

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Jesse Feiler

SamsTeachYourself

24in

Hours

Core Data for
Mac® and iOS

Sams Teach Yourself Core Data for Mac™ and iOS in 24 Hours
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33577-8
ISBN-10: 0-672-33577-8

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: November 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Loretta Yates

Development
Editor
Sondra Scott

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Megan Wade

Indexer
Brad Herriman

Proofreader
Water Crest
Publishing, Inc.

Technical Editor
Robert McGovern

Publishing
Coordinator
Cindy Teeters

Designer
Gary Adair

Compositor
Mark Shirar

Contents at a Glance
Introduction. 1

Part I: Getting Started with Core Data

HOUR 1: Introducing Xcode 4 . 7

2: Creating a Simple App. 49

3: Understanding the Basic Code Structure. 63

Part II: Using Core Data

HOUR 4: Getting the Big Core Data Picture . 85

5: Working with Data Models . 101

6: Working with the Core Data Model Editor . 117

7: What Managed Objects Can Do. 133

8: Controllers: Integrating the Data Model with Your Code 143

9: Fetching Data . 153

10: Working with Predicates and Sorting . 171

Part III: Developing the Core Data Interface

HOUR 11: Finding Your Way Around the Interface Builder Editor:

The Graphics Story . 189

12: Finding Your Way Around the Interface Builder Editor:

The Code Story. 209

13: Control-Dragging Your Way to Code. 223

14: Working with Storyboards and Swapping Views . 239

Part IV: Building the Core Data Code

HOUR 15: Saving Data with a Navigation Interface . 257

16: Using Split Views on iPad. 279

17: Structuring Apps for Core Data, Documents,

and Shoeboxes. 289

18: Validating Data . 317

iii

iv

Part V: Managing Data and Interfaces

HOUR 19: Using UITableView on iOS . 337

20: Using NSTableView on Mac OS. 363

21: Rearranging Table Rows on iOS . 375

22: Managing Validation . 393

23: Interacting with Users . 409

24: Migrating Data Models . 423

Appendix

A What’s Old in Core Data, Cocoa, Xcode, and Objective-C 441

Index . 443

v

Table of Contents

Introduction 1

Who Should Read This Book . 1

Some Points to Keep in Mind . 2

How This Book Is Organized. 3

Part I: Getting Started with Core Data

HOUR 1: Introducing Xcode 4 7

Getting to Know Xcode . 8

Goodbye “Hello, World” . 8

Hello, App Development for Mac OS X and iOS . 11

Getting Started with Xcode . 13

Using the Navigator . 15

Using Editors . 25

Working with Assistant . 29

Getting Help in an Editor Window . 31

Using Utilities—Inspectors . 31

Using Utilities—Libraries . 35

Using the Text Editor . 40

Using the Organizer Window . 45

Summary . 47

Workshop . 48

Activities . 48

HOUR 2: Creating a Simple App 49

Starting to Build an App . 49

Building the Project . 52

Exploring the App. 58

Summary . 60

Workshop . 60

Activities . 61

vi

HOUR 3: Understanding the Basic Code Structure 63

Working with the Code . 63

Looking at Object-Oriented Programming in the Context
of Objective-C . 66

Using Declared Properties. 68

Messaging in Objective-C . 73

Using Protocols and Delegates. 75

Using the Model/View/Controller Concepts . 81

Importing and Using Declarations in Files . 82

Summary . 83

Workshop . 84

Activities . 84

Part II: Using Core Data

HOUR 4: Getting the Big Core Data Picture 85

Starting Out with Core Data . 85

Examining Core Data at Runtime: The Core Data Stack . 90

Working with Fetched Results . 96

Summary . 99

Workshop . 99

Activities . 99

HOUR 5: Working with Data Models 101

Making the Abstract Concrete . 101

Working with Entities. 103

Adding Attributes to Entities . 105

Linking Entities with Relationships. 107

Keeping Track of Your Data in Files and Documents . 108

Summary. 116

Workshop . 116

Activities . 116

vii

HOUR 6: Working with the Core Data Model Editor 117

Moving the Data Model from Paper to Xcode and
the Core Data Model Editor . 117

Adding Entities to the Data Model . 119

Choosing the Editor Style . 125

Adding Relationships to a Data Model . 126

Summary . 132

Workshop . 132

Activities . 132

HOUR 7: What Managed Objects Can Do 133

Using Managed Objects . 133

Deciding Whether to Override NSManagedObject . 134

Overriding NSManagedObject . 136

Implementing Transformation in an NSManagedObject Subclass 140

Summary. 142

Workshop . 142

Activities . 142

HOUR 8: Controllers: Integrating the Data Model with Your Code 143

Looking Inside Model/View/Controller . 143

Integrating Views and Data on Mac OS . 147

Integrating Views and Data on iOS . 151

Summary. 152

Workshop . 152

Activities . 152

HOUR 9: Fetching Data 153

Choosing the Core Data Architecture . 153

Exploring the Core Data Fetching Process . 154

Using Managed Object Contexts . 158

Creating and Using a Fetch Request . 159

Stopping the Action to Add New Data . 161

Optimizing Interfaces for Core Data. 162

viii

Summary. 168

Workshop . 168

Activities . 169

HOUR 10: Working with Predicates and Sorting 171

Understanding Predicates . 171

Constructing Predicates . 177

Creating a Fetch Request and Predicate with Xcode . 178

Sorting Data. 185

Summary. 187

Workshop . 187

Activities . 187

Part III: Developing the Core Data Interface

HOUR 11: Finding Your Way Around the Interface Builder Editor:
The Graphics Story 189

Starting to Work with the Interface Builder Editor in Xcode . 189

Working with the Canvas . 197

Summary. 206

Workshop . 206

Activities . 207

HOUR 12: Finding Your Way Around the Interface Builder Editor:
The Code Story 209

Using the Connections Inspector . 209

Using IBOutlets for Data Elements . 215

Summary. 222

Workshop . 222

Activities . 222

HOUR 13: Control-Dragging Your Way to Code 223

Repurposing the Master-Detail Application Template . 223

Adding New Fields as IBOutlets . 230

Summary. 237

ix

Workshop . 237

Activities . 238

HOUR 14: Working with Storyboards and Swapping Views 239

Creating a Project with a Storyboard . 239

Swapping Views on iOS Devices. 241

Swapping Detail Views (the Old Way). 244

Understanding the Storyboard Concept. 246

Looking at the Estimator Storyboard and Code . 248

Creating a Storyboard . 251

Summary. 254

Workshop . 255

Activities . 255

Part IV: Building the Core Data Code

HOUR 15: Saving Data with a Navigation Interface 257

Using a Navigation Interface to Edit and Save Data . 257

Starting from the Master-Detail Template . 263

Using the Debugger to Watch the Action. 267

Adding a Managed Object . 272

Moving and Saving Data . 273

Cleaning Up the Interface . 275

Summary. 277

Workshop . 278

Activities . 278

HOUR 16: Using Split Views on iPad 279

Moving to the iPad . 279

Implementing the Second Interface . 281

Changing the Data Update and Saving Code . 284

Summary. 287

Workshop . 287

Activities . 288

x

HOUR 17: Structuring Apps for Core Data, Documents, and Shoeboxes 289

Looking at Apps from the Core Data Point of View:
The Role of Documents . 289

Exploring App Structure for Documents, Mac OS, and iOS . 292

Moving Data Models . 311

Moving a Data Model from One Project to Another . 312

Summary. 315

Workshop . 316

Activities . 316

HOUR 18: Validating Data 317

Using Validation Rules in the Data Model . 317

Setting Up Rules in Your Data Model . 320

Entering Data into the Interface and Moving It to the Data Model
(and Vice Versa) . 327

Creating Subclasses of NSManagedObject for Your Entities . 331

Summary. 335

Workshop . 336

Activities . 336

Part V: Managing Data and Interfaces

HOUR 19: Using UITableView on iOS 337

Working with Table Views and iOS, Mac OS, and Core Data . 337

Comparing Interfaces: Settings on iOS and System Preferences
on Mac OS . 339

Using UITableView Without Core Data . 344

Using UITableView with Core Data . 357

Summary. 360

Workshop . 361

Activities . 361

HOUR 20: Using NSTableView on Mac OS 363

Exploring the New NSTableView Features . 363

Building an NSTableView App . 366

xi

Summary. 373

Workshop . 374

Activities . 374

HOUR 21: Rearranging Table Rows on iOS 375

Handling the Ordering of Table Rows . 375

Allowing a Table Row to Be Moved . 380

Doing the Move . 382

Summary. 391

Workshop . 392

Activities . 392

HOUR 22: Managing Validation 393

Validation for Free. 393

Validation on Mac OS . 394

Programming Validation for iOS or Mac OS . 402

Summary. 407

Workshop . 407

Activities . 408

HOUR 23: Interacting with Users 409

Choosing an Editing Interface . 409

Communicating with Users. 413

Using Sheets and Modal Windows on Mac OS . 419

Summary. 422

Workshop . 422

Activities . 422

HOUR 24: Migrating Data Models 423

Introducing the Core Data Migration Continuum. 423

Managing Data Model Migration . 424

Working with Data Model Versions . 426

Using Automatic Lightweight Migration . 432

Looking at a Mapping Model Overview . 434

xii

Summary. 438

Workshop . 438

Activities . 439

APPENDIX A: What’s Old in Core Data, Cocoa, Xcode, and Objective-C 441

Declared Properties . 441

Required and Optional Methods in Protocols . 442

Storyboards in Interface Builder. 442

Ordered Relationships . 442

Index 443

xiii

About the Author
Jesse Feiler is a developer, web designer, trainer, and author. He has been an Apple devel-

oper since 1985 and has worked with mobile devices starting with Apple’s Newton and con-

tinuing with the iOS products such as the iPhone, iPod touch, and iPad. Feiler’s database

expertise includes mainframe databases such as DMS II (on Burroughs), DB2 (on IBM), and

Oracle (on various platforms), as well as personal computer databases from dBase to the

first versions of FileMaker. His database clients have included Federal Reserve Bank of New

York; Young & Rubicam (advertising); and many small and nonprofit organizations, pri-

marily in publishing, production, and management.

Feiler’s books include the following:

. Sams Teach Yourself Objective-C in 24 Hours (Sams/Pearson)

. Data-Driven iOS Apps for iPad and iPhone with FileMaker Pro, Bento by FileMaker, and

FileMaker Go (Sams/Pearson)

. Using FileMaker Bento (Sams/Pearson)

. iWork for Dummies (Wiley)

. Sams Teach Yourself Drupal in 24 Hours (Sams/Pearson)

. Get Rich with Apps! Your Guide to Reaching More Customers and Making Money NOW

(McGraw-Hill)

. Database-Driven Web Sites (Harcourt)

. How to Do Everything with Web 2.0 Mashups (McGraw-Hill)

. The Bento Book (Sams/Pearson)

. FileMaker Pro In Depth (Sams/Pearson)

He is the author of MinutesMachine, the meeting management software for iPad—get more

details at champlainarts.com.

A native of Washington, D.C., Feiler has lived in New York City and currently lives in

Plattsburgh, NY. He can be reached at northcountryconsulting.com.

xiv

Acknowledgments
Thanks go most of all to the people at Apple, along with the developers and users who have

helped to build the platform and imagine possibilities together to make the world better.

At Pearson, Loretta Yates, Acquisitions Editor, has taken a concept and moved it from an

idea through the adventures along the way to printed books and eBooks in a variety of

formats. She is always a pleasure to work with.

Mandie Frank, Project Editor, has done a terrific job of keeping things on track with a

complex book full of code snippets, figures, and cross references in addition to the text.

Technical Editor Robert McGovern caught numerous technical typos and added comments

and perspectives that have clarified and enhanced the book.

As always, Carole Jelen at Waterside Productions has provided help and guidance in bring-

ing this book to fruition.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

As an Editor-in-Chief for Sams Publishing, I welcome your comments. You can email or

write me directly to let me know what you did or didn’t like about this book—as well as

what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do

have a User Services group, however, where I will forward specific technical questions related to the

book.

When you write, please be sure to include this book’s title and author as well as your name,

email address, and phone number. I will carefully review your comments and share them

with the author and editors who worked on the book.

Email: feedback@amspublishing.com

Mail: Greg Wiegand

Editor-in-Chief

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at amspublishing.com/register for convenient access

to any updates, downloads, or errata that might be available for this book.

xv

This page intentionally left blank

Who Should Read This Book 1

Introduction

Organizing things is an important human activity. Whether it is a child organizing

toys in some way (by size, color, favorites, and so forth) or an adult piecing together

a thousand-piece jigsaw puzzle, the desire to “make order out of chaos” (as one

inveterate puzzler put it) reflects a sense that somehow if we try hard enough or just

have enough information, we can find or create an understandable view of the

world. Or at least an understandable view of the left overs in the refrigerator or the

photos in an album.

