SAMS

YISUAL BASIC

REBECCA M. RIORDAN

SAMS

REBECCA M. RIORDAN

AssOCIATE PUBLISHER
Greg Wiegand

SieNING EpITOR
Neil Rowe

MaNAGING EpITOR
Kristy Hart

ProjecT EDITOR
Andy Beaster

INDEXER
Cheryl Lenser

PROOFREADER
Karen Gill

TecunicaL EprTor
John Hardesty

PuBLISHING COORDINATOR

Cindy Teeters

CoveR DESIGNER
Gary Adair

COMPOSITION
Rebecca Riordan

FLUENT VisuaL Basic®
Copyright © 2011 by Rebecca Riordan

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been takenin the preparation of this book,

the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 9780672335808

ISBN-10: 0672335808 .

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America

First Printing November 2011

TRADEMARKS

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any
trademark or service mark.

The Windlass Lowercase and Brandywine fonts are copyrights of the
Scriptorium foundry, www.fontcraft.com.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and

as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the
information contained in this book.

BULK SALES ;

Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

www.fontcraft.com

NCKIOWLEDGEITENTS

Yes, [know it says ”Rebeooa e Riorclan” on the cover, but that's not reaﬂy
true. Witheut the assistance of some amazing p60ple, this book would never have

made it out of my head, much less into your hands. e, in order of appearance, |

would like to thank:

Neil Rowe, my editer, who tock a chance on a very different way of writing
cemputer tuterials. Without Neil's leap of faith, Fluent [earning would never have
happened. My technical reviewers, David S§ceppa, Eric Weinburger
and gJohn Hardesty, whe cellectively caught an embarasing number of code
typos and [-knew-what-[-meant obscurities. Finally, my copy editor, K aren
Gill whe net enly made sure the language in the book resernbles Finglish, but also
expressed an unexpected and greatly appreciated enjoyment in the project. (Any

rernaining errors and infelicities are, of course, my responsibility.)

Jake von Sktt of The Steamnpunk YWorkshop (steampunkwerkshep.com),
Samantha Wrig}\t sarnantha-wright. deviantart.com) and Mindbloorn
(mindbloorn. corn) were all gracious enough to allow me to use their images. These
are. all semesiiihonl peodls, folks. Froant e S St I e

their sites.

3

EIETHH(I SIARTED ;" I

[NTRODUCTION. .. ueeeennnn I
Fluent Learning Because

This book isn’t for everyone

What you’ll learn

What you’ll need

How it works

APPLICATION DEVELOPMENT .. 9
The development process

System design

Creating executables

THE .NET PLATFORM 43
.NET Components
Say hello
Say what?

THE VisuaL Stupio UI. 67

Solutions, projects and stuff
Take control
Get some help

TESTING & DEPLOYMENT 93
Errors & exceptions

Deployment

THE NET FRANEWORK L

The Class Designer
Class definitions
Fields & properties
Methods

7N

Structures
Enumerations
Interfaces

Working with types

OTHER FRAMEWORK TYPES

Find out what this whele "beir\g a
programmer" thing is all about and

how to use the tools you'n need to
build applioations.

only 5impler.

Part 1: NoUNS
Statements
Declared elements
Comments

‘ Directives & Attributes

O

PART 2:
Literal expressions
Object expressions

PARrT 3:
Control of flow commands
Exception handling commands

Discover the secret to efficient

THE LANGUAGE <@ oeee®

TRANSITIVE VERBS . .

19§

INTRANSITIVE VERBS. .181

pregrarmming; The best cede is the

code you ({on’t have to write yourself.

[DRART (............

Namespaces

The Object Browser
Numeric data
Character data
Times & dates

THEe CLAss LIBRARY, PART 2 . .

Arrays
Specialized Sets
Generics

Crasses IN THE .NET FRaMEwORK. 221 THE CLAss LiBRARY, PART I ..

Learn how to speak Visual
Basic. It,s a language, much

like English, Spanish or [atin,

-305

-349

CONTENTS e

: .501
° Fundamentals
% WPF types
Put all you've learned to good .. XAML & Visual Basic
use By learning how to use °® ¢
]"\iorosOft,s latest and $reatest WP\E]P(F:ONTIROLS """"" DES
) : panels
interface platf TIM. Control classes
Content controls
Stand on the shoulders of the Items controls
xperts by learning the best
erope;mi'n eair;:f’m Zn 1 how DEePENDENCY PROPERTIES. . . §91
progr § P The basics
‘O implement ther. V] Creating dependency properties
sece,,
. WPF INTERACTIONS. 627
4 ° Routed events
BEST PRACTICE 4 WPF Commands
D
OOA&D ..., 381 WPE GRAPHICS ... L
Type relationships B © 011;
OOP principles Prus s
Type modifiers ens
Typography
Effects
PROGRAMMING PRINCIPLES. . . .42§
The Single Responsibility Principle
The Open/Closed Principle RES;)URCESd: trttrtrrrreee 719
The Liskov Substitution Principle S eslo uree dictionaries
The Law of Demeter tyles .
Property triggerrs
Event triggers
PATTERNScovvuienn... 457 &8
The Strategy Pattern
R TEIVIIBPFI‘dA‘TES SRTARELLEEREE 765
Architectural Patterns uf Tng controls
Building control templates

The VisualStateManager

WPFEF BINDING . e oo e e e e 797

Creating bindings

\ Binding to collections
Working with collections

TELL US WIHAT TOU THITIH

As the reader of this bOOk, you are our most impertant critic
and commentator. We value Your opinion and want to know
what we're dOing right, what we could do better, what
areas you’c{ like to see us publish in, and any other words of

wisdem you,re Wiﬂing to pass our way.

As a Executive Editor for Sams, [welcome yeur
cornments. You can fax, emai], or write me direoﬂy to let
me know what you did or clidn't like about this beok—as

well as what we can do to make our books stror\ger.

Please note that [cannot help you with technical pTOElems
related to the topic of this book, and that due to the I’ligl‘l
volume of email | receive, | might not be able to rep]y to

every message.

When you write, please be sure to include this beok’s title
and auther as well as yeur name and erail address, phone,
or fax number. I will oarefuﬂy review your cernments and
share themn with the auther and editors who worked on this
Book.

Email: feedback@samspublishing.com
Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor
Sams Publishing
800 East 96th Street

Indianapolis, IN 46240 USA

67

TTIE VISURL STUDIO U]

In the last ohapter Yyeu wrote your first program and saw the basics of the

Visual §tudic user interface (UI)} Now it's time to look at these steps in more

detail. \/\[e’ﬂ start By 100king at how Visual Jtu&io helps Yyou manage a clevelopment

project with Selutiens and Projects, and then take a closer look at the UJ and how to

oonfigure it to suit the way you work.

As a programmer, you’ll spenci a lot of time in the CO&C Ec]itor, and s will we. We’ﬂ look

at the basic text editir\g functions it provides and also at Intellisense and the Visua] (Studio help

system.

01utions contain Projects,
J

Selution Settings that E
control hows the application SO]_utlon
will be oompile& and Tun,
and Selution Tterns that

Miscellaneous Items

arenyt part of a speoifio Settings
project.
[)
.. . h
PPNy R Projects
XML | Cursors Icons <., §
Code L l -..
Text HTML .
[)

(SOlutions can also contain other files that aren't
included in the application but are available
from the (SOIthion Explorer when the

Selution is open.

00

[L NUTSHELL

The centents of the Teolbox
ohange to reflect the kind of

’
docurnent you re Working
)
°
[
°
° °
.).A
Document Outine . X
«-Window
4 “God
LButton (bustenl)
o'
°
)

Th; decument outline
window is a great way
to navigate hierarchical
decuments like X ML,
or XHTML

By default, "doouments" and certain kinds of

dialogs are c]isplayed as tabs in the central pertion

of the Visual Studic window.

[Ty Ty —

| B aar

°
The Data Seurce

window is like an explorer

for external data like a

relational database.

on.

I e o

| Foe Bt View Project Guki Oebug Tesm Duts Tock Aschtectos Test [Wndow bep
|- T &G “ « L1 0| B |Detng e Bl
P R T et d et alioh o)

Sorme Visual Studio Designers can clisplay
multiple panes. The WPF Designer shown
here, for example, shows XAMIL, and a

design surface you can use for drag—and-dmp.

anpdr] vy iy by B

°
> The Properties window

is a quiok and easy way
to ohange the attributes
of something that,s
selected in a clesigner.
You can alse use it as

a shortcut to create and

manage event I‘mancﬂers.

o | ke the Windows

Explorer, the elution
Explorer helps yeu
navigate % manage the
files and folders associated

with your project.

TR LI

A craftsman is master of his tools. As a prograrmmer, your primary tool is Visual Studie,
and in this ohapter we,ﬂ begm the process of mastery by examir\'mg its user interface in
detail.

SOLUTIONS, FROJECTS & STUET

It’s convenient to think of application development like writing an essay
or book: You do some research, prepare an outline, and then produce

a final document. Unfortunately, the development process isn’t that
neat. (Neither is writing, of course, at least not the way I do it.) Most
development projects don’t even have a single output that’s equivalent to
that essay. So we’ll start this chapter by looking at the way Visual Studio
uses Solutions, Projects and Solution Items to manage all the bits and
pieces that you’ll actually be working with.

TAKE CONTROL

I bet you’ve changed your Windows desktop. If you’re like most

people, you’ve added widgets to the sidebar, created some shortcuts,
and rearranged the Start menu. All those little changes just make life

a little easier by putting the tools you use all the time close to hand.
Visual Studio does a pretty good job of arranging the user interface to
accommodate general programming, but you’ll benefit from making

the same sorts of customizations to its workspace as you made to the
Windows desktop, so the next thing we’ll do is learn how to do just that.

GET SOITE HELT

In the last chapter we saw an example of Intellisense when we were able
to pick the Messagebox . Show command from a drop-down list. In this
chapter, we’ll look at Intellisense in more detail, along with some of the

special error-checking capabilities that the Visual Studio Editor provides.

60

70

OLUTIOM, ROJECTS...

JOIutions are like fﬂing cabinets that hold and manage Projects and other files. Easy enough

in prinoiple, but what exaotly does that mean? Why would you have more than ene
Prqjeot? What are these ”other files", and what exaotly does ”rnanage" mean? Letys look at sorne examples

of the kinds of files you might include in a cSOlution.

