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Using the Designer
Congratulations. You’ve now written a real Entity Framework application. 
A pretty simple one, I grant you, and you’re unlikely to build many applications 
that only need a couple of loops and some Console.Writeline() statements by way of 
UI, but the skills you’ve already gained will get you through a surprising number of situations, 
particularly when you have a preexisting database that’s in reasonably good shape.

But of course that isn’t always going to be true, and there’s a lot more to learn about working 
with Entity Framework. (Otherwise this would be a very short book!) You might, for 
example, decide to start your application with the EDM and build the database from it 
(Model-First), or you might decide to forego a model entirely and do everything in code 
(Code First). We’ll look at both of these options in later chapters. Even when you are starting 
from a database, you may need to make more substantial changes than the simple ones we 
looked at in the last chapter.

In this chapter, we’ll start exploring some of the nooks 
& crannies of the Entity Framework by taking a 
closer look at the Entity Framework Designer and 
some of the advanced capabilities it offers.
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Fitting It In
Here’s how this chapter fits in to the book as a whole...

model FirstCode First Database First

Entity ModelEntity Model Designer
Entity Framework

Data Provider

Data Source

Application

LINQ Entity SQL

In this chapter we’ll 

be concentrating on the 

EDM Designer and 

how it integrates with 

the EDMX.
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Task List
In this chapter we’ll explore the Entity Framework designer and the tools it provides for 
manipulating the EDMX.

The Designer & THE EDMX
We’ll start this chapter by exploring how the Entity Framework designer translates 
the conceptual model in the EDMX into the class diagram you can manipulate on the 
design surface and through the Properties window.

Updating the Model
EDMs are just as likely to change as any other part of an application. (You knew that, 
right?) Fortunately, the Entity Data Model Wizard makes it just as easy to update a 
model as it was to build it in the first place. We’ll find out how in the second section of 
this chapter.

Mapping Details
After we’ve used the primary designer window to explore the conceptual layer of the 
EDMX, we’ll look at the Mapping Details window, which is the designer’s way of 
letting you view and control the way the conceptual model maps data to the database 
schema.

The Model Browser
Finally, we’ll turn our attention to the Model Browser, which provides a hierarchical 
view of all three layers of the EDMX. In addition to general poking around (more useful 
than you might think), you’ll mostly use the Model Browser to explore stored procedures 
that don’t map neatly to database operations, and we’ll learn how to do that at the end 
of this chapter.
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The Designer & ThE EDMX
You may have worked with the Class Designer in Visual Studio, which provides 
a graphic view of a class diagram. The Entity Model Designer plays a similar 

role, but it works directly with the underlying EDMX. Here’s how it works:

<EntityType Name=”Pan”>

 <Key>

  <PropertyRef Name=”PanID” />

 </Key>

  <Property Name=”PanID” Type=”int” Nullable=”false” 

   StoreGeneratedPattern=”Identity” />

  <Property Name=”Description” Type=”nvarchar” Nullable=”false” 

   MaxLength=”50” />

  <Property Name=”Volume” Type=”int” />

</EntityType>

<EntitySetMapping Name=”Pans”>

 <EntityTypeMapping TypeName=”RecipeModel.Pan”>

  <MappingFragment StoreEntitySet=”Pan”>

   <ScalarProperty Name=”PanID” ColumnName=”PanID” />

   <ScalarProperty Name=”Description” ColumnName=”Description” />

   <ScalarProperty Name=”Volume” ColumnName=”Volume” />

  </MappingFragment>

 </EntityTypeMapping>

</EntitySetMapping>

The EntityType definitions in the EDMX are 
represented as entity classes on the primary designer 
surface.

The Mapping Details window represents the 
content of the Mappings section of the EDMX. 
We’ll look at the Mapping window in a few 
pages.
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<Association Name=”FK_RecipePans_Pans”>

 <End Role=”Pan” Type=”RecipeModel.Store.Pan” Multiplicity=”1” />

 <End Role=”RecipePans” Type=”RecipeModel.Store.RecipePans” Multiplicity=”*” />

 <ReferentialConstraint>

  <Principal Role=”Pan”>

   <PropertyRef Name=”PanID” />

  </Principal>

  <Dependent Role=”RecipePans”>

   <PropertyRef Name=”PanID” />

  </Dependent>

 </ReferentialConstraint>

</Association>

  <Designer xmlns=”http://schemas.microsoft.com/ado/2008/10/edmx”>

  ....