Core Data is a powerful tool that you can use with the Cocoa and Cocoa Touch

frameworks on iOS and Mac OS to help you make order out of the chaos of the hun-

dreds, thousands, and even billions of data elements that you now can store on your

computer or mobile device.

Who Should Read This Book
This book is geared toward developers who need to understand Core Data and its

capabilities. It’s also aimed at developers who aren’t certain they need the combina-

tion of Core Data and Cocoa. It places the technologies in perspective so that you

can see where you and your project fit in. Part of that is simply analytical, but for

everyone, the hands-on examples provide background as well as the beginnings of

applications (apps) that you can create with these two technologies.

If you are new to databases or SQL, you will find a basic introduction here. If you

are familiar with them, you will find a refresher as well as details on how the con-

cepts you know already map to Core Data terminology.

Likewise, if you are new to development on Mac OS, iOS, or Cocoa and Cocoa

Touch, you will find a fairly detailed introduction. If you are already familiar with

them, you will see how some of the basic concepts have been expanded and

rearranged to work with Core Data.

There is a theme that recurs in this book: links and connections between interface

and code as well the connections between your app and the database. Much of what

you find in this book helps you develop the separate components (interface, data-

base, and code) and find simple ways to link them.

2 Introduction

Some Points to Keep in Mind
Not everyone starts from the same place in learning about Core Data (or, indeed,

any technology). Learning and developing with new technologies is rarely a linear

process. It is important to remember that you are not the first person to try to learn

these fairly complex interlocking technologies. This book and the code that you

experiment with try to lead you toward the moment when it all clicks together. If

you do not understand something the first time through, give it a rest, and come

back to it another time. For some people, alternating between the graphical design

of the interface, the logical design of the code processes, and the organization struc-

ture of the database can actually make things seem to move faster.

Here are some additional points to consider.

Acronyms
In many books, it is a convention to provide the full name of an acronym on its first

use—for example, HyperText Markup Language (HTML). It is time to recognize that

with wikipedia.org, dictionaries built into ebooks and computers, and so many other

tools, it is now safe to bring a number of acronyms in from the cold and use them

without elaboration. Acronyms specific to the topic of this book are, indeed,

explained on their first use in any chapter.

There is one term that does merit its own little section. In this book, as in much

usage today, SQL is treated as a name and not as an acronym. If you look it up on

Wikipedia, you will see the evolution of the term and its pronunciation.

Development Platforms
It is not surprising that the development of Mac OS X apps takes place on the Mac

itself. What may surprise some people, though, is that iOS apps that can run on

iPad, iPod touch, and iPhone must be developed on the Mac. There are many rea-

sons for this, not the least of which is that the development tool, Xcode, takes

advantage of many dynamic features of Objective-C that are not available on other

platforms. Also, Xcode has always served as a test bed for new ideas about develop-

ment, coding, and interfaces for the Apple engineers. Registered Apple developers

have access to preview versions of the developer tools. As a result, the Apple devel-

opers had access to features of Lion such as full-screen apps nine months before the

general public. In fact, Xcode 4 is optimized for Lion in both speed and interface

design.

How This Book Is Organized 3

Assumptions
Certain things are assumed in this book. (You might want to refer to this section as

you read.) They are as follows:

. Cocoa, as used in this book, refers to the Cocoa framework on Mac OS and,

unless otherwise specified, also to the Cocoa Touch framework on iOS.

. iPhone refers to iPhone and iPod touch unless otherwise noted.

Formatting
In addition to the text of this book, you will find code samples illustrating various

points. When a word is used in a sentence as computer code (such as NSTableView),

it appears like this. Code snippets appear set off from the surrounding text.

Sometimes they appear as a few lines of code; longer excerpts are identified with

listing numbers so they can be cross-referenced.

Downloading the Sample Files
Sample files can be downloaded from the author’s website at northcountryconsulting.

com or from the publisher’s site at www.informit.com/9780672335778.

How This Book Is Organized
There are five parts to this book. You can focus on whichever one addresses an

immediate problem, or you can get a good overview by reading the book straight

through. Like all of the Teach Yourself Books, as much as possible, each chapter (or

hour) is made to stand on its own so that you can jump around to learn in your

own way. Cross-references throughout the book help you find related material.

Part I, “Getting Started with Core Data”
This part introduces the basic issues of the book and shows you principles and tech-

niques that apply to all of the products discussed:

. Chapter 1, “Introducing Xcode 4”—Xcode is the tool you use to build Mac

OS and iOS apps. It includes graphical editors for designing your interface

and data model. The current version, Xcode 4, represents a significant step

forward from previous development environments. You’ll get started by

learning the ins and outs of Xcode 4. After you use it, you’ll never look

back.

www.informit.com/9780672335778

4 Introduction

. Chapter 2, “Creating a Simple App”—This hour walks you through the

process of creating an app from one of the built-in Xcode templates. It’s

very little work for a basic app that runs.

. Chapter 3, “Understanding the Basic Code Structure”—This hour introduces

design patterns used in Objective-C as well as some of the features (such as

delegates and protocols) that distinguish it from other object-oriented pro-

gramming languages.

Part II, “Using Core Data”
Here you will find the basics of Core Data and its development tools in Xcode:

. Chapter 4, “Getting the Big Core Data Picture”—Here you’ll find an

overview of Core Data and a high-level introduction to its main

components.

. Chapter 5, “Working with Data Models”—Data models have been around

since the beginning of databases (and, in fact, since long before, if you

want to include data models such as the classifications of plants and ani-

mals). This hour lets you learn the language of Core Data.

. Chapter 6, “Working with the Data Model Editor”—In this hour, you will

learn how to build your data model graphically with Xcode’s table and grid

views.

. Chapter 7, “What Managed Objects Can Do”—In this hour, you’ll discover

the functionality of managed objects and what you can do to take advan-

tage of it and to expand it.

. Chapter 8, “Controllers: Integrating the Data Model with Your Code”—The

key point of this book is to show you how to link your database and data

model to interface elements and your code. This hour provides the basics

for Mac OS and for Cocoa.

. Chapter 9, “Fetching Data”—Just as the SQL SELECT statement is the heart

of data retrieval for SQL databases, fetching data is the heart of data

retrieval for Core Data. Here you’ll learn the techniques and terminology.

. Chapter 10, “Working with Predicates and Sorting”—When you fetch data,

you often need to specify exactly what data is to be fetched—that is the

role of predicates. In addition, you will see how to build sorting into your

fetch requests so that the data is already in the order you need.

How This Book Is Organized 5

Part III, “Developing the Core Data Interface”
Now that you understand the basics of Core Data, you can use it to drive the com-

mands, controls, and interfaces of your apps:

. Chapter 11, “Finding Your Way Around Interface Builder: The Graphics

Story”—The Interface Builder editor in Xcode 4 (a separate program until

now) provides powerful tools and a compact workspace to help you develop

your interface and app functionality.

. Chapter 12, “Finding Your Way Around Interface Builder: The Code

Story”—This hour shows you the graphical tools to link the code to the

interface.

. Chapter 13, “Control-Dragging Your Way to Code”—A special aspect of

linking your interface to your code is using the tools in Xcode 4 to actually

write the interface code for you.

. Chapter 14, “Working with Storyboards”—One of the major advances in

Xcode 4, storyboards let you not only create and manage the views and con-

trollers that make up your interface but also let you manage the sequences

in which they are presented (segues). You will find that storyboards can

replace a good deal of code that you would otherwise have to write for each

view you display.

Part IV, “Building the Core Data Code”
Yet another aspect of the connections between Core Data, your code, and your inter-

face consists of the data source protocol and table views. This hour explains them:

. Chapter 15, “Saving Data with a Navigation Interface”—Originally

designed for iPhone, navigation interfaces are an efficient use of screen

space for organized data. This hour shows you how to use them.

. Chapter 16, “Using Split Views on iPad”—Split views on iPad provide a

larger-screen approach to data presentation than navigation interfaces. As

you see in this hour, you can combine navigation interfaces with a split

view on iPad. Data sources provide your Core Data data to the table view.

This hour shows how that happens and moves on to how you can work

with tables and their rows and sections. You’ll also see how to format cells

in various ways.

6 Introduction

. Chapter 17, “Structuring Apps for Core Data, Documents, and

Shoeboxes”—This hour goes into detail about how and where your data

can actually be stored.

. Chapter 18, “Validating Data”—When you use Xcode and Core Data to

specify what data is valid, you do not have to perform the validation your-

self. This hour shows you how to set up the rules

Part V, “Managing Data and Interfaces”
. Chapter 19, “Using UITableView on iOS”—Table views let you manage and

present data easily. The UITableView structure on iOS is designed for seam-

less integration with Core Data.

. Chapter 20, “Using NSTableView on Mac OS”—NSTableView on Mac OS is

revised in Lion. The older versions of table views still work, but as you see

in this hour, some of the new features of UITableView have been back-

ported to Mac OS.

. Chapter 21, “Rearranging Table Rows on iOS”—The ability to rearrange

table rows by dragging them on the screen is one of the best features of

iOS. It is remarkably simple once you know the table view basics.

. Chapter 22, “Managing Validation”—This hour shows you how to build on

the validation rules from Hour 18 to actually implement them and let users

know when there are problems.

. Chapter 23, “Interacting with Users”—On both iOS and Mac OS, it is

important to let users know when they are able to modify data and when it

is only being displayed.

. Chapter 24, “Migrating Data Models”—You can have Core Data automati-

cally migrate your data model to a new version. This hour shows you how

to do that, as well as how to use model metadata and alternative types of

data stores.

Appendixes
. Appendix A, “What’s Old in Core Data”—There are some legacy features in

the sample code you’ll find on developer.apple.com and in apps you might

be working with. This appendix helps you understand what you’re looking

at and how to modernize it.

Working with the Code 63

HOUR 3

Understanding the Basic
Code Structure

What You’ll Learn in This Hour:
. Exploring the world of Objective-C

. Getting inside Objective-C objects

. Managing inheritance

. Using delegates and protocols

. Using model/view/controller

Working with the Code
Mac OS and iOS apps are written using the Objective-C language. Right there, some

people might panic and throw up their hands, but do not worry. As pointed out pre-

viously, you write very little code from scratch. Much of the code that you run is

already written for you using Objective-C; that code is in the Cocoa and Cocoa

Touch frameworks that support everything from animation to native platform

appearance and the Core Data and various table view classes that are the topic of

this book. (Cocoa Touch is the version that runs on iOS; unless otherwise noted, ref-

erences to Cocoa include Cocoa Touch in this book, just as references to iPhone

include iPod touch.)

When you’re working inside the Cocoa framework and the other components of iOS

and Mac OS, most of your work consists of calling existing methods and occasional-

ly overriding them for your own purposes. Xcode 4 provides a new development

environment that is heavily graphical in nature. You will find yourself drawing rela-

tionships in your data model and, in the interface, drawing connections between

objects on the interface and the code that supports them.

64 HOUR 3: Understanding the Basic Code Structure

NOTE

Actually, Cocoa is an ever-evolving set of frameworks. You can find an overview at
http://developer.apple.com/technologies/mac/cocoa.html.

Blank pages are rarely part of your development environment.

NOTE

This hour provides an overview of Objective-C. It provides some comparisons to
other object-oriented languages such as C++, but its focus is on Objective-C and,
particularly, in the ways in which it differs from object-oriented languages you might
already know. You can find many introductions to object-oriented programming on
the Web and in bookstores, so if you are unfamiliar with that basic concept, you
might want to get up to speed on the basics.

Objective-C 2.0
First announced at the 2006 Worldwide Developers Conference and released in
Mac OS X v.10.5 (Leopard) in October 2007, Objective-C 2.0 is now the standard
implementation. It is fully supported in Xcode 4. The primary changes from the
original version of Objective-C include the addition of automatic garbage collection,
improvements to runtime performance, and some syntax enhancements. Those
syntax enhancements are fully reflected in this book (after all, this book is written
more than five years after the announcement of Objective-C 2.0). Some legacy
software still uses old syntax, and there is generally no problem with that.

Objective-C 2.0 is often referred to as modern, while the previous version is
referred to as legacy. The modern version is not to be confused with Objective-C
modern syntax, a project in the late 1990s that changed the presentation of its
syntax and which was ultimately discontinued.

As a general rule, legacy Objective-C code runs without changes in the Objective-C
environment (there are some exceptions). Much of the sample code for Mac OS X
on developer.apple.com is from the legacy period and, with few exceptions, it com-
piles and runs well. During the transition period, developers often continued to
use legacy syntax. This meant that for shared code (and for sample code), devel-
opers did not have to worry about whether the code would be compiled or run in
the modern or legacy system—it would generally work.

