
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335754
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335754
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335754
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335754
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335754/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana, 46240 USA

24in

Hours

SamsTeachYourself

Java™

Sixth Edition

Sams Teach Yourself Java™ in 24 Hours, Sixth Edition

Copyright © 2012 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33575-4
ISBN-10: 0-672-33575-1

Library of Congress Cataloging-in-Publication Data:

Cadenhead, Rogers.

Sams teach yourself Java in 24 hours / Rogers Cadenhead.

p. cm.

ISBN-13: 978-0-672-33575-4 (pbk.)

ISBN-10: 0-672-33575-1 (pbk.)

1. Java (Computer program language) I. Title.

QA76.73.J38C335 2012

005.13’3—dc23

2011038994

Printed in the United States of America

Second Printing: February 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or enti-
ty with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

UU..SS.. CCoorrppoorraattee aanndd GGoovveerrnnmmeenntt SSaalleess
11--880000--338822--33441199
ccoorrppssaalleess@@ppeeaarrssoonntteecchhggrroouupp..ccoomm

For sales outside the United States, please contact
IInntteerrnnaattiioonnaall SSaalleess
iinntteerrnnaattiioonnaall@@ppeeaarrssoonn..ccoomm

Acquisitions Editor

Mark Taber

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor
Charlotte Kughen,
The Wordsmithery LLC

Indexer

Larry Sweazy

Proofreader
Apostrophe Editing
Services

Technical Editor

Boris Minkin

Publishing Coordinator

Vanessa Evans

Book Designer

Gary Adair

Compositor

TnT Design, Inc

Contents at a Glance
Introduction

Part I: Getting Started
Hour 1: Becoming a Programmer 3

2 Writing Your First Program 13

3 Vacationing in Java 25

4 Understanding How Java Programs
Work 39

Part II: Learning the Basics of
Programming
5 Storing and Changing Information in a

Program 49

6 Using Strings to Communicate 65

7 Using Conditional Tests to Make
Decisions 79

8 Repeating an Action with Loops 95

Part III: Working with Information in
New Ways
9 Storing Information with Arrays 107

10 Creating Your First Object 121

11 Describing What Your Object Is Like 137

12 Making the Most of Existing Objects 155

Part IV: Programming a Graphical User
Interface
13 Building a Simple User Interface 169

