

 iRebecca M. Riordan

Fluent
 Visual Basic®

ii   

Fluent Visual Basic©
Copyright © 2011 by Rebecca Riordan

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 9780672335808

ISBN-10: 0672335808

Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States of America

First Printing November 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any
trademark or service mark.

The Windlass Lowercase and Brandywine fonts are copyrights of the
Scriptorium foundry, www.fontcraft.com.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Signing Editor
Neil Rowe

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Indexer
Cheryl Lenser

Proofreader
Karen Gill

Technical Editor
John Hardesty

Publishing Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Composition
Rebecca Riordan

www.fontcraft.com

Acknowledgements
Yes, I know it says “Rebecca M. Riordan” on the cover, but that’s not really

true. Without the assistance of some amazing people, this book would never have

made it out of my head, much less into your hands. So, in order of appearance, I

would like to thank:

Neil Rowe, my editor, who took a chance on a very different way of writing

computer tutorials. Without Neil’s leap of faith, Fluent Learning would never have

happened. My technical reviewers, David Sceppa, Eric Weinburger
and John Hardesty, who collectively caught an embarassing number of code

typos and I-knew-what-I-meant obscurities. Finally, my copy editor, Karen
Gill, who not only made sure the language in the book resembles English, but also

expressed an unexpected and greatly appreciated enjoyment in the project. (Any

remaining errors and infelicities are, of course, my responsibility.)

Jake von Slatt of The Steampunk Workshop (steampunkworkshop.com),

Samantha Wright (samantha-wright.deviantart.com) and Mindbloom

(mindbloom.com) were all gracious enough to allow me to use their images. These

are all seriously cool people, folks. I can’t urge you strongly enough to go explore

their sites.

    iii

iv   

Getting Started

Introduction. ���� 1
Fluent Learning Because
This book isn’t for everyone
What you’ll learn
What you’ll need
How it works

Application Development����� 9
The development process
System design
Creating executables

The .NET Platform����������������43
.NET Components
Say hello
Say what?

The Visual Studio UI. � 67
Solutions, projects and stuff
Take control
Get some help

Testing & Deployment����������93
Errors & exceptions
Deployment

The Language

Part 1:  Nouns ������������������������121
Statements
Declared elements
Comments
Directives & Attributes

Part 2:  Transitive Verbs ������155
Literal expressions
Object expressions

Part 3:  Intransitive Verbs����181
Control of flow commands
Exception handling commands

The .NET Framework Library

Classes in the .NET Framework	� 221
The Class Designer
Class definitions
Fields & properties
Methods

Other Framework Types����������������269
Structures
Enumerations
Interfaces
Working with types

The Class Library, Part 1 ������305
Namespaces
The Object Browser
Numeric data
Character data
Times & dates

The Class Library, Part 2������349
Arrays
Specialized Sets
Generics

Discover the secret to efficient
programming: The best code is the
code you don’t have to write yourself.

Learn how to speak Visual
Basic. It’s a language, much
like English, Spanish or Latin,
only simpler.

Find out what this whole “being a
programmer” thing is all about and
how to use the tools you’ll need to
build applications.

    v

best practice

OOA & D �� 381
Type relationships
OOP principles
Type modifiers

Programming Principles��������425
The Single Responsibility Principle
The Open/Closed Principle
The Liskov Substitution Principle
The Law of Demeter

Patterns ������������������������������������457
The Strategy Pattern
The Observer Pattern
Architectural Patterns

wpf

XAML ����������������������������������� .501
Fundamentals
WPF types
XAML & Visual Basic

WPF Controls ���������������������531
WPF panels
Control classes
Content controls
Items controls

Dependency Properties������ 591
The basics
Creating dependency properties

WPF Interactions����������������627
Routed events
WPF Commands

WPF Graphics��������������������� 669
Color
Brushes
Pens
Typography
Effects

Resources������������������������������ 719
Resource dictionaries
Styles
Property triggerrs
Event triggers

Templates������������������������������765
Building controls
Building control templates
The VisualStateManager

WPF Binding������������������������797
Creating bindings
Binding to collections
Working with collections

Put all you’ve learned to good
use by learning how to use
Microsoft’s latest and greatest
interface platform.

Stand on the shoulders of the
experts by learning the best
programming practices and how
to implement them.

Contents

vi   

Tell Us What you think!

As the reader of this book, you are our most important critic
and commentator. We value your opinion and want to know
what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of
wisdom you’re willing to pass our way.

As a Executive Editor for Sams, I welcome your
comments. You can fax, email, or write me directly to let
me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems
related to the topic of this book, and that due to the high
volume of email I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title
and author as well as your name and email address, phone,
or fax number. I will carefully review your comments and
share them with the author and editors who worked on this
book.

Email: feedback@samspublishing.com

Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor
Sams Publishing
800 East 96th Street

Indianapolis, IN 46240 USA

67   

The Visual Studio UI
In the last chapter you wrote your first program and saw the basics of the
Visual Studio user interface (UI). Now it’s time to look at these steps in more
detail. We’ll start by looking at how Visual Studio helps you manage a development
project with Solutions and Projects, and then take a closer look at the UI and how to
configure it to suit the way you work.

As a programmer, you’ll spend a lot of time in the Code Editor, and so will we. We’ll look
at the basic text editing functions it provides and also at Intellisense and the Visual Studio help
system.

Solution

Miscellaneous ItemsSettings

...Code
...

CursorsXML

HTMLText

Icons

Projects

Solutions contain Projects,
Solution Settings that
control how the application
will be compiled and run,
and Solution Items that
aren’t part of a specific
project.

Solutions can also contain other files that aren’t
included in the application but are available
from the Solution Explorer when the
Solution is open.

68   

The document outline
window is a great way
to navigate hierarchical
documents like XML
or XHTML

The contents of the Toolbox
change to reflect the kind of
document you’re working on.

The Properties window
is a quick and easy way
to change the attributes
of something that’s
selected in a designer.
You can also use it as
a shortcut to create and
manage event handlers.

Like the Windows
Explorer, the Solution
Explorer helps you
navigate & manage the
files and folders associated
with your project.

By default, “documents” and certain kinds of
dialogs are displayed as tabs in the central portion
of the Visual Studio window.

The Data Source
window is like an explorer
for external data like a
relational database.

Some Visual Studio Designers can display
multiple panes. The WPF Designer shown
here, for example, shows XAML and a
design surface you can use for drag-and-drop.

in a Nutshell

    69

Task List
A craftsman is master of his tools. As a programmer, your primary tool is Visual Studio,
and in this chapter we’ll begin the process of mastery by examining its user interface in

detail.

Get Some Help
In the last chapter we saw an example of Intellisense when we were able
to pick the Messagebox.Show command from a drop-down list. In this
chapter, we’ll look at Intellisense in more detail, along with some of the
special error-checking capabilities that the Visual Studio Editor provides.

Take Control
I bet you’ve changed your Windows desktop. If you’re like most
people, you’ve added widgets to the sidebar, created some shortcuts,
and rearranged the Start menu. All those little changes just make life
a little easier by putting the tools you use all the time close to hand.
Visual Studio does a pretty good job of arranging the user interface to
accommodate general programming, but you’ll benefit from making
the same sorts of customizations to its workspace as you made to the
Windows desktop, so the next thing we’ll do is learn how to do just that.

Solutions, Projects & Stuff
It’s convenient to think of application development like writing an essay
or book: You do some research, prepare an outline, and then produce
a final document. Unfortunately, the development process isn’t that
neat. (Neither is writing, of course, at least not the way I do it.) Most
development projects don’t even have a single output that’s equivalent to
that essay. So we’ll start this chapter by looking at the way Visual Studio
uses Solutions, Projects and Solution Items to manage all the bits and
pieces that you’ll actually be working with.

70   

Solutions, Projects...
Solutions are like filing cabinets that hold and manage Projects and other files. Easy enough

in principle, but what exactly does that mean? Why would you have more than one
Project? What are these “other files”, and what exactly does “manage” mean? Let’s look at some examples
of the kinds of files you might include in a Solution.

Primary UI Projects

You’ll usually have a project (sometimes
more than one) that contains the forms
that comprise your application user
interface.

DataSet Projects

If your application references a data
source, you’ll usually have a separate
project that handles the data interface.

Test Projects

Visual Studio 2010 provides great support for a
technique called Test-Driven Development. If you
adopt this approach, you’ll need projects that contain
your tests.

Utility Classes

In cooking, you often
need to translate between
teaspoons, tablespoons
and cups. The classes
that do that conversion
might be useful in other
applications, so it makes sense to put those in a separate project that
we can reference when we need them.

    71

...and Stuff
Projects have multiple files, as well. You’ll have code and designer files, of course, you’ve already seen
that, but Visual Studio will also allow you to associate other files with the project, just to keep them handy.

Designer Files

These are the files that are created by
the Visual Studio Designers. They’re
text files, but if you mess with them
outside the Designer, your changes
might get overwritten the next time
you use the Designer, so you’ll typically
leave them alone.

Source Files

These are the files that contain your
code. They have the same name as
the files the Designer creates, with the
extension “.vb”.

Design Documents

You can also include
documents like this class
diagram or even specifications.
These
files aren’t
part of
the project
code.

