
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336010
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336010
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336010
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336010
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336010/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana 46240 USA

Adam Nathan

Windows® 8 Apps with XAML
and C# Unleashed

Windows® 8 Apps with XAML and C# Unleashed

Copyright © 2013 by Pearson Education
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33601-0
ISBN-10: 0-672-33601-4

Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States on America

First Printing December 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

EDITOR-IN-CHIEF

Greg Wiegand

EXECUTIVE EDITOR

Neil Rowe

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Kristy Hart

PROJECT EDITOR

Deadline Driven
Publishing

COPY EDITOR

Kelly Maish

INDEXER

Angie Martin

PROOFREADER

Deadline Driven
Publishing

TECHNICAL EDITOR

Ashish Shetty

PUBLISHING

COORDINATOR

Cindy Teeters

COVER DESIGNER

Mark Shirar

COMPOSITOR

Bronkella Publishing

Introduction 1

Part I Getting Started

1 Anatomy of a Windows Store App 7

2 Mastering XAML 27

Part II Building an App

3 Sizing, Positioning, and Transforming Elements 47

4 Layout 65

5 Interactivity 101

6 Handling Input: Touch, Mouse, Pen, and Keyboard 115

7 App Model 149

Part III Understanding Controls

8 Content Controls 185

9 Items Controls 207

10 Text 227

11 Images 253

12 Audio and Video 285

13 Other Controls 313

Part IV Leveraging the Richness of XAML

14 Vector Graphics 333

15 Animation 365

16 Styles, Templates, and Visual States 409

Contents at a Glance

Part V Exploiting Windows 8

17 Data Binding 439

18 Data 461

19 Charms 477

20 Extensions 509

21 Sensors and Other Devices 529

Part VI Advanced Topics

22 Thinking Outside the App: Live Tiles, Toast Notifications, and the Lock Screen 539

Index 559

Contents at a Glanceiv

Table of Contents

Introduction 1

Who Should Read This Book? 3

Software Requirements 3

Code Examples 3

How This Book Is Organized 3

Conventions Used in This Book 5

Part I Getting Started

1 Anatomy of a Windows
Store App 7

Launching a New App 8

The Package Manifest 9

The Main Page 19

The Application Definition 21

Summary 25

2 Mastering XAML 27

Elements and Attributes 28

Namespaces 29

Property Elements 31

Type Converters 33

Markup Extensions 34

Children of Object Elements 36

Mixing XAML with Procedural
Code 40

XAML Keywords 44

Summary 45

Part II Building an App

3 Sizing, Positioning, and
Transforming Elements 47

Controlling Size 48

Controlling Position 52

Applying 2D Transforms 55

Applying 3D Transforms 62

Summary 64

4 Layout 65

Discovering the Current
Dimensions 66

Discovering the Current View
State 67

Discovering the Current
Orientation 70

Panels 71

Handling Content Overflow 87

Summary 99

5 Interactivity 101

Dependency Properties 101

Routed Events 108

Commands 113

Summary 114

6 Handling Input: Touch,
Mouse, Pen, and
Keyboard 115

Touch Input 116

Mouse Input 138

Pen Input 140

Keyboard Input 142

Summary 147

7 App Model 149

Understanding the App
Lifecycle 150

Programmatically Launching
Apps 163

Interacting with the Windows
Store 166

Leveraging Navigation 174

Summary 182

Part III Understanding
Controls

8 Content Controls 185

Button 188

HyperlinkButton 189

RepeatButton 191

ToggleButton 191

CheckBox 192

RadioButton 192

ToolTip 194

AppBar 196

Summary 205

9 Items Controls 207

Items in the Control 208

Items Panels 210

ComboBox 213

ListBox 214

ListView 216

GridView 219

FlipView 221

SemanticZoom 223

Summary 226

10 Text 227

TextBlock 227

RichTextBlock 235

TextBox 240

RichEditBox 248

PasswordBox 251

Summary 252

11 Images 253

The Image Element 253

Multiple Files for Multiple
Environments 263

Decoding Images 267

Encoding Images 276

Summary 284

12 Audio and Video 285

Playback 286

Capture 294

Transcoding 305

Summary 311

13 Other Controls 313

Range Controls 313

Popup Controls 316

A Few More Controls 325

Summary 330

Part IV Leveraging the
Richness of XAML

14 Vector Graphics 333

Shapes 334

Geometries 340

Brushes 348

Summary 363

15 Animation 365

Theme Transitions 366

Theme Animations 376

Custom Animations 382

Custom Keyframe
Animations 395

Easing Functions 400

Manual Animations 404

Summary 406

Table of Contentsvi

16 Styles, Templates, and
Visual States 409

Styles 410

Templates 418

Visual States 428

Summary 438

Part V Exploiting Windows 8

17 Data Binding 439

Introducing Binding 439

Controlling Rendering 447

Customizing the View of a
Collection 455

Summary 459

18 Data 461

App Data 461

User Data 466

Networking 469

Summary 474

19 Charms 477

Search 477

Share 486

Devices 492

Settings 503

Summary 508

20 Extensions 509

Account Picture Provider 509

AutoPlay Content and
AutoPlay Device 512

Contact Picker 514

File Type Associations 516

Protocol 518

Background Tasks 519

Summary 527

21 Sensors and Other
Devices 529

Accelerometer 529

Gyrometer 532

Inclinometer 532

Compass 533

Light Sensor 533

Orientation 533

Location 534

Proximity 535

Summary 538

Part VI Advanced Topics

22 Thinking Outside the
App: Live Tiles, Toast
Notifications, and the
Lock Screen 539

Live Tiles 539

Toast Notifications 552

The Lock Screen 556

Summary 557

Index 559

Table of Contents vii

About the Author

Adam Nathan is a principal software architect for Microsoft, a best-selling technical
author, and arguably the world’s most prolific developer for Windows Phone. He intro-
duced XAML to countless developers through his books on a variety of Microsoft tech-
nologies. Currently a part of Microsoft’s Startup Business Group, Adam has previously
worked on Visual Studio and the Common Language Runtime. He was the founding
developer and architect of Popfly, Microsoft’s first Silverlight-based product, named by
PCWorld as one of its year’s most innovative products. He is also the founder of
PINVOKE.NET, the online resource for .NET developers who need to access Win32. His
apps have been featured on Lifehacker, Gizmodo, ZDNet, ParentMap, and other enthusi-
ast sites.

Adam’s books are considered required reading by many inside Microsoft and throughout
the industry. Adam is the author of 101 Windows Phone 7 Apps (Sams, 2011), Silverlight 1.0
Unleashed (Sams, 2008), WPF Unleashed (Sams, 2006), WPF 4 Unleashed (Sams, 2010), and
.NET and COM: The Complete Interoperability Guide (Sams, 2002); a coauthor of ASP.NET:
Tips, Tutorials, and Code (Sams, 2001); and a contributor to books including .NET
Framework Standard Library Annotated Reference, Volume 2 (Addison-Wesley, 2005) and
Windows Developer Power Tools (O’Reilly, 2006). You can find Adam online at
www.adamnathan.net, or @adamnathan on Twitter.

http://www.adamnathan.net

Dedication

To Tyler and Ryan.

Acknowledgments

First, I thank Lindsay Nathan for making this possible. Words fail to describe my
gratitude.

I’d like to give special thanks to Ashish Shetty, Tim Heuer, Mark Rideout, Jonathan Russ,
Joe Duffy, Chris Brumme, Eric Rudder, Neil Rowe, Betsy Harris, Ginny Munroe, Eileen
Chan, and Valery Sarkisov. As always, I thank my parents for having the foresight to
introduce me to Basic programming on our IBM PCjr when I was in elementary school.

Finally, I thank you for picking up a copy of this book! I don’t think you’ll regret it!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

If you ask me, it has never been a better time to be a soft-
ware developer. Not only are programmers in high
demand—due in part to an astonishingly low number of
computer science graduates each year—but app stores
make it easier than ever to broadly distribute your own
software and even make money from it!

I remember releasing a few shareware games in junior high
school and asking for $5 donations. I earned $15. One of
the three donations was from my grandmother, who didn’t
even own a computer! These days, of course, adults and
kids alike can make money on simple apps and games
without relying on kind and generous individuals going to
the trouble of mailing a check!

The Windows Store is an app store like no other. When
you consider the number of people who use Windows 8
(and Windows RT) compared to the number of people who
use any other operating system on the planet, you realize
what a unique and enormous opportunity the Windows
Store provides.

When you write a Windows Store app, you can work with
whichever language and technology is most comfortable
for you: JavaScript with an HTML user interface, or
C#/Visual Basic/C++ with a XAML or raw DirectX user
interface. (You can also componentize code to get different
mixtures, such as using C# with HTML or some JavaScript
in a XAML app.) Besides familiarity, your choice can have
other benefits. Outside of the core Windows platform, each
language and technology has different sets of reusable
libraries and components. C++ has features for high-perfor-
mance algorithms, for example. However, regardless of
which choice you make, the Windows APIs are the same,
and the graphics are hardware accelerated.

Who Should Read This
Book?

Software Requirements

Code Examples

How This Book Is
Organized

Conventions Used in
This Book

The key to the multiple-language support is the Windows Runtime, or WinRT for short.
You can think of it like .NET’s Common Language Runtime, except it spans both
managed and unmanaged languages. To enable this, WinRT is COM-based. Most of the
time, you can’t tell when you interact with WinRT, however. This is a new, friendlier
version of COM that is more amenable to automatic correct usage from environments
such as .NET or JavaScript. (Contrast this to over a decade ago, when I wrote a book about
mixing COM with .NET. This topic alone required over 1,600 pages!)

WinRT APIs are automatically projected
into the programming language you use,
so they look natural for that language.
Projections are more than just exposing
the raw APIs, however. Core WinRT data
types such as string, collection types,
and a few others are mapped to appro-
priate data types for the target environ-
ment. For C# or other .NET languages,
this means exposing them as
System.String, System.Collections.Generic.IList<T>, and so on. To match conven-
tions, member names are even morphed to be Camel-cased for JavaScript and Pascal-cased
for other languages, which makes the MSDN reference documentation occasionally look
goofy.

In the set of APIs exposed by Windows, everything under the Windows.UI.Xaml name-
space is XAML-specific, everything under the Windows.UI.WebUI namespace is for HTML
apps, everything under System is .NET-specific, and everything else (which is under
Windows) is general-purpose WinRT functionality. As you dig into the framework, you
notice that the XAML-specific and .NET-specific APIs are indeed the most natural to use
from C# and XAML. General-purpose WinRT APIs follow slightly different conventions
and can sometimes look a little odd to developers familiar with .NET. For example, they
tend to be exception-heavy for situations that normally don’t warrant an exception (such
as the user cancelling an action). Artifacts like this are caused by the projection mecha-
nism mapping HRESULTs (COM error codes) into .NET exceptions.

I wrote this book with the following goals in mind:

➔ To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

➔ To answer the questions most people have when learning how to write Windows
Store apps and to show how commonly desired tasks are accomplished

➔ To be an authoritative source, thanks to input from members of the team who
designed, implemented, and tested Windows 8 and Visual Studio

➔ To be clear about where the technology falls short rather than blindly singing its
praises

Introduction2

Although WinRT APIs are not .NET APIs,
they have metadata in the standardized
format used by .NET. Therefore, you can

browse them directly with familiar .NET tools,
such as the IL Disassembler (ILDASM). You can
find these on your computer as .winmd files.
Visual Studio’s “Object Browser” is also a
convenient way to search and browse WinRT
APIs.

➔ To optimize for concise, easy-to-understand code rather than enforcing architectural
patterns that can be impractical or increase the number of concepts to understand

➔ To be an easily navigated reference that you can constantly come back to

To elaborate on the second-to-last point: You won’t find examples of patterns such as
Model-View-ViewModel (MVVM) in this book. I am a fan of applying such patterns to
code, but I don’t want to distract from the core lessons in each chapter.

Whether you’re new to XAML or a long-time XAML developer, I hope you find this book
to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating apps for the Windows
Store, whether they are for tablets, laptops, or desktops. It does not teach you how to
program, nor does it teach the basics of the C# language. However, it is designed to be
understandable even for folks who are new to .NET, and does not require previous experi-
ence with XAML. And if you are already well versed in XAML, I’m confident that this
book still has a lot of helpful information for you. At the very least, it should be an
invaluable reference for your bookshelf.

Software Requirements
This book targets Windows 8, Windows RT, and the corresponding developer tools. The
tools can be downloaded for free at the Windows Dev Center: s. The download includes
the Windows 8 SDK, a version of Visual Studio Express specifically for Windows Store
apps, and Blend. It’s worth noting that although this book almost exclusively refers to
Windows 8, the content also applies to Windows RT.

Although it’s not required, I recommend PAINT.NET, a free download at
http://getpaint.net, for creating and editing graphics, such as the set of icons needed
by apps.

Code Examples
Source code for examples in this book can be downloaded from www.samspublishing.com.

How This Book Is Organized
This book is arranged into five parts, representing the progression of feature areas that
you typically need to understand. But if you want to jump ahead and learn about a topic
such animation or live tiles, the book is set up to allow for nonlinear journeys as well.
The following sections provide a summary of each part.

How This Book Is Organized 3

http://www.samspublishing.com
http://getpaint.net

Part I: Getting Started
This part includes the following chapters:

➔ Chapter 1, “Anatomy of a Windows Store App”

➔ Chapter 2, “Mastering XAML”

This part provides the foundation for the rest of the book. If you have previously created
Windows Phone apps or worked with XAML in the context of other Microsoft technolo-
gies, a lot of this should be familiar to you. There are still several unique aspects for
Windows 8 and the Windows Store, however.

Part II: Building an App
This part includes the following chapters:

➔ Chapter 3, “Sizing, Positioning, and Transforming Elements”

➔ Chapter 4, “Layout”

➔ Chapter 5, “Interactivity”

➔ Chapter 6, “Handling Input: Touch, Mouse, Pen, and Keyboard”

➔ Chapter 7, “App Model”

Part II equips you with the knowledge of how to place things on the screen, how to make
them adjust to the wide variety of screen types, and how to interact with the user. It also
digs into the app model for Windows Store apps, which is significantly different from the
app model for desktop applications in a number of ways.

Part III: Understanding Controls
This part includes the following chapters:

➔ Chapter 8, “Content Controls”

➔ Chapter 9, “Items Controls”

➔ Chapter 10, “Text”

➔ Chapter 11, “Images”

➔ Chapter 12, “Audio and Video”

➔ Chapter 13, “Other Controls”

Part III provides a tour of the controls built into the XAML UI Framework. There are
many controls that you expect to have available, plus several that you might not expect.

Introduction4

Part IV: Leveraging the Richness of XAML
This part includes the following chapters:

➔ Chapter 14, “Vector Graphics”

➔ Chapter 15, “Animation”

➔ Chapter 16, “Styles, Templates, and Visual States”

➔ Chapter 17, “Data Binding”

The features covered in Part IV are areas in which XAML really shines. Although previous
parts of the book expose some XAML richness (applying transforms to any elements, the
composability of controls, and so on), these features push the richness to the next level.

Part V: Exploiting Windows 8
This part includes the following chapters:

➔ Chapter 18, “Data”

➔ Chapter 19, “Charms”

➔ Chapter 20, “Extensions”

➔ Chapter 21, “Sensors and Other Devices”

➔ Chapter 22, “Thinking Outside the App: Live Tiles, Toast Notifications, and the Lock
Screen”

This part of the book can just as easily appear in a book about JavaScript or C++ Windows
Store apps, with the exception of its code snippets. It covers unique and powerful
Windows 8 features that are not specific to XAML or C#, but they are things that all
Windows Store app developers should know.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occasion-
ally for emphasis.

Monospace Monospace is used for screen messages, code listings, and filenames. In code listings,
italic monospace type is used for placeholder text.

Code listings are colorized similarly to the way they are colorized in Visual Studio. Blue
monospace type is used for XML elements and C# keywords, brown monospace type
is used for XML element names and C# strings, green monospace type is used for
comments, red monospace type is used for XML attributes, and teal monospace
type is used for type names in C#.

Bold When appropriate, bold is used for code directly related to the main lesson(s) in a
chapter.

Conventions Used in This Book 5

Throughout this book, and even in this introduction, you find a number of sidebar
elements:

Introduction6

What is a FAQ sidebar?

A Frequently Asked Question (FAQ) sidebar presents a question you might have about the
subject matter in a particular spot in the book—and then provides a concise answer.

Digging Deeper Sidebars

A Digging Deeper sidebar presents advanced or more detailed information on a subject than is
provided in the surrounding text. Think of Digging Deeper material as something you can look
into if you’re curious but can ignore if you’re not.

A tip offers information about design guidelines, shortcuts, or alternative approaches to
produce better results, or something that makes a task easier.

Warning!

A warning alerts you to an action or a condition that can lead to an unexpected or unpre-
dictable result—and then tells you how to avoid it.

MASTERING XAML

You might be thinking, “Isn’t Chapter 2 a bit early to
become a master of XAML?” No, because this chapter
focuses on the mechanics of the XAML language, which is a
bit orthogonal to the multitude of XAML elements and
APIs you’ll be using when you build Windows Store apps.
Learning about the XAML language is kind of like learning
the features of C# before delving into .NET or the Windows
Runtime. Unlike the preceding chapter, this is a fairly deep
dive! However, having this background knowledge before
proceeding with the rest of the book will enable you to
approach the examples with confidence.

XAML is a dialect of XML that Microsoft introduced in
2006 along with the first version of Windows Presentation
Foundation (WPF). XAML is a relatively simple and
general-purpose declarative programming language suitable
for constructing and initializing objects. XAML is just XML,
but with a set of rules about its elements and attributes and
their mapping to objects, their properties, and the values of
those properties (among other things).

You can think of XAML as a clean, modern (albeit more
verbose) reinvention of HTML and CSS. In Windows Store
apps, XAML serves essentially the same purpose as HTML:
It provides a declarative way to represent user interfaces.
That said, XAML is actually a general-purpose language
that can be used in ways that have nothing to do with UI.
The preceding chapter contained a simple example of this.
App.xaml does not define a user interface, but rather some
characteristics of an app’s entry point class. Note that

Elements and Attributes

Namespaces

Property Elements

Type Converters

Markup Extensions

Children of Object
Elements

Mixing XAML with
Procedural Code

XAML Keywords

Chapter 2 In This Chapter

almost everything that can be expressed in XAML can be naturally represented in a proce-
dural language like C# as well.