14 Laying Out a User Interface 187

15 Responding to User Input 201

16 Building a Complex User Interface 219

Part V: Moving into Advanced Topics
17 Creating Interactive Web Programs 235

18 Handling Errors in a Program 249

19 Creating a Threaded Program 265

20 Reading and Writing Files 283

Part VI: Writing Internet Applications
21 Reading and Writing XML Data 299

22 Creating Web Services with JAX-WS 313

23 Creating Java2D Graphics 327

24 Writing Android Apps 343

Part VII: Appendixes
A Using the NetBeans Integrated

Development Environment 373

B Where to Go from Here: Java
Resources 381

C This Book’s Website 387

D Setting Up an Android Development
Environment 389

Index 397

Table of Contents

INTRODUCTION 1

PART I: Getting Started

HOUR 1: Becoming a Programmer

Choosing a Language . 4

Telling the Computer What to Do. 5

How Programs Work . 7

When Programs Don’t Work . 8

Choosing a Java Programming Tool 8

Installing a Java Development Tool 9

HOUR 2: Writing Your First Program

What You Need to Write Programs 13

Creating the Saluton Program . 14

Beginning the Program . 14

Storing Information in a Variable . 17

Saving the Finished Product . 18

Compiling the Program into a Class File 19

Fixing Errors. 19

Running a Java Program . 20

HOUR 3: Vacationing in Java

First Stop: Oracle . 25

Going to School with Java . 27

Lunch in JavaWorld . 29

Watching the Skies at NASA . 31

Getting Down to Business . 32

Stopping by Java Boutique for Directions 33

Running Java on Your Phone. 35

HOUR 4: Understanding How Java Programs
Work

Creating an Application . 39

Sending Arguments to Applications 41

Creating an Applet . 42

PART II: Learning the Basics of
Programming

HOUR 5: Storing and Changing Information in
a Program

Statements and Expressions . 49

Assigning Variable Types . 50

Naming Your Variables . 54

Storing Information in Variables . 54

All About Operators . 55

Using Expressions . 59

HOUR 6: Using Strings to Communicate

Storing Text in Strings . 65

Displaying Strings in Programs . 66

Using Special Characters in Strings. 67

Pasting Strings Together . 68

Using Other Variables with Strings. 68

Advanced String Handling . 70

Presenting Credits . 72

HOUR 7: Using Conditional Tests to Make
Decisions

if Statements . 79

if-else Statements . 83

switch Statements . 84

The Conditional Operator . 86

Watching the Clock . 87

HOUR 8: Repeating an Action with Loops

for Loops . 95

while Loops . 98

do-while Loops . 99

Exiting a Loop . 100

Naming a Loop . 101

Testing Your Computer Speed . 102

Contents v

PART III: Working with Information in
New Ways

HOUR 9: Storing Information with Arrays

Creating Arrays . 108

Using Arrays. 109

Multidimensional Arrays . 111

Sorting an Array . 111

Counting Characters in Strings . 113

HOUR 10: Creating Your First Object

How Object-Oriented Programming Works 121

Objects in Action . 122

What Objects Are . 124

Understanding Inheritance . 125

Building an Inheritance Hierarchy 125

Converting Objects and Simple Variables 127

Creating an Object . 132

HOUR 11: Describing What Your Object Is
Like

Creating Variables . 137

Creating Class Variables . 139

Creating Behavior with Methods 140

Putting One Class Inside Another 146

Using the this Keyword . 147

Using Class Methods and Variables. 148

HOUR 12: Making the Most of Existing Objects

The Power of Inheritance . 155

Establishing Inheritance . 157

Working with Existing Objects . 159

Storing Objects of the Same Class in Vectors 160

Creating a Subclass . 164

PART IV: Programming a Graphical User
Interface

HOUR 13: Building a Simple User Interface

Swing and the Abstract Windowing Toolkit 169

Using Components . 170

Creating Your Own Component . 180

HOUR 14: Laying Out a User Interface

Using Layout Managers . 187

Laying Out an Application . 192

HOUR 15: Responding to User Input

Getting Your Programs to Listen 201

Setting Up Components to Be Heard 202

Handling User Events . 202

Completing a Graphical Application 207

HOUR 16: Building a Complex User Interface

Scroll Panes. 219

Sliders . 222

Change Listeners . 223

Using Image Icons and Toolbars 227

PART V: Moving into Advanced Topics

HOUR 17: Creating Interactive Web Programs

Standard Applet Methods. 235

Putting an Applet on a Web Page 238

Creating an Applet . 239

Sending Parameters from a Web Page 242

Handling Parameters in an Applet 243

Using the Object Tag . 245

HOUR 18: Handling Errors in a Program

Exceptions . 249

Throwing Exceptions . 256

Throwing and Catching Exceptions 258

HOUR 19: Creating a Threaded Program

Threads . 265

Working with Threads . 270

Starting with init() . 272

Catching Errors as You Set Up URLs 272

Handling Screen Updates in the paint()
Method . 273

Starting the Thread . 274

Handling Mouse Clicks . 276

Displaying Revolving Links . 276

Sams Teach Yourself Java in 24 Hours, Sixth Editionvi

HOUR 20: Reading and Writing Files

Streams . 283

Writing Data to a Stream . 290

Reading and Writing Configuration Properties . . 292

PART VI: Writing Internet Applications

HOUR 21: Reading and Writing XML Data

Creating an XML File . 299

Reading an XML File . 302

Reading RSS Syndication Feeds 307

HOUR 22: Creating Web Services with JAX-WS

Defining a Service Endpoint Interface 313

Creating a Service Implementation Bean 316

Publishing the Web Service . 317

Using Web Service Definition Language Files 318

Creating a Web Service Client. 320

HOUR 23: Creating Java2D Graphics

Using the Font Class. 327

Using the Color Class . 328

Creating Custom Colors . 329

Drawing Lines and Shapes . 329

Baking a Pie Graph . 333

HOUR 24: Writing Android Apps

Introduction to Android . 343

Creating an Android App . 345

Running the App . 352

Designing a Real App . 355

PART VII: Appendixes

APPENDIX A: Using the NetBeans Integrated
Development Environment

Installing NetBeans . 373

Creating a New Project . 374

Creating a New Java Class . 376

Running the Application . 378

Fixing Errors . 378

APPENDIX B: Where to Go from Here: Java
Resources

Other Books to Consider . 381

Oracle’s Official Java Site . 382

Other Java Websites . 383

Job Opportunities . 385

APPENDIX C: This Book’s Website 387

APPENDIX D: Setting Up an Android
Development Environment

Getting Started. 389

Installing Eclipse . 390

Installing Android SDK . 390

Installing the Android Plug-in for Eclipse 391

Setting Up Your Phone . 394

INDEX 397

About the Author
Rogers Cadenhead is a writer, computer programmer, and web developer who has written more
than 20 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days. He
maintains the Drudge Retort and other websites that receive more than 20 million visits a year.
This book’s official website is at www.java24hours.com.

Dedication
With this edition of the book, I’d like to break from tradition and cheat my family and friends out of
praise, because frankly it’s going to their heads. I dedicate this book to James Gosling, Mike
Sheridan, Kim Polese, Bill Joy, and the others who launched the first version of this amazing program-
ming language back in 1995. A language I was once surprised to see running on a web page is now
running apps on millions of Android phones around the world—a testimonial to the visionary work
you did at the late Sun Microsystems. Long may the purple reign!

Acknowledgments
To the folks at Sams—especially Mark Taber, Songlin Qiu, Tonya Simpson, Charlotte Kughen, and
Boris Minkin. No author can produce a book like this on his own. Their excellent work will give me
plenty to take credit for later.

To my wife, Mary, and my sons, Max, Eli, and Sam. Although our family has not fulfilled my dream
of becoming death-defying high-wire trapeze acrobats, I’m the world’s proudest husband and father
in a household of acrophobics.

Reader Acknowledgments
I’d also like to thank readers who have sent helpful comments about corrections, typos, and
suggested improvements to the book. The list includes Brian Converse, Philip B. Copp III, Wallace
Edwards, M.B. Ellis, Kevin Foad, Adam Grigsby, Mark Hardy, Kelly Hoke, Donovan Kelorii, Russel
Loski, Jason Saredy, Mike Savage, Peter Schrier, Gene Wines, Jim Yates, and others who shall
remain nameless because they helped me improve the book before I started this list.

www.java24hours.com

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we’re doing right, what we could do better, what areas you’d like to see
us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or email address. I will carefully review your comments and share them with the author and
editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Mark Taber
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

As the author of computer books, I spend a lot of time lurking in the com-
puter section of bookstores, observing the behavior of readers while I’m
pretending to read the latest issue of In Touch Weekly magazine.

Because of my research, I’ve learned that if you have picked up this book
and turned to the introduction, I have only 12 more seconds before you
put it down and head to the coffee bar for a double-tall-decaf-skim-with-
two-shots-of-vanilla-hold-the-whip latte.

So I’ll keep this brief: Computer programming with Java is easier than it
looks. I’m not supposed to tell you that because thousands of program-
mers have used their Java skills to get high-paying jobs in software devel-
opment, web application programming, and mobile app creation. The last
thing any programmer wants is for the boss to know that anyone who has
persistence and a little free time can learn this language, the most popular
programming language in use today. By working your way through each
of the one-hour tutorials in Sams Teach Yourself Java in 24 Hours, you’ll be
able to learn Java programming quickly.

Anyone can learn how to write computer programs—even if they can’t
program a DVR. Java is one of the best programming languages to learn
because it’s a useful, powerful, modern technology that’s embraced by
thousands of programmers around the world.

This book is aimed at nonprogrammers, new programmers who hated
learning the subject, and experienced programmers who want to quickly
get up to speed with Java. It uses Java 7, the version of the language just
released.

Java is an enormously popular programming language because of the
things it makes possible. You can create programs that feature a graphical
user interface, design software that makes the most of the Internet, read
XML data, create a game that runs on an Android cell phone, and more.

2

This book teaches Java programming from the ground up. It introduces the
concepts in English instead of jargon with step-by-step examples of work-
ing programs you will create. Spend 24 hours with this book and you’ll be
writing your own Java programs, confident in your ability to use the lan-
guage and learn more about it. You also will have skills that are becoming
increasingly important—such as network computing, graphical user inter-
face design, and object-oriented programming.

These terms might not mean much to you now. In fact, they’re probably
the kind of thing that makes programming seem intimidating and difficult.
However, if you can use a computer to balance your checkbook, or create a
photo album on Facebook, you can write computer programs by reading
Sams Teach Yourself Java in 24 Hours.

At this point, if you would rather have coffee than Java, please reshelve
this book with the front cover facing outward on an endcap near a lot of
the store’s foot traffic.

WHAT YOU’LL LEARN IN
THIS HOUR:

. The History of Java

. Benefits of using the
language

. Examples of Java at work

. An explanation of object-
oriented programming

Before you venture further into Java programming, it’s worthwhile to learn
more about the language and see what programmers are doing with it
today. Though Java has outgrown its origins as a language focused on web
browser programs, you can still find some interesting examples of how
Java is used on the Web.

During this hour, we take a look at sites that feature Java programs and
talk about the history and development of the language.

To go on this vacation, you need a web browser that has been set up to run
Java programs.

Load your browser of choice, put on your best batik shirt, and get ready to
take a vacation. You won’t be leaving your house, and you won’t experi-
ence the simpler pleasures of tourism, such as reckless cab drivers, exotic
food, exotic locals, exotic locals with food, and so on. Look on the bright
side though: no traveler’s check hassles, no passports, and no
Montezuma’s revenge.

First Stop: Oracle
The Java vacation begins at www.java.com, a site created by Oracle, the
company that owns the Java language.

A Java program that runs as part of a web page is called an applet. Applets
are placed on pages like other elements of a page. A markup language
called HTML defines where the program should be displayed, how big it
is, and what the program does when it runs. Java also enhances the Web in
two other ways: Desktop programs written in Java can be launched from a
web browser, and Java servlets are run by web servers to deliver web
applications.

HOUR 3
Vacationing in Java

www.java.com

26 HOUR 3: Vacationing in Java

Java.com provides a place to learn about how Java is being used. Oracle
also offers a more technically oriented website for Java programmers at
http://www.oracle.com/technetwork/java. This site is the place to find
the latest released versions of NetBeans and the Java Development Kit
along with other programming resources.

A Brief History of Java
Bill Joy, one of the executives at Sun Microsystems when the company cre-
ated Java, called the language “the end result of 15 years of work to pro-
duce a better, more reliable way to write computer programs.” Java’s cre-
ation was a little more complicated than that.

Java was developed in 1990 by James Gosling as a language that would
serve as the brains for smart appliances (interactive TVs, omniscient ovens,
SkyNet military satellites that enslave mankind, and so on). Gosling was
unhappy with the results he was getting by writing programs with a pro-
gramming language called C++. In a burst of inspiration, he holed up in
his office and wrote a new language to better suit his needs.

