Ben Forta

" FULL COLOR

SamsTeach Yourself

SAMS

k= £ .

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
fF 9 B A ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336072
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336072
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336072
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336072
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336072/Free-Sample-Chapter

Ben Forta

SamsTeach Yourself

SQL
____in10 Minut

Fourth Edition

g

lllllll

SAMS 800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself SQL in 10 Minutes, Fourth Edition
Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-13: 9780672336072

ISBN-10: 0672336073

Library of Congress cataloging-in-Publication Data is on file.
Printed in the United States of America

Second Printing: July 2013

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Pearson
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any per-
son or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in

quantity for bulk purchases or special sales. For more informa-
tion, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions
Editor

Mark Taber
Managing
Editor

Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Apostrophe
Editing Services

Indexer
Tim Wright

Proofreader
Kathy Ruiz

Technical
Editors

Chris McGee
Greg Wilson

Publishing
Coordinator

Vanessa Evans

Designer
Anne Jones

Page Layout
TnT Design, Inc.

Table of Contents

Introduction
Who Is the Teach Yourself SQL Book For?

DBMSs Covered in This Book

Conventions Used in This Book

Understanding SQL
Database Basics
What Is SQL?

Try It Yourself

Summary

Retrieving Data

The SELECT Statement
Retrieving Individual Columns
Retrieving Multiple Columns
Retrieving All Columns
Retrieving Distinct Rows
Limiting Results

Using Comments

Summary

Sorting Retrieved Data
Sorting Data

Sorting by Multiple Columns
Sorting by Column Position
Specifying Sort Direction
Summary

w NN R

o

10
11
12

13
13
14
16
18
19
20
23
25

27
27
29
30
31
34

Sams Teach Yourself SQL in 10 Minutes

Filtering Data
Using the WHERE Clause
The WHERE Clause Operators

Summary

Advanced Data Filtering
Combining WHERE Clauses
Using the IN Operator
Using the NOT Operator

Summary

Using Wildcard Filtering
Using the LIKE Operator
Tips for Using Wildcards

Summary

Creating Calculated Fields
Understanding Calculated Fields
Concatenating Fields

Performing Mathematical Calculations

Summary

Using Data Manipulation Functions
Understanding Functions
Using Functions

Summary

Summarizing Data

Using Aggregate Functions
Aggregates on Distinct Values
Combining Aggregate Functions

Summary

35
35
37
42

43
43
47
49
51

53
53
60
60

61
61
62
68
70

71
71
73
80

81
81
89
90
91

10

Table of Contents

Grouping Data
Understanding Data Grouping
Creating Groups

Filtering Groups

Grouping and Sorting
SELECT Clause Ordering

Summary

11 Working with Subqueries

12

13

14

Understanding Subqueries
Filtering by Subquery
Using Subqueries as Calculated Fields

Summary

Joining Tables
Understanding Joins
Creating a Join

Summary

Creating Advanced Joins

Using Table Aliases

Using Different Join Types

Using Joins with Aggregate Functions
Using Joins and Join Conditions

Summary

Combining Queries
Understanding Combined Queries
Creating Combined Queries

Summary

923
93
94
96
99
101
102

103
103
104
108
111

113
113
116
123

125
125
126
132
134
135

137
137
138
144

vi Sams Teach Yourself SQL in 10 Minutes

15 Inserting Data 145
Understanding Data Insertion 145
Copying from One Table to Another 152
Summary 154

16 Updating and Deleting Data 155
Updating Data 155
Deleting Data 157
Guidelines for Updating and Deleting Data 160
Summary 161

17 Creating and Manipulating Tables 163
Creating Tables 163
Updating Tables 169
Deleting Tables 171
Renaming Tables 172
Summary 173

18 Using Views 175
Understanding Views 175
Creating Views 179
Summary 185

19 Working with Stored Procedures 187
Understanding Stored Procedures 187
Why to Use Stored Procedures 188
Executing Stored Procedures 190
Creating Stored Procedures 191
Summary 196

20 Managing Transaction Processing 197
Understanding Transaction Processing 197
Controlling Transactions 199

Summary 204

Table of Contents

21 Using Cursors

22

A

Understanding Cursors
Working with Cursors

Summary

Understanding Advanced SQL Features

Understanding Constraints
Understanding Indexes
Understanding Triggers
Database Security

Summary

Sample Table Scripts
Understanding the Sample Tables
Obtaining the Sample Tables

Working in Popular Applications
Using Apache Open Office Base
Using Adobe ColdFusion

Using IBM DB2

Using MariaDB

Using Microsoft Access

Using Microsoft ASP

Using Microsoft ASENET

Using Microsoft Query

Using Microsoft SQL Server (including Microsoft SQL Server

Express)

Using MySQL

Using Oracle

Using Oracle Express

Using PHP

Using PostgreSQL

Using SQLite

Configuring ODBC Data Sources

vii

205
205
207
211

213
213
220
222
224
224

225
225
229

233
233
234
235
235
235
236
237
238

239
240
241
241
242
243
244
245

viii Sams Teach Yourself SQL in 10 Minutes

C SQL Statement Syntax 247
ALTER TABLE 248
COMMIT 248
CREATE INDEX 248
CREATE PROCEDURE 249
CREATE TABLE 249
CREATE VIEW 249
DELETE 250
DROP 250
INSERT 250
INSERT SELECT 251
ROLLBACK 251
SELECT 252
UPDATE 252

D Using SQL Datatypes 253
String Datatypes 254
Numeric Datatypes 256
Date and Time Datatypes 257
Binary Datatypes 258

E SQL Reserved Words 259

Index 265

About the Author

Ben Forta is Adobe Systems’ Director of Developer Relations and has
more than 20 years of experience in the computer industry in product
development, support, training, and product marketing. He is the author of
the best-selling Sams Teach Yourself SOL in 10 Minutes, spinoff titles on
MySQL and SQL Server T-SQL, ColdFusion Web Application
Construction Kit and Advanced ColdFusion Application Development
(both published by Adobe Press), Sams Teach Yourself Regular
Expressions in 10 Minutes, as well as books on Flash, Java, Windows, and
other subjects. He has extensive experience in database design and devel-
opment, has implemented databases for several highly successful com-
mercial software programs and websites, and is a frequent lecturer and
columnist on Internet and database technologies. Ben lives in Oak Park,
Michigan, with his wife Marcy and their seven children. Ben welcomes
your e-mail at ben@forta.com and invites you to visit his website at
http://forta.com/.

http://forta.com/

Acknowledgments

Thanks to the team at Sams for all these years of support, dedication, and
encouragement. A special thank-you to Mark Taber for encouraging this

long awaited update and for suggesting and facilitating the code coloring,
which significantly enhances the readability and value of this new edition.