OO0 A
|

oA

Primary Ul PROJECTS

Youyﬂ usuaﬂy have a project (sornetimes
more than one) that contains the forms
that cernprise your applioation user

interface.

UTILITY CLASSES

In OOOking, yeu often
need to translate between
teaspoons, tablespoons

and cups. The classes
that do that cenversien

might be useful in other

applioations, so it makes sense to put those in a separate project that

we can reference when we need them.

DATASET PROJECTS

If Yyour app]ioation references a data

’
source, yOU H usuaﬂy have a separate

project that handles the data interface.

TEST PROJECTS
Visual Studie 9010 provides great support for a

teohnique called Test-Driven Development, It yeu
adopt this approaol‘l, you,n need projects that contain

Yyour tests.

..[ATID STUIT

Projects have mu]tiple files, as well. You’ﬂ have cede and designer files, of course, you've alrea&y seen

that, but Visual Studic will alse allow Yyeu to associate other files with the project, just to keep them handy.

e p———

DESIGNER FILES
These are the files that are created by

SOURCE FILES
These are the files that centain Yyour

OOde. Th@y have th@ sarme name as

the Visual Studie Designers. They,re the files the Designer creates, with the

text files, but if you mess with them extenson ".vb".
outside the Designer, Yyour ohanges
might get overwritten the next time
you use the Designer, s0 you'ﬂ typioaﬂy
leave thern alone. RESOURCES
If yeur project includes things

like custorn cursors or icens, 'i
these are separate files in the Project. - i

DESIGN DOCUMENTS

You can alse include

decurnents like this class

&iagram or even specifioations.

files aren't ‘ - oy
part of TUT OIT TOUR THITIKING HAT

th jeot . e ;
Z proee Find at least two ways to add a
cede. 2

Project to a Solution, and two
ways to add a file to a Project.
3 J

11

12

HOW'D T0U DO?

10 7iDD A FROJECT 10 7L SOLUTION

The pI’OBlem was to figure out how.to add Selutions and files....

Je®°®°8 .The New Project itern can be found en
s,] 3% .. the File menu and on the context menu
I.'f;”:‘;i’_‘ ... : displayed when you right—oliok the
° ® ~ JOIution name in the JOIution Explorer,

°
You can also add existing Projects, which ®
is handy if you're reusing utilities of custor
widgets, or exclude a project that you've

added by accident.

10 DD A FILE T0 A FROJECT

You can add new and
existing iterns from the

Selution Explorer by right-

©f 03ezpdl Ty Mieresct Visue! St

File Edit View Project | Buil

Cobethtran | New
D snan Open

uiN

S Slapplt - Tao Windows Coles
S Slappt - T Windows s
PR

Tapeert Tamplate.

Seurce Comtrel

Eacers Firs
Racers Paspects and bekatioen .

[anep

7] Add Window... Al F
[l AddPage. o olxokmg the Prtg]eot name.; Limmcal e
=] Add User Control... ° o 5 : \ :
i ®) .
[l Add Resource Dictionary... ° ol
%) Add Medule... ® A ° LY oo .’ e N
% Add Class... Shift+ Ak+C Y 'Y '
= []
i Add Newltem.. Ctrl+Shift+A o ®
i Add Bxdsting ltem.. Shift+ Alt+ A °o®
Gl NewFolder L
1 Show All Fil o
D Show Al Files
£ [}
Unload Project °
Ve UBAL ' The Project menu provides
Add Reference...
Add Service Reference... speoifio optiens for the rnost
Set as StartUp Project [;
7 Refresh Project Toolbox hems conmen types of Projects, er yeu
E] 03app01 - Two Windows Properties... can choose Add NCW [tem... to
i Open Folder in Windows Explorer

display the New [tern dialog.

@

OIT TOUR OWH

Yeou know how to add an itern to a Prqjeot, and yeu know how to oonfigure
a simple WPFE window, so let's put those two things together. Change yeur
Helle, Werld application to display a window instead of a MessageBox:

Add a new window to the Project. Accept the default name of Windowl.

Drag a LabeT from the Toolbox to the window design surface, and
configure the window and label properties however you like./Have some
fun! You can’t hurt anything.

Display the code for the original form (NOT the one you just created) If
the form is open, you can double-click the button or press 7. If the form

isn’t open, you can right-click the form name in the Solution Explorer
and choose Show Code.

Delete the line that displays the MessageBox, and replace it with the

fc?llOWlng: X ® The variable is

Detnallisyarable Al e PIESRTERLe o , el y .IN.i.TIIAule])) (g.itv:n 3
” ” initial value) with an
new Win . VARIABLES are just a Dinl hewwin As New Wirdowl() S e T
Qe o pree <l menerythag ‘newWin.ShowDialog() ‘ Window you just created
can stere information or o{yjeots of i | 1
a certain type. This one stores a A
Window. 4 .. : !
» You'll use variables a lot when you program. % o*This line calls the ShowDialog() methed of the
& ° .. WC'H ool mtedhEm i Chapter 5. window. METHODS are something an Objeot can do.

We,n look at them in detail in C}\apter 8.

Run the application by pressing ¥, and then click the button on the first
form.

THKE [BREAIC

Why don't you take a qulok break before we move on to centroll ing the way (SOIthlons
and Pr?Jeots behave By settmg their properties.

/

13

&

SOLUTION ATD...

When you created and modified your windows on the cIesign surface, you saw that you could centro] the
appearance of the widgets by setting their properties. Well, Selution and Projects have properties, as well
WC'H need some of these as we move through the book, so 1et's et started by lOOking at how to (Jisplay
the property cIialogs.

0 disoh N | Solutien Explorer *Ax
e easiest way to display the Solution Properties

i s ko e e e ot B g e

falog is to select the Selutien in the Selution F xplorer : j Solution '03app01 - Two Windows' (1 project)

and click the Properties butten on the Solution o . {7 Solution Items

ChOk 1'161'6 P ';E 03w]1 - Two Windows
[=d| My Project

Applicationxaml

MainWindow.xaml

"'ﬁ MainWindow.xaml.vb

o e Windowl xaml

Explorer toolbar, but you can also choose Properties

Page from the View menu. =
il

Most of the Selution properties are

managed by Visual §tudie, and you

only need to ohange them in unusual

By default, Visual Studio sets the first project

circurnstances, but you'ﬂ often need to

speoify the Startup Project whenever you add to the Solution as the Startup Project.

yeu have a Jolution that contains You can ohange that by ohoosing a different

muhiple Projects. The file speoified as Project from.t};e combobex.
°

the Startup is the one that Visual Studio
Sartup Visial & e TE—— * |t
5 [
WIH run When you press FS or TUN
Configuration: | N/A Platform: |N/A @ Configuration Manager...
L . . ®
the flnal.aPPhO‘it‘Dn' 4 Common Properties () Current selection
° Startup Project @ Single startup project '
[] ° o Project Dependencies IlBa L —Two Wi
[) LY P o ® Debug Source Files ppOL - Two Wi =
®ooco0 0 Code Analysis Settings () Multiple startup projects:
» Configuration Properties - -
Project Action 1+
03app01 - Two Windows None .
[ok][cancel |[Apply

..TTOJECT FROTERTIES

Selutien properties display in a dialog box, but Visual Studic has a designer (called the Project Designer) for
project properties that displays in a tab. You can display Project Designer by clioking the olution E,xplorer
toolbar butten when a Project is selected or By ohoosing <ProjectName> Propertics... from the Project
menu when the Project is selected, or [)y right—olioking the Project name in the Selutien Explorer and
ohoosing Properties, or by selecting the Selution name in the Selution E:)(plorer and pressing Alt'Enter. And
prOBably by CIOing some other things that 1 haven’t discovered yet...

The Applioation tab will ohange
depending on the type of Project you
choose, but it always centrols the type

of applioation .an& how it is oompilec{.

°
°
° i)
o ° 03app0L - Two Windows >Aax|
®eees
Reseurces and Settings ® °){ Application ER—— |
. X . Compile
are thmgs like icons and . JR—— R
strings that are included in - 3epp0l_Tuo Windows
Application type: Icon:
the exeoutable. WC’H use Resources |weF Application ~| [efautticon) -] @
these tabs in just a minute = =
by - [MainWindow.xami -
ings
to create an icon for our e ° °®
PP o [Assembly Information... || View Windows Settings |
aPPIioaﬁon' My Extensions Enable application framework
4 F=rL Windows application framework properties
-) ° i
Signing and Security help you o° Publish (o Rigergrose
secure your application and its o ¢ @ ® i [O"mw'“‘”‘f’. d
\ J
users from bad People an& ba& [Edit XAML .IL View Application Events l
°
software. Security is an impertant °
issue, but it’s also a I‘\uge one, o ..
we won't be talking about it in L
! °
any detail. °
The Publish tab is used to deploy your
- : i e applioation using ClickQnce. Weyﬂ talk
Neot all of these optiens are available in every version of Viﬁual ¢ ~ about that in the next ohapter.

* Studio. The Code Analysis tab, for example, only appears in |
i Visual cStudiq Premium and Ultimate. o don't panic if yeur screen
i ‘1001(5 a little différent from this one.. (You are opening these screens,
{ right?) ‘ '

il Y ittt et Nt B

15

70

1DbD Al ICOM

All Windows app]ioations need an icon. [f yeu don't provi&e one, Visual Studic will use
the default icen. The default image isn't very exciting, and it doesn’'t &istinguish yeur
applioation from all the others out there. Se letys use the Prqjeot Pr0perties &ialog to add a
custon icen to Hello, Werld. To make that happen in a WPF application (other application
types can be a little &ifferent), we need Just three steps:

@ Specify the icon file in the Application tab of Project Properties.
@ Build the application to make the icon available.

@ Set the icon property of the window in the WPF Designer.

We'ﬂ replace it with this one that looks a bit cooler
. i 4’ G, ° and represents what our applioation aotuany does.
° This icon file is called conversation.ico, and
. : it's included with the sample code. You can use this
This is the default icon. P ity A. ° fne, or any other icen file you like (try searohing for
bor'mg, huh? ®e ° o ‘ico in the Windows Explorer). Just copy it to the

applioation folder for our sample app-.

