- N
John Ray In Full Color
William Ray

code appear as
they do in Xcode 4.3+
Covers i0S and 0S X develop-
ment topics—including MVC,
Interface Bulider, Storyboards,
Core Data, and much more!
Additional files and

updates available
onling

SamsTeach Yourself

Xcode 4

John Ray
William Ray

Sams Teach Yourself

Xcode 4

“\\\\“\\\\\“\\\\w\\\w\\“w\\\\\\\\\\\\\\\\\\“\\\\“\\\\\“\wwwmwwm\w\'ﬂﬁmmwm

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Xcode® 4 in 24 Hours

Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33587-7

ISBN-10: 0-672-33587-5

The Library of Congress Cataloging-in-Publication data is on file.
Printed in the United States of America
First Printing June 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand
Acquisitions Editor
Laura Norman
Development
Editor

Keith Cline
Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Tim Wright
Proofreader

Chrissy White

Technical Editor
Greg Kettell
Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

Contents at a Glance

HOUR 1

© 0 N O A~ WON

N MNNNNERBRERRRBRRRERBRRIERR
A W NBRBR O O ®~NO®G H WNIER O

Introduction

Xcode 4

Just Enough Objective-C and Cocoa

Understanding the MVC Design Pattern

Using Xcode Templates to Create Projects

Managing Projects and Resources

Using the Xcode Code Source Editor

Working with the Xcode 4 Documentation

Creating User Interfaces

Connecting a GUI to Code

Creating iOS Application Workflows with Storyboarding
Building and Executing Applications

Using Source Control

Xcode-Supported Languages

Planning for Re-use: Frameworks and Libraries
Putting It All Together: Building an OS X Application
Building an iOS Application

Attaching Big Data: Using Core Data in Your Applications

Test Early, Test Often

Getting the Bugs Out

Keeping things Organized: Shared Workspaces
Advanced: Analyzing Code with Instruments
Managing and Provisioning iOS Devices
Distributing Your Applications

Xcode CLI Utilities

Index

23

57

71

95
117
145
165
195
215
251
279
311
329
355
399
435
465
487
509
533
549
567
587
603

Table of Contents

Introduction

HOUR 1: Xcode 4
Welcome to Xcode

The Apple Developer Programs
Installing the Xcode Developer Tools
The Nickel Tour

Preparing Your iOS Device (Optional)
Summary

Q&A

Workshop

HOUR 2: Just Enough Objective-C and Cocoa
Object-Oriented Programming and Objective-C
What Is Objective-C?
Objective-C Programming Basics
Memory Management and Automatic Reference Counting
What Is Cocoa?
Cocoa Versus Cocoa Touch
Summary
Q&A
Workshop

HOUR 3: Understanding the MVC Design Pattern
Development, Design Patterns, and MVC
How Xcode Implements MVC
An MVC Walkthrough
Summary
Q&A
Workshop

— 00 W W =

17
20
20
21

23
23
25
38
48
50
51
54
55
55

57
57
60
64
68
68
69

\

Table of Contents

HOUR 4: Using Xcode Templates to Create Projects 71
Available Project Types 71
The Project-Creation Process 83
You've Got a Project 88
Summary 91
Q&A 91
Workshop 92
HOUR 5: Managing Projects and Resources 95
Getting Your Bearings 95
Managing Project Files 99
Managing Frameworks and Libraries 108
Managing Groups 110
Managing Target Properties 111
Summary 114
Q&A 115
Workshop 115
HOUR 6: Using the Xcode Source Editor 117
Understanding Editor Basics 117
Navigating Within and Between Files 126
Using the Assistant Editor 131
Correcting Errors and Warnings in the Issue Navigator 133
Refactoring Code 135
Using Code Snippets 138
Summary 142
Q&A 142
Workshop 142
HOUR 7: Working with the Xcode 4 Documentation 145
Overview of Documentation Resources 145
Configuring the Xcode Documentation Downloads 148
Understanding the Documentation Resources 149

Using the Xcode Help Viewer 155

vi

Sams Teach Yourself Xcode 4 in 24 Hours

Using the Quick Help Assistant 158
Summary 161
Q&A 162
Workshop 162
HOUR 8: Creating User Interfaces 165
What Is Interface Builder? 165
The Anatomy of an Interface Builder File 168
Creating User Interfaces 174
Working with the IB Layout Tools 177
Customizing Interface Appearance 188
Setting Obiject Identities 191
Adding Custom Objects to Interface Builder 192
Summary 193
Q&A 193
Workshop 194
HOUR 9: Connecting a GUI to Code 195
Outlet, Actions, and Properties: A Review 195
Making Connections to Outlets and Actions 197
Writing Connection Code with Interface Builder 205
Summary 211
Q&A 212
Workshop 212
HOUR 10: Creating iOS Application Workflows with Storyboards 215
The Power of Storyboards 215
Storyboard Terminology 216
The Anatomy of a Multiscene Project 218
Making Advanced Segues 230
A Navigation Storyboard Example 239
Summary 248
Q&A 249

Workshop 249

vii

Table of Contents

HOUR 11: Building and Executing Applications 251
The Language of the Build 251
Managing Targets 257
Managing Schemes 264
Using the iOS Simulator 271
Summary 276
Q&A 277
Workshop 277

HOUR 12: Using Source Control 279
Using Xcode Snapshots 279
A Brief Introduction to Source Control Systems 283
Working with Subversion and Git Repositories 285
Managing a Project in Source Control 296
Summary 307
Q&A 308
Workshop 308

HOUR 13: Xcode-Supported Languages 311
Choosing the Right Language 312
Built-In Languages 313
Adding Support for Other Languages 322
Summary 325
Q&A 326
Workshop 326

HOUR 14: Planning for Reuse: Frameworks and Libraries 329
Understanding Frameworks 329
Deploying a Framework 348
Reusing Code from Existing C/C++ Libraries 349
Summary 352
Q&A 352

Workshop 353

viii

Sams Teach Yourself Xcode 4 in 24 Hours

HOUR 15: Putting It All Together: Building an OS X Application 355
Getting Started 356
Creating the Interface 359
Attaching Code 364
Inserting Interface Object References into the Code 369
Tying Things Together 373
Increasing Functionality with a Framework 376
Summary 395
Q&A 396
Workshop 396

HOUR 16: Building an iOS Application 399
Assessing What You Already Have 400
Building from the Template 403
Adding a Static Library Target 404
Updating Application Logic and Library Calls for iOS 414
Summary 430
Q&A 431
Workshop 432

HOUR 17: Attaching Big Data: Using Core Data in Your Applications 435
Introducing Core Data 435
Using the Xcode Core Data Model Editor 438
Binding a Data Model to a User Interface 446
Accessing Data Through Code 458
Summary 462
Q&A 463
Workshop 463

HOUR 18: Test Early, Test Often 465
Adding Unit Tests to an Existing Application 466
Implementing Tests for Existing Code 472

Accessing the Rest of an Application Through the Bundle Loader 480

ix

Table of Contents

Summary 483
Q&A 484
Workshop 485
HOUR 19: Getting the Bugs Out 487
Getting Started with the Debugger 488
Proactive Debugging 493
Working with Breakpoints 497
Summary 506
Q&A 506
Workshop 507
HOUR 20: Keeping Things Organized: Shared Workspaces 509
Using Workspaces 510
Creating a Workspace 515
Adding Projects to the Workspace 517
Configuring the OS X Project to Work in the Workspace 519
Configuring the iOS Project to Work in the Workspace 524
Summary 530
Q&A 531
Workshop 531
HOUR 21: Advanced: Analyzing Code with Instruments 533
The Instruments Interface 534
Using Instruments 536
Additional Runs 541
Collecting Data from Additional Instruments Simultaneously 543
Summary 545
Q&A 546
Workshop 546
HOUR 22: Managing and Provisioning iOS Devices 549
Creating an iOS Distribution Certificate 550

Creating an App ID 556

X

Sams Teach Yourself Xcode 4 in 24 Hours

Creating a Distribution Provisioning Profile 560
Summary 563
Q&A 564
Workshop 565
HOUR 23: Distributing Your Applications 567
Finalizing Your Distribution Build 568
Configuring an iTunes Connect Application Record 576
Distributing Your Archived Application 578
Summary 583
Q&A 583
Workshop 584
HOUR 24: Xcode CLI Utilities 587
Using xcode-select 588
Using xcodebuilid 590
Using xcrun 595
Other Xcode Command-Line Tools 598
Bigger and Better Command-Line Uses 599
Summary 600
Q&A 600
Workshop 602

Index 603

About the Authors

John Ray is currently serving as a Senior Business Analyst and Development Team
Manager for the Ohio State University Office of Research. He has written numerous books
for Macmillan/Sams/Que, including Using TCP/IP: Special Edition, Teach Yourself Dreamweaver
MX in 21 Days, Mac OS X Unleashed, and Teach Yourself iOS 5 Development in 24 Hours. As a
Macintosh user since 1984, he strives to ensure that each project presents the Macintosh
with the equality and depth it deserves. Even technical titles such as Using TCP/IP contain
extensive information about the Macintosh and its applications and have garnered numer-
ous positive reviews for their straightforward approach and accessibility to beginner and
intermediate audiences.

Will Ray is an assistant professor of pediatrics in the Battelle Center for Mathematical
Medicine at Nationwide Children’s Hospital. Trained as a biophysicist in computational
biology and scientific visualization, Dr. Ray’s group is working to bring cutting-edge compu-
tational technology to end users, through simplified user interfaces. He has been developing
training materials and teaching users and programmers to live at the intersection of
Macintosh and UNIX technologies since 1989.

You can visit their Xcode book website at http://teachyourselfxcode.com or follow their
book-related tweets on Twitter at #XcodeIn24.

http://teachyourselfxcode.com

Dedication

Since Will and I couldn’t agree on dedicating this to his parents or mine, we hereby dedicate this
book to the game #Starhawk. Come play the authors and discuss Xcode in the regularly appearing
“Old-N-Slow” server.

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Greg Kettell—for
working through the table of content changes, schedule conflicts, and on-the-fly revisions.
You’ve made this book a reality and deciphered many 2 a.m. sentences that were barely
more than random keyboard mashing.

Thanks to everyone around us—family, friends, distant relations, strangers, and pets—for
providing food, ibuprofen, and paying the bills.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone number or e-mail address. I will carefully review your comments and share
them with the author and editors who worked on the book.

E-mail: consumer@samspublishing.com

Mail: Greg Wiegand
Editor-in-Chief
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, and errata that might be available for this book.

This page intentionally left blank

Introduction

So you've decided to write applications for OS X or iOS. You sit down at your Macintosh,
start up Xcode, and... what? Create a project? Create a file? Make a storyboard? Build a
Core Data model? What?

For an operating system that prides itself on being accessible to many, Xcode can appear as
an insurmountable obstacle to an unprepared developer. With an iTunes-like interface, and
more panels, palettes, menus, and buttons than you can count, even a simple Hello World
application can seem daunting. Apple, while diligent in providing documentation, provides
very few resources for developers who understand programming fundamentals but not their
OS X/iOS implementation. That’s where this book comes in.

Xcode offers a range of integrated tools for everything from data modeling to performance
analysis and optimization. Teach Yourself Xcode in 24 Hours takes 24 of the most important
aspects of Xcode development and condenses them down into easily understandable
chunks. To help convey some of the core concepts, you work with real projects for both iOS
and OS X that demonstrate important features such as shared libraries/frameworks, story-
boards, Core Data models, and even hands-on debugger practice.

Xcode 4 represents an entirely redesigned version of Apple’s development suite. Despite
reaching version 4.4 (in beta) during this writing, it has only been in developer’s hands for
slightly more than a year. Unfortunately, this means it is a still a bit rough around the
edges. We point out the issues where we encounter them, but don’t be shy about filing bug
reports with Apple if features don’t quite work as anticipated. With the help of the OS X/iOS
community, Xcode is being improved and enhanced rapidly. Each new release brings more
consistency and reliability to the product.