    <Diagrams>

  <Diagram Name=”Hello” ZoomLevel=”100”>

   <EntityTypeShape EntityType=”RecipeModel.Ingredient” 

    Width=”1.5” PointX=”5” PointY=”6.625” 

    Height=”1.9802864583333335” IsExpanded=”true” />

...

<EntitySet Name=”Pan” 

 EntityType=”RecipeModel.Store.Pan” 

 store:Type=”Tables” Schema=”dbo” />

Details of Associations can be seen in the 
Properties window when you click on 
them in the primary designer window.

The Store Schema, which you’ll recall is 
the EDMX representation of the underlying 
database, is visible in the Model Browser. 
We’ll be looking at it in detail later in the 
chapter, as well.

Even the layout of the diagram is 
represented in the EDMX, in a 
special section at the bottom.
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Updating the model
Because the designer is so closely linked to the underlying EDMX, changes you make in the designer will 
update the EDMX. (And vice versa, of course.) The designer itself works as you would expect if you’ve 
worked with other designers in Visual Studio. We’ll look at some complex manipulations in later chapters, 
but here are the basics:

You can select an association, 
an entity, or one of the entity’s 
members and change its properties 
in the Properties window.

If you double-click an entity or one of its 
members, you can change the name directly 
on the diagram.
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Put on your thinking hat
Can you figure out how to perform the following tasks in the designer?

How would you check the data type of an entity property?

You know that a relationship in a database can be one-to-one or one-to-many. The 
“one” or “many” is the relationships multiplicity. The multiplicity of an association 
in an EDM can also be many-to-many. How can you determine the multiplicity of an 
association in the designer?

An entity key in an EDM is like the primary key of a table. Like a primary key, it must 
be unique, and like a primary key, it can be composed of multiple entity properties. How 
can you find out if a given entity  member participates in the entity key?

In the Entity Framework, the model itself has properties. How do you display the 
properties of the model in the designer?
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Put on your thinking hat
How’d you do?

How would you check the data type of an entity property?

This is an easy one: Just select the property on the 
designer surface and its type will be displayed in the 
Properties window.

But there’s another way that I haven’t shown you: 
Right-click on the design surface and choose Scalar 
Property Format. Did you find that one? Try it now.

You know that a relationship in a database can be one-to-
one or one-to-many. The “one” or “many” is the relationships multiplicity. The 
multiplicity of an association in an EDM can also be many-to-many. How can you 
determine the multiplicity of an association in the designer?

It’s shown in the Properties window if you select the 
association, and also directly on the diagram.

Multiplicity of one

Multiplicity of many
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An entity key in an EDM is like the primary key of a table. Like a primary key, it must be 
unique, and like a primary key, it can be composed of multiple entity properties. How can 
you find out if a given entity  member participates in the entity key?

It’s shown in the Properties window when you select 
the property, but notice that it doesn’t tell you if this 
is the only property that participates in the key, so you 
might have to check several properties to be sure. We’ll 
see another way to check the Entity Key when we look 
at the Model Browser later in this chapter.

In the Entity Framework, the model itself has properties. A model is called an 
EntityContainer in the EDMX and a ConceptualEntityModel in the designer. How do you 
display the properties of the model in the designer?

To show the properties of the model itself, just 
click on a blank area of the designer surface.

Take a Break
Why don’t you 
take a break before 
completing the review 
and we move on to 

updating the model?
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Review
Based on what you’ve learned so far, do you think the following statements are true or 
false?

True  False

True  False

True  False

True  False

True  False

True  False

True  False

By default, database tables become entity classes in the EDM.

The Entity Model Designer is a visual representation of the classes in the 
.designer.cs or .designer.vb file.

One-to-many relationships in the database are called associations in the 
EDM.

Changes that you make in the designer will update the EDMX when you 
save them.

The Entity Model Designer is the only way to view the EDMX.

Selecting an entity property in the designer shows the entity key in the 
Properties Window.

Selecting an entity property in the designer shows whether the property 
participates in the entity’s entity key.
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Updating the Model
Stuff changes. It’s a basic fact of our profession, and you’ve learned to expect and 
plan for that, right? Right? Well, even if you haven’t, the designers at Microsoft 

have, and they’ve built the Entity Model Wizard to allow you to be able to 
update the model when the database schema changes, or when you need to add 

additional database objects to your model. To see how that works, let’s start by making a 
minor change to the database:

In the Server Explorer (choose Server Explorer from 
the Windows menu if it’s not visible), expand the 
connection to the Recipe database that Visual Studio 
created for you. Expand the Tables node and then 
right-click the Recipe table and choose Open Table 
Definition.