Visual Jtudio inolucles simple veaitors for 'r‘nost res_oui'ce types, including icons, from the
Reseurces tab of Project Properties, or you can use a thirc[—party tool. You can even open

~most thlrc{—party tools rlght inside VLsual Jtudlo [)y rlght—ollokmg the resource and ohoosmg

Open With... e ; : : 7

And if you re not fee ing partloularly artistic, there are lots of icon sets available for free or fee on the Web that yeu ;

. can use. GJust be sure to respeot the artlsts terms Df use, or the karma gOds w1l et you even if wpyrlght 1aw c[oesnt

If Hello, World isn’t still open from
@ the last exercise, open it from the
Visual Studio Start Screen (it will
be listed on the left side under Recent
Projects) or from the File menu. Display
the Project Properties using any of the
techniques you’ve learned, and then select
the Application tab.
We'll set 31’\6 icon here.

Blappid - Tvo Wondows” -ox

Dot Aserbly name:

Dlappl - Teen Windows

Appin s typr
Feseurces Wi Apphcabion

Servies Sartop URE
Masr/trchco narml -
Crttngs.
= ® °

4. Unatle sppication framearek Y

P— Vieudons spphcation ik ppts o

Pt °

Shutdown mesde

Code Analysis st e e = []

b AL View Appacation bvesits Y

Click here to °pen g o @ °

the cIialog.

After you select yeur icen, Visual Studio °
will ciisplay a thumbnail of it here.

LT THE AFTLICATION
[CON TROTERIT

Window appication f@yewnr progesties

[]
Shustdown e
Cinde Analysis (’U‘Il.—ﬂu(m
L]

Puttieh

[) b KA View Applec st bvety

Open the combobox and select
<Browse...>, and Visual Studio
= will display a standard File Open
dialog. The first time you open the
dialog, Visual Studio might take you to
the Microsoft Visual Studio\Common7\
IDE folder, which can be a little scary,
but just navigate to the folder for the
application and choose conversation.ico
(or whichever icon file you chose to use).

After you select the icon and click the
Open button, Visual Studio will show the
icon on the tab.

11

70

DUILD THE ATTLICATION

There are a lot of files involved in creating a Visual Studio app]ioation. In addition to the

source files that Yyou create, the resource files like icons that you create or reference, and the
final executable created by the oompiler, there are intermediate files that Visual cStudio creates for Yyou.
When Yyou set properties or resources, you need to tell Visual Studio to recreate some of these "behind-the-
scenes files so that theyyre available to other cempenents like the designers. You do that by BUILDING the
applioation.

S —— S i g

| THE DUH_,D HEHU Rebuilc[Jéluticn is a safer .[)ut slm)ver, S
‘ Most of the time you can use Build 4 _choice. [t rebuilds all the files, whether ‘ i
(Solution, : whio}w only rebuilds the . they ve ohanged or not. ¢ - |
files that have ohanged. ; ‘ e
g e

.o
Cee,, - _ -
2. '}‘ Build Solution > F6
Clean (So ution rermoves any 1ntermed\ate : Rebuild Solution
‘ - files created by Vlsual Studio but doesnt . Clean Solution
' build them. If Rebuild Selution seems) M Build 032pp01 - Two Windows Shift+F6

0
to be acting strangely, try oleamng the > Rebuild 03app01 - Two Windows

| elutin firt. s et 3 Clean 03app01 - Two Windows
i o *P%, Publish 03app01 - Two Windows r
o . ' Run Code Analysis on 03app01 - Two Windows 4 f|
‘ Py . Batch Build... " %
.+ These optiens build and clean just the Configuration Manager... § '
5 Project, not the whole ;SOIUﬁOn. Because k ‘ ; 5 5

our applioation orﬂy ‘has a single_ project, there isn't any

real difference, but when yeu hgve a lot of Projects in a
a Jélution, these a;ltematiVes can save a lot of time.

sl e o VO NN T

Press F5 or choose Build Solution from the Build menu so that the icon will be
available to the WPF Designer.

SCT THE WITDOW TTOrERTT

g e — If necessary, double-click
S — j @ MainWindow.xaml in the Solution
- t o e Explorer to open the WPF
Designer. In the Properties window,
find the Icon property, select it, and then
.click the ellipsis button.

e, e o Click here.

s e) S g) e
L

It,s not a prOElem that there's

no thumbnail.

After you click the ellipsis in e !.‘. ===
) the Properties window, Visual \ Y
Studio will display the Choose Lo *

Image dialog. Your new icon will , < |
be displayed, but there might not be a G Click here... {|
thumbnail. It’s okay; Visual Studio just A 3 oo e
hasn’t caught up with us. h;z fhen el
Click on your icon, and then click OK to o :. ey
set the property. " ‘oo,) e

After you click the OK button, Visual Studio will set the property to a long value
that begins with pack//appTlication.../. That’s just WPF-Speak for “look in the

application file”, and we’ll figure out how it all works later when we examine WPF
Resources.

79

00

DID IT WORH?

Don’t take my word for it. Run the applioation and find out...

The icon shows up in the window
where we set the property...
°

But net in the window where we

ddn't. e ®®e .

e

CLICK_ME, PLEASE

WY A Premier Window

The apphoation executable also

uses the icon, as you can see in

the bin/ dc[)ug folder in Windows
o . []

E xplorer Y

Gl

OIIL TTORE TITE...

Lets Tun through the steps to add an app lication icon one mere time..

Add the icon file to the application in Project Properties.

Build the application to make the application available in the Designers.

Set the Icon property of the windows where you want the icon displayed.

TRKE AL BREALK e

You’ve finished the first task of thlS chapter, so take a short break
to let it all settle before moving on. But before you go, stop for a
minute to think about what you’ve achieved...

/ 3 /

You created an application that displayed a Window and a MessageBox: °

You changed the appearance of the Window.

You added a second window to the Project and wrote the code to display it.

You added an icon to the application and the window.
/ . /

That’s a lot when you see it listed like that, isn’t it? Go, you!

02

(CVIEW

£
]ust a fCW €Xercises bCfOI'C We move OIl...

Solutions and Projects, Projects and Solutions. One’s like a file folder, one’s like a filing
cabinet. Which is which?

; Solution)

Project

List three ways to add a Project:

©e 6

List two ways to show the Solution Properties dialog:

® 6

List three ways to show Project Properties:

©e6

Change the application icon to something else. What happens to the window?

In the walkthrough, we only changed the icon of the main window. Add it to the other
window in the application, as well. :

TAKE CONTROL

Visual §tudio is @ Windows application, and for the most part it behaves like any Windews

applioation, with menus and toolbars and decurnent windows where yeu do Yyour work. But
the work yeu do in Visual Studio is quite speoialized, and the [DE, adds sorne speoial oapabilities to make it
possible to work Just the way you want to work.

Th') J ; You can display docurmnents TGOl windows can be docked to the edge
) 2 el d c])umzn in tabs or as separate windows. of the [DE window or each other. When
indow displaye

v ah ﬂ_\p j] faclt Yeou can even clrag thern docked, they can be opened or closed.

, u

aﬁ e e outside the main [DE, window. P

view. o °
[] ° °
° ° °

., : : ..
°, . . Tool windows
®e | that are docked

se ol

This is a teol ¢

°
| <Search> = °
window that is | b4} Accessibility ~ °
<l P—— °
CIOO](.CCI and o]osed. S oS- IWERY # Solution Explorer e ©® L4
Properties
MainWindowaamlub (. e
[iGenerad B i e,
EiClass MainWindow |
Private Sub Buttonl Click(Byval sender As System.Obj{
Dim newdindow A New Windowl() °
P ewhlindow. ShowDial
This is a document snlns“https//schenas.mic iy el This is a tool ®
xmlns :x="http: //schemas.m [End Class
H H 1 Title="Windowl" HEight="3 - .
dlsplaye& ina ﬂoatmg |FJ it | A window that
. ’ 00% - < "]
window. [t's not N T —— is docked
constrained by the Visual B, ErrorList 8] TaskList and open.
Ready N
Studie IDE, window.
°
.. .Y
° ° — .

to each other are

cIisplayed as tabs.

03

ARRANGING WINDOWS

Like any Windows application, you can centrol the individual windews in Visual Studie through the View
and Window menus or by dragging the title bar of a window.

The View menu controls the display of tool
o0 G- rownsee. Windows. (Don’t confuse “tool window” with
File Edit View “Toolbox”. The Toolbox is a tool window, but

=l Code 7 so are the Properties window and the Solution
j Designer Shift+F7 E l
-?.‘;J Solution Explorer Ctrl+W, 5 XP orer.)
!
g6 Team Explorer cl M Do you remember how to open a document
-4 Server Explorer Ctrl+W, L
_ window? Double-click on its name in the Solution

T Architecture Explorer Ctrl+W, M
G4 call Hierarchy Ctrl+W, K EXP101'¢1‘-
#F Class View Ctrl+W, C
E] Code Definition Window Ctrl+W, D
@4 Object Browser Ctrl+W,) The Window menu controls the
L e o display of open windows in the IDE.
= Output Ctrl+W, O . . .
B] St Page The most important item on this menu
3 TaskList CtrleW, T might be Reset Window Layout, which
4 Toolbox Curl+W, X | PUtS everythlng baCk s Architecture Test Analyze Window

Find Result v

e st . in place when you get B3 New Window
Other Windows k| ; = spiit
things messed up. (And pli

Toolbars [. Float
S Full Screen shift-att-tnter | you will, trust me.) -
;'Ti‘ Mavigate Backward Ctrl+- Dock as Tabbed Do _

= Auto Hide Al

’_%’f‘ Properties Window Ctrl+W, P ﬂ New Horizontal Tab Group

Property Pages Shift+F4 _ 1 Mew Vertical Tab Group

@ Close All Documents
Reset Window Layout

¥'| 1 MainWindow.xaml.cs
2 Windowl xaml

Windows...

———

@

~

- Drag it over so it displays as a tab in the same pane as the Solutlon

- Use Reset Window Layout to put everythmg back the way it was

® @_ ® 6®

~ bit does?

Ol TOUR OWII | :

The best way to learn how fo centrol the windows in \]1sua1 Studio is to play
with thern, /50 take a few minutes to move the Object Browser around. The

Objeot Browser lets yeu look through a olass hleraro]'ly You 11 find out What

that means in Chapter 7.

Remember yeu can always start over by ohoosmg Re.set Window Layout from the Window menu..

Show the Object Browser by selecting its name on the View menu. It Wlu ,
probably display as a tab. If it doesn’t, drag its title bar until it does. {

Make it float by dragging its title bar, or selectmg Float from the Window
menu. i

Dock it to the left side of the screen alonge 'With the Toolbox. It will be 1
open When'you first dock it, so click the 57 o collapse it. :

Explorer.

originally.