Today, there is no reason to write legacy code because the tools are all updated
to Objective-C 2.0. It is safe to write code that will not compile or run in the legacy
environment because people are not (or should not be) still using it.

. This is particularly relevant to declared properties, which are discussed later

in this hour in the “Using Declared Properties” section, p. 68.

http://developer.apple.com/technologies/mac/cocoa.html

Working with the Code 65

What You Do Not Have to Worry About
You do not have to worry about designing an entire program in most cases. You are

writing code that will be a part built on a template, the behavior of which is known

by users, so what you have to do is to fit in. You need to write the code that is specif-

ic to your app, but you do not have to worry about implementing an event loop.

In fact, if you decide to develop the app’s infrastructure yourself, you might find that

users are disappointed at its unfamiliarity and—more important to many people—

your app might not find a place in the App Store.

Instead of writing code from scratch, much of what you will do is to investigate the

code that you have in the Xcode templates or in Apple’s sample code. You need to

explore what is written and how it has been designed so that you can understand

how and where your functionality will fit in. It is a very different process than writ-

ing it from scratch.

Introducing Objective-C
Objective-C is built on C; in fact, if you write ordinary C code, you can compile it

with an Objective-C compiler (that includes Xcode). The main extension to C that

Objective-C provides is its implementation of objects and object-oriented program-

ming.

Today, object-oriented programming rates a big yawn from many people; that is the

kind of programming that most people are used to. When Simula 67, the first pre-

cursor of Objective-C and all modern object-oriented languages, was developed, this

was a new notion, and many people were not certain it was worth the extra effort

(not to mention the time it took to learn what then was a new and not fully formed

technology). It is against this background that the extensions to C needed to imple-

ment Objective-C were created. One of the goals was to prove that very little was

needed to be added to C to implement object-oriented programming.

Basically, what was added to C was a messaging and object structure based on

Smalltalk. Over the years, additional features such as protocols and delegates as

well as categories and blocks were added to the language. Some other features were

added. Some of them are not as important to developers writing for iOS or Mac OS

X, while others of them simply never caught on with developers at large. Thus, this

section provides an overview of the major components that are in use today in the

context of iOS and Mac OS X.

At the same time as additional features were being added, the use of the language

was refined particularly in the environments of NeXT, Apple, Mac OS X, and iOS.

66 HOUR 3: Understanding the Basic Code Structure

These refinements include conventions such as naming conventions and even code

formatting conventions. They are not part of the language itself, but they represent

best practices that are followed by the vast majority of Objective-C developers.

Looking at Object-Oriented
Programming in the Context of
Objective-C
The heart of the implementation of object-oriented programming consists of the

objects themselves and the roles that they can play. With Objective-C, there is

another point to notice about the implementation of the language; because it is a

dynamic language, some of the work that would be done in the compile and build

process for a language such as C++ is done at runtime. This means that the runtime

environment, which, for all intents and purposes is the operating system, is a much

bigger player than it is in other languages.

Differentiating Classes, Instances, and Objects
The first point to remember is that objects, classes, and instances are related but dif-

ferent concepts. These concepts exist in most object-oriented languages:

. Class—A class is what you write in your code. It typically consists of a

header file (ending in .h) with an interface, as well as an implementation

file (ending in .m) that provides the code to support the interface.

. Instance—At runtime, a class can be instantiated. That converts it from

instructions in your program to an object that has a location in memory

and that can function.

. Object—Object is a term that is commonly used in contexts where most

people understand what is meant. The word can be used to refer to

instances or classes, but most of the time, it refers to instances.

Understanding What Is Not an Object
Some basic types are declared in Foundation/Foundation.h. Each of these is

implemented as a struct (NSDecimal), a typedef (NSUinteger), or an enum

(NSComparisonResult). Sometimes these hide the actual implementation, such

Looking at Object-Oriented Programming in the Context of Objective-C 67

as this definition of NSInteger, which resolves to a long on a 64-bit application and

to an int otherwise:

#if __LP64__ || TARGET_OS_EMBEDDED || TARGET_OS_IPHONE ||

TARGET_OS_WIN32 || NS_BUILD_32_LIKE_64

typedef long NSInteger;

#else

typedef int NSInteger;

#endif

Using these types makes your code more maintainable and portable than using

native C types.

NOTE

The NS prefix refers to NeXTSTEP.

With the exception of basic types such as these, almost everything you deal with is

an object. You will find some non-object entities in the Core Foundation framework

and in specialized frameworks that often deal with low-level operations such as Core

Animation.

Understanding the Three Purposes of Objects
Building on Smalltalk’s structure, objects in Objective-C have three purposes and

functions:

. State—Objects can contain state, which in practical terms means that they

can contain data and references to other objects. In implementation and

use, state usually consists of member variables, instance data, or whatever

terminology you use.

. Receive messages—Objective-C objects can receive messages sent from

other objects.

. Send messages—Objective-C can send messages to other objects.

. Communication between objects is via these messages, which are highly

structured. This is covered in more detail in the “Messaging in Objective-C”

section later in this hour, p. 73.

Data is encapsulated within objects in Objective-C. That means it is accessible only

through messages. Objects cannot access another object’s data (state) directly as can

happen in other object-oriented languages. This is a general goal of all good object-

68 HOUR 3: Understanding the Basic Code Structure

oriented programming, but it is enforced in Objective-C in ways that are often best

practices in other languages.

Declared properties, which are discussed in the next section, shows you how this is

done in Objective C. This section also explains why, at first glance, it can appear

that you can access internal data from another object and why, at second glance,

you will see that it is only the appearance of direct access.

Using Declared Properties
One of the most significant new features of Objective-C 2.0 was the introduction of

declared properties. The concept is quite simple and eliminates a great deal of tedious

typing for developers. The feature is best demonstrated by showing before-and-after

examples.

Declaring a Property
Listing 3.1 shows a typical interface using legacy syntax. This is the .h file, and it

contains the interface in a section starting with the compiler directive @interface. @

always introduces compiler directives; note the @end at the end of the file. Interface

code can appear in other places, but the .h file for a class is the primary place.

NOTE

Notice that because the code in Listing 3.1 was generated by Xcode, the com-
ments are automatically inserted.

LISTING 3.1 Legacy Class Declaration
//

// My_First_ProjectAppDelegate.h

// My First Project

//

// Created by Sams on 6/14/11.

// Copyright 2011 __MyCompanyName__. All rights reserved.

//

#import <Cocoa/Cocoa.h>

@interface My_First_ProjectAppDelegate : NSObject <NSApplicationDelegate> {

@private

NSWindow *window;

}

- (IBAction)saveAction:sender;

@end

Using Declared Properties 69

The class shown here, My_First_ProjectAppDelegate, has an interface with one

variable. After that, a single method, (IBAction)saveAction:sender, is declared.

By convention, variable names that begin with underscores are private and should

not be used directly. Also, note that all the variables are references—the * indicates

that at runtime, a reference to the underlying object’s structure is to be used and

resolved as needed. The @private directive means that these variables are private to

this class; by contrast, @protected would allow descendants of this class to use them.

@public, which is rarely used (and which is considered poor syntax), allows any

object to access these variables directly. This syntax is described later in this hour.

As you can see, there is no method declared that will allow another object to access

the data inside this object. Listing 3.2 adds accessor methods to access the data.

These are referred to generally as accessors and specifically as getters or setters. By

using this coding best practice, the variables are encapsulated and can be accessed

only through these methods.

LISTING 3.2 Legacy Class Declaration with Accessors
//

// My_First_ProjectAppDelegate.h

// My First Project

//

// Created by Sams on 6/14/11.

// Copyright 2011 __MyCompanyName__. All rights reserved.

//

#import <Cocoa/Cocoa.h>

@interface My_First_ProjectAppDelegate : NSObject <NSApplicationDelegate> {

@private

NSWindow *window;

}

- (NSWindow*) getWindow;

- (NSWindow*) setWindow: (NSWindow*)newindow;

- (IBAction)saveAction:sender;

@end

Listing 3.3 demonstrates the use of declared properties in Objective C 2.0.

LISTING 3.3 Modern Class Declaration
//

// My_First_ProjectAppDelegate.h

// My First Project

//

// Created by Sams on 6/14/11.

// Copyright 2011 __MyCompanyName__. All rights reserved.

//

70 HOUR 3: Understanding the Basic Code Structure

#import <Cocoa/Cocoa.h>

@interface My_First_ProjectAppDelegate : NSObject <NSApplicationDelegate> {

}

@property NSWindow* window;

- (IBAction)saveAction:sender;

@end

The individual declarations of the variables are gone; they are replaced by declared

properties that are implemented with compiler directives. As compiler directives, these

are merely instructions to the compiler. They are not part of the program’s syntax.

Synthesizing a Property
A declared property directive works together with a companion synthesize directive

that appears in the implementation file. The companion synthesize directive to the

property declaration is shown in Listing 3.4.

LISTING 3.4 Synthesize Directives to Match Listing 3.3
@synthesize window;

When the program is compiled, these two directives generate code. If, as in Listing

3.3, the variables are not declared, the declarations are created. They will look just

like the code that has been typed into Listings 3.1 and 3.2. In addition, getters and

setters will be automatically generated. They will look exactly like those typed at the

bottom of Listing 3.2.

And, perhaps most important, the declared properties allow for the use of dot syntax

that automatically invokes the relevant accessors. It also provides the appearance of

direct access to the encapsulated data of the object. Given the code in Listings 3.3

and 3.4, you could write the following code to reference the data within an object of

type My_First_ProjectAppDelegate that has been instantiated with the name jf_

My_First_ProjectAppDelegate:

jf_ My_First_ProjectAppDelegate.managedObjectContext

The appropriate accessor (getter or setter) will be invoked as needed. Note that with-

in the implementation code of an object, you can always use self to refer to the

object itself. Thus, you can write

self.managedObjectContext = <another managedObjectContext>;

Or

<myManagedObjectContext > = self.managedObjectContext;

Using Declared Properties 71

You save a great deal of typing and make your code much more readable by using

declared properties.

You can still declare the variables if you want to. At compile time, the same-named

variables you have declared will be accessed by the property. However, a common

use of properties is to reinforce the hiding of internal variables. The property decla-

ration can provide a name that is used by programmers while the underlying vari-

able is not accessed. This is common in the framework code you deal with.

For example, here is a declaration of a private variable:

NSWindow *__window;

Here is a companion property declaration:

@property nonatomic, retain, readonly NSWindow* window;

The synthesize directive would normally create the window variable because there is

none. However, you can use the following synthesize directive to have the property’s

accessors, which are created during compilation by the synthesize directive, point to

__window if you have declared it, as shown in Listing 3.5.

LISTING 3.5 Using a Private Variable in a Property
@synthesize window = __window;

You can access the private variable by using its name if you are allowed to do so,

which in practice generally means for code in the class itself. Thus, you can write:

__window = <something>;

Using dot syntax, you go through the property and, as a result, the following code

can have the same effect:

self.window = <something>;

NOTE

There is one case in which the direct access with dot syntax does have a differ-
ence. If you have set a variable to an object that has been allocated in memory,
the appropriate way to set it to another value is to dispose of the first object and
then set it again. Disposing of an object that is no longer needed prevents memory
leaks—the bane of developers. Because the accessors can perform any operations
you want, they can dispose of no-longer-needed objects as part of their setting
process.

72 HOUR 3: Understanding the Basic Code Structure

TABLE 3.1 Attributes for Declared Properties

Attribute Values Notes

Accessor getter = <name

of your getter>

Accessors are synthesized for you unless
you provide your own.

setter = <name

of your setter>

You can go further by specifying your own
custom accessors. You will have to write
them, but it might be worthwhile in special
cases.

Writability readwrite

readonly

Setter assign (default)

Semantics retain Retains the object after assignment and
releases the previous value.

copy Copies the object and releases the previous
value.

Atomicity nonatomic Default is atomic so that getters and set-
ters are thread-safe.

In practice, synthesize directives usually are a bit more complex. You can provide

attributes by placing them in parentheses after the property directive. A common set

of attributes in a synthesize directive is the following:

property (nonatomic, strong, readonly)

NSPersistentStoreCoordinator *persistentStoreCoordinator;

Attributes reflect the reality of today’s environment and the features of modern

Objective-C. It is no longer enough to know that a variable is of a specific type.

Many other attributes come into play, and the property directive allows you to set

them. Its syntax also allows for the expansion of attributes in the future as the lan-

guage evolves. Thus, property directives together with the appropriate attributes

combine to create rich, useful objects that are easy to use and maintain over the

lifespan of the app.

