SAMS

FLUENT ENTITY

REBECCA M. RIORDAN

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

"'EFEENR

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335921
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335921
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335921
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335921
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335921/Free-Sample-Chapter

SAMS

LUENT ENTITY

RAMEWORK_

REBECCA M. RIORDAN

AssOCIATE PUBLISHER
Greg Wiegand

Si16NING EpITOR
Neil Rowe

MaNAGING EpiTOR
Kristy Hart

Project EpITOR
Andy Beaster

INDEXER
Cheryl Lenser

PROOFREADER
Karen Gill

TecuNIcAL EpiTor
Craig Lee

PuBLisHING COORDINATOR

Cindy Teeters

CovER DESIGNER
Gary Adair

COMPOSITION
Rebecca Riordan

FLueNT ENTITY FRAMEWORK
Copyright © 2013 by Rebecca Riordan

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken inf the preparation of this book,

the publisherand author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 9780672335921

ISBN-10: 0672335921

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America

First Printing February 2013

TRADEMARKS

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any

trademark or service mark.

The Windlass Lowercase and Brandywine fonts are copyrights of the
Scriptorium foundry, www.fontcraft.com.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and

as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the
information contained in this book.

BULK SALES :

Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

http://www.fontcraft.com

NCKIOWLEDGEITENTS

[know it says ”Rebeooa M. Riorclan" on the cover, but that's almost a lie of omnission.
Without the assistance of sorne amazing p60ple, this book would never have made it out of

my head and into yeur hands. n order of appearance, I’c] like to thank:

Nei] ROWC, my long—suffering editor, for patience above and beyoncI the call of cluty,
]V\y teohnioal reviewer, Craig LCC, steppe& in When [was having a crisis of confidence
and made the beok much better than it would have been otherwise. Once again, Karen
Gln oaught the typos, infelicities and malaprOPisms and provicled Wonclerfully unexpeote&
moral support. | Any errors these two wonderful people missed are, of course, mine and mine

alone.)

Jake von (latt of Tl’\@ Jteampunk WOTkShop (stearnpunk workshep.com) and
Jamantl‘\a Wl’lgl'lt (samantha—wright.&eviantart.oom) were both gracious enough
to allow me to use their images. These are seriously talented artists, folks. I oan’t urge you

strongly enough to go visit their sites.

The applesauoe bread recipe is a&apte& from King Arthur Flour QOOth Anniversary
Cookbook. The challah recipe is adapted from Peter Reinharc{t’s Bread Rakers: /\pprentice.
(The remaining 9, recipes are the auther s.)

iii

GETTIIG STHRTED v Find out how the book works

what sorts of problerns Entity

@ INTRODUCTION i . L ’ Framework can help you solve, and
Fluent learning because...] get a taste of how it works
This book isn’t for everyone 1
What you’ll learn |
- What you’ll need

How it works
Learn how to use the Entity

@ Way BOTHER.> 9 Framework Designer to build
Information architecture in models of your data and create
the kitchen

3 i the code you need to work
The impedance mismatch

The database side 1 with it.
The OOA&D side 1 w

°
°
@ HELLO a4 39 ————————————
Setting up : i O
Sy bl | THE DESIGIIER <@ o o
Say what? 3
@ USING THE DESIGNER pai) |
i i d The designer and the EDMX |
‘Updating the model
Mapping functions ‘ ;
The Model Browser |
@ COMPLEX MODELS,...... . 101
Complex types ‘

Split & partitioned entities
Table-per-type inheritance
Table-per- hlerarchy mhentance

@ Tur OsjEcT MODEL & 137
- The ObjectContext API |

The DbContext API = 1
Extending the model ‘

@ DESIGNER GIPTTONS. (. 163
‘The Model-First Workflow
Using a template
A quick look at T4

~ THE CODE

Code-First basics
Gode-First conventions
Controlhng the database

Data annotations

The Fluent API

Only you can decide what you need to do
with Yyour data, but this section will intreduce
you to the tools that E,ntity Framework gives
yeu for queying and manipulating it.

@ Tue Cope-FirsT WORKFLOW o

@ CONTROLLING THE SCHEMA . . .

COMTLITS

Explore the Entity Framework code medel,
g ‘ and learn how to create medels without the
= ! 9 : Designer and befere you have a database.

223{°0000000°°..

./« e ———r— — . - S |

- WORKING WITH EHTITIES

O9) QUERYING MODELS 259
Basic LINQ to entities
Entity 8QL
API-specific querying

@ WORKING WITH ENTITIES . 299

N :
° CRUD operations |
°
° Entity state
. Y & y
¢eecccccccs DbContext validatipn

- TINAL FROJECT

Determine the requirements
Choose a platform

Choose an architecture
Choose a workflow & API
Build the model ‘
Build the client

@ ONYouROWN 339

| .,

Put all you've learned to goocl

e use by Euilding a oomplete data

applioation.

Vi

TELL US WHAT TOU THITIH

As the reader of this bOOk, you are our most impertant critic
and cornmentator. We value Yyour opinion and want to know
what we're CIOing right, what we could do better, what
areas you'c[like to see us publish in, and any other words of
wisdorn ycu,re wiﬂing to pass our way.

As a Executive Editer for §ams, [welcome your
cormnments. You can fax, email, or write me &ireotly to let

me know what you did or didn't like about this beok—as

well as what we can do to make our books stronger.

Please note that | cannot help you with technical pr0blems
related to the topic of this book, and that due to the high
volume of email [receive, | mig}\t not be able to reply to
every message.

W]’len you write, please be sure to include this book’s title
and auther as well as yeur name and erail address, phone,
or fax number. I will oarefuﬂy review your cernrments and

share them with the author and editors who worked on this
book.

Email: feedback@samspublishing.com
Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor
Sams Publishing
800 East 96th Street

Indianapolis, IN 46240 USA

e

USTG THE DESIGIER

Congratulations. You've now written a real E,ntity Framework applioation.

A pretty simple one, | grant you, and you’re unlikely to build many applioations
that only need a oouple of 100ps and sorme Console.Writeline() staterments by way of

UL but the skills you’ve alrea(]y gainecl will get you through a surprising nurmber of situations,
partioular]y when yeu have a preexisting database that's in reasonably good sl‘mape.

But of course that isn’t always gO’mg to be true, and there’s a lot more to learn about Working
with Eontity Framework. (Otherwise this would be a very short bOOk?) You might, for
example, decide to start your applioation with the EDM and build the database from it
(Medel-First) or you might decide to forego a medel entirely and do everything in cede
(COde First). \/\[e’ll look at both of these optiens in later ohapters. E.ven when you are starting

from a database, you may need to make more substantial ohanges than the simple ones we
—————
L) " ~—

100ked at in the 1ast ohapter.

In this ohapter, we 1l start exploring sorne of the nooks
% crannies of the Entity Framework by taking a
closer look at the Entity Framework Designer and

sorne of the advanced oapa[)i]ities it offers.

72

2 S
LW
2 @
g)

DATT SOURCE

FITTING IT M

I—Iere’s how this ohapter fits in to the book as a whole...

D2
H.ﬁy oﬂo

T TIODEL

In this chapter wel eoeo® o
be concentrating on the
ED/M Designer and
how it ‘mtegrates with

the EDMX-

AFTLICTTION

/il VAN 872 ‘
6 BN A
i 4
5

EITTITT S0L

TROICLIT

In this ohapter we ll explore the Entity Framework designer and the tools it provides for
manipulating the EDMX.

THE DESIGIER & THIE EDITX

We'll start this chapter by exploring how the Fntity Framewerk designer translates
the oonoeptual medel in the EDMX inte the class &iagram you can manipulate on the
c[esign surface and through the Properties window.

