


  iRebecca M. Riordan

Fluent 
 Visual Basic®



ii   

Fluent Visual Basic©
Copyright © 2011 by Rebecca Riordan

All rights reserved. No part of this book shall be reproduced, stored 
in a retrieval system, or transmitted by any means, electronic, 
mechanical, photocopying, recording, or otherwise, without written 
permission from the publisher. No patent liability is assumed with 
respect to the use of the information contained herein. Although 
every precaution has been taken in the preparation of this book, 
the publisher and author assume no responsibility for errors or 
omissions. Nor is any liability assumed for damages resulting from 
the use of the information contained herein.

ISBN-13: 9780672335808

ISBN-10: 0672335808

Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States of America

First Printing November 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or 
service marks have been appropriately capitalized. Sams Publishing 
cannot attest to the accuracy of this information. Use of a term in 
this book should not be regarded as affecting the validity of any 
trademark or service mark.

The Windlass Lowercase and Brandywine fonts are copyrights of the 
Scriptorium foundry, www.fontcraft.com.

Warning and Disclaimer
Every effort has been made to make this book as complete and 
as accurate as possible, but no warranty or fitness is implied. The 
information provided is on an “as is” basis. The author and the 
publisher shall have neither liability nor responsibility to any person 
or entity with respect to any loss or damages arising from the 
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when 
ordered in quantity for bulk purchases or special sales. For more 
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Signing Editor
Neil Rowe

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Indexer
Cheryl Lenser

Proofreader
Karen Gill

Technical Editor
John Hardesty

Publishing Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Composition
Rebecca Riordan

www.fontcraft.com


Acknowledgements
Yes, I know it says “Rebecca M. Riordan” on the cover, but that’s not really 

true. Without the assistance of some amazing people, this book would never have 

made it out of my head, much less into your hands. So, in order of appearance, I 

would like to thank:

Neil Rowe, my editor, who took a chance on a very different way of writing 

computer tutorials. Without Neil’s leap of faith, Fluent Learning would never have 

happened. My technical reviewers, David Sceppa, Eric Weinburger 
and John Hardesty, who collectively caught an embarassing number of code 

typos and I-knew-what-I-meant obscurities. Finally, my copy editor, Karen 
Gill, who not only made sure the language in the book resembles English, but also 

expressed an unexpected and greatly appreciated enjoyment in the project. (Any 

remaining errors and infelicities are, of course, my responsibility.)

Jake von Slatt of The Steampunk Workshop (steampunkworkshop.com), 

Samantha Wright (samantha-wright.deviantart.com) and Mindbloom 

(mindbloom.com) were all gracious enough to allow me to use their images. These 

are all seriously cool people, folks. I can’t urge you strongly enough to go explore 

their sites.

    iii



iv   

Getting Started

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
Fluent Learning Because
This book isn’t for everyone
What you’ll learn
What you’ll need
How it works

Application Development  .  .  9
The development process
System design
Creating executables

The  .NET Platform  .  .  .  .  .  .  .  .43
.NET Components
Say hello
Say what?

The Visual Studio UI  .  .  .  .  .  .  67
Solutions, projects and stuff
Take control
Get some help

Testing & Deployment  .  .  .  .  .93
Errors & exceptions
Deployment

The Language

Part 1:  Nouns   .  .  .  .  .  .  .  .  .  .  .  .121
Statements
Declared elements
Comments
Directives & Attributes

Part 2:  Transitive Verbs   .  .  .155
Literal expressions
Object expressions

Part 3:  Intransitive Verbs  .  .181
Control of flow commands
Exception handling commands

The .NET Framework Library

Classes in the  .NET Framework  . 221
The Class Designer
Class definitions
Fields & properties
Methods

Other Framework Types  .  .  .  .  .  .  .  .269
Structures
Enumerations
Interfaces
Working with types

The Class Library, Part 1   .  .  .305
Namespaces
The Object Browser
Numeric data
Character data
Times & dates

The Class Library, Part 2  .  .  .349
Arrays
Specialized Sets
Generics

Discover the secret to efficient 
programming: The best code is the 
code you don’t have to write yourself.

Learn how to speak Visual 
Basic. It’s a language, much 
like English, Spanish or Latin, 
only simpler.

Find out what this whole “being a 
programmer” thing is all about and 
how to use the tools you’ll need to 
build applications.



    v

best practice

OOA & D   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 381
Type relationships
OOP principles
Type modifiers

Programming Principles  .  .  .  .425
The Single Responsibility Principle
The Open/Closed Principle
The Liskov Substitution Principle
The Law of Demeter

Patterns   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .457
The Strategy Pattern
The Observer Pattern
Architectural Patterns

wpf

XAML   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .501
Fundamentals
WPF types
XAML & Visual Basic

WPF Controls   .  .  .  .  .  .  .  .  .  . 531
WPF panels
Control classes
Content controls
Items controls

Dependency Properties  .  .  . 591
The basics
Creating dependency properties

WPF Interactions  .  .  .  .  .  .  .  .627
Routed events
WPF Commands

WPF Graphics  .  .  .  .  .  .  .  .  .  .  669
Color
Brushes
Pens
Typography
Effects

Resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 719
Resource dictionaries
Styles
Property triggerrs
Event triggers

Templates  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .765
Building controls
Building control templates
The VisualStateManager

WPF Binding  .  .  .  .  .  .  .  .  .  .  .  .797
Creating bindings
Binding to collections
Working with collections

Put all you’ve learned to good 
use by learning how to use 
Microsoft’s latest and greatest 
interface platform.

Stand on the shoulders of the 
experts by learning the best 
programming practices and how 
to implement them.

Contents



vi   

Tell Us What you think!

As the reader of this book, you are our most important critic 
and commentator. We value your opinion and want to know 
what we’re doing right, what we could do better, what 
areas you’d like to see us publish in, and any other words of 
wisdom you’re willing to pass our way.

As a Executive Editor for Sams, I welcome your 
comments. You can fax, email, or write me directly to let 
me know what you did or didn’t like about this book—as 
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems 
related to the topic of this book, and that due to the high 
volume of email I receive, I might not be able to reply to 
every message.

When you write, please be sure to include this book’s title 
and author as well as your name and email address, phone, 
or fax number. I will carefully review your comments and 
share them with the author and editors who worked on this 
book.

Email: feedback@samspublishing.com

Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor 
Sams Publishing 
800 East 96th Street

Indianapolis, IN 46240 USA



67   

The Visual Studio UI
In the last chapter you wrote your first program and saw the basics of the 
Visual Studio user interface (UI). Now it’s time to look at these steps in more 
detail. We’ll start by looking at how Visual Studio helps you manage a development 
project with Solutions and Projects, and then take a closer look at the UI and how to 
configure it to suit the way you work.

As a programmer, you’ll spend a lot of time in the Code Editor, and so will we. We’ll look 
at the basic text editing functions it provides and also at Intellisense and the Visual Studio help 
system.

Solution

Miscellaneous ItemsSettings

...Code
...

CursorsXML

HTMLText

Icons

Projects

Solutions contain Projects, 
Solution Settings that 
control how the application 
will be compiled and run, 
and Solution Items that 
aren’t part of a specific 
project.

Solutions can also contain other files that aren’t 
included in the application but are available 
from the Solution Explorer when the 
Solution is open.



68   

The document outline 
window is a great way 
to navigate hierarchical 
documents like XML  
or XHTML

The contents of the Toolbox 
change to reflect the kind of 
document you’re working on.

The Properties window 
is a quick and easy way 
to change the attributes 
of something that’s 
selected in a designer. 
You can also use it as 
a shortcut to create and 
manage event handlers.

Like the Windows 
Explorer, the Solution 
Explorer helps you 
navigate & manage the 
files and folders associated 
with your project.

By default, “documents” and certain kinds of 
dialogs are displayed as tabs in the central portion 
of the Visual Studio window.

The Data Source 
window is like an explorer 
for external data like a 
relational database.

Some Visual Studio Designers can display 
multiple panes. The WPF Designer shown 
here, for example, shows XAML and a 
design surface you can use for drag-and-drop.

in a Nutshell



    69

Task List
A craftsman is master of his tools. As a programmer, your primary tool is Visual Studio, 
and in this chapter we’ll begin the process of mastery by examining its user interface in 

detail.

Get Some Help
In the last chapter we saw an example of Intellisense when we were able 
to pick the Messagebox.Show command from a drop-down list. In this 
chapter, we’ll look at Intellisense in more detail, along with some of the 
special error-checking capabilities that the Visual Studio Editor provides. 

Take Control
I bet you’ve changed your Windows desktop. If you’re like most 
people, you’ve added widgets to the sidebar, created some shortcuts, 
and rearranged the Start menu. All those little changes just make life 
a little easier by putting the tools you use all the time close to hand. 
Visual Studio does a pretty good job of arranging the user interface to 
accommodate general programming, but you’ll benefit from making 
the same sorts of customizations to its workspace as you made to the 
Windows desktop, so the next thing we’ll do is learn how to do just that.

Solutions, Projects & Stuff
It’s convenient to think of application development like writing an essay 
or book: You do some research, prepare an outline, and then produce 
a final document. Unfortunately, the development process isn’t that 
neat. (Neither is writing, of course, at least not the way I do it.) Most 
development projects don’t even have a single output that’s equivalent to 
that essay. So we’ll start this chapter by looking at the way Visual Studio 
uses Solutions, Projects and Solution Items to manage all the bits and 
pieces that you’ll actually be working with.