Thanks to my colleague Greg Wilson for his thorough technical review.

Thanks to the many hundreds of you who provided feedback on the first
three editions of this book. Fortunately, most of it was positive, and all of
it was appreciated. The enhancements and changes in this edition are a
direct response to your feedback, which I continue to welcome.

Thanks to the dozens of colleges and universities who have made this
book part of their IT and computer science curriculums. Being included
and trusted by professors and teachers this way is immensely rewarding
and equally humbling.

And finally, thanks to the more than one-quarter million of you who
bought the previous editions of this book, making it not just my best-
selling title, but also one of the best-selling books on the subject. Your
continued support is the highest compliment an author can ever be paid.

—Ben Forta

We Want to Hear from You!

As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can e-mail or write directly to let us know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to
the topic of this book, and that due to the high volume of mail we receive,
we might not reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and contact information.

E-mail: feedback @samspublishing.com
Mail: Reader Feedback
Sams Publishing/Pearson Education
800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for conve-
nient access to any updates, downloads, or errata that might be available
for this book.

This page intentionally left blank

Introduction

SQL is the most widely used database language. Whether you are an
application developer, database administrator, web application designer,
mobile app developer, or Microsoft Office user, a good working knowl-
edge of SQL is an important part of interacting with databases.

This book was born out of necessity. I had been teaching Web application
development for several years, and students were constantly asking for
SQL book recommendations. There are lots of SQL books out there.
Some are actually very good. But they all have one thing in common: for
most users they teach just too much information. Instead of teaching SQL
itself, most books teach everything from database design and normaliza-
tion to relational database theory and administrative concerns. And while
those are all important topics, they are not of interest to most of us who
just need to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I
turned that classroom experience into the book you are holding. Sams Teach
Yourself SQL in 10 Minutes will teach you SQL you need to know, starting
with simple data retrieval and working on to more complex topics including
the use of joins, subqueries, stored procedures, cursors, triggers, and table
constraints. You’ll learn methodically, systematically, and simply—in
lessons that will each take 10 minutes or less to complete.

Now in its fourth edition, this book has taught SQL to over a quarter mil-
lion English speaking users, and has been translated into over a dozen
other languages too so as to help users the globe over. And now it is your
turn. So turn to Lesson 1, and get to work. You’ll be writing world class
SQL in no time at all.

Sams Teach Yourself SQL in 10 Minutes

Who Is the Teach Yourself SQL
Book For?

This book is for you if

>

>

>

You are new to SQL.
You want to quickly learn how to get the most out of SQL.

You want to learn how to use SQL in your own application
development.

You want to be productive quickly and easily in SQL without
having to call someone for help.

DBMSs Covered in This Book

For the most part, the SQL taught in this book will apply to any Database
Management System (DBMS). However, as all SQL implementations are
not created equal, the following DBMSs are explicitly covered (and spe-
cific instructions or notes are included where needed):

>

v vV

vV v v Vv Vv

Apache Open Office Base
IBM DB2
Microsoft Access

Microsoft SQL Server (including Microsoft SQL Server
Express)

MariaDB

MySQL

Oracle (including Oracle Express)
PostgreSQL

SQLite

Example databases (or SQL scripts to create the example databases)
are available for all of these DBMSs on the book webpage at
http://forta.com/books/0672336073/.

http://forta.com/books/0672336073/

Introduction 3

Conventions Used in This Book

This book uses different typefaces to differentiate between code and regu-
lar English, and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented
in monospace type.

It will look like this to mimic the way text looks on your
screen.

Placeholders for variables and expressions appear in monospace
italic font. You should replace the placeholder with the specific
value it represents.

This arrow (=) at the beginning of a line of code means that a single line
of code is too long to fit on the printed page. Continue typing all the char-
acters after the = as though they were part of the preceding line.

NOTE:

A Note presents interesting pieces of information related to the sur-
rounding discussion.

TIP:
A Tip offers advice or teaches an easier way to do something.

CAUTION:

A Caution advises you about potential problems and helps you steer
clear of disaster.

PLAIN ENGLISH
New Term icons provide clear definitions of new, essential terms.

4 Sams Teach Yourself SQL in 10 Minutes

input v

The Input icon identifies code that you can type in. It usually appears next
to a listing.

Output v

The Output icon highlights the output produced by running a program. It
usually appears after a listing.

Analysis v

The Analysis icon alerts you to the author’s line-by-line analysis of a
program.

Retrieving Data

In this lesson, you’ll learn how to use the SELECT statement to retrieve
one or more columns of data from a table.

The SELECT Statement

As explained in Lesson 1, “Understanding SQL,” SQL statements are
made up of plain English terms. These terms are called keywords, and
every SQL statement is made up of one or more keywords. The SQL
statement that you’ll probably use most frequently is the SELECT state-
ment. Its purpose is to retrieve information from one or more tables.

Keyword

A reserved word that is part of the SQL language. Never name a
table or column using a keyword. Appendix E, “SQL Reserved
Words,” lists some of the more common reserved words.

To use SELECT to retrieve table data you must, at a minimum, specify two
pieces of information—what you want to select, and from where you want
to select it.

14 LESSON 2: Retrieving Data

NOTE: Following Along with the Examples

The sample SQL statements (and sample output) throughout the
lessons in this book use a set of data files that are described in
Appendix A, “Sample Table Scripts.” If you'd like to follow along and
try the examples yourself (I strongly recommend that you do so),
refer to Appendix A which contains instructions on how to download
or create these data files.

It is important to understand that SQL is a language, not an applica-
tion. The way that you specify SQL statements and display state-
ment output varies from one application to the next. To assist you in
adapting the examples to your own environment, Appendix B,
“Working in Popular Applications,” explains how to issue the state-
ments taught throughout this book using many popular applications
and development environments. And if you need an application with
which to follow along, Appendix B has recommendations for you too.