Table 3.1 shows the current set of attributes and the available values. The default

values (having a synthesize directive create the accessors, assign, and atomic) are

most commonly used. Notice also that the opposite of the atomic attribute is to omit

it—in other words, there is no separate “nonatomic” attribute. (Over time, these

attributes have changed to add new features. Consult the release notes for new ver-

sions of Xcode for these changes.)

Messaging in Objective-C 73

Using Dynamic Properties
Instead of a synthesize directive, you can use a dynamic directive for any property.

The format is as follows:

@dynamic myValue;

The dynamic directive indicates that your code is going to be providing the appro-

priate values for the property at runtime. This entails writing some rather complex

code, but there is an alternative. Core Data implements the functionality promised

by the dynamic directive, so you do not have to worry—just keep reading.

Messaging in Objective-C
Objective-C is a messaging environment, not a calling environment. Although the

end result is very much the same as in a calling environment, you send a message

to an object in Objective-C. That message consists of an object name and a method

of that object that can respond to the message. Here is an example:

[myGraphicsObject draw];

In a language such as C++, you would call a method of the object, as in:

myGraphicsObject.draw();

NOTE

There is a lot of information in Apple’s documentation as well as across the Web
detailing the technical differences and how the two styles evolved. The most impor-
tant point to remember is that a primary purpose of Objective-C was to show that
object-oriented programming could be implemented very simply with a small set of
Smalltalk-based variations on top of C. More than three decades later, whether
Objective-C is simpler than C++ is a topic of much debate (although many reason-
able people have moved on to other matters).

The arguments sent to a function (or method) in C are placed in parentheses, and

their sequence is determined by the code. In Objective-C, the arguments are named.

Thus, a C-style function looks like this:

resizeRect (float height, float width){

return height * width;

}

If that function were part of an object in C++, you would invoke it with the

following:

myRect.resizeRect (myHeight, myWidth);

74 HOUR 3: Understanding the Basic Code Structure

An Objective-C-style function looks like this:

-(void) resizeRect: (float*) height newWidth:(float*)width {

}

You invoke it with the following:

[myRect resizeRect: myHeight newWidth: myWidth];

The most important difference you notice is that the parameters in Objective-C are

labeled, whereas the parameters in C or C++ are strictly positional. Do not be

misled: The labels do not imply that the order of the parameters can vary. The

following Objective-C function is not identical to the previous one because the labels

(that is, the order of the parameters) are different:

-(void) resizeRect: (float*)width newHeight:(float*)height {

WARNING

Technically, the labels before the colons are optional. Omitting them is a very bad
practice. It is best to assume that they are required in all cases.

Despite the fact that there are many similarities, you will find it easier to learn

Objective-C if you avoid translating back and forth to and from other programming

languages you know. The principle is just the same as it is for learning a natural

language—start thinking in the new language right away.

Naming Conventions
The definitive reference about naming items in your code is in “Coding Guidelines

for Cocoa” located at http://developer.apple.com/library/ios/#documentation/

Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.html. These are detailed

guidelines to help you make your code consistent with best practices and standards.

There is one guideline that is sometimes an issue. As noted previously in this hour,

you can begin an instance variable name with an underscore to indicate that it is

private. In some documentation, developers are advised that only Apple is to use

this naming convention. That is all well and good, but some of the Xcode templates

and example code do use underscores at the beginning of names for private vari-

ables. As you expand and modify your projects built on these templates and exam-

ples, you may choose to make your code consistent so that the naming convention

is the same for the variables named by Apple in the template and those named by

you that are syntactically parallel. Just be aware of the issue, and make your choice.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.html

Using Protocols and Delegates 75

The other naming conventions are normally adopted by most developers. When there

are deviations, it often is the case that a developer is not aware of the conventions.

Using Protocols and Delegates
Many people consider protocols and delegates to be advanced topics in Objective-C.

However, as you will see, they are critical in the table views that are often used to

manipulate Core Data objects as well as in Core Data itself. They are also used

throughout the iOS and Mac OS frameworks. This section explains that there are

several pieces to the puzzle, but they fit together the same way in every case. Once

you’ve worked through a few of them, they will become very natural. In particular,

you will see that a lot of the details need no attention from you when you use a pro-

tocol or delegate. This section shows you how they work, but soon you will appreci-

ate the fact that they are another part of the operating system that just works with-

out too much of your attention.

Looking Up the Background of Protocols and
Delegates
Object-oriented programming offered (and continues to offer) very powerful ways to

build and maintain code. One issue arose quite early—multiple inheritance. For

simple classroom examples, it is easy to propose a base class of Toy, with subclasses

of Ball, Jump rope, and Puzzle. It is also easy to propose a base class of Sports

Equipment with subclasses of Ball, Jump rope, Puzzle, Net, and Score board.

Both of these object hierarchies refer to real-life objects, and both make sense to

most people. However, as soon as you start programming with those objects, you

might find that you want an object such as a ball to have some variables and

behaviors that descend from Toy and some that descend from Sports Equipment. In

other words, can a ball have two superclasses (or ancestors)?

Many proposals have been made and implemented for solving the multiple inheri-

tance problem. Objective-C started out addressing that issue and has evolved a

structure that handles multiple inheritance. However, it also covers a number of

other long-time object-oriented programming issues.

NOTE

This overview of history is not only simplified, but also benefits from 20/20 hind-
sight so that it is now possible to construct plausible and rational sequences of
events. At the time that they occurred, though, the overall picture was not yet visi-
ble to the participants.

76 HOUR 3: Understanding the Basic Code Structure

The Objective-C approach that has evolved allows you to share functionality

between two objects without using inheritance. To be sure, inheritance is used

throughout Objective-C, but the very deep inheritance hierarchies that often evolve

in languages such as C++ are far less common in Objective-C. Instead, you can take

a defined chunk of functionality and share it directly.

A major distinction between extending a class by subclassing it and extending a

class by adding a protocol to it is that a subclass can add or modify methods and

can also add new instance variables. Protocols, like categories that are described

briefly at the end of this section, only add methods.

Using an Example of a Protocol
An example of this is found in the iOS sample code for Multiple Detail Views (http:/

/developer.apple.com/library/ios/#samplecode/MultipleDetailViews/). This code

addresses an issue that arises with some iPad apps. iOS supports a split view in

which the main view fills the screen when the device is vertically oriented; when the

device is horizontally oriented, the right and larger part of the screen shows the

detail view, but, at the left, a list of items controls what is shown in the larger view.

In the vertical orientation, a control bar at the top of the window contains a button

that will let you open a popover with the list of items that can be shown at the left.

The problem arises because the control bar at the top of the window can be a navi-

gation bar or a toolbar. These are two different types of controls. The button to bring

up the popover needs to be shown (in portrait mode) and hidden (in landscape

mode). The code to implement this differs whether the button is added to a toolbar

or to a navigation bar.

The key to this consists of four steps:

. Declaring a protocol—A protocol is declared. It is a set of methods pre-

sented as they would be in an interface.

. Adopting the protocol—Any class in this sample app that wants to be

able to use this protocol must adopt it in its header. Adopting a protocol

means that the class declared in the header must implement methods from

the protocol. (Note that ones marked optional do not have to be imple-

mented. This is another Objective-C 2.0 improvement.)

. Implementing the protocol—Any class that adopts the protocol must

implement all required methods and might implement other methods. The

implementations might use variables and other methods of the particular

class that adopts the protocol.

. Using the protocol.

http://developer.apple.com/library/ios/#samplecode/MultipleDetailViews/
http://developer.apple.com/library/ios/#samplecode/MultipleDetailViews/

Using Protocols and Delegates 77

The code is described in the following sections.

The first step is to define the protocol in RootViewController.h, as shown in Listing 3.6.

LISTING 3.6 Defining the Protocol
@protocol SubstitutableDetailViewController

- (void)showRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem;

- (void)invalidateRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem;

@end

Beginning with Objective-C 2.0, you can indicate which methods are required or

optional. The default is required, so the code in Listing 3.6 actually is the same as

the code shown in Listing 3.7.

LISTING 3.7 Marking Protocol Methods Required or Optional
@protocol SubstitutableDetailViewController

@required

- (void)showRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem;

- (void)invalidateRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem;

@end

After you have declared a protocol, you need to adopt it. Listing 3.8 shows the code

from the sample app for a view with a toolbar. Although the protocol is declared in

RootViewController.h, it is adopted in FirstDetailViewController.h (and in the second

one, too).

LISTING 3.8 Protocol Adoption with a Toolbar
@interface FirstDetailViewController : UIViewController <

SubstitutableDetailViewController> {

UIToolbar *toolbar;

}

Listing 3.9 shows the protocol adopted by another view that uses a navigation bar.

LISTING 3.9 Protocol Adoption with a Navigation Bar
@interface SecondDetailViewController : UIViewController <

SubstitutableDetailViewController> {

UINavigationBar *navigationBar;

}

Each of the classes that has adopted the protocol must implement its methods.

Listing 3.10 shows the implementation of the protocol with a toolbar in

FirstDetailViewController.m.

78 HOUR 3: Understanding the Basic Code Structure

LISTING 3.10 Implementation of the Protocol with a Toolbar
#pragma mark -

#pragma mark Managing the popover

- (void)showRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem {

// Add the popover button to the toolbar.

NSMutableArray *itemsArray = [toolbar.items mutableCopy];

[itemsArray insertObject:barButtonItem atIndex:0];

[toolbar setItems:itemsArray animated:NO];

[itemsArray release];

}

- (void)invalidateRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem {

// Remove the popover button from the toolbar.

NSMutableArray *itemsArray = [toolbar.items mutableCopy];

[itemsArray removeObject:barButtonItem];

[toolbar setItems:itemsArray animated:NO];

[itemsArray release];

}

In Listing 3.11, you see how you can implement the protocol with a navigation bar.

(This code is from SecondDetailViewController.m.)

NOTE

In Listing 3.11, you will also see how certain types of operations, such as adjust-
ing buttons on a navigation bar, can be easier than the corresponding operations
on a toolbar.

LISTING 3.11 Implementation of the Protocol with a Navigation Bar
#pragma mark -

#pragma mark Managing the popover

- (void)showRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem {

// Add the popover button to the left navigation item.

[navigationBar.topItem setLeftBarButtonItem:barButtonItem animated:NO];

}

- (void)invalidateRootPopoverButtonItem:(UIBarButtonItem *)barButtonItem {

// Remove the popover button.

[navigationBar.topItem setLeftBarButtonItem:nil animated:NO];

}

Using Protocols and Delegates 79

The next step is to adopt another protocol. This protocol, UISplitViewController

Delegate, is part of the Cocoa framework, so you do not have to write it. All you

have to do is adopt it as the RootViewController class in the example does. The

Interface is shown in Listing 3.12 together with the adoption of the protocol in

RootViewController.h. To repeat, what that adoption statement (in the < and >)

means is that all required methods of the protocol will be implemented by this class.

TIP

In addition, remember that without an optional directive, all methods are
required.

LISTING 3.12 Adopting the UISplitViewControllerDelegate
Protocol
@interface RootViewController : UITableViewController

<UISplitViewControllerDelegate> {

UISplitViewController *splitViewController;

UIPopoverController *popoverController;

UIBarButtonItem *rootPopoverButtonItem;

}

Having promised to implement the required and (possibly) optional methods of the

UISplitViewControllerDelegate protocol, RootViewController.m must do so.

The sample app implements two of the methods as shown in Listing 3.13. In doing

so, it has fulfilled the promise made when it adopted the UISplitViewController-

Delegate protocol.

There are two critical lines, one in each method of Listing 3.13. Those lines are

the same in both methods and are underlined. It is easiest to start reading them

from the middle. The heart of each line is the assignment of a local variable,

*detailViewController, using the split view controller’s array of view controllers

and selecting item one.

This local variable is declared as being of type UIViewController and adopting the

SubstitutableDetailViewController protocol shown previously in Listing 3.6.

Because it adopts the protocol, it is safe to assume that it implements all the

required methods. Because nothing is marked optional, both methods are required,

so it is certain that they will be there (if they are not, that assignment statement will

fail).

80 HOUR 3: Understanding the Basic Code Structure

LISTING 3.13 Implementing the protocol in RootViewController.m

- (void)splitViewController:(UISplitViewController*)svc

willHideViewController:(UIViewController *)aViewController

withBarButtonItem:(UIBarButtonItem*)barButtonItem

forPopoverController:(UIPopoverController*)pc {

// Keep references to the popover controller and the popover button, and tell the

// detail view controller to show the button.

barButtonItem.title = @”Root View Controller”;

self.popoverController = pc;

self.rootPopoverButtonItem = barButtonItem;

UIViewController <SubstitutableDetailViewController> *detailViewController =

[splitViewController.viewControllers objectAtIndex:1];

[detailViewController showRootPopoverButtonItem:rootPopoverButtonItem];

}

- (void)splitViewController:(UISplitViewController*)svc

willShowViewController:(UIViewController *)aViewController

invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem {

// Nil out references to the popover controller and the popover button, and tell

// the detail view controller to hide the button.

