
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335921
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335921
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335921
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335921
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335921/Free-Sample-Chapter

Fluent Entity
 Framework

Rebecca M. Riordan

ii

Fluent Entity Framework
Copyright © 2013 by Rebecca Riordan

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 9780672335921

ISBN-10: 0672335921

Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States of America

First Printing February 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any
trademark or service mark.

The Windlass Lowercase and Brandywine fonts are copyrights of the
Scriptorium foundry, www.fontcraft.com.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Signing Editor
Neil Rowe

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Indexer
Cheryl Lenser

Proofreader
Karen Gill

Technical Editor
Craig Lee

Publishing Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Composition
Rebecca Riordan

http://www.fontcraft.com

 iii

Acknowledgements
I know it says “Rebecca M. Riordan” on the cover, but that’s almost a lie of omission.
Without the assistance of some amazing people, this book would never have made it out of
my head and into your hands. In order of appearance, I’d like to thank:

Neil Rowe, my long-suffering editor, for patience above and beyond the call of duty.
My technical reviewer, Craig Lee, stepped in when I was having a crisis of confidence
and made the book much better than it would have been otherwise. Once again, Karen
Gill caught the typos, infelicities and malapropisms and provided wonderfully unexpected
moral support. (Any errors these two wonderful people missed are, of course, mine and mine
alone.)

Jake von Slatt of The Steampunk Workshop (steampunkworkshop.com) and
Samantha Wright (samantha-wright.deviantart.com) were both gracious enough
to allow me to use their images. These are seriously talented artists, folks. I can’t urge you
strongly enough to go visit their sites.

The applesauce bread recipe is adapted from King Arthur Flour 200th Anniversary
Cookbook. The challah recipe is adapted from Peter Reinhardt’s Bread Bakers Apprentice.
(The remaining 2 recipes are the author’s.)

iv

Getting Started

Introduction � � � � � � � � 1
Fluent learning because…
This book isn’t for everyone
What you’ll learn
What you’ll need
How it works

Why Bother? � � � � � � � � 9
Information architecture in

the kitchen
The impedance mismatch
The database side
The OOA&D side

Hello, EF � � � � � � � � � � 39
Setting up
Say hello
Say what?

The Designer

Using the Designer � � � � � � � 71
The designer and the EDMX
Updating the model
Mapping functions
The Model Browser

Complex Models � � � � � � � � � 101
Complex types
Split & partitioned entities
Table-per-type inheritance
Table-per-hierarchy inheritance

The Object Model � � � � � � � 137
The ObjectContext API
The DbContext API
Extending the model

Designer Options � � � � � � 163
The Model-First Workflow
Using a template
A quick look at T4

Learn how to use the Entity
Framework Designer to build
models of your data and create
the code you need to work
with it.

Find out how the book works,
what sorts of problems Entity
Framework can help you solve, and
get a taste of how it works.

 v

Working with Entities

Querying Models � � � � � � 259
Basic LINQ to entities
Entity SQL
API-specific querying

Working with Entities �299
CRUD operations
Entity state
DbContext validation

Final Project

On Your Own � � � � � � � 339
Determine the requirements
Choose a platform
Choose an architecture
Choose a workflow & API
Build the model
Build the client

The Code

The Code-First Workflow � � � 189
Code-First basics
Code-First conventions
Controlling the database

Controlling the Schema � � � � � 223
Data annotations
The Fluent API

Explore the Entity Framework code model,
and learn how to create models without the
Designer and before you have a database.

Put all you’ve learned to good
use by building a complete data
application.

Only you can decide what you need to do
with your data, but this section will introduce
you to the tools that Entity Framework gives
you for queying and manipulating it.

Contents

vi

Tell Us What you think!

As the reader of this book, you are our most important critic
and commentator. We value your opinion and want to know
what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of
wisdom you’re willing to pass our way.

As a Executive Editor for Sams, I welcome your
comments. You can fax, email, or write me directly to let
me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems
related to the topic of this book, and that due to the high
volume of email I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title
and author as well as your name and email address, phone,
or fax number. I will carefully review your comments and
share them with the author and editors who worked on this
book.

Email: feedback@samspublishing.com

Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor
Sams Publishing
800 East 96th Street

Indianapolis, IN 46240 USA

Using the Designer
Congratulations. You’ve now written a real Entity Framework application.
A pretty simple one, I grant you, and you’re unlikely to build many applications
that only need a couple of loops and some Console.Writeline() statements by way of
UI, but the skills you’ve already gained will get you through a surprising number of situations,
particularly when you have a preexisting database that’s in reasonably good shape.

But of course that isn’t always going to be true, and there’s a lot more to learn about working
with Entity Framework. (Otherwise this would be a very short book!) You might, for
example, decide to start your application with the EDM and build the database from it
(Model-First), or you might decide to forego a model entirely and do everything in code
(Code First). We’ll look at both of these options in later chapters. Even when you are starting
from a database, you may need to make more substantial changes than the simple ones we
looked at in the last chapter.

In this chapter, we’ll start exploring some of the nooks
& crannies of the Entity Framework by taking a
closer look at the Entity Framework Designer and
some of the advanced capabilities it offers.