Resources

If your project includes things
like custom cursors or icons,
these are separate files in the Project.

Put on your thinking hat
Find at least two ways to add a
Project to a Solution, and two
ways to add a file to a Project.

72   

How’d you do?
The problem was to figure out how to add Solutions and files....

To Add a Project to a Solution

To Add a File to a Project

You can also add existing Projects, which
is handy if you’re reusing utilities or custom
widgets, or exclude a project that you’ve
added by accident.

The New Project item can be found on
the File menu and on the context menu
displayed when you right-click the
Solution name in the Solution Explorer.

The Project menu provides
specific options for the most
common types of Projects, or you
can choose Add New Item... to
display the New Item dialog.

You can add new and
existing items from the
Solution Explorer by right-
clicking the Project name.

    73

On your Own
You know how to add an item to a Project, and you know how to configure
a simple WPF window, so let’s put those two things together. Change your

Hello, World application to display a window instead of a MessageBox:

Add a new window to the Project. Accept the default name of Window1.

Drag a Label from the Toolbox to the window design surface, and
configure the window and label properties however you like. Have some
fun! You can’t hurt anything.
Display the code for the original form (NOT the one you just created). If
the form is open, you can double-click the button or press f7. If the form
isn’t open, you can right-click the form name in the Solution Explorer
and choose Show Code.
Delete the line that displays the MessageBox, and replace it with the
following:

Run the application by pressing f5, and then click the button on the first
form.

Declare a variable called
“newWin”. variables are just a
name for a piece of memory that
can store information or objects of
a certain type. This one stores a
Window.

The variable is
initialized (given an
initial value) with an
instance of Window1, the
Window you just created.

You’ll use variables a lot when you program.
We’ll look at them in Chapter 5.

This line calls the ShowDialog() method of the
window. methods are something an object can do.
We’ll look at them in detail in Chapter 8.

Dim newWin As New Window1()

newWin.ShowDialog()

Take a break
Why don’t you take a quick break before we move on to controlling the way Solutions
and Projects behave by setting their properties.

74   

Solution and...
When you created and modified your windows on the design surface, you saw that you could control the
appearance of the widgets by setting their properties. Well, Solution and Projects have properties, as well.
We’ll need some of these as we move through the book, so let’s get started by looking at how to display
the property dialogs.

The easiest way to display the Solution Properties
dialog is to select the Solution in the Solution Explorer
and click the Properties button on the Solution
Explorer toolbar, but you can also choose Properties
Page from the View menu.

Click here

Most of the Solution properties are
managed by Visual Studio, and you
only need to change them in unusual
circumstances, but you’ll often need to
specify the Startup Project whenever
you have a Solution that contains
multiple Projects. The file specified as
the Startup is the one that Visual Studio
will run when you press F5 or run
the final application.

By default, Visual Studio sets the first project
you add to the Solution as the Startup Project.
You can change that by choosing a different
Project from the combobox.

    75

…Project Properties
Solution properties display in a dialog box, but Visual Studio has a designer (called the Project Designer) for
project properties that displays in a tab. You can display Project Designer by clicking the Solution Explorer
toolbar button when a Project is selected or by choosing <ProjectName> Properties... from the Project
menu when the Project is selected, or by right-clicking the Project name in the Solution Explorer and
choosing Properties, or by selecting the Solution name in the Solution Explorer and pressing Alt+Enter. And
probably by doing some other things that I haven’t discovered yet...

The Application tab will change
depending on the type of Project you
choose, but it always controls the type
of application and how it is compiled.

Resources and Settings
are things like icons and
strings that are included in
the executable. We’ll use
these tabs in just a minute
to create an icon for our
application.

Signing and Security help you
secure your application and its
users from bad people and bad
software. Security is an important
issue, but it’s also a huge one, so
we won’t be talking about it in
any detail.

The Publish tab is used to deploy your
application using ClickOnce. We’ll talk
about that in the next chapter.Not all of these options are available in every version of Visual

Studio. The Code Analysis tab, for example, only appears in
Visual Studio Premium and Ultimate. So don’t panic if your screen
looks a little different from this one. (You are opening these screens,
right?)

76   

Add an Icon
All Windows applications need an icon. If you don’t provide one, Visual Studio will use
the default icon. The default image isn’t very exciting, and it doesn’t distinguish your

application from all the others out there. So let’s use the Project Properties dialog to add a
custom icon to Hello, World. To make that happen in a WPF application (other application

types can be a little different), we need just three steps:

Make a note
Visual Studio includes simple editors for most resource types, including icons, from the
Resources tab of Project Properties, or you can use a third-party tool. You can even open

most third-party tools right inside Visual Studio by right-clicking the resource and choosing
Open With...

And if you’re not feeling particularly artistic, there are lots of icon sets available for free or fee on the Web that you
can use. Just be sure to respect the artists’ terms of use, or the karma gods will get you, even if copyright law doesn’t.

This is the default icon. Pretty
boring, huh?

We’ll replace it with this one that looks a bit cooler
and represents what our application actually does.
This icon file is called conversation.ico, and
it’s included with the sample code. You can use this
one, or any other icon file you like (try searching for
*.ico in the Windows Explorer). Just copy it to the
application folder for our sample app.

Specify the icon file in the Application tab of Project Properties.

Build the application to make the icon available.

Set the icon property of the window in the WPF Designer.

    77

Set the Application
Icon Property

If Hello, World isn’t still open from
the last exercise, open it from the
Visual Studio Start Screen (it will

be listed on the left side under Recent
Projects) or from the File menu. Display
the Project Properties using any of the
techniques you’ve learned, and then select
the Application tab.

We’ll set the icon here.

Open the combobox and select
<Browse…>, and Visual Studio
will display a standard File Open

dialog. The first time you open the
dialog, Visual Studio might take you to
the Microsoft Visual Studio\Common7\
IDE folder, which can be a little scary,
but just navigate to the folder for the
application and choose conversation.ico
(or whichever icon file you chose to use).

After you select the icon and click the
Open button, Visual Studio will show the
icon on the tab.

Click here to open
the dialog.

After you select your icon, Visual Studio
will display a thumbnail of it here.

78   

Build the Application
There are a lot of files involved in creating a Visual Studio application. In addition to the

source files that you create, the resource files like icons that you create or reference, and the
final executable created by the compiler, there are intermediate files that Visual Studio creates for you.
When you set properties or resources, you need to tell Visual Studio to recreate some of these “behind-the-
scenes” files so that they’re available to other components like the designers. You do that by building the
application.

Most of the time you can use Build
Solution, which only rebuilds the
files that have changed.

Rebuild Solution is a safer, but slower,
choice. It rebuilds all the files, whether
they’ve changed or not.

Clean Solution removes any intermediate
files created by Visual Studio but doesn’t
build them. If Rebuild Solution seems
to be acting strangely, try cleaning the
solution first.

These options build and clean just the
Project, not the whole Solution. Because
our application only has a single project, there isn’t any
real difference, but when you have a lot of Projects in a
Solution, these alternatives can save a lot of time.

Press F5 or choose Build Solution from the Build menu so that the icon will be
available to the WPF Designer.

The build menu

    79

Set the Window Property
If necessary, double-click
MainWindow.xaml in the Solution
Explorer to open the WPF

Designer. In the Properties window,
find the Icon property, select it, and then
click the ellipsis button.

Click here.

After you click the ellipsis in
the Properties window, Visual
Studio will display the Choose

Image dialog. Your new icon will
be displayed, but there might not be a
thumbnail. It’s okay; Visual Studio just
hasn’t caught up with us.

Click on your icon, and then click OK to
set the property.

After you click the OK button, Visual Studio will set the property to a long value
that begins with pack//application.../. That’s just WPF-Speak for “look in the
application file”, and we’ll figure out how it all works later when we examine WPF
Resources.

Click here...

...and then click
here.

It’s not a problem that there’s
no thumbnail.

80   

Did it work?
Don’t take my word for it. Run the application and find out...

The icon shows up in the window
where we set the property...

But not in the window where we
didn’t.

The application executable also
uses the icon, as you can see in
the bin/debug folder in Windows
Explorer.

    81

Take a Break

You’ve finished the first task of this chapter, so take a short break
to let it all settle before moving on. But before you go, stop for a
minute to think about what you’ve achieved...

•	 You created an application that displayed a Window and a MessageBox.

•	 You changed the appearance of the Window.

•	 You added a second window to the Project and wrote the code to display it.

•	 You added an icon to the application and the window.

That’s a lot when you see it listed like that, isn’t it? Go, you!

One More Time...
Let’s run through the steps to add an application icon one more time...

Add the icon file to the application in Project Properties.

Build the application to make the application available in the Designers.

Set the Icon property of the windows where you want the icon displayed.

82   

Review
Just a few exercises before we move on...

Solutions and Projects, Projects and Solutions. One’s like a file folder, one’s like a filing
cabinet. Which is which?

Solution

Project

List three ways to add a Project:

List two ways to show the Solution Properties dialog:

List three ways to show Project Properties:

In the walkthrough, we only changed the icon of the main window. Add it to the other
window in the application, as well.

Change the application icon to something else. What happens to the window?