UTDATING THE ITODEL

EDMs are just as likely to change as any other part of an applioation. (You knew that,
right?) Fortunately, the Entity Data Medel Wizard makes it Just as casy to update a
medel as it was to build it in the first plaoe. Welﬂ find out how in the second section of
this chapter.

[TArTING DETAILY

After Weyve used the primary designer window to explore the oonoeptual layer of the
EDMX, we 1l look at the IMapping Details window, which is the designer,s way of
lett‘mg you view and centrol the way the oonceptual model maps data to the database

sohema.

THE ITODEL DROWALR

F’maﬂy, we,ﬂ turn our attention to the]V\oclel Browser, which provicIes a hierarchical
view of all three layers of the EDMX. In addition to general pOking around (more useful
than yeu might think), you’ll mostly use the]V\oc]el Browser to explore stored prooedures
that don't map neatly to database operations, and we'll learn how to do that at the end
of this ohapter.

73

THE DESIGIER @ THIE EDITX

You may have worked with the Class Designer in Visual Studie, which provides
a graphio view of a class diagram. The Entity]"\oclel Designer plays a similar
role, but it works cIireot]y with the underlying EDMX. I—Iere’s how it works:

74

The Entity T ype definitions in the EDMX are
represented as entity classes on the primary designer
)

surface. °

‘00'...

<PropertyRef Name="PanID” />

<EntityType Name="Pan”>

<Key>

</Key>
<Property Name="PanID” Type="int” Nullable="false”
StoreGeneratedPattern="Identity” />
<Property Name="Description” Type="nvarchar” Nullable="false”
MaxLength="50" />
<Property Name="Volume” Type="int” />
</EntityType>

o
Seee Y [Description

o A
“2 Pan £

= Properties

9 paniD
frvmume

= Navigation Properties
53| Recipes

Mapping Details - Pan

Column
4 Tables
4 [Mapsto Pan

The Mapping Details window represents the

content of the [IMappings section of the EDMX.

We Il leok at the Mapping window in a few 2 <Add a Condition>
Column Mappings
00, | pping

pages. o o #2] PanlD : int

° . o
LIS ° B Description : nvarchar
° °o® ,
®eoceoo =] Volume:int
E <Add a Table or View>

M

Op... Value / Property
¥ panlD:Ini32
- [Description: String
“ & Volume : Int32

<EntitySetMapping Name="Pans”>

<EntityTypeMapping TypeName="RecipeModel.Pan”>
<MappingFragment StoreEntitySet="Pan”’>
<ScalarProperty Name="PanID” ColumnName="PanID” />
<ScalarProperty Name="Description” ColumnName="Description” />
<ScalarProperty Name="Volume” ColumnName="Volume” />
</MappingFragment>
</EntityTypeMapping>
</EntitySetMapping>

<Association Name="FK_RecipePans_Pans”>

<End Role="Pan” Type="RecipeModel.Store.Pan” Multiplicity="1" />

<End Role="RecipePans” Type="RecipeModel.Store.RecipePans” Multiplicity="%*" />

<ReferentialConstraint>
<Principal Role="Pan”>
<PropertyRef Name="PanID” />
</Principal>
<Dependent Role="RecipePans”>
<PropertyRef Name="PanID” />

</Dependent>
</ReferentialConstraint> A
</Association> ..
°
°
°

Details of Asseciations can be seen in the
Properties window when you click on

them in the primary designer window.

Properties
RecipeModel.RecipePans Association -
30|E
Referential Constraint -
4 =
Association 5et Name RecipePans
> Documentation
Endl Multiplicity * (Collection of Pan)
Endl Navigation Property Recipes
Endl OnDelete None
Endl Role Name Pan 3
End2 Multiplicity * (Collection of Recipe)
End2 Navigation Property Pans
.Y End2 OnDelete MNone
End2 Role Name Recipe
MName RecipePans o
Name

The name of the association.

Model Browser

Type here to search

a4 d
4 |4) RecipeModel
[Entity Types
[Complex Types
[Associations
1 [#] EntityContainer: RecipeEntities
4 | RecipeModel Store
4 [Tables / Views
[Ingredient
[IngredientWeights
4 [pan
3] Paniy
] Description
=l volume
[Recipe
|1 RecipeCategory
=2 Recipelngredients
[RecipePans
[RecipeStep
=2 RecipeType
Unit
[Stored Procedures
[Constraints

|&] Model Browser [S7R/13s & Solution

<Designer xmlns="http://schemas.microsoft.com/ado/2008/10/edmx”>

<Diagrams>

plorer

<Diagram Name="Hello” ZoomLevel="100">

<EntitySet Name="Pan”
EntityType="RecipeModel.Store.Pan”
store:Type="Tables” Schema="dbo” />

The Store Schema, which cyou,n recall is
o the EDMX representation of the underlying
°.database, is visble in the Medel Browser.

o .’We,n be IOOking at it in detail later in the
‘. °° ohapter, as well.

eo0 o e’.»

4“3 o0 ..

Even the layout of the diagram is

<EntityTypeShape EntityType="RecipeModel.Ingredient” represented in the EDMX, in a

Width="1.5" PointX="5" PointY="6.625"

speoial section at the bottorn.

Height="1.9802864583333335” IsExpanded="true” />

78

UPDATING THE TTODEL

Because the designer is so olosely linked to the un&erlying EDMX, ohanges you make in the designer will
update the EDMX. (And vice versa, of course.) The designer itself works as you would expect if you,ve
worked with other cIesigners in Visual Studio. We’ﬂ look at sorne oomplex manipulations in later ohapters,

but here are the basics:

Properties 08X
You can select an association, RecipeModel.Pan EntityType -

an entity, or one of the entity's

members and ohange its properties

in the Properties window.

Access

Base Type

...°°0000000>

Documentation

Entity Set Mame
Mame

Name
e s The name of the entity.

= p -
roperties

If you deuble-click an entity or one of its
ﬁ F'El HID members, you can ohange the name direotly

I‘ 5 Desc ription on the diagram.
| 5 Volume

= Mavigation Properties
: Recipes
» o

ETTITL, RURLRRALARRRRARARATARRRARNRRALE . NARERRARARATARRRARIRNAIARAIARIRRRIE S

nnanh

‘;(0....0°..

s g oyt - e men——

FUT 011 TOUR THINKING nm

Can you ﬁgure out how to perform the following tasks in the designer?

TEell - /

How would you check the data type of an entity property? -

/ e : i i
You know that a relationship in a database can be one-to-one or one-to-many. The
“one” or “many” is the relationships muLTIPLICITY. The multiplicity of an association

in an EDM can also be many-to-many. How can you determine the mult1phc1ty ofan
| association in the designer? |

| An ENTITY KEY in an EDM is like the primary key of a table. Like a primary key, it must '

‘be unique, and like a primary key, it can be composed of multiple entity properties. How
‘can you find out if a given entity member partlclpates in the entity key?

/ : : /

In the Entity Framework, the model itself has propermes How do you dlsplay the
properties of the model in the designer?

77

78

FUT OI TOUR THINKING Hm
How’d you do?

/ ; /
How would you check the data type of an entity property?

This is an easy one: Just select the property on the

designer surface and its type will be dxsplayed in the .

Pr oper UCS Wll’ldOW

‘But there’s another way that I haven’t shown you:
Right-click on the design syrface and choose Scalar
Property Format. Did you find that one? Try it now.

You know that a relationship in a database can be one-to-

/
Properties *Ox
RecipeModel.Pan.Description Property -
A =
4
Getter Public
Setter Public

StoreGeneratedPatterr None

Fixed Length False
Max Length 50
Unicode True

Concurrency Mode None

Default Value (None)
> Documentation
Entity Key False
Name Description
Nullable False
Type String
Name

The name of the property.

one or one-to-many. The “one” or “many” is the relationships muLTIPLICITY. The

multiplicity of an association in an EDM can also be mahy-to-many. How can you

determine the multiplicity of an association in the designer?