The motivation for XAML is pretty much the same as any declarative markup language:
Make it easy for programmers to work with others (perhaps graphic designers) and enable
a powerful, robust tooling experience on top of it. XAML encourages a nice separation
between visuals (and visual behavior such as animations) and the rest of the code, and
enables powerful styling capabilities. XAML pages can be opened in Blend as well as
Visual Studio (and Visual Studio has a convenient “Open in Blend…” item on its View
menu), or entire XAML-based projects can be opened in Blend. This can be helpful for
designing sophisticated artwork, animations, and other graphically rich touches. The idea
is that a team’s developers can work in Visual Studio while its designers work in Blend,
and everyone can work on the same codebase. However, because XAML (and XML in
general) is generally human readable, you can accomplish quite a bit with nothing more
than a tool such as Notepad.

Elements and Attributes
The XAML specification defines rules that map object-oriented namespaces, types, proper-
ties, and events into XML namespaces, elements, and attributes. You can see this by
examining the following simple XAML snippet that declares a Button control and
comparing it to the equivalent C# code:

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop”/>

C#:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Content = “Stop”;

Declaring an XML element in XAML (known as an object element) is equivalent to instan-
tiating the corresponding object via a default constructor. Setting an attribute on the
object element is equivalent to setting a property of the same name (called a property
attribute) or hooking up an event handler of the same name (called an event attribute). For
example, here’s an update to the Button control that not only sets its Content property
but also attaches an event handler to its Click event:

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop” Click=”Button_Click”/>

Chapter 2 MASTERING XAML28

C#:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Click += new Windows.UI.Xaml.RoutedEventHandler(Button_Click);

b.Content = “Stop”;

This requires an appropriate method called Button_Click to be defined. The “Mixing
XAML with Procedural Code” section at the end of this chapter explains how to work
with XAML that requires additional code. Note that XAML, like C#, is a case-sensitive
language.

Namespaces 29

Order of Property and Event Processing

At runtime, event handlers are always attached before any properties are set for any object
declared in XAML (excluding the Name property, described later in this chapter, which is set
immediately after object construction). This enables appropriate events to be raised in response
to properties being set without worrying about the order of attributes used in XAML.

The ordering of multiple property sets and multiple event handler attachments is usually
performed in the relative order that property attributes and event attributes are specified on the
object element. Fortunately, this ordering shouldn’t matter in practice because design guidelines
dictate that classes should allow properties to be set in any order, and the same holds true for
attaching event handlers.

Namespaces
The most mysterious part about comparing the previous XAML examples with the equiva-
lent C# examples is how the XML namespace http://schemas.microsoft.com/winfx/
2006/xaml/presentation maps to the Windows Runtime namespace
Windows.UI.Xaml.Controls. It turns out that the mapping to this and other namespaces
is hard-coded inside the framework. (In case you’re wondering, no web page exists at the
schemas.microsoft.com URL—it’s just an arbitrary string like any namespace.) Because
many Windows Runtime namespaces are mapped to the same XML namespace, the
framework designers took care not to introduce two classes with the same name, despite
the fact that the classes are in separate Windows Runtime namespaces.

The root object element in a XAML file must specify at least one XML namespace that is
used to qualify itself and any child elements. You can declare additional XML namespaces
(on the root or on children), but each one must be given a distinct prefix to be used on
any identifiers from that namespace. MainPage.xaml in the preceding chapter contains
the XML namespaces listed in Table 2.1.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

TABLE 2.1 The XML Namespaces in Chapter 1’s MainPage.xaml

Namespace Typical Prefix Description

http://schemas.microsoft.com/winfx/2006/ (none) The standard UI namespace.

xaml/presentation Contains elements such Grid,

Button, and TextBlock.

http://schemas.microsoft.com/winfx/ x The XAML language

2006/xaml namespace. Contains

keywords such as Class,

Name, and Key.

using:BlankApp local This using:XXX syntax is the

way to use any custom

Windows Runtime or .NET

namespace in a XAML file. In

this case,BlankApp is the

.NET namespace generated for

the project in Chapter 1

because the project itself was

named “BlankApp.”

http://schemas.microsoft.com/expression/ d A namespace for design-time

blend/2008 information that helps tools

like Blend and Visual Studio

show a proper preview.

http://schemas.openxmlformats.org/ mc A markup compatibility

markup-compatibility/2006 namespace that can be

used to mark other

namespaces/elements as

ignorable. Normally used with

the design-time namespace,

whose attributes should be

ignored at runtime.

The first two namespaces are almost always used in any XAML file. The second one (with
the x prefix) is the XAML language namespace, which defines some special directives for
the XAML parser. These directives often appear as attributes to XML elements, so they
look like properties of the host element but actually are not. For a list of XAML keywords,
see the “XAML Keywords” section later in this chapter.

Chapter 2 MASTERING XAML30

Most of the standalone XAML examples in this chapter explicitly specify their namespaces,
but in the remainder of the book, most examples assume that the UI XML namespace
(http://schemas.microsoft.com/winfx/2006/xaml/presentation) is declared as the

primary namespace, and the XAML language namespace (http://schemas.microsoft.com/
winfx/2006/xaml) is declared as a secondary namespace, with the prefix x.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Using the UI XML namespace (http://schemas.microsoft.com/winfx/2006/
xaml/presentation) as a default namespace and the XAML language namespace
(http://schemas.microsoft.com/winfx/2006/xaml) as a secondary namespace with the
prefix x is just a convention, just like it’s a convention to begin a C# file with a using
System; directive. You could declare a Button in XAML as follows, and it would be
equivalent to the Button defined previously:

<UiNamespace:Button

xmlns:UiNamespace=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop”/>

Of course, for readability it makes sense for your most commonly used namespace (also
known as the primary XML namespace) to be prefix free and to use short prefixes for any
additional namespaces.

The last two namespaces in Table 2.1, which are plopped in pages generated by Visual
Studio and Blend, are usually not needed.

Property Elements 31

Markup Compatibility

The markup compatibility XML namespace (http://schemas.openxmlformats.org/markup-
compatibility/2006, typically used with an mc prefix) contains an Ignorable attribute that
instructs XAML processors to ignore all elements/attributes in specified namespaces if they can’t
be resolved to their types/members. (The namespace also has a ProcessContent attribute that
overrides Ignorable for specific types inside the ignored namespaces.)

Blend and Visual Studio take advantage of this feature to do things like add design-time proper-
ties to XAML content that can be ignored at runtime. mc:Ignorable can be given a space-
delimited list of namespaces, and mc:ProcessContent can be given a space-delimited list of
elements.

If you’re frustrated by how long it takes to open XAML files in Visual Studio and you don’t
care about previewing the visuals, you might consider changing your default editor for
XAML files by right-clicking on a XAML file in Solution Explorer then selecting Open

With…, XML (Text) Editor, clicking Set as Default, then clicking OK. This has several major draw-
backs, however, such as losing IntelliSense support.

Property Elements
Rich composition of controls is one of the highlights of XAML. This can be easily demon-
strated with a Button, because you can put arbitrary content inside it; you’re not limited
to just text! To demonstrate this, the following code embeds a simple square to make a
Stop button like what might be found in a media player:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Width = 96;

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.openxmlformats.org/markupcompatibility/2006
http://schemas.openxmlformats.org/markupcompatibility/2006

b.Height = 38;

Windows.UI.Xaml.Shapes.Rectangle r = new Windows.UI.Xaml.Shapes.Rectangle();

r.Width = 10;

r.Height = 10;

r.Fill = new Windows.UI.Xaml.Media.SolidColorBrush(Windows.UI.Colors.White);

b.Content = r; // Make the square the content of the Button

Button’s Content property is of type
System.Object, so it can easily be set to
the 10x10 Rectangle object. The result
(when used with additional code that
adds it to a page) is pictured in Figure
2.1.

That’s pretty neat, but how can you do the same thing in XAML with property attribute
syntax? What kind of string could you possibly set Content to that is equivalent to the
preceding Rectangle declared in C#? There is no such string, but XAML fortunately
provides an alternative (and more verbose) syntax for setting complex property values:
property elements. It looks like the following:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Width=”96” Height=”38”>

<Button.Content>

<Rectangle Width=”10” Height=”10” Fill=”White”/>

</Button.Content>

</Button>

The Content property is now set with an XML element instead of an XML attribute,
making it equivalent to the previous C# code. The period in Button.Content is what
distinguishes property elements from object elements. Property elements always take the
form TypeName.PropertyName, they are always contained inside a TypeName object
element, and they can never have attributes of their own (with one exception—the x:Uid
attribute used for localization).

Property element syntax can be used for simple property values as well. The following
Button that sets two properties with attributes (Content and Background):

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop” Background=”Red”/>

is equivalent to this Button, which sets the same two properties with elements:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

Stop

</Button.Content>

<Button.Background>

Red

Chapter 2 MASTERING XAML32

FIGURE 2.1 Placing complex content inside a
Button

</Button.Background>

</Button>

Of course, using attributes when you can is a nice shortcut when hand-typing XAML.

Type Converters
Let’s look at the C# code equivalent to the preceding Button declaration that sets both
Content and Background properties:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Content = “Stop”;

b.Background = new Windows.UI.Xaml.Media.SolidColorBrush(Windows.UI.Color.Red);

Wait a minute. How can “Red” in the previous XAML file be equivalent to the
SolidColorBrush instance used in the C# code? Indeed, this example exposes a subtlety
with using strings to set properties in XAML that are a different data type than
System.String or System.Object. In such cases, the XAML parser must look for a type
converter that knows how to convert the string representation to the desired data type.

You cannot currently create your own type converters, but type converters already exist
for many common data types. Unlike the XAML language, these type converters support
case-insensitive strings. Without a type converter for Brush (the base class of
SolidColorBrush), you would have to use property element syntax to set the Background
in XAML as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop”>

<Button.Background>

<SolidColorBrush Color=”Red”/>

</Button.Background>

</Button>

And even that is only possible because of a type converter for Color that can make sense
of the “Red” string. If there wasn’t a Color type converter, you would basically be stuck.
Type converters don’t just enhance the readability of XAML; they also enable values to be
expressed that couldn’t otherwise be expressed.

Unlike in the previous C# code, in this case, misspelling Red would not cause a compila-
tion error but would cause an exception at runtime. (Although Visual Studio does provide
compile-time warnings for mistakes in XAML such as this.)

Type Converters 33

Markup Extensions
Markup extensions, like type converters, extend the expressiveness of XAML. Both can
evaluate a string attribute value at runtime and produce an appropriate object based on
the string. As with type converters, you cannot currently create your own, but several
markup extensions are built in.

Unlike type converters, markup extensions are invoked from XAML with explicit and
consistent syntax. Whenever an attribute value is enclosed in curly braces ({}), the XAML
parser treats it as a markup extension value rather than a literal string or something that
needs to be type-converted. The following Button uses two different markup extensions as
the values for two different properties:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Height=”50”

Background=”{x:Null}”

Content=”{Binding Height, RelativeSource={RelativeSource Self}}”/>

The first identifier in each set of curly braces is the name of the markup extension. The
Null extension lives in the XAML language namespace, so the x prefix must be used.
Binding (which also happens to be a class in the Windows.UI.Xaml.Data namespace), can
be found in the default XML namespace. Note that the full name for Null is
NullExtension, and this long form can be used as well in XAML. XAML permits dropping
the Extension suffix on any markup extensions named with the suffix.

If a markup extension supports them, comma-delimited parameters can be specified.
Positional parameters (such as Height in the example) are treated as string arguments for
the extension class’s appropriate constructor. Named parameters (RelativeSource in the
example) enable you to set properties with matching names on the constructed extension
object. The values for these properties can be markup extension values themselves (using
nested curly braces, as done with the value for RelativeSource) or literal values that can
undergo the normal type conversion process. If you’re familiar with .NET custom attrib-
utes (the .NET Framework’s popular extensibility mechanism), you’ve probably noticed
that the design and usage of markup extensions closely mirrors the design and usage of
custom attributes. That is intentional.

In the preceding Button declaration, x:Null enables the Background brush to be set to
null. This is just done for demonstration purposes, because a null Background is not very
useful. Binding, covered in depth in Chapter 17, “Data Binding,” enables Content to be
set to the same value as the Height property.

Chapter 2 MASTERING XAML34

Markup extension

Positional para-
meter

Named
parameter

Markup extensions can also be used with property element syntax. The following Button
is identical to the preceding one:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Button.Height>

50

</Button.Height>

<Button.Background>

<x:Null/>

</Button.Background>

<Button.Content>

<Binding Path=”Height”>

<Binding.RelativeSource>

<RelativeSource Mode=”Self”/>

</Binding.RelativeSource>

</Binding>

</Button.Content>

</Button>

This transformation works because these markup extensions all have properties corre-
sponding to their parameterized constructor arguments (the positional parameters used
with property attribute syntax). For example, Binding has a Path property that has the
same meaning as the argument that was previously passed to its parameterized construc-
tor, and RelativeSource has a Mode property that corresponds to its constructor
argument.

Markup Extensions 35

Escaping the Curly Braces

If you ever want a property attribute value to be set to a literal string beginning with an open
curly brace ({), you must escape it so it doesn’t get treated as a markup extension. This can be
done by preceding it with an empty pair of curly braces, as in the following example:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”{}{This is not a markup extension!}”/>

Alternatively, you could use property element syntax without any escaping because the curly
braces do not have special meaning in this context. The preceding Button could be rewritten as
follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

{This is not a markup extension!}

</Button.Content>

</Button>

{}

Children of Object Elements
A XAML file, like all XML files, must have a single root object element. Therefore, it
should come as no surprise that object elements can support child object elements (not
just property elements, which aren’t children, as far as XAML is concerned). An object
element can have three types of children: a value for a content property, collection items,
or a value that can be type-converted to the object element.

The Content Property
Many classes designed to be used in XAML designate a property (via a custom attribute)
that should be set to whatever content is inside the XML element. This property is called
the content property, and it is just a convenient shortcut to make the XAML representation
more compact.

Button’s Content property is (appropriately) given this special designation, so the follow-
ing Button:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”Stop”/>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

Stop

</Button>

Or, more usefully, this Button with more complex content:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

<Rectangle Height=”10” Width=”10” Fill=”White”/>

Chapter 2 MASTERING XAML36

Markup Extensions and Procedural Code

The actual work done by a markup extension is specific to each extension. For example, the
following C# code is equivalent to the XAML-based Button that uses Null and Binding:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Height = 50;

// Set Background:

b.Background = null;

// Set Content:

Windows.UI.Xaml.Data.Binding binding = new Windows.UI.Xaml.Data.Binding();

binding.Path = new Windows.UI.Xaml.PropertyPath(“Height”);

binding.RelativeSource = Windows.UI.Xaml.Data.RelativeSource.Self;

b.SetBinding(Windows.UI.Xaml.Controls.Button.ContentProperty, bi nding);

</Button.Content>

</Button>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Rectangle Height=”10” Width=”10” Fill=”White”/>

</Button>

There is no requirement that the content property must be called Content; classes such as
ComboBox and ListBox (also in the Windows.UI.Xaml.Controls namespace) use their Items
property as the content property.

Collection Items
XAML enables you to add items to the two main types of collections that support index-
ing: lists and dictionaries.

Lists

A list is any collection that implements the IList interface or its generic counterpart. For
example, the following XAML adds two items to a ListBox control whose Items property
is an ItemCollection that implements IList<object>:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<ListBox.Items>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

</ListBox.Items>

</ListBox>

This is equivalent to the following C# code:

Windows.UI.Xaml.Controls.ListBox listbox =

new Windows.UI.Xaml.Controls.ListBox();

Windows.UI.Xaml.Controls.ListBoxItem item1 =

new Windows.UI.Xaml.Controls.ListBoxItem();

Windows.UI.Xaml.Controls.ListBoxItem item2 =

new Windows.UI.Xaml.Controls.ListBoxItem();

item1.Content = “Item 1”;

item2.Content = “Item 2”;

listbox.Items.Add(item1);

listbox.Items.Add(item2);

Furthermore, because Items is the content property for ListBox, you can shorten the
XAML even further, as follows:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<ListBoxItem Content=”Item 1”/>

Children of Object Elements 37

<ListBoxItem Content=”Item 2”/>

</ListBox>

In all these cases, the code works because ListBox’s Items property is automatically
initialized to any empty collection object. If a collection property is initially null instead
(and is read/write, unlike ListBox’s read-only Items property), you would need to wrap
the items in an explicit element that instantiates the collection. The built-in controls do
not act this way, so an imaginary OtherListBox element demonstrates what this could
look like:

<OtherListBox>

<OtherListBox.Items>

<ItemCollection>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

</ItemCollection>

</OtherListBox.Items>

</OtherListBox>

Dictionaries

A dictionary is any collection that implements the IDictionary interface or its generic
counterpart. Windows.UI.Xaml.ResourceDictionary is a commonly used collection type
that you’ll see more of in later chapters. It implements IDictionary<object, object>, so
it supports adding, removing, and enumerating key/value pairs in procedural code, as you
would do with a typical hash table. In XAML, you can add key/value pairs to any dictio-
nary. For example, the following XAML adds two Colors to a ResourceDictionary:

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Color x:Key=”1”>White</Color>

<Color x:Key=”2”>Black</Color>

</ResourceDictionary>

This leverages the XAML Key keyword (defined in the secondary XML namespace), which
is processed specially and enables us to attach a key to each Color value. (The Color type
does not define a Key property.) Therefore, the XAML is equivalent to the following C#
code:

Windows.UI.Xaml.ResourceDictionary d = new Windows.UI.Xaml.ResourceDictionary();

Windows.UI.Color color1 = Windows.UI.Colors.White;

Windows.UI.Color color2 = Windows.UI.Colors.Black;

d.Add(“1”, color1);

d.Add(“2”, color2);

Note that the value specified in XAML with x:Key is treated as a string unless a markup
extension is used; no type conversion is attempted otherwise.

Chapter 2 MASTERING XAML38

More Type Conversion
Plain text can often be used as the child of an object element, as in the following XAML
declaration of SolidColorBrush:

<SolidColorBrush>White</SolidColorBrush>

This is equivalent to the following:

<SolidColorBrush Color=”White”/>

even though Color has not been designated as a content property. In this case, the first
XAML snippet works because a type converter exists that can convert strings such as
“White” (or “white” or “#FFFFFF”) into a SolidColorBrush object.

Although type converters play a huge role in making XAML readable, the downside is
that they can make XAML appear a bit “magical,” and it can be difficult to understand
how it maps to instances of objects. Using what you know so far, it would be reasonable
to assume that you can’t declare an instance of a class in XAML if it has no default
constructor. However, even though the Windows.UI.Xaml.Media.Brush base class for
SolidColorBrush, LinearGradientBrush, and other brushes has no constructors at all, you
can express the preceding XAML snippets as follows:

<Brush>White</Brush>

The type converter for Brushes understands that this is still SolidColorBrush. This might
seem like an unusual feature, but it’s important for supporting the ability to express prim-
itive types in XAML, as demonstrated in “The Extensible Part of XAML.”