70   

Solutions, Projects...
Solutions are like filing cabinets that hold and manage Projects and other files. Easy enough 

in principle, but what exactly does that mean? Why would you have more than one 
Project? What are these “other files”, and what exactly does “manage” mean? Let’s look at some examples 
of the kinds of files you might include in a Solution.

Primary Ui Projects

You’ll usually have a project (sometimes 
more than one) that contains the forms 
that comprise your application user 
interface.

Dataset Projects

If your application references a data 
source, you’ll usually have a separate 
project that handles the data interface.

test Projects

Visual Studio 2010 provides great support for a 
technique called Test-Driven Development. If you 
adopt this approach, you’ll need projects that contain 
your tests.

Utility classes

In cooking, you often 
need to translate between 
teaspoons, tablespoons 
and cups. The classes 
that do that conversion 
might be useful in other 
applications, so it makes sense to put those in a separate project that 
we can reference when we need them.



    71

...and Stuff
Projects have multiple files, as well. You’ll have code and designer files, of course, you’ve already seen 
that, but Visual Studio will also allow you to associate other files with the project, just to keep them handy.

Designer Files

These are the files that are created by 
the Visual Studio Designers. They’re 
text files, but if you mess with them 
outside the Designer, your changes 
might get overwritten the next time 
you use the Designer, so you’ll typically 
leave them alone.

soUrce Files

These are the files that contain your 
code. They have the same name as 
the files the Designer creates, with the 
extension “.vb”.

Design DocUments

You can also include 
documents like this class 
diagram or even specifications. 
These 
files  aren’t 
part of 
the project 
code.

resoUrces

If your project includes things 
like custom cursors or icons, 
these are separate files in the Project. 

Put on your thinking hat
Find at least two ways to add a 
Project to a Solution, and two 
ways to add a file to a Project.



72   

How’d you do?
The problem was to figure out how to add Solutions and files....

To Add a Project to a Solution

To Add a File to a Project

You can also add existing Projects, which 
is handy if you’re reusing utilities or custom 
widgets, or exclude a project that you’ve 
added by accident.

The New Project item can be found on 
the File menu and on the context menu 
displayed when you right-click the 
Solution name in the Solution Explorer.

The Project menu provides 
specific options for the most 
common types of Projects, or you 
can choose Add New Item... to 
display the New Item dialog.

You can add new and 
existing items from the 
Solution Explorer by right-
clicking the Project name.



    73

On your Own
You know how to add an item to a Project, and you know how to configure 
a simple WPF window, so let’s put those two things together. Change your 

Hello, World application to display a window instead of a MessageBox: 

Add a new window to the Project. Accept the default name of Window1.

Drag a Label from the Toolbox to the window design surface, and 
configure the window and label properties however you like. Have some 
fun! You can’t hurt anything.
Display the code for the original form (NOT the one you just created). If 
the form is open, you can double-click the button or press f7. If the form 
isn’t open, you can right-click the form name in the Solution Explorer 
and choose Show Code.
Delete the line that displays the MessageBox, and replace it with the 
following:

Run the application by pressing f5, and then click the button on the first 
form. 

Declare a variable called 
“newWin”. variables are just a 
name for a piece of memory that 
can store information or objects of 
a certain type. This one stores a 
Window.

The variable is 
initializeD (given an 
initial value) with an 
instance of Window1, the 
Window you just created.

You’ll use variables a lot when you program. 
We’ll look at them in Chapter 5.

This line calls the ShowDialog() method of the 
window. methoDs are something an object can do. 
We’ll look at them in detail in Chapter 8.

Dim newWin As New Window1()

newWin.ShowDialog()

Take a break
Why don’t you take a quick break before we move on to controlling the way Solutions 
and Projects behave by setting their properties.



74   

Solution and...
When you created and modified your windows on the design surface, you saw that you could control the 
appearance of the widgets by setting their properties. Well, Solution and Projects have properties, as well. 
We’ll need some of these as we move through the book, so let’s get started by looking at how to display 
the property dialogs.

The easiest way to display the Solution Properties 
dialog is to select the Solution in the Solution Explorer 
and click the Properties button on the Solution 
Explorer toolbar, but you can also choose Properties 
Page from the View menu.

Click here

Most of the Solution properties are 
managed by Visual Studio, and you 
only need to change them in unusual 
circumstances, but you’ll often need to 
specify the Startup Project whenever 
you have a Solution that contains 
multiple Projects. The file specified as 
the Startup is the one that Visual Studio 
will run when you press F5 or run 
the final application.

By default, Visual Studio sets the first project 
you add to the Solution as the Startup Project. 
You can change that by choosing a different 
Project from the combobox.



    75

…Project Properties
Solution properties display in a dialog box, but Visual Studio has a designer (called the Project Designer) for 
project properties that displays in a tab. You can display Project Designer by clicking the Solution Explorer 
toolbar button when a Project is selected or by choosing  <ProjectName> Properties... from the Project 
menu when the Project is selected, or by right-clicking the Project name in the Solution Explorer and 
choosing Properties, or by selecting the Solution name in the Solution Explorer and pressing Alt+Enter. And 
probably by doing some other things that I haven’t discovered yet...

The Application tab will change 
depending on the type of Project you 
choose, but it always controls the type 
of application and how it is compiled.

Resources and Settings 
are things like icons and 
strings that are included in 
the executable. We’ll use 
these tabs in just a minute 
to create an icon for our 
application.

Signing and Security help you 
secure your application and its 
users from bad people and bad 
software. Security is an important 
issue, but it’s also a huge one, so 
we won’t be talking about it in 
any detail.

The Publish tab is used to deploy your 
application using ClickOnce. We’ll talk 
about that in the next chapter.Not all of these options are available in every version of Visual 

Studio. The Code Analysis tab, for example, only appears in 
Visual Studio Premium and Ultimate. So don’t panic if your screen 
looks a little different from this one. (You are opening these screens, 
right?)



76   

Add an Icon
All Windows applications need an icon. If you don’t provide one, Visual Studio will use 
the default icon. The default image isn’t very exciting, and it doesn’t distinguish your 

application from all the others out there. So let’s use the Project Properties dialog to add a 
custom icon to Hello, World. To make that happen in a WPF application (other application 

types can be a little different), we need just three steps:

Make a note
Visual Studio includes simple editors for most resource types, including icons, from the 
Resources tab of Project Properties, or you can use a third-party tool. You can even open 

most third-party tools right inside Visual Studio by right-clicking the resource and choosing 
Open With...

And if you’re not feeling particularly artistic, there are lots of icon sets available for free or fee on the Web that you 
can use. Just be sure to respect the artists’ terms of use, or the karma gods will get you, even if copyright law doesn’t.

This is the default icon. Pretty 
boring, huh?

We’ll replace it with this one that looks a bit cooler 
and represents what our application actually does. 
This icon file is called conversation.ico, and 
it’s included with the sample code. You can use this 
one, or any other icon file you like (try searching for 
*.ico in the Windows Explorer). Just copy it to the 
application folder for our sample app.

Specify the icon file in the Application tab of Project Properties.

Build the application to make the icon available.

Set the icon property of the window in the WPF Designer.



    77

Set the Application 
Icon Property

If Hello, World isn’t still open from 
the last exercise, open it from the 
Visual Studio Start Screen (it will 

be listed on the left side under Recent 
Projects) or from the File menu. Display 
the Project Properties using any of the 
techniques you’ve learned, and then select 
the Application tab.

We’ll set the icon here.

Open the combobox and select 
<Browse…>, and Visual Studio 
will display a standard File Open 

dialog. The first time you open the 
dialog, Visual Studio might take you to 
the Microsoft Visual Studio\Common7\
IDE folder, which can be a little scary, 
but just navigate to the folder for the 
application and choose conversation.ico 
(or whichever icon file you chose to use).

After you select the icon and click the 
Open button, Visual Studio will show the 
icon on the tab.

Click here to open 
the dialog.

After you select your icon, Visual Studio 
will display a thumbnail of it here.



78   

Build the Application
There are a lot of files involved in creating a Visual Studio application. In addition to the 

source files that you create, the resource files like icons that you create or reference, and the 
final executable created by the compiler, there are intermediate files that Visual Studio creates for you. 
When you set properties or resources, you need to tell Visual Studio to recreate some of these “behind-the-
scenes” files so that they’re available to other components like the designers. You do that by bUilDing the 
application.

Most of the time you can use Build 
Solution, which only rebuilds the 
files that have changed.

Rebuild Solution is a safer, but slower, 
choice. It rebuilds all the files, whether 
they’ve changed or not.

Clean Solution removes any intermediate 
files created by Visual Studio but doesn’t 
build them. If Rebuild Solution seems 
to be acting strangely, try cleaning the 
solution first.

These options build and clean just the 
Project, not the whole Solution. Because 
our application only has a single project, there isn’t any 
real difference, but when you have a lot of Projects in a 
Solution, these alternatives can save a lot of time.

Press F5 or choose Build Solution from the Build menu so that the icon will be 
available to the WPF Designer.