It’s shown in the Properties window if you select the
association, and also directly on the diagram.

! .. i Multiplicity of many
EN
Multiplicity of one 1 *

0.

°

L . z
oo’
/ /

Properties *Ox
RecipeModel.FK_RecipeSteps_Recipes Association +
A =]
4

Referential Constraint Recipe -> RecipeStep
a
Associstion Set Name FK_RecipeSteps_Recipes
Documentation

Endl Multiplicity 1(One of Recipe)

End1 Navigation Prop: RecipeSteps

Endl OnDelete None

Endl Role Name Recipe

End2 Multiplicity * (Collection of RecipeStep)

End2 Navigation Prop: Recipe

End2 OnDelete None

EndZ Role Name RecipeStep
FK_RecipeSteps_Recipes

Name
The name of the association.

Te /

An ENTITY. KEY in an EDM is like the primary key of a table. ke primary key, it must Lo
unique, and like a primary key, it can be composed of multiple entity properties. How can
you find out if a given entity member participates in the entity key?

Properties
o § RecipeModel.Recipe.RecipelD Property
It’s shown in the Properties window when you select =
- v . s e
the property, but notice that it doesn’t tell you if this Geter publc
is the only property that participates in the key, s0 you | soccomcpatar entin
might have to check several properties to be sure. We’ll " Concmency s one
Default Value (None)
see another way to check the Entity Key when we look * Documention
Entity Key True
at the Model Browser later in this chapter) Name RedpelD
Type Int32
/ / =)

containing entity.

Determines if the property is the entity key for the

Al =1

In the Entity Framework, the model itself has properties. A model is called an

EntltyContalner in the EDMX and a ConceptuaIEntltyModeI in the designer. How do you
display the properties of the model in the designer?

To show the properties of the model itself, just
click on a blank area of the désigner surface.

- TRKE L BREAIC
Why don’t you !
take a break before

completing the review

and we move on to

updating t'h'ei model? |

/

Properties
RecipeModel ConceptualEntityModel

zzl3l =

4
Code Generation Strategy Default
Lazy Loading Enabled True

a

Connection String metadata=res://"/Hello.csdl|res://*

TN Embed in Output Assembly

4
Database Generation Workflow TablePerTypeStrategy.xaml (VS)
Database Schema Name dbo
DDL Generation Template SSDLToSQLI0.t (VS)

Entity Container Access Public

Entity Container Name Recipelntities

Namespace RecipeModel

Pluralize New Objects True

Transform Related Text Templa True

Validate On Build True
Metadata Artifact Processing

Determines how the mapping and model files are processed at build time.

A=

Helld

79

TRUE- FALSE

TRUE FALSE

TRUL FALSE

IRUL FALSE

TRUL ALSE

TRUL FALSE

TRUL TRLSE

RCVIEW

Base& on what you ve learned so far, do you think the f0110w1ng staternents are true or

falie?

By default, database tables become entity classes in the EDM.

The Entity Model Designer is a visual representation of the classes in the
.designer.cs or .designer.vb file.

One-to-many relationships in the database are called associations in the

EDM.

Changes that you make in the designer will update the EDMX when you

save them.
The Entity Model Designer is the only way to view the EDMX.

Selecting an entity property in the designer shows the entity key in the
Properties Window.

Selecting an entity property in the designer shows whether the property
participates in the entity’s entity key.

UTDATING THE TTODEL

Stuff ohanges. It’s a basic fact of our prOfession, and you’ve learned to expect and
plan for that, right? Right? Well, even if you haven't, the desigr\ers at Microsoft
have, and theyyve built the Entity Medel Wizard to allow you to be able to
update the model when the database scherna ohanges, or when you need to add
additional database Objeots to your medel. To see how that works, let's start by mak‘mg a
miner ohange to the database:

i s
B L WAL W™ In the Server Explorer (choose Server Explorer from

l‘j‘jﬁ e 2. the Windows menu if it’s not visible), expand the
Server Explorer

7 DR connection to the Recipe database that Visual Studio
i“ 4 [§ Data Connections
£ R created for you. Expand the Tables node and then
] & atabase Diagrams
q U e right-click the Recipe table and choose Open Table
g 1 IngredientWeights % Pan ..
H o Tbem Definition.
-8 © AddNewTable -
= Compare Data bion
E Add New Trigger
= New Query Prope
B
= OpenTable Definition J
» AR [§ Show TableData —
v ERIEy copy Chbe C .
z g? X Delete Del
» [Rs [#] Refresh
> EU Properties Alt+Enter
b [Vi
» [l Stored Procedures it
i [Functions ' source
i [Synonyms M Headnote
» Ol Types B TypelD - — —
> B Anenblc B CategoniD dbo.Recipe: Table(lilith\lilithsql.Recipe) - AXx
b 24 Servers = Navigation Prope Column Name Data Type Allow Mulls
b @ SharePoint Connections & Recipelngred 3 Recipeld int S|
=] RecipeCatege » RecipeName nvarchar(50)]
Source int
Change the name of the Title field to Headaote marchar(MAX
TypelD int (=]
RecipeName, save the change, and then Categoryd - |
=]
close the tab.
Column Properties
(Name) MName D
Allow Nulls Mo
Data Type nvarchar
Default Value or Binding
Length 50 -~
(General)

82,

properties in the Recipelngredient entlty What do you think will happen to those’)‘j.

| We deleted a table from the database. What do you expect to happen to it in'the
| modeP / |

& A 4 F . - ? . sk &
i i et s it el et e e it A i B

——— - o x] Let’s make one more change: Select the WeightByUnit
2] | table in the Server Explorer and press the Delete key to

4 [l Data Connections delete it from the database. Visual Studio will ask you to

4 |& FluentEFChapter(l.mdf .
& i confirm the change. Click OK.
» [l Database Diagrams

4 [Tables
» [2 Ingredient
» [Pan
» [Recipe
» [RecipeCategory
» [2 Recipelngredient
[RecipePan
i [2] RecipeStep
b [RecipeType
B [Unit
» | WeightByUnit
> Ol Views
i [Stored Procedures
» [3 Functions
[Synonyms
» EH Types
9 Assemblies

p— T T ST = . ® T R T et

OH TOUR O\X/H

When you right- chck ona blank area of the de51gner window,
~ one of the options is “Update Model from Database i What
do you thmk W1ll happen if you Choose it?

We changed the name of a field in the ReCIpe table. Do you expect the name to
change in the model? (Remenﬁber that we changed the names of the association

UrDATL TMODEL WIZARD

You’ve ohange& the database, but you haven't up&ated the EDMX, so the designer is still showing
”Title" as the name of the member. Let’s fix that.

"); Pan

= Properties
9 panD
8 Description
ﬂ Velume

a8 Mavigation Properties

Recipes

[#: RecipeCategory &)
= Properties o EEE——
= Properties - #: RecipeStep
(=] RecipelD
4 CategonD 2 Title - -
% Description 0.1 ¥ Source Properties
&= Navigation Properties B Headnote #9 RecipelD
Recipes B TypelD 1 . ? StepNumber
CategorylD Text
= Navigation Properties & Navigation Properties
Reci
e = % Recipe
*. RedpeType RecipeCategory
% Recipelype
Recipelngredients
=l Properties d ec!p ngrecien
0.1 % RecipeSteps
E TypelD) Pans
8 Description =
= Navigation Properties 1
Recipes

-

(. Recipelngredie... (%])

B Properties = Properties
9 RecipelD 4 IngredientlD
9 IngredientlD 8 Name

f MinimumAmount

(; WeightByunit
2 MinimumUnitiD = Navigation Properties &
8 MaximumAmount Recipelngredients |~ 1 B Pronertis
5 MaximumUnitld WeightEyUnits 1 pe
= BakersPercentage T - ﬁ IngredientlD
ey Preparation @ UnitlD
= Navigation Properties (e Umit @) 5 Weight
: S .
Ingredient .0l = MNavigation Properties
Recipe = Properties 1 . Ingredient
Unit R R T Unit
5 Unitl f Name
= Description

[+, Ingredient \

1 = Description

2 Mavigation Properties
Recipelngredients
Recipelngredien...
WeightByUnits

83

were right:

Add

Diagram
Zoom
Grid

*y v v v -

Database...