72

Fitting It In
Here’s how this chapter fits in to the book as a whole...

model FirstCode First Database First

Entity ModelEntity Model Designer
Entity Framework

Data Provider

Data Source

Application

LINQ Entity SQL

In this chapter we’ll

be concentrating on the

EDM Designer and

how it integrates with

the EDMX.

 73

Task List
In this chapter we’ll explore the Entity Framework designer and the tools it provides for
manipulating the EDMX.

The Designer & THE EDMX
We’ll start this chapter by exploring how the Entity Framework designer translates
the conceptual model in the EDMX into the class diagram you can manipulate on the
design surface and through the Properties window.

Updating the Model
EDMs are just as likely to change as any other part of an application. (You knew that,
right?) Fortunately, the Entity Data Model Wizard makes it just as easy to update a
model as it was to build it in the first place. We’ll find out how in the second section of
this chapter.

Mapping Details
After we’ve used the primary designer window to explore the conceptual layer of the
EDMX, we’ll look at the Mapping Details window, which is the designer’s way of
letting you view and control the way the conceptual model maps data to the database
schema.

The Model Browser
Finally, we’ll turn our attention to the Model Browser, which provides a hierarchical
view of all three layers of the EDMX. In addition to general poking around (more useful
than you might think), you’ll mostly use the Model Browser to explore stored procedures
that don’t map neatly to database operations, and we’ll learn how to do that at the end
of this chapter.

74

The Designer & ThE EDMX
You may have worked with the Class Designer in Visual Studio, which provides
a graphic view of a class diagram. The Entity Model Designer plays a similar

role, but it works directly with the underlying EDMX. Here’s how it works:

<EntityType Name=”Pan”>

 <Key>

 <PropertyRef Name=”PanID” />

 </Key>

 <Property Name=”PanID” Type=”int” Nullable=”false”

 StoreGeneratedPattern=”Identity” />

 <Property Name=”Description” Type=”nvarchar” Nullable=”false”

 MaxLength=”50” />

 <Property Name=”Volume” Type=”int” />

</EntityType>

<EntitySetMapping Name=”Pans”>

 <EntityTypeMapping TypeName=”RecipeModel.Pan”>

 <MappingFragment StoreEntitySet=”Pan”>

 <ScalarProperty Name=”PanID” ColumnName=”PanID” />

 <ScalarProperty Name=”Description” ColumnName=”Description” />

 <ScalarProperty Name=”Volume” ColumnName=”Volume” />

 </MappingFragment>

 </EntityTypeMapping>

</EntitySetMapping>

The EntityType definitions in the EDMX are
represented as entity classes on the primary designer
surface.

The Mapping Details window represents the
content of the Mappings section of the EDMX.
We’ll look at the Mapping window in a few
pages.

 75

<Association Name=”FK_RecipePans_Pans”>

 <End Role=”Pan” Type=”RecipeModel.Store.Pan” Multiplicity=”1” />

 <End Role=”RecipePans” Type=”RecipeModel.Store.RecipePans” Multiplicity=”*” />

 <ReferentialConstraint>

 <Principal Role=”Pan”>

 <PropertyRef Name=”PanID” />

 </Principal>

 <Dependent Role=”RecipePans”>

 <PropertyRef Name=”PanID” />

 </Dependent>

 </ReferentialConstraint>

</Association>

 <Designer xmlns=”http://schemas.microsoft.com/ado/2008/10/edmx”>

 <Diagrams>

 <Diagram Name=”Hello” ZoomLevel=”100”>

 <EntityTypeShape EntityType=”RecipeModel.Ingredient”

 Width=”1.5” PointX=”5” PointY=”6.625”

 Height=”1.9802864583333335” IsExpanded=”true” />

...

<EntitySet Name=”Pan”

 EntityType=”RecipeModel.Store.Pan”

 store:Type=”Tables” Schema=”dbo” />

Details of Associations can be seen in the
Properties window when you click on
them in the primary designer window.

The Store Schema, which you’ll recall is
the EDMX representation of the underlying
database, is visible in the Model Browser.
We’ll be looking at it in detail later in the
chapter, as well.

Even the layout of the diagram is
represented in the EDMX, in a
special section at the bottom.

76

Updating the model
Because the designer is so closely linked to the underlying EDMX, changes you make in the designer will
update the EDMX. (And vice versa, of course.) The designer itself works as you would expect if you’ve
worked with other designers in Visual Studio. We’ll look at some complex manipulations in later chapters,
but here are the basics:

You can select an association,
an entity, or one of the entity’s
members and change its properties
in the Properties window.

If you double-click an entity or one of its
members, you can change the name directly
on the diagram.

 77

Put on your thinking hat
Can you figure out how to perform the following tasks in the designer?

How would you check the data type of an entity property?

You know that a relationship in a database can be one-to-one or one-to-many. The
“one” or “many” is the relationships multiplicity. The multiplicity of an association
in an EDM can also be many-to-many. How can you determine the multiplicity of an
association in the designer?

An entity key in an EDM is like the primary key of a table. Like a primary key, it must
be unique, and like a primary key, it can be composed of multiple entity properties. How
can you find out if a given entity member participates in the entity key?

In the Entity Framework, the model itself has properties. How do you display the
properties of the model in the designer?