Retrieving Individual Columns

We’ll start with a simple SQL SELECT statement, as follows:

input v

SELECT prod_name
FROM Products;

Analysis v

The previous statement uses the SELECT statement to retrieve a single col-
umn called prod_name from the Products table. The desired column
name is specified right after the SELECT keyword, and the FROM keyword
specifies the name of the table from which to retrieve the data. The output
from this statement is shown in the following:

Retrieving Individual Columns 15

Output v

prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Raggedy Ann

King doll

Queen doll

NOTE: Unsorted Data

If you tried this query yourself you might have discovered that the
data was displayed in a different order than shown here. If this is
the case, don’t worry—it is working exactly as it is supposed to. If
query results are not explicitly sorted (we’ll get to that in the next
lesson) then data will be returned in no order of any significance. It
may be the order in which the data was added to the table, but it
may not. As long as your query returned the same number of rows
then it is working.

A simple SELECT statement similar to the one used above returns all the
rows in a table. Data is not filtered (so as to retrieve a subset of the
results), nor is it sorted. We’ll discuss these topics in the next few lessons.

TIP: Terminating Statements

Multiple SQL statements must be separated by semicolons (the ;
character). Most DBMSs do not require that a semicolon be specified
after single statements. But if your particular DBMS complains, you
might have to add it there. Of course, you can always add a semi-
colon if you wish. It'll do no harm, even if it is, in fact, not needed.

16 LESSON 2: Retrieving Data

TIP: SQL Statement and Case

It is important to note that SQL statements are case-insensitive, so
SELECT is the same as select, which is the same as Select. Many
SQL developers find that using uppercase for all SQL keywords and
lowercase for column and table names makes code easier to read
and debug. However, be aware that while the SQL language is case-
insensitive, the names of tables, columns, and values may not be
(that depends on your DBMS and how it is configured).

TIP: Use of White Space

All extra white space within a SQL statement is ignored when that
statement is processed. SQL statements can be specified on one
long line or broken up over many lines. So, the following three state-
ments are functionality identical:

SELECT prod_name

FROM Products;

SELECT prod_name FROM Products;

SELECT

prod_name

FROM

Products;
Most SQL developers find that breaking up statements over multiple
lines makes them easier to read and debug.

Retrieving Multiple Columns

To retrieve multiple columns from a table, the same SELECT statement is
used. The only difference is that multiple column names must be specified
after the SELECT keyword, and each column must be separated by a comma.

TIP: Take Care with Commas

When selecting multiple columns be sure to specify a comma
between each column name, but not after the last column name.
Doing so will generate an error.

Retrieving Multiple Columns 17

The following SELECT statement retrieves three columns from the prod -
ucts table:
input v

SELECT prod_id, prod_name, prod_price
FROM Products;

Analysis v

Just as in the prior example, this statement uses the SELECT statement to
retrieve data from the Products table. In this example, three column
names are specified, each separated by a comma. The output from this
statement is shown below:

Output v

prod_id prod_name prod_price
BNBGQ1 Fish bean bag toy 3.4900
BNBGQ2 Bird bean bag toy 3.4900
BNBGO3 Rabbit bean bag toy 3.4900
BRO1 8 inch teddy bear 5.9900
BR0O2 12 inch teddy bear 8.9900
BR0O3 18 inch teddy bear 11.9900
RGANOQ1 Raggedy Ann 4.9900
RYLO1 King doll 9.4900
RYLO2 Queen dool 9.4900

NOTE: Presentation of Data

As you will notice in the above output, SQL statements typically
return raw, unformatted data. Data formatting is a presentation
issue, not a retrieval issue. Therefore, presentation (for example,
displaying the above price values as currency amounts with the cor-
rect number of decimal places) is typically specified in the applica-
tion that displays the data. Actual retrieved data (without application-
provided formatting) is rarely used.

18 LESSON 2: Retrieving Data

Retrieving All Columns

In addition to being able to specify desired columns (one or more, as seen
above), SELECT statements can also request all columns without having to
list them individually. This is done using the asterisk (*) wildcard charac-
ter in lieu of actual column names, as follows:

input v

SELECT *
FROM Products;

Analysis v

When a wildcard (*) is specified, all the columns in the table are returned.
The column order will typically, but not always, be the physical order in
which the columns appear in the table definition. However, SQL data is sel-
dom displayed as is. (Usually, it is returned to an application that formats or
presents the data as needed). As such, this should not pose a problem.

CAUTION: Using Wildcards

As a rule, you are better off not using the * wildcard unless you real-
ly do need every column in the table. Even though use of wildcards
may save you the time and effort needed to list the desired columns
explicitly, retrieving unnecessary columns usually slows down the
performance of your retrieval and your application.

TIP: Retrieving Unknown Columns

There is one big advantage to using wildcards. As you do not explic-
itly specify column names (because the asterisk retrieves every col-
umn), it is possible to retrieve columns whose names are unknown.

Retrieving Distinct Rows 19

Retrieving Distinct Rows

As you have seen, SELECT returns all matched rows. But what if you do
not want every occurrence of every value? For example, suppose you want
the vendor ID of all vendors with products in your products table:

input v

SELECT vend_id
FROM Products;

Output v

vend_id

The SELECT statement returned 14 rows (even though there are only four
vendors in that list) because there are 14 products listed in the products
table. So how could you retrieve a list of distinct values?

The solution is to use the DISTINCT keyword which, as its name implies,
instructs the database to only return distinct values.

input v

SELECT DISTINCT vend_id
FROM Products;

20 LESSON 2: Retrieving Data

Analysis v

SELECT DISTINCT vend_id tells the DBMS to only return distinct
(unique) vend_id rows, and so only four rows are returned, as seen in the
following output. If used, the DISTINCT keyword must be placed directly
in front of the column names.

Output v

vend_id

CAUTION: Can’t Be Partially DISTINCT

The DISTINCT keyword applies to all columns, not just the one it
precedes. If you were to specify SELECT DISTINCT vend id,
prod_price, all rows would be retrieved unless both of the specified
columns were distinct.

Limiting Results

SELECT statements return all matched rows, possibly every row in the
specified table. What if you want to return just the first row or a set num-
ber of rows? This is doable, but unfortunately, this is one of those situa-
tions where all SQL implementations are not created equal.

In Microsoft SQL Server and Microsoft Access you can use the TOP key-

word to limit the top number of entries, as seen here:

input v

SELECT TOP 5 prod_name
FROM Products;

Limiting Results 21

Output v

prod_name

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy

Analysis v

The previous statement uses the SELECT TOP 5 statement to retrieve just
the first five rows.

If you are using DB2, well, then you get to use SQL unique to that
DBMS, like this:

Input v

SELECT prod_name
FROM Products
FETCH FIRST 5 ROWS ONLY;

Analysis v

FETCH FIRST 5 ROWS ONLY does exactly what it suggests.