Scalar Property Format

Select All

Mapping Details

Model Browser

| Update Model from Database...
Generate Database from Model...

Ev &y

Add Code Generation Item...
Validate
Properties Alt+Enter

The wizard will open on a screen with
three tabs, and the Add tab will be
displayed. You can use this tab to add
database objects to your model after it
has been created.

We’ll do that in the next section of this

chapter, but not right now, so select the
Refresh tab.

84

UrDAITL THE TTODLL

Have you thought about what you expect to happen? Let’s try it out and see if you

In the Entity Model Designer, right-click on a blank area
of the design surface and choose Update Model from

Add Refresh | Delete

1 15 Tables
[Chg Views
1> [[W% Stored Procedures

Pluralize or singularize generated object names

Include foreign key columns in the model

Select items to add to the model.

Add Refresh | Delete

2 [Tables

[Ingredient (dbo)
7 IngredientWeights (dbo)
[Pan (dbo)
[Recipe (dbo}
|7 RecipeCategory (dbo)
B Recipelngredients (dbo)
| RecipePans (dbo)
[RecipeStep (dbo)
[RecipeType (dbo)
[Unit (dbo)

[Views

[Stored Procedures

These items were found in the database and will be refreshed in the model.

You can’t make changes on the Refresh
tab. Visual Studio is going to update
every object that has changed in the
database (assuming that you’ve already
included the object in the model).

Are you surprised at the number of
tables to be updated, even though we
only updated one? That’s because of

the way all the tables are related. When
we made a change to the Recipe table,
Visual Studio decided that every table
that’s related (directly or indirectly) to it
needs to be updated.

You can’t make changes on the Delete
tab either, but the IngredientWeights
table that we deleted from the database
is listed here.

Click Finish to exit the wizard and
update the model.

— N
G (o
| gpe—
Add I Refresh | Delete
| | 2 [ER Tables
7] IngredientWeights (dbo)
[Views
[%3 Stored Procedures
I These items could not be found in the database and will be removed from the madel.

ol5)

86

[IET, WHAT HATTENED!

When you click Finish on the wizard (the butten is available on every tab), the wizard will update the
EDMX and redisplay the model. [s the display what yeu expeoted? PrOEably not. The wizard didn't
rename the Title property; it just added a new RecipeName property, and the WeightByUnit table is
still there. Aotuaﬂy,'\]isual Jtudio has Just been a little smarter about things than we expeoted The secret
is the]"\app‘mg window, and by a strange coincidence, we,ﬂ look at that next.

(4. RecipeCategory (% |

= Properties
[=] CategorylD
8 Description

=l Navigation Properties
Recipes

2 RedpeType
= Properties

4 TypeiD

5 Description
=l Mavigation Properties

Recipes

The association names
we ohange& have also
been preserved. That's
probably a goed thing,

0.1

0.1

Fa
5

Pan .\'
= Properties

5 paniD

#¥ Description

f Volume
= Navigation Properties
Recipes

4

The wizard added
RecipeName to the model,
but Title is still there.

A) o ®
“: Redpe I Y °
[]
[]
= Properties N
= “- Redpgptep
[} RecipelD ° [) °
- 5 Title e 4 _
= = Prope@ies
[Source 2
5 Headnote . . . ':ﬂD b
. epNumber
= TypelD 1 ® oo
% CategorylD °® b
[RecipeName (. =l Navigation Properties
= Navigation Properties Recipe
RecipeCategory
RecipeType
* Recipelngredients
RecipeSteps
Pans, WeightByUnit is still there.
L {1
H ’
It han't been deleted from
the oonoeptual model.
* []
- e . - . [
[#: Redpelngredi... (%] [#: Ingredient) °
[]
= Properties = Properties]
9 RecipelD 29 IngredientlD ..
9 IngredientlD = Name C)
fMimmumAmount * 1 fDescriptinn P N
; ; #: WeightByUnit
g MinimumUnitiD = Navigation Properties
MaximumAmount Reci .
=Y pelngredients N .
2 MaximumUnitld WeightByUnit= | * =l Properties
f BakersPercentage L s E IngredientlD
[Preparation ¥4 unitlp
=l Navigation Properties (% umt 5 Weight
Ingredient - 01 = Mavigation Properties
Recipe . | = Properties 1 - Ingredient
MaximumUnit T 0l ¥ Uit Unit
MinimumUnit ¥ Name b
° f Description
=] Mavigation Properties
Recipelngredients
Recipelngredien...
WeightByUnits

THE TIATTING WINDOW

[n order to understand what the Update Medel Wizard did (and didn't) do, we
need to look at the relationship between the sections of the EDMX, the database,
and the designer, and how they fit together.

The CSDL, or Cenceptual
Schema Definition Language,

represents the conoeptual medel. It's

displayed in the primary designer

window. These are the Objeots

youyﬂ work with in code.

The MJSL, or Mapping
Column Ope... Value/ Property
|4 Tables Schemna Language, controls
4 [7] MapstoPan
B <Add = Condition- the relationship between
4 [Column Mappings
& PaniD : int B9 PaniD: Int32 the CSDL, and the
%] Description: nverche+ 8 Description : String
=] Volume: int - 5 Volume: Int32 QS(SDL' It,s dlsplayec[in the
[<Add a Table or Views
IMapping Details window.

§ The SSDL, or Store §chema
= Definition Language, represents
: the database. It's visble in the
Medel Browser, which we ll

discuss in the next section.

il
By
—
H
H

IngredientWeights
<y impeawio

e

50 WIIAT NATENED?

Wl\en we ohangecl the database and then updatecI the model, the wizard dicIn't do what yeu prOBably
expeoted it to do. (It oertainly came as a surprise to me when [was leaming the Entity Framework, but
you’re probably smarter than [am.)

What the wizard did was update the SSDL to reflect the changes in the database and
update the MSL so that nothing in the conceptual model was mapped to a nonexistent
database fields, but it otherwise maintained the conceptual model as we’d designed it.

Right-click on a blank area of the primary design surface and choose Mapping Details
from the context menu. By default, the Mapping Details window will appear below the
primary design surface. If you select the Recipe entity, you can see what’s happened:

This columnn shows the

e properties of the entity.
°

. B B
° direct mapping.

This el ndicat This columnn shows what the
is celumn indicates
h ih ing, | property is mappec{ to-—usually (but not
ow the mapping is

perf ormed. The deuble-

headed arrow indicates a

always, as we ll see) a field in the

database. ©® ® e

* =

Mapping Details - Recipe

Column
4 Tables
4 [7] Maps to Recipe
BY <Add a Condition>

E <Add a Table or View>

D °
Pe 0‘ @ Column Mappings * o
#Z] RecipelD: int - 9 RecipelD : Int32 }
1] RecipeName: nvarchar(max++ [RecipeMame: String
.. E] Source: nchar — 5 Source : String
.‘ =] Headnote: nvarchar(max) ++ f Headnote : String
Z] TypelD:int “ EH TypelD: Int32
=] CategorylD : int — FF CategorylD : Int32

°
°
°
° *O X
®
Opera... Value/ Property :

ols}

° De you see what's happeneci? The new entity property, RecipeName, is

mapped to the RecipeName field. The Title preperty, which still exists in

the entity, in't in the list at all because it's no 1onger mapped to anything.