Children of Object Elements 39

The Extensible Part of XAML

Because XAML was designed to work with the .NET type system, you can use it with just about
any object, including ones you define yourself. It doesn’t matter whether these objects have
anything to do with a user interface. However, the objects need to be designed in a “declarative-
friendly” way. For example, if a class doesn’t have a default constructor and doesn’t expose useful
instance properties, it’s not going to be directly usable from XAML. A lot of care went into the
design of the APIs in the Windows.UI.Xaml namespace—above and beyond the usual design
guidelines—to fit XAML’s declarative model.

To use an arbitrary .NET class (with a default constructor) in XAML, simply include the proper
namespace with using syntax. The following XAML does this with an instance of
System.Net.Http.HttpClient and System.Int64:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<ListBox.Items>

<sysnet:HttpClient xmlns:sysnet=”using:System.Net.Http”/>

<sys:Int64 xmlns:sys=”using:System”>100</sys:Int64>

</ListBox.Items>

</ListBox>

Mixing XAML with Procedural Code
XAML-based Windows Store apps are a mix of XAML and procedural code. This section
covers the two ways that XAML and code can be mixed together: dynamically loading
and parsing XAML yourself, or leveraging the built-in support in Visual Studio projects.

Loading and Parsing XAML at Runtime
The Windows.UI.Xaml.Markup namespace contains a simple XamlReader class with a
simple static Load method. Load can parse a string containing XAML, create the appropri-
ate Windows Runtime objects, and return an instance of the root element. So, with a
string containing XAML content somewhat like MainPage.xaml from the preceding
chapter, the following code could be used to load and retrieve the root Page object:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

After Load returns, the entire hierarchy of objects in the XAML file is instantiated in
memory, so the XAML itself is no longer needed. Now that an instance of the root
element exists, you can retrieve child elements by making use of the appropriate content

Chapter 2 MASTERING XAML40

The XAML language namespace defines keywords for a few common primitives so you
don’t need to separately include the System namespace: x:Boolean, x:Int32, x:Double,
and x:String.

XAML Processing Rules for Object Element Children

You’ve now seen the three types of children for object elements. To avoid ambiguity, any valid
XAML parser follows these rules when encountering and interpreting child elements:

1. If the type implements IList, call IList.Add for each child.

2. Otherwise, if the type implements IDictionary, call IDictionary.Add for each child,
using the x:Key attribute value for the key and the element for the value.

3. Otherwise, if the parent supports a content property (indicated by
Windows.UI.Xaml.Markup.ContentPropertyAttribute) and the type of the child is
compatible with that property, treat the child as its value.

4. Otherwise, if the child is plain text and a type converter exists to transform the child into
the parent type (and no properties are set on the parent element), treat the child as the
input to the type converter and use the output as the parent object instance.

5. Otherwise, treat it as unknown content and raise an error.

Rules 1 and 2 enable the behavior described in the earlier “Collection Items” section, rule 3
enables the behavior described in the section “The Content Property,” and rule 4 explains the
often-confusing behavior described in the “More Type Conversion” section.

properties or collection properties. The following code assumes that the Page has a
StackPanel object as its content, whose fifth child is a Stop button:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

// Grab the Stop button by walking the children (with hard-coded knowledge!)

StackPanel panel = (StackPanel)p.Content;

Button stopButton = (Button)panel.Children[4];

With a reference to the Button control, you can do whatever you want: Set additional
properties (perhaps using logic that is hard or impossible to express in XAML), attach
event handlers, or perform additional actions that you can’t do from XAML, such as
calling its methods.

Of course, the code that uses a hard-coded index and other assumptions about the user
interface structure isn’t satisfying, because simple changes to the XAML can break it.
Instead, you could write code to process the elements more generically and look for a
Button element whose content is a “Stop” string, but that would be a lot of work for such
a simple task. In addition, if you want the Button to contain graphical content, how can
you easily identify it in the presence of multiple Buttons?

Fortunately, XAML supports naming of elements so they can be found and used reliably
from procedural code.

Naming XAML Elements
The XAML language namespace has a Name keyword that enables you to give any element
a name. For the simple Stop button that we’re imagining is embedded somewhere inside a
Page, the Name keyword can be used as follows:

<Button x:Name=”stopButton”>Stop</Button>

With this in place, you can update the preceding C# code to use Page’s FindName method
that searches its children (recursively) and returns the desired instance:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

// Grab the Stop button, knowing only its name

Button stopButton = (Button)p.FindName(“stopButton”);

FindName is not unique to Page; it is defined on FrameworkElement, a base class for many
important classes in the XAML UI Framework.

Mixing XAML with Procedural Code 41

Chapter 2 MASTERING XAML42

Naming Elements Without x:Name

The x:Name syntax can be used to name elements, but FrameworkElement also has a Name
property that accomplishes the same thing. You can use either mechanism on such elements, but
you can’t use both simultaneously. Having two ways to set a name is a bit confusing, but it’s
handy for these classes to have a Name property for use by procedural code. Sometimes you want
to name an element that doesn’t derive from FrameworkElement (and doesn’t have a Name
property), so x:Name is necessary for such cases.

Visual Studio’s Support for XAML and Code-Behind
Loading and parsing XAML at runtime can be interesting for some limited dynamic
scenarios. Windows Store projects, however, leverage work done by MSBuild and Visual
Studio to make the combination of XAML and procedural code more seamless. When you
compile a project with XAML files, the XAML is included as a resource in the app being
built and the plumbing that connects XAML with procedural code is generated automati-
cally.

The automatic connection between a XAML file and a code-behind file is enabled by the
Class keyword from the XAML language namespace, as seen in the preceding chapter. For
example, MainPage.xaml had the following:

<Page x:Class=”BlankApp.MainPage” …>

…

</Page>

This causes the XAML content to be treated as a partial class definition for a class called
MainPage (in the BlankApp namespace) derived from Page. The other pieces of the partial
class definition reside in auto-generated files as well as the MainPage.xaml.cs code-behind
file. Visual Studio’s Solution Explorer ties these two files together by making the code-
behind file a subnode of the XAML file, but that is an optional cosmetic effect enabled by
the following XML inside of the .csproj project file:

<Compile Include=”MainPage.xaml.cs”>

<DependentUpon>MainPage.xaml</DependentUpon>

</Compile>

You can freely add members to the class in the code-behind file. And if you reference any
event handlers in XAML (via event attributes such as Click on Button), this is where they
should be defined.

Whenever you add a page to a Visual Studio project (via Add New Item…), Visual Studio
automatically creates a XAML file with x:Class on its root, creates the code-behind
source file with the partial class definition, and links the two together so they are built
properly.

The additional auto-generated files alluded to earlier contain some “glue code” that you
normally never see and you should never directly edit. For a XAML file named
MainPage.xaml, they are:

➔ MainPage.g.cs, which contains code that attaches event handlers to events for each
event attribute assigned in the XAML file.

➔ MainPage.g.i.cs, which contains a field definition (private by default) for each
named element in the XAML file, using the element name as the field name. It also
contains an InitializeComponent method that the root class’s constructor must call
in the code-behind file. This file is meant to be helpful to IntelliSense, which is why
it has an “i” in its name.

The “g” in both filenames stands for generated. Both generated source files contain a
partial class definition for the same class partially defined by the XAML file and code-
behind file.

If you peek at the implementation of InitializeComponent inside the auto-generated file,
you’ll see that the hookup between C# and XAML isn’t so magical after all. It looks a lot
like the code shown previously for manually loading XAML content and grabbing named
elements from the tree of instantiated objects. Here’s what the method looks like for the
preceding chapter’s MainPage if a Button named stopButton were added to it:

public void InitializeComponent()

{

if (_contentLoaded)

return;

_contentLoaded = true;

Application.LoadComponent(this, new System.Uri(“ms-appx:///MainPage.xaml”),

Windows.UI.Xaml.Controls.Primitives.ComponentResourceLocation.Application);

stopButton = (Windows.UI.Xaml.Controls.Button)this.FindName(“stopButton”);

}

The LoadComponent method is much like XamlReader’s Load method, except it works with
a reference to an app’s resource file.

Mixing XAML with Procedural Code 43

To reference a resource file included with your app, simply use a URI with the format “ms-
appx:///relative path to file”. XAML files are already treated specially, but adding
a new resource file to your app is as simple as adding a new file to your project with a

Build Action of Content. Chapter 11,“Images,” shows how to use resources such as image files
with the Image element.

XAML Keywords
The XAML language namespace
(http://schemas.microsoft.com/
winfx/2006/xaml) defines a handful of
keywords that must be treated specially
by any XAML parser. They mostly
control aspects of how elements get
exposed to procedural code, but several
are useful independent of procedural
code. You’ve already seen some of them
(such as Key, Name, and Class), but Table
2.2 lists all the ones relevant for
Windows Store apps. They are listed
with the conventional x prefix because that is how they usually appear in XAML and in
documentation.

TABLE 2.2 Keywords in the XAML Language Namespace, Assuming the Conventional x Namespace
Prefix

Keyword Valid As Meaning

x:Boolean An element. Represents a System.Boolean.

x:Class Attribute on root element. Defines a namespace-qualified class for the root

element that derives from the element type.

x:Double An element. Represents a System.Double.

x:FieldModifier Attribute on any nonroot Defines the visibility of the field to be

element but must be used generated for the element (which is private by

with x:Name (or equivalent). default). The value must be specified in terms of

the procedural language (for example,public,

private, and internal for C#).

x:Int32 An element. Represents a System.Int32.

x:Key Attribute on an element Specifies the key for the item when added to

whose parent is a the parent dictionary.

dictionary.

x:Name Attribute on any nonroot Chooses a name for the field to be generated

element but must be used for the element, so it can be referenced from

with x:Class on root. procedural code.

x:Null An element or an attribute Represents a null value.

value as a markup extension.

Can also appear as

x:NullExtension.

x:StaticResource An element or an attribute References a XAML resource

value as a markup extension.

Can also appear as

x:StaticResourceExtension.

x:String An element. Represents a System.String.

Chapter 2 MASTERING XAML44

Special Attributes Defined by the
W3C

In addition to keywords in the XAML
language namespace, XAML also supports
two special attributes defined for XML by the
World Wide Web Consortium (W3C):
xml:space for controlling whitespace parsing
and xml:lang for declaring the document’s
language and culture. The xml prefix is implic-
itly mapped to the standard XML namespace;
see http://www.w3.org/XML/1998/
namespace.

http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Keyword Valid As Meaning

x:Subclass Attribute on root element Specifies a subclass of the x:Class class that

and must be used with holds the content defined in XAML. This is

x:Class. needed only for languages without support for

partial classes, so there’s no reason to use this

in a C# XAML project.

x:TemplateBinding An element or an attribute Binds to an element’s properties from within a

value as a markup template, as described in Chapter 16. Can

extension. also appear as x:TemplateBindingExtension.

x:Uid Attribute on any element Marks an element with an identifier used for

localization.

Summary
You have now seen how XAML fits in with the rest of an app’s code and, most impor-
tantly, you now have the information needed to translate most XAML examples into a
language such as C# and vice versa. However, because type converters and markup exten-
sions are “black boxes,” a straightforward translation is not always going to be obvious.

As you proceed further, you might find that some APIs can be a little clunky from proce-
dural code because their design is often optimized for XAML use. For example, the XAML
UI Framework exposes many small building blocks to help enable rich composition, so
some scenarios can involve manually creating a lot of objects. Besides the fact the XAML
excels at expressing deep hierarchies of objects concisely, Microsoft spent more time
implementing features to effectively hide intermediate objects in XAML (such as type
converters) rather than features to hide them from procedural code (such as constructors
that create inner objects on your behalf).

Most people understand the benefit of XAML’s declarative model, but some lament XML
as the choice of format. The primary complaint is that it’s verbose; too verbose to type.
This is true: Almost nobody enjoys typing lots of XML, but that’s where tools come in.
Tools such as IntelliSense and visual designers can spare you from typing a single angle
bracket! The transparent and well-specified nature of XML enables you to easily integrate
new tools into the development process (creating a XAML exporter for your favorite tool,
for example) and also enables easy hand-tweaking or troubleshooting.

In some areas (such as complicated paths and shapes), typing XAML by hand isn’t even
practical. In fact, the trend from when XAML was first introduced in beta form has been
to remove some of the handy human-typeable shortcuts in favor of a more robust and
extensible format that can be supported well by tools. But I still believe that being famil-
iar with XAML and seeing the APIs through both procedural and declarative perspectives
is the best way to learn the technology. It’s like understanding how HTML works without
relying on a visual tool.

Summary 45

Chapter 2 MASTERING XAML46

Classes in the XAML UI Framework have a deep inheritance hierarchy, so it can be hard to
get your head wrapped around the significance of various classes and their relationships. A
handful of fundamental classes are referenced often and deserve a quick explanation

before we get any further in the book. The Page class, for example, derives from a UserControl
class, which derives from all of the following classes, in order from most to least derived:

➔ Control—The base class for familiar controls such as Button and ListBox. Control adds
many properties to its base class, such as Foreground, Background, and FontSize, as well
as the capability to be given a completely new visual template. Part III,“Understanding
Controls,” examines the built-in controls in depth.

➔ FrameworkElement—The base class that adds support for styles, data binding, XAML
resources, and a few common mechanisms such as tooltips and context menus.

➔ UIElement—The base class for all visual objects with support for routed events, layout,
and focus. These features are discussed in Chapter 4,“Layout,” and Chapter 5,
“Interactivity.”

➔ DependencyObject—The base class for any object that can support dependency prop-
erties, also discussed in Chapter 5.

➔ Object—The base class for all .NET classes.

Throughout the book, the simple term element is used to refer to an object that derives from
UIElement or FrameworkElement. The distinction between UIElement and
FrameworkElement is not important because the framework doesn’t include any other public
subclasses of UIElement.