    83

Take Control
Visual Studio is a Windows application, and for the most part it behaves like any Windows

application, with menus and toolbars and document windows where you do your work. But
the work you do in Visual Studio is quite specialized, and the IDE adds some special capabilities to make it
possible to work just the way you want to work.

You can display documents
in tabs or as separate windows.
You can even drag them
outside the main IDE window.

Tool windows can be docked to the edge
of the IDE window or each other. When
docked, they can be opened or closed.

This is a tool
window that is
docked and closed.

This is a tool
window that
is docked
and open.

Tool windows
that are docked
to each other are
displayed as tabs.

This is a document
window displayed
as a tab, the default
view.

This is a document
displayed in a floating
window. It’s not
constrained by the Visual
Studio IDE window.

84   

Arranging Windows
Like any Windows application, you can control the individual windows in Visual Studio through the View
and Window menus or by dragging the title bar of a window.

The View menu controls the display of tool
windows. (Don’t confuse “tool window” with
“Toolbox”. The Toolbox is a tool window, but
so are the Properties window and the Solution
Explorer.)

Do you remember how to open a document
window? Double-click on its name in the Solution
Explorer.

The Window menu controls the
display of open windows in the IDE.
The most important item on this menu
might be Reset Window Layout, which
puts everything back
in place when you get
things messed up. (And
you will, trust me.)

    85

On your own
The best way to learn how to control the windows in Visual Studio is to play
with them, so take a few minutes to move the Object Browser around. The

Object Browser lets you look through a class hierarchy. You’ll find out what
that means in Chapter 7.

Remember, you can always start over by choosing Reset Window Layout from the Window menu...

Show the Object Browser by selecting its name on the View menu. It will
probably display as a tab. If it doesn’t, drag its title bar until it does.

Make it float by dragging its title bar, or selecting Float from the Window
menu.

Dock it to the left side of the screen along with the Toolbox. It will be
open when you first dock it, so click the to collapse it.

Drag it over so it displays as a tab in the same pane as the Solution
Explorer.

Use Reset Window Layout to put everything back the way it was
originally.

When you’re dragging a
window around, Visual
Studio will display this
odd docking widget. Can
you work out what each
bit does?

86   

More than Editing...
Basic text editing in Visual Studio complies with Microsoft Windows standards. You can double-click to
select a word, ctrl-click to extend the selection, and cut, copy or paste selections just the way you’re used
to. But the Visual Studio Code Editor also includes a seemingly magical tool called Intellisense that turns it
from a stenographer into a personal assistant.

Intellisense shows you what an
object can do as you type, so
you don’t need to memorize a
lot of detailed syntax.

Intellisense will even create
standard code and objects for
you.

Send this guy a “Don’t call us,
we’ll call you” letter.

What colors does the new gizmo
come in?

What are the specifications for
this new gizmo?

    87

List Members
The Intellisense capability that you’ll probably use most often is the list members function that displays a
list of valid “things” that can be can be inserted where you’re typing. You saw the list members function
when you built your first application in Chapter 2.

As soon as you type a single character, the List
Members box will open. Visual Studio is pretty
smart about knowing what you can do, and it
won’t list things that don’t apply (but it’s not very
smart about what makes sense).

The box lists everything that contains the
letters you type, not just the ones that begin
with what you typed. Typing “n”, for
example, would display both “NewItem”
and “EditNew”, assuming they were
available.

When you select an item in the box,
Visual Studio shows you the definition
of the item, a short description, and,
if the item is a method (something
an object knows how to do), any
exceptions the method can throw in
a little help box.

An exception is the way an
object lets the rest of the program
know something is wrong. We’ll
look at exceptions and what to do
about them in Chapter 7.

To highlight an item in the
List Members box, you can
keep typing characters to
limit the list or use the up
and down arrow keys.

To insert the selected item, press the
Tab key or type the character after the
item. In this case, that would be the “(“
character, and you know that because of
the definition displayed in the little help
box on the far left.

On Your Own
Try using Intellisense to change

the ShowDialog() method call in
the sample application to Show().

Run it. How is the behavior different?

88   

Parameter Information
Methods are things that objects can do. (We’ll look at exactly what “object” and “method” mean in
detail in Chapter 8.) Some methods take parameters, which are bits of information that you pass to
the method to control exactly how it does whatever it is it does. In the bad old days before Intellisense,
programmers spent a lot of time trying to remember exactly what parameters a method took, and in what
order. The Intellisense Parameter Info box eliminates all that by showing you exactly what your options
are.

As soon as you type the opening paren
of a method call, Intellisense displays the
Parameter Info box that shows you the
method definition, a description of the
method, and of the first parameter.

As you type each parameter,
Intellisense updates the display to show
the description of the next one.

If a method has different versions, you
can use the up and down arrow keys
to scroll through them.

List Members works right alongside Parameter
info, so sometimes the screen can get a bit
crowded! Mostly it’s helpful, but if all the
windows get in your way, you can always
make them go away by pressing esc.

    89

Take a break
You’ve almost finished this chapter, so take a short break before you
come back for the final Review.

Road Maps
Several editing functions help you keep track of where you are and what you’ve done. Using them is
pretty intuitive, but here’s a quick rundown:

Code Outlining

Quick Info

Reference Highlighting

Click on the + or =
characters in the left margin
to collapse and expand units
of code.

Hover the mouse over any identifier, and Intellisense will
display its definition and a description. (We’ll see how to
create descriptions for the code you write a bit later.)

Select any symbol in the editor by
clicking in it, and Visual Studio will
highlight all the references to that
symbol in the code.

90   

Review

Name at least one way to add a Project to a Solution:

Name at least one way to add a File to a Project:

Where would you assign an application icon?

What does this widget do?

On a new, blank line inside the Button1_click event handler, type an “a” to trigger
Intellisense. What’s the description of the Array object?

How many versions of the Array.BinarySearch() method are there?

Hover the mouse over one of the instances of the Window identifier. (There are two in
your source file.) What’s the description of the window?

    91

Congratulations! You’ve finished the chapter. Take a minute to think about what you’ve
accomplished before you move on to the next one...

List three things you learned in this chapter:

Why do you think you need to know these things in order to be a C# programmer?

Is there anything in this chapter that you think you need to understand in more
detail? If so, what are you going to do about that?

92   

846   

Index
A
abstract classes, 404, 409-412
abstract interfaces, 409-412
abstract types, 403
abstraction, 384, 391-392, 394
access modifiers, 223
	 in Class Designer, 232-234
	 for get/set accessors, 246-249
	 in information hiding, 241
accessors, 241-249
actions, 25
AddHandler keyword, 479
ADO.NET, 486
ADO.NET Data Services, 486
ADO.NET Entity Framework, 486
adorners, 769
aggregate types. See arrays; generics; specialized sets
Agile Development, 20
Agile Manifesto, 20
Alexander, Christopher, 457
alignment of panel controls, 542
angle brackets in syntax diagrams, 128
animated values, 596
animations, 747-755
	 class hierarchy, 748
	 example of, 752-755
	 reasons for using, 747
	 storyboards, 749-750
	 timeline classes, 751
application development. See also OOA&D (Object-

Oriented Analysis & Design); WPF controls
	 compilation process, 33-41
		 compiled versus interpreted languages, 34-35
		 JIT (just-in-time) compilation, 36-39
	 design patterns. See design patterns
	 “Hello, World” example, 53-58
	 steps in, 9-11, 13, 16-18, 59-63
	 system design, 19-32
		 Agile Development, 20
		 database schemas, 29
		 screen layouts, 29
		 UML class diagrams, 29

		 UML state diagrams, 25-28
		 use cases, 21-24
		 waterfall models, 20
application facade, 487
ApplicationException class, 210
applications
	 adding buttons, 97-98
	 adding icons, 76-82
	 building, 78
	 deployment, 75, 107-119
		 adding shortcuts to setup programs, 114
		 build configurations, 116-117
		 ClickOnce, 108-109
		 creating setup programs, 110-112
		 setup designers, 113
		 types of, 107
	 running, 58
architectural patterns, 459, 482-491
	 logical layers
		 business layer, 487
		 data access layer, 486
		 list of, 485
		 presentation layer, 491
		 service layer, 488-490
	 types of, 482-484
ARGB color model, 674
ArgumentException class, 210
arguments, 173
	 reference types versus value types, 296-301
	 routed events, 635-644
arranging windows, 84
Array class, 360-362
ArrayList class, 363-366
arrays, 354-362
	 Array class, 360-362
	 creating, 355
	 For Each...Next statement, 359
	 initialization, 356
	 referencing elements in, 357-358
	 specialized sets and generics versus, 372
AS <type> specifier, 128
ASP.NET Web Forms, 491

    847

assemblies, 232
assignment operator, 159
attached properties, 538-541
attribute syntax (XAML), 509
attributes, 148