If you select the WeightByUnit entity, you’ll see that the Mapping Details window is
completely empty. None of the properties of this entity are mapped to the database any
longer:

Mapping Details - WeightByUnit

Column Opera... Value/ Property

& | 4 Tables
E <Add a Table or View>

17 OF1HIorN -

The wizard does what it does, and there’s not much to be done.
“about that. You can choose not to use it, of course, if you really

don’t like the way it behaves.

| But before you throw your bl up in dlsgust and decide that the Entity Framework
‘team made a terrible decision, consider this: There is no way (or at least no practical
way) for the wizard to know which of the changes you’ve.made to the conceptual

- model you want to keep. It makes the changes it can—to the schema definition and

- the mapping layer—and leaves the decisions it can’t make to the person who can

minute or two than spend hours manually updating the EDMX.

) T ; TR

REEEREASE ” e el ol i Aol

.~ (you). Personally, I'd much rather fiddle around in the Mapping Details Window for a -

&9

DETORE WE TTOVE OI1...

Ge ahead and make the ohanges to the oonoeptual model. Jimply select the Title property of the

Recipe entity and cither choose Delete from the context menu or press the delete key. De the same
thing with the entire WeightByUnit entity. “Your model should look like this:

= Properties
%9 CategonID
[#8 Description

=l Navigation Properties
Recipes

[+, RecpeType

= Properties
¥4 TypeiD
[#8 Description

=l Navigation Properties
Recipes

(+. RecipeCategory (|

0.1

0.1

4. Pan &)
E Properties

9 paniD

% Description
5 Volume

= Navigation Properties
= Recipes

[#: Recipe

[= Properties.
P9 RecipelD
2 Source
M Headnote
25 TypelD
™ CategoryID
[RecipeName
= Navigation Properties
RecipeCategory
RecipeType
[Recipelngredients
- RecipeSteps

B Pans

1

=l Properties
P9 RecipelD
. P9 stepMumber
25 Text
= Navigation Properties

Recipe

"+, Recpelngredie... (2] |

= Properties
29 RecipelD
#9 IngredientlD
[MinimumAmount
5 MinimumUnitlD
5 MaximumAmount
2 MaximumUnitld
[BakersPercentage
[Preparation

= Navigation Properties
= ngredient
Recipe
= MaximumUnit
MinimumUnit

[+. Ingredient

(4: unit

[= Properties
29 IngredientlD

5 Name
[Description

= Navigation Properties
Recipelngredients

= Properties
29 UnitiD
9 Name
[Description

= Navigation Properties
= Recipelngredients
Recipelngredien..

RO

You 11 probably want to change the code we wrote to reﬂect the

rerun the apphcatlon

change of name. Otherwme, you’ll get bulld errors if you try to

’

et

920

[TATTING FUTICTIONS

So far all our entity properties are mappe& direotly to database fields, and the Entity

Framework is enerating the code to insert, update and delete values. But as yeu
pTOBably know, many database administrators don't allow this kind of direct access. For
very g00d reasons having to do with rmaintaining the integrity of the data for which they’re

responsible, they require you to perform these operations through stored prooedures, The Entity
Framework treats stored prooe&ures as functions. You add them using the UpcIate WizarcI and cennect
them to the oonceptual model in the database file. Let’s give it a whirl:

The first step is easy. Run the wizard the same way you did before, by right-clicking on a
blank area of the primary designer window and choosing Update Model from Database.

e v @ On the Add tab of the wizard, select
'[gp v s the CreateRecipe, DeleteRecipe and
UpdateRecipe stored procedures, as

shown. (The other stored procedures

Add Refresh | Delete

| 4 Stored Procedures -

CreateRecipe (dbo)

| I Cremerece oo N that the wizard lists were added by

[[]5] fn_diagramobjects (dba)

1] 5p. serdgram o) Visual Studio and the SQL Server
[]] sp_crestediagram (dbo) . .
L] = dropdiagrem (dbe) Management Studio. You can ignore
[[1-5] sp_helpdiagramdefinition (dbo)

[C1] sp_helpdiagrams (dbo)

| ss_ren:megdlagram {dbo) them.)

[] sp_upgraddiagrams (dbo)

UpdateRecipe (dbo) 3

Pluralize or singularize generated object names

m

Include foreign key columns in the model

Select items to add to the model.

Click Finish. Once again, the wizard will update the SSDL and MSL but leave your

conceptual model alone, so you won’t see any changes.

o1

922,

Make sure the Recipe oo

[]
entity is still selected .
) : o
on the primary designer "

.This butten shows the default view,

Map Entity to Tables/ Views.

surface, and then click
the second button on the
left side of the Mapping D
Details Window to
display the Map Entity to

Mapping Details - Recipe L=
Parameter / Column Operator Property Use Original Value Rows Affected Parameter

~

& -

[Z] «Select Insert Function>
[=] «Select Update Function>
[=] <Select Delete Function>

Functions Pane.

®es e o This button (selected in the screen shot)

shows the Map Entity te Functions

Mapping Details - Recipe

= Parameter / Column Operator

4 Functions

[Z] <Select Insert Function> [+]
[=] [CreateRecipe

— | DeleteRecipe
= UpdateRecipe

After you choose the stored
procedure (if you choose
the wrong one, just choose
a different one from the
list), the Mapping Details
Window will display a list
of the parameters that were

defined when the stored

pane.
Click in the <Select Insert Function>
Property cell, and a list of the stored procedures
we’ve imported into the model will be
displayed. Choose CreateRecipe.
Mapping Details - Recipe - A x
Z [paremeter/ Column Operator Property Use Original .. Rows Affected Param...
4 Functions
- D oo T
4 [Parameters
%@l name: nvarchar - =
@ source:int — el
@] headnote : nvarchar(ma+— e
@l type:int - =
@l category: int — el

4 [Result Column Bindings
E# <Add Result Binding>
[Z] <Select Update Function>
[=] <Select Delete Function>

procedure was created.

Mapping Details - Recipe *Ax
& Parameter / Column Operator Property Use.. RowsA..
+ [Fancions N -
4 [] Insert Using CreateRecipe I
4 3§ Parameters
@l recipeMame : nvarchar(max) ## RecipeName : String
@ source: nvarchar +— 8 Source : String
@ headnote : nvarchar{max) - ' Headnote: String 3
@l typeld: int - P TypelD : Int32
@l categoryld: int -~ # CategorylD : Int32
@l recipeld : int - 9 RecipelD : Int32 I}
I» @ Result Column Bindings —
[=] <Select Update Function> g

One last step. The RecipelD
field is an identity field,
which means the value is
generated by the database. We
need to store the generated
value in the entity instance

to make sure our in-memory
data matches up with the
rows of the table. The stored

We need to tell Entity
Framework how to map

the stored procedure
parameters to the entity
properties. When you click
in the Property column,

the Mapping Details
Window will display a list of

properties fOI‘ you to ChOOSC

from. Go ahead and fill it out now, using the screenshot as
an example.

Mapping Details - Recipe

Parameter / Column
4 Functions
4[] Insert Using CreateRecipe
4 [Parameters
'@ recipeMame : nvarchar(max)
(@] source: nvarchar
'@ headnote : nvarchar{max)
'@ typeld : int
'@ categoryld : int
'@ recipeld : int
4 [l Result Column Bindings
[NewRecipelD

Operator Property Use.. RowsA..
- % RecipeName: String
+— 8 Source: String =
+— 8 Headnote: String
+ 8 TypelD : Int32
+— ' CategorylD : Int32
PN 9 RecipelD : Int32 o
- 9 RecipelD : Int32 il

procedure returns that value as an output parameter called NewRecipelD, so all we have
to do is tell the Entity Framework about it. Type NewRecipelD in the cell labeled <Add
Result Binding> and then press the Tab key. The Mapping Details Window will add
RecipelD for you, since it’s the entity key for the Recipe entity.