UIViewController <SubstitutableDetailViewController> *detailViewController =

[splitViewController.viewControllers objectAtIndex:1];

[detailViewController invalidateRootPopoverButtonItem:rootPopover

ButtonItem];

self.popoverController = nil;

self.rootPopoverButtonItem = nil;

}

You might have to trace through the code again, but it is worth it to get the hang of

it. The point is that this locally declared class inherits from a standard class in the

framework (UIViewController). However, by creating and adopting its own proto-

col, two separate classes with two different ways of implementing control bars can

both promise to do the same thing, albeit in different ways because they have differ-

ent types of control bars to work with.

NOTE

There is a related concept in Objective-C, called categories. A category consists of
methods (no instance variables, just like protocols) that are added to a specific
class. This allows people to modify a class without having access to the code that
is used for it to perform its work. At runtime, there is no difference between the
basic class and the methods that have been added with a category.

Using the Model/View/Controller Concepts 81

Using Delegates
Protocols are often paired with delegates, another key Objective-C concept. As noted

previously in this hour, instead of calling procedures, messages are sent to objects in

Objective-C. That makes the use of delegates possible. A class can declare a delegate

for itself. That delegate processes messages sent to the object itself. Frequently, func-

tionality is wrapped up in a protocol as you have seen here, and some of those pro-

tocols are designed to be used by delegates.

NOTE

One of the most common uses of a delegate is a delegate for the application
class. Messages send to the application are passed along to the application dele-
gate. This enables you to add functionality to an application without subclassing it:
you just add your new functionality to the delegate.

For example, you saw in Listing 3.12 that the RootViewController class

adopts the UISplitViewControllerDelegate protocol. This means that a

RootViewController can be named as the delegate of an object that requires

that protocol to be implemented.

. This is a high-level view of delegates and protocols. You will find more

examples and much more detail in Part IV, “Using Data Sources and Table

Views.” If it is a little fuzzy now, do not worry.

Using the Model/View/Controller
Concepts
One of the critical pieces of iOS and Mac OS is the model/view/controller (MVC)

design pattern. Along with object-oriented programming, this is another concept

that evolved in the heady days of the 1970s and 1980s when the technology world

was addressing the rapidly changing environment in which personal computers

were becoming more prevalent and vast numbers of people started using their own

computers (and programming them).

Model/view/controller got a frosty reception from some people at the start because it

seemed like an over-complicated academic exercise. In retrospect, it seems that per-

ception might have arisen in some cases because the benefits of MVC only become

apparent when you apply the pattern and concepts to large systems. Writing “Hello

World” using MVC concepts is indeed over-complicated. However, writing Mac OS or

iOS in Basic, COBOL, or even C would be something close to futile.

82 HOUR 3: Understanding the Basic Code Structure

Fortunately, we have complex problems and powerful computers today and MVC

has come into its own. The concepts are quite simple:

. Model—This is the data you are working with. With Core Data, you will

always have a data model.

. View—This is the presentation of the model and the interface for users to

manipulate it.

. Controller—This code is the glue between model and view. It knows details

of both, so if either changes, the controller normally needs to be changed,

too. However, a change to the view typically does not require a change to

the model, and vice versa. The addition of new data to the model will

require a change to the view, but that is only because the underlying

reality affects both.

One of the mistakes people made early on was to draw a conceptual diagram with a

large bubble for the model and another large bubble for the view. The controller was

relegated to a small link. In practice, that is far from the case. The controller is often

the largest set of code modules. For people used to traditional programming, work-

ing on a controller feels most like traditional programming. Both the model and the

view can be highly structured, but it is in the controller that all the idiosyncrasies

emerge and collide.

Importing and Using Declarations in Files
A compiler instruction that you have seen in many of the code snippets in this hour

is import. It is broadly similar to the C include statement but bypasses some of the

issues that arise with multiple uses of the include statement. In Objective-C, import

checks to see if the file has already been imported and does not repeat the import if

it is unnecessary. Files within your project are identified by their filenames enclosed

in quotes; files that are part of the frameworks are enclosed in < and >.

Typically, an interface (.h) file imports other interface files. An implementation file

(.m) imports it own interface file, and it might import other interface files (usually

not implementation files).

In an interface file, it is common to declare protocols and classes that will be defined

later in the build process. Thus, instead of using

#import “myclass.h”

you might be better off simply declaring

@class myclass

The templates and samples demonstrate this style in many cases.

Summary 83

Summary
This hour provides an introduction to Objective-C and its concepts, as well as a gen-

eral comparison to other object-oriented languages you might know. The biggest dif-

ferences from other object-oriented languages are its messaging syntax (rather than

function calling syntax), the ability to extend code in ways other than subclassing

(protocols, delegates, and categories), and its somewhat more rigorous enforcement

of basic object-oriented design principles when compared to languages such as C++

(this last point remains a topic of much discussion and dissension).

You have seen some examples of Objective-C code at work, and you will see more—

and write more—throughout this book. For some people, the syntax and nomencla-

ture is daunting with all its square brackets. Have no fear; if you start to use it, you

will soon become accustomed to it. Furthermore, that syntax helps you access some

of the powerful features of Objective-C that have no direct parallels in other pro-

gramming languages.

Q&A
Q. Where is the best place to start learning about model/view/controller?

A. Start with controllers and, in particular, start with some of the view controllers

such as the ones described in Part IV. The basics of both the view and model

components of MVC are quite simple—one is your data and the other is your

interface. The controller is pretty much where all the programming you are

used to takes place.

Q. Are there naming conventions for methods and instances?

A. Naming conventions for instance variables are usually dependent on the proj-

ect or developer. Inside the frameworks, you will find a number of standard

types of methods. These are typically implemented in subclasses of the major

framework classes. They have names such as viewWillAppear and

viewDidAppear so that you can insert your code at the right place. The docu-

mentation on developer.apple.com helps you to understand which parts of the

creation of objects such as views (and the corresponding destruction) are done

in which step.

84 HOUR 3: Understanding the Basic Code Structure

Workshop

Quiz
1. What is one of the biggest differences between subclassing and extending a

class with a protocol or category?

2. What are the benefits of using declared properties?

Quiz Answers
1. You can add instance variables to a subclass. Protocols and categories allow

you to only add methods.

2. You can save yourself some typing, your code will be more readable, you can

use dot syntax to use the accessors, and the attributes you can assign to the

properties can help you take advantage of runtime features.

Activities
If you have not already done so, create a new Xcode project from one of the tem-

plates. Go through the code and pick out the Objective-C constructs that have been

discussed in this hour. Be certain to run the code! Only hands-on experience with the

code will help you understand what the code is doing.

Explore one or more of the sample code projects on developer.apple.com (these are

often more complex than the Xcode projects). You might want to search for specific

features, such as protocols or delegates, that you want to explore.

A

Abstract Entity entity setting

(Data Model inspector), 322

abstractions, data models,

101-103

Access the Persistent Store

Coordinator listing (4.6), 94-95

Accessing the Fetched Results

Controller listing (4.8), 97-98

Accessing the Managed Object

Model listing (4.7), 95

Accessor attribute (declared

property), 72

accessory view, 345

ad hoc display order, table rows,

handling, 378-380

adaptors, 156

Add a Detail Disclosure

Accessory to Row listing (23.1),

414-415

Add a New Field to insert

NewObject listing (12.3), 218

Add buttons, inserting, 371

Adopting the

UISplitViewControllerDelegate

Protocol listing (3.12), 79

Advanced setting (Data Model

inspector), 325-327

aggregate operators, 174

ALL aggregate operator, 174

ANY aggregate operator, 174

AppDelegate.h for a Core Data

Project listing (4.3), 92

Apple documentation, 73

Apple’s Xcode Quick Start

Guide, 11

applicationDocumentsDirectory

(iOS) listing (5.2), 114

applicationFilesDirectory (Mac

OS) listing (5.1), 113

apps

architectures, 154

building, 52-53

creating, 195-198

storyboards, 239-241

delegates, 293-299

document-based, 154

Mac OS, 305-311

iOS

creating, 53-56

Index

exploring, 58-59

integrating views and

data, 147-151

library/shoebox, 154, 291

library/shoebox apps, creat-

ing, 292-305

Mac

creating, 56-58

exploring, 58-59

Master-Detail App, creating,

263-267

navigation-based apps

finishing interface,

275-276

implementing saving,

267-272

NSTableView, building,

366-372

structures, 292

universal, creating, 190-192,

279-281

architectures, 153-154, 292

Archives tab (Organizer

window), 46

areas, workspace window, 14

Arranged setting (Data Model

inspector), 327

array controllers, 148

array operators, 174

arrays, predicates, 175-176

assistant editing mode

(Xcode), 26

Assistant editor, 232-233

Atomicity attribute (declared

property), 72

attribute settings, Data Model

inspector, 324-325

Attribute Type setting (Data

Model inspector), 325

attributes, 72, 87

data model, 216

declared properties, 72

displayOrder, 379-380

entities, adding to, 105-107,

123-125

renaming, 432-433

Attributes inspector, 205

setting entity names, 368

automatic lightweight

migration, 423

data models, 432-434

B

bars, workspace window, 14

batteryLevel property

(UIDevice), 190

batteryMonitoringEnabled

property (UIDevice), 190

batteryState property

(UIDevice), 190

BEGINSWITH string, 174

bidirectional relationships, 127

binary data, entities, 106-107

Binary Large Objects

(BLOBs), 106

bindings, 144, 148-149

examining, 150

NSTableView, 366

Bindings inspector, 205

BLOBs (Binary Large

Objects), 106

Boolean data, entities, 107

breaking connections, 213-215

breakpoint gutters, workspace

window, 14

breakpoint navigator, 24-25

breakpoints, 24

debugger, 268-270

toggling, 25

building data stacks, 91-96

buttons, Add, inserting, 371

C

C Programming Language, The, 8

canvas (Interface Builder),

197-205

cardinality, 126, 327

relationships, 127

cascade delete rule, 128

Categories submenu (model

editor files), 29

cellForRowAtIndexPath listing

(19.3), 352

cells

table views, 345

tables

creating labels, 357

styled, 355-357

Change setValue: forKey listing

(13.4), 229

Change the Attribute for the Sort

Descriptor listing (13.2), 229

Change the Entity for the Fetched

Result Controller listing

(13.1), 227

444

apps

Change valueForKey in

configureCell listing (13.3), 229

changed views, 413

Character Large Objects

(CLOBs), 106

Class entity setting (Data Model

inspector), 322

Class from i.e

RootViewController.m listing

(3.13), 80

classes

NSSortDescriptor, 185

Objective-C, 66

Clauses, WHERE, 171, 173

CLOBs (Character Large Objects),

106

Cocoa

dictionaries, key-value pairs,

172-173

frameworks, 63-64

code

code snippet library, adding

to, 38-40

completing, 43-45

glue

Document.h, 396

MyDocument.m, 397-399

nib file, 399-401

Objective-C, 64-66

classes, 66

declarations, 82

declared properties,

68-73

delegates, 75-76, 81

instances, 66

messaging, 73-75

MVC (model/view/con-

troller) design pattern,

81-82

naming conventions,

74-75

object-oriented program-

ming, 66-68

objects, 66-68

protocols, 75-80

synthesizing properties,

70-72

Objective-C language, 63

saving, 284-286

code listings

Access the Persistent Store

Coordinator, 94-95

Accessing the Fetched

Results Controller, 97-98

Accessing the Managed

Object Model, 95

Add a Detail Disclosure

Accessory to the Row,

414-415

Add a New Field to

insertNewObject, 218

Adopting the

UISplitViewController

Delegate Protocol, 79

AppDelegate.h for a Core

Data Project, 92

applicationDocuments

Directory (iOS), 114

applicationFilesDirectory (Mac

OS), 113

cellForRowAtIndexPath, 352

Change setValue:

forKey, 229

Change the Attribute for the

Sort Descriptor, 229

Change the Entity for the

Fetched Result

Controller, 227

Change valueForKey in

configureCell, 229

Class from i.e

RootViewController.m, 80

configureView, 284

Create a Predicate with a

Format String, 184

Create a Predicate with a

Format String and Runtime

Data, 184

Creating a Fetch

Request, 160

Creating a Managed Object

Context, 159

Creating a Popover View

Controller, 417

Customer.h, 333

Customer.m, 334

Defining the Protocol, 77

didSelectRowAtIndexPath, 251

Executing a Fetch

Request, 161

Existing Private Declaration in

DetailViewController.m, 330

Getter for

managedObjectContext in

AppDelegate.h, 93

Getter for

numberFormatter, 330

Handle the Tap in the

Selected Row, 415

Handling the Move, 389

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings

445

Header for a Custom

NSManagedObject

Class, 384

Header for a Document-based

Mac OS App, 308

Hello, World, 8

Implementation for a Custom

NSManagedObject

Class, 385

Implementation for a

Document-based Mac OS

App, 309-311

Implementation of the

Protocol with a Navigation

Bar, 78

Implementation of the

Protocol with a Toolbar, 78

Implementing the Mac OS

App Delegate, 295-299

insertNewObject As It Is in

the Template, 216

Interface for

DetailViewController with

Table View, 349

iOS App Delegate

Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,

68-69

Legacy Class Declaration with

Accessors, 69

Marking Protocol Methods

Required or Optional, 77

MasterViewController.h, 211

Modern Class

Declaration, 69

Moving Related Objects into a

Mutable Array, 388

Moving the Top-Level Objects

into a Mutable Array, 387

MyDocument.h, 396

MyDocument.m, 397-398

numberOfRowsInSection, 351

Opening a Persistent Store,

433-434

Place.h, 88

Place.m, 89

prepareForSegue in

MainViewController.m, 250

Protocol Adoption with a

Navigation Bar, 77

Protocol Adoption with a

Toolbar, 77

saveNameData, 285

Saving the Data, 390

Set Section Header and

Footer Titles, 354-355

Set the New View

Controller, 415

setDetailItem, 276

Setting Up the App

Delegate, 294

Setting Up the Fetch Request,

377-378

Styling Cells, 356-357

Swapping the View, 245

Synthesize Directives to

Match Listing 3.3, 70

Synthesize the Core Data

Stack Properties, 93

Transforming an Image to and

from NSData, 141

Use a Predicate Template

with Hard-coded

Data, 183

Use a Predicate Template

with Runtime Data, 183

Use More than One

Section, 354

Using a Private Variable in a

Property, 71

Using a Sort Descriptor, 186

viewWillAppear, 273

viewWillDisappear, 274

code property (NSError), 404

code samples, 50-52

code snippet library, 38

adding code to, 38-40

columns, 87

comparison operators, predicates,

173-175

compatibility, data models ver-

sions, determining, 430-431

compound indexes, 323

configureView, 284

configureView listing (16.1), 284

connections

creating, 213-215

trace, 149

Connections inspector, 149, 205,

209-210

connections, creating,

213-215

outlets, 210-212

referencing, 212-213

CONTAINS string, 174

contexts, managed objects,

90-91, 148, 153, 158

creating, 158-159

saving, 274

continuum, migration, 423

446

code listings

control-drag, building interfaces,

232-236

controller concept (MVC

(model/view/controller) design

pattern), 82

controllers

array controllers, 148

dictionary controllers, 149

navigation, 151

object controllers, 148

page view, 151

split view, 151

tab bar, 151

table view, 151

terminology, 410

tree controllers, 149

user defaults controllers, 149

view, IOS, 148-151

converting dates to strings, 216

Core Data, 85

documents, 291

examining at runtime,

90-96

origins, 85-87

UITableView, 357-359

user interface, 195

Core Data faulting, 155

Core Data model editor, 86,

117-119

Core Data Model editor

data models

adding entities to,

119-123

adding relationships to,

126-127

styles, choosing, 125-126

“Core Data Programming

Guide”, 403

Core Data stack, implementing,

307-311

Count setting (Data Model inspec-

tor), 327

Counterparts submenu (model

editor files), 29

Create a Predicate with a Format

String and Runtime Data listing

(10.4), 184

Create a Predicate with a Format

String listing (10.3), 184

Create the Cell Labels, 358

Creating a Fetch Request listing

(9.2), 160

Creating a Managed Object

Context listing (9.1), 159

Creating a Popover View

Controller lisitng (23.4), 417

Customer.h listing (18.3), 333

Customer.m listing (18.4), 334

D

data

databases, adding, 161-162

flattening, 271-272

integrating

iOS, 151

Mac OS, 147-150

interfaces, entering into,

327-331

moving and saving, 273-274

normalizing, 106

sorting, sort descriptors,

185-186

data elements, IBOutlets,

215-216

data encapsulation, objects, 67

data fetching, 154

fetch requests, creating,

159-161

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

data fields, model, adding to,

217-221

Data Model inspector, 320-321

Advanced setting, 325-327

Arranged setting, 327

Attribute setting, 325

attribute settings, 324-325

Count setting, 327

Default Value setting, 325

Delete Rule setting, 327

Destination setting,

326-327

entity settings, 321

Abstract Entity, 322

Class, 322

indexes, 323

Name, 321

Parent Entity, 323

Inverse setting, 326

Name setting, 324-326

Properties setting, 326

Property setting, 324

Regular Expression

setting, 325

How can we make this index more useful? Email us at indexes@samspublishing.com

Data Model inspector

447

relationship settings,

325-327

Validation setting, 325

data models, 101

abstractions, 101-103

adjusting code, 226-229

attributes, 216

Core Data Model editor,

117-119

styles, 125-126

Core Data stack, 153

creating, 226-227, 426-427

Data Model inspector,

320-321

attribute settings,

324-325

entity settings, 321-323

relationship settings,

325-327

data quality rules, 318-319

deleting, 313

designing, 102-103

entities, 103-104

adding attributes to,

105-107

adding to, 119-123

binary data, 106-107

Boolean data, 107

dates, 106

linking with relationships,

107-108

external, 436

mapping models, 434-437

migration, 423-424

automatic lightweight

migration, 432-434

managing, 424-426

moving, 311-314

moving data into, 327-331

naming, 101-102

relational integrity rules,

318-319

relationships

adding to, 126-127,

129-131

cardinality, 127

delete rule, 128

rules, setting up, 320-327

validation rules, 317-319

versions, 426-430

creating, 426-430

determining compatibility,

430-431

forcing incompatibility, 432

data quality, 319

data quality rules, data model,

318-319

setting up, 320-327

data retrieval, predicates, 176

data stacks, 90-96

building, 91-96

CHANGE TO Core Data

stack, 153

data model, 153

initialization, 153

persistent stores, 153

data stores, 258

data types, choosing, 88

data updates, changing,

284-286

data validation, 319

free, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

Mac OS, 394-402

managing, 393-394

programming, 402-406

rules

data model, 317-327

database management systems

(DBMSs), 171

database manager, sorting

data, 186

databases

adding data, 161-162

Core Data faulting, 155

data retrieval, 154

fetch requests, 159-161

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

load-a-chunk design

pattern, 155

load-then-process design pat-

tern, 155

locating, 109-111

relational, 87

rules

cardinality, 127

delete, 128

schemas, 424

sorting data, 185-186

tables, 87

dates

converting to strings, 216

entities, 106

448

Data Model inspector

DBMSs (database management

systems), 171

debug navigator, 23-24

Debug pane, displaying, 270-272

debugger, 267-268

breakpoints, 268-270

Debug pane, 270-272

debugging connections, 213-215

declarations, 82

declarative programming

paradigms, 9-10

declared properties, 64, 441

attributes, 72

Objective-C, 68-73

Default Value setting (Data Model

inspector), 325

Defining the Protocol listing

(3.6), 77

delegates, 293

apps, 295-299

Objective-C, 75-76, 81

delete rule, relationships, 128

Delete Rule setting (Data Model

inspector), 327

deleting

data models, 313

document types, 307

deny delete rule, 128

design patterns

Core Data faulting, 155

load-a-chunk, 155

load-then-process, 155

MVC (model/view/controller),

143-144

controlling data, 144

controlling views, 144-147

designing data models, 102-103

Destination setting (Data Model

inspector), 326

detail disclosure accessories,

rows, adding, 414-415

Detail views, swapping, 244-245

DetailViewController, 231,

266, 268

detailItem instance

variable, 272

outlets, 225-226

DetailViewController.m, 330

devices, iOS, swapping views,

241-243

Devices tab (Organizer

window), 45

dictionaries, key-value pairs,

172-173

dictionary controllers, 149

didSelectRowAtIndexPath listing

(14.3), 251

dismissing modal windows and

sheets, 421

Disney, Walt, 246

display order, table rows, han-

dling, 378-380

displayOrder attribute, 379-380,

387-390

document structure area,

199-201

objects, 204-205

placeholders, 201-204

document structure area

(Xcode), 199

document types, 306

deleting, 307

document-based apps, 154

Mac OS, creating, 305-311

document-based Mac OS apps,

creating, 292-299

Document.h, glue code, building

in, 396

documentation, Apple, 73

Documentation tab (Organizer

window), 46

documents, 110, 289-291

app structure, 292

Core Data, 291

tracking data in, 108-111

domain property (NSError), 404

E

editing data

navigation interfaces,

257-262

users, 409

editing interfaces, 409-412

communicating with users,

413-418

editing modes (Xcode), 25-30

editing preferences, 40-43

editing window (Xcode), 31

editing-in-place, 409-411

ENDSWITH string, 174

Enterprise Objects Framework

(EOF), 85, 109, 156, 176

entires, 172

entities, 87

attributes, adding to,

123-125

data models, 103-104

How can we make this index more useful? Email us at indexes@samspublishing.com

entities

449

adding attributes to,

105-107

adding to, 119-123

binary data, 106-107

Boolean data, 107

dates, 106

linking with relationships,

107-108

names, setting, 368

NSManagedObject,

subclasses, 331-334

Place, 89

relationships

moving, 389

rules, 126

renaming, 432-433

entity settings, Data Model

inspector, 321

Abstract Entity, 322

Class, 322

indexes, 323

Name, 321

Parent Entity, 323

environments, multiuser, 312

EOF (Enterprise Objects

Framework), 85

error messages, 413

Estimator interface, 342

Executing a Fetch Request listing

(9.3), 161

Existing Private Declaration in

DetailViewController.m listing

(18.1), 330

expressions, regular, 319, 325

external data models, 436

external objects, iOS, 151

F

faulting, 155

fetch request controllers, 96

fetch requests, 96-98

creating, 159-161, 178-183

setting up, 377

fetches, 133

fetching data, 154

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

fields, 87

IBOutlets, adding, 230-231

removing, table view, 345-349

second interface, adding to,

281-284

file inspector, 32

file templates library, 35, 37

File’s Owner object, 201-202

outlets, 210-211

FileMaker Pro, 157

FileMaker Server, 157

files

declarations, 82

identifying, 52-53

rearranging, 120

renaming, 120

semi-hidden, 110-111

creating, 111-115

iOS, 114

Mac OS X, 110-115

tracking data in, 108-111

filter bar, workspace window, 14

First Responder, 203, 212

Fix It, 40, 43-45

flattening data, 271-272

Focus ribbon, workspace

window, 14

folders, Inside Applications, 193

footers, tables, setting,

354-355

format strings, predicates,

177, 184

formatters, 216, 329

type conflict issue, solving,

329-331

frameworks, Cocoa, 63-64

free validation, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

full-screen view (Interface

Builder), 197

G

generatesDeviceOrientation

Notifications property

(UIDevice), 190

Getter for managedObjectContext

in AppDelegate.h listing

(4.5), 93

Getter for numberFormatter

listing (18.2), 330

Git repository, 55

Git source code repository, 49, 57

glue code

Document.h, building in, 396

450

entities

MyDocument.m

building in, 397-399

nib file, 399-401

Go menu, Libabry folder, adding

to, 193

Gone with the Wind, 246

groups, rearranging, 120

H

Handle the Tap in the Selected

Row listing (23.2), 415

Handling the Move listing (21.6),

389

Header for a Custom

NSManagedObject Class listing

(21.2), 384

Header for a Document-based

Mac OS App listing (17.5), 308

headers, tables, setting,

354-355

Hello, World listing, 8

hidden primary keys, 162

I

IBOutlets