Change the name of the Title field to 
RecipeName, save the change, and then 
close the tab.
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On Your Own
When you right-click on a blank area of the designer window, 
one of the options is “Update Model from Database...” What 
do you think will happen if you choose it? 

We changed the name of a field in the Recipe table. Do you expect the name to 
change in the model? (Remember that we changed the names of the association 
properties in the RecipeIngredient entity. What do you think will happen to those?)

We deleted a table from the database. What do you expect to happen to it in the 
model?

Let’s make one more change: Select the WeightByUnit 
table in the Server Explorer and press the Delete key to 
delete it from the database. Visual Studio will ask you to 
confirm the change. Click OK.
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Update Model Wizard
You’ve changed the database, but you haven’t updated the EDMX, so the designer is still showing 
“Title” as the name of the member. Let’s fix that.
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Update the Model
Have you thought about what you expect to happen? Let’s try it out and see if you 
were right:

In the Entity Model Designer, right-click on a blank area 
of the design surface and choose Update Model from 
Database...

The wizard will open on a screen with 
three tabs, and the Add tab will be 
displayed. You can use this tab to add 
database objects to your model after it 
has been created.

We’ll do that in the next section of this 
chapter, but not right now, so select the 
Refresh tab.
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You can’t make changes on the Refresh 
tab. Visual Studio is going to update 
every object that has changed in the 
database (assuming that you’ve already 
included the object in the model).

Are you surprised at the number of 
tables to be updated, even though we 
only updated one? That’s because of 
the way all the tables are related. When 
we made a change to the Recipe table, 
Visual Studio decided that every table 
that’s related (directly or indirectly) to it 
needs to be updated.

You can’t make changes on the Delete 
tab either, but the IngredientWeights 
table that we deleted from the database 
is listed here.

Click Finish to exit the wizard and 
update the model.
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Hey, what happened?
When you click Finish on the wizard (the button is available on every tab), the wizard will update the 
EDMX and redisplay the model. Is the display what you expected? Probably not. The wizard didn’t 
rename the Title property; it just added a new RecipeName property, and the WeightByUnit table is 
still there. Actually,Visual Studio has just been a little smarter about things than we expected. The secret 
is the Mapping window, and by a strange coincidence, we’ll look at that next.

The wizard added 
RecipeName to the model, 
but Title is still there. 

The association names 
we changed have also 
been preserved. That’s 
probably a good thing.

WeightByUnit is still there. 
It hasn’t been deleted from 
the conceptual model.
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The Mapping Window
In order to understand what the Update Model Wizard did (and didn’t) do, we 
need to look at the relationship between the sections of the EDMX, the database, 

and the designer, and how they fit together.

The CSDL, or Conceptual 
Schema Definition Language, 
represents the conceptual model. It’s 
displayed in the primary designer 
window. These are the objects 
you’ll work with in code.

The SSDL, or Store Schema 
Definition Language, represents 
the database. It’s visible in the 
Model Browser, which we’ll 
discuss in the next section.

The MSL, or Mapping 
Schema Language, controls 
the relationship between 
the CSDL and the 
SSDL. It’s displayed in the 
Mapping Details window.
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So what happened?
When we changed the database and then updated the model, the wizard didn’t do what you probably 
expected it to do. (It certainly came as a surprise to me when I was learning the Entity Framework, but 
you’re probably smarter than I am.) 

What the wizard did was update the SSDL to reflect the changes in the database and 
update the MSL so that nothing in the conceptual model was mapped to a nonexistent 
database fields, but it otherwise maintained the conceptual model as we’d designed it.

Right-click on a blank area of the primary design surface and choose Mapping Details 
from the context menu. By default, the Mapping Details window will appear  below the 
primary design surface. If you select the Recipe entity, you can see what’s happened:

This column shows the 
properties of the entity.

This column shows what the 
property is mapped to--usually (but not 
always, as we’ll see) a field in the 
database.

This column indicates 
how the mapping is 
performed. The double-
headed arrow indicates a 
direct mapping.

Do you see what’s happened? The new entity property, RecipeName, is 
mapped to the RecipeName field. The Title property, which still exists in 
the entity, isn’t in the list at all because it’s no longer mapped to anything.
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If you select the WeightByUnit entity, you’ll see that the Mapping Details window is 
completely empty. None of the properties of this entity are mapped to the database any 
longer:

My opinion
The wizard does what it does, and there’s not much to be done 
about that. You can choose not to use it, of course, if you really 

don’t like the way it behaves.