When you’re dragging a
window around, Visual
Studio will display this
odd docking widget. Can

you work out what each

B T

00

[TORE THAM EDITING...

Basic text editing in Visual Studio oomplies with Microsoft Windows standards. You can double-click to
select a word, ctrl-click to extend the selection, and cut, copy or paste selections Just the way you’re used

to. But the Visual Studic Code Editer also includes a seemingly magioal too] called [ntellsense that turns it
from a stenographer inte a personal assistant.

'3 "
Intellisense will even create o’ ®e °
dard cod d obi f ° : Inteﬂisense shows you what an
standard cede and objects tor ° What colors does the new 9zmo ohicot can do as wou tvpe. ©
you. . come. in? gt e you type
Y you don't need to memerize a
lot of detailed syntax. @ @ °
°
°
Send. this gy a Dot call us, .
well el ﬂom" letter. °

«°
What are the specifications for
this new gizmo?

LI TIETDERY

The Intellisense oapa[)ility that you’ﬂ prOBa[)ly use most often is the LIST MEMBERS function that &isplays a
list of valid ”things" that can be can be inserted where you,re typing. Yeu saw the list members function
when you built yeur first applioation in Chapter 9.

A\s seon as you type a single character, the List

Members box will open. Visual Studio is pretty Te insert the selected item, press the
Tab key or type the character after the

srmart about knowing what you can do, and it .
itern. [n this case, that would be the (

won't list things that den’t apply (but it's not very
character, and you know that because of

the definition displayed in the little help

smart about what rpakes sense).
°

.0 box on the far left.

[]
o |
° ° = Private Sub Buttonl Click(Byval sender As System.Ck
®e °q | Dim newhindow As New Windowl()
®eo i 1| newitindow. shol

o
Public Sub Show() Y0000, % Show
Opens a window and returns without waiting for the newly opened window to€lose. f Showhctivated
[} '
[]

‘4 ShowDialog
° [] f ShowInTaskbar
... 4 Common | All
°
°
. [)
o. . ° A
) . °
When you select an item in the box, .° ® ¢ ¢ The box lists everything that centains the
Visual Studio shows you the definition ° letters you type, not just the ones that begm
H 1 H . ” »
of the tiem, a shert desorlptlon, and, To highlight an item in the ~ With what yeu ty] ped. Typing n, for
if the itern is a method (something List]"\em[)ers [)OX, you can example, would display both "Newltemn
an bject knows how te o) any keep typing characters to and "EditNew’, asuming they were
exceptions the methed can throw in limit the list or use the up available.
a litle hep box. k and down arrow keys,
°
°
An EXCEPTION is the way an °
o ® 7

Objeot lets the rest of the program
know something is Wrong, We’ﬂ

Ol YOUR OWI

lTry using Intellisénsé to change
the ShowDialog() method call in
the sample application to Show().
Run it How is the behavior dlfferent>

look at exceptions and what to do

about thern in Chapter 7.

TARATIETER MTORTATION

TMETHODS are things that OBJ'eots can do. (We,ﬂ look at exaotly what 'YObjeot” and "method” mean in
detail in Chapter &.) Seme metheds take PARAMETERS, which are bits of infermation that you pass to
the methed to control exaotly how it dees whatever it is it does. In the bad old &ays before Inteﬂiseme,
prograrnmers spent a lot of time trying to rernernber exaotly what parameters a methed teok, and in what
order. The Intellsense Pararmeter [nfo box eliminates all that by show‘mg yeu exaot]y what yeur optiens

are.

MessageBox. "4 Message”
As soen as you type the opening paren geBox. Show("A Message" |
X 1 A 1of 5 ¥ Show(messageBoxText As String, caption As String) As System. Windows.MessageBoxResult
of a method call, Inteﬂlsense dmp]ays the ‘ A
O

Displays a message box that has a message and title bar caption; and that returns a result.
Paramneter [nfo box that shows you the

- caption: A System.String that specifies the title bar caption to display.
methed definition, a description of the ° ‘*
P ° If a methoed has different versions, you d
methed, and of the first pararmeter. °. P ®
can use the up and down arrow keys '.
to scroll througl'\ them. °
°
°
°
°

As you type each parameter, ®
[ntellisense upclates the display to show

the desoription of the next one.

lessageBow. Show(™A Message™, "caption”,
A 1ofd ¥ Show(messageBoxText As String, caption As String, button As System.Windows.MessageBoxButton) As Systern.Windows.MessageBoxResult
Displays a message box that has a message, title bar caption, and button; and that returns a result.
button: A System. Windows. MessageBoxButton value that specifies which button or buttons to display.

System.Windows.MessageBoxButton.OK = 0| = MESSEQEBDXBUTIDH-OK
The message box displays an OK button. = MessageBoxButton.OKCancel

= MessageBoxButton.VesMNo
= MessageBoxButton,YesMoCancel

| common [

k List Members works right alongsicle Parameter
d ° info, so sornetimes the screen can get a bit
.. .o .. crowded!]V\ostly it's helpful, but if all the

windows get in your way, you can always

make them §o away by pressing ESC.

OAD ITATY

Several editing functions help you keep track of where Yyou are and what you’ve dere. Using, them is

pretty intuitive, but here's a quiok rundown:

CODE OUTLINIMG

lass MainWindow

Private Sub Buttoml Click(By

° . . .
o o Dim newWindow Az New Win
Click on the *or = o newlindow.ShowDialog()
characters in the left margin End Sub
to czonapse and expand units LEnd Class
of code.
1=l FITLVELE UL DULLUMNL_LLILK| DY VdL
QUICK IHFO Dim newdindow As New Windowl
newkindow.ShowDialog()
Public Function ShowDialog() As Boolean?
Opens a window and returns only when the newly opened window is closed.
Hover the mouse over any i(]entifier, and Inteﬂisense will 4 '.
, °
clisplay its definition and a c{esoriptior\ (We 1l see how to
create desonptlons for the cede yeu write a bit ater) ®

Ceo Y X K ¢ 0® ®e Jelect any symBOI in the editor [)y
olioking in it, and Visual Studic will
highlight all the references to that

REFERENCE AIGHLIGHTING

syrnbd in the ceode.

;Iﬂuttonl _Click(Byval sender

ihdow 45 New .._'|d|::-n;(:|
neﬂ-«llndm. ShowDialog()

1 .

THKE ﬂ DREAK

 You’ve almost finished this chapter, so take a short break before you

come back for the final Review.

00

Name at least one way to add a Project to a Solution:
Name at least one way to add a File to a Project:

Where would you assign an application icon?

What does this widget do?

({2

On a new, blank line inside the Buttonl_click event handler, type an “a” to trigger
Intellisense. What’s the description of the Array object?

How many versions of the Array.BinarySearch() method are there?

Hover the mouse over one of the instances of the Window identifier. (There are two in
your source file.) What’s the description of the window?

Con ratu]ationsz You ve finished the chapter. Take a minute to think about what you’ve

accemp. ished befere you move on to the next one...

List three things you learned in this chapter:

@
@
@

Why do you think you need to know these things in order to be a C# programmer?

Is there anything in this chapter that you think you need to understand in more
detail? If so, what are you going to do about that?

01

|
¥

[

A5

02

016

[NIDEA

it

abstract classes, 404, 409-412
abstract interfaces, 409-412
abstract types, 403
abstraction, 384, 391-392, 394
access modifiers, 223
in Class Designer, 232-234
for get/set accessors, 246-249
in information hiding, 241
accessors, 241-249
actions, 25
AddHandler keyword, 479
ADO.NET, 486
ADO.NET Data Services, 486
ADO.NET Entity Framework, 486
adorners, 769
aggregate types. See arrays; generics; specialized sets
Agile Development, 20
Agile Manifesto, 20
Alexander, Christopher, 457
alignment of panel controls, 542
angle brackets in syntax diagrams, 128
animated values, 596
animations, 747-755
class hierarchy, 748
exarnple of, 752-755
reasons for using, 747
storyboards, 749-750
timeline classes, 751
application development. See also OOA&D (Object-
Oriented Analysis & Design); WPF controls
compilation process, 33-41
compiled versus interpreted languages, 34-35
JIT (just-in-time) compilation, 36-39
design patterns. See design patterns
“Hello, World” example, 53-58
steps in, 9-11, 13, 16-18, 59-63
system design, 19-32
Agile Development, 20
database schemas, 29
screen layouts, 29
UML class diagrams, 29

UML state diagrams, 25-28
use cases, 21-24
waterfall models, 20
application facade, 487
ApplicationException class, 210
applications
adding buttons, 97-98
adding icons, 76-82
building, 78
deployment, 75, 107-119
adding shortcuts to setup programs, 114
build configurations, 116-117
ClickOnce, 108-109
creating setup programs, 110-112
setup designers, 113
types of, 107
running, 58
architectural patterns, 459, 482-491
logical layers
business layer, 487
data access layer, 486
list of, 485
presentation layer, 491
service layer, 488-490
types of, 482-484
ARGB color model, 674
ArgumentException class, 210
arguments, 173
reference types versus value types, 296-301
routed events, 635-644
arranging windows, 84
Array class, 360-362
ArrayList class, 363-366
arrays, 354-362
Array class, 360-362
creating, 355
For Each...Next statement, 359
initialization, 356
referencing elements in, 357-358
specialized sets and generics versus, 372
AS <type> specifier, 128
ASP.NET Web Forms, 491

assemblies, 232

assignment operator, 159
attached properties, 538-541
attribute syntax (XAML), 509
attributes, 148