78

Put on your thinking hat
How’d you do?

How would you check the data type of an entity property?

This is an easy one: Just select the property on the
designer surface and its type will be displayed in the
Properties window.

But there’s another way that I haven’t shown you:
Right-click on the design surface and choose Scalar
Property Format. Did you find that one? Try it now.

You know that a relationship in a database can be one-to-
one or one-to-many. The “one” or “many” is the relationships multiplicity. The
multiplicity of an association in an EDM can also be many-to-many. How can you
determine the multiplicity of an association in the designer?

It’s shown in the Properties window if you select the
association, and also directly on the diagram.

Multiplicity of one

Multiplicity of many

 79

An entity key in an EDM is like the primary key of a table. Like a primary key, it must be
unique, and like a primary key, it can be composed of multiple entity properties. How can
you find out if a given entity member participates in the entity key?

It’s shown in the Properties window when you select
the property, but notice that it doesn’t tell you if this
is the only property that participates in the key, so you
might have to check several properties to be sure. We’ll
see another way to check the Entity Key when we look
at the Model Browser later in this chapter.

In the Entity Framework, the model itself has properties. A model is called an
EntityContainer in the EDMX and a ConceptualEntityModel in the designer. How do you
display the properties of the model in the designer?

To show the properties of the model itself, just
click on a blank area of the designer surface.

Take a Break
Why don’t you
take a break before
completing the review
and we move on to

updating the model?

80

Review
Based on what you’ve learned so far, do you think the following statements are true or
false?

True False

True False

True False

True False

True False

True False

True False

By default, database tables become entity classes in the EDM.

The Entity Model Designer is a visual representation of the classes in the
.designer.cs or .designer.vb file.

One-to-many relationships in the database are called associations in the
EDM.

Changes that you make in the designer will update the EDMX when you
save them.

The Entity Model Designer is the only way to view the EDMX.

Selecting an entity property in the designer shows the entity key in the
Properties Window.

Selecting an entity property in the designer shows whether the property
participates in the entity’s entity key.

 81

Updating the Model
Stuff changes. It’s a basic fact of our profession, and you’ve learned to expect and
plan for that, right? Right? Well, even if you haven’t, the designers at Microsoft

have, and they’ve built the Entity Model Wizard to allow you to be able to
update the model when the database schema changes, or when you need to add

additional database objects to your model. To see how that works, let’s start by making a
minor change to the database:

In the Server Explorer (choose Server Explorer from
the Windows menu if it’s not visible), expand the
connection to the Recipe database that Visual Studio
created for you. Expand the Tables node and then
right-click the Recipe table and choose Open Table
Definition.

Change the name of the Title field to
RecipeName, save the change, and then
close the tab.

82

On Your Own
When you right-click on a blank area of the designer window,
one of the options is “Update Model from Database...” What
do you think will happen if you choose it?

We changed the name of a field in the Recipe table. Do you expect the name to
change in the model? (Remember that we changed the names of the association
properties in the RecipeIngredient entity. What do you think will happen to those?)

We deleted a table from the database. What do you expect to happen to it in the
model?

Let’s make one more change: Select the WeightByUnit
table in the Server Explorer and press the Delete key to
delete it from the database. Visual Studio will ask you to
confirm the change. Click OK.

 83

Update Model Wizard
You’ve changed the database, but you haven’t updated the EDMX, so the designer is still showing
“Title” as the name of the member. Let’s fix that.

84

Update the Model
Have you thought about what you expect to happen? Let’s try it out and see if you
were right:

In the Entity Model Designer, right-click on a blank area
of the design surface and choose Update Model from
Database...

The wizard will open on a screen with
three tabs, and the Add tab will be
displayed. You can use this tab to add
database objects to your model after it
has been created.

We’ll do that in the next section of this
chapter, but not right now, so select the
Refresh tab.

 85

You can’t make changes on the Refresh
tab. Visual Studio is going to update
every object that has changed in the
database (assuming that you’ve already
included the object in the model).

Are you surprised at the number of
tables to be updated, even though we
only updated one? That’s because of
the way all the tables are related. When
we made a change to the Recipe table,
Visual Studio decided that every table
that’s related (directly or indirectly) to it
needs to be updated.

You can’t make changes on the Delete
tab either, but the IngredientWeights
table that we deleted from the database
is listed here.

Click Finish to exit the wizard and
update the model.

86

Hey, what happened?
When you click Finish on the wizard (the button is available on every tab), the wizard will update the
EDMX and redisplay the model. Is the display what you expected? Probably not. The wizard didn’t
rename the Title property; it just added a new RecipeName property, and the WeightByUnit table is
still there. Actually,Visual Studio has just been a little smarter about things than we expected. The secret
is the Mapping window, and by a strange coincidence, we’ll look at that next.

The wizard added
RecipeName to the model,
but Title is still there.

The association names
we changed have also
been preserved. That’s
probably a good thing.

WeightByUnit is still there.
It hasn’t been deleted from
the conceptual model.

 87

The Mapping Window
In order to understand what the Update Model Wizard did (and didn’t) do, we
need to look at the relationship between the sections of the EDMX, the database,

and the designer, and how they fit together.