The build menu



    79

Set the Window Property
If necessary, double-click 
MainWindow.xaml in the Solution 
Explorer to open the WPF 

Designer. In the Properties window, 
find the Icon property, select it, and then 
click the ellipsis button.

Click here.

After you click the ellipsis in 
the Properties window, Visual 
Studio will display the Choose 

Image dialog. Your new icon will 
be displayed, but there might not be a 
thumbnail. It’s okay; Visual Studio just 
hasn’t caught up with us.

Click on your icon, and then click OK to 
set the property.

After you click the OK button, Visual Studio will set the property to a long value 
that begins with pack//application.../. That’s just WPF-Speak for “look in the 
application file”, and we’ll figure out how it all works later when we examine WPF 
Resources.

Click here...

...and then click 
here.

It’s not a problem that there’s 
no thumbnail.



80   

Did it work?
Don’t take my word for it. Run the application and find out...

The icon shows up in the window 
where we set the property...

But not in the window where we 
didn’t.

The application executable also 
uses the icon, as you can see in 
the bin/debug folder in Windows 
Explorer.



    81

Take a Break

You’ve finished the first task of this chapter, so take a short break 
to let it all settle before moving on. But before you go, stop for a 
minute to think about what you’ve achieved...

• You created an application that displayed a Window and a MessageBox.

• You changed the appearance of the Window.

• You added a second window to the Project and wrote the code to display it.

• You added an icon to the application and the window.

That’s a lot when you see it listed like that, isn’t it? Go, you!

One More Time...
Let’s run through the steps to add an application icon one more time...

Add the icon file to the application in Project Properties.

Build the application to make the application available in the Designers.

Set the Icon property of the windows where you want the icon displayed.



82   

Review
Just a few exercises before we move on...

Solutions and Projects, Projects and Solutions. One’s like a file folder, one’s like a filing 
cabinet. Which is which?

Solution

Project

List three ways to add a Project:

List two ways to show the Solution Properties dialog:

List three ways to show Project Properties:

In the walkthrough, we only changed the icon of the main window. Add it to the other 
window in the application, as well.

Change the application icon to something else. What happens to the window?



    83

Take Control
Visual Studio is a Windows application, and for the most part it behaves like any Windows 

application, with menus and toolbars and document windows where you do your work. But 
the work you do in Visual Studio is quite specialized, and the IDE adds some special capabilities to make it 
possible to work just the way you want to work.

You can display documents 
in tabs or as separate windows. 
You can even drag them 
outside the main IDE window.

Tool windows can be docked to the edge 
of the IDE window or each other. When 
docked, they can be opened or closed.

This is a tool 
window that is 
docked and closed.

This is a tool 
window that 
is docked 
and open.

Tool windows 
that are docked 
to each other are 
displayed as tabs.

This is a document 
window displayed 
as a tab, the default 
view.

This is a document 
displayed in a floating 
window. It’s not 
constrained by the Visual 
Studio IDE window.



84   

Arranging Windows
Like any Windows application, you can control the individual windows in Visual Studio through the View 
and Window menus or by dragging the title bar of a window. 

The View menu controls the display of tool 
windows. (Don’t confuse “tool window” with 
“Toolbox”. The Toolbox is a tool window, but 
so are the Properties window and the Solution 
Explorer.)

Do you remember how to open a document 
window? Double-click on its name in the Solution 
Explorer.

The Window menu controls the 
display of open windows in the IDE. 
The most important item on this menu 
might be Reset Window Layout, which 
puts everything back 
in place when you get 
things messed up. (And 
you will, trust me.)



    85

On your own
The best way to learn how to control the windows in Visual Studio is to play 
with them, so take a few minutes to move the Object Browser around. The 

Object Browser lets you look through a class hierarchy. You’ll find out what 
that means in Chapter 7.  

Remember, you can always start over by choosing Reset Window Layout from the Window menu...

Show the Object Browser by selecting its name on the View menu. It will 
probably display as a tab. If it doesn’t, drag its title bar until it does.

Make it float by dragging its title bar, or selecting Float from the Window 
menu.

Dock it to the left side of the screen along with the Toolbox. It will be 
open when you first dock it, so click the  to collapse it.

Drag it over so it displays as a tab in the same pane as the Solution 
Explorer.

Use Reset Window Layout to put everything back the way it was 
originally.

When you’re dragging a 
window around, Visual 
Studio will display this 
odd docking widget. Can 
you work out what each 
bit does?



86   

More than Editing...
Basic text editing in Visual Studio complies with Microsoft Windows standards. You can double-click to 
select a word, ctrl-click to extend the selection, and cut, copy or paste selections just the way you’re used 
to. But the Visual Studio Code Editor also includes a seemingly magical tool called Intellisense that turns it 
from a stenographer into a personal assistant.

Intellisense shows you what an 
object can do as you type, so 
you don’t need to memorize a 
lot of detailed syntax.

Intellisense will even create 
standard code and objects for 
you.

Send this guy a “Don’t call us, 
we’ll call you” letter.

What colors does the new gizmo 
come in?

What are the specifications for 
this new gizmo?



    87

List Members
The Intellisense capability that you’ll probably use most often is the list members function that displays a 
list of valid “things” that can be can be inserted where you’re typing. You saw the list members function 
when you built your first application in Chapter 2.

As soon as you type a single character, the List 
Members box will open. Visual Studio is pretty 
smart about knowing what you can do, and it 
won’t list things that don’t apply (but it’s not very 
smart about what makes sense).

The box lists everything that contains the 
letters you type, not just the ones that begin 
with what you typed. Typing “n”, for 
example, would display both “NewItem” 
and “EditNew”, assuming they were 
available.

When you select an item in the box, 
Visual Studio shows you the definition 
of the item, a short description, and, 
if the item is a method (something 
an object knows how to do), any 
exceptions the method can throw in 
a little help box.

An excePtion is the way an 
object lets the rest of the program 
know something is wrong. We’ll 
look at exceptions and what to do 
about them in Chapter 7.

To highlight an item in the 
List Members box, you can 
keep typing characters to 
limit the list or use the up 
and down arrow keys.

To insert the selected item, press the 
Tab key or type the character after the 
item. In this case, that would be the “(“ 
character, and you know that because of 
the definition displayed in the little help 
box on the far left.

On Your Own
Try using Intellisense to change 

the ShowDialog() method call in 
the sample application to Show(). 

Run it. How is the behavior different?



88   

Parameter Information
methoDs are things that objects can do. (We’ll look at exactly what “object” and “method” mean in 
detail in Chapter 8.) Some methods take Parameters, which are bits of information that you pass to 
the method to control exactly how it does whatever it is it does. In the bad old days before Intellisense, 
programmers spent a lot of time trying to remember exactly what parameters a method took, and in what 
order. The Intellisense Parameter Info box eliminates all that by showing you exactly what your options 
are.

As soon as you type the opening paren 
of a method call, Intellisense displays the 
Parameter Info box that shows you the 
method definition, a description of the 
method, and of the first parameter.

As you type each parameter, 
Intellisense updates the display to show 
the description of the next one.

If a method has different versions, you 
can use the up and down arrow keys 
to scroll through them.

List Members works right alongside Parameter 
info, so sometimes the screen can get a bit 
crowded! Mostly it’s helpful, but if all the 
windows get in your way, you can always 
make them go away by pressing esc.



    89

Take a break
You’ve almost finished this chapter, so take a short break before you 
come back for the final Review.

Road Maps
Several editing functions help you keep track of where you are and what you’ve done. Using them is 
pretty intuitive, but here’s a quick rundown:

Code Outlining

Quick Info

Reference Highlighting

Click on the + or = 
characters in the left margin 
to collapse and expand units 
of code.

Hover the mouse over any identifier, and Intellisense will 
display its definition and a description. (We’ll see how to 
create descriptions for the code you write a bit later.)

Select any symbol in the editor by 
clicking in it, and Visual Studio will 
highlight all the references to that 
symbol in the code.



90   

Review

Name at least one way to add a Project to a Solution:

Name at least one way to add a File to a Project:

Where would you assign an application icon?

What does this widget do?

On a new, blank line inside the Button1_click event handler, type an “a” to trigger 
Intellisense. What’s the description of the Array object?

How many versions of the Array.BinarySearch() method are there?

Hover the mouse over one of the instances of the Window identifier. (There are two in 
your source file.) What’s the description of the window?



    91

Congratulations! You’ve finished the chapter. Take a minute to think about what you’ve 
accomplished before you move on to the next one...

List three things you learned in this chapter:

Why do you think you need to know these things in order to be a C# programmer?

Is there anything in this chapter that you think you need to understand in more 
detail? If so, what are you going to do about that?