If you are using Oracle you need to count rows based on ROWNUM (a row
number counter) like this:

input v

SELECT prod_name
FROM Products
WHERE ROWNUM <=5;

If you are using MySQL, MariaDB, PostgreSQL, or SQLite, you can use
the LIMIT clause, as follows:

22 LESSON 2: Retrieving Data

input v

SELECT prod_name
FROM Products
LIMIT 5;

Analysis v

The previous statement uses the SELECT statement to retrieve a single col-
umn. LIMIT 5 instructs the supported DBMSs to return no more than five
rows. The output from this statement is shown in the following code.

To get the next five rows, specify both where to start and the number of
rows to retrieve, like this:

input v

SELECT prod_name
FROM Products
LIMIT 5 OFFSET 5;

Analysis v

LIMIT 5 OFFSET 5 instructs supported DBMSs to return five rows start-
ing from row 5. The first number is the number of rows to retrieve, and
the second is where to start. The output from this statement is shown in
the following code:

Output v

prod_name

Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

So, LIMIT specifies the number of rows to return. LIMIT with an OFFSET
specifies where to start from. In our example there are only nine products
in the Products table, so LIMIT 5 OFFSET 5 returned just four rows (as
there was no fifth).

Using Comments 23

CAUTION: Row 0

The first row retrieved is row 0, not row 1. As such, LIMIT 1 OFFSET
1 will retrieve the second row, not the first one.

TIP: MySQL, MariaDB, and SQLite Shortcut

MySQL, MariaDB, and SQLite support a shorthand version of LIMIT
4 OFFSET 3, enabling you to combine them as LIMIT 3,4. Using
this syntax, the value before the , is the LIMIT and the value after
the , is the OFFSET.

NOTE: Not ALL SQL Is Created Equal

| included this section on limiting results for one reason only, to
demonstrate that while SQL is usually quite consistent across imple-
mentations, you can’t rely on it always being so. While very basic
statements tend to be very portable, more complex ones tend to be
less so. Keep that in mind as you search for SQL solutions to spe-
cific problems.

Using Comments

As you have seen, SQL statements are instructions that are processed by
your DBMS. But what if you wanted to include text that you’d not want
processed and executed? Why would you ever want to do this? Here are a
few reasons:

» The SQL statements we’ve been using here are all very short
and very simple. But, as your SQL statement grow (in length
and complexity), you’ll want to include descriptive comments
(for your own future reference or for whoever has to work on the
project next). These comments need to be embedded in the SQL
scripts, but they are obviously not intended for actual DBMS
processing. (For an example of this, see the create.sql and
populate.sql files used in Appendix B).

24 LESSON 2: Retrieving Data

» The same is true for headers at the top of SQL file, perhaps con-
taining the programmer contact information and a description
and notes. (This use case is also seen in the Appendix B .sql
files.).

» Another important use for comments is to temporarily stop SQL
code from being executed. If you were working with a long SQL
statement, and wanted to test just part of it, you could comment
out some of the code so that DBMS saw it as comments and
ignored it.

Most DBMSs supports several forms of comment syntax. We’ll Start with

inline comments:

input v

SELECT prod_name -- this is a comment
FROM Products;

Analysis v

Comments may be embedded inline using - - (two hyphens). Anything
after the - - is considered comment text, making this a good option for
describing columns in a CREATE TABLE statement, for example.

Here is another form of inline comment (although less commonly sup-
ported):
input v

This is a comment
SELECT prod_name
FROM Products;

Analysis v

A # at the start of a line makes the entire line a comment. You can see this

format comment used in the accompanying create.sql and
populate.sql scripts.

Summary 25

You can also create multi line comments, and comments that stop and
start anywhere within the script:

input v

/* SELECT prod_name, vend_id
FROM Products; */

SELECT prod_name

FROM Products;

Analysis v

/* starts a comments, and */ ends it. Anything between /* and */ is
comment text. This type of comment is often used to comment out code,
as seen in this example. Here, two SELECT statements are defined, but the
first won’t execute because it has been commented out.

Summary

In this lesson, you learned how to use the SQL SELECT statement to
retrieve a single table column, multiple table columns, and all table
columns. You also learned how to return distinct values and how to com-
ment your code. And unfortunately, you were also introduced to the fact
that more complex SQL tends to be less portable SQL. Next you’ll learn
how to sort the retrieved data.

This page intentionally left blank

Index

Symbols and
Numerics

[1 (brackets) wildcard,
58-59

, (commas) characters, 16

Il (concatenation)
operator, 63

@ character, 193

A character, 59

@ @ERROR variable, 204

@ @IDENTITY global
variable, 195

_ (underscore) wildcard,
57-58

% (percent sign)
wildcard, 54

| (pipe) symbol, 247

A

ABS() function, 79
Access, using, 235
accessing cursor data,
208-210
adding rows to tables, 250
advanced data filtering, 43
advanced joins, creating,
125-128, 132-134
aggregate functions, 81
ALL argument, 89
AVG(), 82
combining, 90
COUNTY(), 84-85
DISTINCT
arguments, 89
joins, 132-133
MAXJ(), 85
MIN(), 86-87
SUM(), 87-88
aliases, 66-67, 91
alternate uses, 67
names, 68
tables, 125-128, 132

ALL argument, aggregate
functions, 89
ALL clause, 95
Allaire ColdFusion,
233-234
ALTER TABLE statement,
169-170
CHECK constraints, 219
CONSTRAINT syntax,
215-217
syntax, 248
AND operator, 43-44
ANSI SQL, 11
applications
data filtering, 36
ODBC client, 245
portable code, 72
working in SQL, 233
Access, 235
Allaire ColdFusion,
233-234
DB2, 235
Microsoft ASP, 236
arguments
aggregate, 90
DISTINCT, 89
AS keyword, 66,
126-129, 134
ASC keyword, 33
ASP (Microsoft), 236-237
authentication, 224
authorization, 224
AVG() function, 82
DISTINCT argument, 89
NULL values, 83