The CSDL, or Conceptual
Schema Definition Language,
represents the conceptual model. It’s
displayed in the primary designer
window. These are the objects
you’ll work with in code.

The SSDL, or Store Schema
Definition Language, represents
the database. It’s visible in the
Model Browser, which we’ll
discuss in the next section.

The MSL, or Mapping
Schema Language, controls
the relationship between
the CSDL and the
SSDL. It’s displayed in the
Mapping Details window.

88

So what happened?
When we changed the database and then updated the model, the wizard didn’t do what you probably
expected it to do. (It certainly came as a surprise to me when I was learning the Entity Framework, but
you’re probably smarter than I am.)

What the wizard did was update the SSDL to reflect the changes in the database and
update the MSL so that nothing in the conceptual model was mapped to a nonexistent
database fields, but it otherwise maintained the conceptual model as we’d designed it.

Right-click on a blank area of the primary design surface and choose Mapping Details
from the context menu. By default, the Mapping Details window will appear below the
primary design surface. If you select the Recipe entity, you can see what’s happened:

This column shows the
properties of the entity.

This column shows what the
property is mapped to--usually (but not
always, as we’ll see) a field in the
database.

This column indicates
how the mapping is
performed. The double-
headed arrow indicates a
direct mapping.

Do you see what’s happened? The new entity property, RecipeName, is
mapped to the RecipeName field. The Title property, which still exists in
the entity, isn’t in the list at all because it’s no longer mapped to anything.

 89

If you select the WeightByUnit entity, you’ll see that the Mapping Details window is
completely empty. None of the properties of this entity are mapped to the database any
longer:

My opinion
The wizard does what it does, and there’s not much to be done
about that. You can choose not to use it, of course, if you really

don’t like the way it behaves.

But before you throw your hands up in disgust and decide that the Entity Framework
team made a terrible decision, consider this: There is no way (or at least no practical
way) for the wizard to know which of the changes you’ve made to the conceptual
model you want to keep. It makes the changes it can—to the schema definition and
the mapping layer—and leaves the decisions it can’t make to the person who can
(you). Personally, I’d much rather fiddle around in the Mapping Details Window for a
minute or two than spend hours manually updating the EDMX.

90

Before we move on...
Go ahead and make the changes to the conceptual model. Simply select the Title property of the
Recipe entity and either choose Delete from the context menu or press the delete key. Do the same
thing with the entire WeightByUnit entity. Your model should look like this:

make a note
You’ll probably want to change the code we wrote to reflect the
change of name. Otherwise, you’ll get build errors if you try to

rerun the application.

 91

mapping functions
So far all our entity properties are mapped directly to database fields, and the Entity
Framework is generating the code to insert, update and delete values. But as you

probably know, many database administrators don’t allow this kind of direct access. For
very good reasons having to do with maintaining the integrity of the data for which they’re

responsible, they require you to perform these operations through stored procedures. The Entity
Framework treats stored procedures as functions. You add them using the Update Wizard and connect
them to the conceptual model in the database file. Let’s give it a whirl:

The first step is easy. Run the wizard the same way you did before, by right-clicking on a
blank area of the primary designer window and choosing Update Model from Database.

On the Add tab of the wizard, select
the CreateRecipe, DeleteRecipe and
UpdateRecipe stored procedures, as
shown. (The other stored procedures
that the wizard lists were added by
Visual Studio and the SQL Server
Management Studio. You can ignore
them.)

Click Finish. Once again, the wizard will update the SSDL and MSL but leave your
conceptual model alone, so you won’t see any changes.

92

This button shows the default view,
Map Entity to Tables/Views.

This button (selected in the screen shot)
shows the Map Entity to Functions
pane.

Make sure the Recipe
entity is still selected
on the primary designer
surface, and then click
the second button on the
left side of the Mapping
Details Window to
display the Map Entity to
Functions Pane.

Click in the <Select Insert Function>
cell, and a list of the stored procedures
we’ve imported into the model will be
displayed. Choose CreateRecipe.

After you choose the stored
procedure (if you choose
the wrong one, just choose
a different one from the
list), the Mapping Details
Window will display a list
of the parameters that were
defined when the stored
procedure was created.

 93

We need to tell Entity
Framework how to map
the stored procedure
parameters to the entity
properties. When you click
in the Property column,
the Mapping Details
Window will display a list of
properties for you to choose

from. Go ahead and fill it out now, using the screenshot as
an example.

One last step. The RecipeID
field is an identity field,
which means the value is
generated by the database. We
need to store the generated
value in the entity instance
to make sure our in-memory
data matches up with the
rows of the table. The stored
procedure returns that value as an output parameter called NewRecipeID, so all we have
to do is tell the Entity Framework about it. Type NewRecipeID in the cell labeled <Add
Result Binding> and then press the Tab key. The Mapping Details Window will add
RecipeID for you, since it’s the entity key for the Recipe entity.

On Your Own
The UpdateRecipe stored procedure needs to be mapped to the
Update function. It doesn’t return any values (although the
corresponding procedure in a production database might return the
number of rows affected).

Try adding it now.