Our goal for this book is to open Xcode development to programmers who may have previ-
ously eyed the platform with trepidation. A learning curve applies to becoming an Xcode
developer, but once you begin to understand how Apple intends the tools to be used, you'll
find that OS X and iOS development can be fast and, most important, fun.

Who Should Use This Book?

This book targets individuals who have used programming tools but who are new to the
Xcode development platform. Although no previous development experience is required to
complete the book, an understanding of programming fundamentals is helpful. To be clear,

2

Sams Teach Yourself Xcode 4 in 24 Hours

even though we provide code samples and an introduction to Objective-C, we do not have
the space in 24 hours to teach the concepts of loops, arrays, and other foundation topics.

In addition, to be successful, we recommend that you spend time reading the Apple devel-
oper documentation and researching the topics presented in this book. A vast amount of
information about OS X/iOS development is available, and it is constantly changing.
Apple’s integrated online documentation system makes it possible to stay up-to-date on
your development knowledge and learn the details of available technologies from the com-
fort of your desktop Mac or iPad.

The material in this book specifically targets Xcode 4.3 and later. If you are running an ear-
lier version, you definitely want to upgrade before moving too far along. In addition, many
lessons are accompanied by project files that include sample code. While opening a project

and clicking Run can be fun, we prefer that you follow along, when possible, and build the

application yourself.

Be sure to download the project files from the book’s website at
http://teachyourselfxcode.com. If you have issues with any projects, view the posts on this
site to see whether a solution has been posted.

In addition to the support website, you can follow along on Twitter. Search for #XcodeIn24
on Twitter to receive official updates and tweets from other readers. Use the hashtag
#XcodeIn24 in your tweets to join the conversation. To send me messages via Twitter, begin
each tweet with @johnemeryray.

By ﬁ&]e Due to the complexity of the topics discussed, some figures in this
ay book are very detailed and are intended only to provide a high-level view
of concepts. Those figures are representational and not intended to be

read in detail. If you prefer to view these figures on your computer, you
can download them at informit.com/title/9780672335877.

http://teachyourselfxcode.com

HOUR 6

Using the Xcode Source
Editor

What You’ll Learn in This Hour:

Xcode Source Editor basics

v

How to use autoformatting features
The use of pragma marks to identify different pieces of code
Ways to find and correct errors before your app even runs

vV vyVvyy

How to refactor existing code

Over the past few hours, you have learned how to create projects, add files, add frame-
works, and do much of the work necessary to successfully build you own application proj-
ects. What we have not touched on, however, is the Xcode Source Editor itself, which you
use to edit, unsurprisingly, source code. You've got your project and files; now how about
editing them?

This hour walks through the different Source Editor features—from automatic code com-
pletion to code refactoring. You learn how the Source Editor can help you write clean, well-
formatted code and even identify problems before you even try to run your application.
Even if you have played around with editing files already, you're still likely to find a few
undiscovered tricks in this hour.

Understanding Editor Basics

Let’s be serious: If you're learning how to program in Xcode, you know how to edit a text
file. I am not going to bore you with details on how to move your cursor or copy and
paste. The Xcode Source Editor works just like any text editor, with several additions that
may make your life easier. To follow along with this hour’s lesson, create a new project

118

FIGURE 6.1
Create a new
Mac OS X
Cocoa
application.

HOUR 6: Using the Xcode Source Editor

called HelloXcode using the Mac OS X Cocoa Application template and the config-
uration shown in Figure 6.1. We'll edit this so that it displays a simple message
(Hello Xcode) in the application’s window. Nothing earth shattering, but you'll find
it handy to keep this open so that you can test the tools as you read.

066 "
G)@) [=] g
| Run Swop Scheme Breakpoints = —— = Editor View Organizer

[

Choose options for your new project:

Product Name | |

Company Identifier |com.teachyaurselfxcade]

Bundle [dentifier com.teachyourselfxcade.HelloXcode '

Class Prefix [XYZ]

App Store Category | None =

(] Create Document-Based Application
Document Extension mydoc

() Use Core Data

¥ Use Automatic Reference Counting E

() Include Unit Tests e
BN

Include Spatlight Imparter

2ts mouse-down
fon message to a|
licked ar...

reepts mouse-

[cancel | [Previous | [Next] anaction

ect when it's...

Rounded Rect Button - Intercepts
() mouse-down events and sends an
action message to a target object...

Rounded Textured Button -
Intarcant: A te and

To edit code in Xcode, use the Project Navigator to find the file you want to work on,
and then click the filename. The editable contents of the file are shown in the Editor
area of the Xcode interface. For our sample application, click the AppDelegate.m file,
as shown in Figure 6.2.

Code Completion

Using the Source Editor, start entering the following text to implement the
applicationDidFinishLaunching method. Start a new line immediately following
the existing comment “Insert code here to initialize your application.” Update the
method as shown in Listing 6.1.

LISTING 6.1 A Short Sample Mac 0S X Application

1: - (void)applicationDidFinishLaunching: (NSNotification *)aNotification

2

3 // Insert code here to initialize your application
4: NSTextField *myMessage;

5 NSTextField *myUnusedMessage;

6 myMessage=[[NSTextField alloc] init];

Understanding Editor Basics

LISTING 6.1 Continued

7: myMessage.font=[NSFont systemFontOfSize:72.0];
8: myMessage.stringValue=@"Hello Xcode";

9: myMessage.textColor=[NSColor blueColor];

10: myMessage.editable=NO;

11: [self.window setContentView:myMessage];

12: }

8anDn

OB ES

As you enter the code, notice that when you are typing a method or class name that
Xcode recognizes, a pop-up dialog appears near your cursor, as shown in Figure 6.3.
Here, the systemFont0fSize method is being typed, and Xcode is presenting poten-
tial options for autocompletion as I type.

To choose an autocompletion value, use the arrow keys to highlight the value you
want to use, and then press Return to insert it into your code. You can also press
Escape to make the pop-up disappear.

If you are completing a method name, chances are that you need to provide param-
eters as well. (In the case of systemFont0fSize, it is a floating-point value that
describes the size of the text.) You can again use the arrow keys to move between the
parameter fields and enter the values you want, or you can just press Tab to skip
from parameter to parameter.

119

FIGURE 6.2
Choose a file
to edit.

120

FIGURE 6.3
Xcode autocom-
pletes recog-
nized methods,
classes, and
symbols.

HOUR 6: Using the Xcode Source Editor

CIEE: 3 HelioXcode codepro] — m AppDelegate.m <
o e T —— T Hac @WMo o (@
':_:_l “.;M_J: Mt et 1 ! Cdmr _Wem orgm |
i Walskoen | | mencode | I AdeOniagem |] -2e0 -2
* B e e 0 06 107
* [Haiisticede
& AagOelegatn h
MarMer At
L Suppaning fies
* (] Frimemsaries
= L] Produets.
y VmiRIRE coriaa systesfeattisefon
L3N 500 (-]

If you have already finished typing (or autocompleted) a line in your code and dis-
cover that it is not what you want, you can click anywhere within the line and then
choose Editor, Show Completions (Control+Spacebar) or press Escape. Doing so
displays the autocomplete pop-up dialog with all the potential matches wherever
your cursor is located—as if the rest of the line does not exist.

You can adjust the code completion options in the Xcode preferences within the
Text Editing section.

Auto-Indentation

Clean code is easier to read and easier to maintain, and Xcode works behind the
scenes to keep your code nicely formatted through auto-indention. As you program,
Xcode automatically indents lines so that they fall either directly under the previous
line or as appropriate to the structure of the statements you are writing.

Code within conditional blocks and loops, for example, are indented farther than
surrounding code to visually show that they are a cohesive block. This has no effect
on execution, but it can make reading through a source code file much easier than if
each line’s code starts at the first character.

You can control the logic for the Xcode auto-indentation system using the Text
Editing panel of the application preferences (Xcode, Preferences) and the
Indentation button within that, as shown in Figure 6.4.

Understanding Editor Basics 121

820 . Text Editing) FIGURE 6.4
Ill ‘ij ;ﬂ I /£ L ﬁ Configure the

General Behaviors Fonts & Colars | TexEEgiting | Key Bindings Downloads Locations Distributed Builds Xcode indenta-
tion logic.

Prefer indent using: \ Spaces T
Tab width: 4 EJ spaces
Indent width: 4 @ spaces

Tab key: | Indents in leading whitespace 2

Line wrapping: [Wrap lines to editor width N
Indent wrapped lines by: 4@] spaces

(¥ Syntax-aware indenting

[] Indent solo *{" by: 4 @ spaces Automatic indent for:
|_| Indent // comments one level deeper [O T
"] Align consecutive // comments M ™" ¥ Return

A nice feature of Xcode is that indentation isn’t just applied while you're typing and
then lost. Although you can certainly move your code around and make it into a
mess, you can always apply the indentation rules again, as follows:

1. Within the sample project, add tabs and spaces in front of some of the lines in
applicationDidFinishLaunching.

2. Delete the indentation from some of the lines, as well.

3. After you have made the method sufficiently ugly in appearance, select the
lines of code.

4. Choose Editor, Structure, Re-Indent (Control+I).

Xcode reformats the code, and all is well again, as shown in Figure 6.5.

You can access the Structure menu by right-clicking directly in the Xcode Source %
Editor. This can be a useful menu to access while editing, so the faster you can

get to it, the better.

122

FIGURE 6.5
Before and after
applying the
indentation
logic.

HOUR 6: Using the Xcode Source Editor

sns e —— e A .
K’,;i W) e - [r———T] | moaaon &
| B v Mewee b L3 T wow v |

T S e —— =]

Balancing Delimiters

Indentation may be “just for looks,” but delimiters are not. Properly balanced
delimiters are the difference between code that works the way you want and code
that seems to have a mind of its own. When coding in Objective-C, you work with
three primary types of block delimiters:

() Parentheses for function calls
[1 Square brackets for Objective-C messaging

{} Curly brackets for logical programming blocks

Each time you type one of these delimiters, you need another matching one added
to your code. If you happen to miss one or put one in the wrong place, chances are
your code won't run. Worse yet, it might run and not do what you expect.

To help you keep track of where your delimiters are (or aren’t) balanced, Xcode
automatically highlights the first delimiter when you type the second (or move the
cursor to the immediate right of the second delimiter).

For example, return to the sample method that you wrote earlier
(applicationDidFinishLaunching), position your text entry cursor immediately
before the right curly bracket, }, at the end of the method. Next, press the right
arrow to move the text cursor to the right of the curly bracket. As you do this, notice

Understanding Editor Basics

that the left curly bracket, {, at the start of the method is briefly highlighted. This
same behavior occurs with parentheses and square brackets, too.

To select all of the code that is contained within a set of delimiters, right-click within
the code, and then choose Structure, Balance Delimiter (also available from the
Editor menu), as shown in Figure 6.6.

ano B —m m Ed
() (m) (omym] (=] A somtat | Tuki 100 (= R al== =]
= = Mlioxcods | [elioXeods | m] .

3| ¢/ Created by John Amy on 274742,
b /¢ Copyright (] 2812 Palssatosth Emterarises. ALL rights reserved.

t "Apgdeclegate.h”

entation Appbelegate

[} fication «laNetification

£1 Insert code bere bo Inltialice your apaliresine

E"":ﬁ:{i wayHossage: Cut
e ATentrield stioel nitls Copy
1 y Size172.8 Paste
-'-lmnluf-rnulla Aeadep
ARafCaOrel Find Selected Text in Workspace. .
all ¥ Lietfamindon setContentVicwimMeisagels i
2l Jump 10 Definliion |
Re-indent]
Refactar * Shift Right %)
Open in Assistant Editor xw, | Shiftleft ®l
Openin... X< 3
Reveal n Project Navigator e b S
SOSA I Syfinol Biiautos ' Comment Selection 3¢/
Speech >
Source Editor Help »
Services (3

When you are entering your code, Xcode automatically inserts matching curly and
square brackets when you type the first bracket. In other words, if you type {,
Xcode automatically adds a corresponding } for you. You can disable this behavior
in the Xcode Text Editing preferences (Xcode, Preferences, Text Editing, Editing).