92   



846   

Index
A
abstract classes, 404, 409-412
abstract interfaces, 409-412
abstract types, 403
abstraction, 384, 391-392, 394
access modifiers, 223
 in Class Designer, 232-234
 for get/set accessors, 246-249
 in information hiding, 241
accessors, 241-249
actions, 25
AddHandler keyword, 479
ADO.NET, 486
ADO.NET Data Services, 486
ADO.NET Entity Framework, 486
adorners, 769
aggregate types. See arrays; generics; specialized sets
Agile Development, 20
Agile Manifesto, 20
Alexander, Christopher, 457
alignment of panel controls, 542
angle brackets in syntax diagrams, 128
animated values, 596
animations, 747-755
 class hierarchy, 748
 example of, 752-755
 reasons for using, 747
 storyboards, 749-750
 timeline classes, 751
application development. See also OOA&D (Object-

Oriented Analysis & Design); WPF controls
 compilation process, 33-41
  compiled versus interpreted languages, 34-35
  JIT (just-in-time) compilation, 36-39
 design patterns. See design patterns
 “Hello, World” example, 53-58
 steps in, 9-11, 13, 16-18, 59-63
 system design, 19-32
  Agile Development, 20
  database schemas, 29
  screen layouts, 29
  UML class diagrams, 29

  UML state diagrams, 25-28
  use cases, 21-24
  waterfall models, 20
application facade, 487
ApplicationException class, 210
applications
 adding buttons, 97-98
 adding icons, 76-82
 building, 78
 deployment, 75, 107-119
  adding shortcuts to setup programs, 114
  build configurations, 116-117
  ClickOnce, 108-109
  creating setup programs, 110-112
  setup designers, 113
  types of, 107
 running, 58
architectural patterns, 459, 482-491
 logical layers
  business layer, 487
  data access layer, 486
  list of, 485
  presentation layer, 491
  service layer, 488-490
 types of, 482-484
ARGB color model, 674
ArgumentException class, 210
arguments, 173
 reference types versus value types, 296-301
 routed events, 635-644
arranging windows, 84
Array class, 360-362
ArrayList class, 363-366
arrays, 354-362
 Array class, 360-362
 creating, 355
 For Each...Next statement, 359
 initialization, 356
 referencing elements in, 357-358
 specialized sets and generics versus, 372
AS <type> specifier, 128
ASP.NET Web Forms, 491



    847

assemblies, 232
assignment operator, 159
attached properties, 538-541
attribute syntax (XAML), 509
attributes, 148

B
back end, 484
backing fields, 241, 593
bad code, characteristics of, 427
BAML (Binary Application Markup Language), 523-527
base value, determining, 597
BasedOn property, 734-735
behavior, 158, 171, 720
Berra, Yogi, 425
best practices, 13, 16
binding expressions, 798
binding source, 798, 807-810
binding target, 798
BindingMode property, 805
bindings, 797
 binding modes, 805
 binding source, 807-810
 to collections, 814-842
  building bindable collections, 817-818
  data templates, 819-820
  data triggers, 821-822
  filtering collections, 836-842
  master-detail bindings, 823-824
  object sharing, 830-832
  panel templates, 819-820
  sorting collections, 833-835
  value conversions, 829
  views, 825-828
 creating, 802-804
 DataContext property, 811
 reasons for using, 799-800
 structure of, 798
 template bindings, 779-780
 update triggers, 806
bitmap effects, 712
block elements, 708
blurs, 713
Boole, George, 165
Boolean expressions, 165-169
bounding boxes for gradients, 682
boxing, 295
Break All command (break mode), 104

break mode, 101-106
breakpoints, setting, 102
Brookes, Frederick P., 20
brushes, 677-697
 creating explorer windows for, 678-680
 gradients, 681-690
  bounding boxes for, 682
  linear gradients, 683-687
  radial gradients, 688-690
 tile brushes, 691-696
 types of, 677
bubbling events, 634
bugs. See also exceptions
 break mode, 101-106
 Code Editor display of, 99-100
 history of terminology, 59
 in .NET Framework, 644
 number in programs, 93
 types of, 96
build configurations, 116-117
building applications, 78
Burger, Andrej, 644
business entities, 487
business layer, 485, 487
business rules, 487
business workflows, 487
Button class, 308
buttons, 565-568
 adding to applications, 97-98
 class hierarchy, 565
 content properties (XAML), 566
 radio button groups, 567-568
ByRef keyword, 301

C
Calendar class, 335
calendars, historical date problems with, 338-339
Call Stack window, 101
callbacks, 594, 602, 614-623
 coerce value callbacks, 616
 property changed callbacks, 617
 registering, 618-623
 validation callbacks, 615
calling methods, 175-176
camel case, 132
CanBe relationship, 386
CanDo relationship, 288, 386
Canvas control, 537



848   

casting, 139, 290
 explicit casting, 292
 implicit casting, 291
 is keyword, 293-294
 polymorphism and, 397
 TryCast() function, 293-294
 Type...Is operator, 398-400
change tracking and notification with dependency 

properties, 595
chaotic cohesion, 432
Char structure, 327-328
character data, 327-334
 Char structure, 327-328
 comparing strings, 330
 escaping text, 329
 String class methods, 331-332
 String versus StringBuilder class, 333
CheckBox control, 565
chronological data, 335-345
 DateTime class, 337-340
 DateTime versus DateTimeOffset classes, 336
 DateTimeOffset class, 343-344
 Timespan class, 341-342
Class Designer, 227-238
 abstract classes in, 410
 access modifiers in, 232-234
 enumerations, creating, 282
 fields in, 235
 inheritance in, 237
 properties in, 231, 236
 structures, creating, 276-278
Class Details pane (Class Designer), 236
class diagrams, 29, 225-238
Class Name ComboBox (Code Editor), 640
classes. See also FCL (Framework Class Library)
 abstract classes, 404, 409-412
 access modifiers in Class Designer, 232-234
 components of, 224
 control classes, 553-556
 default implementations, extending, 415-416
 definition syntax, 239-240
 degenerate classes, 446
 dependency properties, 602-603
 design principles. See design principles
 extension methods, 419-421
 fields, 235, 241-249
 inheritance, 210, 237
 instances and constructors versus, 259

 interfaces versus, 289
 items controls class hierarchy, 570-571
 methods, 250-267
  constructor chaining, 260
  creating, 252-258
  me keyword, 256
  syntax, 254
  types of, 251
 modules, 405-408
 within .NET Framework, 221-223
 OOP principles. See OOP principles
 properties, 241-249
  accessor access, 246-249
  in Class Designer, 231, 236
  implementation, 242-245
 relationship with objects, 221
 for routed commands, 663
 sealed classes, 402-404, 417-418
 sealed members, 404
 static classes, 404
 static font classes, 707
 static members, 404
 structures versus, 275
 timeline classes, 751
 type modifiers. See type modifiers
 UML class diagrams, 29, 225
 virtual members, 404
 WPF class hierarchy, 535
ClickOnce, 107-109
client/server applications, 482
CLR (Common Language Runtime), 36
CLR-compliant languages, JIT (just-in-time) 

compilation, 36-39
CMYK color model, 674
Code Complete (McConnell), 184
Code Editor, 62, 86-89, 640
code outlining, 89
code smells, characteristics of, 427
CodePlex open source site, 669
coerce value callbacks, 616
cohesion, 430-437
collection property syntax (XAML), 513-514
collections, 353
 binding to, 814-842
  building bindable collections, 817-818
    data templates, 819-820
  data triggers, 821-822
  filtering collections, 836-842



    849

  master-detail bindings, 823-824
  object sharing, 830-832
  panel templates, 819-820
  sorting collections, 833-835
  value conversions, 829
  views, 825-828
 XAML, 513-514
CollectionViews, 798
color, 674-676
 gradients, 681-690
  bounding boxes for, 682
  linear gradients, 683-687
  radial gradients, 688-690
color profiles, 675
Color structure, 675
ColorInterpolationMode property, 687
ComboBox control, 575-576
commands
 in break mode, 104
 control-of-flow commands, 184-204
  iteration commands, 191-197, 359
  jump commands, 198-204
  selection commands, 186-190
  types of, 185
 exception handling commands, 184, 205-217
  Exception class, 209-212
  Try...Catch...Finally command, 208
 routed commands, 629-630, 654-666
  class hierarchy, 663
  creating, 665
  in FCL (Framework Command Library), 656-658
  hooking up, 660-662
  input gestures, 664-665
  logical design, 655, 659
 types of, 181, 183-184
comments, 122-123, 141-147
 line comments, 142-143
 Task List comments, 144-145
 XML comments, 146-147
Common Language Runtime (CLR), 36
communicational cohesion, 432
comparing strings, 330
compartments, 225
compilation errors, 96-100
compilation process, 33-41
 compiled versus interpreted languages, 34-35
 JIT (just-in-time) compilation, 36-39
 for XAML, 523-527

compiled languages, interpreted languages versus, 34-35
compilers, 17
Concat() method, 331
concatenation operator, 159-160
concurrency, 825
conditional iteration, 192-194
#const directive, 149
constants, 127-128. See also declared elements
constructors, 135, 251
 base constructors, 416
 chaining, 260
 classes and instances versus, 259
 default constructors, 258
content controls, 533, 536, 557-569
 buttons, 565-568
 decorators versus, 773
 headered content controls, 563-564
 Window control, 558-562
content properties (XAML), 510, 566
continuation character (_), 124
Continue command (break mode), 104
Continue command (jump commands), 200-202
control classes, 553-556
control contracts, 784-787
control templates, 721, 765, 775-787
 control contracts, 784-787
 example of, 776-778
 necessary control components, 783
 presenters, 781-782
 syntax, 775
 template bindings, 779-780
 visual states, 788-794
 visual transitions, 791-792
control-of-flow commands, 181, 184-204
 iteration commands, 191-197, 359
 jump commands, 198-204
 selection commands, 186-190
 types of, 185
controls. See WPF controls
converters, 798
converting
 reference types to/from value types, 295
 values in bindings, 829
Cooper, Alan, 491
counters, 195
CreateInstance() method, 360
currency, 825
Custom Actions Editor, 113