94

Thinking Hat?
How’d you do? Here’s what the Mapping Details Window should look
when you’re finished:

On Your Own
It isn’t necessary to map every operation to a stored procedure.
Sometimes you can’t delete a row at all, for example. But

our database does have stored procedures for the full set of
operations, so now that you’re an expert at this, why don’t you

go ahead and add the DeleteRecipe function to the Mapping Details Window.
Like the UpdateRecipe stored procedure, it doesn’t have an output value, and it
only has one input value (since only the key is required to identify the row to be
deleted).

Take a Break
Once you’ve completed the On Your Own exercise, why don’t you
take a break before you complete the Review and we move on to the
Model Browser Window?

 95

Review
Based on what you’ve learned in this section, can you answer the following questions?

How do you trigger the Update Database Wizard?

Which layers of the EDMX does the wizard change when a change is made to the
database schema?

How do you add new database objects to the conceptual model?

What do the two little buttons on the left side of the Mapping Details Window mean?

Is it necessary to map all the functions if you map one?

96

The Model Browser
So far we’ve explored the primary designer surface that lets us manipulate the
CDSL and the Mapping Details window that lets us manipulate the MSL. You

can’t control the SSDL directly in the Entity Model Designer-you have to do
that in the Server Explorer or a tool like SQL Server Management Studio-but you

can view it using the last major component of the designer, the Model Browser. The
Model Browser also shows you the structure of your conceptual model. Let’s see how it works.

You display the Model Browser the same way you display the Mapping Details Window:
by right-clicking on a blank area of the primary designer surface. (But of course, this
time you choose Model Browser from the menu.) It displays the CSDL and SSDL as a
TreeView:

The conceptual model
is shown under the
RecipeModel node.

The SSDL is
shown under the
RecipeModel.Store
node.

 97

On Your Own
You can use the Model Browser for more than just inspecting the
EDMX, but we’ll look at that more advanced functionality in the

next chapter. For right now, why don’t you explore the basic display
and see if you can answer these questions?

How many entity sets are in our model?

What properties comprise the entity key of the RecipeIngredient entity? How can you
tell?

How does inspecting entity keys in the Model Browser differ from selecting the
properties individually on the primary designer surface?

What’s the data type of the RecipeName field as defined in the database? (Hint: check
the Properties window.)

Is the table we deleted from the database (IngredientWeights) shown in the Model
Browser?

There are two things that we haven’t yet discussed shown in the Model Browser. One is a
node in RecipeModel, the other a node in the EntityContainers: RecipeEntities. What are
they? What do you think they do?

98

Review

There are three primary windows in the Entity Model Designer. What are they? How is
each used?

Why does the Update Model Wizard try to preserve the conceptual model?

What window would you use to map a stored procedure to the delete entity function?

How do you delete an entity from the model?

How do you change the name of an entity property?

What is the relationship between two tables in the database called in the conceptual
model?

 99

Congratulations! You’ve finished the chapter. Take a minute to think about what you’ve
accomplished before you move on to the next one...

List three things you learned in this chapter:

Why do you think you need to know these things in order to work with Entity
Framework?

Is there anything in this chapter that you think you need to understand in more
detail? If so, what are you going to do about that?

This page intentionally left blank

360

Index
A
AcceptAllChanges() method, 143
Add() method, 302, 306
AddObject() method, 302, 306
AddTo() methods, 64, 143
ADO.NET, 10

Entity Framework data models versus, 35
relational objects, 34

annotations. See data annotations
anonymous types, 276
API, choosing, 348-349. See also DbContext API;

ObjectContext API
API-specific queries, 289

executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

App.config, 211
applications

building in code-first workflow, 195-199
projects

client, retrieving data with, 66-67
code files generated, 64-65
creating, 44
EDM, adding, 49
EDM, editing, 56-57
EDM Wizard, 50-55
EDMX, viewing, 62-63
LINQ queries, writing, 58-59
NuGet package, adding, 45-47

sample project
architecture, choosing, 346-347
data client, building, 354-355
development platform, choosing, 345
model, building, 350-351
model, refining, 352-353
requirements, determining, 342-344
workflow and API, choosing, 348-349

architecture, choosing, 346-347
assembly directive (T4 templates), 180
associations

adding to projects, 171

editing for partitioned entities, 124-125
Attach() method, 143
AttachTo() method, 143
attributes. See data annotations

C
candidate keys, 20, 23
cascade delete, 312-313
change proxies, creating, 322-325
change tracking, 321-325
change tracking objects, 138
changes, undoing, 320
ChangeState() method, 320
class feature blocks in T4 templates, 181
clients. See data clients
code files, generated in projects, 64-65
Code First Migrations, 349
Code Generation Strategy property, 175
code-first workflow

building applications in, 195-199
comparison with other workflows, 192-193
connection strings, 210-211
data annotations, 226

descriptions of, 227-228
in Entity Framework version 4 versus version 5,

229-232
data clients

building, 200-205
rules for building, 206-208

Database class, 212-214
databases, renaming, 209
Fluent API, 243

configurations, 251-255
methods, 246-250
syntax, 244-245

initializers
creating, 216-219
standard initializers, 215

projects in, 194
relationships, 233

multiple relationships, 238-242
one-to-one relationships, 234-237

 361

CodePlex, 357
Compare annotation, 328
CompatibleWithModel() method, 214
complex types, 104-105

creating, 106-111, 206
reusing, 112-114

conceptual model. See also EDM (Entity Data Model)
building in sample project, 350-351
EDM Designer, EDMX and, 74-75
function mapping, 91-94
property mapping, 88-90
refining in sample project, 352-353
TPT (Table-Per-Type) inheritance, 127-130
updating EDM, 76-86