BETWEEN operator, 40

BINARY datatype, 258

BIT datatype, 256

brackets ([]) wildcard,
58-59

C

calculated fields, 61-63, 66
mathematical calcula-
tions, 68-70
subqueries, 108-109
views, 184
Cartesian Product, 117-119
cascading delete
feature, 217
case-sensitivity
sort orders, 33
SQL statements, 16
CFQUERY CFQUERY tag
pair, 234
CHAR string datatype, 255
check constraints, 218
checking
for no value, 40
range of values, 40
clauses, 28
ALL, 95
HAVING, 96
ordering, SELECT
statements, 101
positioning, 42
WHERE
combining, 43, 46
Jjoins, 117
operators, 37
positioning, 37-39
clients, formatting, 62
CLOSE statements, closing
cursors, 211
closing cursors, 211
code, commenting, 72, 195
codes, portable, 72
ColdFusion (Allaire),
233-234
columns, 7. See also fields
aliases, 66-68
assigning new
values, 156

266

columns

breaking data correctly, 8
derived, 68
foreign keys, 216
GROUP BY clause, 95
Identity fields, 195
INSERT SELECT state-
ments, 151
inserting omitting
columns, 149
list (using INSERT
statements), 148
naming, fully
qualified, 117
NULL value, 40, 166
padded spaces, 64
primary keys, 9-10, 167
retrieving, 14
all, 18
multiple, 16
unknown, 18
separating names in
queries, 16
sorting data, 30
by mulitple columns,
29-30
by non-selected
columns, 29-31
descending on multiple
columns, 33
specifying by relative
position, 96
updating multiple, 156
values, deleting, 157
combined queries, 137
creating, 138-139
sorting results, 143
UNION statement
rules, 140
combining
aggregate functions, 90
WHERE clauses, 43, 46
commas (,), 16
commenting code, 23-24,
72, 195
COMMIT statements,
201, 248
commits, 199
comparing datatypes, 258
compatibility
datatype, 8
operator, 37

complex joins, views, 179
concatenating fields, 62
concatenation operators, 63
conditions (joins), 134
configuring ODBC data
sources, 245
CONSTRAINT syntax,
ALTER TABLE state-
ments, 217
constraints, 213-214
cautions, 214
check, 218
foreign keys, 216
speed, 223
syntax, 215
unique, 217
copying
data, table to table, 152
tables, 152-153, 164
COS() function, 79
COUNT() function, 82-85,
90, 133
COUNT?#* subquery, 108
CREATE INDEX state-
ment, 221, 248-249
CREATE TABLE state-
ment, 163
CONSTRAINT
syntax, 215
DEFAULT keyword, 168
required information, 164
syntax, 249
CREATE VIEW statement,
179, 249
creating
calculated fields,
61-63, 66
mathmatical calcula-
tions, 68-70
subqueries, 108-109
ColdFusion pages,
234,242
combined queries,
138-139
cursors, 207
groups, 94-95
indexes, 221, 248
joins, 116
advanced, 125-126,
132, 134
self, 126-127

savepoints, 203
search patterns, 53
stored procedures, 188,
191-194, 249
tables, 163-165, 249
triggers, 223
views, 179
reusable, 180
rules and
restrictions, 177
uses, 177
CROSS JOIN, 119
CT statement results, 21
currency datatypes, 256
cursors, 205
accessing data, 208-210
closing, 211
deallocating
resources, 211
limitations, 206
opening, 208
options, 206
using, 207
‘Web-based
applications, 206
Customers table, 227

data
breaking correctly, 8
calculated fields, 61
Cartesian Product, 119
consistency with stored
procedures, 189
copying, table to
table, 152
deleting, 157, 160
filtering, 35
advanced, 43
application level, 36
checking against single
values, 38
checking for a range of
values, 40
checking for non-
matches, 38-39
indexes, 221
views, 183
wildcards, 53
formatting, 17

DELETE statement

267

grouping, 93, 99
filtering groups, 96
GROUP BY clause, 99
nesting, 95
ORDER BY

clause, 100

inserting, 145-146, 219

joins, 115

manipulation
functions, 71
date and time, 73,

76, 78
numeric, 79

multiple occurences, 114

numeric functions, 73

ODBC database integra-
tion, 245

referential integrity, 213

retrieved
inserting, 150
reformatting with

views, 180-183

retrieving, 13, 81, 84-85
all columns, 18
multiple columns, 16

security, 224

sorting, 27, 99
by column position, 30
by mulitple columns,

29-30
by non-selected
columns, 29-31
descending on multiple
columns, 33
specifying direction, 31

summarizing, 81, 84-85

text functions, 73

transaction
processing, 198

unsorted, 15

updating, 155-156, 160

data and time

datatypes, 257

Database Management

System. See DBMS

databases, 5-6

constraints, 214
check, 218
syntax, 215
unique, 217

cursors
accessing data,
208-210
closing, 211
creating, 207
opening, 208
using, 207
dropping objects, 250
filtering, 36
indexes
cautions, 221
creating, 221
searching, 220
ODBC, 245
order entry systems, 226
scalability, 115
schemas, 7
search patterns, 53
security, 224
software, 6
subqueries, 103
tables, 6
creating, 163, 249
triggers, 222
transaction
processing, 197
datatypes, 8, 254
binary, 258
compatibility, 8
currency, 256
data and time, 257
defining, 216, 219
numeric, 256
reasons for use, 253
string, 254
date and time functions,
73, 76-78
DATE dataype, 257
DATEPART() function, 77
DATETIME datatype, 257
DB2, 235
DBMS (Database
Management System), 6
accidental table
deletion, 172
affecting sort order, 28
cascading delete
feature, 217
constraints, 214
cursor options, 206

datatypes, 254
DB2, 235
functions, 71
indexes, 221
interactive tools, 115
joins, 121
LIKE operator, 54
security mechanisms, 224
separating statements, 15
specific operators, 41
SQL extensions, 11
stored procedures, 190
transaction
processing, 200
triggers, 223
TRIM functions, 66
UNION keyword, 139
UNION statements, 143
UPDATE statements, 155
user-defined
datatypes, 219
views
creating, 176
rules and
restrictions, 178
DECIMAL datatype, 256
DECLARE statements
creating, cursors, 207
stored procedures, 193
DEFAULT keyword, 168
defining
datatypes, 216, 219
foreign keys, 216
ODBC Data Sources, 246
primary keys, 10, 215
DELETE FROM
statement, 158
DELETE statement, 157
FROM keyword, 159
guidelines, 160
rollbacks, 201
security privileges, 158
syntax, 250
transaction
processing, 199
triggers, 222
TRUNCATE TABLE
statement, 160
WHERE clause, 158