850   

custom events, creating, 647
Custom keyword, 647
customizing
 Visual Studio UI, 83-85
 WPF controls. See control templates; graphics

D
data access layer, 485-486
data binding, 495
data contracts, 488
Data Source window, 68
data stores, 485
data templates, 819-820
Data Tips in break mode, 103
data triggers, 736, 821-822
data types. See types
data validation. See validation
database schemas, 29
DataContext property, 811
dataset projects, 70
dates/times. See also chronological data
DateTime class, 335-340
DateTimeOffset class, 335-336, 343-344
debug build configuration, 116
DEBUG constant, 151
Decimal type, 321, 324
declarations, 122-123
 of arrays, 355
 of events, 646-647
 of methods, 254
 of namespaces, 515-516
 syntax, 128-130
declared elements, 123
 components of, 134
 declaring, 128-130
 memory allocation, 133
 New keyword, 135
 Option Infer, 138-139
 scope, 262-265
 types of, 127
decorators, 769, 773-774
default constructors, 258
default implementations, extending, 415-416
default settings, Visual Basic language elements, 136-137
degenerate classes, 446
delegates, 615
dependency inversion, 441-444, 463
dependency properties, 591

 callbacks, 614-623
  coerce value callbacks, 616
  property changed callbacks, 617
  registering, 618-623
  validation callbacks, 615
 capabilities of, 595
 classes, 602-603
 creating, 604-609
 registering, 610-612
 reusing, 613
 routed events versus, 628, 645
 value calculation, 596-601
DependencyProperty class, 602-603
deployment, 75, 107-119
 adding shortcuts to setup programs, 114
 build configurations, 116-117
 ClickOnce, 108-109
 creating setup programs, 110-112
 setup designers, 113
 types of, 107
Dequeue() method, 367
design documents, 71
design patterns, 16, 457
 architectural patterns, 482-491
  business layer, 487
  data access layer, 486
  logical layers, list of, 485
  presentation layer, 491
  service layer, 488-490
  types of, 482-484
 Observer pattern, 469-481
  event mapping, 631
  handling events, 477-479
  logical observer, 470-471
  .NET solution, 475
  raising events, 476
  solution options, 472-474
 presentation patterns, 492-498
  Model-View-Controller pattern, 495
  Model-View-Presenter pattern, 496
  Model-View-ViewModel pattern, 497
  pros and cons, 493-494
 reasons for using, 460-461
 Strategy pattern, 463-468
Design Patterns: Elements of Reusable Object-Oriented 

Software (Gamma et al.), 457
design principles
 characteristics of bad code, 427



    851

 Law of Demeter, 449-453
 Liskov Substitution Principle, 445-448
 Open/Closed Principle, 438-444
 Single Responsibility Principle, 431-437
 when to violate, 428-429
designer files, 71
design-time, 34
destructors, 251
development environments, 11
development methodologies, 13, 16
 Agile Development, 20
 waterfall models, 20
device independent pixel, 540
diagrams. See UML (Unified Modeling Language)
Dictionary class, 367
Dim keyword, 128
direct events, 630, 634
directives, 122-123, 148-151
DirectX, 712
“Discover a Series of Fortunate Event Handlers in Visual 

Basic” (Getz), 647
DivideByZeroException class, 210
dll files, 35
DockPanel control, 537, 544-546
document outline window, 68
documents, flow, 708-711
Do...Loop command, 192-194
dot operator, 172
Double type, 321, 323
downloading
 source code, 6
 Visual Studio, 6
drawing shapes, 770-772
drop shadows, 713
dynamic event handlers, 479
dynamic resources, 727-728

E
Edison, Thomas, 59
effects (graphics), 712-714
Einstein, Albert, 425
embedding fonts, 707
empty bindings, 814
encapsulation, 384, 391, 393
encoding, 327
ENIAC, 59
Enqueue() method, 367
enum keyword, 284

enumerations, 269, 274, 281-287
 creating in Class Designer, 282
 methods in, 284-287
 within .NET Framework, 270-271
 syntax, 283
 validation, 283
equations, expressions versus, 160-162
Error List window, 100
errors. See bugs
escaping text, 329
event handlers, 57
 adding to buttons, 98
 for routed events, 639-641
 event triggers, 736, 744-746
events, 25, 224
 adding to windows, 57
 bubbling events, 634
 custom events, creating, 647
 declaring, 646-647
 direct events, 630, 634
 handling, 477-479
 mapping to Observer pattern, 631
 raising, 476
 routed events, 627, 632-653
  arguments, 635-644
  creating, 648-653
  dependency properties versus, 628, 645
  reasons for using, 632-633
  strategies, 634
 tunneling events, 634
Exception class, 209-212
exception handling commands, 181, 184, 205-217
 Exception class, 209-212
 Try...Catch...Finally command, 208
exceptions, 87, 96. See also bugs
exe files, 35
executables, creating, 33-41
 compiled versus interpreted languages, 34-35
 JIT (just-in-time) compilation, 36-39
Exit command, 199
Expander control, 563
explicit casting, 292
explicit iteration, 195-196
explorer windows, creating, 678-680
expressions, 98, 155
 literal expressions, 158-170
  Boolean expressions, 165-169
  equations versus, 160-162



852   

  operator precedence, 163-164
  syntax, 159
 object expressions, 158, 171-178
  calling methods, 175-176
  member access, 172
  method signatures, 173
  overloading methods, 174
  type names, 177
 types of, 157-158
extending default implementations, 415-416
extension methods, 407, 419-421

F
FCL (Framework Class Library)
 arrays, 354-362
  Array class, 360-362
  creating, 355
  For Each...Next statement, 359
  initialization, 356
  referencing elements in, 357-358
 character data, 327-334
  Char structure, 327-328
  comparing strings, 330
  escaping text, 329
  String class methods, 331-332
  String versus StringBuilder class, 333
 chronological data, 335-345
  DateTime class, 337-340
  DateTime versus DateTimeOffset classes, 336
  DateTimeOffset class, 343-344
  Timespan class, 341-342
 functionality example, 308
 generics, 372-377
 namespaces, 310-316
  creating, 315
  Imports statement, 312-314
 numeric data, 321-326
  Decimal type, 324
  floating point numbers, 323
  integer efficiency tips, 322
  Math class, 325
 Object Browser, 317-320
 organization, 306-307, 350-351
 specialized sets, 363-371
  ArrayList class, 363-366
  LIFO, FIFO, linked lists, key/value pairs, 367-371
FCL (Framework Command Library), routed commands 

in, 656-658

fields, 224, 241-249
 in Class Designer, 235
 dependency properties and, 592
 naming conventions, 236
FIFO (first in, first out), 367-371
File System Designer, 113
File Type Editor, 113
files, adding to projects, 70-73
filtering collections, 836-842
fixed documents, 708
floating point numbers
 integers versus, 139
 precision, 323
flow control. See control-of-flow commands
flow controls, 711
flow documents, 708-711
FlowDocumentPageViewer control, 711
FlowDocumentReader control, 711
fonts, 704
 embedding, 707
 static font classes, 707
For Each...Next statement, 359
For...Next command, 195-196
fragile code, 427
Framework Class Library. See FCL (Framework Class 

Library)
frameworks. See .NET Framework
Fraser, Bruce, 676
front end, 484
functional cohesion, 432
functions, 173

G
gamut, 675
garbage collection, 265
generics, 353, 372-377
 arrays and specialized sets versus, 372
 instantiation, 373
gestures, input, 664-665
get accessors, 241-249
Getz, Ken, 647
global variables, 407
glyph runs, 691
glyphs, 704
GMT (Greenwich Mean Time), 336
GoTo command, 203-204
gradients, 681-690
 bounding boxes for, 682



    853

 linear gradients, 683-687
 radial gradients, 688-690
graphics, 669-671
 brushes, 677-697
  creating explorer windows for, 678-680
  gradients, 681-690
  tile brushes, 691-696
  types of, 677
 color, 674-676
 effects, 712-714
 flow documents, 708-711
 Mindbloom website versus Microsoft Word, 672
 pens, 698-702
 typography, 703-707
  fonts and typefaces, 704
  static font classes, 707
  text characteristics, 705
  text controls, 706
Greenwich Mean Time (GMT), 336
Gregorian calendar, 339
Grid class, 308
Grid control, 537, 547-548
GridSplitter control, 549-550
GroupBox control, 563
grouping collections, 836-842

H
hacks, 144
Handles keyword, 477, 641
handling events, 477-479
Harvard Mark II, 59
HasA relationship, 288, 386
Hashtable class, 367
headered content controls, 563-564
heap, 272-273
height of panel controls, 543
“Hello, World” example, 53-58
High Level Shading Language (HLSL), 712
historical dates, 338-339
HLSL (High Level Shading Language), 712
horizontal alignment of panel controls, 542
HSV color model, 674
Hungarian notation, 132