B
back end, 484
backing fields, 241, 593
bad code, characteristics of, 427
BAML (Binary Application Markup Language), 523-527
base value, determining, 597
BasedOn property, 734-735
behavior, 158, 171, 720
Berra, Yogi, 425
best practices, 13, 16
binding expressions, 798
binding source, 798, 807-810
binding target, 798
BindingMode property, 805
bindings, 797
	 binding modes, 805
	 binding source, 807-810
	 to collections, 814-842
		 building bindable collections, 817-818
		 data templates, 819-820
		 data triggers, 821-822
		 filtering collections, 836-842
		 master-detail bindings, 823-824
		 object sharing, 830-832
		 panel templates, 819-820
		 sorting collections, 833-835
		 value conversions, 829
		 views, 825-828
	 creating, 802-804
	 DataContext property, 811
	 reasons for using, 799-800
	 structure of, 798
	 template bindings, 779-780
	 update triggers, 806
bitmap effects, 712
block elements, 708
blurs, 713
Boole, George, 165
Boolean expressions, 165-169
bounding boxes for gradients, 682
boxing, 295
Break All command (break mode), 104

break mode, 101-106
breakpoints, setting, 102
Brookes, Frederick P., 20
brushes, 677-697
	 creating explorer windows for, 678-680
	 gradients, 681-690
		 bounding boxes for, 682
		 linear gradients, 683-687
		 radial gradients, 688-690
	 tile brushes, 691-696
	 types of, 677
bubbling events, 634
bugs. See also exceptions
	 break mode, 101-106
	 Code Editor display of, 99-100
	 history of terminology, 59
	 in .NET Framework, 644
	 number in programs, 93
	 types of, 96
build configurations, 116-117
building applications, 78
Burger, Andrej, 644
business entities, 487
business layer, 485, 487
business rules, 487
business workflows, 487
Button class, 308
buttons, 565-568
	 adding to applications, 97-98
	 class hierarchy, 565
	 content properties (XAML), 566
	 radio button groups, 567-568
ByRef keyword, 301

C
Calendar class, 335
calendars, historical date problems with, 338-339
Call Stack window, 101
callbacks, 594, 602, 614-623
	 coerce value callbacks, 616
	 property changed callbacks, 617
	 registering, 618-623
	 validation callbacks, 615
calling methods, 175-176
camel case, 132
CanBe relationship, 386
CanDo relationship, 288, 386
Canvas control, 537

848   

casting, 139, 290
	 explicit casting, 292
	 implicit casting, 291
	 is keyword, 293-294
	 polymorphism and, 397
	 TryCast() function, 293-294
	 Type...Is operator, 398-400
change tracking and notification with dependency

properties, 595
chaotic cohesion, 432
Char structure, 327-328
character data, 327-334
	 Char structure, 327-328
	 comparing strings, 330
	 escaping text, 329
	 String class methods, 331-332
	 String versus StringBuilder class, 333
CheckBox control, 565
chronological data, 335-345
	 DateTime class, 337-340
	 DateTime versus DateTimeOffset classes, 336
	 DateTimeOffset class, 343-344
	 Timespan class, 341-342
Class Designer, 227-238
	 abstract classes in, 410
	 access modifiers in, 232-234
	 enumerations, creating, 282
	 fields in, 235
	 inheritance in, 237
	 properties in, 231, 236
	 structures, creating, 276-278
Class Details pane (Class Designer), 236
class diagrams, 29, 225-238
Class Name ComboBox (Code Editor), 640
classes. See also FCL (Framework Class Library)
	 abstract classes, 404, 409-412
	 access modifiers in Class Designer, 232-234
	 components of, 224
	 control classes, 553-556
	 default implementations, extending, 415-416
	 definition syntax, 239-240
	 degenerate classes, 446
	 dependency properties, 602-603
	 design principles. See design principles
	 extension methods, 419-421
	 fields, 235, 241-249
	 inheritance, 210, 237
	 instances and constructors versus, 259

	 interfaces versus, 289
	 items controls class hierarchy, 570-571
	 methods, 250-267
		 constructor chaining, 260
		 creating, 252-258
		 me keyword, 256
		 syntax, 254
		 types of, 251
	 modules, 405-408
	 within .NET Framework, 221-223
	 OOP principles. See OOP principles
	 properties, 241-249
		 accessor access, 246-249
		 in Class Designer, 231, 236
		 implementation, 242-245
	 relationship with objects, 221
	 for routed commands, 663
	 sealed classes, 402-404, 417-418
	 sealed members, 404
	 static classes, 404
	 static font classes, 707
	 static members, 404
	 structures versus, 275
	 timeline classes, 751
	 type modifiers. See type modifiers
	 UML class diagrams, 29, 225
	 virtual members, 404
	 WPF class hierarchy, 535
ClickOnce, 107-109
client/server applications, 482
CLR (Common Language Runtime), 36
CLR-compliant languages, JIT (just-in-time)

compilation, 36-39
CMYK color model, 674
Code Complete (McConnell), 184
Code Editor, 62, 86-89, 640
code outlining, 89
code smells, characteristics of, 427
CodePlex open source site, 669
coerce value callbacks, 616
cohesion, 430-437
collection property syntax (XAML), 513-514
collections, 353
	 binding to, 814-842
		 building bindable collections, 817-818
				 data templates, 819-820
		 data triggers, 821-822
		 filtering collections, 836-842

    849

		 master-detail bindings, 823-824
		 object sharing, 830-832
		 panel templates, 819-820
		 sorting collections, 833-835
		 value conversions, 829
		 views, 825-828
	 XAML, 513-514
CollectionViews, 798
color, 674-676
	 gradients, 681-690
		 bounding boxes for, 682
		 linear gradients, 683-687
		 radial gradients, 688-690
color profiles, 675
Color structure, 675
ColorInterpolationMode property, 687
ComboBox control, 575-576
commands
	 in break mode, 104
	 control-of-flow commands, 184-204
		 iteration commands, 191-197, 359
		 jump commands, 198-204
		 selection commands, 186-190
		 types of, 185
	 exception handling commands, 184, 205-217
		 Exception class, 209-212
		 Try...Catch...Finally command, 208
	 routed commands, 629-630, 654-666
		 class hierarchy, 663
		 creating, 665
		 in FCL (Framework Command Library), 656-658
		 hooking up, 660-662
		 input gestures, 664-665
		 logical design, 655, 659
	 types of, 181, 183-184
comments, 122-123, 141-147
	 line comments, 142-143
	 Task List comments, 144-145
	 XML comments, 146-147
Common Language Runtime (CLR), 36
communicational cohesion, 432
comparing strings, 330
compartments, 225
compilation errors, 96-100
compilation process, 33-41
	 compiled versus interpreted languages, 34-35
	 JIT (just-in-time) compilation, 36-39
	 for XAML, 523-527

compiled languages, interpreted languages versus, 34-35
compilers, 17
Concat() method, 331
concatenation operator, 159-160
concurrency, 825
conditional iteration, 192-194
#const directive, 149
constants, 127-128. See also declared elements
constructors, 135, 251
	 base constructors, 416
	 chaining, 260
	 classes and instances versus, 259
	 default constructors, 258
content controls, 533, 536, 557-569
	 buttons, 565-568
	 decorators versus, 773
	 headered content controls, 563-564
	 Window control, 558-562
content properties (XAML), 510, 566
continuation character (_), 124
Continue command (break mode), 104
Continue command (jump commands), 200-202
control classes, 553-556
control contracts, 784-787
control templates, 721, 765, 775-787
	 control contracts, 784-787
	 example of, 776-778
	 necessary control components, 783
	 presenters, 781-782
	 syntax, 775
	 template bindings, 779-780
	 visual states, 788-794
	 visual transitions, 791-792
control-of-flow commands, 181, 184-204
	 iteration commands, 191-197, 359
	 jump commands, 198-204
	 selection commands, 186-190
	 types of, 185
controls. See WPF controls
converters, 798
converting
	 reference types to/from value types, 295
	 values in bindings, 829
Cooper, Alan, 491
counters, 195
CreateInstance() method, 360
currency, 825
Custom Actions Editor, 113

850   

custom events, creating, 647
Custom keyword, 647
customizing
	 Visual Studio UI, 83-85
	 WPF controls. See control templates; graphics

D
data access layer, 485-486
data binding, 495
data contracts, 488
Data Source window, 68
data stores, 485
data templates, 819-820
Data Tips in break mode, 103
data triggers, 736, 821-822
data types. See types
data validation. See validation
database schemas, 29
DataContext property, 811
dataset projects, 70
dates/times. See also chronological data
DateTime class, 335-340
DateTimeOffset class, 335-336, 343-344
debug build configuration, 116
DEBUG constant, 151
Decimal type, 321, 324
declarations, 122-123
	 of arrays, 355
	 of events, 646-647
	 of methods, 254
	 of namespaces, 515-516
	 syntax, 128-130
declared elements, 123
	 components of, 134
	 declaring, 128-130
	 memory allocation, 133
	 New keyword, 135
	 Option Infer, 138-139
	 scope, 262-265
	 types of, 127
decorators, 769, 773-774
default constructors, 258
default implementations, extending, 415-416
default settings, Visual Basic language elements, 136-137
degenerate classes, 446
delegates, 615
dependency inversion, 441-444, 463
dependency properties, 591

	 callbacks, 614-623
		 coerce value callbacks, 616
		 property changed callbacks, 617
		 registering, 618-623
		 validation callbacks, 615
	 capabilities of, 595
	 classes, 602-603
	 creating, 604-609
	 registering, 610-612
	 reusing, 613
	 routed events versus, 628, 645
	 value calculation, 596-601
DependencyProperty class, 602-603
deployment, 75, 107-119
	 adding shortcuts to setup programs, 114
	 build configurations, 116-117
	 ClickOnce, 108-109
	 creating setup programs, 110-112
	 setup designers, 113
	 types of, 107
Dequeue() method, 367
design documents, 71
design patterns, 16, 457
	 architectural patterns, 482-491
		 business layer, 487
		 data access layer, 486
		 logical layers, list of, 485
		 presentation layer, 491
		 service layer, 488-490
		 types of, 482-484
	 Observer pattern, 469-481
		 event mapping, 631
		 handling events, 477-479
		 logical observer, 470-471
		 .NET solution, 475
		 raising events, 476
		 solution options, 472-474
	 presentation patterns, 492-498
		 Model-View-Controller pattern, 495
		 Model-View-Presenter pattern, 496
		 Model-View-ViewModel pattern, 497
		 pros and cons, 493-494
	 reasons for using, 460-461
	 Strategy pattern, 463-468
Design Patterns: Elements of Reusable Object-Oriented