D

back end, 484
backing fields, 241, 593
bad code, characteristics of, 427
BAML (Binary Application Markup Language), 523-527
base value, determining, 597
BasedOn property, 734-735
behavior, 158, 171, 720
Berra, Yogi, 425
best practices, 13, 16
binding expressions, 798
binding source, 798, 807-810
binding target, 798
BindingMode property, 805
bindings, 797
binding modes, 805
binding source, 807-810
to collections, 814-842
building bindable collections, 817-818
data templates, 819-820
data triggers, 821-822
filtering collections, 836-842
master-detail bindings, 823-824
object sharing, 830-832
panel templates, 819-820
sorting collections, 833-835
value conversions, 829
views, 825-828
creating, 802-804
DataContext property, 811
reasons for using, 799-800
structure of, 798
template bindings, 779-780
update triggers, 806
bitmap effects, 712
block elements, 708
blurs, 713
Boole, George, 165
Boolean expressions, 165-169
bounding boxes for gradients, 682
boxing, 295
Break All command (break mode), 104

break mode, 101-106
breakpoints, setting, 102
Brookes, Frederick P., 20
brushes, 677-697
creating explorer windows for, 678-680
gradients, 681-690
bounding boxes for, 682
linear gradients, 683-687
radial gradients, 688-690
tile brushes, 691-696
types of, 677
bubbling events, 634
bugs. See also exceptions
break mode, 101-106
Code Editor display of, 99-100
history of terminology, 59
in .NET Framework, 644
number in programs, 93
types of, 96
build configurations, 116-117
building applications, 78
Burger, Andrej, 644
business entities, 487
business layer, 485, 487
business rules, 487
business workflows, 487
Button class, 308
buttons, 565-568
adding to applications, 97-98
class hierarchy, 565
content properties (XAML), 566
radio button groups, 567-568
ByRef keyword, 301

C

Calendar class, 335

calendars, historical date problems with, 338-339

Call Stack window, 101

callbacks, 594, 602, 614-623
coerce value callbacks, 616
property changed callbacks, 617
registering, 618-623
validation callbacks, 615

calling methods, 175-176

camel case, 132

CanBe relationship, 386

CanDo relationship, 288, 386

Canvas control, 537

047

040

casting, 139, 290
explicit casting, 292
implicit casting, 291
is keyword, 293-294
polymorphism and, 397
TryCast() function, 293-294
Type...Is operator, 398-400
change tracking and notification with dependency
properties, 595
chaotic cohesion, 432
Char structure, 327-328
character data, 327-334
Char structure, 327-328
comparing strings, 330
escaping text, 329
String class methods, 331-332
String versus StringBuilder class, 333
CheckBox control, 565
chronological data, 335-345
DateTime class, 337-340
DateTime versus DateTimeOffset classes, 336
DateTimeOffset class, 343-344
Timespan class, 341-342
Class Designer, 227-238
abstract classes in, 410
access modifiers in, 232-234
enumerations, creating, 282
fields in, 235
inheritance in, 237
properties in, 231, 236
structures, creating, 276-278
Class Details pane (Class Designer), 236
class diagrams, 29, 225-238
Class Name ComboBox (Code Editor), 640
classes. See also FCL (Framework Class Library)
abstract classes, 404, 409-412
access modifiers in Class Designer, 232-234
components of, 224
control classes, 553-556
default implementations, extending, 415-416
definition syntax, 239-240
degenerate classes, 446
dependency properties, 602-603
design principles. See design principles
extension methods, 419-421
fields, 235, 241-249
inheritance, 210, 237
instances and constructors versus, 259

interfaces versus, 289
items controls class hierarchy, 570-571
methods, 250-267
constructor chaining, 260
creating, 252-258
me keyword, 256
syntax, 254
types of, 251
modules, 405-408
within .NET Framework, 221-223
OOQP principles. See OOP principles
properties, 241-249
accessor access, 246-249
in Class Designer, 231, 236
implementation, 242-245
relationship with objects, 221
for routed commands, 663
sealed classes, 402-404, 417-418
sealed members, 404
static classes, 404
static font classes, 707
static members, 404
structures versus, 275
timeline classes, 751
type modifiers. See type modifiers
UML class diagrams, 29, 225
virtual members, 404
WPF class hierarchy, 535
ClickOnce, 107-109
client/server applications, 482
CLR (Common Language Runtime), 36
CLR-compliant languages, JIT (just-in-time)
compilation, 36-39
CMYK color model, 674
Code Complete (McConnell), 184
Code Editor, 62, 86-89, 640
code outlining, 89
code smells, characteristics of, 427
CodePlex open source site, 669
coerce value callbacks, 616
cohesion, 430-437
collection property syntax (XAML), 513-514
collections, 353
binding to, 814-842
building bindable collections, 817-818
data templates, 819-820
data triggers, 821-822
filtering collections, 836-842

master-detail bindings, 823-824
object sharing, 830-832
panel templates, 819-820
sorting collections, 833-835
value conversions, 829
views, 825-828
XAML, 513-514
CollectionViews, 798
color, 674-676
gradients, 681-690
bounding boxes for, 682
linear gradients, 683-687
radial gradients, 688-690
color profiles, 675
Color structure, 675
ColorInterpolationMode property, 687
ComboBox control, 575-576
commands
in break mode, 104
control-of-flow commands, 184-204
iteration commands, 191-197, 359
jump commands, 198-204
selection commands, 186-190
types of, 185
exception handling commands, 184, 205-217
Exception class, 209-212
Try...Catch...Finally command, 208
routed commands, 629-630, 654-666
class hierarchy, 663
creating, 665
in FCL (Framework Command Library), 656-658
hooking up, 660-662
input gestures, 664-665
logical design, 655, 659
types of, 181, 183-184
comments, 122-123, 141-147
line comments, 142-143
Task List comments, 144-145
XML comments, 146-147
Common Language Runtime (CLR), 36
communicational cohesion, 432
comparing strings, 330
compartments, 225
compilation errors, 96-100
compilation process, 33-41
compiled versus interpreted languages, 34-35
JIT (just-in-time) compilation, 36-39
for XAML, 523-527

compiled languages, interpreted languages versus, 34-35
compilers, 17
Concat() method, 331
concatenation operator, 159-160
concurrency, 825
conditional iteration, 192-194
#const directive, 149
constants, 127-128. See also declared elements
constructors, 135, 251
base constructors, 416
chaining, 260
classes and instances versus, 259
default constructors, 258
content controls, 533, 536, 557-569
buttons, 565-568
decorators versus, 773
headered content controls, 563-564
Window control, 558-562
content properties (XAML), 510, 566
continuation character (_), 124
Continue command (break mode), 104
Continue command (jump commands), 200-202
control classes, 553-556
control contracts, 784-787
control templates, 721, 765, 775-787
control contracts, 784-787
example of, 776-778
necessary control components, 783
presenters, 781-782
syntax, 775
template bindings, 779-780
visual states, 788-794
visual transitions, 791-792
control-of-flow commands, 181, 184-204
iteration commands, 191-197, 359
jump commands, 198-204
selection commands, 186-190
types of, 185
controls. See WPF controls
converters, 798
converting
reference types to/from value types, 295
values in bindings, 829
Cooper, Alan, 491
counters, 195
Createlnstance() method, 360
currency, 825
Custom Actions Editor, 113

040

050

custom events, creating, 647
Custom keyword, 647
customizing
Visual Studio UI, 83-85
WPF controls. See control templates; graphics

D

data access layer, 485-486
data binding, 495
data contracts, 488
Data Source window, 68
data stores, 485
data templates, 819-820
Data Tips in break mode, 103
dara triggers, 736, 821-822
data types. See types
darta validation. See validation
database schemas, 29
DataContext property, 811
dataset projects, 70
dates/times. See also chronological data
DateTime class, 335-340
DateTimeOffset class, 335-336, 343-344
debug build configuration, 116
DEBUG constant, 151
Decimal type, 321, 324
declarations, 122-123
of arrays, 355
of events, 646-647
of methods, 254
of namespaces, 515-516
syntax, 128-130
declared elements, 123
components of, 134
declaring, 128-130
memory allocation, 133
New keyword, 135
Option Infer, 138-139
scope, 262-265
types of, 127
decorators, 769, 773-774
default constructors, 258
default implementations, extending, 415-416

default settings, Visual Basic language elements, 136-137

degenerate classes, 446

delegates, 615

dependency inversion, 441-444, 463
dependency properties, 591

callbacks, 614-623
coerce value callbacks, 616
property changed callbacks, 617
registering, 618-623
validation callbacks, 615
capabilities of, 595
classes, 602-603
creating, 604-609
registering, 610-612
reusing, 613
routed events versus, 628, 645
value calculation, 596-601
DependencyProperty class, 602-603
deployment, 75,107-119
adding shortcuts to setup programs, 114
build configurations, 116-117
ClickOnce, 108-109
creating setup programs, 110-112
setup designers, 113
types of, 107
Dequeue() method, 367
design documents, 71
design patterns, 16, 457
architectural patterns, 482-491
business layer, 487
data access layer, 486
logical layers, list of, 485
presentation layer, 491
service layer, 488-490
types of, 482-484
Observer pattern, 469-481
event mapping, 631
handling events, 477-479
logical observer, 470-471
NET solution, 475
raising events, 476
solution options, 472-474
presentation patterns, 492-498
Model-View-Controller pattern, 495
Model-View-Presenter pattern, 496
Model-View-ViewModel pattern, 497
pros and cons, 493-494
reasons for using, 460-461
Strategy pattern, 463-468

Design Patterns: Elements of Reusable Object-Oriented

Software (Gamma et al.), 457
design principles
characteristics of bad code, 427

Law of Demeter, 449-453
Liskov Substitution Principle, 445-448
Open/Closed Principle, 438-444
Single Responsibility Principle, 431-437
when to violate, 428-429
designer files, 71
design-time, 34
destructors, 251
development environments, 11
development methodologies, 13, 16
Agile Development, 20
waterfall models, 20
device independent pixel, 540
diagrams. See UML (Unified Modeling Language)
Dictionary class, 367
Dim keyword, 128
direct events, 630, 634
directives, 122-123, 148-151
DirectX, 712
“Discover a Series of Fortunate Event Handlers in Visual
Basic” (Getz), 647
DivideByZeroException class, 210
dll files, 35
DockPanel control, 537, 544-546
document outline window, 68
documents, flow, 708-711
Do...Loop command, 192-194
dot operator, 172
Double type, 321, 323
downloading
source code, 6
Visual Studio, 6
drawing shapes, 770-772
drop shadows, 713
dynamic event handlers, 479
dynamic resources, 727-728

L

Edison, Thomas, 59

effects (graphics), 712-714
Einstein, Albert, 425
embedding fonts, 707
empty bindings, 814
encapsulation, 384, 391, 393
encoding, 327