INDEX

Symbols and Numbers

&#xHexValue, 202

2D transforms, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

3D transforms, 62, 64

A

absolute sizing, 80

absolute URIs, 256

AccelerationX property (AccelerometerReading
class), 530

AccelerationY property (AccelerometerReading
class), 530

AccelerationZ property (AccelerometerReading
class), 530, 532

AcceleratorKeyActivated event, 143

accelerometer, 529-531

shake detection, 532

tossing motion, 531-532

Accelerometer.GetDefault method, 530

AccelerometerReading class, properties, 530

AcceptsReturn, TextWrapping versus, 241

account pictures

extensions, 509-511

providers, 510

AccountPictureChanged event, 509

Accuracy property (Coordinate property), 534

Activate event (Windows class), 156

Activated event (Window.Current property), 153

activating (action), 155-156, 159-160

ActivationKind property (OnLaunched), 157

ActualHeight property, 49

actualWidth property, 49

AddDeleteThemeTransition, 372-374

AddHandler method, 112

addPages event, 495

affine transformation matrix, 61

AgeRating property (ListingInformation object),
169

alignment, child layout properties

content alignment, 53-55

HorizontalAlignment and VerticalAlignment,
52-53

AllowCropping property (PhotoSettings prop-
erty), 296

AllowDrop property, 140

AllowTrimming property (VideoSettings prop-
erty), 298

Alt key, 143

altform-XXX resource qualifier, 266

Altitude property (Coordinate property), 534

AltitudeAccuracy property (Coordinate prop-
erty), 535

ambient light sensor, 533

Angle property, 56

animation

custom animations, 382-383

ColorAnimation class, 387, 391-393

data types, 382

dependency properties, 383

DiscreteXXXKeyFrame class, 398-399

DoubleAnimation class, 382-385

DoubleAnimationUsingKeyFrames class,
395-397

duration, 384-385

EasingXXXKeyFrameclass, 399

From property, 385-387

independent versus dependent, 383-384

ITranslateTransform, 384

KeySpline class, 397

PointAnimation class, 387, 382

property paths, 391-393

ScaleTransform, 384

Timeline class properties, 388-390, 393, 395

To property, 385-387

dependent, 366

EasingFunction property, 400

power easing, 400-401

independent, 366

keyframes, 395

discrete, 398-399

easing, 399

linear, 395-396

spline, 397

manual, 404-406

theme animations, 366, 376

DragItemThemeAnimation, 380

DragOverThemeAnimation, 380

DropTargetItemThemeAnimation, 381

Duration property, 381

FadeInThemeAnimation, 379, 381

FadeOutThemeAnimation, 376-381

multiple storyboards, 390-391

PointerDownThemeAnimation, 380

PointerUpThemeAnimation, 380

PopInThemeAnimation, 379

PopOutThemeAnimation, 380

AccelerometerReading class, properties560

RepositionThemeAnimation, 380

SplitCloseThemeAnimation, 381

SplitOpenThemeAnimation, 381

storyboards, 376-379, 390-391

SwipeBackThemeAnimation, 380

SwipeHintThemeAnimation, 380

Timeline class properties, 381, 388-390

theme transitions, 366

AddDeleteThemeTransition, 372-374

applying to elements, 366-367

ContentThemeTransition, 370

EdgeUIThemeTransition, 370-371

EntranceThemeTransition, 368-369

PaneThemeTransition, 371-372

PopupThemeTransition, 369-370

ReorderThemeTransition, 375-376

RepositionThemeTransition, 374-375

TransitionCollection element, 367

App class, 21

app container, 9

App data, 461

app files, 464

local files, 465

packaged files, 464

roaming files, 465-466

temporary files, 466

app settings, 462

local settings, 462

roaming settings, 463-464

app files, App data, 464

local files, 465

packaged files, 464

roaming files, 465-466

temporary files, 466

app lifecycle, 149

execution states, 150-151

transition actions, 150-151

activating, 155-156, 159-160

killing, 152

launching, 155-159

managing session state with
SuspensionManager class, 160-163

resuming, 154

suspending, 152-154

terminating, 155

app settings, 462

local settings, 462

roaming settings, 463-464

App.xaml.cs, 22, 24

AppBar control, 132, 196-197

AppBarButtonStyle, 200-204

attaching to pages, 197-198

buttons, 199-202, 204-205

design guidelines, 198-200

IsSticky property, 198

pressed appearances, 205

AppBarButtonStyle (AppBar control), 200-205

AppBars (ListView control), 218

Application class, 159-160

app transitions, 150

Exit method, 152

Suspending event, 152-153

deferrals, 154

handling, 153-154

application definition, 21

App.xaml.cs, 22, 24

AssemblyInfo.cs, 24

application state (files), 254

Application UI tab (package manifest), 10

splash screen customization, 10-11

tile customization, 12-13

ApplicationData.SetVersionAsync method, 462

ApplicationDataCompositeValue class, 463

ApplicationDataCompositeValue class 561

apps

colors, 190

crashes, 152

data. See app data

files. See app files

launching programmatically, 163

customizing app launches, 165-166

for files, 163-164

for URIs, 164-165

layout, 47

controlling position, 52-55

controlling size, 48-51

perspective transforms, 62, 64

transform classes, 55-62

lifecycle. See app lifecycle

models, 149, 166

navigation, 174

Back button, 179

back navigation, 176-177

basic navigation, 175-176

embedding frames, 180-182

forward navigation, 176-177

LayoutAwarePage class, 178-179

page caching, 177-178

passing data, 175-176

orientation, 10

pages, 174

back navigation, 176-177

basic navigation, 175-176

forward navigation, 176-177

passing data, 175-176

Search pane, 478

settings. See app settings

themes, 186

tombstoning, 183

Windows Store, 7

Blank App project, 8-14, 16-19, 21-22, 24

ArcSegment class (PathSegments), 341

Arguments property (OnLaunched), 156

AssemblyInfo.cs, 24

AtomPubClient class, 474

attached properties, 71-73, 107-108

attached property provider, 72

attributes, 28-29

audio, 285-286

background tasks, 520

adding declaration, 520

AudioCategory property, 520

media transport controls, 521-523

capture, 294

CameraCaptureUI class, 294

CaptureElement class, 304-305

microphones, 294

formats, MediaElement, 286-287

metadata, 289

playback, 286

MediaElement, 286-291

MediaPlayer, 291-292, 294

transcoding (MediaTranscoder class), 305-310

AudioCategory property, 520

AudioDeviceController property
(MediaCapture), 305

AudioDeviceId property (InitializeAsync over-
load), 299

Auto state (ScrollBarVisibility), 91

automatic scaling, image files, 263

loading file variations automatically, 263-266

loading file variations manually, 266-267

AutomationProperties.Name property, 201

automaton IDs, items controls, 215

AutoPlay content, extensions, 512-514

AutoPlay device, extensions, 512-514

AutoReverse property (Timeline class), 388

AutoRotationPreferences property, 70

autosizing, 80

apps562

B

Back button, 179

CoreWindowDialog, 319

back navigation, 176-177

BackEase function, 403

background color, tile, 13

background downloads, network data access,
471

Background property, 124

background tasks

audio, 520

adding declaration, 520

AudioCategory property, 520

media transport controls, 521-523

customizing

applying conditions, 527

event progress, 525

IbackgroundTask implementation, 523-524

registering task, 524-525

triggers, 525-526

background video, 291

BackgroundDownloader class, 471

badges, live tiles, 549-550

BaseUri property (Page), 255

BasicProperties class, 272

BeginTime property (Timeline class), 388

Bézier curves, 341

control points, 341

S-like shapes, 341

U-like shapes, 341

BezierSegment class (PathSegments), 341

BGRA8 pixel format, 261

binary data, 462

binding, 439-440

C#, 441

to collections, 444-446

Convert method, 454

Converter property, 454

customizing data flow, 442-443

data templates, 448

Mode property (Binding object), 442

OneWay binding, 443

to plain properties, 442

RelativeSource property (Binding object), 441

sharing source with DataContext, 443-444

source property (Binding object), 440

target property (Binding object), 440

TwoWay binding, 443

Binding markup extension

binding to collections, 444-446

binding to plain properties, 442

C#, 441

customizing data flow, 442-443

data templates, 448

Mode property, 442

OneWay binding, 443

RelativeSource property, 441

sharing source with DataContext, 443-444

source property, 440

target property, 440

TwoWay binding, 443

Binding object, 439-440

BindingMode enumeration, 442

BitmapDecoder, reading metadata with
BitmapProperties, 273-275

BitmapDecoder class, decoding images, 267

getting pixel data, 268-269, 271

BitmapEncoder class, 276-277

writing metadata, 279-280

writing pixel data, 277-279

BitmapImage, 255

BitmapProperties property (Bitmap Decoder),
reading image metadata, 273-276

BitmapProperties property (Bitmap Decoder), reading image metadata 563

BitmapTransform class, 270-271

Blank App, 7

launching a new app, 8-9

application definition, 21-22, 24

Main Page, 19, 21

package manifest, 9-14, 16-19

Block (TextElements), 232

Border, ChildTransitions property, 367

BottomAppBar property, 197-198

BounceEase function, 403

Brush data type, 348

ImageBrush, 355-356

LinearGradientBrush, 349-355

properties, 348

SolidColorBrush, 348-349

WebViewBrush, 358-363

brushes, 348

ImageBrush, 355-356

LinearGradientBrush, 349-355

SolidColorBrush, 348-349

WebViewBrush, 358-363

bubbling event, 108, 110-111

halting, 111-113

built-in libraries, 16

business models, 166

Button control, 28, 188-189

default appearance, 185

Button states, 429, 432

ButtonAutomationPeer class, 189

buttons, 188-189

AppBar control, 199-205

AppBarButtonStyle, 201-204

Back, 179

MediaPlayer, 293

Start Debugging, 8

Button_Click method (C#), 29

Byte properties (Color Property), 348

C

C#

data binding, 441

Windows Store apps, 7

Blank App project, 8-14, 16-19, 21-22, 24

cache, session states, 163

cached composition, 364

caching pages, 177-178

CameraCaptureUI class, 294

photo captures, 294-297

PhotoSettings property, 296

video captures, 297-298

VideoSettings property, 298

cameras

adjusting settings, 302-303

live content, 299

Canceled event (EdgeGesture), 132

CanDragItems property, 140

CanExecute method, 114

CanExecuteChanged method, 114

CanPlayType method (MediaElement), 287

Canvas panel, 71-73

Grid panel mimicking, 82-83

Capabilities tab (package manifest), 14-15

device capabilities, 16-17

file capabilities, 16

identity capabilities, 17

network capabilities, 17

capture, 294

CameraCaptureUI class, 294

photo captures, 294-297

video captures, 297-298

CaptureElement class, 298

adjusting camera settings, 302-303

capturing audio, 304-305

BitmapTransform class564

capturing photos, 301-302

capturing video, 303-304

showing live previews, 298-301

microphones, 294

Webcams, 294

capture and release pointers, 120, 122

CaptureElement class, 298

adjusting camera settings, 302-303

capturing audio, 304-305

capturing photos, 301-302

capturing video, 303-304

showing live previews, 298-301

Source property, 298

Stretch property, 298

CaptureFileAsync, 296

CapturePhotoToStorageFileAsync method
(MediaCapture), 302

CapturePointer method, 120

CarouselPanel, 210-212

CenterOfRotationX property, 64

CenterOfRotationY property, 64

CenterOfRotationZ property, 64

CenterX property, 56

CenterY property, 56

change notification, dependency properties,
104

Character Map, 202

CharacterSpacing property (TextBox), 228-229

charms, 477

Devices, 492-493

Play To feature, 501-502

printing, 493-500

Search, 477-479

auto-generated search results Page, 479

reporting search results, 479-482

search suggestions, 483-485

search suggestions from indexed files,
485-486

Settings, 503-507

Share, 486

share sources, 486-489

share targets, 489-490, 492

charms bar, 477

CheckBox control, 192

CheckFeatureLicenses method, 170

child elements

layout properties, 48, 52

alignment, 52-53

content alignment, 53-55

Height and Width, 48-49

Margin and Padding, 50-51

perspective transforms, 62, 64

transform classes, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

child layout properties

Canvas panel, 72

Grid panel, 79

StackPanel panel, 74

VariableSizedWrapGrid panel, 86

child object elements, 36

collection items, 37

dictionaries, 38

lists, 37-38

content property, 36-37

type-converted values, 39-40

ChildrenTransitions property, 367

ChildTransitions property, 367

chips, NFC, 535

CircleEase function, 403

CivicAddress property, 534-535

CivicAddress property 565

classes. See also subclasses

AccelerometerReading properties, 530

Application, 159-160

app transitions, 150

Exit, 152

Suspending event, 152-154

ApplicationDataCompositeValue, 463

ArcSegment (PathSegments), 341

AtomPubClient, 474

BackgroundDownloader, 471

BezierSegment (PathSegments), 341

ButtonAutomationPeer, 189

CameraCaptureUI, 294

photo captures, 294-297

PhotoSettings property, 296

video captures, 297-298

CameraCatpureUI, VideoSettings property, 298

CaptureElement, 298

adjusting camera settings, 302-303

capturing audio, 304-305

capturing photos, 301-302

capturing video, 303-304

showing live previews, 298-301

Source property, 298

Stretch property, 298

ColorAnimation, 387, 391-393

Compass, 533

ContentControl, 187

Control, 53

CurrentAppSimulator, testing Windows Store
features, 172, 174

DiscreteXXXKeyFrame, 398-399

DispatcherTimer, 404

DoubleAnimation, 382-385

DoubleAnimationUsingKeyFrames, 395-397

EasingXXXKeyFrame, 399

Ellipse, 335

EllipseGeometry (Geometry data type), 340

Geolocator class, 534-535

GeometryGroup (Geometry data type), 340,
344

FillRule property, 344

strings, 346-348

triangles, 345

Gyrometer, 532

ItemsControl, 207

Items property, 208-209

ItemsSource property, 209

Selector subclass, 207-208

KeySpline, 397

Launcher

LaunchFileAsync method, 163-166

LaunchUriAsync method, 164-166

LayoutAwarePage, 163, 178-179, 432

Line, 336

LineGeometry (Geometry data type), 340

LineSegment (PathSegments), 341-342

MediaEncodingProfile, 304, 308

MediaEncodingProfile class, 306

MediaTranscoder, 305

adding effects, 310

changing media format, 308

changing quality, 306-308

PrepareStreamTranscodeAsync method,
306

trimming files, 309-310

ObservableCollection, 445

Panel, 47

Path, 338

PathGeometry (Geometry data type), 340-341

FillRule property, 343-344

PathFigures, 341, 343

PathSegments, 341-342

Playlist, 293

classes566

PointAnimation, 382, 387

PolyBezierSegment (PathSegments), 341

Polygon, 337

Polyline, 336-337

PolyLineSegment (PathSegments), 341

PolyQuadraticBezierSegment (PathSegments),
341

PrintDocument, 493, 495-496, 498

PrintManager, 493

QuadraticBezierSegment (PathSegments), 341

RadialGradientBrush, 355

RangeBase, 313

Rectangle, 334-335

RadiusX property, 334

RadiusY property, 334

RectangleGeometry (Geometry data type), 340

Shape

overuse of shapes, 340

StrokeDashArray property, 338-339

StrokeDashCap property, 338-339

StrokeEndLineCap property, 338-339

StrokeLineJoin property, 338

StrokeMiterLimit property, 338

StrokeStartLineCap property, 338-339

StrokeThickness property, 338

SplineXXXKeyFrame, 397

StandardDataFormats, 489

StorageFile , data binding, 449

SuspensionManager

ISessionState property, 162

managing session state, 160-163

RestoreAsync method, 163

SaveAsync method, 163

Thickness, 50

ThreadPoolTimer, 404

TileBrush, 355

ToolTipService class (ToolTip control), 194-196

VisualState, 429

Windows

Activate event, 156

VisibilityChanged event, 156

Windows.ApplicationModel.Store.CurrentApp,
166

Windows.Storage.ApplicationData, 461

Windows.System.Launcher, 163

customizing app launches, 165-166

launching apps for files, 163-164

launching apps for URIs, 164-165

Windows.System.UserProfile.UserInformation,
509-511

Click event, 188-189

RepeatButton control, 191

ClickMode property, 188

clipping content overflow, 87-89

collection items, 37

dictionaries, 38

lists, 37-38

collections

binding to, 444-446

Items properties, 446

Markers collection, 290

views, 455

groupings, 455-459

navigating, 459

color brushes

LinearGradientBrush, 349-355

SolidColorBrush, 348-349

color strings, 348

ColorAnimation class, 387, 391-393

ColorInterpolationMode property
(LinearGradientBrush), 350

colors

apps, 190

gradients, 391-393

themes, 190

translucency, 349

colors 567

ColumnDefinitions property (Grid panel), 76

columns, sizing, 79-82

ColumnSpan attached property, 76, 78, 211

VariableSizedWrapGrid panel, 84-85

ComboBox control, 213

DropDownClosed event, 213

DropDownOpened event, 213

IsDropDownOpen property, 213

IsEditable property, 214

keystrokes, 214

SelectionChanged event, 214

commands, 113-114

custom, CoreWindowDialog, 318

Geometry string, 346-347

header-embedded script, 290

separate-stream script, 290

commas, Geometry strings, 348

communication, peer devices, 537-538

Compass class, 533

compass sensor, 533

CompassReading type, properties, 533

Completed event (EdgeGesture), 132

CompositeTransform class, 60

ComputedHorizontalScrollBarVisibility property
(ScrollViewer), 92

ComputedVerticalScrollBarVisibility property
(ScrollViewer), 92

config-XXX resource qualifier, 266

connected standby mode, 153

constructors, App.xaml.cs, 22

ContactRect property (PointerPointProperties
class), 118

ContactRectRaw property
(PointerPointProperties class), 118

contacts, Windows contact picker, 514-516

containers (item), 209

content

alignment, child layout properties, 53-55

AutoPlay, 512-514

text

TextBlock, 229-231

TextElements, 232-233

content control template

Content property, 420-422

hijacking existing properties, 426

honoring properties, 423-425

content controls, 187

AppBar, 196-197

AppBarButtonStyle, 200-204

attaching to pages, 197-198

design guidelines, 198-200

pressed appearances, 205

Button, 188-189

CheckBox, 192

ContentTransitions property, 367

HyperlinkButton, 189-190

objects, 187

RadioButton, 192-193

RepeatButton, 191

ToggleButton, 191

ToolTip, 194-196

content overflow, 87

clipping, 87-89

scaling, 94

Viewbox element, 95-98

ZoomMode property, 98

scrolling, 89-90

customizing ScrollViewer, 90-91, 93

snap points, 93-94

Content property, 36-37

content control template, 420-422

Frame, 177

MessageDialog popup control, 322

ScrollViewer, 89

ContentControl class, 187, 447

ContentEnd property (TextBlock), 234

ColumnDefinitions property (Grid panel)568

ContentStart property (TextBlock), 234

ContentTemplate property (ContentControl),
447

ContentThemeTransition, 370

ContentTransitions property, 367

ContextMenuOpening event, 234

contracts, 18

contrast resource qualifiers, 265

contrast-black qualifiers, 265

contrast-high qualifiers, 265

contrast-standard qualifiers, 265

contrast-white qualifiers, 265

Control class, 53

control points, Bézier curves, 341

control templates, XAML control restyling,
419-420

controls

AppBar

buttons, 199-205

IsSticky property, 198

Button, 28

default appearance, 185

content, 187

AppBar, 196-205

Button, 188-189

CheckBox, 192

ContentTransitions property, 367

HyperlinkButton, 189-190

objects, 187

RadioButton, 192-193

RepeatButton, 191

ToggleButton, 191

ToolTip, 194-196

CustomSettingsPane, 505-507

dark theme, 185

items, 207

automaton IDs, 215

ComboBox, 213-214

data binding, 209

FlipView, 221-223

GridView, 219-221

ItemContainerTransitions property, 367

items panels, 210-212

ItemsControl class, 208-209

ListBox, 214-215

ListView, 216-219

SemanticZoom, 223-226

visual elements, 209

light theme, 185

ListBox, adding objects to Items, 208-209