I
ICollection interface, 364
icons, adding to applications, 76-82
IDE (integrated development environment), 17

ideas, 10
identifiers, 128
 as expressions, 157
 naming conventions, 131-132
IEnumerable interface, 364
if statement, 186-188
#if...#else...#endif directive, 149
IList interface, 364
Immediate window, 101
immobile code, 427
immutability, 333
immutable properties, 247
implementation of properties, 242-245
implicit casting, 138-139, 291
implicit styles, 731
Imports statement, 312-314
incompatible contracts, 447
indexes, 354
information hiding, 241-249, 393
inheritance, 225, 384, 391-392
 in Class Designer, 237
 in Exception class, 210
inheritance casts, 291
initialization, 73
 arrays, 356
 of decimal values, 324
 with New keyword, 135
inline elements, 708
input gestures, 664-665
instances, 221, 251, 259
instantiation, 221
 generics, 373
 structures, 279
Int32 class, 308
Int32 type, 321
integers
 efficiency tips, 322
 floating point numbers versus, 139
integrated development environment (IDE), 17
Intellisense, 57, 62, 86-88, 146-147
Intellitrace commands (break mode), 104
interfaces, 269, 274, 288-289
 abstract interfaces, 409-412
 for ArrayList class, 364
 classes versus, 289
 within .NET Framework, 270-271
 programming to interfaces, 442, 463
 relationships and, 288



854   

 service interfaces, 488
internal access modifier, 232
interpreted languages, compiled languages versus, 34-35
invoking methods, 175-176
is keyword, 293-294
IsA relationship, 288, 386
items controls, 533, 536, 570-576
 binding to collections, 814-842
  building bindable collections, 817-818
  data templates, 819-820
  data triggers, 821-822
  filtering collections, 836-842
  master-detail bindings, 823-824
  object sharing, 830-832
  panel templates, 819-820
  sorting collections, 833-835
  value conversions, 829
  views, 825-828
 class hierarchy, 570-571
 ComboBox control, 575-576
 ListBox control, 575-576
 TreeView control, 572-574
iteration commands, 183, 185, 191-197
 conditional iteration, 192-194
 For Each...Next statement, 359
 explicit iteration, 195-196

J
jagged arrays, 354
JIT (just-in-time) compilation, 36-39
Julian calendar, 339
jump commands, 183, 185, 198-204
 Continue command, 200-202
 Exit command, 199
 GoTo command, 203-204

K
key frame animations, 751
keyed styles, 730
key/value pairs, 367-371
keywords, 131, 223
kludges, 144

L
lambdas, 157
Launch Conditions Editor, 113
Law of Demeter, 430, 449-453
layered architecture. See logical layers

layout transforms, 758
LIFO (last in, first out), 367-371
line comments, 142-143
linear gradients, 681-687
lines, drawing, 698-702
linked lists, 367-371
linkers, 17
linking, 35
LINQ expressions, 157
Lippert, Eric, 418
Liskov Substitution Principle, 430, 445-448
list members, 87
ListBox control, 575-576
ListView class, 571
literal expressions, 158-170
 Boolean expressions, 165-169
 equations versus, 160-162
  operator precedence, 163-164
syntax, 159
local values, 597
Locals window, 101
logical errors, 96
logical layers
 business layer, 487
 data access layer, 486
 list of, 485
 presentation layer, 491
 service layer, 488-490
logical operators, 166
logical tree, 506, 519, 766
loops. See iteration commands
LSP. See Liskov Substitution Principle

M
margin of panel controls, 542-543
master-detail bindings, 823-824
Math class, 325
MatrixTransform class, 756
Max() method, 325
McConnell, Steve, 184
me keyword, 256
measurement units, device independent pixel, 540
member access, 172
memory allocation, 133
 garbage collection, 265
 reference and value types, 272-273
 scope, 262-265
 in structures versus classes, 275



    855

meta types. See character data; chronological data; 
numeric data

method calls, 175
Method Name ComboBox (Code Editor), 640
methods, 73, 88, 224, 250-267
 for Array class, 360
 calling, 175-176
 cohesion levels, 432
 constructor chaining, 260
 constructors, classes and instances versus, 259
 creating, 252-258
 for Decimal type, 324
 in enumerations, 284-287
 extension methods, 407, 419-421
 in Math class, 325
 me keyword, 256
 overloading, 174
 passing by reference/value, 299-301
 signatures, 173
 static methods, 176, 479
 in String class, 331-332
 syntax, 254
 types of, 251
Microsoft Intermediate Language (MSIL), 36
Microsoft Word, Mindbloom website versus, 672
Min() method, 325
Mindbloom website, Microsoft Word versus, 672
Model-View-Controller pattern, 495
Model-View-Presenter pattern, 496
Model-View-ViewModel pattern, 459, 497
modifiers. See access modifiers; type modifiers
modules, 402, 405-408
modulus operator, 161
monolithic applications, 482
MSIL (Microsoft Intermediate Language), 36
multi-dimensional arrays, 354
multi-line statements, 124
multiple inheritance, 392
multiple transformations, 758-759
multiple trigger conditions, 739-740
multi-statement lines, 124
MustInherit keyword, 403, 410
MustOverride keyword, 403, 410
mutability, 333
MVC (Model-View-Controller) pattern, 495
MVP (Model-View-Presenter) pattern, 496
MVVM (Model-View-ViewModel) pattern, 497
MyBase keyword, 415-416

The Mythical Man Month (Brookes), 20

N
namespaces, 310-316
 creating, 315
 Imports statement, 312-314
 XAML, 515-516
naming conventions
 abstract classes, 409
 fields and properties, 236
 identifiers, 131-132
 variables, 264
 Visual Basic versus .NET type names, 177
Nash, John, 144
negation operator, 160
nesting panel controls, 551
.NET Framework, 43
 advantages of, 50-52
 bugs in, 644
 Class Library organization, 306-307, 350-351
 classes within, 222-223
 enumerations within, 270-271
 interfaces within, 270-271
 structures within, 270-271
 type names, 177
 types. See types
.NET Platform, 43-65
 components of, 44-49
 “Hello, World” example, 53-58
New keyword, 135
Norman, Donald, 491
NotImplementedException class, 210
NotOverridable keyword, 402
NotOverrideable keyword, 417-418
n-tiered applications, 482
numeric data, 321-326
 Decimal type, 324
 floating point numbers, 323
 integer efficiency tips, 322
 Math class, 325

O
Object Browser, 85, 317-320
object code, 34
object composition, 386
object elements (XAML), 509
object expressions, 158, 171-178
 calling methods, 175-176



856   

 member access, 172
 method signatures, 173
 overloading methods, 174
 type names, 177
object hierarchy, 311
object sharing, 830-832
object tree, 506, 519
object-oriented programming principles. See OOP 

principles
objects
 components of, 171
 referencing from XAML, 831
 relationship with classes, 221
 state and behavior, 720
Observer pattern, 459, 469-481
 event mapping, 631
 handling events, 477-479
 logical observer, 470-471
 .NET solution, 475
 raising events, 476
 solution options, 472-474
OneTime binding, 805
OneWay binding, 805
OneWayToSource binding, 805
OOA&D (Object-Oriented Analysis & Design), 381-383
 design principles
  characteristics of bad code, 427
  Law of Demeter, 449-453
  Liskov Substitution Principle, 445-448
  Open/Closed Principle, 438-444
  Single Responsibility Principle, 431-437
  when to violate, 428-429
 OOP principles, 391-401
  polymorphism and casting, 397
  Type...Is operator, 398-400
 type modifiers, 402-419
  abstract classes and interfaces, 409-412
  extension methods, 419-421
  list of, 402-404
  modules, 405-408
  MyBase keyword, 415-416
  sealed classes, 417-418
  semi-abstract classes, 413
  Shadows and Overrides keywords, 413-414
 type relationships, 385-390
OOP principles, 391-401
 polymorphism and casting, 397
 Type...Is operator, 398-400

opaque code, 427
Open/Closed Principle, 430, 438-444
opening Project Designer, 75
operands, 159
operators, 159
 dot operator, 172
 logical operators, 166
 precedence, 163-164
 relational operators, 165
 symbolic operators, 175
Option Compare, 137
Option Explicit, 137
Option Infer, 137-139
Option Strict, 137
ordinal string operations, 330
OverflowException class, 210
overloading methods, 174
overloads, 174, 257
Overridable keyword, 403
Overrides keyword, 413-414

P
padding of panel controls, 542-543
panel controls, 533, 536-552
 attached properties, 538-541
 decorators versus, 773
 DockPanel control, 544-546
 Grid control, 547-548
 GridSplitter control, 549-550
 nesting, 551
 positioning and sizing, 542-543
panel templates, 819-820
paragraphs, 124
parameters, 88, 173, 253
Pascal case, 132
passing by reference, 299-301
passing by value, 299-301
A Pattern Language (Alexander), 457
patterns. See design patterns
pens, 698-702
pixel shaders, 671
POCO (plain old CLR object), 592, 630
polymorphism, 384, 391, 393
 casting and, 397
 Type...Is operator, 398-400
Pop() method, 367
positioning panel controls, 542-543
precedence of operators, 163-164