ENIAGC, 59

Enqueue() method, 367
enum keyword, 284

enumerations, 269, 274, 281-287
creating in Class Designer, 282
methods in, 284-287
within .NET Framework, 270-271
syntax, 283
validation, 283

equations, expressions versus, 160-162

Error List window, 100

errors. See bugs

escaping text, 329

event handlers, 57
adding to buttons, 98
for routed events, 639-641
event triggers, 736, 744-746

events, 25, 224
adding to windows, 57
bubbling events, 634
custom events, creating, 647
declaring, 646-647
direct events, 630, 634
handling, 477-479
mapping to Observer pattern, 631
raising, 476
routed events, 627, 632-653

arguments, 635-644
creating, 648-653
dependency properties versus, 628, 645
reasons for using, 632-633
strategies, 634
tunneling events, 634

Exception class, 209-212

exception handling commands, 181, 184, 205-217
Exception class, 209-212
Try...Catch...Finally command, 208

exceptions, 87, 96. See also bugs

exe files, 35

executables, creating, 33-41
compiled versus interpreted languages, 34-35
JIT (just-in-time) compilation, 36-39

Exit command, 199

Expander control, 563

explicit casting, 292

explicit iteration, 195-196

explorer windows, creating, 678-680

expressions, 98, 155
literal expressions, 158-170

Boolean expressions, 165-169
equations versus, 160-162

031

032

operator precedence, 163-164
syntax, 159
object expressions, 158, 171-178
calling methods, 175-176
member access, 172
method signatures, 173
overloading methods, 174
type names, 177
types of, 157-158
extending default implementations, 415-416
extension methods, 407, 419-421

f

FCL (Framework Class Library)
arrays, 354-362
Array class, 360-362
creating, 355
For Each...Next statement, 359
initialization, 356
referencing elements in, 357-358
character data, 327-334
Char structure, 327-328
comparing strings, 330
escaping text, 329
String class methods, 331-332
String versus StringBuilder class, 333
chronological data, 335-345
DateTime class, 337-340
DateTime versus DateTimeOffset classes, 336
DateTimeOffset class, 343-344
Timespan class, 341-342
functionality example, 308
generics, 372-377
namespaces, 310-316
creating, 315
Imports statement, 312-314
numeric data, 321-326
Decimal type, 324
floating point numbers, 323
integer efficiency tips, 322
Math class, 325
Object Browser, 317-320
organization, 306-307, 350-351
specialized sets, 363-371
ArrayList class, 363-366

LIFO, FIFO, linked lists, key/value pairs, 367-371
FCL (Framework Command Library), routed commands

in, 656-658

fields, 224, 241-249
in Class Designer, 235
dependency properties and, 592
naming conventions, 236
FIFO (first in, first out), 367-371
File System Designer, 113
File Type Editor, 113
files, adding to projects, 70-73
filtering collections, 836-842
fixed documents, 708
floating point numbers
integers versus, 139
precision, 323
flow control. See control-of-flow commands
flow controls, 711
flow documents, 708-711
FlowDocumentPageViewer control, 711
FlowDocumentReader control, 711
fonts, 704
embedding, 707
static font classes, 707
For Each...Next statement, 359
For...Next command, 195-196
fragile code, 427
Framework Class Library. See FCL (Framework Class
Library)
frameworks. See .NET Framework
Fraser, Bruce, 676
front end, 484
functional cohesion, 432
functions, 173

G

gamut, 675
garbage collection, 265
generics, 353, 372-377
arrays and specialized sets versus, 372
instantiation, 373
gestures, input, 664-665
get accessors, 241-249
Getz, Ken, 647
global variables, 407
glyph runs, 691
glyphs, 704
GMT (Greenwich Mean Time), 336
GoTo command, 203-204
gradients, 681-690
bounding boxes for, 682

linear gradients, 683-687

radial gradients, 688-690
graphics, 669-671

brushes, 677-697

creating explorer windows for, 678-680

gradients, 681-690
tile brushes, 691-696
types of, 677

color, 674-676

effects, 712-714

flow documents, 708-711

Mindbloom website versus Microsoft Word, 672

pens, 698-702
typography, 703-707
fonts and typefaces, 704
static font classes, 707
text characteristics, 705
text controls, 706
Greenwich Mean Time (GMT), 336
Gregorian calendar, 339
Grid class, 308
Grid control, 537, 547-548
GridSplitter control, 549-550
GroupBox control, 563
grouping collections, 836-842

i

hacks, 144

Handles keyword, 477, 641

handling events, 477-479

Harvard Mark II, 59

HasA relationship, 288, 386

Hashtable class, 367

headered content controls, 563-564

heap, 272-273

height of panel controls, 543

“Hello, World” example, 53-58

High Level Shading Language (HLSL), 712
historical dates, 338-339

HLSL (High Level Shading Language), 712
horizontal alignment of panel controls, 542
HSYV color model, 674

Hungarian notation, 132

[

ICollection interface, 364
icons, adding to applications, 76-82

IDE (integrated development environment), 17

ideas, 10
identifiers, 128

as expressions, 157

naming conventions, 131-132
IEnumerable interface, 364
if statement, 186-188
#if.. #else...#endif directive, 149
IList interface, 364
Immediate window, 101
immobile code, 427
immutability, 333
immutable properties, 247
implementation of properties, 242-245
implicit casting, 138-139, 291
implicit styles, 731
Imports statement, 312-314
incompatible contracts, 447
indexes, 354
information hiding, 241-249, 393
inheritance, 225, 384, 391-392

in Class Designer, 237

in Exception class, 210
inheritance casts, 291
initialization, 73

arrays, 356

of decimal values, 324

with New keyword, 135
inline elements, 708
input gestures, 664-665
instances, 221, 251, 259
instantiation, 221

generics, 373

structures, 279
Int32 class, 308
Int32 type, 321
integers

efficiency tips, 322

floating point numbers versus, 139

integrated development environment (IDE), 17

Intellisense, 57, 62, 86-88, 146-147
Intellitrace commands (break mode), 104
interfaces, 269, 274, 288-289

abstract interfaces, 409-412

for ArrayList class, 364

classes versus, 289

within .NET Framework, 270-271

programming to interfaces, 442, 463

relationships and, 288

service interfaces, 488 layout transforms, 758

internal access modifier, 232 LIFO (last in, first out), 367-371
interpreted languages, compiled languages versus, 34-35 line comments, 142-143
invoking methods, 175-176 linear gradients, 681-687
is keyword, 293-294 lines, drawing, 698-702
IsA relationship, 288, 386 linked lists, 367-371
items controls, 533, 536, 570-576 linkers, 17
binding to collections, 814-842 linking, 35
building bindable collections, 817-818 LINQ expressions, 157
data templates, 819-820 Lippert, Eric, 418
data triggers, 821-822 Liskov Substitution Principle, 430, 445-448
filtering collections, 836-842 list members, 87
master-detail bindings, 823-824 ListBox control, 575-576
object sharing, 830-832 ListView class, 571
panel templates, 819-820 literal expressions, 158-170
sorting collections, 833-835 Boolean expressions, 165-169
value conversions, 829 equations versus, 160-162
views, 825-828 operator precedence, 163-164
class hierarchy, 570-571 syntax, 159
ComboBox control, 575-576 local values, 597
ListBox control, 575-576 Locals window, 101
TreeView control, 572-574 logical errors, 96
iteration commands, 183, 185, 191-197 logical layers
conditional iteration, 192-194 business layer, 487
For Each...Next statement, 359 data access layer, 486
explicit iteration, 195-196 list of, 485
J presentation layer, 491
service layer, 488-490
jagged arrays, 354 logical operators, 166
JIT (just-in-time) compilation, 36-39 logical tree, 506, 519, 766
Julian calendar, 339 loops. Seeiteration commands
jump commands, 183, 185, 198-204 LSP. See Liskov Substitution Principle
Continue command, 200-202 lv[
Exit command, 199
GoTo command, 203-204 margin of panel controls, 542-543
K master-detail bindings, 823-824
Math class, 325
key frame animations, 751 MatrixTransform class, 756
keyed styles, 730 Max() method, 325
key/value pairs, 367-371 McConnell, Steve, 184
keywords, 131, 223 me keyword, 256
kludges, 144 measurement units, device independent pixel, 540
L member access, 172
memory allocation, 133
lambdas, 157 garbage collection, 265
Launch Conditions Editor, 113 reference and value types, 272-273
Law of Demeter, 430, 449-453 scope, 262-265
layered architecture. Seelogical layers in structures versus classes, 275

054

meta types. See character data; chronological data;
numeric data
method calls, 175
Method Name ComboBox (Code Editor), 640
methods, 73, 88, 224, 250-267
for Array class, 360
calling, 175-176
cohesion levels, 432
constructor chaining, 260
constructors, classes and instances versus, 259
creating, 252-258
for Decimal type, 324
in enumerations, 284-287
extension methods, 407, 419-421
in Math class, 325
me keyword, 256
overloading, 174
passing by reference/value, 299-301
signatures, 173
static methods, 176, 479
in String class, 331-332
syntax, 254
types of, 251
Microsoft Intermediate Language (MSIL), 36
Microsoft Word, Mindbloom website versus, 672
Min() method, 325
Mindbloom website, Microsoft Word versus, 672
Model-View-Controller pattern, 495
Model-View-Presenter pattern, 496
Model-View-ViewModel pattern, 459, 497
modifiers. See access modifiers; type modifiers
modules, 402, 405-408
modulus operator, 161
monolithic applications, 482
MSIL (Microsoft Intermediate Language), 36
multi-dimensional arrays, 354
multi-line statements, 124
multiple inheritance, 392
multiple transformations, 758-759
multiple trigger conditions, 739-740
multi-statement lines, 124
MustInherit keyword, 403, 410
MustOverride keyword, 403, 410
mutability, 333
MVC (Model-View-Controller) pattern, 495
MVP (Model-View-Presenter) pattern, 496
MVVM (Model-View-ViewModel) pattern, 497
MyBase keyword, 415-416

The Mythical Man Month (Brookes), 20

I

namespaces, 310-316
creating, 315
Imports statement, 312-314
XAML, 515-516
naming conventions
abstract classes, 409
fields and properties, 236
identifiers, 131-132
variables, 264
Visual Basic versus .NET type names, 177
Nash, John, 144
negation operator, 160
nesting panel controls, 551
NET Framework, 43
advantages of, 50-52
bugs in, 644
Class Library organization, 306-307, 350-351
classes within, 222-223
enumerations within, 270-271
interfaces within, 270-271
structures within, 270-271
type names, 177
types. See types
NET Platform, 43-65
components of, 44-49
“Hello, World” example, 53-58
New keyword, 135
Norman, Donald, 491
NotImplementedException class, 210
NotOverridable keyword, 402
NotOverrideable keyword, 417-418
n-tiered applications, 482
numeric data, 321-326
Decimal type, 324
floating point numbers, 323
integer efficiency tips, 322
Math class, 325