Code Folding

Working in conjunction with your code delimiters and the logical blocks/methods
you define in your code, Xcode’s code-folding features let you focus on editing a spe-
cific piece of code and hide the rest. To the immediate right of your Editor is the gut-
ter, which typically holds line numbers (enabled in Xcode’s Text Editing preferences)
and error/warning icons. The very right side of the gutter is the code-folding ribbon.
By clicking in the ribbon, you can fold (collapse) your methods and functions and
comment blocks.

123

FIGURE 6.6
Select the code
between two
delimiters.

124

FIGURE 6.7
Collapse your
code to improve
your focus.

B —

HOUR 6: Using the Xcode Source Editor

For example, view the code in the applicationDidFinishLaunching method. Click
immediately to the left of the method in the code-folding ribbon. The code collapses
and is replaced with an ellipsis (...), as shown in Figure 6.7. You can expand the
code again by double-clicking the ellipsis or by using the disclosure arrow that
appears in the ribbon.

800 [HelloXcode.xcodeproj — |m| AppDelega
@ @ H. My M = Analyze Succeeded | Today at 11:43 AM
Run Stop Scheme " Project- A1

m | < b | [qHelloXcode) [|HelloXcode » [m| AppDelegate.m » [[] -applicationDidFinishLaunching:
1| /7
2| // AppDelegate.m
3| // HelloXcode
oy
5| /f Created by John Ray on 2/4/12.
6| // Copyright (c) 2812 Poisontooth Enterprises. All rights reserved.

"

9 #import "AppDelegate.h"
10
11| ginplementation AppDelegate

12

13| @synthesize window = _window;

14

15| - (void)applicationDidFinishLaunching: (NSNotification *)aNotification

16 {i==

3| @end
k]

Code-folding Ribbon

To help identify what blocks of your code can be collapsed, Xcode lightly shades
the code folding ribbon. Blocks within blocks are successively darker in color.
Hovering your mouse over a shaded portion of the code-folding ribbon highlights
the relevant block within Xcode.

You can quickly collapse all comment blocks (text between /* and */) and
function/methods using the Editor, Code Folding menu.

The Other Bits

As with any application, some settings and options (although useful to some) do not
warrant a full discussion. The Xcode Source Editor has a number of other features
that might come in handy but that do not necessarily pertain to the editing

process itself.

What follows are a few configuration tweaks and editing functions that you might

want to use in your projects.

Line Numbers

To enable or disable the display of line numbers beside your code, use the Line
Numbers check box accessed within the Text Editing section of Xcode preferences.

Understanding Editor Basics

Line numbers are a great help when debugging code or describing your code to

other developers.

Edit All in Scope

If you've ever written a function or method only to smack yourself in the head and
say, “I should have named that variable something else,” you will love the Edit All
in Scope feature. To simultaneously change all the instances of a variable name
within a method, select the variable name, and then choose Editor, Edit All in Scope
(Control+Command+E). Each instance of the variable highlights, and all update as
you edit one, as shown in Figure 6.8.

800 8 HelloXcode.xcodeproj — [m] AppDelegate.m
@ @ Hoo My M. E] Analyze Succeeded | Taday at 11:43 AM

Run SlD)} Scheme " Project (11
m | 4 p | [HelloXcode) []) m) [DidFinishLaunching:

1 7/

2| // AppDelegate.m

3| // HelloXcode

4 1t

s| // Created by John Ray on 2/4/12.
6| #/ Copyright (c) 2012 Poisontooth Enterprises. All rights reserved.
7| £

9| #import "AppDelepate.h"

11| @implementatiocn AppDelegate

13| @synthesize window = _window;

15| - (void)applicationDidFinishLaunching: (NSNotification #)aNotification
1

17 // Insert code here to initialize your application
18 NSTextField *myAmazingMessage;
la 19 NSTextField #myUnusedMessage;

gek [[NSTextField alloc] initl;
font=[NSFont systemFontDfSize:72.8];
stringValue=@"Hello Xcode";
e. textColor=[NSColor blueColor];
| azingMessage. editable=N
5 [self.window setContentView:myAn

[my

zingHessagel ;

%[gend

Shift, Move, or Comment

The Structure contextual menu (also accessible from the Editor menu) contains com-
mands for shifting (indenting/outdenting) your code left or right, moving it up or
down, or commenting it out. Use these functions to quickly act on a selection of
lines, rather than changing each one individually.

Hide/Show Invisibles

There’s more to your code than you can see. To get a glimpse at how the code is for-
matted (tabs/spaces/return characters) or check for any gremlins that may have
crept into your code from pasting from other applications, use the Editor, Show
Invisibles command. This displays all normally invisible characters directly within
your code listing. To hide the characters, choose Editor, Hide Invisibles.

125

FIGURE 6.8
Quickly change
symbol names
using Edit All
in Scope.

126

FIGURE 6.9
Change the syn-
tax color rules
to suit your
sensibilities.

HOUR 6: Using the Xcode Source Editor

Syntax Coloring

Normally, Xcode colors your code based on the type of file you are editing. You can
override the chosen syntax-highlighting scheme by choosing Editor, Syntax Coloring
from the menu. You can also change the syntax colors entirely using the Xcode
Fonts & Colors preferences, shown in Figure 6.9.

Fonts & Colors ’
dis i

Colors | Text Editing ey Bindings Downloads Locations Distributed Builds:

Theme | | Source Editor | Console
Plain Text

Comments

: Documentation Comments

S pocumentation Comment Keywords

Dusk strings
Characters
Koy ey Numbers
Keywords
QUHRAT Preprocessor Statements
URLs
Presentation
Attributes
Printing Project Class Names
Project Function and Method Names
Sunset Project Constants
Project Type Names
| rom - |
‘
bl Background Selection Cursor Invisibles

Navigating Within and Between Files

Now that you know the basic code-editing features provided by Xcode, we can turn
our attention to some of the features that simplify working with multiple files. Except
in the most rudimentary development, your projects will consist of multiple source
files with multiple methods spread between them. Becoming efficient and jumping
between these files is a skill that becomes increasingly valuable as your applications
increase in scale.

This section examines some of the tools you can use when working with multiple
files (or very large individual files).

Tabbed Editing

Tabbed editing is just like tabbed browsing in your favorite web browser. Using
tabbed editing, you can have many files open simultaneously and switch between
them by clicking tabs at the top of the Editor area.

Navigating Within and Between Files

To create a new tab, choose File, New, New Tab (Command+T). A new tab appears
with the contents of the file you are currently editing. You can switch the contents of
the tab to whatever you want by clicking a file in the Project Navigator. You can
repeat this process to create as many tabs as you want, with whatever file contents
to want, as shown in Figure 6.10.

Tabs Close Tabs

‘AppDelegate. & AppDelegate.n I MainMenuxib T ¥

To close a tab, click the X that is displayed on the left side of the tab when hovering
over it with your mouse. As with all files in Xcode, the files you edit in tabs are auto-
matically saved when you close them; you do not have to explicitly use the Save
command.

The Jump Bar

When editing a file, you might have noticed that above the Editor area is a visual
path to the file you are editing and several buttons. This is collectively known as the
jump bar. Clicking any portion of the path reveals a pop-up menu for quickly jump-
ing to other files in same location, as shown in Figure 6.11. The last segment (on the
right) of the jump bar is special: You can click it to view and jump between the sym-
bols (methods, properties, and so on) within the file you are currently editing.

Related Files File Path Symbols
[-NaNs) % HelloXcode.xcodepraj —|[m| AppDelegate.m o
@ @ lEJ { Analyze Succeeded | Todakat 11:43 AM @
Run Stop Scheme 3reakpoint: ST Editor View Organizer
m= ® 8 == 8 [2+4:][B)l R 8 [

Backward/Forward

To the left of the path are forward and back arrows. The arrows move back and forth
between files that you have been editing—just like pages you visit in a web browser.
Finally, to the left of the arrows is the Related Files button.

Use the Related Files button to show a pop-up menu of categorized files such as
recently opened or unsaved. This menu even displays files that are just referenced
(even if just included or imported) in the file currently open in the Source Editor.
Figure 6.12 shows the contents of the menu when editing the application delegate
file for an empty iOS application.

127

FIGURE 6.10
Keep multiple
editors open
simultaneously
with tabs.

FIGURE 6.11
Quickly navigate
your project
hierarchy.

128

FIGURE 6.12
Find files that
are referenced
by, or directly/
indirectly related
to the file you
are editing.

FIGURE 6.13
The Symbol
Navigator is a
quick way to
jump between
methods and
properties.

HOUR 6: Using the Xcode Source Editor

1targer,

A Mad

» [] Produl

¥ [Helloxcode
[h] AppDelegate.h
— Lo "

» (] Supporting Files
» [Frameworks

+ 0B A

Mac 05 X SDK 10.7

lenu.xib

cts.

(=]

8006 ™ HelloXcode.xcodeproj — [m| AppDelegate.m]
@ @ (=] [Analyze Succeeded | Taday at 11:43 AM

Run__ Stop Scheme % it NG 1S

| ® A = » 8 |(mi<> R] i)
¥ [clioxcade Recent Files >

Unsaved Files

>
‘Counterparts (1) > [AppDelegate.h
e R 1525, ALL rights reserved.

Superclasses (1) >
Subc
Sibli

In
C ‘egate
Pratacols (1)

[window;

User Interfaces (1)

IFinishLaunching: (NSNotification #)aNotification

Includes (2)
et " fe to initialize your application
ncluded By 2
1zingMessage;
[INSTextField alloc] init];
Brepracess font=[NSFont systemFont0fSize:72.8];
Assembly ttringValue=g"Hello Xcode";
textColor=[NSColor blueColer];
Disassembly tditable=ND;
entVi A i gel;
=1 B
%
7| gend
1

The Symbol Navigator

The easiest way to find a method or property within a source code file is to use the
Symbol Navigator, opened by clicking the icon to the immediate right of the Project

Navigator. This view, shown in Figure 6.13, enables you to expand your project

classes to show all the methods, properties, and variables that are defined. Choosing
an item from the list jumps to and highlights the relevant line in your source code.

Symbol Navigator

["R

Hierarchical B3

AppDelegate

8 o [™ HelloXcode.xcodeproj — [m| AppDelegate.m]
@ @ H. o My M E] Analyze Succeeded | Today at 11:43 AM = EIE
. | |
Run | sop Scheme. RELEE Editor View Organizer
(RO A == 8 m<«> B 20 I] i

setWindow:
[-window
[window

[_window

=)

// AppDelegate.m
// HelloXeode

/¢ Created by John Ray on 2/4/12.
/7 Copyright (c) 2012 Poisontooth Enterprises. All rights reserved.
"

#inport “AppDelegate.h”

ginplementation AppDelegate

@synthesize window = _window;

5| = (void)applicationbidFinishLaunching: (NSNotification *)aNotification

// Insert code here to initialize your application
NSTextField #myAmazingMessage;

myAmazingMessage=[[NSTextField alloc] initl;
myAmazingMessage. font=[NSFont systemFont0fSize:72.0];
myAmazingMessage.stringValue=g"Hello Xcode";
myAmazingMessage. textColor=[NSColor blueColorl;
myAmazingMessage. editable=ND;

[self.window setContentView:myAmazingMessage];

@end

Navigating Within and Between Files

For example, with the HelloXcode project open, switch to the Symbol Navigator and
expand the AppDelegate item. This is the only object used in this application. Next,
find and select applicationDidFinishLaunching from the list that is displayed.
Xcode jumps to the finds and select the line where the method begins.

The Search Navigator

Searching for text anywhere in your project is trivial using the Search Navigator. To
access this search feature, click the magnifying glass icon in the icon bar above the
Navigator. A Search field displays at the top of the Navigator area, into which you
can enter whatever you want to find. As you type, a drop-down menu appears, as
shown in Figure 6.14, that shows potential options for refining your search. Choose
one of the options or press Return to perform a non-case-sensitive search of the text
you enter.