data elements, 215-216

new fields, adding, 230-231

iCloud, 107

identifiers, predicates, 173

Identity inspector, 34, 205

imperative programming

paradigms, 9-10

Implementation for a Custom

NSManagedObject Class listing

(21.3), 385

Implementation for a Document-

based Mac OS App listing

(17.6), 309-311

Implementation of the Protocol

with a Navigation Bar listing

(3.11), 78

Implementation of the Protocol

with a Toolbar listing (3.10), 78

Implementing the Mac OS App

Delegate listing (17.2), 295-299

IN aggregate operator, 174

incompatibility, data models,

forcing, 432

indexes, 323

insertNewObject As It Is in the

Template listing, 216

Inside Applications folder, 193

inspectors, 31-34, 205

Attributes, 205

Bindings, 205

Connections, 205, 209-210

creating connections,

213-215

outlets, 210-213

file, 32

Identity, 34, 205

Size, 205

View Effects, 205

instances

adding, 259

Objective-C, 66

Interface Builder editor,

document structure area,

199-201

objects, 204-205

placeholders, 201-204

inter-property validation, 405-406

Interface Builder, 7

Connections inspector,

209-210

creating connections,

213-215

outlets, 210-212

referencing outlets,

212-213

storyboards, 442

Interface Builder editor, 189-190,

198-200, 344

apps, creating, 195-198

canvas, 197-205

full-screen view, 197

iOS apps, locating sandbox,

192-194

macros, 230-231

Project navigator, 198

storyboards, 192

table views, 199-200

type qualifiers, 230-231

universal apps, creating,

190-191

Interface for DetailViewController

with Table View listing

(19.1), 349

interfaces

building, control-drag,

232-236

cleaning up, 275-276

comparing, 339-344

editing interfaces, 409-412

communicating with

users, 413-418

How can we make this index more useful? Email us at indexes@samspublishing.com

interfaces

451

entering data into, 327-331

Estimator, 342

integrating views and data

iOS, 151

Mac OS, 147-150

iOS features, 165-167

iPhone, 343

Mac OS features, 163-165

navigation-based apps,

finishing, 275-276

optimizing, 162-167

removing, table view, 345-349

second, adding fields to,

281-284

text fields, adding to,

217-221

initialization, Core Data

stack, 153

Inverse setting (Data Model

inspector), 326

iOS

apps

creating, 53-56

exploring, 58-59

integrating views and

data, 151

locating sandbox,

192-194

structure, 292

development process, 258

devices, swapping views,

241-243

interfaces, 339-344

features, 165-167

library/shoebox apps,

creating, 299-305

popovers, 416-418

semi-hidden files, 114

settings, 339-344

swapping views, 413-415

table rows

allowing movement,

380-382

moving, 382-390

ordering, 375-380

table views, comparing,

337-338

UITableView, 337-345

accessory view, 345

cells, 345

implementing methods,

350-357

interface removal, 345-349

removing fields, 345-349

sections, 345

using with Core Data,

357-359

using without Core Data,

344-357

user interaction, 338-339

validation, programming,

402-406

versions, 190

iOS App Delegate

Implementation listing (17.4),

301-305

iOS Application Delegate listing

(17.3), 300

iPad, 279

split view controllers,

250, 311

storyboards, 247-248

universal apps, creating,

279-281

iPhone

interface, 343

storyboards, 246-247

iPhone apps

Master-Detail apps, creating,

263-267

navigation-based apps

adding managed objects,

272-273

finishing interfaces,

275-276

implementing saving,

267-272

issue navigator, 23

J

Jobs, Steve, 363

join tables, 127

jump bars (Xcode), 27,

294-295, 301

K

Kernighan, Brian, 8

key-value coding (KVC), 144

key-value observing (KVO), 144

key-value pairs, dictionaries,

172-173

key-value validation, 403-404

KVC (key-value coding), 144

KVO (key-value observing), 144

452

interfaces

L

labels, cells, creating, 357

launching Xcode, 12

legacy class declaration, 68

Legacy Class Declaration listing

(3.1), 68-69

Legacy Class Declaration with

Accessors listing (3.2), 69

legacy versions, Objective-C, 64

libraries, 35-38

adding code snippets, 38-40

file templates, 35-37

Media, 40

Object, 40

SQLite, 156

Library folder, Go menu, adding

to, 193

library/shoebox apps, 154, 291

iOS, creating, 299-305

Mac OS, creating, 292-299

lightweight migration, 423

automatic, data models,

432-434

LIKE string, 174

linking entities with relationships,

107-108

list elements, moving, 389

listings

Access the Persistent Store

Coordinator, 94-95

Accessing the Fetched

Results Controller,

97-98

Accessing the Managed

Object Model, 95

Add a Detail Disclosure

Accessory to Row, 414-415

Add a New Field to

insertNewObject, 218

Adopting the

UISplitViewControllerDelegate

Protocol, 79

AppDelegate.h for a Core

Data Project, 92

applicationDocumentsDirectory

(iOS), 114

applicationFilesDirectory (Mac

OS), 113

cellForRowAtIndexPath, 352

Change setValue: forKey, 229

Change the Attribute for the

Sort Descriptor, 229

Change the Entity for the

Fetched Result

Controller, 227

Change valueForKey in

configureCell, 229

Class from i.e

RootViewController.m, 80

configureView, 284

Create a Predicate with a

Format String, 184

Create a Predicate with a

Format String and Runtime

Data, 184

Creating a Fetch Request, 160

Creating a Managed Object

Context, 159

Creating a Popover View

Controller, 417

Customer.h, 333

Customer.m, 334

Defining the Protocol, 77

didSelectRowAtIndexPath, 251

Executing a Fetch

Request, 161

Existing Private Declaration in

DetailViewController.m, 330

Getter for

managedObjectContext in

AppDelegate.h, 93

Getter for numberFormatter,

330

Handle the Tap in the

Selected Row, 415

Handling the Move, 389

Header for a Custom

NSManagedObject

Class, 384

Header for a Document-based

Mac OS App, 308

Hello, World, 8

Implementation for a Custom

NSManagedObject

Class, 385

Implementation for a

Document-based Mac OS

App, 309-311

Implementation of the

Protocol with a Navigation

Bar, 78

Implementation of the

Protocol with a Toolbar, 78

Implementing the Mac OS

App Delegate, 295-299

insertNewObject As It Is in

the Template, 216

Interface for

DetailViewController with

Table View, 349

How can we make this index more useful? Email us at indexes@samspublishing.com

listings

453

iOS App Delegate

Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,

68-69

Legacy Class Declaration with

Accessors, 69

Marking Protocol Methods

Required or Optional, 77

MasterViewController.h, 211

Modern Class Declaration, 69

Moving Related Objects into a

Mutable Array, 388

Moving the Top-Level Objects

into a Mutable Array, 387

MyDocument.h, 396

MyDocument.m, 397-398

numberOfRowsInSection, 351

Opening a Persistent Store,

433-434

Place.h, 88

Place.m, 89

prepareForSegue in

MainViewController.m, 250

Protocol Adoption with a

Navigation Bar, 77

Protocol Adoption with a

Toolbar, 77

saveNameData, 285

Saving the Data, 390

Set Section Header and

Footer Titles, 354-355

Set the New View

Controller, 415

setDetailItem, 276

Setting Up the App

Delegate, 294

Setting Up the Fetch Request,

377-378

Styling Cells, 356-357

Swapping the View, 245

Synthesize Directives to

Match Listing 3.3, 70

Synthesize the Core Data

Stack Properties, 93

Transforming an Image to and

from NSData, 141

Use a Predicate Template

with Hard-coded Data, 183

Use a Predicate Template

with Runtime Data, 183

Use More than One

Section, 354

Using a Private Variable in a

Property, 71

Using a Sort Descriptor, 186

viewWillAppear, 273

viewWillDisappear, 274

literals, predicates, 173

load-a-chunk design pattern, 155

load-then-process design

pattern, 155

loading mutable arrays, 386-388

localizedModel property

(UIDevice), 190

log navigator, 25

logical operators, predicates,

171-173, 176-177

arrays, 175-176

comparison operators,

173-175

constructing, 177-183

format strings, 177, 184

identifiers, 173

literals, 173

syntax, 173-175

M

Mac OS

app structure, 292

apps

creating, 56-58

exploring, 58-59

integrating views and

data, 147-150

development process, 258

document-based applications,

creating, 305-311

free validation, summarizing,

401-402

interfaces, 339-344

features, 163-165

library/shoebox apps,

creating, 292-299

modal windows, 419-421

NSTableView

building app, 366-372

new features, 363-365

sheets, 419-421

system preferences, 339-344

table views, comparing,

337-338

user interaction, 338-339

validation, 394-402

programming, 402-406

versions, 190

Mac OS X, semi-hidden files,

110-115

454

listings

macros, Interface Builder editor,

230-231

managed objects, 91, 133

adding, 272-273

context, saving, 274

contexts, 90-91, 148,

153, 158

creating, 158-159

NSManagedObject

creating subclasses of,

331-334

overriding, 134-140

transformations, 136,

140-141

validation, 136

managedObjectContext, 400

many-to-many relationships, 127

mapping

migration, 424

models, 434-437

Marking Protocol Methods

Required or Optional listing

(3.7), 77

master views, 258

Master-Detail App, creating,

263-267

Master-Detail Application tem-

plate, 242, 343-344, 409-410

repurposing, 223-230

Master-Detail template,

166-167, 263

MasterViewController, 97

outlets, 225-226

MasterViewController.h listing

(12.1), 211

MATCHES string, 174

Media library, 40

messaging, Objective-C, 73-75

methods

NSDictionary, 172

protocols, 442

saveAction, 293

saveNameData, 285

table view, implementing,

350-357

viewWillAppear, 269, 273

viewWillDisappear, 269

windowWillReturnUndo

Manager, 293

metrics, data retrieval,

156-158

migration, 423-424

continuum, 423

data models

automatic lightweight

migration, 432-434

managing, 424-426

lightweight, 423

mapping, 424

modal windows, 419-421

model concept (MVC

(model/view/controller) design

pattern), 82

model property (UIDevice), 190

model/view/controller (MVC)

design pattern. See MVC

(model/view/controller) design

pattern

models, data fields, adding to,

217-221

Modern Class Declaration listing

(3.3), 69

movement, table rows, allowing,

380-382

moving

data, 273-274

table rows, 382-390

Moving Related Objects into

a Mutable Array listing

(21.5), 388

Moving the Top-Level Objects

into a Mutable Array lisitng

(21.4), 387

multitaskingSupported property

(UIDevice), 190

multiuser environments, 312

mutable arrays, loading, 386-388

MVC (model/view/controller)

design pattern, 81-82, 143-144

controlling data, 144

controlling views, 144-147

MyDocument.h lisitng (22.1), 396

MyDocument.m, glue code,

building in, 397-399

MyDocument.m lisitng (22.2),

397-398

N

Name attribute setting (Data

Model inspector), 324

Name entity setting (Data Model

inspector), 321

name property (UIDevice), 190

Name relationship setting (Data

Model inspector), 326

names, entities, setting, 368

How can we make this index more useful? Email us at indexes@samspublishing.com

names, entities, setting

455

naming data models, 101-102

naming conventions, Objective-C,

74-75

navigation bars, 241, 259, 271

navigation controllers, 151

navigation interfaces, 257-262

navigation-based apps

implementing saving,

267-272

interface, finishing, 275-276

managed objects, adding,

272-273

navigator pane (Xcode), 15-25

navigators

breakpoint, 24-25

debug, 23-24

issue, 23

log, 25

project, 16-20

search, 21-22

symbol, 20-21

NeXT, 85, 290

NeXTSTEP, 7

nib file, glue code, building in,

399-401

no action delete rule, 128

non-unique user identifiers, 162

NONE aggregate operator, 174

normalizing data, 106

NSApplicationDelegate protocol,

300

NSDictionary method, 172

NSError, 404-405

NSFormatter, 329

NSKeyValueCoding protocol,

403-404

NSManagedObject, 133, 382-388

creating override, 383

creating subclasses, 331-334

overriding, 134-140

subclasses, matching, 140

transformations, 136,

140-141

using directly, 134

validation, 136

NSManagedObjectContext, 91

NSPersistentDocument, 305

NSPersistentStore, 91

NSSortDescriptor class, 185

NSTableView

apps, building, 366-372

bindings, 366

new features, 363-365

NSWindowDelegate protocol, 293

nullify delete rule, 128

numberFormatter, 330

numberOfRowsInSection listing

(19.2), 351

O

object controllers, 148

Object library, 40

Object library (iOS), 151

object stores

persistent, 90

object-oriented databases, 86

object-oriented programming

Objective-C

classes, 66

instances, 66

objects, 66-68

object-oriented programming

(OOP), 10-11

Objective-C, 64-66

classes, 66

declarations, 82

declared properties, 68-73

delegates, 75-76, 81

instances, 66

legacy versions, 64

messaging, 73-75

MVC (model/view/controller)