011 TOUR Wl

The UpdateRecipe stored procedure needs to be mapped to the
 Update function. It doesn’t return any values (although the ;

correspondmg procedure in a production database mlght return the
* number of rows affected). :

Try addmg 1t NOW.

R N it i A i L e M e 0 e i i i Bt)

93

94

e -

THIHKIHG HFW

AWMAX
1
2 : |

when you’re finished:

How’d you do? Here s what the Mapping Detalls Wmdow should look

Mapping Details - Recipe *OXx k|
4
E Parameter / Column Operator Property Use Original ... Rows Affected Param... f
4 Functions |
» (] Insert Using CreateRecipe
4 [7] Update Using UpdateRecipe
4 Parameters |
@l id :int + 5 RecipdD : Int32 [} 1
@ name : nvarchar +— % RecipeName : String] |
{@] source: int + 2 Source:Int32 [} |
{@l headnote : nvarchar(ma+— ¥ Headnate : String |} 5
b i@l type:int +— 9 RecipeType.TypelD: Int32 [} ‘
| @l category :int + 9 RecipeCategory.CategorylD : Int32 [] |
% ; ; 4 [Result Column Bindings |
B ; : @ <Add Result Binding> ! |
1 [Z] <Select Delete Function> |
|
l
l‘ / /

STV R PRI snitihiissiciiie]

oo T L

"It isn’t necessary to map every operation to a stored procedure.

Sometimes you can’t delete a row at all, for example. But
our database does have stored procedures for the full set of
operations, so now that you’re an expert at this, why don’t you
go ahead and add the DeleteRecipe function to the Mapping Details Window.
Like the UpdateRempe stored procedure, it doesn’t have an output value, and it 1
only has one input value (since only the key is required to identify the row to be "

'deleted)

’ : /

ROV it i i ST et b i

e

F

e R v o - . —— e

THKE i DREHK

~ Once you’ve completed the On Your Own exercise, why don’t you

ke abieak e you complete the Review and we move on to the
Model Browser W1ndow>

/ ' /

How do you trigger the Update Database Wizard?

Which layers of the EDMX does the wizard change when a change is made to the
database schema?

How do you add new database objects to the conceptual model?

What do the two little buttons on the left side of the Mapping Details Window mean?

Is it necessary to map all the functions if you map one?

96

[T TTODEL DROWALR

So far we ve explored the primary &esigner surface that lets us manipulate the

CDSL and the Iapping Details window that lets us manipulate the MJSL. You
can't centrol the SSDL cIireot]y in the Entity Medel Designer-yeu have to do
that in the Server E,xplorer or a too] like SQL Server Management Studio-but you
can view it using the last majer cernpenent of the designer, the Medel Browser. The

]"\oc]el Browser also shows yeu the structure of your oonoeptual medel. Letys see how it works.

You display the Model Browser the same way you display the Mapping Details Window:
by right-clicking on a blank area of the primary designer surface. (But of course, this
time you choose Model Browser from the menu.) It displays the CSDL and SSDL as a
TreeView:

Model Browser

Type here to search -

The oonoeptual model 4 [Hello.edmx
Ll @ RecipeModel
[Entity Types
RecipeModel node. ° (3 Complex Types
[° [Associations
L4 ° 4 (@) EntityContainer: RecipeEntities
®e °® [Entity Sets
e (3 Association Sets
a [Function Imports
4 |J RecipeModel.Store The SSDL is
‘- -Eb:ss / \:;.EW: * shown under the
gredien °
[Pan ®, ®RecipeModel.Store
[Recipe o °
[RecipeCategery
[Recipelngredients
[RecipePans
[RecipeStep
[RecipeType
E unit
4 [0 Stored Procedures
|Z| CreateRecipe
[] DeleteRecipe
[=] UpdateRecipe
[Constraints

is shown under the

nede.

Ol YOUR OWI

You can use the Model Browser for more than just inspecfing the
EDMX, E)ut we’ll look at that more advanced funcmonahty in the
next chapter. For right now, why don’t you explore the basic display

and see if you can answer these questions?

‘How many entity sets are in our model?

What properties comprise the entity key of the Recipelngredient entity? How can you

el | ; ,

How does inspecting entity keys in the Model Browser differ from selecting the
properties individually on the primary designer surface? -

- What’s the data type of the ReCIpeName field as defined in the dal:abase> (Hmt check
. the Properties Wmdow) |

Is the table we deleted from the database (IngredlentWelghts) shown in the Model
Browser?

/ : : /
There are two things that we haven’t yet discussed shown in the Model Browser. One is a
node in RecipeModel, the other a node in the EntltyContamers ReC|peEnt|t|es What are
they? What do you think they do?

e

97

There are three primary windows in the Entity Model Designer. What are they? How is
each used?

Why does the Update Model Wizard try to preserve the conceptual model?

What window would you use to map a stored procedure to the delete entity function?

How do you delete an entity from the model?

How do you change the name of an entity property?

What is the relationship between two tables in the database called in the conceptual
model?

Con T&tLﬂation\SI You ve finished the chapter. Take a minute to think about what you’ve

accemp ished befere yeu meove on to the next one...

List three things you learned in this chapter:

@
)
®

Why do you think you need to know these things in order to work with Entity
Framework?

Is there anything in this chapter that you think you need to understand in more
detail? If so, what are you going to do about that?

This page intentionally left blank

[[IDEA

n

AcceptAllChanges() method, 143
Add() method, 302, 306
AddObject() method, 302, 306
AddTo() methods, 64, 143
ADO.NET, 10
Entity Framework data models versus, 35
relational objects, 34
annotations. See data annotations
anonymous types, 276
API, choosing, 348-349. See also DbContext API;
ObjectContext API
API-specific queries, 289
executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291
App.config, 211
applications
building in code-first workflow, 195-199
projects
client, retrieving data with, 66-67
code files generated, 64-65
creating, 44
EDM, adding, 49
EDM, editing, 56-57
EDM Wizard, 50-55
EDMX, viewing, 62-63
LINQ queries, writing, 58-59
NuGet package, adding, 45-47
sample project
architecture, choosing, 346-347
data client, building, 354-355
development platform, choosing, 345
model, building, 350-351
model, refining, 352-353
requirements, determining, 342-344
workflow and API, choosing, 348-349
architecture, choosing, 346-347
assembly directive (T4 templates), 180
associations
adding to projects, 171

editing for partitioned entities, 124-125
Attach() method, 143
AttachTo() method, 143
attributes. See data annotations

C

candidate keys, 20, 23
cascade delete, 312-313
change proxies, creating, 322-325
change tracking, 321-325
change tracking objects, 138
changes, undoing, 320
ChangeState() method, 320
class feature blocks in T4 templates, 181
clients. See data clients
code files, generated in projects, 64-65
Code First Migrations, 349
Code Generation Strategy property, 175
code-first workflow
building applications in, 195-199
comparison with other workflows, 192-193
connection strings, 210-211
data annotations, 226
descriptions of, 227-228

in Entity Framework version 4 versus version 5,

229-232

data clients

building, 200-205

rules for building, 206-208
Database class, 212-214
databases, renaming, 209
Fluent API, 243

configurations, 251-255

methods, 246-250

syntax, 244-245
initializers

creating, 216-219

standard initializers, 215
projects in, 194
relationships, 233

multiple relationships, 238-242

one-to-one relationships, 234-237

CodePlex, 357
Compare annotation, 328
CompatibleWithModel() method, 214
complex types, 104-105

creating, 106-111, 206

reusing, 112-114

conceptual model. See also EDM (Entity Data Model)

building in sample project, 350-351
EDM Designer, EDMX and, 74-75
function mapping, 91-94
property mapping, 88-90
refining in sample project, 352-353