Oracle’s Java division leads the development of the Java language and relat-
ed software. The Java in Action section of Java.com showcases how Java is
being used on websites, Android phones, and other platforms. Millions of
devices run programs written with Java. Figure 3.1 shows RuneScape, a
massively multiplayer online game powered by Java. You can play the
game for free by using any web browser to visit www.runescape.com.

FIGURE 3.1
The Java-powered online game
RuneScape.

http://www.oracle.com/technetwork/java
www.runescape.com

Going to School with Java 27

Gosling named his new language Oak after a tree he could see from his office
window. The language was part of his company’s strategy to make a fortune
when interactive TV became a multimillion-dollar industry. That still hasn’t
happened today (though Netflix, TiVo, and others are making a game
attempt), but something completely different took place for Gosling’s new
language. Just as Oak was about to be scrapped, the Web became popular.

In a fortuitous circumstance, many qualities that made Gosling’s language
good on its appliance project made it suitable for adaptation to the Web. His
team devised a way for programs to be run safely from web pages and a
catchy new name was chosen to accompany the language’s new purpose: Java.

Although Java can be used for many other things, the Web provided the show-
case it needed. When the language rose to prominence, you had to be in soli-
tary confinement or a long-term orbital mission to avoid hearing about it.

There have been eight major releases of the Java language:

. Fall 1995: Java 1.0—The original release

. Spring 1997: Java 1.1—An upgrade that improved support for graphi-
cal user interfaces

. Summer 1998: Java 2 version 1.2—A huge expansion, making the lan-
guage a general-purpose programming language

. Fall 2000: Java 2 version 1.3—A release for enhanced multimedia

. Spring 2002: Java 2 version 1.4—An upgrade of Internet support,
XML capabilities, and text processing

. Spring 2004: Java 2 version 5—A release offering greater reliability
and automatic data conversion

. Winter 2006: Java 6—A upgrade with a built-in database and web
services support

. Summer 2011: Java 7—The current release, which adds new core lan-
guage improvements, memory management improvements, and the
Nimbus graphical user interface

Going to School with Java
The Web includes numerous resources for educators and schoolchildren.
Because Java programs can offer a more interactive experience than standard
web pages, some programmers have used the language to write learning pro-
grams for the Internet.

NOTE

You might have heard that Java
is an acronym that stands for
Just Another Vague Acronym.
You also might have heard that
it was named for the Gosling’s
love of coffee. The story behind
Java’s naming contains no
secret messages or declara-
tions of liquid love. Java was
chosen as the name for the
same reason that comedian
Jerry Seinfeld likes to say the
word salsa: It sounds cool.

28 HOUR 3: Vacationing in Java

For one such example, visit http://www.cs.ubc.ca/~van/sssjava to access a
ski jump simulator created by Michiel van de Panne, a computer science pro-
fessor at the University of British Columbia. The program uses Java to
demonstrate physics-based animation as a skier tries several different slopes
and jumps. The motion of the skier is controlled by moving a mouse one of
eight directions, each of which affects the success of a jump. Figure 3.2 shows
one run of the program right before my virtual skier met a gruesome end.

FIGURE 3.2
A ski-jump simulator can be experi-
enced interactively on the Web
using a Java program.

Numerous educational programs are available for many different operat-
ing systems, but one thing that makes this program stand out is its avail-
ability. The simulator is run directly from a web page. No special installa-
tion is needed, and, unlike most desktop software, it isn’t limited to a par-
ticular operating system. You can run Java programs on any computer that
has a Java Virtual Machine (JVM).

The JVM loaded by a browser is the same one used to run the Saluton pro-
gram during Hour 2, “Writing Your First Program.” A browser’s JVM only
can run Java programs that are set up to run on web pages and cannot
handle programs set up to run elsewhere, such as in a file folder.

The first browsers to support Java included a built-in JVM. Today,
browsers support Java by relying on the Java Plug-in, a JVM that works as
a browser enhancement.

TIP

Oracle includes the Java Plug-in
with the JDK and other prod-
ucts, so it might already be
installed on your computer. To
check if Java is installed, visit
the www.java.com website. The
“Do I Have Java?” link can
detect the presence of Java.

http://www.cs.ubc.ca/~van/sssjava
www.java.com

Lunch in JavaWorld 29

A Java program, such as the ski-jump simulator, does not have to be written
for a specific operating system. Because operating systems like Windows
also are called platforms, this advantage is called platform independence. Java
was created to work on multiple systems. Originally, Java’s developers
believed it needed to be multiplatform because it would be used on a vari-
ety of appliances and other electronic devices.

Users can run the programs you write with Java on a variety of systems
without requiring any extra work from you. Under the right circumstances,
Java can remove the need to create specific versions of a program for differ-
ent operating systems and devices.

Lunch in JavaWorld
After working up an appetite on the slopes, take a lunch break with JavaWorld,
an online magazine for Java programmers. Visit www.javaworld.com.

JavaWorld offers how-to articles, news stories, and research centers on hot
areas of Java development. One of the advantages of the publication’s web
format is that it can display functional Java programs in conjunction with
articles. Figure 3.3 shows a Java poetry magnet board that accompanies a
tutorial explaining how it is written.

FIGURE 3.3
A JavaWorld how-to article on how
to create a poetry magnet board
includes a working example of the
program.

NOTE

JavaWorld occasionally moves
things around, but at the time
of this writing, you can go
directly to the poetry magnet
board tutorial at www.caden-
head.org/poetry. If that page is
unavailable, use the site’s
search engine to look for the
word “poetry.”

JavaWorld publishes articles and commentary about the language and its
development. One issue that has been hotly debated since Java’s introduc-
tion is whether the language is secure.

www.javaworld.com
www.cadenhead.org/poetry
www.cadenhead.org/poetry

30 HOUR 3: Vacationing in Java

Security is important because of the way Java programs work when they
are placed on a web page. The Java programs you have tried during this
hour were downloaded to your computer. When the program was finished
downloading, it ran on your computer.

Unless you know a whole lot of people, most web pages you visit are pub-
lished by strangers. In terms of security, running their programs isn’t a lot
different than letting the general public come over and borrow your com-
puter. If the Java language did not have safeguards to prevent abuse, its
programs could introduce viruses onto your system, delete files, play the
collected works of Justin Bieber, and do other unspeakable things. Java
includes several different kinds of security to make sure that its programs
are safe when run from web pages.

The main security is provided by restrictions on Java programs running
over the Web:

. No program can open, read, write, or delete files on the user’s system.

. No program can run other programs on the user’s system.

. All windows created by the program are identified clearly as Java
windows.

. Programs cannot make connections to websites other than the one
from which they came.

. All programs are verified to make sure that nothing was modified
after they were compiled.

Although there are no guarantees, the language has been proven to have
enough safeguards to be usable over the Web.

The Java language also offers a more flexible security policy for programs
that run in a browser. You can designate some companies and program-
mers as trusted developers, which enables their Java programs to run in
your browser without the restrictions that normally would be in place.

This system of trust is established through the use of signed applets that
have digital signatures, files that clearly identify the author of a Java pro-
gram. These signatures are created in collaboration with independent veri-
fication groups such as VeriSign.

If you ever have authorized a program to run in a browser such as Internet
Explorer or Google Chrome, you have worked with a similar system of
trust and identity verification.

Watching the Skies at NASA 31

Applets can still be useful today, but over the years other technology, such
as Flash, Silverlight, and HTML5, have been employed for web
page–based programs. Java is more commonly encountered on mobile
apps, server programs, and desktop software.

Watching the Skies at NASA
The first afternoon stop on the Java tour is a trip to NASA, a U.S. govern-
ment agency that makes extensive use of Java. One of the most popular
examples is SkyWatch, an applet that helps stargazers keep an eye out for
orbiting satellites. Load it in your browser by visiting www.cadenhead.
org/nasa; you are forwarded automatically to NASA’s SkyWatch site.