Search Navigator

eno 5 HelloXcode.xcodepro
= alyze Succeeded |
() (R (e) (=) [~
Run Stog Scheme Breakpoints . Project
M DA = = B || 4 > |[MHeloXcode) [|Hellg
2 - i 7/
A7 CQ. wIndch _‘j 2] ;’_:’ AppDelegate.m

rajec ianore case AQUELE]S

n P.fDJQ(I - _ " feated by John Ray on|
Find text containing “window Jpyright (c) 2012 Poil

Find text starting with “window"
In Project and Frameworks

Find text containing “window"

Find text starting with "window”"

tt "AppDelegate.h"

mmentation AppDelegat|

17

13| @synthesize window = _wind|

14

15| — (void)applicationDidFini]

16

17 // Insert code here to|

18 NSTextField +myMessage)
&L 19 NSTextField *mylUnusedM

0 myMessager[[NSTextFiel

n myMessage, font=[NSFont

The search results display below the Search field, along with a snippet of the file con-

taining the text you were looking for, as shown in Figure 6.15. Clicking a search
result opens the corresponding file in the Source Editor and jumps to the line con-
taining your search string.

To make things even more interesting, you can use the Filter field at the bottom of

the Search Navigator to filter your search results by a secondary term. You can also
click the Find label at the top of the Search Navigator to switch to a Replace mode,
enabling you to perform projectwide find and replace.

129

FIGURE 6.14
Use the Search
Navigator to find
text in your
project.

130

FIGURE 6.15
Search results
are displayed
along with the
context of the
match.

HOUR 6: Using the Xcode Source Editor

8e0eoe
(> ® =)]
Run Stop Scheme Breakpoints |

2|0 A = =» B \

i CROTT I—)
Found 5 results in 2 files

AppDelegate.h
X |—h| HelloXcode project

= ...an) IBOutlet NSWindow *wind... -:-
=/ ...gn} IBOutlet NSWindow *wind... 8

- AppDelegate.m
i l—ﬂ| HelloXcode project

W e
T ¢

#
s

2
10
1

=]
fir

|=| @synthesize window = _window; 12
|=| @synthesize window = _window; 13| | @y

14
15

16

=/ ...window setContentView:myMe. ..

-

an

If you're looking for a string within a file you are actively editing, choose Edit, Find,
Find (Command+F) to open a more traditional Find field at the top of the Source
Editor. This gives you quick access to find (or find/replace) within a given file,
rather than across the entire project.

Pragma Marks

Sometimes navigating code by symbols or with a search is not very efficient. To help
denote important pieces of code in plain English, you can insert a #pragma mark
directive. Pragma marks do not add any features to your application; instead, they
create logical sections within your code. These sections are then are displayed, with
the rest of the code symbols, when you click the last item in the visual path above

the Editor area.
There are two common types of pragma marks:

#pragma mark
and

#pragma mark <label name>

The first inserts a horizontal line in the symbol menu; the second inserts an arbi-
trary label name. You can use both together to add a section heading to your code.
For example, to add a section called Methods for starting and stopping the
application followed by a horizontal line, you can enter the following:

#pragma mark Methods for starting and stopping the application
#pragma mark -

Using the Assistant Editor

After the pragma mark has been added to your code and saved, the symbol menu
updates accordingly, as shown in Figure 6.16. Choosing a pragma mark from the
Symbol menu jumps to that portion of the code.

800 B =5
@ (‘.Ju = Ansbyan Succeeded | Today 3t 11.47 AM
_ Ren Saca :d-m Breakggints. L
A - @ = e —

Find = G.‘wmam
Found S resalts in 2 fies

« [AnROrlegaten
[.. gn) MOutist NSWindew “wind.,
170 . g} M utiat NEWindow *wind. |

- i -;W,g
7
’

£i Kppbelegate.m
/ HelloXeode

]

/4 Created by John fay on 274/

s ff Copyright (c] 2012 Poisentooth Enterpr
T i

#isport “Appbelegate.h

Methoes for atarting amd wiopping the application

[-spplicasionDidRnishLaunching

TET. R TS

v AppDelegatem
HellaXoooe project

[Bvyrthesize window = window,

[Evwmanesize wingow = _window.

[[t window setContentViewm. .

plementation Applelegate

Esynthesize window w _windoug

ification =)alletification

2 77 Inuert esde here te bnitialize your applicatisn
B S Textrieis wpMetLage;

NSTeatField saplnusedMessage;

yMessage=| N:lrxlrle\ﬂ l\tn:l initls

1201
AyMEstage. stringalus=a rie

amuuu- textlalars Inﬁ:ahr D\ut(ﬂlel"l
myMestage. editablesnn;

[hel window setcontentvies:aynessagel;

Using the Assistant Editor

As you work with Xcode projects, you will quickly realize that most program func-
tionality comes from editing one of two related files: an implementation file (.m
extension) and an interface file (.h extension). You'll also learn that when you make
changes to one of these two files, you'll often need to make changes to the other. You
will see a similar pattern emerge when you start editing GUIs in Xcode.

Xcode simplifies this back-and-forth editing with the Assistant Editor mode. The
Assistant Editor (or just called Assistant in Apple documentation) automatically
looks at the file you have opened for editing and opens, right beside it (or under it, if
you prefer), the related file that you also need to work on, as shown in Figure 6.17.

To switch between Standard and Assistant Editor modes, you use the first and second
buttons, respectively, in the Editor section of the Xcode toolbar.

In the upper-right corner of the Assistant Editor’s jump bar, notice a + icon and an
Xicon. The + icon adds another Assistant Editor to your screen; the X icon closes
the current Assistant Editor.

131

FIGURE 6.16
Use pragma
marks to add
logical delim-
iters to your
code.

132

FIGURE 6.17
Xcode opens
the file related
to what you are
working on.

HOUR 6: Using the Xcode Source Editor

Assistant Editor Mode Close Assistant
Standard Mode—l _| Add Assistant

153 HelloXcode. xcodeproj — mi AppDelegate.m I
Analyre Succeeded | Todsy 31 1143 AM 'E (all

i4 . w = 4 » | ElCouneroas | hAsoDelegateh | [@imertace Anp

v
a ‘ﬂ’/’Jtle;ale_n

Jana Ray oh 374/12, L e by Juna Aay on ArA/2
nt (€] 2813 Poksanteoth Enterprises. ALL rignts i O SeRvElghE: de) s Fadoavieten Ancarprians. VY. rigs

1| #import “Appbelegate.h ?| #isport «Cocoa/Cocoshs

implementation Appdelegate uil 8 1 NSObject MsAzol
@aynthesire window = _window] # 1 gproperty lessign) ID0utlet MSWindow swindows

15| Fpragas mark Methods far Starting and stopedng the applicatisn nl gens
Fpragas mark - s

5 = fwnidlapplicat lonDidfinianLaunching: (NSMaTLf Leation =]
abist Lficat bon
kS

/4 Insert code here to inktialice your application
NSTentField sayMessage;

NETentFiels uw“swmu

myMeszages| [NSTextriols al :t initl:

re172.0]:
myMesaage. stringVatuesg-iizilo Kcode™s

z myMessage. tentColor= INSColer BlusColor];

a myMessage. edltatLesnly

4 B [amit mingen ﬁ-::w:an:u- myMeLiagel;

) gens

Choosing the Assistant File

When you are using the Assistant Editor, it sometimes chooses a file that it thinks
you want to edit but that really is not what you had in mind. To view all the
Assistant’s recommended options, click the Assistant Editor icon (a little suit and
bowtie) displayed in the jump bar located at the top of the Assistant Editor view.
This displays a menu of all the related files that the Assistant Editor has identified,
sorted by type, as shown in Figure 6.18.

Changing the Assistant Editor Layout

As you can see, the Assistant Editor occupies more than a little bit of screen space. If
you are coding on a MacBook Air (which I love), you'll find that you need to hide
the Navigator/Utility areas to make the full Assistant Editor work.

To change how the Assistant Editor displays in the Xcode interface, choose View,
Assistant Editor, as shown in Figure 6.19. From there, you can choose how the
Assistant Editor is added to the display and what will happen if multiple Assistant
Editors are in use.

To set up shortcuts for when the Assistant Editor (or tabs) are used, open the
Xcode general preferences (Xcode, Preferences, General). You have several
options to fine-tune how you invoke the special editing modes of Xcode.

Correcting Errors and Warnings in the Issue Navigator

#¢_Insert code here to initislize your spplication
NSTextField smyMessage:

NSTextField smybnusesMes

myMessages[INGTextField a\\ncl initli

ayfessage.stringialueeg Hello Xeode")
ssage. text ColarmINSCalor b\u{n\urh

myessage, editanleso;

[self wandew setlontentViowmMessagel:

1a.0);

| gena

800 =] = =
@ B ic e I amalyzs Sutcesded Mvuu:an&]w .11
Lo, My Mac 6 s
= Prapemn T
_no. ; ol
- i b g = | [Counterparts (1)
1 L T
1| /f ApoBeclegate.s ¢ A (0 Superclasses (1) >
¥ /¢ Helloesdr oW Kol sul ses
" i it
8| #/ Created by John Aay on 2/4/12. £ €r [Siblings
£ Copyright [c) 2812 Poisomtooth Emterprises. ALl rights it e prerprises. AlL rights
retarved. e (G Cosgories
" NN &l Frotecols (1) >
¥ #isport "Appdclegate.h” 1 WBOE o i tmteetaces) -
1| pimplementation Appbelegate ul intet P Asplicaticalelegates
i Includes (21 *
1| gsynthesize window = . 1 5 imcuced by wwindow;
15| #pragss mark Methods for starting and stesping the apslicatian pend
u|| sprages mark) Presroces
ol - Hicotion =) () Ausemitly
Motification
»il { 0 Dusassembly

| ® Xcode File EditNavigam Editor Product Window Help

Standard Editor

Version Editor

YAl

Navigators
Debug Area
Utilities

yYyywy v

Hide Toolbar W

Show Tab Bar

Enter Full Screen ~3F

Show Assistant Editor e L
Add Assistant Editor

Remove Assistant Editor ~ O EW
Reset Editor i d

—; Assistant Editors on Right
E Assistant Editors on Bottom
-I All Editors Stacked Horizontally

E All Editors Stacked Vertically

Correcting Errors and Warnings in the

Issue Navigator

As you write your code, Xcode is sitting in the background judging you, but do not
take it personally—it only wants to help. Xcode analyzes your code and detects
issues that might be (or are) problems and displays warnings and errors before you

ever click the Run button.

Error Types

You can receive three general types of feedback from Xcode when it analyzes your

application: errors, warnings, and logic problems. Warnings are potential problems

that might cause your application to misbehave; a yellow caution sign warns you of

133

FIGURE 6.18
Choose a differ-
ent file to edit.

FIGURE 6.19
Configure how
the Assistant
Editors will
appear in the
display.

134

FIGURE 6.20
Use the Issue
Navigator to
browse all your
project’s poten-
tial problems.

HOUR 6: Using the Xcode Source Editor

these. Errors, however, are complete showstoppers. You cannot run your application
if you have an error. The symbol for an error, appropriately enough, is a red stop
sign.

Logic problems, found by the Xcode analyze process, are shown as a blue badge. All
of these bugs, across all your files, are consolidated in the Issue Navigator. The Issue
Navigator displays automatically if problems are found during a build or analyze
process. You can also open it directly by clicking the exclamation point icon (on the
toolbar above the Navigator area).

For example, the method applicationDidFinishLaunching that you wrote earlier
contains an unused variable (myUnusedMessage). This is highlighted with a yellow
exclamation point in the Issue Navigator (Unused Entity Issue), as shown in

Figure 6.20.