But before you throw your hands up in disgust and decide that the Entity Framework 
team made a terrible decision, consider this: There is no way (or at least no practical 
way) for the wizard to know which of the changes you’ve made to the conceptual 
model you want to keep. It makes the changes it can—to the schema definition and 
the mapping layer—and leaves the decisions it can’t make to the person who can 
(you). Personally, I’d much rather fiddle around in the Mapping Details Window for a 
minute or two than spend hours manually updating the EDMX.
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Before we move on...
Go ahead and make the changes to the conceptual model. Simply select the Title property of the 
Recipe entity and either choose Delete from the context menu or press the delete key. Do the same 
thing with the entire WeightByUnit entity. Your model should look like this:

make a note
You’ll probably want to change the code we wrote to reflect the 
change of name. Otherwise, you’ll get build errors if you try to 

rerun the application.
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mapping functions
So far all our entity properties are mapped directly to database fields, and the Entity 
Framework is generating the code to insert, update and delete values. But as you 

probably know, many database administrators don’t allow this kind of direct access. For 
very good reasons having to do with maintaining the integrity of the data for which they’re 

responsible, they require you to perform these operations through stored procedures. The Entity 
Framework treats stored procedures as functions. You add them using the Update Wizard and connect 
them to the conceptual model in the database file. Let’s give it a whirl:

The first step is easy. Run the wizard the same way you did before, by right-clicking on a 
blank area of the primary designer window and choosing Update Model from Database.

On the Add tab of the wizard, select 
the CreateRecipe, DeleteRecipe and 
UpdateRecipe stored procedures, as 
shown. (The other stored procedures 
that the wizard lists were added by 
Visual Studio and the SQL Server 
Management Studio. You can ignore 
them.)

Click Finish. Once again, the wizard will update the SSDL and MSL but leave your 
conceptual model alone, so you won’t see any changes.
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This button shows the default view, 
Map Entity to Tables/Views.

This button (selected in the screen shot) 
shows the Map Entity to Functions 
pane.

Make sure the Recipe 
entity is still selected 
on the primary designer 
surface, and then click 
the second button on the 
left side of the Mapping 
Details Window to 
display the Map Entity to 
Functions Pane.

Click in the <Select Insert Function> 
cell, and a list of the stored procedures 
we’ve imported into the model will be 
displayed. Choose CreateRecipe.

After you choose the stored 
procedure (if you choose 
the wrong one, just choose 
a different one from the 
list), the Mapping Details 
Window will display a list 
of the parameters that were 
defined when the stored 
procedure was created.
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We need to tell Entity 
Framework how to map 
the  stored procedure 
parameters to the entity 
properties. When you click 
in the Property column, 
the Mapping Details 
Window will display a list of 
properties for you to choose 

from. Go ahead and fill it out now, using the screenshot as 
an example.

One last step. The RecipeID 
field is an identity field, 
which means the value is 
generated by the database. We 
need to store the generated 
value in the entity instance 
to make sure our in-memory 
data matches up with the 
rows of the table. The stored 
procedure returns that value as an output parameter called NewRecipeID, so all we have 
to do is tell the Entity Framework about it. Type NewRecipeID in the cell labeled <Add 
Result Binding> and then press the Tab key. The Mapping Details Window will add 
RecipeID for you, since it’s the entity key for the Recipe entity.

On Your Own
The UpdateRecipe stored procedure needs to be mapped to the 
Update function. It doesn’t return any values (although the 
corresponding procedure in a production database might return the 
number of rows affected).

Try adding it now.
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Thinking Hat?
How’d you do? Here’s what the Mapping Details Window should look 
when you’re finished:

On Your Own
It isn’t necessary to map every operation to a stored procedure. 
Sometimes you can’t delete a row at all, for example. But 

our database does have stored procedures for the full set of 
operations, so now that you’re an expert at this, why don’t you 

go ahead and add the DeleteRecipe function to the Mapping Details Window. 
Like the UpdateRecipe stored procedure, it doesn’t have an output value, and it 
only has one input value (since only the key is required to identify the row to be 
deleted).

Take a Break
Once you’ve completed the On Your Own exercise, why don’t you 
take a break before you complete the Review and we move on to the 
Model Browser Window?
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Review
Based on what you’ve learned in this section, can you answer the following questions?

How do you trigger the Update Database Wizard?

Which layers of the EDMX does the wizard change when a change is made to the 
database schema?

How do you add new database objects to the conceptual model?