PasswordBox, password entry, 251-252

popup, 316

CoreWindowDialog, 316-319

CoreWindowFlyout, 319-320

MessageDialog, 321-322

Popup, 323-325

PopupMenu, 322-323

ProgressRing, 326

range, 313

ProgressBar, 314

Slider, 314-316

RichEditBox, text editing, 248-250

TextBox, 240

AcceptsReturn versus TextWrapping, 241

software keyboard, 243-248

spelling and text prediction, 241-242

text selection, 243

ToggleSwitch, 326-327

WebView, 327-330

XAML restyling

styles, 410-418

templates, 418-428

visual states, 428-438

Convert method (Binding), 454

Converter property (Binding), 454

Converter property (Binding) 569

converters

SVG-to-XAML, 347

value, 451-454

Coordinate property, 534

CoreDispatcher, 301

CoreWindowDialog popup control, 316, 318-319

CoreWindowDialog range control, 319

CoreWindowFlyout popup control, 319-320

crashes, 152

CreateAsync method (BitmapEncoder), 276

CreateForInPlacePropertyEncodingAsync
method, 283

CreateForTranscodingAsync method, 280

CreateHtmlFormat, 487

CreatePrintTask, 495

CreationCollisionOption enumeration value, 465

CroppedAspectRatio property (PhotoSettings
property), 296

CroppedSizeInPixels property (PhotoSettings
property), 296

cropping photos, 295

cropping UI, 295

CrossSliding events, 139

CrossSliding gesture, 129

current dimensions, layout, 66

CurrentAppSimulator class, testing Windows
Store features, 172-174

CurrentMarket property (ListingInformation
object), 169

CurrentOrientation property, 70

CurrentStateChanged event (MediaElement),
289

custom animations, 382-383

ColorAnimation class, 387, 391-393

data types, 382

dependency properties, 383

DiscreteXXXKeyFrame class, 398-399

DoubleAnimation class, 382-385

DoubleAnimationUsingKeyFrames class,
395-397

duration, 384-385

EasingXXXKeyFrameclass, 399

From property, 385-387

independent versus dependent, 383-384

ITranslateTransform, 384

keyframes, 395

discrete, 398-399

easing, 399

linear, 395-396

spline, 397

KeySpline class, 397

PointAnimation class, 382, 387

property paths, 391-393

ScaleTransform, 384

storyboards, Timeline class properties, 393, 395

Timeline class properties

AutoReverse, 388

BeginTime, 388

FillBehavior, 390

RepeatBehavior, 389-390

SpeedRatio, 388

To property, 385-387

custom attributes (.NET), 34

custom commands, CoreWindowDialog, 318

custom controls, software keyboard, 248

custom search suggestions, 483-485

customizing

background tasks

applying conditions, 527

event progress, 525

registering task, 525

triggers, 525-526

collection views, 455

groupings, 455-459

navigating, 459

converters570

data flow, 442-443

images

stretching with nine-grid, 257, 259

playback, 288

ScrollViewer, 90-93

Slider ToolTip, 316

splash screen, 10-11

tile, 12-13

customSettingsPane control, 505-507

D

dark themes, 185-187

data

App data, 461

app files, 464-466

app settings, 462-464

network access, 469

background download, 471

connection information, 474

HTTP requests, 469-471

receiving via sockets, 471

syndication, 471, 473

User data, 466-467

file picker, 467-468

libraries and folders, 468

data binding, 439-440

binding to collections, 444-446

C#, 441

customizing data flow, 442-443

data templates, 448

items controls, 209

Mode property (Binding object), 442

OneWay binding, 443

to plain properties, 442

RelativeSource property (Binding object), 441

sharing source with DataContext, 443-444

source property (Binding object), 440

target property (Binding object), 440

TwoWay binding, 443

data flow, customizing, 442-443

data package managers, 486

data packages, 486

data templates, 447-451

data types

Brush, 348

ImageBrush, 355-356

LinearGradientBrush, 349-355

properties, 348

SolidColorBrush, 348-349

WebViewBrush, 358-363

custom animations, 382

Geometry, 340

EllipseGeometry class, 340

GeometryGroup class, 340, 344-345

LineGeometry class, 340

PathGeometry class, 340-341

RectangleGeometry class, 340

strings, 346-348

Transform property, 341, 345

Shape, 334

Ellipse class, 335

Fill property, 334-335

Line class, 336

Path class, 338

Polygon class, 337

Polyline class, 336-337

Rectangle class, 334-335

Stroke property, 334-335

data virtualization (ListView control), 219

DataContext property, sharing source with,
443-444

DataRequested event, 486, 488

DataRequested event 571

DataTemplate, properties for attaching data
templates, 447-451

DateTime data type, 273

DateTimeOffset data type, 273

Debug Location toolbar, 155

declarations, extensions

AutoPlay content, 512-514

background tasks, 520-527

file type associations, 516-518

protocol, 518-519

user account picture change, 509-511

Windows contact picker, 514-516

Declarations tab (package manifest), 18

declaring XML elements, 28

DecodePixelHeight property (BitmapImage),
255

DecodePixelWidth property (BitmapImage), 255

decoding images

BitmapDecoder class, 267-271

reading metadata, 271

BitmapProperties from a decoder, 273-275

ImageProperties from a file, 272-273

metadata query language, 275-276

Default parameter (ScrollIntoView), 217

DefaultPlaybackRate, 288-289

defaults, RichTextBlock, 235

dependency properties, 101-102

animation classes, 383

attached properties, 107-108

change notification, 104

implementation, 102-104

multiple provider support, 106-107

property value inheritance, 104-105

DependencyObject class, 103

DependencyProperty.Register method, 103

dependent animations, 366

versus independent, 383-384

dependent packages, 256

Description property, 487

Description property (ListingInformation
object), 169

design, AppBar control, 198-200

DesiredSize property, 49

devices. See also sensors

accelerometer, 529-531

shake detection, 532

tossing motion, 531-532

capabilities, 16-17

connected standby mode, 153

GPS, 534-535

location, 534-535

peer

communication, 537-538

finding, 537-538

receiving messages, 536-537

sending messages, 536-537

source, 492

target, 492

Devices charm, 492-493

Play To feature, 501-502

printing, 493-498

adding custom options, 499-500

changing default options, 498

configuring displayed options, 499

Devices pane, 492-493

dictionaries, 38

themed, XAML control restyling, 415, 417

dimensions

accelerometer, 529-531

shake detection, 532

tossing motion, 531-532

layout, 66

direct child, 187

Disabled state, ScrollBarVisibility, 91

Disabled value (NavigationCacheMode prop-
erty), 177

DataTemplate, properties for attaching data templates572

discrete keyframes, 398-399

DiscreteXXXKeyFrame class, 398-399

Dispatcher property (CoreDispatcher), 301

dispatcherTimer class, 404

displaying text, TextBlock, 227-229

DisplayMemberPath property, 445

DisplayProperties.ResolutionScale property, 71

DisplayRequest object, 294

Document property (RichEditBox), 248

document sources, 495

DocumentProperties class, 272

Documents Library, 16

DocumentSource property, 495

Double.IsNaN method, 49

DoubleAnimation class, 382-383

Duration property, 384-385

DoubleAnimationUsingKeyFrames class,
395-397

DoubleTapped gesture event, 133

DownloadProgress event (BitmapImage), 255

DownloadProgress property, 290

DownloadProgressOffset property
(MediaElement), 290

drag and drop implementation, pointers, 120,
122

DragEnter mouse-specific events, 140

draggable thumb, Slider range control, 314

Dragging event (GestureRecognizer class), 139

DragItemStarting event (ListView control), 219

DragItemThemeAnimation, 380

DragLeave mouse-specific events, 140

DragOverThemeAnimation, 38

drivers, connected standby mode, 153

Drop mouse-specific events, 140

drop-downs, 213

DropDownClosed event (ComboBox control),
213

DropDownOpened event (ComboBox control),
213

DropTargetItemThemeAnimation, 381

Duartion property, animation themes, 381

duration, custom animations, 384-385

Duration property (DoubleAnimation class),
384-385

dynamic images, generating with
WriteableBitmap, 260-263

E

EaseIn (EasingMode), 400, 403-404

EaseOut (EasingMode), 400, 403-404

easing functions, 400, 403-404

BackEase, 403

BounceEase, 403

CircleEase, 403

ElasticEase, 403

ExponentialEase, 403

power easing, 400-401

SineEase, 403

easing keyframes, 399

EasingFunction property, 400-401

EasingMode, 400, 403-404

EasingXXXKeyFrame class, 399

EdgeGesture class, 132

EdgeUIThemeTransition, 370-371

editing text

RichEditBox control, 248-250

TextBox control, 240-242

effects

adding, 310

applying, 291

MediaElement, 291

video stabilization, 291

ElasticEase function, 403

elements, 28-29

elements 573

declaring, 28

fading, 376-377

Image, 253

customizing stretching with nine-grid,
257-259

decoding images, 267-276

enabling formats of images, 253-254

encoding images, 276-280

generating dynamic images, 260-263

multiple files for multiple environments,
263-267

referencing files with URIs, 254-257

transcoding data, 280-283

naming, 41-42

eligibility for focus, UIElements receiving key-
board input, 146-147

Ellipse class, 335

EllipseGeometry class (Geometry data type),
340

Enabled value (NavigationCacheMode prop-
erty), 177

EnableDependentAnimation property, 383

EncodeUserSelectedFile method, 276

encoding images (BitmapEncoder class),
276-277

writing metadata, 279-280

writing pixel data, 277-279

EndPoint property (LinearGradientBrush),
350-352

enhanced standard RGB color space (scRGB),
348

Enterprise Authentication network capability, 17

EntranceThemeTransition, 368-369

enumerations

BindingMode, 442

VideodEncodingQuality, 307-308

environments, automatic scaling, 263-267

escape sequences, &#xHexValue, 202

EvenOdd (FillRule property), 343-344

event attribute, 28

event handlers, SizeChanged, 66

events

AccountPictureChanged, 509

Activate (Windows class), 156

Activated (Window.Current property), 153

AddPages, 495

bubbling, 108, 110-113

Click, 188-189

RepeatButton control, 191

CurrentStateChanged (MediaElement), 289

DataRequested, 486, 488

DragItemStarting (ListView control), 219

DropDownClosed (ComboBox control), 213

DropDownOpened (ComboBox control), 213

gestures, 133, 140

GetPreviewPage, 495

keyboard input, 142-143

LayoutUpdated, 66

LicenseChanged, 170

manipulation, 134

manipulations, 134-138

MarkerReached, 290

MediaCapture, 300-301

MediaElement, 289-290

ordering, 29

pointers, 118, 120

keyboard modifiers, 145-146

PointerWheelChanged, 138-139

PrintTaskRequested, 495

ReadingChanged, 530-532

routed, 108-110

halting bubbling, 111-113

leveraging event bubbling, 110-111

SelectionChanged

ComboBox control, 214

Selector subclass, 208

elements574

Suspending (Application class), 152-153

deferrals, 154

handling, 153-154

Tapped, 188

TextChanged (TextBox), 440

VisibilityChanged (Windows class), 156

Execute method, 114

execution states, 150-151

Exit method (Application class), 152

Expansion property (ManipulationData event),
135

ExpirationTime property, 548

explicit runs, text content, 231

explicit sizes, 49

ExponentialEase function, 403

extended buttons, 139

extensions, 18

AutoPlay content, 512-514

AutoPlay device, 512-514

background tasks

audio, 520-523

customizing, 523-527

Binding

binding to collections, 444-446

binding to plain properties, 442

C#, 441

customizing data flow, 442-443

data templates, 448

Mode property, 442

OneWay binding, 443

RelativeSource property, 441

sharing source with DataContext, 443-444

source property, 440

target property, 440

TwoWay binding, 443

file type associations, 516-518

protocol, 518-519

user account picture change, 509-511

.vsix, 292

Windows contact picker, 514-516

F

F5, 8

FadeInThemeAnimation, 379-381

FadeOutThemeAnimation, 376-381

fading elements, 376-377

Failed even (MediaCapture), 300

file picker, User data, 467-468

file type associations, extensions, 516-518

FileOpenPicker class, 467

files

application state, 254

capabilities, 16

referencing with URIs, 254-257

saving, local file system, 464

FileSavePicker class, 467

Fill property (Shape data type), 334-335

FillBehavior property (Timeline class), 390

filled view state, 67-69

FillRule property

GeometryGroup class, 344

PathGemoetry, 343-344

FindElementsInHostCoordinates method, 124

finding peer devices, 537-538

FindName method, 41

Flat line caps, 338

flight simulators, inclinometer, 532

flipped orientations, 10

FlipView control, 221-223

flow direction, 52

FlowDirection property (FrameworkElements),
54-55

FlowDirection property (FrameworkElements) 575

FlushAsync, 277

flyouts, 213

focus eligibility, UIElements receiving keyboard
input, 146-147

Focus method, 147

focus rectangle, 147

FocusManager.GetFocusedElement method, 147

FocusState property, 147

folders, User data, 468

FontFamily property (TextBlock), 227

fonts, Segoe UI Symbol, 202

FontSize property (TextBox), 227

FontStretch property (TextBox), 227

FontStyle property (TextBox), 227

FontWeight property (TextBox), 227

Format property

PhotoSettings property, 296

VideoSettings property, 298

FormattedPrice property (ListingInformation
object), 169

formatting text, 235-237

forward navigation, 176-177

Frame

Content property, 177

embedding frames, 180-182

GetNavigationState method, 179

GoBack method, 176-177

GoForward method, 176-177

Navigate method, 175-177

SetNavigationState method, 179

Frame property, 175-176

FrameCount property (BitmapDecoder), 268

FrameId property (PointerPoint class), 118

FrameworkElement class, 41

automaton IDs, 215

FrameworkElements

position properties, 52

alignment, 52-53

content alignment, 53-55

size properties

Height and Width properties, 48-49

Margin and Padding properties, 50-51

free trials, Windows Store, 166-167

From property, custom animations, 385-387

FromHorizontalOffset property
(EntranceThemeTransition), 368

FromVerticalOffset property
(EntranceThemeTransition), 368

Fullscreen view states, 67, 69

functions, easing, 400, 403-404

BackEase, 403

BounceEase, 403

CircleEase, 403

ElasticEase, 403

ExponentialEase, 403

power easing, 400-401

SineEase, 403

G

games

controllers, handling input, 116

pausing, 153

generating dynamic images with
WriteableBitmap, 260-263

Geolocator class, 534-535

geometries, triangles, 344

Geometry data type, 340

EllipseGeometry class, 340

GeometryGroup class, 340, 344

FillRule property, 344

triangles, 345

FlushAsync576

LineGeometry class, 340

PathGeometry class, 340-341

FillRule property, 343-344

PathFigures, 341, 343

PathSegments, 341-342

RectangleGeometry class, 340

strings, 346-348

Transform property, 341, 345

GeometryGroup class (Geometry data type),
340, 344

FillRule property, 344

strings, 346-348

triangles, 345

Geoposition object, 534-535

gesture recognizer, 128

GestureRecognizer class, 128-132, 139

gestures, 127

EdgeGesture class, 132

events, 133, 140

GestureRecognizer class, 128-132

GetCharacterRect method (TextPointer class),
235

GetChild method, 109

GetChildCount method, 109

GetCurrentPoint method, 118

GetCurrentReading method, 530

GetFoldersAsync method, StorageFolder, 468

GetForCurrentView method, 132, 138

GetFrameAsync method (BitmapDecoder), 268

GetHtmlFormatAsync, 492

GetIntermediatePoints method, 118-119

GetNavigationState method (Frame), 179

GetParent method, 109

GetPixelDataAsync method (BitmapDecoder),
268-269, 271

GetPosition method, 119-120

GetPositionAtOffset method (TextPointer class),
234

GetPositionFromPoint method (RichTextBlock),
235

GetPreviewAsync method (BitmapDecoder), 271

GetPreviewPage event, 495

GetPropertiesAsync method, 274

GetStreamAsync method, 470

GetThumbnailAsync method, 271

GetThumbnailAsync method (StorageFile), 267

GetValue method, 103

GlobalOffsetX property, 64

GlobalOffsetY property, 64

GlobalOffsetZ property, 64

GoBack method (Frame), 176-177

GoForward method (Frame), 176-177

GoHome method (LayoutAwarePage class), 178

GPS device, 534-535

gradients

colors, 391-393

radial, 355

transparent colors, 354

graphical badges, 550

graphics (vector), 333

Bézier curves

S-line shapes, 341

U-line shapes, 341

Brush data type, 348

ImageBrush, 355-356

LinearGradientBrush, 349-355

properties, 348

SolidColorBrush, 348-349

WebViewBrush, 358-363

Geometry data type, 340

EllipseGeometry class, 340

GeometryGroup class, 340, 344-345

LineGeometry class, 340

PathGeometry class, 340-341

graphics (vector) 577

RectangleGeometry class, 340

strings, 346-348

Transform property, 341, 345

scalability, 364

Shape data type, 334

Ellipse class, 335

Fill property, 334-335

Line class, 336

Path class, 338

Polygon class, 337

Polyline class, 336-337

Rectangle class, 334-335

Stroke property, 334-335

strokes, 338-340

gravitational force, accelerometer dimensions,
530

Grid App, 7

Grid panel, 75-78

comparison to other panels, 82

mimicking Canvas panel, 82-83

mimicking StackPanel panel, 83

sizing rows and columns, 79-82

Grid/, 211

GridLength structures, 82

GridLength.Auto property (Grid panel), 82

GridUnitType enumeration, 82

GridView, 445-446, 452, 454

GridView control, 219-221

groupings, collection views, 455-459

GroupName property (RadioButtons control),
193

groups

RadioButtons control, 193

state groups, 429

gyrometer, 532

Gyrometer class, 532

H

Handled method, 119

Handled property (KeyRoutedEventArgs
instance), 142

handlers, OnSuspending, 153-154

HasOverflowContent property (RichTextBlock),
240

Header property

GridView, 452-454

ListView control, 217

header-embedded script commands, 290

HeaderTransitions property (ListViewBase), 367

Heading property (Coordinate property), 535

HeadingMagneticNorth property
(CompassReading type), 533

HeadingTrueNorth property (CompassReading
type), 533

Height property, FrameworkElements, 48-49

heuristics, 235

Hidden state, ScrollBarVisibility, 91

hiding software keyboard, 248

high-contrast themes, 187

hit testing, pointers, 123-125

Holding gesture, 128

event, 133

homeregion-XXX resource qualifier, 265

HorizontalAlignment property
(FrameworkElements), 52-53

HorizontalChildrenAlignment property
(VariableSizedWrapGrid panel), 86

HorizontalContentAlignment property, 53

HorizontalScrollBarVisibility property
(ScrollViewer), 91

HorizontalScrollMode property (ScrollViewer),
93

HorizontalSnapPointsAlignment property
(ScrollViewer), 94

HorizontalSnapPointsType property
(ScrollViewer), 93

graphics (vector)578

HorizontalWheelPresent property
(MouseCapabilities class), 138

HtmlFormatHelper.CreateHtmlFormat, 492

HTTP requests, network data access, 469-471

HyperlinkButton control, 189-190

I

IBackgroundTask, implementation, 523-524

Iconnection information, network data access,
474

icons, creating, 202

Icustomizing, background tasks

IbackgroundTask implementation, 523-524

registering task, 524-525

identity capabilities, 17

Idevices, AutoPlay, 512-514

Ignorable attribute (markup compatibility XML
namespace), 31

IKeySpline class, 397

Image element, 253

customizing stretching with nine-grid, 257, 259

decoding images

BitmapDecoder class, 267-269, 271

reading metadata, 271-276

enabling formats of images, 253-254

encoding images, BitmapEncoder class,
276-280

generating dynamic images, 260-263

multiple files for multiple environments, auto-
matic scaling, 263-267

referencing files with URIs, 254-257

transcoding data, 280-283

image files, customizing tile, 12-13

ImageBrush, 355-356

ImageFailed event (BitmapImage), 254-255

ImageOpened event (BitmapImage), 254-255