How can we make this index more useful? Email us at indexes@samspublishing.com

268

deleting

deleting
cascading delete
feature, 217
column values, 157
data, 157, 160
rows, 250
tables, 171
preventing accidental
deletion, 172
derived columns. See
aliases
DESC keyword, 31
dictionary sort order, 33
displaying statement
output, 14
DISTINCT argument
AVG() function, 89
COUNT() function, 90
downloading ready-to-use
data files, 230
DROP statement,
syntax, 250
DROP TABLE
statement, 171
dropping database
objects, 250
duplicate rows,
eliminating, 141-142

eliminating duplicate rows,
141-142

EQUIJOIN, 120

establishing primary
keys, 10

EXCEPT statements, 143

EXECUTE statements,
190-191

executing stored proce-
dures, 190-191

EXP() function, 79

explicit commits, 201

extensions, 11

F

FETCH statement,
208, 210
fields, 62
aliases, 66
alternate uses, 67
names, 68

calculated, 61-63, 66
mathematical
calculations, 68-70
subqueries, 108-109
views, 184
concatenating, 62
filtering
by subquery, 104-105
data, 35
advanced, 43
application level, 36
checking against single
values, 38
checking for a range of
values, 40
checking for non-
matches, 38-39
indexes, 221
views, 183
groups, 96
wildcards, 53
fixed length strings, 254
FLOAT datatype, 256
foreign keys, 159, 216
benefits, 217
defining, 216
formatting
clients, 62
data, 17
retrieved data with views,
180-183
servers, 62
statements, 165
subqueries, 106
FROM clause, 116
FROM keyword
DELETE statement, 159
UPDATE statement, 157
full outer joins, 132
fully qualified column
names, 117
functions, 71-72, 75
aggregate, 81
AVG(), 82
combining, 90
COUNT(), 84-85
DISTINCT, 89
MAX(), 85
MIN(), 86-87
SUM(), 87-88
data manipulation, 71

date and time, 73, 76-78

numeric, 73, 79

problems, 71

system, 73

text, 73

text manipulation, 74
SOUNDEX()

function, 75

UPPER() function, 73

G

global variables,

@ @IDENTITY, 195
GRANT statements, 224
graphical interfaces, 115
GROUP BY clause. See

also ORDER BY clause

creating groups, 94-95

relative position of

columns, 96
grouping
data, 93, 99
GROUP BY clause, 99
ORDER BY clause, 100

operators, 46
groups

creating, 94-95

filtering, 96

nested, 95

H-1
HAVING clauses, 96

Identity fields, 195

implementing
transactions, 200

IN operator, 47
advantages, 49
combining with NOT

operator, 51

including duplicate rows,
141-142

indexes, 220
cautions, 221
creating, 221, 248
revisiting, 222
searching, 220

inner joins, 120, 129

INSERT SELECT
statement, 151

NOT operator

269

SELECT INTO state-
ment comparison, 152
syntax, 251
INSERT statement
columns lists, 148
INTO keyword, 146
omitting columns, 149
partial rows, 149
rollbacks, 204
safety, 146
security privileges, 145
syntax, 250
table layout, 147
transaction
processing, 199
triggers, 222
VALUES, 148
inserting
columns, 149
data, 145-146
INTO keyword, 146
retrieved, 150
rows, 146
multiple, 152
partial, 149-150
INT datatype, 256
interactive DBMS
tools, 115
INTERSECT
statements, 143
INTO keyword, 146
IS NULL clause, 41

J

joining tables, 113, 115
aliases, 125-128, 132
multiple, 121-123
natural joins, 129
performance

concerns, 121
joins
aggregate functions,
132-133
Cartesian Product, 117
conditions, 134
creating, 116
advanced, 125-128,
132-134
self, 126-128

CROSS, 119
DBMS interactive
tools, 115
EQUIJOIN, 120
Inner, 120
natural, 129
outer, 129, 132
full, 132
types, 132
performance
considerations, 121
pros, 115
self, instead of sub-
queries, 128
types, 126
views, 179
WHERE clause, 117-119

K

keys
foreign, 216
primary, 9
keywords, 13
AND, 44
AS, 66, 126-129, 134
DEFAULT, 168
FROM, 157
N, 49
INTO, 146
NOT, 50
OR, 45
REFERENCES, 217
UNION, 138
UNIQUE, 218

L

languages, SQL, 10,
259-263

LEFT keyword, 131

LIKE operator, 53-54

limiting SELECT state-
ment results, 20-23

local variables, @
character, 193

LONG RAW datatype, 258

LTRIM() function, 66

managing transactions, 199
COMMIT
statements, 201
ROLLBACK
statements, 201
SAVEPOINT
statements, 202
manipulating tables, 163
complex structure
changes, 170
deleting, 171
manipulation functions, 71
date and time, 73, 76-78
numeric, 79
text, 74
mathematical calculations,
performing, 68-70
mathematical operators, 69
MAX() function, 82,
85-86, 90
Microsoft Access. See
Access
Microsoft ASP, 236-237
Microsoft Query, 238
MIN() function, 82, 86
DISTINCT argument, 90
non-numeric data, 87
multiple tables,
joining, 123
multiple rows,
inserting, 152
MySQL, 240-241

names, aliases, 126
naming
aliases, 68, 91
columns, fully
qualified, 117
indexes, 221
tables, renaming, 172
natural joins, 129
navigating tables, 205
NCHAR string
datatype, 255
nested groups, 95
NOT NULL values, 166
NOT operator, 49-51, 60

How can we make this index more useful? Email us at indexes@samspublishing.com

270

NULL values

NULL values, 40
AVG() functions, 83
empty strings, 167
primary keys, 167
specifying, 167
tables, 166

numeric datatypes, 256

numeric functions, 73

numeric manipulation
functions, 79

NVARCHAR string
datatype, 255

o

obtaining sample tables
and scripts, 229
ODBC
ASP, 236
data sources, 245-246
dates, 257
versions, 245
omitting columns, 149
OPEN CURSOR state-
ments, 208
OPEN statements, opening
cursors, 208, 211
opening cursors, 208, 211
operators, 38
AND, 43-44
BETWEEN, 40
compatibility, 37
concatenation, 63
DBMS specific, 41
grouping related, 46
HAVING clause, 96
IN, 47-49
LIKE, 53
mathematical, 69
NOT, 49-51
OR, 45
predicates, 54
WHERE clause, 37
OR operator, 45
Oracle
commits, 202
copying data between
tables, 153
cursors
closing, 211
creating, 208
retrieving data, 208

date and time manipula-
tion functions, 77
savepoints, 203
stored procedures,
191-194
triggers, 223
Oracle 8, 241
Oracle Express, 241
ORDER BY clause, 99
positioning, 29
SELECT statement, 28
UNION statements, 142
order entry systems, 226
order of evaluation
parenthesis, 47
WHERE clauses, 46
ordering clauses, SELECT
statements, 101
Orderltems table, 228-229
Orders table, 228
outer joins, 129
full, 132
syntax, 130
types, 132
overwriting tables, 165