What do the two little buttons on the left side of the Mapping Details Window mean?

Is it necessary to map all the functions if you map one?
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The Model Browser
So far we’ve explored the primary designer surface that lets us manipulate the 
CDSL and the Mapping Details window that lets us manipulate the MSL. You 

can’t control the SSDL directly in the Entity Model Designer-you have to do 
that in the Server Explorer or a tool like SQL Server Management Studio-but you 

can view it using the last major component of the designer, the Model Browser. The 
Model Browser also shows you the structure of your conceptual model. Let’s see how it works.

You display the Model Browser the same way you display the Mapping Details Window: 
by right-clicking on a blank area of the primary designer surface. (But of course, this 
time you choose Model Browser from the menu.) It displays the CSDL and SSDL as a 
TreeView:

The conceptual model 
is shown under the 
RecipeModel node.

The SSDL is 
shown under the 
RecipeModel.Store 
node.
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On Your Own
You can use the Model Browser for more than just inspecting the 
EDMX, but we’ll look at that more advanced functionality in the 

next chapter. For right now, why don’t you explore the basic display 
and see if you can answer these questions?

How many entity sets are in our model?

What properties comprise the entity key of the RecipeIngredient entity? How can you 
tell? 

How does inspecting entity keys in the Model Browser differ from selecting the 
properties individually on the primary designer surface?

What’s the data type of the RecipeName field as defined in the database? (Hint: check 
the Properties window.)

Is the table we deleted from the database (IngredientWeights) shown in the Model 
Browser?

There are two things that we haven’t yet discussed shown in the Model Browser. One is a 
node in RecipeModel, the other a node in the EntityContainers: RecipeEntities. What are 
they? What do you think they do?
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Review

There are three primary windows in the Entity Model Designer. What are they? How is 
each used?

Why does the Update Model Wizard try to preserve the conceptual model?

What window would you use to map a stored procedure to the delete entity function?

How do you delete an entity from the model?

How do you change the name of an entity property?

What is the relationship between two tables in the database called in the conceptual 
model?
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Congratulations! You’ve finished the chapter. Take a minute to think about what you’ve 
accomplished before you move on to the next one...

List three things you learned in this chapter:

Why do you think you need to know these things in order to work with Entity 
Framework?

Is there anything in this chapter that you think you need to understand in more 
detail? If so, what are you going to do about that?
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syntax, 244-245

initializers
creating, 216-219
standard initializers, 215

projects in, 194
relationships, 233

multiple relationships, 238-242
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EDM Wizard, 50-55
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NuGet package, adding, 45-47
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split entities, 103, 115

modeling, 116-117
partitioned entities versus, 118-119
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finding entities, 292-293
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downloading Visual Studio, 6

E
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132-133
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explained, 61
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Entity Partitioning. See partitioned entities
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Entity Splitting. See split entities
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syntax, 282-284
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retrieving, 316-319
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EntityClient class, 10
EntityObject class, 140, 144, 150
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ExecuteStoreCommand() method, 294-295
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LINQ queries, 268-270
queries directly, 295
SQL directly, 294

Exists() method, 214
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F
factor methods, 65
fields, creating in code-first workflow, 206
Find() method, 292
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Fluent API, 223, 243
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methods, 246-250
syntax, 244-245
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Fowler, Martin, 243
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G
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GetValidationErrors() method, 327
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H
Hanselmann, Scott, 14
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HasMaxLength() method, 245
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I
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impedance mismatch, 9, 14, 16-19
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import directive (T4 templates), 180
include directive (T4 templates), 180
Include() method, 272
inheritance

TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103, 

131-133
TPT (Table-Per-Type) inheritance, 101, 103, 127-130

Initialize() method, 214
InitializeDatabase() method, 217
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Intellisense, 245
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Lerman, Julia, 357
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lazy loading, 271
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results, 275
syntax, 264-267
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in T4 templates, 181
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M
many-to-many relationships, 25, 238-242
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functions, 91-94
properties, 88-90
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to split entities, 116-117

Mapping Details window, 74, 87-95

function mapping, 91-94
property mapping, 88-90
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method chaining, 243
method syntax (LINQ), 267
methods in Fluent API, 246-250
Microsoft Data Developer Center, 357
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viewing model structure, 96-97
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comparison with other workflows, 192-193
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N
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Nathan, Adam, 345
.NET delegates, queries versus, 262-263
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O
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object model

DbContext API
changing default code, 148-149
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tracking changes. See change tracking
TransformText() method, 179



  367

U
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