Software (Gamma et al.), 457
design principles
	 characteristics of bad code, 427

    851

	 Law of Demeter, 449-453
	 Liskov Substitution Principle, 445-448
	 Open/Closed Principle, 438-444
	 Single Responsibility Principle, 431-437
	 when to violate, 428-429
designer files, 71
design-time, 34
destructors, 251
development environments, 11
development methodologies, 13, 16
	 Agile Development, 20
	 waterfall models, 20
device independent pixel, 540
diagrams. See UML (Unified Modeling Language)
Dictionary class, 367
Dim keyword, 128
direct events, 630, 634
directives, 122-123, 148-151
DirectX, 712
“Discover a Series of Fortunate Event Handlers in Visual

Basic” (Getz), 647
DivideByZeroException class, 210
dll files, 35
DockPanel control, 537, 544-546
document outline window, 68
documents, flow, 708-711
Do...Loop command, 192-194
dot operator, 172
Double type, 321, 323
downloading
	 source code, 6
	 Visual Studio, 6
drawing shapes, 770-772
drop shadows, 713
dynamic event handlers, 479
dynamic resources, 727-728

E
Edison, Thomas, 59
effects (graphics), 712-714
Einstein, Albert, 425
embedding fonts, 707
empty bindings, 814
encapsulation, 384, 391, 393
encoding, 327
ENIAC, 59
Enqueue() method, 367
enum keyword, 284

enumerations, 269, 274, 281-287
	 creating in Class Designer, 282
	 methods in, 284-287
	 within .NET Framework, 270-271
	 syntax, 283
	 validation, 283
equations, expressions versus, 160-162
Error List window, 100
errors. See bugs
escaping text, 329
event handlers, 57
	 adding to buttons, 98
	 for routed events, 639-641
	 event triggers, 736, 744-746
events, 25, 224
	 adding to windows, 57
	 bubbling events, 634
	 custom events, creating, 647
	 declaring, 646-647
	 direct events, 630, 634
	 handling, 477-479
	 mapping to Observer pattern, 631
	 raising, 476
	 routed events, 627, 632-653
		 arguments, 635-644
		 creating, 648-653
		 dependency properties versus, 628, 645
		 reasons for using, 632-633
		 strategies, 634
	 tunneling events, 634
Exception class, 209-212
exception handling commands, 181, 184, 205-217
	 Exception class, 209-212
	 Try...Catch...Finally command, 208
exceptions, 87, 96. See also bugs
exe files, 35
executables, creating, 33-41
	 compiled versus interpreted languages, 34-35
	 JIT (just-in-time) compilation, 36-39
Exit command, 199
Expander control, 563
explicit casting, 292
explicit iteration, 195-196
explorer windows, creating, 678-680
expressions, 98, 155
	 literal expressions, 158-170
		 Boolean expressions, 165-169
		 equations versus, 160-162

852   

		 operator precedence, 163-164
		 syntax, 159
	 object expressions, 158, 171-178
		 calling methods, 175-176
		 member access, 172
		 method signatures, 173
		 overloading methods, 174
		 type names, 177
	 types of, 157-158
extending default implementations, 415-416
extension methods, 407, 419-421

F
FCL (Framework Class Library)
	 arrays, 354-362
		 Array class, 360-362
		 creating, 355
		 For Each...Next statement, 359
		 initialization, 356
		 referencing elements in, 357-358
	 character data, 327-334
		 Char structure, 327-328
		 comparing strings, 330
		 escaping text, 329
		 String class methods, 331-332
		 String versus StringBuilder class, 333
	 chronological data, 335-345
		 DateTime class, 337-340
		 DateTime versus DateTimeOffset classes, 336
		 DateTimeOffset class, 343-344
		 Timespan class, 341-342
	 functionality example, 308
	 generics, 372-377
	 namespaces, 310-316
		 creating, 315
		 Imports statement, 312-314
	 numeric data, 321-326
		 Decimal type, 324
		 floating point numbers, 323
		 integer efficiency tips, 322
		 Math class, 325
	 Object Browser, 317-320
	 organization, 306-307, 350-351
	 specialized sets, 363-371
		 ArrayList class, 363-366
		 LIFO, FIFO, linked lists, key/value pairs, 367-371
FCL (Framework Command Library), routed commands

in, 656-658

fields, 224, 241-249
	 in Class Designer, 235
	 dependency properties and, 592
	 naming conventions, 236
FIFO (first in, first out), 367-371
File System Designer, 113
File Type Editor, 113
files, adding to projects, 70-73
filtering collections, 836-842
fixed documents, 708
floating point numbers
	 integers versus, 139
	 precision, 323
flow control. See control-of-flow commands
flow controls, 711
flow documents, 708-711
FlowDocumentPageViewer control, 711
FlowDocumentReader control, 711
fonts, 704
	 embedding, 707
	 static font classes, 707
For Each...Next statement, 359
For...Next command, 195-196
fragile code, 427
Framework Class Library. See FCL (Framework Class

Library)
frameworks. See .NET Framework
Fraser, Bruce, 676
front end, 484
functional cohesion, 432
functions, 173

G
gamut, 675
garbage collection, 265
generics, 353, 372-377
	 arrays and specialized sets versus, 372
	 instantiation, 373
gestures, input, 664-665
get accessors, 241-249
Getz, Ken, 647
global variables, 407
glyph runs, 691
glyphs, 704
GMT (Greenwich Mean Time), 336
GoTo command, 203-204
gradients, 681-690
	 bounding boxes for, 682

    853

	 linear gradients, 683-687
	 radial gradients, 688-690
graphics, 669-671
	 brushes, 677-697
		 creating explorer windows for, 678-680
		 gradients, 681-690
		 tile brushes, 691-696
		 types of, 677
	 color, 674-676
	 effects, 712-714
	 flow documents, 708-711
	 Mindbloom website versus Microsoft Word, 672
	 pens, 698-702
	 typography, 703-707
		 fonts and typefaces, 704
		 static font classes, 707
		 text characteristics, 705
		 text controls, 706
Greenwich Mean Time (GMT), 336
Gregorian calendar, 339
Grid class, 308
Grid control, 537, 547-548
GridSplitter control, 549-550
GroupBox control, 563
grouping collections, 836-842

H
hacks, 144
Handles keyword, 477, 641
handling events, 477-479
Harvard Mark II, 59
HasA relationship, 288, 386
Hashtable class, 367
headered content controls, 563-564
heap, 272-273
height of panel controls, 543
“Hello, World” example, 53-58
High Level Shading Language (HLSL), 712
historical dates, 338-339
HLSL (High Level Shading Language), 712
horizontal alignment of panel controls, 542
HSV color model, 674
Hungarian notation, 132

I
ICollection interface, 364
icons, adding to applications, 76-82
IDE (integrated development environment), 17

ideas, 10
identifiers, 128
	 as expressions, 157
	 naming conventions, 131-132
IEnumerable interface, 364
if statement, 186-188
#if...#else...#endif directive, 149
IList interface, 364
Immediate window, 101
immobile code, 427
immutability, 333
immutable properties, 247
implementation of properties, 242-245
implicit casting, 138-139, 291
implicit styles, 731
Imports statement, 312-314
incompatible contracts, 447
indexes, 354
information hiding, 241-249, 393
inheritance, 225, 384, 391-392
	 in Class Designer, 237
	 in Exception class, 210
inheritance casts, 291
initialization, 73
	 arrays, 356
	 of decimal values, 324
	 with New keyword, 135
inline elements, 708
input gestures, 664-665
instances, 221, 251, 259
instantiation, 221
	 generics, 373
	 structures, 279
Int32 class, 308
Int32 type, 321
integers
	 efficiency tips, 322
	 floating point numbers versus, 139
integrated development environment (IDE), 17
Intellisense, 57, 62, 86-88, 146-147
Intellitrace commands (break mode), 104
interfaces, 269, 274, 288-289
	 abstract interfaces, 409-412
	 for ArrayList class, 364
	 classes versus, 289
	 within .NET Framework, 270-271
	 programming to interfaces, 442, 463
	 relationships and, 288