ImageProperties class, 272-273

implicit runs, text content, 231

implicit styles, XAML control restyling, 415

in-app purchases, 169

enabling, 170-171

ProductLicenses property, 169-170

in-memory data

App data, 461

app files, 464-466

app settings, 462-464

network access, 469

background download, 471

connection information, 474

HTTP requests, 469-471

receiving via sockets, 471

syndication, 471, 473

User data, 466-467

file picker, 467-468

libraries and folders, 468

inclinometer, 532

independent animations, 366, 383-384

index markers, 290

indexed files, search suggestions, 485-486

indexing local data, 465

inertia, manipulation events, 137-138

InitializeAsync overload, 299-300

AudioDeviceId property, 299

VideoDeviceId property, 299

InitializeComponent call, 19

Inline (TextElements), 232

Inlines property (TextBox), 229

InlineUIContainer element, 236-237

input, 115

game controllers, 116

keyboard input, 142

eligibility for focus, 146-147

events, 142-143

input 579

key states, 143-145

modifiers in pointer events, 145-146

mouse input, 138

Dragging event (GestureRecognizer class),
139

mouse-specific gesture routed events, 140

MouseCapabilities class, 138

MouseDevice class, 138

PointerWheelChanged pointer event,
138-139

pen input, 140-142

three-part strategy, 115

touch input, 116

gestures, 127-133

manipulations, 133-138

pointers, 116-127

input pane, 243

input scope, 244

InputPane.GetForCurrentView method, 248

InputScope property (TextBox), 244

instances, MediaCaptureInitializationSettings,
299

InteractiveSession.IsRemote property, 291

interactivity, 101

commands, 113-114

dependency properties, 101-102

attached properties, 107-108

change notification, 104

implementation, 102-104

multiple provider support, 106-107

property value inheritance, 104-105

routed events, 108-110

halting bubbling, 111-113

leveraging event bubbling, 110-111

Internet (Client & Server) network capability, 17

Internet (Client) network capability, 17

IRandomAccessStream, 256

IsAudioOnly property (MediaElement), 288

IsBarrelButtonPressed property
(PointerPointProperties class), 141

IsChecked property

CheckBox control, 192

RadioButton control, 192

ToggleButton control, 191

IsClosed, 342

IsDropDownOpen property (ComboBox con-
trol), 213

IsEditable property (ComboBox control), 214

IsEnabled property, 123

IsEraser property (PointerPointProperties class),
141

IsExtendedKey property, 142

IsHitTestVisible property, 123

IsHorizontalMouseWheel event, 139

IsHorizontalScrollChainingEnabled property
(ScrollViewer), 93

IsInContact property (Pointer class), 117

IsInContact property (PointerPoint class), 118

IsIndeterminate property, 314

IsInRange property (PointerPointProperties
class), 118, 141

IsInRangeproperty (Pointer class), 117

IsInverted property (PointerPointProperties
class), 141

IsKeyReleased property, 143

IsLeftButtonPressed property
(PointerPointProperties class), 139

IsLightDismissEnabled property, 325

IsMenuKeyDown property, 143

IsMiddleButtonPressed property
(PointerPointProperties class), 139

Isockets, network data access, 471

IsPointerOver property, 188

IsPressed property, 102, 188

IsReadOnly property (TextBox), 243

IsRightButtonPressed property
(PointerPointProperties class), 139

input580

IsScrollInertiaEnabled property (ScrollViewer),
93

IsSpellCheckEnabled (TextBox), 241

IsStaggeringEnabled property
(EntranceThemeTransition), 368

IsSticky property (AppBar control), 198

IsTextPredictionEnabled (TextBox), 241

IsTextSelectionEnabled property (TextBlock),
233-234

IsThreeState property (ToggleButton control),
191

IsVerticalScrollChainingEnabled property
(ScrollViewer), 93

IsXButton1Pressed property
(PointerPointProperties class), 139

IsXButton2Pressed property
(PointerPointProperties class), 139

Isyndication, network data access, 471, 473

IsZoomChainingEnabled property
(ScrollViewer), 98

IsZoomInertiaEnabled property (ScrollViewer),
98

item containers, 209

ItemContainerTransitions property, 367

ItemHeight property (VariableSizedWrapGrid
panel), 85

Itemplates, XAML control restyling

setting Template inside a Style, 427-428

target control properties, 422-426

Items collection, properties, 446

items controls, 207

automaton IDs, 215

ComboBox, 213

DropDownClosed event, 213

DropDownOpened event, 213

IsDropDownOpen property, 213

IsEditable property, 214

keystrokes, 214

SelectionChanged event, 214

data binding, 209

FlipView, 221-223

GridView, 219-221

ItemContainerTransitions property, 367

items panels, 210-212

ItemsControl class, 208-209

ListBox, 214-215

SelectedItems property, 215

SelectionMode property, 214-215

ListView, 216-217

AppBars, 218

data virtualization, 219

DragItemStarting event, 219

Header property, 217

reordering items, 219

ScrollIntoView, 217

SelectionMode property, 217-218

SemanticZoom, 223-226

visual elements, 209

items panels, 210-212

Items property (ItemsControl class), 208-209,
444

adding objects to, 208-209

ItemsControl class, 207

Items property, 208-209

ItemsSource property, 209

Selector subclass, 207-208

ItemsPanel property, 210

ItemsSource property (ItemsControl class), 209,
446

ItemWidth property (VariableSizedWrapGrid
panel), 85

ITextCHaracterFormat runtime interface, 249

ITextDocument runtime interface, 248

ITextParagraphFormat runtime interface, 249

ITextRange runtime interface, 249

ITextSelection runtime interface, 248

Ivisual states, XAML control restyling, 428

Ivisual states, XAML control restyling 581

J

JavaScript runtime exceptions, 329

K

Key property (KeyRoutedEventArgs instance),
142

key states, 143-145

keyboard input, 142

eligibility for focus, 146-147

events, 142-143

key states, 143-145

modifiers in pointer events, 145-146

KeyDown event, 142

KeyDown event handler, 246

keyframes, 395

discrete, 398-399

easing, 399

linear, 395-396

spline, 397

KeyModifiers method, 119

KeyRoutedEventArgs instance, 142

KeySpline class, 397

KeyStatus property (KeyRoutedEventArgs
instance), 142

keystrokes (ComboBox control), 214

keyUp event, 142

keywords, XAML, 44-45

killing (action), 152

Kind property, 132

L

landscape orientation, 10, 70

landscape-flipped orientation, 10, 70

language-XXX resource qualifier, 265

Latitude property (Coordinate property), 534

launch actions, 512

LaunchActivatedEventArgs instance, 156-157

Launcher class

LaunchFileAsync method, 163-166

LaunchUriAsync method, 164-166

LaunchFileAsync method (Launcher class),
163-166

launching

apps, Blank App project, 8-24

apps programmatically, 163

customizing app launches, 165-166

for files, 163-164

for URIs, 164-165

launching (action), 155-156

LaunchActivatedEventArgs instance, 156-157

PreviousExecutionState value, 157-159

LaunchUriAsync method (Launcher class),
164-166

layout, 47, 65-66

content overflow, 87

clipping, 87-89

scaling, 94-98

scrolling, 89-94

controlling position, 52

alignment, 52-53

content alignment, 53-55

controlling size, 48

Height and Width properties, 48-49

Margin and Padding properties, 50-51

dimensions, 66

orientation, 70-71

panels, 71

Canvas, 71-73

Grid, 75-76, 78-83

StackPanel, 74

VariableSizedWrapGrid, 83-86

JavaScript runtime exceptions582

perspective transforms, 62, 64

transform classes, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

view states, 67-69

LayoutAwarePage class, 163, 178-179, 432

layoutdir-XXX resource qualifier, 266

LayoutUpdated event, 66

Leading parameter (ScrollIntoView), 217

libraries, User data, 468

LicenseChanged event, 170

licenses, 166

enabling to be purchased, 168-169

lifecycle (app), 149

execution states, 150-151

transition actions, 150-151

activating, 155-156, 159-160

killing, 152

launching, 155-159

managing session state with
SuspensionManager class, 160-163

resuming, 154

suspending, 152-154

terminating, 155

light themes, 185-187

Line class, 336

linear keyframes, 395-396

LinearGradientBrush, 349-355

LineGeometry class (Geometry data type), 340

LineHeight property (TextBox), 228-229

LineSegment class (PathSegments), 341-342

ListBox control, 214-215

adding objects to Items, 208-209

ScrollViewer, 215

SelectedItems property, 215

SelectionMode property, 214-215

ListingInformation object, 169

ProductLicenses property, 169-170

ProductListings property, 171

lists, 37-38

ListView control, 216-217

AppBars, 218

data virtualization, 219

DragItemStarting event, 219

Header property, 217

reordering items, 219

ScrollIntoView, 217

SelectionMode property, 217-218

ListViewBase (HeaderTransitions property), 367

Live Connect Developer Center, 471

live content, cameras, 299

live previews, video captures, 298-301

live tiles

badges, 549-550

secondary tiles, 550-552

templates, 540-541

square, 541, 543-544

wide, 544, 547

updates, 548

local, 548

periodic, 548-549

push, 549

scheduled, 548

LoadComponent method, 43

loading

file variations

automatically, 263-266

manually, 266-267

XAML at runtime, 40-41

loading 583

local files, app files, 465

local notifications, toast notifications, 555

local settings, app settings, 462

local updates, live tiles, 548

local values (properties), 107

LocalOffsetX property, 64

LocalOffsetY property, 64

LocalOffsetZ property, 64

location, 534-535

lock screens, user status, 556-557

logic, App.xaml.cs, 22

logical direction (TextPonter class), 235

logo images, 12

Longitude property (Coordinate property), 534

loops (media), 288

M

Main Page (Blank App), 19, 21

MainPage class, 42

MainPage.xaml.cs, printing, 493, 495

managed code, 262

ManipulationCompleted event, 134

ManipulationDelta event, 134

ManipulationInertiaStarting event, 134

manipulations, 133

events, 134-135, 137

inertia, 137-138

ManipulationStarted event, 134

ManipulationStarting event, 134

manual animations, 404-406

manually loading file variations, automatic
scaling, 266-267

Margin property (FrameworkElements), 50-51

MarkerReached event, 290

markers, MediaElement, 290

Markers collection, 290

Markers property (MediaElement), 290

markup compatibility XML namespace, 31

markup extensions, 34, 36

Matrix property, 61

Matrix3DProjection, 64

MatrixTransform class, 61-62

MaxContacts property (PointerDevice class), 117

MaxDurationInSeconds property (VideoSettings
property), 298

MaxHeight property, 48

MaximumRowsOrColumns property

VariableSizedWrapGrid panel, 86

MaxResolution property (PhotoSettings prop-
erty), 297

MaxResolution property (VideoSettings prop-
erty), 298

MaxWidth property, 48

MaxZoomFactor property (ScrollViewer) , 98

media

audio, 285-286

capture, 294, 304-305

metadata, 289

playback, 286-292, 294

formats, changing, 308

loops, 288

video, 285-286

background video, 291

capture, 294, 297-304

index markers, 290

metadata, 289

playback, 286-292, 294

media extensions, 285-286, 292

Media Foundation components, 285-286

local files, app files584

media transport controls, 521-523

MediaCapture

adjusting camera settings, 302-303

AudioDeviceController property, 305

capturing audio, 304-305

capturing photos, 301-302

capturing video, 303-304

events, 301

Failed, 300

methods

CapturePhotoToStorageFileAsync, 302

StartRecordToStorageFileAsync, 304

switching away from applications, 300

VideoDeviceControll property, 302-303

MediaCapture.InitializeAsync, 300

MediaCaptureInitializationSettings instance,
299

MediaElement, 286-288

audio/video formats, 286

CanPlayType method, 287

content protection, 287

CurrentStateChanged event, 289

customizing playback, 288

DownloadProgress property, 290

DownloadProgressOffset property, 290

effects, 291

events, 289-290

IsAudioOnly property, 288

Makers property, 290

markers, 290

SetSource method, 287

states, 289-290

Uri options, 286

MediaEncodingProfile class, 304, 306, 308

MediaOpened, 290

MediaPlayer, 291-294

MediaTranscoder class, 305

adding effects, 310

changing media format, 308

changing quality, 306-308

PrepareStreamTranscodeAsync method, 306

trimming files, 309-310

MergedDictionaries mechanism, 418

MessageDialog popup control, 321-322

messages

receiving, 536-537

sending, 536-537

metadata

audio, 289

reading (image formats), 271

BitmapProperties from a decoder, 273-275

ImageProperties from a file, 272-273

metadata query language, 275-276

video, 289

writing, 279-280

metadata query language, 275-276

methods

Accelerometer.GetDefault, 530

ApplicationData.SetVersionAsync, 462

CanPlayType (MediaElement), 287

CapturePhotoToStorageFileAsync method
(MediaCapture), 302

CheckFeatureLicenses, 170

Convert (Binding), 454

Exit, 152

Exit (Application class), 152

GetCurrentReading, 530

GetNavigationState (Frame), 179

GetStreamAsync, 470

GoBack (Frame), 176-177

GoForward (Frame), 176-177

GoHome (LayoutAwarePage class), 178

LaunchFileAsync (Launcher class), 163-166

methods 585

LaunchUriAsync (Launcher class), 164-166

Navigate (Frame), 175-177

OnNavigatingFrom (Page), 176

OnNavigatingTo (Page), 176

OnToggle method, 191

Page, 176

PrepareStreamTranscodeAsync
(MediaTranscoder), 306

PrintTaskRequested, 496

ProximityDevice, 536

ReloadSimulatorAsync (CurrentAppSimulator
class), 174

ReportStarted (ShareOperation property), 492

RestoreAsync (SuspensionManager class), 163

SaveAsync (SuspensionManager class), 163

SetNavigationState (Frame), 179

SetPreviewPage (PrintDocument), 497

SetSource (MediaElement), 287

StartRecordToStorageFileAsync
(MediaCapture), 304

microphones, audio capture, 294

MinHeight property, 48

MinWidth property, 48

MinZoomFactor property (ScrollViewer), 98

modal dialog boxes, 316

Mode property (Binding object), 442

Model-View-ViewModel (MVVM) pattern, 113

motion, gyrometer, 532

mouse input, 138

Dragging event (GestureRecognizer class), 139

mouse-specific gesture routed events, 140

MouseCapabilities class, 138

MouseDevice class, 138

PointerWheelChanged pointer event, 138-139

MouseCapabilities class, 138

MouseDevice class, 138

MouseMoved event, 138

mouseWheelDelta event, 139

ms-appdata scheme, 256

ms-appx URIs, 256

multiple files, multiple environments, 263-267

multiple provider support, dependency proper-
ties, 106-107

multithreading, 301

multitouch, 116

Music Library, 16

MusicProperties class, 272

MVVM (Model-View-ViewModel) pattern, 113

N

Name keyword, 41

Name property (ListingInformation object), 169

named elements, templates, 438

namespaces

Windows.Devices.Input, 117

Windows.Media, 285

Windows.Security.Credentials.Web, 252

Windows.UI.Text, 248

Windows.UI.Xaml.Controls, 71-86

XML, 29-31

naming XAML elements, 41-42

Navigate method (Frame), 175-177

NavigateUri property, 189

navigation, 174

back, 176-177

Back button, 179

basic, 175-176

collection views, 459

embedding frames, 180-182

forward, 176-177

LayoutAwarePage class, 178-179

page caching, 177-178

passing data, 175-176

methods586

NavigationCacheMode property (Page), 177-178

Near Field Communication. See NFC, 535

.NET custom attributes, 34

networks

capabilities, 17

data access, 469

background download, 471

connection information, 474

HTTP requests, 469-471

receiving via sockets, 471

syndication, 471-473

NFC, 535-536

chips, 535

tags, 536-537

nine-grid feature, stretching images, 257-259

NineGrid property (Image), 259

non-vector-based content, images, 253

customizing stretching with nine-grid, 257-259

decoding images, 267-276

enabling formats of images, 253-254

encoding images, 276-280

generating dynamic images, 260-263

multiple files for multiple environments,
263-267

referencing files with URIs, 254-257

transcoding data, 280-283

noninteractive video, 291

Nonzero (FillRule property), 343-344

not running (execution state), 150-151

activating, 155-156, 159-160

killing, 152

launching, 155-156

LaunchActivatedEventArgs instance,
156-157

PreviousExecutionState value, 157-159

terminating, 155

O

objects

Binding, 439-440

content controls, 187

DisplayRequest, 294

elements, children of, 28, 36

collection items, 37-38

content property, 36-37

type-converted values, 39-40

Geoposition, 534-535

Items property, 208-209

ListingInformation, 169

ProductLicenses property, 169-170

ProductListings property, 171

PrintManager, 495

PrintTaskOptions, 499

QuickLink, 492

RandomAccessStreamReference, 487

ShareOperation, 492

StorageFile, 446

ObservableCollection class, 445

on-screen keyboard, 243

OnCreateAutomationPeer method, 248

OneTime value (BindingMode enumeration),
442

OneWay value (BindingMode enumeration),
442-443

OnNavigatingFrom method (Page), 176

OnNavigatingTo method (Page), 176

OnSuspending handler, 153-154

OnToggle method, 191

OpenType properties, 235

order, property and event processing, 29

orientation

apps, 10

layout, 70-71

orientation 587

OrientationSensor, 534

SimpleOrientationSensor, 533-534

Orientation property

StackPanel panel, 74

VariableSizedWrapGrid panel, 85

Orientation property (PointerPointProperties
class), 141

OrientationSensor, 534

overflow (text), RichTextBlock, 237-240

OverflowContentTarget property
(RichTextBlock), 238

overloads, InitializeAsync, 299-300

overscroll effect, 93

P

package display name (package manifest), 18

package manifest, 9

Application UI tab, 10

splash screen customization, 10-11

tile customization, 12-13

Capabilities tab, 14-15

device capabilities, 16-17

file capabilities, 16

identity capabilities, 17

network capabilities, 17

Declarations tab, 18

Packaging tab, 18-19

package name (package manifest), 18

packaged files, app files, 464

Packaging tab (package manifest), 18-19

Padding property (FrameworkElements), 50-51

Page

auto-generated search results, 479

methods, 176

NavigationCacheMode property, 177-178

pages, 174

attaching AppBar control to, 197-198

Back button, 179

back navigation, 176-177

basic navigation, 175-176

caching, 177-178

embedding frames, 180-182

forward navigation, 176-177

LayoutAwarePage class, 178-179

passing data, 175-176

palm rejection feature, 141

panel class, 47

panels, 47, 71

Canvas, 71-73

ChildrenTransitions property, 367

Grid, 75-78

comparison to other panels, 82-83

sizing rows and columns, 79-82

StackPanel, 74

VariableSizedWrapGrid, 83-86

PaneThemeTransition, 371-372

paragraphs, RichText BLock, 236

parsing XAML at runtime, 40-41

passwords, PasswordBox control, 251-252

Password reveal button, 251

PasswordBox control, password entry, 251-252

PasswordChanged event, 251

PasswordVault class, 252

Path class, 338

PathFigures, 341-343

FillRule property, 343-344

triangles, 343

PathGeometry class (Geometry data type),
340-341

PathFigures, 341-344

PathSegments, 341-342

orientation588

PathSegments, 341-342

ArcSegment class, 341

BezierSegment class, 341

LineSegment class, 341-342

PolyBezierSegment class, 341

PolyLineSegment class, 341

PolyQuadraticBezierSegment class, 341

QuadraticBezierSegment class, 341

pausing games, 153

peer devices

communication, 537-538

finding, 537-538

pen input, 140-142

percentage sizing, 81

performance

cached composition, 364

shapes, 340

periodic updates, live tiles, 548-549

permissions, 14

perspective transforms, 62-64

PhotoOrVideo mode, 298

photos

capturing, 294-297, 301-302

cropping, 295

live previews, 298-301

PhotoSettings property (CameraCaptureUI
class), 296

pictures, user accounts, 509

Pictures Library, 16

changing data context, 445

GridView, 446

pixel data (images)