SkyWatch superimposes the current location and path of eight different
satellites—which you can add or drop from view—over a globe of the
world. The applet running in Figure 3.4 shows the SEASAT-1 satellite mak-
ing a patch from the Bootes constellation to the Hercules constellation.

FIGURE 3.4
NASA’s SkyWatch applet monitors
the location and path of orbiting
satellites, a boon to metal bird-
watchers.

The applet redraws the position of each tracked satellite as it runs. This
kind of real-time update is possible because the Java language is multi-
threaded. Multithreading is a way for the computer to do more than one
thing at the same time. One part of a program takes care of one task, anoth-
er part takes care of a different task, and the two parts can pay no attention
to each other. Each part of a program in this example is called a thread.

www.cadenhead.org/nasa
www.cadenhead.org/nasa

32 HOUR 3: Vacationing in Java

In a program such as SkyWatch, each satellite could run in its own thread.
If you use an operating system such as Windows 7, you’re using a type of
this behavior when you run more than one program at the same time. If
you’re at work playing Desktop Tower Defense in one window while
running a company sales report in another window and making a long-
distance call to a friend, congratulate yourself—you’re multithreading!

Getting Down to Business
At this point in your travels, you might have the impression that Java is
primarily of use to space buffs, atrocious poets, and terrible skiers. The
next stop on our trip shows an example of Java getting down to business.

Direct your web browser to the JTicker website at www.jticker.com.

The publisher of JTicker, a company called Stock Applets, develops Java
programs that display business news headlines and stock quotes for use on
other websites. Figure 3.5 shows a demo of its scrolling stock ticker.

Unlike other stock analysis programs that require the installation of soft-
ware on the computers of each employee who needs access, the use of Java
enables customers of Stock Applets to make the programs available to any-
one with a web browser. All employees have to do is access the company’s
website.

FIGURE 3.5
Java programs from Stock Applets
report stock market prices.

You can think of a program like this stock ticker applet in several different
ways. One is to think of a program as an object—something that exists in

www.jticker.com

Stopping by Java Boutique for Directions 33

the world, takes up space, and has certain things it can do. Object-oriented
programming (OOP), which Java uses (read more in Hour 10, “Creating
Your First Object”), is a way of creating computer programs as a group of
objects. Each object handles a specific job and knows how to speak to other
objects. For example, a stock ticker program could be set up as the follow-
ing group of objects:

. A quote object, which represents an individual stock quote

. A portfolio object, which holds a set of quotes for specific stocks

. A ticker object, which displays a portfolio

. An Internet object, a user object, and many others

Under that model, the stock ticker software is a collection of all the objects
necessary to get work done.

OOP is a powerful way to create programs, and it makes the programs you
write more useful. Consider the stock software. If the programmer wants
to use the quote capabilities of that program in some other software, the
quote object can be used with the new program. No changes need to be
made.

Stopping by Java Boutique for
Directions
This world tour of Java programs is being led by a professional who is
well-versed in the hazards and highlights of web-based travel. You’ll be
venturing out on your own trips soon, so it’s worthwhile to stop at one of
the best guides for the tourist who wants to see Java: Java Boutique at
http://javaboutique.internet.com.

Java Boutique features a directory of Java programs and programming
resources related to the language. One of the best uses of the site for pro-
grammers is to see what programs are available that offer source code. In
case you’re unfamiliar with the term, source code is another name for the
text files that are used to create computer programs. The Saluton.java file
you developed during Hour 2 is an example of source code.

The Source Code link on the Java Boutique’s home page lists the programs
in the site’s directory that include their source code.

http://javaboutique.internet.com

34 HOUR 3: Vacationing in Java

One of the programs whose source code is available is Aleksey
Udovydchenko’s Absolute, a space videogame in which you control a ship
and blast your way through an asteroid field (see Figure 3.6). The game
features scrolling animation, graphics, keyboard control, and sound. To
learn more and play the game, visit http://javaboutique.internet.com/
Absolute.

FIGURE 3.6
Source code for Java programs
such as Aleksey Udovydchenko’s
space shoot-’em-up Absolute can
be found using Java Boutique.

NOTE

Gamelan’s Java Applet Ratings
Service (JARS), a directory of
browser-based Java programs
and other resources available
at www.jars.com, often includes
programs that are accompanied
by the source code used to cre-
ate them. The language has
been adopted by thousands of
programmers around the world,
partially because of the simplic-
ity of the language.

The entire Absolute program was written in just more than 700 lines of
code. That’s an extremely small number, considering everything the pro-
gram does. Java includes an extensive library of classes you can use in
your own programs. Udovydchenko employs a class called Image to dis-
play graphics such as asteroids and an AudioClip class to play sounds
such as laser fire and explosions.

One goal of Java’s design was to make it easier to learn than C++, the lan-
guage Gosling was having fits with on his smart-appliance project. Much
of Java is based on C++, so programmers who have learned to use that lan-
guage find it easier to learn Java. However, some of the elements of C++
that are the hardest to learn and use correctly are not present in Java.

For people learning programming for the first time, Java is easier to learn
than C++. Some languages are created to make it easier for experienced
programmers to harness the capabilities of the computer in their programs.

http://javaboutique.internet.com/Absolute
http://javaboutique.internet.com/Absolute
www.jars.com

Running Java on Your Phone 35

These languages include shortcuts and other features that programming
veterans easily understand.

Java does not use some of these features, preferring to make the language as
simple as an object-oriented programming language can be. Java was creat-
ed to be easy to learn, easy to debug, and easy to use Java includes numer-
ous enhancements that make it a worthy competitor to other languages.

Running Java on Your Phone
The last stop on your whirlwind tour of Java is the nearest Google Android
cell phone. Every single program that runs on Android has been pro-
grammed with Java. These mobile programs, which extend the functionali-
ty of the phones, are called apps. One of the most popular apps is a game
called Angry Birds, shown in Figure 3.7.

FIGURE 3.7
Angry Birds and all other Android
apps were created with the Java
language.

You can learn more about this game, if you’re not already familiar with it,
by visiting www.angrybirds.com. (But don’t do it! The game will obliterate
any hope you had of being productive for the rest of the day, week, or
even month—depending on how much you hate fortified pigs.)

Android ends the trip around Java because it’s becoming an incredibly
popular place for the language to be used. After you learn Java, you can
apply your skills developing your own apps using the Android Software
Development Kit (SDK), a free programming toolkit that runs on
Windows, MacOS, and Linux.

www.angrybirds.com

36 HOUR 3: Vacationing in Java

More than 250,000 apps have been created for Android phones and other
devices that run the mobile operating system. You learn more about it in
Hour 24, “Writing Android Apps.”

Summary
Now that the hour-long vacation is over, it’s time to put away your lug-
gage and get ready for a return to actual Java programming.

During the next 21 hours, you will master the basic building blocks of the
Java language, learn how to create your own objects to accomplish tasks in
object-oriented programming, design graphical user interfaces, and much
more.

Unless you’ve stopped reading this book to play Angry Birds.

Workshop 37

Q&A
Q. Why are Java applets no longer popular?

A. When the Java language was introduced in the mid-’90s, most people
were learning the language to write applets. Java was the only way to
create interactive programs that ran in a web browser.

Over the years, alternatives emerged. Macromedia Flash, Microsoft
Silverlight, and the new web publishing HTML5 standard all offer ways
to put programs on web pages.

Applets were hampered by poor loading time and slow support for new
versions of Java by browser developers. A Java plug-in was introduced
that could run the current version of Java in browsers, but by that time
Java had outgrown its origins and was a sophisticated general-purpose
programming language.