Issue Navigator

®0 0 4
(m) (B by wacsactis] [m]
@ \E/ H.. » My Mac 64-bit = |
Run stop | Scheme: il S
B R o= = B w4 >
il £/
elloXcode 3| /S H
W "A" 1issue = yl £
v Er'l AppDelegate.m s| 4/
.. Unused Entity Issue 5 /"
Unused variable ‘myUnusedMessage’ 1 1
#impg
10
1| @imp
12
13| @syny
14
15| #prag
18| #praq
18
1wl - (vd

Logic problems must be detected by choosing Product, Analyze from the menu bar.
Warnings and errors are shown immediately as you code.

Jumping to an Error

To jump to an error in your code, just click it in the Issue Navigator. The correspon-
ding code is opened, and the error message is visible directly after the line that
caused the problem. To remove the warning from the sample method, just delete the
line NSTextField *myUnusedMessage; to empty the Issue Navigator.

Refactoring Code 135

If you are in the middle of editing a file that contains errors, you'll see the errors %
immediately displayed onscreen—so no need to jump back and forth to the Issue

Navigator. You can also quickly cycle through your errors using the forward and
backward arrows found at the rightmost side of the window, directly above the
Editor area. These controls are visible only if errors are present, however.

Fixing Errors to Find Others

With the warning message still visible in the applicationDidFinishLaunching
method (add the code line back in, if you need to), try adding a line of complete
garbage into the code. Pay attention to what happens when you click off of the line.

What you will see is that the new code is flagged as an error (red stop sign), but the
original warning has disappeared. This brings up an important point: Sometimes
not all errors or warnings are detected and displayed in the Issue Navigator or in a
source file. You might find, after fixing a line or two, that new and previously unde-
tected errors appear. Conversely, you'll also occasionally see false errors that disap-
pear when you correct others.

To control which issues are visible (hiding warnings, for example), choose Editor, %
Issues from the menu bar.

Refactoring Code

Earlier in this hour, you learned how to use Edit All in Scope to change the name of
a variable within a method. But what happens if you need to make a more massive
change, such as changing the name of a class? Making changes like this is called
refactoring and can involve a ridiculous amount of work given the amount of code
that needs to be touched, filenames that need to change, and so on. If you find
yourself in this situation, however, Xcode offers refactoring features to help get you
out of a jam.

To access the refactoring tools, choose Edit, Refactor from the menu bar or right-click
in your code to use the Refactor contextual menu item.

Renaming

To rename a symbol across your entire project, including any files named after that
symbol, follow these steps:

136

FIGURE 6.21
Rename a sym-
bol (variable,
class, method,
etc. across your
project).

HOUR 6: Using the Xcode Source Editor

1. Select the symbol in your project.
2. Choose Edit, Refactor, Rename from the menu bar.

You are prompted for the new name, and whether to rename any associated
files, as shown in Figure 6.21.

o0 5 HelloXcode xcodepro] — mi AppDelegate.m o

() () [t mymacesd] (=] Analyae Succeeded | Today 31 1143 AM T s =)
B R @lAl=S ipDelegae o

CID ¥y | Rename gate to | 4]

hi . e o Rename relased files

¥ i AgoDekegace.m

Unused varabie ‘mytinus

T #i=part
1| ginplementation Apphelegate

Baynthesize window = _windows

vk Mathags far starting and steppieg the applicatien
agan mark =

veidlagplicat lanBiFinishLaunching: (NSNot if{cation w)aNotification

#/ Insert code here to initialize your applicatisn
HSTextField smyMessage:

WSTextPleld smylinusecHes:

m!!‘lﬂl'”Ml!All ield l\\ﬂ(l Anitls

1.0l
ingialusmg*h

lhlllt!af b\uﬂa\u 1

~ed itablesil:

ndow setlontentView mMessagel:

3. After you have made your naming choice, click Preview to show the files that
will be changed and the differences between the original and new versions, as
shown in Figure 6.22.

From this window, you can choose which files to change (check or uncheck the
boxes in front of their names) and even edit the code directly in the compari-
son views.

4. Click Save to make the changes across the entire project.
The remaining refactoring options work in a similar way, but with different effects.

Extracting

If you find that you have written code for a method but that code would be better
suited in its own method or function that is called by the current method, you can
use the Extract function. Simply select the code you want to move out of the current
method, and then choose Edit, Refactor, Extract.

Refactoring Code

aoe B — . m E
N ; o= Anabyze Succeeded | Today 3t 1143 AM il (&)
(») (m) (1 Mymacesbn] [=] [~ N =
e e sewse o wween| T 1 — K (aw Orgseicer,
|7
v [Imi{=a [=i< » oo L) [h) A2pD) _
1 3| of i
v [Hetioxcode i| ¥/ Apsdelegate.n il 47 Aspbutigpiaiti
v [Helianease . ;.: HelloXcode -. ;: MelloXcode
I | /¢ Created by John May an 274712, 3| #f Crested by Juh Ray on
8 T mewhaaDubgsiemi | o /4 Copyright (c) 3833 Poisentoot s| 4/ Copyright (e} Imi3 Pois
2 % MainMeniib (English) Enterprisess A11 rights g Emterprisess AL Fights
' "
¥ #import <Cocoa/Cocoa.hs % #import <CocoafCocoa.he
12
T T T T TWERET =
| MaSyject =eiapplicatienoelegates | L sappticat tonoelegates
1| aproperty assign) TANutict NSWindow 1| geroperty tassign) TADutlet NSWindow
ingow: windeu:
) gend 15| gend
u
Cancel | [(Swva)
R AC]

You are prompted for the new function or method name, then presented with a pre-
view of the change. Xcode automatically analyzes the code to determine what
parameters are necessary for the new method, and even includes the method/func-
tion call in your original method.

Double-Check Xcode’s Work!

Be sure to double-check the methods that Xcode creates when using the Extract
feature. | have had mixed results with its ability to correctly parse the method
parameters.

Creating Superclasses

Sometimes, when writing a class, you might discover that it would have made more
sense for the class you're building to be a subclass of a larger superclass. To quickly
create a superclass, select the class name, and then choose Edit, Refactor, Create
Superclass, and, again, follow the onscreen prompts to name and save the new
class file.

Moving Up/Down

After creating a superclass (or if you already have one), it might make sense to
move some of the variables or methods from your current class into the superclass.
Conversely, you might have a superclass symbol that make more sense being

137

FIGURE 6.22
Confirm the

changes that
will be made.

138

HOUR 6: Using the Xcode Source Editor

contained in one of its subclasses. Use the Edit, Refactor, Move Up/Down functions to
move a variable/method into a class’s superclass or a superclass’s variable/method

into a subclass.

Encapsulating

When you use the Edit, Refactor, Encapsulate action on an instance variable, it
creates explicit getters and setters for that variable. In most cases, however, the
@property/@synthesize combination should be enough to handle setting up your
Qaccessors.

If you need a refresher on instance variables, classes, setters, getters, and so on,
refer back to Hour 2, “Just Enough Objective-C and Cocoa.” These are important
concepts to understand, so be sure you have got a good grip on the basics before
moving on.

Using Code Snippets

When you are writing code, you will often find yourself typing statements that are
very similar to one another: catch-try blocks, if -then statements, switch state-

ments, and so on. Instead of having to remember the syntax of each of these com-
mon code sequences, you can make use of the built-in Xcode Code Snippet Library.

You can access the Code Snippet Library from the Xcode Source Editor by choosing
View, Utilities, Show Code Snippet Library, or by pressing
Control+Option+Command+2. The library appears in the Utility area and is repre-
sented by the {} icon, as shown in Figure 6.23.

Viewing Snippets
To view what a snippet contains, click its entry in the library. A popover window
appears displaying the contents of the snippet, as shown in Figure 6.24.

Notice that certain parts of the snippet are highlighted in gray. These represent por-
tions of the code that you need to provide. When a snippet is inserted into your
code, you can use the Tab key to jump between these areas. Click the Done button
when viewing the snippet code to hide the popover.

SRy =~

1| gintariaee viecamirnitar ()
et
#imglenmatatian FieControlier

Babes o= TR,
sbrrigh £} SHLT _Mytespasyiuse_

Using Code Snippets

Code Snippet Library

Dbt KV Vatts aflecting
{) oy - v o sty it e,
e et e 4Te0 vt P

{} SEweETERRSE
i

Anntat

et

Cjertive-€ WiCoding
{} | mnodar et - e
e)

L ed
{} setned - cont o sty s
ey s i e

nload

idUnlead];

ce currentDevice] u
interfaceOrientatie

ES;

|torotateToInterface

ny retained subviews of the main view.

[{} ‘ Switch Statement
All Platforms

switch (expression) {
case (constant :
statements
break;

default:
break;

(" Objective-C KVO: Values affecting
| when modified, affect the value of the...

‘Objective-C Protocol Definition -

| Objective-C Try / Catch Black -

| protocal.

| might generate an exception, and...

key - Used for defining which keys,

Used for defining a new Objective-C

Used for trying to execute code that

Struct Declaration - Used for
describing a new structure type
«containing instance variables.

Switch Statement - Used for
different sections of code
‘when an expression has one of several...

| instance variables, only one of which...

(3]

Union Declaration - Used for
describing a new union type containing

‘While Statement - Used for executing
«code while a condition s true.

m

12

| NSView's initwithFrame method for...

€ NSCoding
initWithCoder Method - Used far
inltializing a new cbject from daa...

Objective-C NSView initWithFrame
Method - Used for overriding an

®

)

Inserting Snippets

To insert a code snippet into your class files, just drag and drop from the Code
Snippet Library into your code. Wherever your cursor points, the snippet is inserted,
exactly as if you had typed the code yourself.

139

FIGURE 6.23
The Code
Snippet Library
contains snip-
pets of useful
code.

FIGURE 6.24
View the con-
tents of a
snippet.

140

FIGURE 6.25
Drag the code
to the Code
Snippet Library.

FIGURE 6.26
The new snippet
is visible in the
library.

‘ HOUR 6: Using the Xcode Source Editor

Adding Snippets

Not only can you use the existing snippets to help code, but when you write useful
code sequences of your own, you can add them to the Code Snippet Library as user-
defined snippets. To do this, follow these steps:

1. Select the code in the Source Editor that you want to turn into a snippet.
2. Make sure the Code Snippet Library is visible (Control+Option+Command+2).

3. Click and drag from the selected text to the Code Snippet Library, as shown in
Figure 6.25.

Liltie =
Bl ot Somper G AT
17

eleanup stter an exception.

Objective-C init Method - Uied for
{} cvemaing the ink menee of an
Objective-C obieat

¢ loading the wiew, typleslly From @ mib, beluviour ks the implementation for.

Objective-C K¥O: Valwes affecting

{ } | hey- used for defining mhich keys,
when modified, 2%ect the value of the...
[of the main view.
Objective-C Pratocol Definition -
{ } | Used for defining a new Obiecrive-C

serintertaceldion] == Libserinterfaceldionphone) { SoJecthie-CTry | Corch, ock -
In 1= uztnter £l s pumamse ot Laceocientation

it {LIuTBevice eurrentbevice] userldierinceiainad as er] celdiofPhane] {
] 1 i .lﬁsh Ups idefown) ;
 ATTTH § e farechu
sturn YEE: tontaining inpance variables

g ¥ 7 Swinch Seatement - Lyed for h_
{ } | enecuting dteseet sections of code
whi ah £XpAESLGN has dee of seviral..

Union Declaration - Used for
{) cescrting a new union troe comuming
Intance vasiazles. anky eae of which.

‘While Statement - Used for execating
{}
‘code while 2 consition is tree.

|-|mc:1:u Mﬂ.bo“:-mhr
{}
Inkializing 2 new eaieer frem dara

Objective-C NSView inltWithFrame
{} metno - used ree overmding an
NEView's InitwWithf came method fer...

(=] J

The text is added to the library under the title My Code Snippet, as shown in
Figure 6.26.

{ } While - Used for
code while a condition is true.

Objective-C NSCoding
‘ { } ‘ initwithCoder Method - Used for
initializing a new object from data...