GetPixelDataAsync method (BitmapDecoder),
268-271

writing, 277-279

PixelDataProvider class, 268

plain properties, binding to, 442

plane projections, 62

PlaneProjection class, 62

Play To feature, 501-502

playback, 286

customizing, 288

MediaElement, 286-288

audio/video formats, 286

CanPlayType method, 287

content protection, 287

customizing playback, 288

effects, 291

events, 289-290

IsAudioOnly property, 288

markers, 290

SetSource method, 287

states, 289-290

Uri options, 286

MediaPlayer, 291-292, 294

speed, 288-289

PlaybackRate, 289

Playlist class, 293

PointAnimation class, 382, 387

Pointer class, 117

Pointer method, 119

PointerCanceled event, 119

PointerCaptureLost event, 119

PointerDevice class, 117

PointerDevice property (PointerPoint class), 118

PointerDeviceType property (Pointer class), 117

PointerDeviceType property (PointerDevice
class), 117

PointerDownThemeAnimation, 380

PointerEntered event, 119

PointerExcited event, 119

PointerId property (Pointer class), 117

PointerId property (PointerPoint class), 118

PointerMoved event, 118

PointerMoved event 589

PointerPoint class, 117-118

PointerPointProperties class, 118

PointerPressed event, 118

PointerReleased event, 119

PointerRoutedEventArgs class, 111

PointerRoutedEventArgs instance, 119

pointers, 116

capture and release, 120, 122

events, 118, 120

keyboard modifiers, 145-146

PointerWheelChanged, 138-139

hit testing, 123-125

Pointer class, 117

PointerDevice class, 117

PointerPoint class, 117-118

PointerPointProperties class, 118

tracking multiple pointers, 125, 127

PointerUpdateKind property
(PointerPointProperties class), 139

PointerUpThemeAnimation, 380

PointerWheelChanged pointer event, 138-139

PolarEffect, 291

PolyBezierSegment class (PathSegments), 341

Polygon class, 337

Polyline class, 336-337

PolyLineSegment class (PathSegments), 341

PolyQuadraticBezierSegment class
(PathSegments), 341

PopInThemeAnimation, 379

PopOutThemeAnimation, 380

Popup, ChildTransitions property, 367

popup controls, 316

CoreWindowDialog, 316, 318-319

CoreWindowFlyout, 319-320

MessageDialog, 321-322

Popup, 323-325

PopupMenu, 322-323

Popup popup control, 323-325

PopupMenu popup control, 322-323

PopupThemeTransition, 369-370

portrait orientation, 10, 70

portrait-flipped orientation, 10, 70

position

child layout properties, 52

alignment, 52-53

content alignment, 53-55

perspective transforms, 62, 64

transform classes, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

Position property (PointerPoint class), 117

power easing functions, 400-401

prediction (text), TextBox control, 241-242

PrepareStreamTranscodeAsync method
(MediaTranscoder), 306

pressed appearances, AppBar control, 205

Pressure property (PointerPointProperties
class), 141

PreviousExecutionState property (OnLaunched),
156

PreviousExecutionState value, 157-159

primary XML namespace, 31

print previews, 495

print tasks, 495

PrintDocument class, 493-498

printing, 493-498

adding custom options, 499-500

changing default options, 498

configuring displayed options, 499

PrintManager class, 493

PrintManager object, 495

PointerPoint class590

PrintTaskOptions object, 499

PrintTaskRequested event, 495

PrintTaskRequested method, 496

Private Networks (Client & Server) network
capability, 17

procedural code, mixing with XAML, 40

loading and parsing at runtime, 40-41

naming XAML elements, 41-42

Visual Studio support, 42-43

ProcessContent attribute (markup compatibility
XML namespace), 31

processing rules, object element children, 40

ProcessMoveEvents method, 131

ProductLicenses property (ListingInformation
object), 169-170

ProductListings property (ListingInformation
object), 169, 171

products, 169

ProgressBar range control, 314

ProgressRing control, 326

projections, 62, 64

propdp snippet, 103

properties

AccelerationX (AccelerometerReading class),
530

AccelerationY (AccelerometerReading class),
530

AccelerationZ (AccelerometerReading class),
530, 532

AccelerometerReading class, 530

Accuracy (Coordinate property), 534

ActivationKind (OnLaunched), 157

AddDeleteThemeTransition, 372-374

AgeRating (ListingInformation object), 169

AllowCropping property (PhotoSettings
property), 296

AllowTrimming (VideoSettings property), 298

Altitude (Coordinate property), 534

AltitudeAccuracy (Coordinate property), 535

Arguments (OnLaunched), 156

attached, 71-73

attaching data templates, 447-451

attributes, 28

AudioCategory, 520

AudioDeviceController (MediaCapture), 305

AudioDeviceId (InitializeAsync overload), 299

AutomationProperties.Name, 201

BottomAppBar, 197-198

Brush data type, 348

Byte (Color Property), 348

ChildrenTransitions, 367

ChildTransitions, 367

CivicAddress, 534-535

clearing local values, 107

ClickMode, 188

ColorInterpolationMode
(LinearGradientBrush), 350

Content (MessageDialog popup control), 322

Content (Frame), 177

ContentTemplate (ContentControl), 447

ContentThemeTransition, 370

ContentTransitions, 367

Converter (Binding), 454

Coordinate, 534

CroppedAspectRatio property (PhotoSettings
property), 296

CroppedSizeInPixels property (PhotoSettings
property), 296

CurrentMarket (ListingInformation object), 169

DataContext, 443-444

Description (ListingInformation object), 169,
487

Dispatcher (CoreDispatcher), 301

DisplayMemberPath, 445

DocumentSource, 495

DownloadProgress, 290

DownloadProgressOffset (MediaElement), 290

properties 591

Duration

animation themes, 381

DoubleAnimation class, 384-385

EasingFunction, 400-401

EdgeUIThemeTransition, 370-371

elements (XAML), 31-33

EnableDependentAnimation, 383

EndPoint (LinearGradientBrush), 350-352

EntranceThemeTransition, 368-369

ExpirationTime, 548

Fill property (Shape data type), 334-335

FillRule

GeometryGroup class, 344

PathGeometry, 343-344

Format (VideoSettings property), 298

Format property (PhotoSettings property), 296

FormattedPrice (ListingInformation object),
169

Frame, 175-176

From, custom animations, 385-387

FromHorizontalOffset property
(EntranceThemeTransition), 368

FromVerticalOffset property
(EntranceThemeTransition), 368

Geoposition object, 534-535

GroupName (RadioButtons control), 193

Header (GridView), 452-454

Header (ListView control), 217

HeaderTransitions (ListViewBase), 367

Heading (Coordinate property), 535

HeadingMagneticNorth (CompassReading
type), 533

HeadingTrueNorth (CompassReading type),
533

InteractiveSession.IsRemote, 291

IsAudioOnly (MediaElement), 288

IsChecked

CheckBox control, 192

RadioButton control, 192

ToggleButton control, 191

IsDropDownOpen (ComboBox control, 213

IsEditable (ComboBox control, 214

IsIndeterminate, 314

IsLightDismissEnabled (Popup popup control),
325

IsPointerOver, 188

IsPressed, 188

IsStaggeringEnabled property
(EntranceThemeTransition), 368

IsSticky (AppBar control), 198

IsThreeState (ToggleButton control), 191

ItemContainerTransitions, 367

Items, 444

Items (ItemsControl class), 208-209

adding objects to, 208-209

ItemsPanel, 210

ItemsSource (ItemsControl class), 209, 446

Latitude (Coordinate property), 534

layout, child elements, 48-62, 64

Longitude (Coordinate property), 534

Markers (MediaElement), 290

MaxDurationInSeconds (VideoSettings
property), 298

MaxResolution property (VideoSettings
property), 298

MaxResolution property (PhotoSettings
property), 297

Name (ListingInformation object), 169

NavigateUri, 189

NavigationCacheMode (Page), 177-178

ordering, 29

PaneThemeTransition, 371-372

PhotoSettings (CameraCaptureUI class), 296

plain, binding to, 442

properties592

PopupThemeTransition, 369-370

PreviousExecutionState (OnLaunched), 156

ProductLicenses (ListingInformation object),
169-170

ProductListings (ListingInformation object),
169, 171

RadiusX property (Rectangle class), 334

RadiusY property (Rectangle class), 334

ReorderThemeTransition, 375-376

RepositionThemeTransition, 374-375

RequestedTheme, 186-187

RoamingStorageQuota, 464

SelectedIndex (Selector subclass), 207

SelectedItem (Selector subclass), 207

SelectedItems (ListBox control), 215

SelectedValue (Selector subclass), 207

SelectionMode

ListBox control, 214-215

ListView control, 217-218

SessionState (SuspensionManager class), 162

ShareOperation, 492

ShowError, 314

ShowPaused, 314

Source (CaptureElement class), 298

Speed (Coordinate property), 535

SplashScreen (OnLaunched), 156

StartPoint (LinearGradientBrush), 350-352

Stretch (CaptureElement class), 298

Stroke property (Shape data type), 334-335

StrokeDashArray (Shape class), 338-339

StrokeDashCap (Shape class), 338-339

StrokeEndLineCap (Shape class), 338-339

StrokeLineJoin (Shape class), 338

StrokeMiterLimit (Shape class), 338

StrokeStartLineCap (Shape class), 338-339

StrokeThickness (Shape class), 338

target control, XAML control restyling, 420-426

TargetName (Storyboard), 377-379

TileId (OnLaunched), 156

Timeline class, 381, 388

AutoReverse, 388

BeginTime, 388

FillBehavior, 390

RepeatBehavior, 389-390

SpeedRatio, 388

storyboards, 393-395

Timestamp

AccelerometerReading clas), 530-532

CompassReading type, 533

Coordinate property, 535

Title, 487

To, custom animations, 385-387

TopAppBar, 197-198

Transform (Geometry data type), 341, 345

Transitions (UIElement), 366-367

VideoDeviceControll (MediaCapture), 302-303

VideoDeviceId (InitializeAsync overload), 299

VideoSettings (CameraCaptureUI class), 298

Window.Current, Activated event, 153

Properties property (PointerPoint class), 118

property paths, animations, 391-393

property value inheritance, dependency proper-
ties, 104-105

proportional sizing, 80

Protocol declarations, extensions, 518-519

proximity

NFC, 535-536

chips, 535

tags, 536-537

Share charm, 536

ProximityDevice methods, 536

push updates, live tiles, 549

push updates, live tiles 593

Q

QuadraticBezierSegment class (PathSegments),
341

quick links, 492

QuickLink object, 492

R

radial gradients, 355

RadialGradientBrush class, 355

Radio control, 192-193

RadiusX property (Rectangle class), 334

RadiusY property (Rectangle class), 334

randomAccessStreamReference objects, 487

range controls, 313

ProgressBar, 314

Slider, 314, 316

RangeBase base class, 313

RawPosition property (PointerPoint class), 118

read-only properties, layout process output, 49

reading metadata (image formats), 271

BitmapProperties from a decoder, 273-275

ImageProperties from a file, 272-273

metadata query language, 275-276

ReadingChanged event, 530-532

RealTimePlayback, 289

receiving messages, NFC tags, 536-537

Rectangle class, 334-335

RadiusX property, 334

RadiusY property, 334

RectangleGeometry class (Geometry data type),
340

red squiggles, 242

referencing files with URIs, 254-257

RefreshCommand class, 114

relative URIs, 256

RelativeSource property (Binding object), 441

release pointers, 120-122

ReleasePointerCapture method, 120

ReloadSimulatorAsync method
(CurrentAppSimulator class), 174

Remote Machine option (launching apps), 8

rendering, 447

data templates, 447-451

value converters, 451-454

RenderSize property, 49

RenderTransform, 89

RenderTransform property, 55

RenderTransformOrigin property, 55

reordering items (ListView control), 219

ReorderThemeTransition, 375-376

RepeatBehavior property (Timeline class),
389-390

RepeatButton control, 191

RepeatCount property, 142

reporting search results, 479-482

ReportStarted method (ShareOperation prop-
erty), 492

RepositionThemeAnimation, 380

RepositionThemeTransition, 374-375

RequestAppPurchaseAsync, 168

RequestedTheme property, 186-187

RequestProductPurchaseAsync, 171

Required value (NavigationCacheMode prop-
erty), 177

resolution, Windows Store apps, 9

resource lookup, XAML control restyling,
417-418

resource qualifiers, 264

RestoreAsync method (SuspensionManager
class), 163

restyling XAML controls

styles, 410-418

templates, 418-428

visual states, 428-438

resuming (action), 154

QuadraticBezierSegment class (PathSegments)594

RichEditBox control, text editing, 248-250

RichTextBlock

text formatting, 235-237

text overflow, 237-240

RichTextBlockOverflow, 237

RightTapped event, 129, 141

RightTapped gesture, 128, 133

roaming files, app files, 465-466

roaming settings

app settings, 463-464

data quota, 464

RoamingStorageQuota property, 464

RootGrid, adding to projects as XAML pair,
180-182

RotateTransform class, 56-57

Rotation property (ManipulationData event),
135

RotationX property, 62

RotationY property, 62

RotationZ property, 62

Round line caps, 338

routed events, 108-110

halting bubbling, 111-113

leveraging event bubbling, 110-111

pointer events, 118, 120

RowDefinitions property (Grid panel), 76

rows, sizing, 79-82

RowSpan attached property, 76, 211

Grid panel, 78

VariableSizedWrapGrid panel, 84-85

running (execution state), 150-151

activating, 155-156, 159-160

killing, 152

launching, 155-156

LaunchActivatedEventArgs instance,
156-157

PreviousExecutionState value, 157-159

resuming action, 154

Runtime interfaces (Windows.UI.Text name-
space), 248-249

S

SaveAsync method (SuspensionManager class),
163

saving files, local file system, 464

scalability, vector graphics, 364

scale factor, 71

Scale property (ManipulationData event), 134

scale resource qualifier, 265

ScaleTransform, 89, 384

ScaleTransform class, 57-59

scaling

content overflow, 94

Viewbox element, 95-98

ZoomMode property, 98

image files, 263

loading file variations automatically,
263-266

loading file variations manually, 266-267

ScanCode property, 142

scheduled notifications, toast notifications, 555

scheduled updates, live tiles, 548

scRGB (enhanced standard RGB color space),
348

ScrollBar controls, 90

ScrollBarVisibility enumeration, 91

scrolling content overflow, 89-90

customizing ScrollViewer, 90-93

snap points, 93-94

ScrollIntoView (ListView control), 217

ScrollViewer control, 89-90

customizing, 90-93

ListBox control, 215

panning and zooming functionality, 137

Search charm, 477-479

auto-generated search results Page, 479

reporting search results, 479-482

search suggestions, 483-485

search suggestions from indexed files, 485-486

Search charm 595

Search pane, 478

SearchResultsPage1.xaml, 478

secondary tiles, 539, 550-552

Segoe UI Symbol, 202

Select method (TextPointer class), 234

SelectAll method (TextPointer class), 234

SelectedIndex property (Selector subclass), 207

SelectedItem property (Selector subclass), 207

SelectedItems property (ListBox control), 215

SelectedText property (TextBlock), 234

SelectedValue property (Selector subclass), 207

selection text

TextBlock, 233-235

TextBox control, 243

selection boxes, 213

SelectionChanged event

ComboBox control, 214

Selector subclass, 208

TextBlock, 234

SelectionEnd property (TextBlock), 234

SelectionMode property

ListView control, 217-218

ListBox control, 214-215

SelectionStart property (TextBlock), 234

Selector subclass, 207-208

ComboBox control, 213

DropDownClosed event, 213

DropDownOpened event, 213

IsDropDownOpen property, 213

IsEditable property, 214

keystrokes, 214

SelectionChanged event, 214

FlipView control, 221-223

GridView control, 219-221

ListBox control, 214-215

ScrollViewer, 215

SelectedItems property, 215

SelectionMode property, 214-215

ListView control, 216-217

AppBars, 218

data virtualization, 219

DragItemStarting event, 219

Header property, 217

reordering items, 219

ScrollIntoView, 217

SelectionMode property, 217-218

SelectedIndex property, 207

SelectedItem property, 207

SelectedValue property, 207

SelectionChanged event, 208

selectors (template), 451

semantic zooming, 223-226

SemanticZoom control, 223-226

sending message, NFC tags, 536-537

sensors. See also devices

ambient light, 533

compass, 533

OrientationSensor, 534

SimpleOrientationSensor, 533-534

separate-stream script commands, 290

session state, 183

cache, 163

managing with SuspensionManager class,
160-163

PreviousExecutionState value, 159

SessionState property (SuspensionManager
class), 162

SetAccountPictureAsync method, 509

setAccountPictureFromStreamAsync method,
509

SetAccountPicturesAsync method, 510

setAccountPicturesFromStreamAsync method,
510

SetLeft static method, 72

SetNavigationState method (Frame), 179

SetPixelData method (BitmapEncoder), 277-279

Search pane596

SetPreviewPage method (PrintDocument), 497

SetSource method

BitmapSource, 256

MediaElement, 287

Settings charm, 503-507

Settings pane, 503-507

SetTop static method, 72

SetValue method, 103

shake detection, 532

Shape class

overuse of shapes, 340

StrokeDashArray property, 338-339

StrokeDashCap property, 338-339

StrokeEndLineCap property, 338-339

StrokeLineJoin property, 338

StrokeMiterLimit property, 338

StrokeStartLineCap property, 338-339

StrokeThickness property, 338

Shape data type, 334

Ellipse class, 335

Fill property, 334-335

Line class, 336

Path class, 338

Polygon class, 337

Polyline class, 336-337

Rectangle class, 334-335

Stroke property, 334-335

Share charm, 486, 536

share sources, 486-489

share targets, 489-492

Share pane, 488, 490

ShareOperation object, 492

ShareOperation property, 492

sharing sources with DataContext, 443-444

ShowError property, 314

showing software keyboard, 248

ShowPaused property, 314

shrinking elements, 89

SimpleOrientationSensor, 533-534

simulator, 8-9

Simulator option (launching apps), 8

SineEase function, 403

size

child layout properties, 48

Height and Width, 48-49

Margin and Padding, 50-51

perspective transforms, 62-64

rows and columns, Grid panel, 79-82

transform classes, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

SizeChanged event handler, 66

SkewTransform class, 59-60

Slider range control, 314, 316

snap points, 93-94

snapped apps, 69, 468

snapped view state, 67-69

SnapPointsType enumeration, 93

software input panel, 243

software keyboard

custom controls, 248

showing/hiding, 248