    857

precision, floating point numbers, 323
predicates, 360, 837
preprocessor directives, 148. See also directives
preprocessors, 148
presentation layer, 485, 491. See also presentation patterns
presentation patterns, 492-498
 Model-View-Controller pattern, 495
 Model-View-Presenter pattern, 496
 Model-View-ViewModel pattern, 497
 pros and cons, 493-494
presenters, 767, 781-782
primary colors, 676
primary UI projects, 70
Principle of Least Knowledge, 430, 449-453
private access modifier, 232
processing pipeline, 596
programming to interfaces, 442, 463
Project Designer, opening, 75
Project Properties designer, 113
projects. See also application development
 adding files to, 70-73
 adding to solutions, 70-73
 creating, 54, 60
 properties, 74-82
 startup project, specifying, 74
 steps in, 59-63
properties, 224, 241-249
 accessor access, 246-249
 attached properties, 538-541
 in Class Designer, 231, 236
 content properties (XAML), 510, 566
 dependency properties, 591
  callbacks, 614-623
  capabilities of, 595
  classes, 602-603
  creating, 604-609
  registering, 610-612
 reusing, 613
  value calculation, 596-601
 implementation, 242-245
 for linear gradients, 687
 naming conventions, 236
 of solutions and projects, 74-82
Properties window, 56-57, 68
property changed callbacks, 617
property element syntax (XAML), 509
property triggers, 736-743
 combining with styles, 741-742

 multiple trigger conditions, 739-740
PropertyMetadata class, 602-603
protected access modifier, 232
protected internal access modifier, 232
public access modifier, 232
publishing. See deployment
Push() method, 367

Q
Queue class, 367

R
radial gradients, 681, 688-690
radio button groups, 567-568
RadioButton class, 308
RadioButton control, 565
raising events, 476
range controls, 533
read-only properties, 247
Real World Color Management (Fraser), 676
redundant code, 427
reference highlighting, 89
reference types, 272-273, 275
 converting to/from value types, 295
 value types versus, 296-301
referencing
 array elements, 357-358
 objects from XAML, 831
 resources, 727-728, 830
 XAML elements, 830
reflection, 290
registering
 callbacks, 618-623
 dependency properties, 610-612
Registry Editor, 113
relational operators, 165
relationships, 288, 385-390
RelativeSource class, 809-810
release build configuration, 116
RemoveHandler keyword, 479
render transforms, 759
resources, 71, 526, 719, 721
 advantages and disadvantages of, 722
 in code, 729
 defining, 724-726
 referencing, 727-728, 830
REST (representational state transfer), 488
Restart command (break mode), 104



858   

return types, 173
reusing dependency properties, 613
RGB color model, 674
RichTextBox control, 711
rigid code, 427
root element (XAML), 515
RotateTransform class, 756
Round() method, 324-325
routed commands, 629-630, 654-666
 class hierarchy, 663
 creating, 665
 in FCL (Framework Command Library), 656-658
 hooking up, 660-662
 input gestures, 664-665
 logical design, 655, 659
routed events, 627, 632-653
 arguments, 635-644
 creating, 648-653
 dependency properties versus, 628, 645
 reasons for using, 632-633
 strategies, 634
running applications, 58
runtime, 34
runtime environments, 10, 17

S
safe casts, 291
scope, 262-265
screen layouts, 29
ScRGB color space, 687
sealed classes, 402, 404, 417-421
sealed members, 404
select...case statement, 189-190
selection commands, 183, 185-190
 if statement, 186-188
 select...case statement, 189-190
Selector class, 571
Sells, Chris, 418
separation of responsibilities, 493
sequential cohesion, 432
servers, 484
service interfaces, 488
service layer, 485, 488-490
service-oriented architecture, 484
services, 484
set accessors, 241-249
sets. See arrays; generics; specialized sets
setters, 597

setup designers, 113
setup programs, 107
 adding shortcuts to, 114
 build configurations, 116-117
 creating, 110-112
Shadows keyword, 413-414
shapes, 769-772
shared keyword, 402
sharing objects, 830-832
shortcuts, adding to setup programs, 114
Show Next Statement command (break mode), 104
side effects, 166
signatures of methods, 173
Silverlight, 491, 503
Simonyi, Charles, 132
simple statements, 124
Single Responsibility Principle, 430-437
Single type, 323
single-dimensional arrays, 354
singleton pattern, 407
sizing panel controls, 542-543
SkewTransform class, 757
Snepscheut, Jan van de, 425
SOA (service-oriented architecture), 488
SOAP (simple object access protocol), 488
Solution Explorer, 61, 68
solutions, 67
 adding projects to, 70-73
 properties, 74-82
sorting collections, 833-835
source code, 11, 17
 Code Editor, 62, 86-89
 compiled versus interpreted languages, 34-35
 downloading, 6
 JIT (just-in-time) compilation, 36-39
 steps in writing, 59-63
source files, 71
sparse storage with dependency properties, 595
specialized sets, 363-371
 ArrayList class, 363-366
 arrays and generics versus, 372
 LIFO, FIFO, linked lists, key/value pairs, 367-371
specifications, 10, 16, 19-32
 Agile Development, 20
 database schemas, 29
 screen layouts, 29
 UML class diagrams, 29
 UML state diagrams, 25-28



    859

 use cases, 21-24
 waterfall models, 20
SpreadMethod property, 687
square brackets in syntax diagrams, 128
sRGB color space, 687
stack, 272-273, 367
StackPanel control, 537
startup project, specifying, 74
state, 158, 171, 720
state diagrams, 25-28
state members. See fields
statements, 17, 122-123
 class definitions, 239-240
 commands. See commands
 declared elements. See declared elements
 expressions. See expressions
 syntax, 124-126
states, 25
static classes, 404. See also modules
static event handlers, 477
static font classes, 707
static members, 402, 404
static methods, 176, 251, 479
static resources, 727-728
Step Into command (break mode), 104
Step Out command (break mode), 104
Step Over command (break mode), 104
Stop Debugging command (break mode), 104
stops, 681
storyboards, 749-750
Strategy pattern, 459, 463-468
String class, 308
  comparing strings, 330
 escaping text, 329
 methods, 331-332
StringBuilder class versus, 333
StringBuilder class, String class versus, 333
StringComparison enumeration, 330
strong typing, 139
structured exception handling, 207-217
structures, 269, 274-280
 classes versus, 275
 creating in Class Designer, 276-278
 instantiation, 279
 within .NET Framework, 270-271
styles, 597, 721, 730-735
 combining with triggers, 741-742
 hierarchies in, 734-735

 types of, 730-731
subs, 173
symbolic operators, 175
syntactic sugar, 135
syntax errors, 96, 99-100
system architectures, 13
system design, 19-32
 Agile Development, 20
 database schemas, 29
 screen layouts, 29
 UML class diagrams, 29
 UML state diagrams, 25-28
 use cases, 21-24
 waterfall models, 20
SystemException class, 210

T
tab controls, 577
targeted styles, 730
Task List comments, 144-145
template bindings, 797
templates, 597
 control templates, 721, 765, 775-787
  control contracts, 784-787
  example of, 776-778
  necessary control components, 783
  presenters, 781-782
  syntax, 775
  template bindings, 779-780
  visual states, 788-794
  visual transitions, 791-792
 data templates, 819-820
 panel templates, 819-820
temporal cohesion, 432
test projects, 70
test-driven development, 70
text. See character data; typography
text editors, 17
TextBox class, 308
TextDecorations collection, 700-702
themes, 597
ticks, 337
tile brushes, 691-696
The Timeless Way of Building (Alexander), 457
timeline classes, 751
times/dates. See also chronological data
Timespan class, 335, 341-342
TimeZoneInfo class, 335



860   

ToggleButton control, 565
tokens, 144-145
Toolbox, 68
TRACE constant, 151
transform groups, 758
transformations, 671, 756-761
transitions, 25, 791-792
TranslateTransform class, 757
TreeView control, 572-574
triggers, 597, 721, 736-746
 data triggers, 821-822
 event triggers, 744-746
 property triggers, 736-743
  combining with styles, 741-742
  multiple trigger conditions, 739-740
 types of, 736
 update triggers, 806
true keyword, 160
Truncate() method, 324-325
TryCast() function, 293-294
Try...Catch...Finally command, 208
tunneling events, 634
TwoWay binding, 805
type keywords, 223
type modifiers, 402-419
 abstract classes and interfaces, 409-412
 extension methods, 419-421
 list of, 402-404
 modules, 405-408
 MyBase keyword, 415-416
 sealed classes, 417-418
 Shadows and Overrides keywords, 413-414
type relationships. See relationships
typefaces, 704
Type...Is operator, 398-400
types, 158, 171, 290-302. See also classes; enumerations; 

FCL (Framework Class Library); interfaces; structures
 arrays, 354-362
  Array class, 360-362
  creating, 355
  For Each...Next statement, 359
  initialization, 356
  referencing elements in, 357-358
 boxing and unboxing, 295
 casting, 290
  explicit casting, 292
  implicit casting, 139, 291
  is keyword, 293-294

  polymorphism and, 397
  TryCast() function, 293-294
  Type...Is operator, 398-400
 character data, 327-334
  Char structure, 327-328
  comparing strings, 330
  escaping text, 329
  String class methods, 331-332
  String versus StringBuilder class, 333
 chronological data, 335-345
  DateTime class, 337-340
  DateTime versus DateTimeOffset classes, 336
  DateTimeOffset class, 343-344
  Timespan class, 341-342
 generics, 372-377
 namespaces, 310-316
  creating, 315
  Imports statement, 312-314
 numeric data, 321-326
  Decimal type, 324
  floating point numbers, 323
  integer efficiency tips, 322
  Math class, 325
 reference and value types, 272-273, 296-301
 reflection, 290
 relationship with classes, 222-223
 specialized sets, 363-371
  ArrayList class, 363-366
  LIFO, FIFO, linked lists, key/value pairs, 367-371
 Visual Basic versus .NET type names, 177
typography, 703-707
 fonts and typefaces, 704
 static font classes, 707
 text characteristics, 705
 text controls, 706