Q. What’s a Chris Steak House, and why does Ruth have one?

A. Ruth’s Chris Steak House, the chain of more than 120 upscale steak
restaurants across the United States and a handful of other countries,
has an odd two-first-name name that reveals its humble origins and the
stubborn streak of its founder.

The chain was founded in 1965 as a solitary New Orleans restaurant
owned by Ruth Fertel, a single mother of two sons. Fertel saw a classi-
fied ad offering a restaurant for sale and took out a $22,000 home
mortgage to buy it (equivalent to around $150,000 in present dollars).

She reached a deal to keep the name Chris Steak House with original
owner Chris Matulich, but later had to relocate after a kitchen fire.

Fertel’s contract did not permit her to use the Chris Steak House name
anywhere but the original location, so she renamed it Ruth’s Chris
Steak House. Though she had no restaurant or culinary expertise, the
business was so successful that she began offering it as a franchise
within 12 years. She disregarded several suggestions over the years to
change the name to broaden its appeal.

“I’ve always hated the name,” she once told a reporter for Fortune mag-
azine, “but we’ve always managed to work around it.”

Fertel, who died in 2002, was born on Feb. 5, 1927—the same day
that Matulich opened the steakhouse.

Workshop
If your mind hasn’t taken a vacation by this point, test your knowledge of this
hour with the following questions.

38 HOUR 3: Vacationing in Java

Quiz
1. How did object-oriented programming get its name?

A. Programs are considered to be a group of objects working together.

B. People often object because it’s hard to master.

C. Its parents named it.

2. Which of the following isn’t a part of Java’s security?

A. Web programs cannot run programs on the user’s computer.

B. The identity of a program’s author is always verified.

C. Java windows are labeled as Java windows.

3. What is a program’s capability to handle more than one task called?

A. Schizophrenia

B. Multiculturalism

C. Multithreading

Answers
1. A. It’s also abbreviated as OOP.

2. B. Programmers can use digital signatures and an identity-verification
company such as VeriSign in Java, but it isn’t required.

3. C. This also is called multitasking, but the term multithreading is used
in conjunction with Java because a separately running part of a program
is called a thread.

Activities
Before unpacking your luggage, you can explore the topics of this hour more
fully with the following activities:

. Use the Java Boutique site at http://javaboutique.internet.com to find
out what card games have been developed using the language.

. Visit Oracle’s website for Java users, www.java.com, and click the “Do I
Have Java?” link. Follow the instructions to see whether Java’s present
on your computer. Download and install the most up-to-date version, if
prompted to do so.

Solutions for the activities in this book are presented on the book’s website
at www.java24hours.com.

http://javaboutique.internet.com
www.java24hours.com
www.java.com

This page intentionally left blank

INDEX

+ (plus sign)