design pattern, 81-82

naming conventions,

74-75

object-oriented programming,

66-68

objects, 66-67

purposes, 67-68

properties, synthesizing prop-

erties, 70-72

protocols, 75-80

Objective-C language, 63

object-oriented programming,

Objective-C, 66-68

objects

data encapsulation, 67

document structure area,

204-205

external, iOS, 151

File’s Owner, 201-202

iOS, 151

Mac OS, 148

managed, 91

adding, 272-273

456

naming data models

contexts, 90-91, 148,

153, 158-159

saving context, 274

managed objects,

NSManagedObject, 134-141

Objective-C, 66-68

persistent object stores, 91

placeholders, 201-204

receiving and sending mes-

sages, 67

runtime, 153

state, 67

one-to-many relationships, 127

OOP (object-oriented program-

ming), 10-11

opening persistent stores,

433-434

Opening a Persistent Store listing

(24.1), 433-434

operating systems, versions, 190

operators

aggregate, 174

array, 174

comparison, predicates,

173-175

logical, predicates, 171-183

optimizing interfaces, 162-167

ordered relationships, 442

ordering table rows, 375-380

Organizer window (Xcode), 45-46

orientation property

(UIDevice), 190

outlets, 210-212

DetailViewController,

225-226

File’s Owner, 210-211

IBOutlets, adding fields,

230-231

MasterViewControl, 225-226

referencing, 210, 212-213

overriding NSManagedObject,

134-140

P

page view controllers, 151

panes, workspace window, 14

Parent Entity entity setting (Data

Model inspector), 323

performance, data retrieval,

156-158

persistent object stores, 90-91

persistent stores, 86, 108, 133

Core Data stack, 153

opening, 433-434

types, 108-109

Place entity, 89

Place.h listing (4.1), 88

Place.m listing (4.2), 89

placeholders, 201-204

First Responder, 203

Plural/Cardinality setting (Data

Model inspector), 327

pop-up menu lists, organizing,

27-28

popovers, iOS, 416-418

predicates, 171-173, 176-177

arrays, 175-176

comparison operators,

173-175

constructing, 177-183

data retrieval, 176

format strings, 177, 184

identifiers, 173

literals, 173

syntax, 173-175

templates, 177

hard-coded data, 182-183

runtime data, 183

prepareForSegue, 250

prepareForSegue in

MainViewController.m listing

(14.2), 250

primary keys, hidden, 162

programming validation,

402-406

programming languages. See

Objective-C

Project Builder, 7, 189

project navigator, 16-20

Project navigator (Interface

Builder), 198

projects

building, 52-53

creating, 195-198

storyboards, 239-241

identifying, 52-53

iOS

creating, 53-56

exploring, 58-59

iOS library/shoebox-based

apps, creating, 299-305

Mac

creating, 56-58

exploring, 58-59

Mac OS document-based

apps, creating, 305-311

How can we make this index more useful? Email us at indexes@samspublishing.com

projects

457

Mac OS library/shoebox-

based apps, creating,

292-299

Master-Detail App, creating,

263-267

moving data models between,

312-314

renaming, 120

storyboards, setting, 251-252

Projects tab (Organizer

window), 46

properties

declared, 441

declared properties, 64

attributes, 72

Objective-C, 68-73

synthesizing, 70-72

UIDevice, 190-191

Properties setting (Data Model

inspector), 326

Property attribute setting (Data

Model inspector), 324

Protocol Adoption with a

Navigation Bar listing (3.9), 77

Protocol Adoption with a Toolbar

listing (3.8), 77

protocols

methods, 442

Objective-C, 75-80

Protocols submenu (model editor

files), 29

proximityMonitoringEnabled prop-

erty (UIDevice), 190

proximityState property

(UIDevice), 190

proxy objects, 201-204

Q

quality edits, 319, 405-406

Quick Help, 33

records (tables), 87

referencing outlets, 210-213

referential integrity,

preserving, 318

Regular Expression setting (Data

Model inspector), 325

regular expressions, 319, 325

relational databases, 87

relational integrity, 128

relational integrity rules, data

model, 318-319

setting up, 320-327

relationship entities, moving, 389

relationship settings, Data Model

inspector, 325-327

relationships

bidirectional, 127

data models

adding to, 126-131

cardinality, 127

delete rule, 128

entities

linking with, 107-108

rules, 126

many-to-many, 127

one-to-many, 127

ordered, 442

renaming attributes entities,

432-433

renaming project files, 120

Repositories tab (Organizer

window), 45

repurposing templates, 223-230

requests, fetch, 96-98

retrieving data, 154

metrics, 156-158

paradigms, 155

performance, 156-158

Ritchie, Dennis, 8

RootViewController, 79

rows

detail disclosure accessories,

adding, 414-415

tables

allowing movement,

380-382

moving, 382-390

ordering, 375-380

taps, handling, 415

rows (tables), 87

rules

data model, 318-319

setting up, 320-327

validation rules, 317-319

runtime, Core Data, examining,

90-96

runtime objects, 153

S

sample code, 50-52

sandboxes, iOS apps, locating,

192-194

saveAction method, 293

saveNameData listing (16.2), 285

saveNameData method, 285

458

projects

saving

code, 284-286

data, 273-274

managed object context, 274

navigation-based apps,

implementing, 267-272

Saving the Data listing

(21.7), 390

scenes, storyboards, 246

schemas, databases, 424

Seagull, The, 246

search navigator, 21-22

second interface

fields, adding to, 281-284

implementing, 281

sections, table views, 345

segues, storyboards, 246

SELECT statement, 171

semi-hidden files, 110-111

creating, 111-115

iOS, 114

Mac OS X, 110-115

Set Section Header and Footer

Titles listing (19.5), 354-355

Set the New View Controller

listing (23.3), 415

setDetailItem listing (15.3), 276

Setter attribute (declared

property), 72

Setting Up the App Delegate

listing (17.1), 294

Setting Up the Fetch Request

listing (21.1), 377-378

settings, iOS, 339-344

sheets, 161

creating, 419-420

dismissing, 421

Mac OS, 419-421

Siblings submenu (model editor

files), 29

simulator, iOS app sandboxes,

locating, 192-194

Size inspector, 205

SOME aggregate operator, 174

sort descriptors, 185-186

split view controller,

iPad, 250

split view controllers, 151

split view controllers

(iPad), 311

split views, 271-272

SQLite, 90, 96

document types, 306

libraries, 156

standard editing mode

(Xcode), 26

Stanislavski, Constantin, 246

state, objects, 67

statements, SELECT, 171

storyboards, 87, 146, 192,

239-241, 246-251, 442

creating, 251-253

iPad, 247-248

iPhone, 246-247

scenes, 246

setting, 251-252

view controllers, adding and

deleting, 252-253

storyboards, segues, 246

strings

BEGINSWITH, 174

CONTAINS, 174

converting to dates, 216

ENDSWITH, 174

format, predicates, 177, 184

LIKE, 174

MATCHES, 174

structures, apps, 292

styled cells, tables, creating,

355-357

Styling Cells listing (19.6),

356-357

subclasses, NSManagedObject

creating from, 331-334

matching, 140

Subclasses submenu (model

editor files), 29

summarizing free validation, Mac

OS, 401-402

Superclasses submenu (model

editor files), 29

Swapping the View listing

(14.1), 245

swapping views, 248-251

Detail views, 244-245

iOS, 413-415

devices, 241-243

symbol navigator, 20-21

syntax, predicates, 173-175

Synthesize Directives to Match

Listing 3.3 listing (3.4), 70

Synthesize the Core Data Stack

Properties listing (4.4), 93

synthesizing properties, 70-72

system preferences, Mac OS,

339-344

systemVersion property

(UIDevice), 190

How can we make this index more useful? Email us at indexes@samspublishing.com

systemVersion property (UIDevice)

459

T

tab bar controllers, 151

table view controllers (iOS), 151

table views, 345

accessory view, 345

adding, 369

cells, 345

fields, removing, 345-349

interface, removing, 345-349

methods, implementing,

350-357

sections, 345

table views (Interface Builder

editor), 199-200

tables, 87

cells

creating labels, 357

styled, 355-357

footer titles, setting, 354-355

header titles, setting,

354-355

multiple sections, 354

rows

allowing movement,

380-382

moving, 382-390

ordering, 375-380

templates, 52

Master-Detail Application,

166-167, 242, 263,

343-344, 409-410

predicates, 177

hard-coded data, 182-183

runtime data, 183

repurposing, 223-230

testing free validation, 401-402

text editor (Xcode), 40-45

code completion, 43-45

editing preferences, setting,

40-43

Fix It, 40, 43-45

text fields, interfaces, adding to,

217-221

“Three Little Pigs”, 246

trace connections, 149

transformations,

NSManagedObject, 136,

140-141

Transforming an Image to and

from NSData listing (7.1), 141

tree controllers, 149

type conflict issue, 328-329

solving, formatters, 329-331

type qualifiers, Interface Builder

editor, 230-231

U

UIApplicationDelegate

protocol, 300

UIDevice, properties, 190-191

UIResponder, 300

UISplitViewControllerDelegate, 79

UITableView

accessory view, 345

cells, 345

fields, removing, 345-349

interface, removing,

345-349

iOS, 337-345

using with Core Data,

357-359

using without Core Data,

344-357

methods, implementing,

350-357

sections, 345

UIUserInterfaceIdiom, 231

unique user-visible identifiers,

generating, 162

universal apps, creating,

190-192, 279-281

Use a Predicate Template with

Hard-coded Data listing

(10.1), 183

Use a Predicate Template with

Runtime Data listing

(10.2), 183

Use More than One Section

listing (19.4), 354

user defaults controllers, 149

user interaction, 338-339

user interface, Core Data, 195

user-visible identifiers,

generating, 162

userInfo property (NSError), 405

userInterfaceIdiom property

(UIDevice), 190

users

communicating with, 413-418

editing data, 409

Using a Private Variable in a

Property listing (3.5), 71

Using a Sort Descriptor listing

(10.5), 186

utilities

inspectors, 31-34

460

tab bar controllers

libraries, 35-38

code snippet, 38-40

file templates, 35, 37

V

validation

free, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

inter-property, 405-406

key-value, 403-404

Mac OS, 394-402

managing, 393-394

NSManagedObject, 136

programming, 402-406

validation rules, data model,

317-319

setting up, 320-327

Validation setting (Data Model

inspector), 325

validity edits, 319

valueForKey, 134-136

version editing mode (Xcode), 26

versions, data models, 426-430

creating, 426-430

determining compatibility,

430-431

forcing incompatibility, 432

view concept (MVC

(model/view/controller) design

pattern), 82

view controllers

creating, 244

iOS, 151

Mac OS, 148

popover, 417

setting, 415

storyboards, adding and

deleting, 252-253

View Effects inspector, 205

View menu commands, Welcome

to Xcode, 50

views

changed, 413

controlling, 144-147

Detail, swapping, 244-245

integrating

iOS, 151

Mac OS, 147-150

swapping, 248-251

iOS, 413-415

iOS devices, 241-243

viewWillAppear, 284

viewWillAppear listing (15.1), 273

viewWillAppear method,

269, 273

viewWillDisappear method,

284-285

viewWillDisappear listing

(15.2), 274

viewWillDisappear method, 269

viewWillDisappearAndBeSaved,

284

W

WebObjects, 156

Welcome to Xcode command, 50

WHERE clauses, 171-173

windows (modal)

creating, 421

dismissing, 421

Mac OS, 419-421

windowWillReturnUndoManager

method, 293

workspace window (Xcode),

13-15

areas, 14

bars, 14

breakpoint gutters, 14

filter bar, 14

Focus ribbon, 14

navigator pane, 15-25

panes, 14

Worldwide Developers

Conference, 64

X

xcdatamodeld files, 313

Xcode, 8, 13, 49-50

automatic installation, 12

code samples, 50-52

control-drag, building inter-

faces, 232-236

Core Data model editor, 86

declarative programming para-

digms, 9-10

document structure area, 199

editing modes, 25-30

editing window, 31

fetch requests, creating,

178-183

How can we make this index more useful? Email us at indexes@samspublishing.com

Xcode

461

files, identifying, 52-53

imperative programming

paradigms, 9-10

jump bar, 294-295, 301

launching, 12

Master-Detail template, 263

navigator pane, 15-25

breakpoint navigator,

24-25

debug navigator, 23-24

issue navigator, 23

log navigator, 25

project navigator, 16-20

search navigator, 21-22

symbol navigator,

20-21

organization tools, 28-29

Organizer window, 45-46

predicates, constructing,

177-183

projects

building, 52-53

identifying, 52-53

iOS, 53-56, 58-59

Mac, 56-59

storyboards, 192

templates, 52

text editor, 40-45

code completion, 43-45

Fix It, 40, 43-45

setting editing

preferences, 40-43

workspace window, 13-15

Xcode 4, 7

462

Xcode

	Table of Contents
	Introduction
	Who Should Read This Book
	Some Points to Keep in Mind
	How This Book Is Organized

	HOUR 3: Understanding the Basic Code Structure
	Working with the Code
	Looking at Object-Oriented Programming in the Context of Objective-C
	Using Declared Properties
	Messaging in Objective-C
	Using Protocols and Delegates
	Using the Model/View/Controller Concepts
	Importing and Using Declarations in Files
	Summary
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	V
	W
	X