U
UI (user interface) in Visual Studio, 61, 67-91. See also 

graphics; WPF controls
 adding solutions and projects, 70-73
 Code Editor, 86-89
 customizing, 83-85
 parts of, 68
 solution and project properties, 74-82
UML (Unified Modeling Language)
 UML class diagrams, 29, 225, 227-238
 UML state diagrams, 25-28
unboxing, 295



    861

Unicode, 327-328
Unified Modeling Language. See UML (Unified Modeling 

Language)
units of measurement, device independent pixel, 540
universal resource identifier (URI), 526
Until keyword, 192-194
update triggers, 806
URI (universal resource identifier), 526
use cases, 20-28
user interface. See UI (user interface) in Visual Studio
User Interface Editor, 113
UTC (Universal Time, Coordinated), 336
utility classes, 70

V
validation
 callbacks, 615
 enumerations, 283
value calculation with dependency properties, 595-601
value conversions, 829
value types, 272-273, 275
 converting to/from reference types, 295
 reference types versus, 296-301
variables, 73, 98, 127. See also declared elements
 garbage collection, 265
 global variables, 407
 implicit typing, 138-139
 naming conventions, 264
 passing by reference/value, 299-301
 scope, 262-265
vertical alignment of panel controls, 542
Viewbox instance, 692-693
Viewport instance, 692-693
views, 825-828
virtual keyword, 413
virtual members, 403-404
visibility, 232
Visual Basic language elements
 commands
  control-of-flow commands, 184-204
  exception handling commands, 184
  types of, 181, 183-184
 comments, 141-147
  line comments, 142-143
  Task List comments, 144-145
  XML comments, 146-147
 declared elements
  components of, 134

  declaring, 128-130
  memory allocation, 133
  New keyword, 135
  Option Infer, 138-139
  types of, 127
 default settings, 136-137
 directives, 148-151
 expressions, 155
  literal expressions, 158-170
  object expressions, 158, 171-178
  types of, 157-158
 identifiers, naming conventions, 131-132
 list of, 122, 156, 182
 statements
  class definitions, 239-240
  syntax, 124-126
 type names, 177
Visual Basic, XAML versus, 507-508
visual states, 788-794
Visual Studio
 Class Designer, 227-238
  abstract classes in, 410
  access modifiers in, 232-234
  enumerations, creating, 282
  fields in, 235
  inheritance in, 237
  properties in, 231, 236
  structures, creating, 276-278
 Code Editor, 62
 downloading, 6
 “Hello, World” example, 53-58
 projects, creating, 54, 60
 UI (user interface), 61, 67-91
  adding solutions and projects, 70-73
  Code Editor, 86-89
  customizing, 83-85
  parts of, 68
  solution and project properties, 74-82
 windows, creating, 55-56
visual transitions, 791-792
visual tree, 506, 519, 767

W
Watch window, 101
waterfall models, 20
WCF (Windows Communication Foundation), 488
While keyword, 192-194
widgets, adding to windows, 55-56. See also WPF 



862   

controls
width of panel controls, 543
Window class, 308
Window control, 558-562
windows. See also UI (user interface) in Visual Studio
 arranging, 84
 creating, 55-56
 logical tree, 766
Windows Forms (WinForms), 491
WithEvents keyword, 477
WPF (Windows Presentation Foundation), 501
 animations, 747-755
  class hierarchy, 748
  example of, 752-755
  reasons for using, 747
  storyboards, 749-750
  timeline classes, 751
 bindings, 797
  binding modes, 805
  binding source, 807-810
  to collections, 814-842
  creating, 802-804
  DataContext property, 811
  reasons for using, 799-800
  structure of, 798
  update triggers, 806
 class hierarchy, 535
 control templates, 721, 765, 775-787
  control contracts, 784-787
  example of, 776-778
  necessary control components, 783
  presenters, 781-782
  syntax, 775
  template bindings, 779-780
  visual states, 788-794
  visual transitions, 791-792
 dependency properties, 591
  callbacks, 614-623
  capabilities of, 595
  classes, 602-603
  creating, 604-609
  registering, 610-612
  reusing, 613
  value calculation, 596-601
 graphics, 669-671
  brushes, 677-697
  color, 674-676
  effects, 712-714

  flow documents, 708-711
  pens, 698-702
  typography, 703-707
 hierarchies in, 506, 519-522
 resources, 719, 721
  advantages and disadvantages of, 722
  in code, 729
  defining, 724-726
  referencing, 727-728
 routed commands, 629-630, 654-666
  class hierarchy, 663
  creating, 665
  in FCL (Framework Command Library), 656-658
  hooking up, 660-662
  input gestures, 664-665
  logical design, 655, 659
 routed events, 627, 632-653
  arguments, 635-644
  creating, 648-653
  dependency properties versus, 628, 645
  reasons for using, 632-633
  strategies, 634
 styles, 597, 721, 730-735
  hierarchies in, 734-735
  types of, 730-731
 themes, 597
 transformations, 756-761
 triggers, 721, 736-746
  event triggers, 744-746
  property triggers, 736-743
  types of, 736
WPF controls, 531-533
 application creation example, 578-587
 building, 769-774
 content controls, 557-569
  buttons, 565-568
  headered content controls, 563-564
  Window control, 558-562
 control classes, 553-556
 control contracts, 784-787
 customizing. See graphics; templates
 flow controls, 711
 items controls, 570-576
  class hierarchy, 570-571
  ComboBox control, 575-576
  ListBox control, 575-576
  TreeView control, 572-574
 necessary components, 783



    863

 panel controls, 537-552
  attached properties, 538-541
  DockPanel control, 544-546
  Grid control, 547-548
  GridSplitter control, 549-550
  nesting, 551
  positioning and sizing, 542-543
 tab controls, 577
 visual tree, 767
WPF Designer, 55-56, 61, 68
WrapPanel control, 537
wrapping, 593
write-only properties, 247

X
XAML, 55, 501. See also WPF (Windows Presentation 

Foundation)
 attributes and properties, 509
 collections, 513-514
 compilation process, 523-527
 content properties, 510-512
 event handlers, 639
 example of, 505
 namespaces, 515-516
 need for, 504
 object elements, 509
 referencing objects from, 831
 root element, 515
 Visual Basic versus, 507-508
 WPF trees, 519-522
XML
 comments, 146-147
 need for, 504

Z
Zulu, 336


	CONTENTS
	GETTING STARTED
	INTRODUCTION
	Fluent Learning Because
	This book isn’t for everyone
	What you’ll learn
	What you’ll need
	How it works

	APPLICATION DEVELOPMENT
	The development process
	System design
	Creating executables

	THE .NET PLATFORM
	.NET Components
	Say hello
	Say what?

	THE VISUAL STUDIO UI
	Solutions, projects and stuff
	Take control
	Get some help

	TESTING & DEPLOYMENT
	Errors & exceptions
	Deployment


	THE LANGUAGE
	PART 1: NOUNS
	Statements
	Declared elements
	Comments
	Directives & Attributes

	PART 2: TRANSITIVE VERBS
	Literal expressions
	Object expressions

	PART 3: INTRANSITIVE VERBS
	Control of flow commands
	Exception handling commands


	THE .NET FRAMEWORK LIBRARY
	CLASSES IN THE .NET FRAMEWORK
	The Class Designer
	Class definitions
	Fields & properties
	Methods

	OTHER FRAMEWORK TYPES
	Structures
	Enumerations
	Interfaces
	Working with types

	THE CLASS LIBRARY, PART 1
	Namespaces
	The Object Browser
	Numeric data
	Character data
	Times & dates

	THE CLASS LIBRARY, PART 2
	Arrays
	Specialized Sets
	Generics


	BEST PRACTICE
	OOA & D
	Type relationships
	OOP principles
	Type modifiers

	PROGRAMMING PRINCIPLES
	The Single Responsibility Principle
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Law of Demeter

	PATTERNS
	The Strategy Pattern
	The Observer Pattern
	Architectural Patterns


	WPF
	XAML
	Fundamentals
	WPF types
	XAML & Visual Basic

	WPF CONTROLS
	WPF panels
	Control classes
	Content controls
	Items controls

	DEPENDENCY PROPERTIES
	The basics
	Creating dependency properties

	WPF INTERACTIONS
	Routed events
	WPF Commands

	WPF GRAPHICS
	Color
	Brushes
	Pens
	Typography
	Effects

	RESOURCES
	Resource dictionaries
	Styles
	Property triggerrs
	Event triggers

	TEMPLATES
	Building controls
	Building control templates
	The VisualStateManager

	WPF BINDING
	Creating bindings
	Binding to collections
	Working with collections