854   

	 service interfaces, 488
internal access modifier, 232
interpreted languages, compiled languages versus, 34-35
invoking methods, 175-176
is keyword, 293-294
IsA relationship, 288, 386
items controls, 533, 536, 570-576
	 binding to collections, 814-842
		 building bindable collections, 817-818
		 data templates, 819-820
		 data triggers, 821-822
		 filtering collections, 836-842
		 master-detail bindings, 823-824
		 object sharing, 830-832
		 panel templates, 819-820
		 sorting collections, 833-835
		 value conversions, 829
		 views, 825-828
	 class hierarchy, 570-571
	 ComboBox control, 575-576
	 ListBox control, 575-576
	 TreeView control, 572-574
iteration commands, 183, 185, 191-197
	 conditional iteration, 192-194
	 For Each...Next statement, 359
	 explicit iteration, 195-196

J
jagged arrays, 354
JIT (just-in-time) compilation, 36-39
Julian calendar, 339
jump commands, 183, 185, 198-204
	 Continue command, 200-202
	 Exit command, 199
	 GoTo command, 203-204

K
key frame animations, 751
keyed styles, 730
key/value pairs, 367-371
keywords, 131, 223
kludges, 144

L
lambdas, 157
Launch Conditions Editor, 113
Law of Demeter, 430, 449-453
layered architecture. See logical layers

layout transforms, 758
LIFO (last in, first out), 367-371
line comments, 142-143
linear gradients, 681-687
lines, drawing, 698-702
linked lists, 367-371
linkers, 17
linking, 35
LINQ expressions, 157
Lippert, Eric, 418
Liskov Substitution Principle, 430, 445-448
list members, 87
ListBox control, 575-576
ListView class, 571
literal expressions, 158-170
	 Boolean expressions, 165-169
	 equations versus, 160-162
		 operator precedence, 163-164
syntax, 159
local values, 597
Locals window, 101
logical errors, 96
logical layers
	 business layer, 487
	 data access layer, 486
	 list of, 485
	 presentation layer, 491
	 service layer, 488-490
logical operators, 166
logical tree, 506, 519, 766
loops. See iteration commands
LSP. See Liskov Substitution Principle

M
margin of panel controls, 542-543
master-detail bindings, 823-824
Math class, 325
MatrixTransform class, 756
Max() method, 325
McConnell, Steve, 184
me keyword, 256
measurement units, device independent pixel, 540
member access, 172
memory allocation, 133
	 garbage collection, 265
	 reference and value types, 272-273
	 scope, 262-265
	 in structures versus classes, 275

    855

meta types. See character data; chronological data;
numeric data

method calls, 175
Method Name ComboBox (Code Editor), 640
methods, 73, 88, 224, 250-267
	 for Array class, 360
	 calling, 175-176
	 cohesion levels, 432
	 constructor chaining, 260
	 constructors, classes and instances versus, 259
	 creating, 252-258
	 for Decimal type, 324
	 in enumerations, 284-287
	 extension methods, 407, 419-421
	 in Math class, 325
	 me keyword, 256
	 overloading, 174
	 passing by reference/value, 299-301
	 signatures, 173
	 static methods, 176, 479
	 in String class, 331-332
	 syntax, 254
	 types of, 251
Microsoft Intermediate Language (MSIL), 36
Microsoft Word, Mindbloom website versus, 672
Min() method, 325
Mindbloom website, Microsoft Word versus, 672
Model-View-Controller pattern, 495
Model-View-Presenter pattern, 496
Model-View-ViewModel pattern, 459, 497
modifiers. See access modifiers; type modifiers
modules, 402, 405-408
modulus operator, 161
monolithic applications, 482
MSIL (Microsoft Intermediate Language), 36
multi-dimensional arrays, 354
multi-line statements, 124
multiple inheritance, 392
multiple transformations, 758-759
multiple trigger conditions, 739-740
multi-statement lines, 124
MustInherit keyword, 403, 410
MustOverride keyword, 403, 410
mutability, 333
MVC (Model-View-Controller) pattern, 495
MVP (Model-View-Presenter) pattern, 496
MVVM (Model-View-ViewModel) pattern, 497
MyBase keyword, 415-416

The Mythical Man Month (Brookes), 20

N
namespaces, 310-316
	 creating, 315
	 Imports statement, 312-314
	 XAML, 515-516
naming conventions
	 abstract classes, 409
	 fields and properties, 236
	 identifiers, 131-132
	 variables, 264
	 Visual Basic versus .NET type names, 177
Nash, John, 144
negation operator, 160
nesting panel controls, 551
.NET Framework, 43
	 advantages of, 50-52
	 bugs in, 644
	 Class Library organization, 306-307, 350-351
	 classes within, 222-223
	 enumerations within, 270-271
	 interfaces within, 270-271
	 structures within, 270-271
	 type names, 177
	 types. See types
.NET Platform, 43-65
	 components of, 44-49
	 “Hello, World” example, 53-58
New keyword, 135
Norman, Donald, 491
NotImplementedException class, 210
NotOverridable keyword, 402
NotOverrideable keyword, 417-418
n-tiered applications, 482
numeric data, 321-326
	 Decimal type, 324
	 floating point numbers, 323
	 integer efficiency tips, 322
	 Math class, 325

O
Object Browser, 85, 317-320
object code, 34
object composition, 386
object elements (XAML), 509
object expressions, 158, 171-178
	 calling methods, 175-176

856   

	 member access, 172
	 method signatures, 173
	 overloading methods, 174
	 type names, 177
object hierarchy, 311
object sharing, 830-832
object tree, 506, 519
object-oriented programming principles. See OOP

principles
objects
	 components of, 171
	 referencing from XAML, 831
	 relationship with classes, 221
	 state and behavior, 720
Observer pattern, 459, 469-481
	 event mapping, 631
	 handling events, 477-479
	 logical observer, 470-471
	 .NET solution, 475
	 raising events, 476
	 solution options, 472-474
OneTime binding, 805
OneWay binding, 805
OneWayToSource binding, 805
OOA&D (Object-Oriented Analysis & Design), 381-383
	 design principles
		 characteristics of bad code, 427
		 Law of Demeter, 449-453
		 Liskov Substitution Principle, 445-448
		 Open/Closed Principle, 438-444
		 Single Responsibility Principle, 431-437
		 when to violate, 428-429
	 OOP principles, 391-401
		 polymorphism and casting, 397
		 Type...Is operator, 398-400
	 type modifiers, 402-419
		 abstract classes and interfaces, 409-412
		 extension methods, 419-421
		 list of, 402-404
		 modules, 405-408
		 MyBase keyword, 415-416
		 sealed classes, 417-418
		 semi-abstract classes, 413
		 Shadows and Overrides keywords, 413-414
	 type relationships, 385-390
OOP principles, 391-401
	 polymorphism and casting, 397
	 Type...Is operator, 398-400

opaque code, 427
Open/Closed Principle, 430, 438-444
opening Project Designer, 75
operands, 159
operators, 159
	 dot operator, 172
	 logical operators, 166
	 precedence, 163-164
	 relational operators, 165
	 symbolic operators, 175
Option Compare, 137
Option Explicit, 137
Option Infer, 137-139
Option Strict, 137
ordinal string operations, 330
OverflowException class, 210
overloading methods, 174
overloads, 174, 257
Overridable keyword, 403
Overrides keyword, 413-414

P
padding of panel controls, 542-543
panel controls, 533, 536-552
	 attached properties, 538-541
	 decorators versus, 773
	 DockPanel control, 544-546
	 Grid control, 547-548
	 GridSplitter control, 549-550
	 nesting, 551
	 positioning and sizing, 542-543
panel templates, 819-820
paragraphs, 124
parameters, 88, 173, 253
Pascal case, 132
passing by reference, 299-301
passing by value, 299-301
A Pattern Language (Alexander), 457
patterns. See design patterns
pens, 698-702
pixel shaders, 671
POCO (plain old CLR object), 592, 630
polymorphism, 384, 391, 393
	 casting and, 397
	 Type...Is operator, 398-400
Pop() method, 367
positioning panel controls, 542-543
precedence of operators, 163-164

    857

precision, floating point numbers, 323
predicates, 360, 837
preprocessor directives, 148. See also directives
preprocessors, 148
presentation layer, 485, 491. See also presentation patterns
presentation patterns, 492-498
	 Model-View-Controller pattern, 495
	 Model-View-Presenter pattern, 496
	 Model-View-ViewModel pattern, 497
	 pros and cons, 493-494
presenters, 767, 781-782
primary colors, 676
primary UI projects, 70
Principle of Least Knowledge, 430, 449-453
private access modifier, 232
processing pipeline, 596
programming to interfaces, 442, 463
Project Designer, opening, 75
Project Properties designer, 113
projects. See also application development
	 adding files to, 70-73
	 adding to solutions, 70-73
	 creating, 54, 60
	 properties, 74-82
	 startup project, specifying, 74
	 steps in, 59-63
properties, 224, 241-249
	 accessor access, 246-249
	 attached properties, 538-541
	 in Class Designer, 231, 236
	 content properties (XAML), 510, 566
	 dependency properties, 591
		 callbacks, 614-623
		 capabilities of, 595
		 classes, 602-603
		 creating, 604-609
		 registering, 610-612
	 reusing, 613
		 value calculation, 596-601
	 implementation, 242-245
	 for linear gradients, 687
	 naming conventions, 236
	 of solutions and projects, 74-82
Properties window, 56-57, 68
property changed callbacks, 617
property element syntax (XAML), 509
property triggers, 736-743
	 combining with styles, 741-742

	 multiple trigger conditions, 739-740
PropertyMetadata class, 602-603
protected access modifier, 232
protected internal access modifier, 232
public access modifier, 232
publishing. See deployment
Push() method, 367