Conceptual Schema Definition Language (CSDL), 87
configurations in Fluent API, 251-255
connection object, 138
connection strings, 210-211
connections in EDM Wizard, 50-52
context in code files, 64
context object, 138
control blocks in T4 templates, 181
Create() method, 144, 214, 322
CreatIfNotExists() method, 214
CRUD operations, 299

creating entities, 306-311
deleting entities, 312-313
structure of, 302-305
updating entities, 312-313

CSDL (Conceptual Schema Definition Language), 87
Custom Tool property, 175
custom validation attributes, 331
CustomValidation annotation, 328

D
data access project in code-first workflow, 194
data annotations, 223, 226

data validation with, 328-330
descriptions of, 227-228
in Entity Framework version 4 versus version 5,

229-232
data client project in code-first workflow, 194
data clients

building, 200-205, 354-355
retrieving data with EDM, 66-67
rules for building, 206-208

data model in code-first workflow, 194
data validation, 327

annotations, 328-330
custom validation attributes, 331
IValidatableObject interface, 332-335

database application design, recipe examples, 12-13. See
also applications

Database class, 201, 212-214
database connections in EDM Wizard, 50-52
database model for recipe example, 16
Database object, 150
database-first workflow

comparison with other workflows, 192-193
complex types, 104-105

creating, 106-111
reusing, 112-114

EDM Designer, EDMX and, 74-75
function mapping, 91-94
inheritance

TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103,

131-133
TPT (Table-Per-Type) inheritance, 101, 103,

127-130
partitioned entities, 103

creating, 120-125
split entities versus, 118-119

projects
client, retrieving data with, 66-67
code files generated, 64-65
creating, 44
EDM, adding, 49
EDM, editing, 56-57
EDM Wizard, 50-55
EDMX, viewing, 62-63
LINQ queries, writing, 58-59
NuGet package, adding, 45-47

property mapping, 88-90
split entities, 103, 115

modeling, 116-117
partitioned entities versus, 118-119

updating EDM, 76-86
databases

connection strings, 210-211
creating in code-first workflow, 200-205
generating, 172-174
initializers

creating, 216-219
standard initializers, 215

renaming, 209
retrieving data from. See queries

362

rules for building in code-first workflow, 206-208
DataType annotation, 328
DbChangeTracker class, 150
DbConnection class, 140, 150, 211
DbContext API

changing default code, 148-149
data validation, 327

annotations, 328-330
custom validation attributes, 331
IValidatableObject interface, 332-335

designer classes, 151
entity designer classes, 152-155
entity state, 315

change tracking, 321-325
retrieving, 316-319
undoing changes, 320

lazy loading, 271
queries with, 289

executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

structure of, 150
DbContext class, 150
DbContext constructor, 210
DbModelBuilder class, 244-245, 251-255
DbQuery class, 150
DbSet class, 150
decomposition, 23
default code, changing for DbContext API, 148-149
delegates, queries versus, 262-263
delete constraints, 28-29
Delete() method, 214
DeleteObject() method, 303
deleting entities, 303, 312-313
designer classes

DbContext API, 151-155
ObjectContext API, 143-147

DetectChanges() method, 143, 321, 327
development platform, choosing, 345
directives in T4 templates, 180
downloading Visual Studio, 6

E
editing

associations for partitioned entities, 124-125
EDM (Entity Data Model), 56-57

EDM (Entity Data Model), 11. See also code-first

workflow; conceptual model; database-first workflow;
model-first workflow

adding to projects, 49
building in sample project, 350-351
editing, 56-57
refining in sample project, 352-353
retrieving data from. See queries
updating, 76-86
viewing structure in Model Browser, 96-97

EDM Designer, 11
complex types

creating, 106-111
reusing, 112-114

DbContext API classes, 151
editing EDM, 56-57
EDMX and, 74-75
inheritance, establishing, 128-129
Mapping Details window, 87-95
Model Browser, viewing model structure, 96-97
ObjectContext API classes, 143
partitioned entities, creating, 120-125
split entities, modeling, 116-117
TPH (Table-Per-Hierarchy) inheritance, modeling,

132-133
updating EDM, 76-86

EDM Wizard
database-first workflow

building model with, 50-55
code files generated, 64-65
explained, 61

model-first workflow in, 166-174
EDMX

EDM Designer and, 74-75
updating, 76-86
viewing, 62-63

entities
accessing, 35
adding to projects, 170
complex types, 104-105

creating, 106-111
reusing, 112-114

creating, 302, 306-311
CRUD operations, structure of, 302-305
deleting, 303, 312-313
designer classes