TPT (Table-Per-Type) inheritance, 127-130

updating EDM, 76-86

Conceptual Schema Definition Language (CSDL), 87

configurations in Fluent API, 251-255
connection object, 138
connection strings, 210-211
connections in EDM Wizard, 50-52
context in code files, 64
context object, 138
control blocks in T4 templates, 181
Create() method, 144, 214, 322
CreatIfNotExists() method, 214
CRUD operations, 299
creating entities, 306-311
deleting entities, 312-313
structure of, 302-305
updating entities, 312-313

CSDL (Conceptual Schema Definition Language), 87

Custom Tool property, 175
custom validation attributes, 331
CustomValidation annotation, 328

D

data access project in code-first workflow, 194

data annotations, 223, 226
data validation with, 328-330
descriptions of, 227-228

in Entity Framework version 4 versus version 5,

229-232

data client project in code-first workflow, 194

data clients
building, 200-205, 354-355
retrieving data with EDM, 66-67
rules for building, 206-208

data model in code-first workflow, 194

data validation, 327

annotations, 328-330
custom validation attributes, 331
I'ValidatableObject interface, 332-335

database application design, recipe examples, 12-13. See
also applications

Database class, 201, 212-214
database connections in EDM Wizard, 50-52
database model for recipe example, 16
Database object, 150

database-first workflow

comparison with other workflows, 192-193

complex types, 104-105

creating, 106-111

reusing, 112-114
EDM Designer, EDMX and, 74-75
function mapping, 91-94
inheritance

TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103,

131-133

TPT (Table-Per-Type) inheritance, 101, 103,

127-130

partitioned entities, 103

creating, 120-125

split entities versus, 118-119
projects

client, retrieving data with, 66-67

code files generated, 64-65

creating, 44

EDM, adding, 49

EDM, editing, 56-57

EDM Wizard, 50-55

EDMX, viewing, 62-63

LINQ queries, writing, 58-59

NuGet package, adding, 45-47
property mapping, 88-90
split entities, 103, 115

modeling, 116-117

partitioned entities versus, 118-119
updating EDM, 76-86

databases

connection strings, 210-211
creating in code-first workflow, 200-205
generating, 172-174
initializers
creating, 216-219
standard initializers, 215
renaming, 209
retrieving data from. See queries

30l

362.

rules for building in code-first workflow, 206-208
DataType annotation, 328
DbChangeTracker class, 150
DbConnection class, 140, 150, 211
DbContext API

changing default code, 148-149

data validation, 327

annotations, 328-330
custom validation attributes, 331
IValidatableObject interface, 332-335
designer classes, 151
entity designer classes, 152-155
entity state, 315
change tracking, 321-325
retrieving, 316-319
undoing changes, 320

lazy loading, 271

queries with, 289
executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

structure of, 150
DbContext class, 150
DbContext constructor, 210
DbModelBuilder class, 244-245, 251-255
DbQuery class, 150
DbSet class, 150
decomposition, 23
default code, changing for DbContext API, 148-149
delegates, queries versus, 262-263
delete constraints, 28-29
Delete() method, 214
DeleteObject() method, 303
deleting entities, 303, 312-313
designer classes

DbContext API, 151-155

ObjectContext API, 143-147
DetectChanges() method, 143, 321, 327
development platform, choosing, 345
directives in T4 templates, 180
downloading Visual Studio, 6

£

editing
associations for partitioned entities, 124-125
EDM (Entity Data Model), 56-57

EDM (Entity Data Model), 11. See also code-first

workflow; conceptual model; database-first workflow;
model-first workflow
adding to projects, 49
building in sample project, 350-351
editing, 56-57
refining in sample project, 352-353
retrieving data from. See queries
updating, 76-86
viewing structure in Model Browser, 96-97

EDM Designer, 11

complex types
creating, 106-111
reusing, 112-114
DbContext API classes, 151
editing EDM, 56-57
EDMX and, 74-75
inheritance, establishing, 128-129
Mapping Details window, 87-95
Model Browser, viewing model structure, 96-97
ObjectContext API classes, 143
partitioned entities, creating, 120-125
split entities, modeling, 116-117
TPH (Table-Per-Hierarchy) inheritance, modeling,
132-133
updating EDM, 76-86

EDM Wizard

database-first workflow
building model with, 50-55
code files generated, 64-65
explained, 61

model-first workflow in, 166-174

EDMX

EDM Designer and, 74-75
updating, 76-86
viewing, 62-63

entities

accessing, 35
adding to projects, 170
complex types, 104-105
creating, 106-111
reusing, 112-114
creating, 302, 306-311
CRUD operations, structure of, 302-305
deleting, 303, 312-313
designer classes
DbContext API, 152-155
ObjectContext API, 144-147
finding, 292-293
local entities, API-specific queries on, 290-291

members, 65
partitioned entities, 103
creating, 120-125
split entities versus, 118-119
related entities in queries, 272-274
sets of, 138
split entities, 103, 115
modeling, 116-117
partitioned entities versus, 118-119
updating, 303, 312-313
Entity Data Model (EDM). See EDM (Entity Data
Model)
Entity Framework
ADO.NET data models versus, 35
components of, 10-11
data annotations in version 4 versus version 5, 229-232
NuGet. See NuGet
projects. See projects
reasons for using, 9, 14, 18-19
resources for information, 357
Entity Framework Forum, 357
entity instances, 138
entity keys, 77,79
Entity() method, 245
Entity Model Designer. See EDM Designer
Entity Partitioning. See partitioned entities
Entity property, 291
Entity Splitting. See split entities
Entity SQL, 281
advantages and disadvantages, 287
literals in, 285
parameterized queries, 286
syntax, 282-284
entity state, 315
change tracking, 321-325
retrieving, 316-319
undoing changes, 320
EntityClient class, 10
EntityObject class, 140, 144, 150
EntityType definitions, 74
EntityTypeConfiguration class, 245
Evans, Eric, 243
ExecuteSqlCommand() method, 214, 294
ExecuteStoreCommand() method, 294-295
executing
LINQ queries, 268-270
queries directly, 295
SQL directly, 294
Exists() method, 214

expression blocks in T4 templates, 181
extending object model, 156-159

¥

factor methods, 65
fields, creating in code-first workflow, 206
Find() method, 292
finding entities, 292-293
FirstOrDefault() method, 275
Fluent API, 223, 243
configurations, 251-255
methods, 246-250
syntax, 244-245
Fluent interface, 243
foreign keys, 25, 312
Fowler, Martin, 243
functions, mapping, 91-94

G

Generate Database Wizard, 172-174
GetObjectByKey() method, 292
GetObjectStateEntries() method, 291
GetValidationErrors() method, 327
GetValidationResult() method, 327

i

Hanselmann, Scott, 14

HasColumnName() method, 245
HasMaxLength() method, 245

Horizontal Splitting. See Partitioned Entities

I

identity values, 23
impedance mismatch, 9, 14, 16-19
implicit deferred loading, 271
import directive (T4 templates), 180
include directive (T4 templates), 180
Include() method, 272
inheritance
TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103,
131-133
TPT (Table-Per-Type) inheritance, 101, 103, 127-130
Initialize() method, 214
InitializeDatabase() method, 217

363

initializers

creating, 216-219

standard initializers, 215
installing NuGet, 43
instances. See entity instances
integrity constraints, 28-29
Intellisense, 245
IValidatableObject interface, 332-335

fl

keys
candidate keys, 20, 23
entity keys, 77,79
foreign keys, 25, 312
primary keys, 23