0

Object Browser, 85, 317-320

object code, 34

object composition, 386

object elements (XAML), 509

object expressions, 158, 171-178
calling methods, 175-176

033

member access, 172
method signatures, 173
overloading methods, 174
type names, 177
object hierarchy, 311
object sharing, 830-832
object tree, 506, 519
object-oriented programming principles. See OOP
principles
objects
components of, 171
referencing from XAML, 831
relationship with classes, 221
state and behavior, 720
Observer pattern, 459, 469-481
event mapping, 631
handling events, 477-479
logical observer, 470-471
.NET solution, 475
raising events, 476
solution options, 472-474
OneTime binding, 805
OneWay binding, 805
OneWayToSource binding, 805

OOA&D (Object-Oriented Analysis & Design), 381-383

design principles
characteristics of bad code, 427
Law of Demeter, 449-453
Liskov Substitution Principle, 445-448
Open/Closed Principle, 438-444
Single Responsibility Principle, 431-437
when to violate, 428-429

OOP principles, 391-401
polymorphism and casting, 397
Type...Is operator, 398-400

type modifiers, 402-419
abstract classes and interfaces, 409-412
extension methods, 419-421
list of, 402-404
modules, 405-408
MyBase keyword, 415-416
sealed classes, 417-418
semi-abstract classes, 413
Shadows and Overrides keywords, 413-414

type relationships, 385-390

OOQOP principles, 391-401
polymorphism and casting, 397
Type...Is operator, 398-400

opaque code, 427
Open/Closed Principle, 430, 438-444
opening Project Designer, 75
operands, 159
operators, 159
dot operator, 172
logical operators, 166
precedence, 163-164
relational operators, 165
symbolic operators, 175
Option Compare, 137
Option Explicit, 137
Option Infer, 137-139
Option Strict, 137
ordinal string operations, 330
OverflowException class, 210
overloading methods, 174
overloads, 174, 257
Overridable keyword, 403
Overrides keyword, 413-414

r

padding of panel controls, 542-543
panel controls, 533, 536-552
attached properties, 538-541
decorators versus, 773
DockPanel control, 544-546
Grid control, 547-548
GridSplitter control, 549-550
nesting, 551
positioning and sizing, 542-543
panel templates, 819-820
paragraphs, 124
parameters, 88, 173, 253
Pascal case, 132
passing by reference, 299-301
passing by value, 299-301
A Pattern Language (Alexander), 457
patterns. See design patterns
pens, 698-702
pixel shaders, 671
POCO (plain old CLR object), 592, 630
polymorphism, 384, 391, 393
casting and, 397
Type...Is operator, 398-400
Pop() method, 367
positioning panel controls, 542-543
precedence of operators, 163-164

precision, floating point numbers, 323
predicates, 360, 837
preprocessor directives, 148. See also directives
preprocessors, 148
presentation layer, 485, 491. See also presentation patterns
presentation patterns, 492-498
Model-View-Controller pattern, 495
Model-View-Presenter pattern, 496
Model-View-ViewModel pattern, 497
pros and cons, 493-494
presenters, 767, 781-782
primary colors, 676
primary Ul projects, 70
Principle of Least Knowledge, 430, 449-453
private access modifier, 232
processing pipeline, 596
programming to interfaces, 442, 463
Project Designer, opening, 75
Project Properties designer, 113
projects. See also application development
adding files to, 70-73
adding to solutions, 70-73
creating, 54, 60
properties, 74-82
startup project, specifying, 74
steps in, 59-63
properties, 224, 241-249
accessor access, 246-249
attached properties, 538-541
in Class Designer, 231, 236
content properties (XAML), 510, 566
dependency properties, 591
callbacks, 614-623
capabilities of, 595
classes, 602-603
creating, 604-609
registering, 610-612
reusing, 613
value calculation, 596-601
implementation, 242-245
for linear gradients, 687
naming conventions, 236
of solutions and projects, 74-82
Properties window, 56-57, 68
property changed callbacks, 617
property element syntax (XAML), 509
property triggers, 736-743
combining with styles, 741-742

multiple trigger conditions, 739-740
PropertyMetadata class, 602-603
protected access modifier, 232
protected internal access modifier, 232
public access modifier, 232
publishing. See deployment
Push() method, 367

0

Queue class, 367

i

radial gradients, 681, 688-690
radio button groups, 567-568
RadioButton class, 308
RadioButton control, 565
raising events, 476
range controls, 533
read-only properties, 247
Real World Color Management (Fraser), 676
redundant code, 427
reference highlighting, 89
reference types, 272-273, 275
converting to/from value types, 295
value types versus, 296-301
referencing
array elements, 357-358
objects from XAML, 831
resources, 727-728, 830
XAML elements, 830
reflection, 290
registering
callbacks, 618-623
dependency properties, 610-612
Registry Editor, 113
relational operators, 165
relationships, 288, 385-390
RelativeSource class, 809-810
release build configuration, 116
RemoveHandler keyword, 479
render transforms, 759
resources, 71, 526, 719, 721
advantages and disadvantages of, 722
in code, 729
defining, 724-726
referencing, 727-728, 830
REST (representational state transfer), 488
Restart command (break mode), 104

037

030

return types, 173
reusing dependency properties, 613
RGB color model, 674
RichTextBox control, 711
rigid code, 427
root element (XAML), 515
RotateTransform class, 756
Round() method, 324-325
routed commands, 629-630, 654-666
class hierarchy, 663
creating, 665
in FCL (Framework Command Library), 656-658
hooking up, 660-662
input gestures, 664-665
logical design, 655, 659
routed events, 627, 632-653
arguments, 635-644
creating, 648-653
dependency properties versus, 628, 645
reasons for using, 632-633
strategies, 634
running applications, 58
runtime, 34
runtime environments, 10, 17

\

safe casts, 291

scope, 262-265

screen layouts, 29

ScRGB color space, 687

sealed classes, 402, 404, 417-421

sealed members, 404

select...case statement, 189-190

selection commands, 183, 185-190
if statement, 186-188
select...case statement, 189-190

Selector class, 571

Sells, Chris, 418

separation of responsibilities, 493

sequential cohesion, 432

servers, 484

service interfaces, 488

service layer, 485, 488-490

service-oriented architecture, 484

services, 484

set accessors, 241-249

sets. See arrays; generics; specialized sets

setters, 597

setup designers, 113
setup programs, 107
adding shortcuts to, 114
build configurations, 116-117
creating, 110-112
Shadows keyword, 413-414
shapes, 769-772
shared keyword, 402
sharing objects, 830-832
shortcuts, adding to setup programs, 114
Show Next Statement command (break mode), 104
side effects, 166
signatures of methods, 173
Silverlight, 491, 503
Simonyi, Charles, 132
simple statements, 124
Single Responsibility Principle, 430-437
Single type, 323
single-dimensional arrays, 354
singleton pattern, 407
sizing panel controls, 542-543
SkewTransform class, 757
Snepscheut, Jan van de, 425
SOA (service-oriented architecture), 488
SOAP (simple object access protocol), 488
Solution Explorer, 61, 68
solutions, 67
adding projects to, 70-73
properties, 74-82
sorting collections, 833-835
source code, 11, 17
Code Editor, 62, 86-89
compiled versus interpreted languages, 34-35
downloading, 6
JIT (just-in-time) compilation, 36-39
steps in writing, 59-63
source files, 71
sparse storage with dependency properties, 595
specialized sets, 363-371
ArrayList class, 363-366
arrays and generics versus, 372
LIFO, FIFO, linked lists, key/value pairs, 367-371
specifications, 10, 16, 19-32
Agile Development, 20
database schemas, 29
screen layouts, 29
UML class diagrams, 29
UML state diagrams, 25-28

use cases, 21-24
waterfall models, 20
SpreadMethod property, 687
square brackets in syntax diagrams, 128
sRGB color space, 687
stack, 272-273, 367
StackPanel control, 537
startup project, specifying, 74
state, 158, 171, 720
state diagrams, 25-28
state members. See fields
statements, 17, 122-123
class definitions, 239-240
commands. See commands
declared elements. See declared elements
expressions. See expressions
syntax, 124-126
states, 25
static classes, 404. See also modules
static event handlers, 477
static font classes, 707
static members, 402, 404
static methods, 176, 251, 479
static resources, 727-728
Step Into command (break mode), 104
Step Out command (break mode), 104
Step Over command (break mode), 104
Stop Debugging command (break mode), 104
stops, 681
storyboards, 749-750
Strategy pattern, 459, 463-468
String class, 308
comparing strings, 330
escaping text, 329
methods, 331-332
StringBuilder class versus, 333
StringBuilder class, String class versus, 333
StringComparison enumeration, 330
strong typing, 139
structured exception handling, 207-217
structures, 269, 274-280
classes versus, 275
creating in Class Designer, 276-278
instantiation, 279
within .NET Framework, 270-271
styles, 597, 721, 730-735
combining with triggers, 741-742
hierarchies in, 734-735

types of, 730-731
subs, 173
symbolic operators, 175
syntactic sugar, 135
syntax errors, 96, 99-100
system architectures, 13
system design, 19-32
Agile Development, 20
database schemas, 29
screen layouts, 29
UML class diagrams, 29
UML state diagrams, 25-28
use cases, 21-24
waterfall models, 20
SystemException class, 210

I

tab controls, 577
targeted styles, 730
Task List comments, 144-145
template bindings, 797
templates, 597
control templates, 721, 765, 775-787
control contracts, 784-787
example of, 776-778
necessary control components, 783
presenters, 781-782
syntax, 775
template bindings, 779-780
visual states, 788-794
visual transitions, 791-792
data templates, 819-820
panel templates, 819-820
temporal cohesion, 432
test projects, 70
test-driven development, 70
text. See character data; typography
text editors, 17
TextBox class, 308
TextDecorations collection, 700-702
themes, 597
ticks, 337
tile brushes, 691-696
The Timeless Way of Building (Alexander), 457
timeline classes, 751
times/dates. See also chronological data
Timespan class, 335, 341-342
TimeZonelnfo class, 335