Q
Queue class, 367

R
radial gradients, 681, 688-690
radio button groups, 567-568
RadioButton class, 308
RadioButton control, 565
raising events, 476
range controls, 533
read-only properties, 247
Real World Color Management (Fraser), 676
redundant code, 427
reference highlighting, 89
reference types, 272-273, 275
	 converting to/from value types, 295
	 value types versus, 296-301
referencing
	 array elements, 357-358
	 objects from XAML, 831
	 resources, 727-728, 830
	 XAML elements, 830
reflection, 290
registering
	 callbacks, 618-623
	 dependency properties, 610-612
Registry Editor, 113
relational operators, 165
relationships, 288, 385-390
RelativeSource class, 809-810
release build configuration, 116
RemoveHandler keyword, 479
render transforms, 759
resources, 71, 526, 719, 721
	 advantages and disadvantages of, 722
	 in code, 729
	 defining, 724-726
	 referencing, 727-728, 830
REST (representational state transfer), 488
Restart command (break mode), 104

858   

return types, 173
reusing dependency properties, 613
RGB color model, 674
RichTextBox control, 711
rigid code, 427
root element (XAML), 515
RotateTransform class, 756
Round() method, 324-325
routed commands, 629-630, 654-666
	 class hierarchy, 663
	 creating, 665
	 in FCL (Framework Command Library), 656-658
	 hooking up, 660-662
	 input gestures, 664-665
	 logical design, 655, 659
routed events, 627, 632-653
	 arguments, 635-644
	 creating, 648-653
	 dependency properties versus, 628, 645
	 reasons for using, 632-633
	 strategies, 634
running applications, 58
runtime, 34
runtime environments, 10, 17

S
safe casts, 291
scope, 262-265
screen layouts, 29
ScRGB color space, 687
sealed classes, 402, 404, 417-421
sealed members, 404
select...case statement, 189-190
selection commands, 183, 185-190
	 if statement, 186-188
	 select...case statement, 189-190
Selector class, 571
Sells, Chris, 418
separation of responsibilities, 493
sequential cohesion, 432
servers, 484
service interfaces, 488
service layer, 485, 488-490
service-oriented architecture, 484
services, 484
set accessors, 241-249
sets. See arrays; generics; specialized sets
setters, 597

setup designers, 113
setup programs, 107
	 adding shortcuts to, 114
	 build configurations, 116-117
	 creating, 110-112
Shadows keyword, 413-414
shapes, 769-772
shared keyword, 402
sharing objects, 830-832
shortcuts, adding to setup programs, 114
Show Next Statement command (break mode), 104
side effects, 166
signatures of methods, 173
Silverlight, 491, 503
Simonyi, Charles, 132
simple statements, 124
Single Responsibility Principle, 430-437
Single type, 323
single-dimensional arrays, 354
singleton pattern, 407
sizing panel controls, 542-543
SkewTransform class, 757
Snepscheut, Jan van de, 425
SOA (service-oriented architecture), 488
SOAP (simple object access protocol), 488
Solution Explorer, 61, 68
solutions, 67
	 adding projects to, 70-73
	 properties, 74-82
sorting collections, 833-835
source code, 11, 17
	 Code Editor, 62, 86-89
	 compiled versus interpreted languages, 34-35
	 downloading, 6
	 JIT (just-in-time) compilation, 36-39
	 steps in writing, 59-63
source files, 71
sparse storage with dependency properties, 595
specialized sets, 363-371
	 ArrayList class, 363-366
	 arrays and generics versus, 372
	 LIFO, FIFO, linked lists, key/value pairs, 367-371
specifications, 10, 16, 19-32
	 Agile Development, 20
	 database schemas, 29
	 screen layouts, 29
	 UML class diagrams, 29
	 UML state diagrams, 25-28

    859

	 use cases, 21-24
	 waterfall models, 20
SpreadMethod property, 687
square brackets in syntax diagrams, 128
sRGB color space, 687
stack, 272-273, 367
StackPanel control, 537
startup project, specifying, 74
state, 158, 171, 720
state diagrams, 25-28
state members. See fields
statements, 17, 122-123
	 class definitions, 239-240
	 commands. See commands
	 declared elements. See declared elements
	 expressions. See expressions
	 syntax, 124-126
states, 25
static classes, 404. See also modules
static event handlers, 477
static font classes, 707
static members, 402, 404
static methods, 176, 251, 479
static resources, 727-728
Step Into command (break mode), 104
Step Out command (break mode), 104
Step Over command (break mode), 104
Stop Debugging command (break mode), 104
stops, 681
storyboards, 749-750
Strategy pattern, 459, 463-468
String class, 308
		 comparing strings, 330
	 escaping text, 329
	 methods, 331-332
StringBuilder class versus, 333
StringBuilder class, String class versus, 333
StringComparison enumeration, 330
strong typing, 139
structured exception handling, 207-217
structures, 269, 274-280
	 classes versus, 275
	 creating in Class Designer, 276-278
	 instantiation, 279
	 within .NET Framework, 270-271
styles, 597, 721, 730-735
	 combining with triggers, 741-742
	 hierarchies in, 734-735

	 types of, 730-731
subs, 173
symbolic operators, 175
syntactic sugar, 135
syntax errors, 96, 99-100
system architectures, 13
system design, 19-32
	 Agile Development, 20
	 database schemas, 29
	 screen layouts, 29
	 UML class diagrams, 29
	 UML state diagrams, 25-28
	 use cases, 21-24
	 waterfall models, 20
SystemException class, 210

T
tab controls, 577
targeted styles, 730
Task List comments, 144-145
template bindings, 797
templates, 597
	 control templates, 721, 765, 775-787
		 control contracts, 784-787
		 example of, 776-778
		 necessary control components, 783
		 presenters, 781-782
		 syntax, 775
		 template bindings, 779-780
		 visual states, 788-794
		 visual transitions, 791-792
	 data templates, 819-820
	 panel templates, 819-820
temporal cohesion, 432
test projects, 70
test-driven development, 70
text. See character data; typography
text editors, 17
TextBox class, 308
TextDecorations collection, 700-702
themes, 597
ticks, 337
tile brushes, 691-696
The Timeless Way of Building (Alexander), 457
timeline classes, 751
times/dates. See also chronological data
Timespan class, 335, 341-342
TimeZoneInfo class, 335

860   

ToggleButton control, 565
tokens, 144-145
Toolbox, 68
TRACE constant, 151
transform groups, 758
transformations, 671, 756-761
transitions, 25, 791-792
TranslateTransform class, 757
TreeView control, 572-574
triggers, 597, 721, 736-746
	 data triggers, 821-822
	 event triggers, 744-746
	 property triggers, 736-743
		 combining with styles, 741-742
		 multiple trigger conditions, 739-740
	 types of, 736
	 update triggers, 806
true keyword, 160
Truncate() method, 324-325
TryCast() function, 293-294
Try...Catch...Finally command, 208
tunneling events, 634
TwoWay binding, 805
type keywords, 223
type modifiers, 402-419
	 abstract classes and interfaces, 409-412
	 extension methods, 419-421
	 list of, 402-404
	 modules, 405-408
	 MyBase keyword, 415-416
	 sealed classes, 417-418
	 Shadows and Overrides keywords, 413-414
type relationships. See relationships
typefaces, 704
Type...Is operator, 398-400
types, 158, 171, 290-302. See also classes; enumerations;

FCL (Framework Class Library); interfaces; structures
	 arrays, 354-362
		 Array class, 360-362
		 creating, 355
		 For Each...Next statement, 359
		 initialization, 356
		 referencing elements in, 357-358
	 boxing and unboxing, 295
	 casting, 290
		 explicit casting, 292
		 implicit casting, 139, 291
		 is keyword, 293-294

		 polymorphism and, 397
		 TryCast() function, 293-294
		 Type...Is operator, 398-400
	 character data, 327-334
		 Char structure, 327-328
		 comparing strings, 330
		 escaping text, 329
		 String class methods, 331-332
		 String versus StringBuilder class, 333
	 chronological data, 335-345
		 DateTime class, 337-340
		 DateTime versus DateTimeOffset classes, 336
		 DateTimeOffset class, 343-344
		 Timespan class, 341-342
	 generics, 372-377
	 namespaces, 310-316
		 creating, 315
		 Imports statement, 312-314
	 numeric data, 321-326
		 Decimal type, 324
		 floating point numbers, 323
		 integer efficiency tips, 322
		 Math class, 325
	 reference and value types, 272-273, 296-301
	 reflection, 290
	 relationship with classes, 222-223
	 specialized sets, 363-371
		 ArrayList class, 363-366
		 LIFO, FIFO, linked lists, key/value pairs, 367-371
	 Visual Basic versus .NET type names, 177
typography, 703-707
	 fonts and typefaces, 704
	 static font classes, 707
	 text characteristics, 705
	 text controls, 706