‘ Objective-C N5View initwithFrame

‘ { } Method - Used for overriding an
NSView's initWithFrame methed for...

‘ ﬂill My Code Snippet
| User
(]

Using Code Snippets

Because the default name is not very descriptive, you will probably want to edit it to
reflect its purpose.

Editing Snippets
To edit a snippet you have defined, follow these steps:

1. Click it in the library so that the popover appears displaying its code.

2. Click the Edit button in the lower-left corner. Figure 6.27 shows a snippet in
edit mode.

T 1' I ‘Execuling diferent sections of code
| when an expression has ane of several ..

7 | Union Declaration - Used for
| { } | describing a new union type containing
instance variables, only one of which...

| { } | While Statement - Used for executing
| | code while a condition is true.

= Objective-C NSCoding
| { } initWithCader Method - Used for
| Initializing a new object from data...

| Objective-C NSView initWithFrame
| { } Method - used for averriding an
NSView's InitWithFrame method for...

Title My Code Snippet
I

{2 summar

Platform (Al %) language (Objective-C —
Completian Shortcut | | {JJJ My Code Snippet

User

Completion Scopes (Code) D@ =

— (BODL)shouldAutorotateToInterfaceOrientation: Gl

(UIInterfaceOrientation)interfaceOrientation

if ([[UIDevice currentDevice] userInterfaceIdiom] =
= UTUserInterfaceIdiomPhone) {
return {interfaceOrientation !=
UTInterfaceDrientationPortraitUpsideDown);
} else {
return YES;

(TEdit) (_Done)

3. Use the fields in the Source Editor to set a title and summary for the snippet
and define the platform and development language the snippet applies to.

4. Enter a shortcut that can be typed to automatically insert the snippet and the
different areas (scopes) within a typical source file where the completion short-
cut should be active.

5. Click Done to save the snippet.

To remove a snippet from the library, just click once to select it in the Code
Snippet Library and then press the Delete key on your keyboard.

141

FIGURE 6.27
Edit the snippet
and the informa-
tion stored
about the
shippet.

142

HOUR 6: Using the Xcode Source Editor

Summary

In this hour, you learned how to use the Xcode Source Editor for more than just typ-
ing text. We looked at special features like automatic code completion, auto-inden-
tation, and code folding. You also learned how the Assistant Editor mode makes
working on multiple related files a pain-free process.

In addition to the Source Editor itself, you explored the tools for identifying and cor-
recting errors in your code, for searching and replacing text across your entire proj-
ect, and for refactoring existing code. Although it is technically true that you can
develop an application using any text editor you want, using Xcode gets you best-of-
breed tools that are specific to the language and methodology of the Apple develop-
ment platform.

Q&A

Q. [really hate editing files in a huge window. Can | break out into just a single
window per file?

A. Yes. Just double-click the file in the Navigator to open a new window with all
features disabled except the Source Editor. You can turn this into a single-click
in the Xcode preferences if you prefer.

Q. I'm confused. What is a symbol?

A. Think of a symbol as anything you've named within your code. Typically, this
means variables/properties—but it can also be method names, class names,
and so on.

Q. Xcode keeps autocompleting methods that | don’t want. What do | do?

A. Unless you press Tab or the arrow keys, Xcode will not autocomplete at all.
You can either just keep typing and enter the full name yourself, or you can
disable autocompletion in the Text Editing area of the Xcode preferences.

Workshop

Quiz
1. T use a MacBook for my development. How will I ever get the Assistant Editor
to fit on my screen?

Workshop 143

2. Besides the Assistant Editor, you can only have a single file open at once. True
or false?

3. It is impossible to easily rename a class after creating it. True or false?

Answers

1. Learn to use the View buttons on the Xcode toolbar. If you disable the Project
Navigator and Utility area, you'll find that the Assistant Editor fits quite nicely
on your screen.

2. False. Using the tabbed editing feature, you can open as many files simultane-
ously as you want, using the tabs below the Xcode toolbar to switch between
them.

3. False. The Rename refactoring tool simplifies the process of changing a class
name after the fact.

Activities
1. Using the sample project you created this hour, walk through the different fea-
tures of the Source Editor and Assistant Editor. Try your hand at Edit All in
Scope and refactoring.

2. Create errors your HelloXcode application by duplicating lines or methods in
the AppDelegate class files. Add a few lines with arbitrary text for good meas-
ure. Note where and when Xcode detects the errors. Does it find all the erro-
neous lines at once, or does it present one error, which, when fixed, shows
another, and so on? Get used to this behavior; it is rare you’ll write perfect
code, and knowing how Xcode presents errors and warnings is a big help
when things do not work right.

This page intentionally left blank

Symbols

@2x naming convention, 114
@class directive, 222
@implementation directive, 34
#import directive, 29, 34
@interface directive, 29-30
@property directive, 31-33

@synthesize directive, 35

A

accessing

Core Data model data,
458-460

Quick Help, 158
actions, 196

connections, creating, 198,
201-203

creating, 208-211
prebuilt, 203

activating Quick Help Inspector,
160

Index

ad hoc distribution, i0S
applications, 580

adding

attributes in Core Data model
editor, 441-442

browser component to 0S X
interface, 382-387

code snippets, 140-141

custom objects to IB,
192-193

embedded frameworks to OS
X applications, 388-395

entities in Core Data model
editor, 440-441

files to projects, 105-106

frameworks to projects,
108-109

groups to projects, 110-111

icons to applications,
113114

programming language
support
Python, 322-323
Ruby, 324-325

604
adding

projects to workspaces,
517-519

scenes to storyboard,
218219

schemes, 270-271

shared frameworks to 0S X
applications, 376-382

supporting view controller
subclasses to scenes,
220-223

templates, 99-105

unit tests to applications,
466-471

Xcode Help viewer book-
marks, 156

Address Book Actions, 81
advanced segues, creating

navigation controllers,
230-234

tab bar controllers, 234-239
agvtool, 598
alignment (IB), 179
allocating objects, 40-41
Analyze action, 255, 268
API (application programming
interface), 145
App IDs, creating, 556-560
App Store
applications, distributing, 583

iTunes Connect records,
configuring, 576-578

AppleScript, 317-319

application access, comparing
Mac OS X and iOS, 7

application logic, updating i0OS
applications, 414-430
Application templates, 72
Master-Detail template, 73
OpenGL Game template, 74
applications

accessing through Bundle
Loader, 480-483

distributing via App Store, 583
icons, adding, 113-114
i0S
ad hoc distribution, 580
distribution build,
finalizing, 572-576
enterprise distribution,
581-582
launching in i0S simulator,
272273
0S X
browser component,
adding to interface,
382-387
building, 356-358
code, attaching to
interface, 364-369
distribution build,
finalizing, 568-572
embedded frameworks,
adding, 388-395
interface, building,
374-375
interface, creating,
359-364
object references,
inserting in code,
369-373

shared frameworks,
adding, 376-382

signed applications,
distributing, 580

unsigned applications,
distributing, 579

unit tests, adding, 466-471

ARC (Automatic Reference
Counting), 49

archive
building applications
OS X applications,
571-572

iOS applications, 575-576

settings, confirming for OS X
applications, 569-570

Archive action, 255, 268
arrays, Cocoa, 52
articles, 150

Assistant Editor, 131-132

attaching code to OS X interface,
364-369

attributes, 436

adding in Core Data model
editor, 441-442

of properties, 33
Attributes Inspector (IB), 188-189
Auto Layout system (IB), 183-188
auto snapshots, 282

auto-indentation feature (Source
Editor), 120-121

autocompletion feature (Source
Editor), 118-120

Automator Action template, 81

balancing delimiters (Source
Editor), 122-123

binding data models to user
interfaces, 446-458

bindings, 438
blocks, 43

bookmarks, adding Xcode Help
viewer, 156

branching, 284, 304-306
breakpoints
conditional, 502-506
setting, 497-498
broken distribution certificates,
repairing, 551-552
browser component, adding to 0S
X interface, 382-387

browsing Xcode Help viewer
library, 156

build actions, 254, 266
build configurations, 252, 255
build actions, 254
schemes
adding, 270-271
editing, 266-268
targets, 252
case study, 260-262
creating, 257-258
products, 253
verifying, 256
Build Phases tab (Project
Navigator), 263

Build Rules tab (Project
Navigator), 264

Build Settings tab (Project
Navigator), 263

building
iOS applications
archive, 575-576
from template, 403-404

static library target,
adding, 404-413

0OS X applications, 356-358
archive, 571-572

interface, 359-375,
382-387

built-in langauges
AppleScript, 317-319
C, 313-315
C++, 315-316
Java, 319-320
Objective-C, 316-317
Perl, 321-322
Bundle Loader, 480-483
bundles, 80

C

C, 313-315
C++, 315-316

reusing code, 349-352
categories, defining, 37
certificates, 550
changes, committing, 284
checkouts, 283

CIS (continuous integration
server), 600

class methods, 27

classes, 26, 216

605

code

cleaning up final code

iOS applications, 574

OS X applications, 570
Cocoa, 50-51

arrays, 52

dates, 53

dictionaries, 53

numbers, 53

strings, 52

URLs, 54

versus Cocoa Touch, 51
Cocoa Application template, 79
Cocoa Framework template, 80
Cocoa Touch, 51
Cocoa Touch Static Library, 77

Cocoa-AppleScript Application
template, 79

code

attaching to OS X interface,
364-369

auto-indentation (Source
Editor), 120-121

autocompletion (Source
Editor), 118-120

C/C++, reusing, 349-352
connection code, writing with
Interface Builder, 205-211

design, 599
extracting, 137

interface object references,
inserting, 369-373

refactoring
instance variables,
encapsulating, 138
symbols, renaming,
135-136

How can we make this index more useful? Email us at indexes@samspublishing.com

606

code

snippets
adding, 140-141
editing, 141
viewing, 138
spaghetti code, 59

code folding (Source Editor),
123-124

coding how-tos, 150
collecting

data simultaneously with
Instruments, 543-545

multiple runs in Instruments,
541-542

Command Line Tool template, 80
command-line
agvtool, 598
xcode-select tool, 588-589
xcodebuild tool, 590-591
available SDKs,
displaying, 592-595
workspaces, 591
xcrun, 595-597
command-line tools, 587
commits, 298-299
committing changes, 284
comparing
dynamic libraries and
frameworks, 330