P

padded spaces, 64
parenthesis, 46-47
partial rows, inserting,
149-150
percent sign (%)
wildcard, 54
performance
indexes, 221
joins, 121

SQL experimentation, 123

subqueries, 108
UNION statements, 140
views, 177

PHP, 242

PI() function, 79

pipe (1) symbol, 247

placeholders. See savepoints

portable code, 72
positioning
sorting data by column
position, 30
WHERE clause, 37-39
PostgreSQL, 243

predicates, 54

primary keys, 9-10
Customer table, 227
defining, 10, 215
NULL values, 167
Orderltems table, 229
Orders table, 228
Products table, 227
unique constraints, 217
Vendors table, 226

processing
stored procedures, 189
subqueries, 106
transactions, 198
transactions. See

transaction processing
Products table, 226-227

Q

QMF (Qery Management
Facility) utility, 235
queries, 103
aggregate functions, 81
combined, 137
creating, 138-139
sorting results, 143
UNION statement
rules, 140
WHERE clauses, 137
combining, 105
data formatting, 17
filtering results, 35
internal query
optimizer, 140
multiple WHERE
clauses, 140
result sets, 205
subqueries, 103
table aliases, 126
unsorted data results, 15
views, 176
wild cards (*), 18
quotes
numeric values, 256
string values, 255
quotes (), 39

RAW datatype, 258
ready-to-use data files,
downloading, 230

sorting 271
REAL datatype, 256 joins, 129 DISTINCT keyword,
REFERENCES returning with UNION 19-20

keyword, 217
referential integrity,
213,217
reformatting retrieved data
with views, 180-183
relational databases
referential integrity, 213
sort order, 28
relational tables, 113-114
relative position,
columns, 96
RENAME statement, 172
renaming tables, 172
replacing tables, 165
reserved words, 259-263
restrictions, views, 177
result sets, 205
retrieving
columns, unknown, 18
data, 13, 81, 84-85
all columns, 18
FETCH statements,
208-210
individual columns, 14
inserting, 150
mulitiple columns, 16
reusable views,
creating, 180
revisiting indexes, 222
REVOKE statements, 224
RIGHT keyword, 131
ROLLBACK statement,
201, 251
rollbacks, 201
savepoints, 203
statements, 204
using, 199
rows, 9
adding to tables, 250
cursors, 205
default values, 168
deleting, 250
duplicate, 141-142
filtering, 96
inserting, 146
check constraints, 219
multiple, 152
partial, 149-150

statements, 141
updating, 252
RTRIM() function, 64-65
rules
constraints, 214
views, 177

S

samples
scripts, obtaining, 229
tables, 226, 229
SAVEPOINT
statements, 202
savepoints, 199, 203-204
scalablity, 115
scale, 115
schemas, 7
scripts
ASPNET, 237
comments, 23-24
downloading, 230
PHP, 242
samples, obtaining, 229
search patterns, 53-55
searching
indexes, 220
wildcards, 53
% character, 54
[] characters, 58-59
A character, 59
_ character, 57-58
security
data, 224
DELETE statement, 158
INSERT statements, 145
UPDATE statement, 155
SELECT * FROM
statements, 179
SELECT INTO
statements, 152
SELECT statement, 13
AS keyword, 66
AVG() function, 82
clauses, ordering, 101
concatenating columns,
63-64
creating groups, 94-95

FROM clause, 116
GROUP BY clause, 94
inner joins, 130, 133
IS NULL clause, 41
joins, 115-116
ORDER BY clause, 28
DESC keyword, 31
positioning, 29
results, limiting, 20-23
retrieving individual
columns, 14
subqueries, 104-106, 110
syntax, 252
UNION keyword,
138-140
WHERE clause, 35
combined queries, 137
combining, 44
IN operator, 47
NOT operator, 49-51
OR operators, 45
quotes, 39
self-joins, creating,
126-128
semicolons (;), 15
separating statements, 15
sequence (clauses), 101
servers, formatting, 62
SET command, 156
simplifying joins with
views, 179
SIN() function, 79
Single Column Only
subqueries, 107
SMALLDATETIME
datatype, 257
SMALLINT datatype, 256
sorting
by non-selected
columns, 29
case-sensitivity issues, 33
combined query
results, 143
data, 27, 99
by column position, 30
descending on multiple
columns, 33

How can we make this index more useful? Email us at indexes@samspublishing.com

272 sorting
multiple columns, transaction results, limiting, 20-23
29-30 processing, 200 syntax, 252
non-selected triggers, 223 specifying, 14
columns, 31 working in popular appli- stored procedures. See
ORDER BY cations, 233 stored procedures
clause, 100 SQL Server Management syntax, 247
retrieved, 27 Studio, 239 terminating, 15
specifying direction, 31 SQRT() function, 79 UNION, 138-140
datatype functionality, statements UPDATE, 155-156,
253, 262 ALTER TABLE, 160, 252
SOUNDEX() function, 75 169-170, 248 white space, 16
spaces, padded, 64 case, 16 writing, 225
specifying CFQUERY/CFQUERY stored procedures, 187
dates, 257 tag pairs, 234 benefits, 189
defualt values, 168 clauses, 28 commenting code, 195
NULL values, 167 COMMIT, 248 creating, 188,
sort direction, 31 CREATE INDEX, 221, 191-194, 249
statements, 14 248-249 executing, 190-191
speed CREATE TABLE functionality, 194
constraints versus required Identity fields, 195
triggers, 223 information, 164 justification, 188
deleting data, 160 syntax, 249 Oracle, 191-194
SQL, 10 CREATE VIEW, syntax, 189
advanced features, 213 179, 249 triggers, 222
advantages, 11 DELETE, 157, 160 storing
ALL clause, 95 FROM keyword, 159 datatype