U
UI (user interface) in Visual Studio, 61, 67-91. See also

graphics; WPF controls
	 adding solutions and projects, 70-73
	 Code Editor, 86-89
	 customizing, 83-85
	 parts of, 68
	 solution and project properties, 74-82
UML (Unified Modeling Language)
	 UML class diagrams, 29, 225, 227-238
	 UML state diagrams, 25-28
unboxing, 295

    861

Unicode, 327-328
Unified Modeling Language. See UML (Unified Modeling

Language)
units of measurement, device independent pixel, 540
universal resource identifier (URI), 526
Until keyword, 192-194
update triggers, 806
URI (universal resource identifier), 526
use cases, 20-28
user interface. See UI (user interface) in Visual Studio
User Interface Editor, 113
UTC (Universal Time, Coordinated), 336
utility classes, 70

V
validation
	 callbacks, 615
	 enumerations, 283
value calculation with dependency properties, 595-601
value conversions, 829
value types, 272-273, 275
	 converting to/from reference types, 295
	 reference types versus, 296-301
variables, 73, 98, 127. See also declared elements
	 garbage collection, 265
	 global variables, 407
	 implicit typing, 138-139
	 naming conventions, 264
	 passing by reference/value, 299-301
	 scope, 262-265
vertical alignment of panel controls, 542
Viewbox instance, 692-693
Viewport instance, 692-693
views, 825-828
virtual keyword, 413
virtual members, 403-404
visibility, 232
Visual Basic language elements
	 commands
		 control-of-flow commands, 184-204
		 exception handling commands, 184
		 types of, 181, 183-184
	 comments, 141-147
		 line comments, 142-143
		 Task List comments, 144-145
		 XML comments, 146-147
	 declared elements
		 components of, 134

		 declaring, 128-130
		 memory allocation, 133
		 New keyword, 135
		 Option Infer, 138-139
		 types of, 127
	 default settings, 136-137
	 directives, 148-151
	 expressions, 155
		 literal expressions, 158-170
		 object expressions, 158, 171-178
		 types of, 157-158
	 identifiers, naming conventions, 131-132
	 list of, 122, 156, 182
	 statements
		 class definitions, 239-240
		 syntax, 124-126
	 type names, 177
Visual Basic, XAML versus, 507-508
visual states, 788-794
Visual Studio
	 Class Designer, 227-238
		 abstract classes in, 410
		 access modifiers in, 232-234
		 enumerations, creating, 282
		 fields in, 235
		 inheritance in, 237
		 properties in, 231, 236
		 structures, creating, 276-278
	 Code Editor, 62
	 downloading, 6
	 “Hello, World” example, 53-58
	 projects, creating, 54, 60
	 UI (user interface), 61, 67-91
		 adding solutions and projects, 70-73
		 Code Editor, 86-89
		 customizing, 83-85
		 parts of, 68
		 solution and project properties, 74-82
	 windows, creating, 55-56
visual transitions, 791-792
visual tree, 506, 519, 767

W
Watch window, 101
waterfall models, 20
WCF (Windows Communication Foundation), 488
While keyword, 192-194
widgets, adding to windows, 55-56. See also WPF

862   

controls
width of panel controls, 543
Window class, 308
Window control, 558-562
windows. See also UI (user interface) in Visual Studio
	 arranging, 84
	 creating, 55-56
	 logical tree, 766
Windows Forms (WinForms), 491
WithEvents keyword, 477
WPF (Windows Presentation Foundation), 501
	 animations, 747-755
		 class hierarchy, 748
		 example of, 752-755
		 reasons for using, 747
		 storyboards, 749-750
		 timeline classes, 751
	 bindings, 797
		 binding modes, 805
		 binding source, 807-810
		 to collections, 814-842
		 creating, 802-804
		 DataContext property, 811
		 reasons for using, 799-800
		 structure of, 798
		 update triggers, 806
	 class hierarchy, 535
	 control templates, 721, 765, 775-787
		 control contracts, 784-787
		 example of, 776-778
		 necessary control components, 783
		 presenters, 781-782
		 syntax, 775
		 template bindings, 779-780
		 visual states, 788-794
		 visual transitions, 791-792
	 dependency properties, 591
		 callbacks, 614-623
		 capabilities of, 595
		 classes, 602-603
		 creating, 604-609
		 registering, 610-612
		 reusing, 613
		 value calculation, 596-601
	 graphics, 669-671
		 brushes, 677-697
		 color, 674-676
		 effects, 712-714

		 flow documents, 708-711
		 pens, 698-702
		 typography, 703-707
	 hierarchies in, 506, 519-522
	 resources, 719, 721
		 advantages and disadvantages of, 722
		 in code, 729
		 defining, 724-726
		 referencing, 727-728
	 routed commands, 629-630, 654-666
		 class hierarchy, 663
		 creating, 665
		 in FCL (Framework Command Library), 656-658
		 hooking up, 660-662
		 input gestures, 664-665
		 logical design, 655, 659
	 routed events, 627, 632-653
		 arguments, 635-644
		 creating, 648-653
		 dependency properties versus, 628, 645
		 reasons for using, 632-633
		 strategies, 634
	 styles, 597, 721, 730-735
		 hierarchies in, 734-735
		 types of, 730-731
	 themes, 597
	 transformations, 756-761
	 triggers, 721, 736-746
		 event triggers, 744-746
		 property triggers, 736-743
		 types of, 736
WPF controls, 531-533
	 application creation example, 578-587
	 building, 769-774
	 content controls, 557-569
		 buttons, 565-568
		 headered content controls, 563-564
		 Window control, 558-562
	 control classes, 553-556
	 control contracts, 784-787
	 customizing. See graphics; templates
	 flow controls, 711
	 items controls, 570-576
		 class hierarchy, 570-571
		 ComboBox control, 575-576
		 ListBox control, 575-576
		 TreeView control, 572-574
	 necessary components, 783

    863

	 panel controls, 537-552
		 attached properties, 538-541
		 DockPanel control, 544-546
		 Grid control, 547-548
		 GridSplitter control, 549-550
		 nesting, 551
		 positioning and sizing, 542-543
	 tab controls, 577
	 visual tree, 767
WPF Designer, 55-56, 61, 68
WrapPanel control, 537
wrapping, 593
write-only properties, 247

X
XAML, 55, 501. See also WPF (Windows Presentation

Foundation)
	 attributes and properties, 509
	 collections, 513-514
	 compilation process, 523-527
	 content properties, 510-512
	 event handlers, 639
	 example of, 505
	 namespaces, 515-516
	 need for, 504
	 object elements, 509
	 referencing objects from, 831
	 root element, 515
	 Visual Basic versus, 507-508
	 WPF trees, 519-522
XML
	 comments, 146-147
	 need for, 504

Z
Zulu, 336

	CONTENTS
	GETTING STARTED
	INTRODUCTION
	Fluent Learning Because
	This book isn’t for everyone
	What you’ll learn
	What you’ll need
	How it works

	APPLICATION DEVELOPMENT
	The development process
	System design
	Creating executables

	THE .NET PLATFORM
	.NET Components
	Say hello
	Say what?

	THE VISUAL STUDIO UI
	Solutions, projects and stuff
	Take control
	Get some help

	TESTING & DEPLOYMENT
	Errors & exceptions
	Deployment

	THE LANGUAGE
	PART 1: NOUNS
	Statements
	Declared elements
	Comments
	Directives & Attributes

	PART 2: TRANSITIVE VERBS
	Literal expressions
	Object expressions

	PART 3: INTRANSITIVE VERBS
	Control of flow commands
	Exception handling commands

	THE .NET FRAMEWORK LIBRARY
	CLASSES IN THE .NET FRAMEWORK
	The Class Designer
	Class definitions
	Fields & properties
	Methods

	OTHER FRAMEWORK TYPES
	Structures
	Enumerations
	Interfaces
	Working with types

	THE CLASS LIBRARY, PART 1
	Namespaces
	The Object Browser
	Numeric data
	Character data
	Times & dates

	THE CLASS LIBRARY, PART 2
	Arrays
	Specialized Sets
	Generics

	BEST PRACTICE
	OOA & D
	Type relationships
	OOP principles
	Type modifiers

	PROGRAMMING PRINCIPLES
	The Single Responsibility Principle
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Law of Demeter

	PATTERNS
	The Strategy Pattern
	The Observer Pattern
	Architectural Patterns

	WPF
	XAML
	Fundamentals
	WPF types
	XAML & Visual Basic

	WPF CONTROLS
	WPF panels
	Control classes
	Content controls
	Items controls

	DEPENDENCY PROPERTIES
	The basics
	Creating dependency properties

	WPF INTERACTIONS
	Routed events
	WPF Commands

	WPF GRAPHICS
	Color
	Brushes
	Pens
	Typography
	Effects

	RESOURCES
	Resource dictionaries
	Styles
	Property triggerrs
	Event triggers

	TEMPLATES
	Building controls
	Building control templates
	The VisualStateManager

	WPF BINDING
	Creating bindings
	Binding to collections
	Working with collections

