, 357

server-side, 359

specification, 354

support, 354

WebSQL, 307
WebVTT, 98-100
WHATWG (Web Hypertext Application
Technology Working Group), HTML5, 11
creating, 11
specifications, 12
whitespace characters (attributes), 25
width
canvas text, 194-195
line styles, 125-126
width attribute
canvas, 115-116
<video> tag, 83
Wi-Fi geolocation, 282, 291
winding number rule. See nonzero winding
number rule
withCredentials attribute, 362
Worker() method, 340
World Wide Web Consortium. See W3C
WorldWideWeb project, 8

How can we make this index more useful? Email us at indexes@samspublishing.com

412 XHR2 (XMLHttpRequest Level 2)

X-Z

XHR2 (XMLHttpRequest Level 2), 359-360
binary data, 362-363
cross-origin
credentials, 362
requests, 361
FormData objects, 363
progress events, 360-361
support, 360
timeouts, 363-364
XHTML (Extensible Hypertext Markup
Language), 9
XML (Extensible Markup Language), 9

	Table of Contents
	Introduction
	Who Should Read This Book?
	HTML5 and Related Technologies
	Software Requirements
	Code Examples
	How This Book Is Organized
	Part I: Background
	Part II: New HTML Elements
	Part III: Canvas
	Part IV: HTML5’s JavaScript APIs

	Links and Real-World Examples

	2 Important Concepts for HTML5
	The Goals of HTML5
	Improving the Native Web
	More Done with Less Code
	The Semantic Web

	Requisites for HTML5 Development
	Modern Browser Developer Tools
	HTML5 Fallbacks: Shims, Shivs, and Polyfills
	Feature Support and Detection

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