text entry, 243-248

SolidColorBrush, 348-349

source devices, 492

source property (Binding object), 440

Source property (CaptureElement class), 298

Source property (Image), 254

spaces, Geometry strings, 348

spaces, Geometry strings 597

speed, playback, 288-289

Speed property (Coordinate property), 535

SpeedRatio property (Timeline class), 388

spelling, TextBox control, 241-242

splash screen, customizing, 10-11

SplashScreen property (OnLaunched), 156

spline keyframes, 397

SplineXXXKeyFrame class, 397

Split App, 7, 174

SplitCloseThemeAnimation, 381

SplitOpenThemeAnimation, 381

SplitPage projects, navigation, 175-176

SQLite website, 466

Square line caps, 338

square tiles, templates, 541-544

sRGB (standard RGB color space), 348

StackPanel panel, 74, 83, 210

staggering EntranceThemeTransition, 368

standard RGB color space (sRGB), 348

standardDataFormats class, 489

StandardStyles.xaml, 479

buttons, 201-204

XAML control restyling, 413-414

star sizing, 80

star syntax, 80

Start Debugging button, 8

Starting event (EdgeGesture), 132

StartPoint property (LinearGradientBrush),
350-352

StartRecordToStorageFileAsync method
(MediaCapture), 304

states

Button, 429, 432

groups, 429

MediaElement, 289-290

static methods, 72

statuses, lock screen, 556-557

StorageFile class

appending content with APIs, 465

data binding, 449

StorageFile object, 446

accessing image metadata, 272-273

storyboards

multiple storyboards, 390-391

TargetName property, 377-379

Timeline class properties, 393-395

Stretch alignment, 53

Stretch property (Viewbox), 95

Stretch property (CaptureElement class), 298

Stretch property (Image), 254

StretchDirection property (Viewbox), 95

stretching images, nine-grid, 257, 259

string key, App settings, 462

strings

color, 348

GeometryGroup class, 346-348

Stroke property (Shape data type), 334-335

StrokeDashArray property (Shape class),
338-339

StrokeDashCap property (Shape class), 338-339

StrokeEndLineCap property (Shape class),
338-339

StrokeLineJoin property (Shape class), 338

StrokeMiterLimit property (Shape class), 338

strokes, 338-339

StrokeStartLineCap property (Shape class),
338-339

StrokeThickness property (Shape class), 338

Style, setting Template inside, 427-428

styles, XAML control restyling, 410-412

implicit styles, 415

resource lookup, 417-418

StandardStyles.xaml, 413-414

TargetType base, 412-413

theme dictionaries, 415-417

speed, playback598

stylus input, 140-142

subclasses. See also classes

Selector, 207-208

ComboBox control, 213-214

FlipView control, 221-223

GridView control, 219-221

ListBox control, 214-215

ListView control, 216-219

SelectedIndex property, 207

SelectedItem property, 207

SelectedValue property, 207

SelectionChanged event, 208

subgroups (RadioButtons control), 193

suspending

action, 152-153

deferrals, 154

handling Suspending event, 153-154

execution state, 150-151

resuming action, 154

Suspending event, 152-154

Suspending event (Application class), 152-153

deferrals, 154

handling, 153-154

SuspensionManager class

ISessionState property, 162

managing session state, 160-163

RestoreAsync method, 163

SaveAsync method, 163

SVG-to-XAML converters, 347

SwapButtons property (MouseCapabilities
class), 138

SwipeBackThemeAnimation, 380

SwipeHintThemeAnimation, 380

System.Uri, 255

T

tags, NFC, 536-537

tap and go, 535

TapCount property (TappedEventArgs instance),
129

Tapped event, 139, 188

Tapped gesture, 128, 133

target property (Binding object), 440

target devices, 492

TargetName property (Storyboard), 377-379

targetsize-XXX resource qualifier, 266

TargetType

implicit styles, 415

XAML control restyling, 412-413

tasks, registering, 524-525

TCP sockets, network data access, 471

Template property, inside Style, 427-428

templates

attaching, 447-451

live tiles, 540-541

square, 541, 543-544

wide, 544, 547

named elements, 438

selectors, 451

toast notifications, 552-554

tweaking existing, 428

XAML control restyling, 418-419

control templates, 419-420

target control properties, 420-422, 425-426

temporary files, app files, 466

terminating (action), 155

testing Windows Store features, 172, 174

text

content

TextBlock, 229-231

TextElements, 232-233

text 599

display, TextBlock, 227-229

editing

RichEditBox control, 248-250

TextBox control, 240-242

formatting, RichTextBlock, 235-237

overflow, RichTextBlock, 237-238, 240

prediction, TextBox control, 241

selection

TextBlock, 233-235

TextBox control, 243

software keyboard, TextBox control, 243-248

underlining, 230

Text string property (TextBox), 241

TextAlignment property (TextBox), 228, 241

text selection,

TextBox control, 240, 439-440

AcceptsReturn versus TextWrapping, 241

displaying text, 227-229

SelectionChanged event, 234

software keyboard, 243-248

spelling and text prediction, 241-242

text content, 230

explicit versus implicit runs, 231

Inlines property, 229

whitespace, 231

text selection, 233-235, 243

TextChanged event (TextBox), 241, 440

TextChanged event handler, 246

TextElements text content, 232-233

Block, 232

Inline, 232

TextPointer class, 234-235

GetPositionAtOffset method, 234

Select method, 234

SelectAll method, 234

TextTrimming property (TextBox), 87, 228

TextWrapping property (TextBox), 228

AcceptsReturn versus, 241

theme animations, 366, 376

DragItemThemeAnimation, 380

DragOverThemeAnimation, 380

DropTargetItemThemeAnimation, 381

Duration property, 381

FadeInThemeAnimation, 379-381

FadeOutThemeAnimation, 376-381

multiple storyboards, 390-391

PointerDownThemeAnimation, 380

PointerUpThemeAnimation, 380

PopInThemeAnimation, 379

PopOutThemeAnimation, 380

RepositionThemeAnimation, 380

SplitCloseThemeAnimation, 381

SplitOpenThemeAnimation, 381

storyboards, 376-379, 390-391

SwipeBackThemeAnimation, 380

SwipeHintThemeAnimation, 380

Timeline class properties, 381, 388

AutoReverse, 388

BeginTime, 388

FillBehavior, 390

RepeatBehavior, 389-390

SpeedRatio, 388

theme dictionaries, XAML control restyling,
415-417

theme transitions, 366

AddDeleteThemeTransition, 372-374

applying to elements, 366-367

ContentThemeTransition, 370

EdgeUIThemeTransition, 370-371

EntranceThemeTransition, 368-369

PaneThemeTransition, 371-372

PopupThemeTransition, 369-370

ReorderThemeTransition, 375-376

text600

RepositionThemeTransition, 374-375

TransitionCollection element, 367

themes

app, 186

colors, 190

dark, 185-187

high-contrast, 187

light, 185-187

user, 186-187

Thickness class, 50

threading, 301

threadPoolTimer class, 404

three-stop gradients, 391-393

ticks, Slider range control, 314, 316

TileBrush class, 355

TileId property (OnLaunched), 156

tiles

background color, 13

customizing, 12-13

ImageBrush, 355-356

live

badges, 549-550

secondary tiles, 550-552

templates, 540-544, 547

updates, 548-549

WebViewBrush, 358-363

Timeline class properties, 381, 388

AutoReverse, 388

BeginTime, 388

FillBehavior, 390

RepeatBehavior, 389-390

SpeedRatio, 388

storyboards, 393, 395

TimeSpan, 385

TimeSpan.Parse, 385

Timestamp property

AccelerometerReading class, 530, 532

CompassReading type, 533

Coordinate property, 535

PointerPoint class, 118

timing

AddDeleteThemeTransition, 372-374

ContentThemeTransition, 370

EdgeUIThemeTransition, 370-371

EntranceThemeTransition, 368-369

PaneThemeTransition, 371-372

PopupThemeTransition, 369-370

ReorderThemeTransition, 375-376

RepositionThemeTransition, 374-375

Title property, 487

To property, custom animations, 385-387

toast notifications

options for showing, 555

local, 555

scheduled, 555

templates, 552-554

ToggleButton control, 191

ToggleSwitch control, 326-327

tombstoning, 183

ToolTip control, 194-196

complex, 195

Slider, customizing, 316

ToolTipService class, 194, 196

ToolTipService class (ToolTip control), 194, 196

TopAppBar property, 197-198

tossing motion, 531-532

touch input, 116

gestures, 127

EdgeGesture class, 132

events, 133

GestureRecognizer class, 128-132

manipulations, 133-138

touch input 601

pointers, 116

capture and release, 120-122

events, 118-120

hit testing, 123-125

Pointer class, 117

PointerDevice class, 117

PointerPoint class, 117-118

PointerPointProperties class, 118

tracking multiple pointers, 125-127

touch keyboard, 243

TouchCapabilities class, 117

TouchConfidence property
(PointerPointProperties class), 118

TouchPresent property (TouchCapabilities
class), 117

tracking pointers, 125-127

TranlateTransform class, 60

transcoding

data (images), 280, 282-283

MediaTranscoder class, 305

adding effects, 310

changing media format, 308

changing quality, 306-308

trimming files, 309-310

transform classes, 55-56

CompositeTransform, 60

MatrixTransform, 61-62

perspective transforms, 62, 64

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

Transform property (Geometry data type), 341,
345

TransformGroup class, 61

TransitionCollection element, setting transi-
tions, 367

transitions

actions, 150-151

activating, 155-156, 159-160

killing, 152

launching, 155-159

managing session state with
SuspensionManager class, 160-163

resuming, 154

suspending, 152-154

terminating, 155

setting transitions, 367

visual, 432-433, 437

Transitions property (UIElement), 366-367

TranslateTransform, 384

Translation property (ManipulationData event),
134

translucency, colors, 349

transparent colors, gradients, 354

triangles

FillRule property, 344

geometries, 344

GeometryGroup class, 345

PathFigures, 343

triggers, background tasks, 525-526

trimming

content overflow, 87

files, 309-310

Twist property (PointerPointProperties class),
141

TwoWay value (BindingMode enumeration),
442-443

type converters, 33

type-converted values, child object elements,
39-40

typed styles, 415

touch input602

U

UI virtualization, items panels, 210

UI XML namespace, 30-31

UIElements

embedding with RichTextBlock, 236-237

mouse-specific gesture events, 140

Transitions property, 366-367

WebView rendering, 329

UIs, cropping, 295

underlining text, 230

unmanaged code, 262

updates, live tiles, 548

local, 548

periodic, 548-549

push, 549

scheduled, 548

Uri options, MediaElement, 286

URLs, ScriptNotify events, 330

UseDecoder method, 275

user data, 183, 466-467

file picker, 467-468

libraries and folders, 468

users

contacts, 514-516

status, lock screen, 556-557

themes, 186-187

V

value converters, 451-454

values

Disabled (NavigationCacheMode property),
177

Enabled (NavigationCacheMode property),
177

Required (NavigationCacheMode property),
177

VariableSizedWrapGrid panel, 83-86, 210-212

vector graphics, 333

Bézier curves, 341

S-line shapes, 341

U-line shapes, 341

Brush data type, 348

ImageBrush, 355-356

LinearGradientBrush, 349-355

properties, 348

SolidColorBrush, 348-349

WebViewBrush, 358-363

Geometry data type, 340

EllipseGeometry class, 340

GeometryGroup class, 340, 344-345

LineGeometry class, 340

PathGeometry class, 340-341

RectangleGeometry class, 340

strings, 346-348

Transform property, 341, 345

scalability, 364

Shape data type, 334

Ellipse class, 335

Fill property, 334-335

Line class, 336

Path class, 338

Polygon class, 337

Polyline class, 336-337

Rectangle class, 334-335

Stroke property, 334-335

strokes, 338-340

version (package manifest), 18

VerticalAlignment property
(FrameworkElements), 52-53

VerticalAlignment property (FrameworkElements) 603

VerticalChildrenAlignment property
(VariableSizedWrapGrid panel), 86

VerticalContentAlignment property, 53

VerticalScrollBarVisibility property
(ScrollViewer), 91

VerticalScrollMode property (ScrollViewer), 93

VerticalSnapPointsAlignment property
(ScrollViewer), 94

VerticalSnapPointsType property (ScrollViewer),
93

VerticalWheelPresent property
(MouseCapabilities class), 138

video, 285-286

background, 291

capture, 294

CameraCaptureUI class, 294, 297-298

CaptureElement class, 298-304

Webcams, 294

capturing photos, 301-302

formats, MediaElement, 286

index markers, 290

metadata, 289

noninteractive, 291

playback, 286

MediaElement, 286-291

MediaPlayer, 291-292, 294

showing live previews, 298-301

stabilization, 291

transcoding, MediaTranscoder class, 305-310

VideoDeviceController property
(MediaCapture), 302-303

VideoDeviceId property (InitializeAsync over-
load), 299

VideoEncodingQuality

enumeration, 307-308

options, 307

VideoProperties class, 272

Videos Library, 16

VideoSettings property (CameraCaptureUI
class), 298

view models, 449

view states, layout, 67, 69

Viewbox element, scaling content overflow,
95-98

views, collections, 455

groupings, 455-456, 458-459

navigating, 459

viral compatibility, 123

virtualization

ListView control, 219

UI, 210

virtualization support (WrapGrid panel), 86

VirtualizingStackPanel, 210

visibility properties (ScrollViewer), 92

Visibility property, 123

VisibilityChanged event (Windows class), 156

Visible state (ScrollBarVisibility), 91

visual elements, items controls, 209

visual results

AddDeleteThemeTransition, 372-374

ContentThemeTransition, 370

EdgeUIThemeTransition, 370-371

EntranceThemeTransition, 368-369

PaneThemeTransition, 371-372

PopupThemeTransition, 369-370

ReorderThemeTransition, 375-376

RepositionThemeTransition, 374-375

Visual State Manager. See VSM

visual states, XAML control restyling, 429

responding to changes, 429, 432

transitions, 432-433, 437-438

VerticalChildrenAlignment property (VariableSizedWrapGrid panel)604

Visual Studio

Debug toolbar, 155

support for XAML and code-behind, 42-43

Windows Store apps, 7-24

visual transitions, 432

VisualState class, 429

VisualStateManager, 428-429

responding to visual state changes, 429, 432

visual transitions, 432-433, 437-438

VisualTransitions, 433

VisualTreeHelper class, 109

VisualTreeHelper.FindElementsInHostCoordinat
es method, 124

vsix extension, 292

VSM, 428-429

responding to visual state changes, 429, 432

visual transitions, 432-433, 437-438

W

WasKeyDown property, 143

Web images, 254

WebAuthenticationBroker class, 252

Webcams, video capture, 294

WebView control, 327-330

WebViewBrush, 358-363

white-on-transparent images, 12

whitespace

roaming, 466

text content, 231

WIC (Windows Imaging Component), metadata
query language, 275

wide tiles, templates, 544, 547

Width property (FrameworkElements), 48-49

Window.Current property (Activated event), 153

Window.Current.Bounds property, 66-67

Window.Current.SizeChanged event, 66

Windows class

Activate event, 156

VisibilityChanged event, 156

Windows contact picker, extensions, 514-516

Windows Dev Center dashboard

free trials, 166-167

in-app purchases, 169

enabling, 170-171

ProductLicenses property, 169-170

Windows Imaging Component (WIC), metadata
query language, 275

Windows kernel, suspended state, 150

Windows Media, 285-286

Windows Presentation Foundation (WPF), 27

Windows Store, 149

apps, 7-9

application definition, 21-24

Main Page, 19-21

models, 166

package manifest, 9-19

business models, 166

enabling purchase of full licenses, 168-169

free trials, 166-167

in-app purchases, 169

enabling, 170-171

ProductLicenses property, 169-170

licenses, 166

testing features, 172-174

Windows.ApplicationModel.Store.CurrentApp
class, 166

Windows.Devices.Input namespace, 117

Windows.Foundation.Uri, 255

Windows.Graphics.Display.DisplayProperties
class, 71

Windows.Graphics.Display.DisplayProperties class 605

Windows.Media namespace, 285

Windows.Security.Credentials.Web namespace,
252

Windows.Storage.ApplicationData class, 461

Windows.System.Launcher class, 163

customizing app launches, 165-166

launching apps for files, 163-164

launching apps for URIs, 164-165

Windows.System.UserProfile.UserInformation
class, 509-511

Windows.UI.Text namespace, 248

Windows.UI.Xaml.Controls namespace, panels,
71

Canvas, 71-73

Grid, 75-83

StackPanel, 74

VariableSizedWrapGrid, 83-86

Windows.UI.Xaml.Documents.Typography class,
235

Windows.UI.Xaml.Media namespace

CompositeTransform, 60

MatrixTransform, 61-62

RotateTransform, 56-57

ScaleTransform, 57-59

SkewTransform, 59-60

TranlateTransform, 60

TransformGroup, 61

WPF (Windows Presentation Foundation), 27

WrapGrid, 210-212

WrapGrid panel, virtualization support, 86

WriteableBitmap, generating dynamic images,
260-263

writing

metadata, 279-280

pixel data, 277-279

X

X axis, accelerometer, 529-531

X double property, 60

XAML

apps, layout, 47-64

children of object elements, 36

collection items, 37-38

content property, 36-37

type-converted values, 39-40

control restyling

styles, 410-418

templates, 418-428

visual states, 428-438

defined, 27

elements and attributes, 28-29

keywords, 44-45

language namespace, 30-31

markup extensions, 34-36

mixing with procedural code, 40

loading and parsing at runtime, 40-41

naming XAML elements, 41-42

Visual Studio support, 42-43

motivation for use, 28

property elements, 31-33

type converters, 33

XamlTune project, 347

XML

namespaces, 29-31

templates, live tiles, 540-541

square, 541, 543-544

wide, 544, 547

toast notifications, 552-554

xml:lang attribute, 44

xml:space attribute, 44

XTilt property (PointerPointProperties class), 141

Windows.Media namespace606

Y

Y axis accelerometer, 529-531

Y double property, 60

YTilt property (PointerPointProperties class),
141

Z

Z axis accelerometer, 529-531

Z order, 73

ZIndex attached property, 73

ZoomMode property (ScrollViewer), 98

zoomSnapPointsType property (ScrollViewer),
98

zoomSnapPointsType property (ScrollViewer) 607

	Table of Contents
	Introduction
	Who Should Read This Book?
	Software Requirements
	Code Examples
	How This Book Is Organized
	Conventions Used in This Book

	2 Mastering XAML
	Elements and Attributes
	Namespaces
	Property Elements
	Type Converters
	Markup Extensions
	Children of Object Elements
	Mixing XAML with Procedural Code
	XAML Keywords
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