L

Language INtegrated Query. See LINQ queries
lazy loading, 271
Lerman, Julia, 357
in-line configurations, 252
LINQ queries
executing, 268-270
lazy loading, 271
.NET delegates versus, 262-263
projections, 276-280
related entities, 272-274
results, 275
syntax, 264-267
writing, 58-59
literal text
in Entity SQL, 285
in T4 templates, 181
Load() method, 273
local entities, API-specific queries on, 290-291
Local property, 290

I1

many-to-many relationships, 25, 238-242
mapping
functions, 91-94
properties, 88-90
to complex types, 113-114
to partitioned entities, 122-123
to split entities, 116-117
Mapping Details window, 74, 87-95

364

function mapping, 91-94
property mapping, 88-90
reusing complex types, 113-114
Mapping Schema Language (MSL), 87
materialization, 141
MaxLength annotation, 328
metadata attributes. See data annotations
method chaining, 243
method syntax (LINQ), 267
methods in Fluent API, 246-250
Microsoft Data Developer Center, 357
MinLength annotation, 328
Model Browser
Store Schema, 75
viewing model structure, 96-97
model builders. See DbModelBuilder class
model-first workflow, 166-174. See also conceptual
model; EDM (Entity Data Model); object model
comparison with other workflows, 192-193
MSL (Mapping Schema Language), 87
multiple relationships in code-first workflow, 238-242
multiplicity, 77-78

I

namespaces for data annotations, 229-232
Nathan, Adam, 345
.NET delegates, queries versus, 262-263
normal forms, 20
not null constraints, 28-30
NuGet, 42
adding to projects, 45-47
installing, 43
nullibility of foreign keys, 312

0

Object class, 150
object model
DbContext API
changing default code, 148-149
designer classes, 151
entity designer classes, 152-155
structure of, 150
extending, 156-159
ObjectContext API, 140-142
designer classes, 143
entity designer classes, 144-147
structure of, 138

Object Services, 10
ObjectContext API, 140-142
designer classes, 143
entity designer classes, 144-147
entity state, 315
change tracking, 321-325
retrieving, 316-319
undoing changes, 320
lazy loading, 271
queries with, 289
executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291
ObjectContext class, 140
Object-Oriented Analysis & Design (OOA&D), 31-35
ObjectQuery class, 140
ObjectSet class, 140
ObjectStateManager class, 140
OnContextCreated() method, 64
one-to-many relationships, 25
one-to-one relationships, 25, 234-237
OnModelCreating() method, 244-245
OOA&D (Object-Oriented Analysis & Design), 31-35
OOP model for recipe example, 17
output directive (T4 templates), 180

r

parameterized queries, 286
partitioned entities, 103

creating, 120-125

split entities versus, 118-119
persistence-ignorant POCOs, 194
platform, choosing, 345
primary keys, 23
Programming Entity Framework (Lerman), 357
projections (LINQ), 276-280
projects

associations, adding, 171

client, retrieving data with, 66-67

code files generated, 64-65

in code-first workflow, 194

creating, 44

EDM (Entity Data Model)

adding, 49
editing, 56-57
EDM Wizard, 50-55
EDMX, viewing, 62-63

entities, adding, 170
LINQ queries, writing, 58-59
NuGet package, adding, 45-47
properties, adding, 171
sample project
architecture, choosing, 346-347
data client, building, 354-355
development platform, choosing, 345
model, building, 350-351
model, refining, 352-353
requirements, determining, 342-344
workflow and API, choosing, 348-349
T4 templates, adding, 182-185
properties
accessing, 35
adding to projects, 171
complex types, 104-105
creating, 106-111
reusing, 112-114
in entities, 65
mapping, 88-90
to complex types, 113-114
to partitioned entities, 122-123
to split entities, 116-117
viewing, 79
Properties window, 75
Property method, 245
PropertyChanged() event, 144
PropertyChanging() event, 144
proxy tracking, 321-325

0

queries

API-specific queries, 289
executing directly, 295
executing SQL directly, 294
finding entities, 292-293
on local entities, 290-291

Entity SQL, 281
advantages and disadvantages, 287
literals in, 285
parameterized queries, 286
syntax, 282-284

LINQ queries
executing, 268-270
lazy loading, 271
.NET delegates versus, 262-263
projections, 276-280

368

366

related entities, 272-274
results, 275
syntax, 264-267
writing, 58-59

query syntax (LINQ), 267

i

Range annotation, 328
recipes, 12-13
referential integrity constraints, 29
RegularExpression annotation, 328
related entities in queries, 272-274
relational database design
explained, 20-30
OOA&D (Object-Oriented Analysis & Design)
versus, 32-33
relationships, 25-28
schema design, 23-24
relational model for recipe example, 16
relational objects in ADO.NET, 34
relations, 20
relationships, 25-28
in code-first workflow, 233
creating, 206
multiple relationships, 238-242
one-to-one relationships, 234-237
multiplicity, 77-78
navigating, 35
Remove() method, 303
renaming
complex types, 111
databases, 209
repeating groups, 23
Required annotation, 328
requirements, determining, 342-344
resources for information, 357
results of LINQ queries, 275
retrieving
data from EDM (Entity Data Model). See queries
entity state, 316-319
reusing complex types, 112-114

\

SaveChanges() method, 143, 316-319, 327
scalar values, 20, 23

schema design, 23-24

Seed() method, 216-217

SELECT clause, 282
SELECT VALUE clause, 282
semantic versioning model, 42
SetlInitializer() method, 201, 214-215
sets of entities, 138
snapshot tracking, 321
split entities, 103, 115
modeling, 116-117
partitioned entities versus, 118-119
SQL, executing directly, 294
SqlQuery() method, 214, 295
SSDL (Store Schema Definition Language), 87
standard blocks in T4 templates, 181
state. See entity state
Store Schema, 75
Store Schema Definition Language (SSDL), 87
stored procedures. See functions
StringLength annotation, 328

I

T4 (Text Template Transformation Toolkit) templates, 163
adding to projects, 182-185
structure of, 178-179
writing, 180-181
Table Splitting. See partitioned entities
Table-Per-Concrete-Type (TPC) inheritance, 101
Table-Per-Hierarchy (TPH) inheritance, 101, 103,
131-133
Table-Per-Type (TPT) inheritance, 101, 103, 127-130
tables, creating in code-first workflow, 206
template directive (T4 templates), 180
templates
changing, 175-177
T4 templates, 163
adding to projects, 182-185
structure of, 178-179
writing, 180-181
Text Template Transformation Toolkit (T4) templates. See
T4 (Text Template Transformation Toolkit) templates
ToList() method, 268
TPC (Table-Per-Concrete-Type) inheritance, 101
TPH (Table-Per-Hierarchy) inheritance, 101, 103, 131-
133
TPT (Table-Per-Type) inheritance, 101, 103, 127-130
tracking changes. See change tracking
TransformText() method, 179

U

undoing changes, 320
unique constraints, 28-29
update constraints, 28-29
Update Model Wizard, 83-86
updating
EDM (Entity Data Model), 76-86
entities, 303, 312-313

V

Validate() method, 327, 332

ValidateEntity() method, 327

validation. See data validation

validation pipeline, 327

viewing
EDMX, 62-63
model structure in Model Browser, 96-97
properties, 79

Visual Studio, downloading, 6

W

WillCascadeOnDelete() method, 313
workflow, choosing, 348-349. See also code-first
workflow; database-first workflow; model-first

workflow
WPF Unleashed (Nathan), 345
writing T4 templates, 180-181

)

XML, viewing EDMX, 62-63

367

	CONTENTS
	ACKNOWLEDGEMENTS
	3 USING THE DESIGNER
	The designer and the EDMX
	Updating the model
	Mapping functions
	The Model Browser

	INDEX
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