030

060

ToggleButton control, 565
tokens, 144-145
Toolbox, 68
TRACE constant, 151
transform groups, 758
transformations, 671, 756-761
transitions, 25, 791-792
TranslateTransform class, 757
TreeView control, 572-574
triggers, 597, 721, 736-746
data triggers, 821-822
event triggers, 744-746
property triggers, 736-743
combining with styles, 741-742
multiple trigger conditions, 739-740
types of, 736
update triggers, 806
true keyword, 160
Truncate() method, 324-325
TryCast() function, 293-294
Try...Catch...Finally command, 208
tunneling events, 634
TwoWay binding, 805
type keywords, 223
type modifiers, 402-419
abstract classes and interfaces, 409-412
extension methods, 419-421
list of, 402-404
modules, 405-408
MyBase keyword, 415-416
sealed classes, 417-418
Shadows and Overrides keywords, 413-414
type relationships. See relationships
typefaces, 704
Type...Is operator, 398-400
types, 158, 171, 290-302. See also classes; enumerations;
FCL (Framework Class Library); interfaces; structures
arrays, 354-362
Array class, 360-362
creating, 355
For Each...Next statement, 359
initialization, 356
referencing elements in, 357-358
boxing and unboxing, 295
casting, 290
explicit casting, 292
implicit casting, 139, 291
is keyword, 293-294

polymorphism and, 397
TryCast() function, 293-294
Type...Is operator, 398-400
character data, 327-334
Char structure, 327-328
comparing strings, 330
escaping text, 329
String class methods, 331-332
String versus StringBuilder class, 333
chronological data, 335-345
DateTime class, 337-340
DateTime versus DateTimeOffset classes, 336
DateTimeOffset class, 343-344
Timespan class, 341-342
generics, 372-377
namespaces, 310-316
creating, 315
Imports statement, 312-314
numeric data, 321-326
Decimal type, 324
floating point numbers, 323
integer efficiency tips, 322
Math class, 325
reference and value types, 272-273, 296-301
reflection, 290
relationship with classes, 222-223
specialized sets, 363-371
ArrayList class, 363-366
LIFO, FIFO, linked lists, key/value pairs, 367-371
Visual Basic versus .NET type names, 177

typography, 703-707

fonts and typefaces, 704
static font classes, 707
text characteristics, 705
text controls, 706

U

UI (user interface) in Visual Studio, 61, 67-91. See also
graphics; WPF controls
adding solutions and projects, 70-73
Code Editor, 86-89
customizing, 83-85
parts of, 68
solution and project properties, 74-82
UML (Unified Modeling Language)
UML class diagrams, 29, 225, 227-238
UML state diagrams, 25-28
unboxing, 295

Unicode, 327-328

Unified Modeling Language. See UML (Unified Modeling
Language)

units of measurement, device independent pixel, 540

universal resource identifier (URI), 526

Until keyword, 192-194

update triggers, 806

URI (universal resource identifier), 526

use cases, 20-28

user interface. See UT (user interface) in Visual Studio

User Interface Editor, 113

UTC (Universal Time, Coordinated), 336

utility classes, 70

V

validation
callbacks, 615
enumerations, 283
value calculation with dependency properties, 595-601
value conversions, 829
value types, 272-273, 275
converting to/from reference types, 295
reference types versus, 296-301
variables, 73, 98, 127. See also declared elements
garbage collection, 265
global variables, 407
implicit typing, 138-139
naming conventions, 264
passing by reference/value, 299-301
scope, 262-265
vertical alignment of panel controls, 542
Viewbox instance, 692-693
Viewport instance, 692-693
views, 825-828
virtual keyword, 413
virtual members, 403-404
visibility, 232
Visual Basic language elements
commands
control-of-flow commands, 184-204
exception handling commands, 184
types of, 181, 183-184
comments, 141-147
line comments, 142-143
Task List comments, 144-145
XML comments, 146-147
declared elements
components of, 134

declaring, 128-130
memory allocation, 133
New keyword, 135
Option Infer, 138-139
types of, 127
default settings, 136-137
directives, 148-151
expressions, 155
literal expressions, 158-170
object expressions, 158, 171-178
types of, 157-158
identifiers, naming conventions, 131-132
list of, 122, 156, 182
statements
class definitions, 239-240
syntax, 124-126
type names, 177
Visual Basic, XAML versus, 507-508
visual states, 788-794
Visual Studio
Class Designer, 227-238
abstract classes in, 410
access modifiers in, 232-234
enumerations, creating, 282
fields in, 235
inheritance in, 237
properties in, 231, 236
structures, creating, 276-278
Code Editor, 62
downloading, 6
“Hello, World” example, 53-58
projects, creating, 54, 60
UI (user interface), 61, 67-91
adding solutions and projects, 70-73
Code Editor, 86-89
customizing, 83-85
parts of, 68
solution and project properties, 74-82
windows, creating, 55-56
visual transitions, 791-792
visual tree, 506, 519, 767

W

Watch window, 101

waterfall models, 20

WCF (Windows Communication Foundation), 488
While keyword, 192-194

widgets, adding to windows, 55-56. See also WPF

061

controls
width of panel controls, 543
Window class, 308
Window control, 558-562
windows. See also UI (user interface) in Visual Studio
arranging, 84
creating, 55-56
logical tree, 766
Windows Forms (WinForms), 491
WithEvents keyword, 477
WPF (Windows Presentation Foundation), 501
animations, 747-755
class hierarchy, 748
example of, 752-755
reasons for using, 747
storyboards, 749-750
timeline classes, 751
bindings, 797
binding modes, 805
binding source, 807-810
to collections, 814-842
creating, 802-804
DataContext property, 811
reasons for using, 799-800
structure of, 798
update triggers, 806
class hierarchy, 535
control templates, 721, 765, 775-787
control contracts, 784-787
example of, 776-778
necessary control components, 783
presenters, 781-782
syntax, 775
template bindings, 779-780
visual states, 788-794
visual transitions, 791-792
dependency properties, 591
callbacks, 614-623
capabilities of, 595
classes, 602-603
creating, 604-609
registering, 610-612
reusing, 613
value calculation, 596-601
graphics, 669-671
brushes, 677-697
color, 674-676
effects, 712-714

flow documents, 708-711
pens, 698-702
typography, 703-707
hierarchies in, 506, 519-522
resources, 719, 721
advantages and disadvantages of, 722
in code, 729
defining, 724-726
referencing, 727-728
routed commands, 629-630, 654-666
class hierarchy, 663
creating, 665
in FCL (Framework Command Library), 656-658
hooking up, 660-662
input gestures, 664-665
logical design, 655, 659
routed events, 627, 632-653
arguments, 635-644
creating, 648-653
dependency properties versus, 628, 645
reasons for using, 632-633
strategies, 634
styles, 597, 721, 730-735
hierarchies in, 734-735
types of, 730-731
themes, 597
transformations, 756-761
triggers, 721, 736-746
event triggers, 744-746
property triggers, 736-743
types of, 736
WPPF controls, 531-533
application creation example, 578-587
building, 769-774
content controls, 557-569
buttons, 565-568
headered content controls, 563-564
Window control, 558-562
control classes, 553-556
control contracts, 784-787
customizing. See graphics; templates
flow controls, 711
items controls, 570-576
class hierarchy, 570-571
ComboBox control, 575-576
ListBox control, 575-576
TreeView control, 572-574
necessary components, 783

panel controls, 537-552
attached properties, 538-541
DockPanel control, 544-546
Grid control, 547-548
GridSplitter control, 549-550
nesting, 551
positioning and sizing, 542-543
tab controls, 577
visual tree, 767
WPPF Designer, 55-56, 61, 68
WrapPanel control, 537
wrapping, 593
write-only properties, 247

)

XAML, 55, 501. See also WPF (Windows Presentation
Foundation)
attributes and properties, 509
collections, 513-514
compilation process, 523-527
content properties, 510-512
event handlers, 639
example of, 505
namespaces, 515-516
need for, 504
object elements, 509
referencing objects from, 831
root element, 515
Visual Basic versus, 507-508
WPEF trees, 519-522

XML
comments, 146-147
need for, 504

L

Zulu, 336

063

	CONTENTS
	GETTING STARTED
	INTRODUCTION
	Fluent Learning Because
	This book isn’t for everyone
	What you’ll learn
	What you’ll need
	How it works

	APPLICATION DEVELOPMENT
	The development process
	System design
	Creating executables

	THE .NET PLATFORM
	.NET Components
	Say hello
	Say what?

	THE VISUAL STUDIO UI
	Solutions, projects and stuff
	Take control
	Get some help

	TESTING & DEPLOYMENT
	Errors & exceptions
	Deployment

	THE LANGUAGE
	PART 1: NOUNS
	Statements
	Declared elements
	Comments
	Directives & Attributes

	PART 2: TRANSITIVE VERBS
	Literal expressions
	Object expressions

	PART 3: INTRANSITIVE VERBS
	Control of flow commands
	Exception handling commands

	THE .NET FRAMEWORK LIBRARY
	CLASSES IN THE .NET FRAMEWORK
	The Class Designer
	Class definitions
	Fields & properties
	Methods

	OTHER FRAMEWORK TYPES
	Structures
	Enumerations
	Interfaces
	Working with types

	THE CLASS LIBRARY, PART 1
	Namespaces
	The Object Browser
	Numeric data
	Character data
	Times & dates

	THE CLASS LIBRARY, PART 2
	Arrays
	Specialized Sets
	Generics

	BEST PRACTICE
	OOA & D
	Type relationships
	OOP principles
	Type modifiers

	PROGRAMMING PRINCIPLES
	The Single Responsibility Principle
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Law of Demeter

	PATTERNS
	The Strategy Pattern
	The Observer Pattern
	Architectural Patterns

	WPF
	XAML
	Fundamentals
	WPF types
	XAML & Visual Basic

	WPF CONTROLS
	WPF panels
	Control classes
	Content controls
	Items controls

	DEPENDENCY PROPERTIES
	The basics
	Creating dependency properties

	WPF INTERACTIONS
	Routed events
	WPF Commands

	WPF GRAPHICS
	Color
	Brushes
	Pens
	Typography
	Effects

	RESOURCES
	Resource dictionaries
	Styles
	Property triggerrs
	Event triggers

	TEMPLATES
	Building controls
	Building control templates
	The VisualStateManager

	WPF BINDING
	Creating bindings
	Binding to collections
	Working with collections