column aliases, 66
commits, 201
cursors
closing, 211
creating, 207
retrieving data, 210
DATEPART()
function, 77
deleting/updating
data, 161
experimentation with
operations, 123
extensions, 11
Identity fields, 195
INNER JOIN
syntax, 120
INSERT statements, 146
keywords, 13
local variables, @
character, 193
reserved words, 259-263
savepoints, 203
statements, clauses, 28
stored procedures, 193

syntax, 250
displaying output, 14
DROP, 250
DROP TABLE, 171
formatting, 165
GRANT, 224
grouping related

operators, 46
INSERT

omitting columns, 149

safety, 146

security privileges, 145

syntax, 250

VALUES, 148
INSERT SELECT,

syntax, 251
OPEN CURSOR, 208
RENAME, 172
REVOKE, 224
ROLLBACK,

syntax, 251
rollbacks, 199, 204
SELECT, 13

DISTINCT keyword,

19-20

functionality, 253
date and time values, 257
numeric values, 255
strings, 254
string datatypes, 254
strings
fixed length, 254
quotes, 255
search, wildcards, 54
variable-length, 254
subqueries, 103
calculated fields, 108-109
COUNT#, 108
filtering by, 104-105
formatting, 106
joins, 127
performance, 108
processing, 106
SELECT statement, 104
self joins instead, 128
Single Column Only, 107
UPDATE statement, 157
‘WHERE lauses, 107
SUM() function, 82, 87-88

trimming padded spaces

273

summarizing data,
81, 84-85
syntax
ALTER TABLE
statement, 248
COMMIT statement, 248
constraints, 215
CREATE INDEX
statement, 248-249
CREATE TABLE
statement, 249
CREATE TABLE
statements, 163
CREATE VIEW
statement, 249
DELETE statement, 250
DROP statement, 250
INERT statement, 251
INSERT statement, 250
outer joins, 130
ROLLBACK
statement, 251
SELECT statement, 252
statements, 247
stored procedures, 189
transaction
processing, 200
triggers, 223
UPDATE statement, 252
system functions, 73

T

tables, 6
aliases, 125-128, 132
calculated fields, 61
columns, 7
NULL value, 40
primary keys, 10
constraints, 214
check, 218
syntax, 215
unique, 217
copying, 152-153, 164
copying data to
tables, 152
creating, 163-165, 249
cursors
accessing data,
208-210

closing, 211
creating, 207
opening, 208
Customer, 227
data, copying, 153
datatypes, 8
deleting, 171-172
deleting data, 157-159
indexes
cautions, 221
creating, 221
searching, 220
inserting data, 146
multiple rows, 152
partial rowas, 149
retrieved, 150
joining, 113-115
aliases, 132
Cartesian Product, 117
multiple, 121-123
natural joins, 129
performance
concerns, 121
manipulating, 163
NULL values, 166
Orderltems, 228-229
Orders, 228
Products, 226-227
referential integrity, 213
relational, 113-114
renaming, 172
replacing existing, 165
rows, 9
adding, 250
cursors, 205
deleting, 250
filtering, 96
updating, 252
samples, 226, 229
schemas, 7
security, 224
stored procedures, 189
triggers, 222
creating, 223
Junctionality, 222
updating, 155-156,
169-170
Vendors, 226

views
creating, 249
uses, 176
virtual, 175-176
tags, ColdFusion, 234
TAN() function, 79
terminating statements, 15
text manipulation func-
tions, 74
SOUNDEX()
function, 75
UPPER() function, 73
TEXT string datatype, 255
TINYINT datatype, 256
tools, DBMS
interactive, 115
TOP argument, 90
TOP PERCENT
argument, 90
to_char() function, 78
to_number() functions, 78
transactions, 197
blocks, ROLLBACK
statements, 251
COMMIT
statements, 201
implementing, 200
managing, 199
COMMIT
statements, 201
ROLLBACK
statements, 201
SAVEPOINT
statements, 202
ROLLBACK
statements, 201
SAVEPOINT
statements, 202
savepoints, 199, 204
writing to databases, 248
triggers
creating, 223
functionality, 222
speed, 223
syntax examples, 223
TRIM() function, 66
trimming padded
spaces, 64

How can we make this index more useful? Email us at indexes@samspublishing.com

274 troubleshooting accidental table deletion

troubleshooting accidental
table deletion, 172

TRUNCATE TABLE
statement, 160

U

underscore (_)
wildcard, 57-58
UNION ALL
statements, 142
UNION statements
combined queries,
creating, 138-139
duplicate row
handling, 141
limits, 140
ORDER BY clause, 142
rules, 140
types, 143
UNION, 140
unions. See combined
queries
unique constraints, 217
UNIQUE keyword, 218
unsorted data, 15
UPDATE statement
cautions, 155
FROM keyword, 157
guidelines, 160
security privileges, 155
SET command, 156
subqueries, 157
syntax, 252
table names, 156
transaction
processing, 199
triggers, 222
WHERE clause, 156
updating
data, 155-156, 160
multiple columns, 156
tables, 169-170
UPPER() function, 73
user-defined datatypes, 219

\'J

values
columns, deleting, 157
concatenation, 63
default, 168
NULL, 167
searching for
(indexes), 220
trimming padded
space, 65
VARBINARY
datatype, 258
variable-length strings, 254
Vendors table, 226
views
calculated fields, 184
creating, 177-180, 249
DBMS consistency, 176
filtering unwanted
data, 183
joins, 179
performance
concerns, 177
reformatting retrieved
data, 180-183
rules and
restrictions, 177
SELECT statement, 175
uses, 176
virtual tables, 175-176

W-X-Y-Z
web-based applications,
cursors, 206
WHERE clause, 35
BETWEEN operator, 40
combining, 43
order of evaluation, 46
with queries, 137
DELETE statements, 158
filtering, 97
IN operator, 47
joins, 117-119
NOT operators, 49, 51

operators, 37
OR operators, 45
parenthesis, 47
positioning, 37, 39
quotes, 39
SOUNDEX()
function, 76
subqueries, 107
UPDATE statements,
155-156
wildcards, 53
white space, SQL
statements, 16
whitespace, 16
wildcards, 18, 53
[] (brackets) characters,
58-59
_ (underscore) character,
57-58
A character, 59
natural joins, 129
positioning in search
patterns, 55
search patterns, 55
wrappers, ODBC, 245
writing
SQL statements, 225
stored procedures, 189

	Table of Contents
	Introduction
	Who Is the Teach Yourself SQL Book For?
	DBMSs Covered in This Book
	Conventions Used in This Book

	2 Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Limiting Results
	Using Comments
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