addition operator (+), 56

concatenation operator, 68-69

+= operator, 69

–– (decrement operator), 56

- (minus sign), 56

/ (division operator), 56

/ (forward slash) character, 284

// (double slashes), 17

// (two slash characters), 258

= (equal sign), 52, 54

== (equality operator), 81

? (question mark), 86-87

@Override annotation, 314

@WebMethod annotation, 315

A

Absolute program, 34

Abstract Windowing Toolkit. See AWT

access control

definition of, 138

methods, 142

variables, 138

default, 139

private variables, 139

protected variables, 139

NUMERICS

2D graphics, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

PiePanel application, 333

PiePanel.java source
code, 338

PieSlice class, 335-336

rectangles, 331

SYMBOLS

< > (angle brackets), 238

; (semicolon), 17, 22, 102

!= (inequality operator), 81

$ (dollar sign), 54

% operator, 56

’ (single quotation mark), 51, 67

/ (backslash), 67

“ (double quotation mark), 51

> (greater than operator), 81

\n (newline character), 180

(_) (underscore) character, 53

* (multiplication operator), 56

accessor methods, 142

ActionListener interface, 202, 271

actionPerformed() method, 202-203,
212, 276

activities

Hour 1, 12

Hour 2, 24

Hour 3, 38

Hour 4, 48

Hour 5, 64

Hour 6, 77

Hour 7, 94

Hour 8, 106

Hour 9, 119

Hour 10, 136

Hour 11, 154

Hour 12, 168

Hour 13, 186

Hour 14, 200

Hour 15, 218

Hour 16, 233

Hour 17, 248

Hour 18, 264

Hour 19, 281

Hour 20, 297, 311

Hour 21, 326, 342

Activity class, 346

Add Library dialog box, 303

Add Repository dialog box398

Annotations, applying, 314-315

apostrophes (‘), 51

Apple iPhones, 343

APPLET tag (HTML), 238-239

ALIGN attribute, 239

CODE attribute, 239

CODEBASE attribute, 239, 247

HEIGHT attribute, 239

WIDTH attribute, 239

applets, 25, 42, 235

class files, 236

compared to applications, 236

definition of, 25, 39, 235

displaying

drawString() method, 240

paint() method, 236-237

repaint() method, 236

event handling, 201

actionPerformed() method, 202

check boxes, 204

combo boxes, 204

event listeners, 201-202

keyboard events, 206

events, 236

HTML markup, 238-239

initializing, 237-238

Java Boutique, 33-35

JTicker website, 32-33

LinkRotator, 273

methods, 235-236

destroy(), 238

init(), 237-238

paint(), 236-237

repaint(), 236

start(), 238

stop(), 238

object tags, applying, 245-246

parameters

naming, 243

passing, 243

Add Repository dialog box, 391

add() method, 157

add(Component) method, 228

addActionListener() method, 202

addChangeListener() method, 223

adding

emulators, 350

plug-ins, Eclipse, 392

addItemListener() method, 204, 206

addition operator (+), 56

addKeyListener() method, 204

addOneToField() method, 212

addSlice() method, 335

Aggregator application, 307, 309

Agile Java Development with Spring,
Hibernate and Eclipse, 381

ALIGN attribute (APPLET tag), 239

Android

applications

configuring AVDs, 350-351

creating, 345-349

Debug Configurations,
351-352

debugging, 366

design, 355-358

interface design, 359-362

manifest files, 358-359

navigating, 346-348

running, 352-354

writing Java code, 362-368

Java on phones, running, 35

overview, 343-345

phones, configuring, 394-395

plug-ins, installing, 344, 391-393

programming, 389-390

resources, 358

SDKs, 390

Android Virtual Devices. See AVDs

AndroidManifest.xml file, 347,
357-360

Angry Birds application, 35

receiving, 243

ShowWeight applet
example, 244

WeightScale applet example,
243-245

real-word examples, Visible
Human Project website, 27

Revolve, 270

class declaration, 271

error handling, 272

event handling, 276

initializing, 272

screen updates, 273

threads, 274-275

variables, 271

RootApplet, 43-44

SalutonApplet

displaying, 240

HTML markup, 241

source code listing, 240

saving, 7

security, digital signatures, 30

starting, 238

stopping, 238

structure, 43

threaded, 270

class declarations, 271

error handling, 272

event handling, 276

initializing, 272

running, 274-275

screen updates, 273

starting, 274

stopping, 275

variables, 271

WeightScale source code,
243-245

windows, sizing, 239

appletviewers, 44

applications. See also applets

Aggregator, 307, 309

applications 399

ID3Reader, 286-288

Java Boutique, 33-35

KeyViewer.java, 205-206

LeaderActivity, 362-368

LottoMadness, 192-193, 196-197

applet version, 216

event listeners, 208

LottoEvent.java class, 209-211

methods, 212-213

source code listing, 213-215

multithreading, 31

Name

output, 113

source code, 112

NetBeans

running, 378

troubleshooting, 378-380

NewCalculator, 252

NewRoot, 41, 130

Nines, 97

NumberDivider, 254-255

Organizing block statements,
81-83

PageCatalog, 258-261

PieFrame, 338-339

PiePanel, 333

PiePanel.java source code,
338

PieSlice class, 335-336

PlanetWeight, 60-61

PrimeFinder, 268-269

properties.xml, 301

PropertyFileCreator.java, 300

ReadConsole, 289

Root

compiling, 40

source code, 39

running, 7

Saluton

class declarations, 15

class statements, 16

Android

configuring AVDs, 350-351

creating, 345-349

Debug Configurations,
351-352

debugging, 360

design, 355-358

interface design, 359-362

manifest files, 358-359

navigating, 346-348

overview of, 343-345

running, 352-354

writing code, 362-368

Angry Birds, 35

applets, creating, 42-44

arguments, 46

autodialers, 123

Benchmark, 103-104

Calculator, 251

Clock

output, 90

source code, 89-90

ClockFrame, 183

colors, 313, 327

RGB values, 329

setting, 329

compared to applets, 236

compiling, 19, 40

Configurator.java, 294-295

Console, 289

creating, 39-42

Credits, code listing, 72

Crisis, 188-189

definition of, 39

deploying, 394

Fonts, 313, 327

formatting, 192, 196-197

Game

output, 82

source code, 82

compiling, 19

greeting variable, 17-18

line-by-line breakdown, 18

main() block, 16

running, 20

saving, 18

source code, 15

troubleshooting, 19-20

writing, 14-15

SalutonApplet, 241-242

saving, 7

SpaceRemover, 110

SquareRootClient, 320-323

SquareRootServer, 315

SquareRootServerImpl, 316

SquareRootServerPublisher, 318

stock analysis, 32-33

StringLister.java, 162-163

strings, viewing, 66-67

Tool, 228, 230

troubleshooting, 8

Variable

char variables, 51

code listing, 52

floating-point variables, 51

int statement, 50

integer variables, 51

string variables, 51

Virus, 148

class constructor, 143

getSeconds() method, 142

setSeconds() method, 142

showVirusCount(), 144

tauntUser() method, 143

VirusLab

output, 150

source code, 149-150

WeatherStation, 304-307

Wheel of Fortune, 113

character arrays, 115

integer arrays, 115

applications400

Wheel of Fortune application, 113

output, 114

source code, 113

Arrays class, applying, 112-113

/assets, 347

assigning variables

types, 50

values, 54-55

asterisk (*), 56

attributes, 122, 137

ALIGN, 239

CODE, 239

CODEBASE, 239, 247

HEIGHT, 239

HTML, 238

inheritance, 125-126

SRC, 238

WIDTH, 239

autoboxing, 131

autodialers, 123

AVDs (Android Virtual devices),
350-351

AWT (Abstract Windows Toolkit), 169

Insets class, 191-192

B

backslash (/), escape code, 67

backspaces, escape code, 67

BASIC (Beginner’s All Symbolic
Instruction Code), 4, 10

behavior

hierarchy, 125-126

inheritance, 125

Bell, Joshua, 6

Benchmark application, 103-104

benchmarks, 102

BlackBerrys, 343

blank spaces in source code, 22

letterCount array, 115

nested loops, 115

output, 114

source code, 113

writing, 13

applying

annotations, 314-315

arrays, 109

Arrays class, 112-113

Color class, 328

expressions, 59-60

Font class, 327-328

NetBeans, 373

creating new projects, 374-375

formatting classes, 376-377

installing, 373

running, 378

troubleshooting, 378, 380

objects

existing, 159-160

tags, 245-246

Package Explorer, 348

threads, 270, 272

app_name string resource, 349

Arc2D class, 332-333

arcs, drawing, 332-333, 341

arguments, 46

applications, 41

methods, 142-143

ArrayIndexOutOfBoundsException, 250

arrayoutofbounds errors, 109

arrays, 109, 111

declaring, 108

definition of, 107

elements, 108

initial values, 108

multidimensional, 111

sample application, 110

sorting, 111-113

upper limits, checking, 109

block statements, 49, 81-83

blocks, 16-17

books, Java-related, 381

Boole, George, 53

Boolean variables, 53

BorderLayout manager, 190-191

borders, Insets class, 191-192

braces ({}), 16-17, 49, 82, 92

brackets ({}), 82, 92

break statement, 84, 92, 100

breaking loops, 100-101

Browser JAR/Folder dialog box, 303

browsers

Java Plug-in, 28

downloading, 242

buffered input streams, 288-290

Console application, 289

creating, 288

ReadConsole application, 289

reading, 288

bugs, 8. See also debugging

Builder class, 304

buttons, creating, 174-176

bytecode, 284

bytes, 284, 296

C

C++, 5, 10

CableModem class, 133

Cadenhead, Rogers, 381

Cafe au Lait website, 383

Calculator application, 251

calling web services, 323

cannot resolve symbol (error
message), 20

career opportunities, 385

carriage returns, escape code, 67

classes 401

choice lists, event handling, 204. See
combo boxes

choosing programming languages,
interpreted languages, 7

Chrome browser, 44. See also Google;
interfaces

circles, drawing, 332

classes, 122

Activity, 346

Applet methods, 156-157

Arc2D, 332-333

ArrayIndexOutOfBounds
Exception, 250

Arrays, applying, 112-113

CableModem, 133

Color, 329

Console, 289-290

declaring, 15-16

documentation, 382

DslModem, 133

Ellipse2D, 332

encapsulation, 142

Exception, 250

file, 133, 284-285

FileInputStream, 290

FileOutputStream, 290

Graphics, 237

Graphics2D, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

rectangles, 331

hierarchy, 155, 167

inheritance, 125-126, 135,
155-158

inner classes, 146-147

Insets, 191-192

JApplet, 155-156, 235

inheritance, 156-157

methods, 157

subclasses, 157

case

changing strings, 71, 75

sensitivity, variable names, 54

statements, 84

casting, 127

definition of, 127

destinations, 127

objects, 132

sources, 127

variables, 127-128

catch statement, 272, 280

catching

Calculator application, 251-252

DivideNumbers sample
application, 254

errors, 272

exceptions, 249-255

NewCalculator application, 253

NumberDivider sample applica-
tion, 254-255

PageCatalog sample application,
258-261

SumNumbers sample application,
251, 261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