Mac OS X and iOS develop-
ment, 6

application access, 7
frameworks, 6
interface development, 6
Xcode 3.2 and Xcode 4.2, 4
compilers, LLVM, 49
conditional breakpoints, 502-506

configurations, 437
configuring

documentation downloads,
148-149

iTunes Connect records,
576-578

segues, 225-227
template for projects, 85-87
workspaces
iOS projects, 524-529
0OS X projects, 519-524

connecting to remote
repositories, 287-290

connection code, writing with
Interface Builder, 205-211

connections, 166
creating, 198
to actions, 201-203
to outlets, 199-200
editing with Quick Inspector, 204

continuing program execution in
debuggers, 499

controllers, 59, 62, 67-68
IBAction directive, 63-64
IBOutlet directive, 63

convenience methods, 41

converting OS X applications to
i0S, 400-402

Core Data Editor, 64-65, 438-440
attributes, adding, 441-442
entities, adding, 440-441
graph style, 445

relationships, defining,
443-444

Core Data model, 60, 436

binding to user interface,
446-458

data, accessing through code,
458-460

data, reading, 461-462

data, writing to Core Data
store, 460-461

Core Image, 82
creating
actions, 208, 210-211
App IDs, 556-560
connections, 198
to actions, 201-203
to outlets, 199-200

distribution certificates,
552-554

distribution profiles, 560-563
frameworks, 341-347
ICNS files, 571

interfaces (OS X), 359-375,
382-387

iOS distribution certificates,
550-551

outlets, 206-208
projects, 13, 83
template, configuring,
85-87
template, saving, 87
template, selecting, 84
protocols, 38
provisioning profiles, 552-554
segues, 223-225

navigation controllers,
230-234

push segues, 243
tab bar controllers, 234-239

snapshots, 280

static libraries, 333-342
superclasses, 137
targets, 257-258

user interfaces, 174
working copies, 295-296
workspaces, 515-517

custom objects, adding to IB,
192-193

customizing templates, 91

data models, binding to user
interfaces, 446-458

data type classes, Cocoa
arrays, 52
dates, 53
dictionaries, 52-53
numbers, 53
strings, 52
URLs, 54
dates, Cocoa, 53
debuggers, 488
breakpoints, 497-498

conditional breakpoints,
502-506

gdb, 489-492
lidb, 490

paused applications,
maneuvering, 498-499

proactive debugging, 493-496

program execution,
continuing, 499

stepping forward, 500-502

declaring variables, 38
object data types, 40
primitive data types, 39

defining
categories, 37
methods, 30-31

relationships in Core Data
model editor, 443-444

delimiters (Source Editor),
122-123

deploying frameworks, 349

derived data interference,
troubleshooting, 575

design patterns, 58
MVC, 59
controllers, 62-64, 67-68
Data model, 64-65
models, 60
views, 61, 66
developers, paid developer pro-
grams, 8

joining, 9-11
registration, 9-10
development paradigms

comparing Mac OS X and
i0S, 6
imperative development, 24
OOR 24
inheritance, 25
Objective-C, 26-49
development profiles, installing,
17-19

dictionaries, Cocoa, 53

dismissing modal segues, 227

607

documentation

distributing, applications
iOS applications
ad hoc distribution, 580
App Store, 583

enterprise distribution,
581-582

signed applications,
0S X, 580

unsigned applications,
0S X, 579

distribution builds, finalizing
iOS applications, 572-576
0OS X applications, 568-572
distribution certificates
creating, 550-554
repairing, 551-552
distribution profiles, 17
creating, 560-563
documentation
articles, 150
coding how-tos, 150

downloads, configuring,
148-149

Getting Started, 151
Quick Help, 147
accessing, 158

Quick Help Inspector,
activating, 160

results, interpreting,
159-160

reference documents, 152
sample code, 153
technical notes, 154
technical Q&As, 154

How can we make this index more useful? Email us at indexes@samspublishing.com

608

documentation

video, 155

web-based, 146

Xcode Help viewer, 146
bookmarks, adding, 156
library, browsing, 156
library, searching, 157

Xcode tasks, 154

downloads

documentation, configuring,
148-149

updates, 284
Xcode developer program, 11

dynamic libraries, 330

editing
code snippets, 141

connections with Quick
Inspector, 204

schemes
Analyze action, 268
Archive action, 268
Build action, 266
Profile action, 268
Run action, 267
Test action, 267

embedded frameworks, adding to
OS X applications, 388-395

encapsulating instance
variables, 138

ending interface files, 33

enterprise distribution for i0S
applications, 581-582

entities, 436

adding in Core Data model
editor, 440-441

errors, 133
fixing, 135
jumping to in Issue
Navigator, 134
events, actions, 196

examples of navigation
controllers, 239-248

exporting snapshots, 282
expressions, 44-45
condition-based loops, 47
if-then-else statements, 45
loops, 46
switch statements, 45
syntax, 44

Extended Detail pane
(Instruments), troubleshooting
memory leaks, 540

extracting code, 137

F

features
iOS simulator, 275-276
Source Editor, 125-126
fetch requests, 437
fetched properties, 437
File Template Library, 103-105

File Template Wizard, adding
template-based files, 99-103

files
adding to projects, 105-106
locating, 107
removing, 106-107
renaming, 106

filters (project Navigator), 98

final code, cleaning up in i0OS
applications, 574

finalizing distribution build
iOS applications, 572-576
0OS X applications, 568-571

archive settings,
confirming, 569-570

archive, building, 571-572
final code, cleaning up, 570
fixing
distribution certificates,
551-552
errors in Issue Navigator, 135
for loops, 46
Framework & Library templates, 72
frameworks, 6
adding to projects, 108-109
Core Data, 436
Core Image, 82
creating, 341-347
deploying, 349
embedded frameworks,

adding to OS X applications,
388-395

headers, 109
removing from projects, 110
selecting, 331-333

shared frameworks, adding to
OS X applications, 376-382

gdb (GNU debugger), 489-492

generating multitouch events in
i0S simulator, 274

Getting Started documents, 151
Git, 283

branching, 304-306

commits, 298-299

merging, 306-307

pulls, 299-300

pushes, 298-299

repositories

creating, 286-287

loading projects into,
293-294

status codes, 297
updates, 299-300

working copies, creating,
295-296

graph style (Core Data model
editor), 445

groups
adding to projects, 110-111
removing from projects, 111
guides (IB), 177-178

headers (frameworks), 109
Hellegrass, Aaron, 317

how-to videos, 155

IBAction directive, 63-64
IBOutlet directive, 63

ibtool, 599

ICNS files, constructing, 571

icons, adding to application,
113-114

IDE (interface development
environment), 16

if-then-else statements, 45
Image Unit plug-in, 82
imperative development, 24
implementation files
#import directive, 34
@implementation directive, 34
@synthesize directive, 35

methods, implementing,
35-36

implementing
methods, 35-36

tests for existing code,
472-480

inheritance, 25
initializing objects, 40
convenience methods, 41
Installer plug-in, 82
installing
development profiles, 17-19
Xcode developer suite, 11
instance methods, 27
instance variables, 27
encapsulating, 138
instantiation, 26-27

609

Interface Builder

Instruments
interface, 534-536
memory leaks

additional information,
retrieving, 540

checking for, 537-539

multiple runs, collecting,
541-542

simultaneous data collection,
543-545

interface, 96
Instruments, 534-536
Navigator, 97-98
0S X

browser component,
adding, 382-387

code, attaching, 364-369
creating, 359-364

external code, enabling
communication with
QuartzGrough instance,
374-375

object references,
inserting in code,
369-373

Xcode, 13, 88
Interface Builder, 166

connection code, writing,
205-211

custom objects, adding,
192-193

interfaces, creating, 174
layout tools
alignment, 179

Auto Layout system,
183-188

How can we make this index more useful? Email us at indexes@samspublishing.com

610

Interface Builder

guides, 177-178
selection handles, 178
Size Inspector, 179-182

object identities, setting,
191-192

OS X interface, 167
creating, 359-364
storyboards, 172-174
loading, 168
XIB files, 168, 170
interface objects, 170-171

placeholder objects,
169-170

Interface Builder Editor, 62

interface development,
comparing Mac OS X and iOS, 6

interface files, 28
#import directive, 29
@interface directive, 29-30
@property directive, 31-33
ending, 33
methods, defining, 30-31
Interface Inspector
Attributes Inspector, 188-189

Simulate Document
command, 189-190

interface objects, 170-171

interpreting Quick Help results,
159-160

I0Kit Driver template, 82
iOS applications
ad hoc distribution, 580

application logic, updating,
414-430

building from template,
403-404

converting from OS X
applications, 400-402

distribution build, finalizing,
572-576

enterprise distribution,
581-582

projects, configuring for work-
spaces, 524-529

static target library, adding,
404-413

iOS distribution certificates
creating, 550-554

requesting through
Provisioning Portal, 554-556

i0S Empty template, 83
iOS project templates, 72
Application templates
Master-Detail template, 73
OpenGL Game template, 74
i0OS simulator, 271-272

applications, launching,
272273

features, 275-276

multitouch events,
generating, 274

simulated device,
rotating, 274

Issue Navigator, errors, 133
fixing, 135
jumping to, 134
iTunes Connect Records,
configuring, 576-578

J-K

Java, 319-320

joining paid developer program,
911

jump bar (Source Editor), 127

jumping to errors, Issue
Navigator, 134

JVM (Java Virtual Machine), 320

Keychain Access, 552-554

L

languages

built-in languages
AppleScript, 317-319
C, 313-315
C++, 315-316
Java, 319-320
Objective-C, 316-317
Perl, 321-322

Objective-C, 311

Python, adding support,
322-323

Ruby, adding support,
324-325

selecting, 312-313
unsupported, 325
launching applications in i0S
simulator, 272-273
layout of Assistant Editor,
modifying, 132

layout tools (IB)
alignment, 179
Auto Layout system, 183-188
guides, 177-178
selection handles, 178
Size Inspector, 179-182
libraries

C/C++, reusing code,
349-352

dynamic, versus
frameworks, 330

static, 330
creating, 333-342

library calls for iOS applications,
updating, 414-430

lidb, 490
LLVM, 49
loading

projects into repositories,
291-294

storyboards, 168

local Git repositories, creating,
286-287

locating files, 107

Mac 0S X
application access,
comparing with iOS, 7
development, 6
frameworks, 6

interface development, 6

project templates, 78

Automator Action
template, 81

Cocoa Application
template, 79

Cocoa Framework
template, 80

Cocoa-AppleScript
Application template, 79

Command Line Tool
template, 80

XPC Services template, 81

macros, testing code functionality
with STAssert, 474-480

man pages, xcode select tool, 589
managed objects, 437
managing
projects
commits, 298-299
pulls, 299-300
pushes, 298-299
revisions, viewing,
301-304
status codes, 297
updates, 299-300
snapshots, 282

maneuvering paused
applications, 498-499

Master-Detail application
template, 73

memory leaks
additional information,
retrieving, 540
checking for with
Instruments, 537-539
multiple runs, performing with
Instruments, 541-542

611

MVC (model-view-controller)

memory management
ARC, 49
objects, releasing, 48-49
merging, 284-285, 306-307
messaging, 27, 41-42
blocks, 43
nested messaging, 42-43
methods
convenience methods, 41
defining, 30-31
implementing, 35-36
prepareForSegue:sender
method, 228-229

modal segues, dismissing, 227
modal views, 217
models, 59-60

Data model, 64-65

modifying Assistant Editor
layout, 132

multiple runs, collecting in
Instruments, 541-542

multiscene projects, 216
scenes

adding to storyboard,
218219

naming, 219-220

multitouch events, generating in
i0S simulator, 274

MVC (model-view-controller),
57-59
controllers, 62, 67-68
IBAction directive, 63-64
IBOutlet directive, 63
Data model, 64-65

How can we make this index more useful? Email us at indexes@samspublishing.com

612

MVC (model-view-controller)

design patterns, 58
models, 60
views, 61, 66

naming scenes, 219-220

navigating Xcode workspace,
15-17
navigation controllers
example, 239-248
segues, creating, 230-234
Navigator, 97-98
nested messaging, 42-43

NeXTSTEP/OpenStep
development tools, 4

NSManagedObject subclasses,
creating, 458-460

numbers, Cocoa, 53

o

object data types, 40

object identities, setting in IB,
191-192

Object Library, 174

object references, inserting in 0S
X interface code, 369-373

Objective-C, 25-28, 311, 316-317
categories, defining, 37
class structure, 36
expressions, 44-45

if-then-else statements, 45

messaging, 41-42

blocks, 43

nested messaging, 42-43
objects

initializing, 40-41

releasing, 48-49
protocols, creating, 38
switch statements, 45
variables, declaring, 38-40
implementation files

#import directive, 34

@implementation
directive, 34-35

methods, implementing,
35-36

interface files, 28
#import directive, 29

@interface directive,
29-30

@property directive, 31-33
ending, 33
methods, defining, 30-31
objects
convenience methods, 41
initializing, 40
releasing, 48-49
OCUnit framework, 465
online documentation, 146