DbContext API, 152-155
ObjectContext API, 144-147

finding, 292-293
local entities, API-specific queries on, 290-291

 363

members, 65
partitioned entities, 103

creating, 120-125
split entities versus, 118-119

related entities in queries, 272-274
sets of, 138
split entities, 103, 115

modeling, 116-117
partitioned entities versus, 118-119

updating, 303, 312-313
Entity Data Model (EDM). See EDM (Entity Data

Model)
Entity Framework

ADO.NET data models versus, 35
components of, 10-11
data annotations in version 4 versus version 5, 229-232
NuGet. See NuGet
projects. See projects
reasons for using, 9, 14, 18-19
resources for information, 357

Entity Framework Forum, 357
entity instances, 138
entity keys, 77, 79
Entity() method, 245
Entity Model Designer. See EDM Designer
Entity Partitioning. See partitioned entities
Entity property, 291
Entity Splitting. See split entities
Entity SQL, 281

advantages and disadvantages, 287
literals in, 285
parameterized queries, 286
syntax, 282-284

entity state, 315
change tracking, 321-325
retrieving, 316-319
undoing changes, 320

EntityClient class, 10
EntityObject class, 140, 144, 150
EntityType definitions, 74
EntityTypeConfiguration class, 245
Evans, Eric, 243
ExecuteSqlCommand() method, 214, 294
ExecuteStoreCommand() method, 294-295
executing

LINQ queries, 268-270
queries directly, 295
SQL directly, 294

Exists() method, 214

expression blocks in T4 templates, 181
extending object model, 156-159

F
factor methods, 65
fields, creating in code-first workflow, 206
Find() method, 292
finding entities, 292-293
FirstOrDefault() method, 275
Fluent API, 223, 243

configurations, 251-255
methods, 246-250
syntax, 244-245

Fluent interface, 243
foreign keys, 25, 312
Fowler, Martin, 243
functions, mapping, 91-94

G
Generate Database Wizard, 172-174
GetObjectByKey() method, 292
GetObjectStateEntries() method, 291
GetValidationErrors() method, 327
GetValidationResult() method, 327

H
Hanselmann, Scott, 14
HasColumnName() method, 245
HasMaxLength() method, 245
Horizontal Splitting. See Partitioned Entities

I
identity values, 23
impedance mismatch, 9, 14, 16-19
implicit deferred loading, 271
import directive (T4 templates), 180
include directive (T4 templates), 180
Include() method, 272
inheritance

TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103,

131-133
TPT (Table-Per-Type) inheritance, 101, 103, 127-130

Initialize() method, 214
InitializeDatabase() method, 217

364

initializers
creating, 216-219
standard initializers, 215

installing NuGet, 43
instances. See entity instances
integrity constraints, 28-29
Intellisense, 245
IValidatableObject interface, 332-335

K
keys

candidate keys, 20, 23
entity keys, 77, 79
foreign keys, 25, 312
primary keys, 23

L
Language INtegrated Query. See LINQ queries
lazy loading, 271
Lerman, Julia, 357
in-line configurations, 252
LINQ queries

executing, 268-270
lazy loading, 271
.NET delegates versus, 262-263
projections, 276-280
related entities, 272-274
results, 275
syntax, 264-267
writing, 58-59

literal text
in Entity SQL, 285
in T4 templates, 181

Load() method, 273
local entities, API-specific queries on, 290-291
Local property, 290

M
many-to-many relationships, 25, 238-242
mapping

functions, 91-94
properties, 88-90

to complex types, 113-114
to partitioned entities, 122-123
to split entities, 116-117

Mapping Details window, 74, 87-95

function mapping, 91-94
property mapping, 88-90
reusing complex types, 113-114

Mapping Schema Language (MSL), 87
materialization, 141
MaxLength annotation, 328
metadata attributes. See data annotations
method chaining, 243
method syntax (LINQ), 267
methods in Fluent API, 246-250
Microsoft Data Developer Center, 357
MinLength annotation, 328
Model Browser

Store Schema, 75
viewing model structure, 96-97

model builders. See DbModelBuilder class
model-first workflow, 166-174. See also conceptual

model; EDM (Entity Data Model); object model
comparison with other workflows, 192-193

MSL (Mapping Schema Language), 87
multiple relationships in code-first workflow, 238-242
multiplicity, 77-78

N
namespaces for data annotations, 229-232
Nathan, Adam, 345
.NET delegates, queries versus, 262-263
normal forms, 20
not null constraints, 28-30
NuGet, 42

adding to projects, 45-47
installing, 43

nullibility of foreign keys, 312

O
Object class, 150
object model

DbContext API
changing default code, 148-149
designer classes, 151
entity designer classes, 152-155
structure of, 150

extending, 156-159
ObjectContext API, 140-142

designer classes, 143
entity designer classes, 144-147

structure of, 138

 365

Object Services, 10
ObjectContext API, 140-142

designer classes, 143
entity designer classes, 144-147
entity state, 315

change tracking, 321-325
retrieving, 316-319
undoing changes, 320

lazy loading, 271
queries with, 289

executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

ObjectContext class, 140
Object-Oriented Analysis & Design (OOA&D), 31-35
ObjectQuery class, 140
ObjectSet class, 140
ObjectStateManager class, 140
OnContextCreated() method, 64
one-to-many relationships, 25
one-to-one relationships, 25, 234-237
OnModelCreating() method, 244-245
OOA&D (Object-Oriented Analysis & Design), 31-35
OOP model for recipe example, 17
output directive (T4 templates), 180