cell phones, 343. See also Android

CENTER tag (HTML), 238

change listeners, 223

ColorSlide sample application, 227

registering objects as, 223-224

changing string case, 71, 75

char variables, declaring, 51, 65

characters

definition of, 51, 65

special, escape codes, 67-68

strings, counting, 113-115

charts, pie, 121

check boxes

creating, 177-178

event handling, 204

checkAuthor() method, 148

JButton, 174

JCheckBox, 177-178

JComboBox, 178-179

JFrame, 171

JLabel, 176-177

JPanel, 180

JScrollPane, 219

JSlider, 222

JTextArea, 179

JTextField, 176-177

Line2D, 330

LottoEvent, 209, 211

methods, 144

Modem, 124, 132

ModemTester, 133-134

nesting, 146

NetBeans, 376-377

objects

looping, 162-163

storing, 160-162

PieSlice, 335-336

Point, 164

Point3D, 164

code listing, 164

creating, 164-165

testing, 165-166

private, 135

R, 363

ReadConsole, 289

Rectangle2D, 331

Revolve, 271

statement, 15-16, 124

subclasses, 126, 133, 157-159,
164-165

superclasses, 126

testing, 165-166

Thread, 265

variables

creating, 139-140

values, 140

Virus, 137

clearAllFields() method402

PageCatalog application, 260

PiePanel.java source code,
336-338

PlanetWeight application, 60

Point3D class, 164

PointTester.java program, 165-166

PrimeFinder application, 268-269

Root application, 40

RootApplet application, 43

Saluton application, 15, 18

SalutonApplet

HTML file, 241

source code, 240

ShowWeight applet, 244

SpaceRemover.java
application, 110

StringLister.java, 162-163

Tool application, 229

Variable application, 52

Virus application, 149

VirusLab application, 149-151

WeightScale applet

HTML file, 245

Java source code, 244

Wheel of Fortune application

output, 114

source code, 114

WriteMail application, 221

CODEBASE attribute

APPLET tag, 239, 247

OBJECT tag, 247

Color class, 328-329

colors, 313, 327

Color class, 328

displaying RGB values, 329

Font class, 327-328

RGB values, 329

setting, 329

ColorSliders application, 227

com object, creating, 124-125

clearAllFields() method, 212

clients, 320-322

Clock application

output, 90

source code, 89-90

ClockFrame application, 183

clocks, 87. See also Clock application

close() method, 291

closing streams, 291

code

annotations, formatting, 314-315

writing Android applications,
362-368

CODE attribute (APPLET tag), 239

code listings

Benchmark application, 103

CableMode class, 133

Calculator application, 251

Clock application, 88-89

ColorSliders application, 224

Commodity program, 85-86

Console application, 289

Credits application, 72-73

Crisis application, 188-189

DslModem class, 133

Game program, 82

HomePage.java, 259

ID3Reader application, 286-288

KeyViewer.java, 205-206

LinkRotator applet, 276-279

LottoEvent.java class, 209, 211

LottoMadness application,
193-195, 213-215

MailWriter application, 220

Modem class, 132

ModemTester class, 133-134

Name application, 112

NewCalculator application, 252

NewRoot application, 41, 130

Nines application, 97-98

NumberDivider application, 254

combo boxes

creating, 178-179

event handling, 204

commands, javac, 40. See also
methods

comments, 17, 22, 304

comparing strings, 70

equal/not equal comparisons, 81

less/greater than comparisons,
80-81

compiled languages, performance, 10

compilers

definition of, 7

javac, error messages, 20

compiling applications, 19, 40

complex for loops, 102

components, 170, 219

arranging, 185

buttons, creating, 174-176

change listeners, 223

ColorSliders sample
application, 227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

ClockFrame application, 183

combo boxes, 178-179, 204

creating, 180-183

disabling, 206-207

enabling, 206-207

frames, 170-171

adding components to, 174

creating, 171, 174

sizing, 172

image icons, 227-228

creating, 227

Tool sample application,
228-230

labels, 176-177

defining 403

Configurator.java application,
294-295

configuring

AVDs (Android Virtual Devices),
350-351

Debug Configurations, 351-352

phones, 394-395

ConfigWriter.java application, 291

Console application, 289

constants, 55

constructor methods, 143

arguments, 144

declaring, 143

inheritance, 144

containers, 170, 180

continue statement, 100

contracts, WSDL (Web Service
Description Language), 318

controlling access. See access control

converting

objects, 127

variables to objects, 129-131

counter variables, 96

counting characters in strings,
113-115

Create Activity checkbox, 346

Create New Library dialog box, 303

createNewFile() method, 285

Credits application code listing, 72

Crisis application, 188-189

currentThread() method, 275

customizing properties, 361

D

Darcey, Lauren, 390

data types. See also type values

Boolean, 53

byte, 52

char, 51

panels, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

WriteMail sample
application, 222

sliders

creating, 222-223

labels, 223

text

areas, 179

fields, 176-177, 198

TextField, 176

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228-230

windows, 170-172, 174

computer speed, testing, 103-104

concatenating strings, 68

concatenation operator (+), 68-69

Conder, Shane, 390

conditionals, 79

Clock application

output, 90

source code, 89-90

if, 79-81, 83, 92

blocks, 81-83

equal/not equal
comparisons, 81

less than/greater than
comparisons, 81

less/greater than
comparisons, 80

if-else, 83

switch, 84, 86

ternary operator (?), 86-87

configuration properties, reading/
writing, 292-295

long, 52

short, 52

String, 17

date/time, displaying, 183

Debug Configurations, creating,
351-352

debugging

Android applications, 357, 366

definition of, 8

OOP applications, 123

phones, 395

declaring

arrays, 108, 111

classes

class statement, 15-16

subclasses, 157-159, 164-165

methods, 141

class methods, 144

constructors, 143

public methods, 142

variables, 17, 50

Boolean, 53

char, 65

char variables, 51

class variables, 139-140

floating-point, 51

integers, 50

long, 52

object variables, 137-138

Revolve applet, 271

Revolve program, 271

short, 52

strings, 51, 66

decrement operator (––), 56

decrementing variables, 56-58

default statement, 84

default.properties file, 348

defining

classes, inner classes, 146-147

services, 313

deleting files404

dollar sign ($), 54

double quotation mark (“), 51

double slashes (//), 17

draw() method, 330

drawing

arcs, 332-333, 341

circles, 332

ellipses, 332

lines/shapes, 329-330

pie graphs, 333

PiePanel.java source code,
338

PieSlice class, 335-336

rectangles, 331

drawRoundRect() method, 331-332

drawString() method, 141, 240

DslModem class, 133

E

EarthWeb’s Java directory, 385

Eclipse

Android plug-ins, 344. See also
Android

installing, 390

plug-ins, 392

projects, creating, 355

editing

NetBeans, 376-377

string resources, 348

XML, 349

editors, text, 13

educational applications, 27

elements, 108

comment, 304

forecastday, 305

initial values, 108

Ellipse2D class, 332

ellipses, drawing, 332

deleting files, 285

deploying

Android applications, 354

applications, 394

Deployment Target Selection
Mode, 352

design

Android, 355-358

interfaces, 359-362

destinations (casting), 127

destroy() method, 238

detecting errors in Android
applications, 357

determining string lengths, 70-71

development history of Java, 27

Development settings, 354

dialects, 302

dialog boxes, Add Repository, 391

digital signatures, 30

disabling components, 206-207

displaying

applets

drawString() method, 240

paint() method, 236-237

repaint() method, 236

colors, 329

pie graphs, 339

revolving links, 279

strings

println() method, 66-67

special characters, 67-68

text areas, 179

variable contents, 18

web services, 323

displaySpeed() method, 124-125

division, 59

division operator (/), 56

do-while loops, 99-101

dockable toolbars, 228

docking toolbars, 230

documentation, 9, 232, 382

else statements, 83

employment opportunities, 385

emulators (Android), configuring,
350-351

enabling components, 206-207

encapsulation, 142

endless loops, 105

Endpoint Interfaces, 317

annotations, 314-315

creating, 313

equal sign (=), 52, 54

equality operator (==), 81

equals() method, 70, 156

error handling, 249

catching exceptions, 249-250

multiple exceptions, 253-255

PageCatalog sample applica-
tion, 258-261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