OOP (object-oriented
programming), 24

inheritance, 25
Objective-C, 25-28

ARC, 49

categories, defining, 37

class structure, 36

expressions, 44-45
if-then-else statements, 45
implementation files, 34-36
interface files, 28-33
messaging, 41-43
objects, initializing, 40-41
protocols, creating, 38
releasing objects, 49
switch statements, 45
variables, declaring, 38-40

opendiff, 599

OpenGL Game template, 74

0OS X applications

building, 356-358

converting to iOS applica-
tions, 400-402

distribution build, finalizing,
568-572

embedded frameworks,
adding, 388-395

interface
browser component,
adding, 382-387
building, 359-364
code, attaching, 364-369
external code, enabling
communication with
QuartzGrough instance,
374-375
object references,
inserting in code,
369-373
Interface Builder, 167
projects, configuring for work-
spaces, 519-524

shared frameworks, adding,
376-382

signed applications,
distributing, 580

unsigned applications,
distributing, 579

outlets, 195-196

connections, creating,
198-200

creating, 206-208

P

PackageMaker, 599
paid developer programs, 8
joining, 9-11
registration, 9-10
panes, Instruments
application, 534

parameters, 27

parents, 26

paused applications
continuing, 499
maneuvering, 498-499
stepping forward, 500-502

Perl, 321-322

placeholder objects, 169-170

pointers, 40

pop, 230

pragma marks, 131

prebuilt actions, 203

predicates, 437

prepareForSegue:sender method,
228-229

preparing iOS device for Xcode
development, 17

primitive data types, 39
proactive debugging, 493-496
procedural programming, 24
productbuider, 599
products, 253
productsign, 599
Profile action, 255, 268
program execution
continuing, 499
stepping forward, 500-502
programming
Cocoa, 50
arrays, 52
dates, 53
dictionaries, 53
numbers, 53
strings, 52
URLs, 54
versus Cocoa Touch, 51
imperative development, 24
language, selecting, 312-313
Objective-C, 25-28
ARC, 49
categories, defining, 37
class structure, 36
expressions, 44-45
ifthen-else statements, 45
implementation files, 34-36
interface files, 28-33
messaging, 41-43
objects, initializing, 40-41

protocols, creating, 38

613

projects

releasing objects, 49
switch statements, 45

variables, declaring, 38-40

project files, 88
Project Navigator, 97-98

Build Phases tab, 263
Build Rules tab, 264

Build Settings tab, 263
files, renaming, 106
filters, 98

templates, adding, 99-103

projects

adding to workspaces,
517-519

commits, 298-299
configuration, reviewing, 89
creating, 13, 83

template, configuring,
85-87

template, saving, 87

template, selecting, 84
files

adding, 105-106

locating, 107

removing, 106-107
frameworks

adding, 108-109

headers, 109

removing, 110
groups

adding, 110-111

removing, 111
loading into repositories

Git, 293-294

Subversion, 291-293

How can we make this index more useful? Email us at indexes@samspublishing.com

614

projects

products, 253
pulls, 299-300
pushes, 298-299
revisions, viewing, 301-304
schemes, adding, 270-271
status codes, 297
targets, 252
build phases, 263
build rules, 264
build settings, 263
case study, 260-262
creating, 257-258
properties, 111-113
templates, building, 90
updating, 299-300
properties, 27, 195-196, 437
attributes, 33
of targets, 111-113
protocols, 27
creating, 38
Provisioning Portal
App IDs, creating, 556-560

distribution certificates,
requesting, 554-556

provisioning profiles, 17, 550
creating, 552-554

distribution profiles, creating,
560-563

installing, 17-19
repairing, 551-552
pulls, 299-300
push segues, creating, 243
pushes, 230, 298-299

Python, adding support for,
322-323

Q

Quartz Composer plug-in, 82
Quick Help, 147

accessing, 158

results, interpreting, 159-160
Quick Help Inspector

activating, 160

connections, editing, 204
Quick Look plug-in, 83

reading Core Data model data,
461-462

refactoring
code, extracting, 137

instance variables,
encapsulating, 138

symbols, renaming, 135-136
reference documents, 152

registration, Apple Developer
Registration Portal, 9-10

relationships, 217, 437

defining in Core Data model
editor, 443-444

release configurations, testing, 470
releasing objects, 48-49
remote repositories

connecting to, 287-290

Git, loading projects, 293-294

Subversion, loading projects,
291-293

removing
files, 106-107
frameworks from projects, 110
groups from projects, 111
renaming
files, 106
symbols, 135-136

repairing distribution certificates,
551-552

repositories, 283
connecting to, 287-290
Git

creating, 286-287

projects, loading into,
293-294

Subversion, loading projects
into, 291-293

requesting distribution
certificates through Provisioning
Portal, 554-556

restoring snapshots, 280-282
retaining objects, 48-49
reusability

C/C++ code, 349-352

code, selecting between
frameworks and static
libraries, 331-333

reviewing project configuration, 89

revisions (source control),
viewing, 301-304

rotating simulated devices in i0S
simulator, 274

Ruby, adding support for,
324-325

Run action, 267
Run build action, 254

S

sample code, 153
saving templates, 87
scenes, 217

adding to storyboard,
218219

multiscene projects, 216
naming, 219-220
segues

advanced segues,
creating, 230-239

configuring, 225-227

creating, 223-225

dismissing, 227

push segues, creating, 243
creating, 243

sharing information between,
prepareForSegue:sender
method, 228-230

supporting view controller
subclasses, adding,
220-223

schema, 437

Scheme Editor
Analyze action, 268
Archive action, 268
Build action, 266
Profile action, 268
Run action, 267
Test action, 267

schemes, 256
adding, 270-271

SDKs, displaying with xcodebuild
tool, 592-595

Search Navigator, 129-130

searching Xcode Help viewer
library, 157

segmented controls, 198
segues, 217
advanced segues, creating

navigation controllers,
230-234

tab bar controllers,
234-239

configuring, 225-227
creating, 223-225
dismissing, 227
push segues, creating, 243
selecting
programming language,
312-313
static libraries, 331-333
template for projects, 84
selection handles (IB), 178
setting
breakpoints, 497-498
object identities (IB), 191-192
shared frameworks, adding to
OS X applications, 376-382
sharing information between
scenes, 228-230
signed applications (0S X),
distributing, 580
Simulate Document command
(1B), 189-190

simultaneous data collection, per-
forming with Instruments,
543-545

singletons, 26
Size Inspector (IB), 179-182

615

source control

shapshots, 279
auto snapshots, 282
creating, 280
exporting, 282
managing, 282
restoring, 280-282
viewing, 280-282
snippets
adding, 140-141
editing, 141
viewing, 138
source control
branching, 284, 304-306
changes, 284
commits, 298-299
merging, 284-285, 306-307
pulls, 299-300
pushes, 298-299
repositories, 283
connecting to, 287-290
Git, creating, 286-287

projects, loading into,
291-294
revisions, viewing, 301-304
snapshots, 279
auto snapshots, 282
creating, 280
exporting, 282
managing, 282
restoring, 280-282
viewing, 280-282
status codes, 297
trunks, 284
updates, 299-300

How can we make this index more useful? Email us at indexes@samspublishing.com

616

source control

version control systems, 283
working copies, 283
creating, 295-296

Source Editor, 117
auto-indentation, 120-121
balancing delimiters, 122-123
code completion, 118-120
code folding, 123-124
features, 125-126
jump bar, 127
pragma marks, 131
Search Navigator, 129-130
Symbol Navigator, 128
tabbed editing, 126-127

spaghetti code, 59

Spotlight Importer, 83

STAssert macros, testing code
functionality, 474-480

static libraries, 330
creating, 333-342
selecting, 331-333

target, adding to i0OS
application, 404-413

versus dynamic libraries, 330
status codes, 297

stepping forward (debuggers),
500-502

STL C++ Library, 81
storyboards, 167-174, 215-217
navigation controllers

advanced segues,
creating, 230-234

example, 239-248

scenes
adding, 218-219
multiscene projects, 216
naming, 219-220

segues, configuring,
225-227

segues, creating, 223-225
segues, dismissing, 227

sharing information
between, 228-230

supporting view controller
subclasses, adding,
220-223

tab bar controllers, creating
advanced segues, 234-239

strings, Cocoa, 52
Stroustrup, Bjarne, 315
subclasses, 26

NSManagedObject, creating,
458-460

view controller subclasses,
adding to scenes, 220-223

Subversion, 283
branching, 304-306
commits, 298-299
merging, 306-307
pulls, 299-300
pushes, 298-299

repositories, loading projects
into, 291-293

status codes, 297
updates, 299-300

working copies, creating,
295-296

superclasses, 26

creating, 137

switch statements, 45
Symbol Navigator, 128
symbols, renaming, 135-136
syntax

expressions, 44

messaging, 41-42

T

tab bar controllers, creating
segues, 234-239

tabbed editing, 126-127
targets, 252
build phases, 263
build rules, 264
build settings, 263
case study, 260-262
creating, 257-258
products, 253
properties, 111-113
technical notes, 154
technical Q&As, 154
templates
adding, 99-103
building, 90
configuring, 85-87
customizing, 91

File Template Library,
103-105

iOS applications, building,
403-404
iOS project templates, 72
Master-Detail application
template, 73
OpenGL Game template,
7374

Mac OS X project templates, 78

Automator Action
template, 81

Cocoa Application
template, 79

Cocoa Framework
template, 80

CocoaO-AppleScript
Application template, 79

Command Line Tool
template, 80

XPC Services template, 81
saving, 87
selecting, 84
Test action, 267
Test build action, 255
test-driven development, 465
unit testing, 466-471
Bundle Loader, 480-483

tests, implementing for existing
code, 472-477, 479-480

tools
agvtool, 598
xcode-select, 588-589
xcodebuild, 590-591
available SDKs,
displaying, 592-595
workspaces, 591
xcrun, 595-597
troubleshooting
errors, 135
memory leaks, 537-540

multiple runs, performing
with Instruments,
541-542

trunks, 284

U

unit testing, 466-471
Bundle Loader, 480-483

tests, implementing for
existing code, 472-480

unpaid developer programs, 8

unsigned applications (0OS X),
distributing, 579

unsupported languages, 325

updates (source control),
299-300

updating i0S application logic,
414-430
URLSs, Cocoa, 54
user interfaces
creating, 174

data models, binding,
446-458

Instruments, 534-536
Navigator, 97-98

'/

variables, 27
declaring, 38
object data types, 40
primitive data types, 39
verifying build configurations, 256
version control systems, 283
branching, 284, 304-306
changes, committing, 284

Git, creating repositories,
286-287

merging, 284-285, 306-307

617

working copies

repositories, 283
connecting to, 287-290

loading projects to,
291-294

revisions, viewing, 301-304

trunks, 284

working copies, 283
creating, 295-296

Version editor, viewing revisions,
301-304

videos, how-to, 155
view controllers, 216
navigation controllers

advanced segues,
creating, 230-234

example, 239-248

subclasses, adding to
scenes, 220-223

tab bar controllers, creating
advanced segues, 234-239

viewing
code snippets, 138
revisions, 301-304
snapshots, 280-282
views, 59-61, 66, 216

modal views, 217

w

web-based documentation, 146
welcome screen (Xcode), 13
working copies, 283

creating, 295-296

How can we make this index more useful? Email us at indexes@samspublishing.com

618

workspaces

workspaces, 509-514
creating, 515-517

iOS projects, configuring,
524-529

navigating, 15-17
OS X projects, configuring,
519-524

projects, adding, 517-519
xcodebuild tool, 591
writing
connection code with
Interface Builder, 205-211

data to Core Data store,
460-461

X-Y-Z

Xcode developer suite, installing, 11
Xcode Help viewer, 146
bookmarks, adding, 156
library
browsing, 156
searching, 157
Xcode tasks, 154
xcode-select tool, 588-589
xcodebuild, 590-591

available SDKs, displaying,
592-595

workspaces, 591
xcrun, 595-597
XIB files, 168-170
interface objects, 170-171
loading, 168
placeholder objects, 169-170

XPC services template, 81

	Table of Contents
	Introduction
	HOUR 6: Using the Xcode Source Editor
	Understanding Editor Basics
	Navigating Within and Between Files
	Using the Assistant Editor
	Correcting Errors and Warnings in the Issue Navigator
	Refactoring Code
	Using Code Snippets
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