P
parameterized queries, 286
partitioned entities, 103

creating, 120-125
split entities versus, 118-119

persistence-ignorant POCOs, 194
platform, choosing, 345
primary keys, 23
Programming Entity Framework (Lerman), 357
projections (LINQ), 276-280
projects

associations, adding, 171
client, retrieving data with, 66-67
code files generated, 64-65
in code-first workflow, 194
creating, 44
EDM (Entity Data Model)

adding, 49
editing, 56-57

EDM Wizard, 50-55
EDMX, viewing, 62-63

entities, adding, 170
LINQ queries, writing, 58-59
NuGet package, adding, 45-47
properties, adding, 171
sample project

architecture, choosing, 346-347
data client, building, 354-355
development platform, choosing, 345
model, building, 350-351
model, refining, 352-353
requirements, determining, 342-344
workflow and API, choosing, 348-349

T4 templates, adding, 182-185
properties

accessing, 35
adding to projects, 171
complex types, 104-105

creating, 106-111
reusing, 112-114

in entities, 65
mapping, 88-90

to complex types, 113-114
to partitioned entities, 122-123
to split entities, 116-117

viewing, 79
Properties window, 75
Property method, 245
PropertyChanged() event, 144
PropertyChanging() event, 144
proxy tracking, 321-325

Q
queries

API-specific queries, 289
executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

Entity SQL, 281
advantages and disadvantages, 287
literals in, 285
parameterized queries, 286
syntax, 282-284

LINQ queries
executing, 268-270
lazy loading, 271
.NET delegates versus, 262-263
projections, 276-280

366

related entities, 272-274
results, 275
syntax, 264-267
writing, 58-59

query syntax (LINQ), 267

R
Range annotation, 328
recipes, 12-13
referential integrity constraints, 29
RegularExpression annotation, 328
related entities in queries, 272-274
relational database design

explained, 20-30
OOA&D (Object-Oriented Analysis & Design)

versus, 32-33
relationships, 25-28
schema design, 23-24

relational model for recipe example, 16
relational objects in ADO.NET, 34
relations, 20
relationships, 25-28

in code-first workflow, 233
creating, 206
multiple relationships, 238-242
one-to-one relationships, 234-237

multiplicity, 77-78
navigating, 35

Remove() method, 303
renaming

complex types, 111
databases, 209

repeating groups, 23
Required annotation, 328
requirements, determining, 342-344
resources for information, 357
results of LINQ queries, 275
retrieving

data from EDM (Entity Data Model). See queries
entity state, 316-319

reusing complex types, 112-114

S
SaveChanges() method, 143, 316-319, 327
scalar values, 20, 23
schema design, 23-24
Seed() method, 216-217

SELECT clause, 282
SELECT VALUE clause, 282
semantic versioning model, 42
SetInitializer() method, 201, 214-215
sets of entities, 138
snapshot tracking, 321
split entities, 103, 115

modeling, 116-117
partitioned entities versus, 118-119

SQL, executing directly, 294
SqlQuery() method, 214, 295
SSDL (Store Schema Definition Language), 87
standard blocks in T4 templates, 181
state. See entity state
Store Schema, 75
Store Schema Definition Language (SSDL), 87
stored procedures. See functions
StringLength annotation, 328

T
T4 (Text Template Transformation Toolkit) templates, 163

adding to projects, 182-185
structure of, 178-179
writing, 180-181

Table Splitting. See partitioned entities
Table-Per-Concrete-Type (TPC) inheritance, 101
Table-Per-Hierarchy (TPH) inheritance, 101, 103,

131-133
Table-Per-Type (TPT) inheritance, 101, 103, 127-130
tables, creating in code-first workflow, 206
template directive (T4 templates), 180
templates

changing, 175-177
T4 templates, 163

adding to projects, 182-185
structure of, 178-179
writing, 180-181

Text Template Transformation Toolkit (T4) templates. See
T4 (Text Template Transformation Toolkit) templates

ToList() method, 268
TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103, 131-

133
TPT (Table-Per-Type) inheritance, 101, 103, 127-130
tracking changes. See change tracking
TransformText() method, 179

 367

U
undoing changes, 320
unique constraints, 28-29
update constraints, 28-29
Update Model Wizard, 83-86
updating

EDM (Entity Data Model), 76-86
entities, 303, 312-313

V
Validate() method, 327, 332
ValidateEntity() method, 327
validation. See data validation
validation pipeline, 327
viewing

EDMX, 62-63
model structure in Model Browser, 96-97
properties, 79

Visual Studio, downloading, 6

W
WillCascadeOnDelete() method, 313
workflow, choosing, 348-349. See also code-first

workflow; database-first workflow; model-first
workflow

WPF Unleashed (Nathan), 345
writing T4 templates, 180-181

X
XML, viewing EDMX, 62-63

	CONTENTS
	ACKNOWLEDGEMENTS
	3 USING THE DESIGNER
	The designer and the EDMX
	Updating the model
	Mapping functions
	The Model Browser

	INDEX
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