creating exceptions, 262

ignoring exceptions, 258

memory errors, 262

stack overflows, 262

throwing exceptions, 250,
256-258

PageCatalog sample applica-
tion, 258-261

throw statements, 256

try-catch statements, 272

errors

Android applications, 357

arrayoutofbounds, 109

bugs, 8

cannot resolve symbol
message, 20

exceptions, 109, 117

handling. See error handling

javac error messages, 20

logic errors, 8

NetBeans, 379

frames 405

executing. See starting

existing objects, 159-160

exists() method, 284

exiting loops, 100-101

expressions, 49-50, 55, 59-61. See
also operators

advantages, 60

operator precedence, 58-59

extends statement, 132, 157

extensions (file), .class, 22

F

File class, 284-285

File.pathSeparator, 284

FileInputStream class, 290-292

FileOutputStream class, 290

files

checking existence of, 284

creating, 284

deleting, 285

File class, 284-285

file extensions, .class, 22

finding size of, 285

manifest, Android applications,
358-359

reading

ID3Reader application,
286-288

streams, 285-286

renaming, 285

writing to, 290-291

XML

creating, 299-302

reading, 302-307

RSS syndication feeds, 307-309

fill() method, 330

fillRect() method, 329-331

fillRoundRect() method, 331

finding strings within strings, 71-72

Saluton program, troubleshooting,
19-20

syntax errors, 8

escape codes, 67-68

evaluating expressions, operator
precedence, 59

Evans, Ben, 383

event handling, 201

actionPerformed() method,
202, 276

check boxes, 204

combo boxes, 204

event listeners, 201-202

ActionListener interface, 202

LottoMadness application,
208-211

keyboard events, 206

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

LottoMadness application,
208-209, 211

EventListener interfaces, 201-202

Everlong.mp3 file, 287-288

Exception class, 250

exceptions, 109, 117

ArrayIndexOutOfBounds
Exception, 250

catching, 249-250

multiple exceptions, 253-255

PageCatalog sample applica-
tion, 258-261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

creating, 262

ignoring, 258

NumberFormatException, 253-254

throwing, 250, 256-258

PageCatalog sample
application, 258-261

throw statements, 256

Fisher, Timothy R., 381

float statement, 51

floating-point variables, declaring, 51

FlowLayout manager, 176, 187

folders, viewing, 356. See also files

Font class, applying, 327-328

fonts, 327

for loops, 95-97

complex for loops, 102

counter variables, 96

empty sections, 102

exiting, 100-101

sample application, 97

syntax, 96-97

vectors, 162-163

forecastday element, 305

formatting. See also configuring;
design

annotations, 314-315

applications, 39, 192, 196-197

Android, 345-352

creating applets, 42-44

sending arguments to, 41-42

classes, NetBeans, 376-377

Color class, 328

components, 180-183

Font class, 327-328

interfaces

annotations, 314-315

Endpoint Interfaces, 313

threads, 266

variables, 137-140

web service clients, 320-322

XML files, 299-302

formfeeds, escape codes, 67

forward slash (/) character, 284

frames, 170

adding components to, 174

creating, 170-171

SalutonFrame.java example, 174

sizing, 172

Game application406

Gosling, James, 4, 26, 303, 344, 373

graphics, 330

arcs, 332-333, 341

circles, 332

color, 313, 327

RGB values, 329

setting, 329

ellipses, 332

fonts, 313, 327

Graphics class, 237

icons, 227-228

creating, 227

Tool sample application,
228-230

lines, drawing, 330

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

rectangles, drawing, 331

Graphics class, 237

Graphics2D class, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

rectangles, 331

graphs, pie, 333, 339

PiePanel.java source code, 338

PieSlice class, 335-336

greater than operator, 81

greeting variables

declaring, 17

displaying contents of, 18

GridLayout manager, 189-190

GridLayout() method, 197

GUIs (graphical user interfaces),
170, 219

AWT (Abstract Windowing
Toolkit), 169

buttons, creating, 174-176

change listeners, 223

G

Game application

output, 82

source code, 82

Gamelan website, 385

games

lotto. See LottoMadness
application

running on phones, 35

/gen folder, 347

/gen/org.cadenhead.android/
R.java, 347

get(int) method, 304

getActionCommand() method,
203, 212

getAttribute() method, 304-305

getChildElements() method, 304

getFirstChildElement() method, 304

getId() method, 364

getInsets() method, 192

getKeyChar() method, 205

getKeyCode() method, 205

getKeyText() method, 205

getName() method, 284

getParameter() method, 243

getPort() method, 322

getProperty() method, 293

getSeconds() method, 142

getSource() method, 203, 223

getSquareRoot() method, 315, 320

getStateChange() method, 204

getTime() method, 315

getURL() method, 272

getValue() method, 304-305

getValueIsAdjusting() method, 224

getVirusCount() method, 149

GNU Lesser General Public License
(LGPL), 303

Google

Android. See Android

Chrome browser, 44

ColorSliders sample
application, 227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

ClockFrame application, 183

combo boxes

creating, 178-179

event handling, 204

enabling/disabling components,
206-207

event handling, 201

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

frames, 170

adding components to, 174

creating, 170-171

SalutonFrame.java
example, 174

sizing, 172

image icons, 227-228

creating, 227

Tool sample application,
228, 230

Insets, 191-192

labels, creating, 176-177

layout managers, 187

BorderLayout, 190-191

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample applica-
tion, 192-197

panels, creating, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

interfaces 407

I

I/O (input/output)

streams, 283-284, 299

buffered input streams,
288-290

byte streams, 284

closing, 291

defined, 283-284

reading data from, 285-288

writing data to, 290-291

IceRocket, 383

icons, 227-228

creating, 227

Tool sample application, 228, 230

ID3Reader application, 286-288

IDEs (integrated development environ-
ments), 344, 373

if statements, 79-81, 83, 92

blocks, 81-83

equal/not equal comparisons, 81

less than/greater than compar-
isons, 80-81

if-else statements, 83

ignoring exceptions, 258

ImageIcon constructor, 227

ImageIcon() method, 227

implementing Service
Implementation Beans, 316-317

import statement, 237

incrementing variables, 56-58

indexOf() method, 71-72

inequality operator (!=), 81

infinite loops, 105

InformIT, 384

website, 382

inheritance, 125, 135, 155-157

classes, 155-158

constructors, 144

hierarchy, 125-126

sliders, 222-223

WriteMail sample
application, 222

Swing, 169

text

areas, 179

fields, 176-177

write-protecting, 198

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228, 230

windows, 170-172, 174

H

handling errors. See error handling

Harold, Elliote, 303, 383

HEIGHT attribute (APPLET tag), 239

“Hello world!”, 20

Hemrajani, Anil, 381

hierarchies, Java classes, 155

history of Java, 26-27

HomePage.java listing, 259

horizontal sliders

creating, 222

labels, 223

HTML (Hypertext Markup
Language), 238

angle brackets (< >), 238

APPLET, 238-239

CENTER, 238

P, 238

hyphen (-), subtraction operator, 56

init() block statements, 43

init() method, 237-238, 272

initializing

applets, 237-238, 272

definition of, 105

inner classes, 146-147

input/output. See I/O

Insets class, 191-192

installing

Android

plug-ins, 391-393

SDKs, 390

Eclipse, 390

NetBeans, 373

programming tools, 9

int statement, 50

integers

arrays, creating, 108

variable types, 50

integrated development environ-
ments. See IDEs

Intel, 343

Intent() method, 365

interfaces, 227. See also GUIs

ActionListener, 202, 271

AWT (Abstract Windowing
Toolkit), 169

buttons, 174, 176

ChangeListener, 223

check boxes, 177-178

combo boxes, 178-179

components, 170, 180-183

defined, 201

design, Android applications,
359-362

Endpoint Interfaces

annotations, 314-315

creating, 313

EventListener, 201-202

frames, 170-173

interfaces408

overriding, 157

setBackground(), 157

setLayout(), 157

subclasses, 157

JAR (Java Applet Ratings Service), 34

JARS (Java Review Service), 384

Java 7 Developer Blog, 383

Java Applet Ratings Service. See JAR

Java Boutique website, 33-35

Java Development Kits. See JDKs

Java Development Tools. See JDTs

Java EE 6 Tutorial, The Basic
Concepts, 381

Java Enterprise Edition. See JEE

Java Mobile Edition. See JME

Java Phrasebook, 381

Java Plug-in, 28, 242

Java Review Service, 384

Java Standard Edition. See JSE

Java Virtual Machines. See JVMs

Java website, 382

Javac

commands, 40

compilers, error messages, 20

JavaWorld website, 29-30

javax.xml.ws, 317

JAX-WS library packages, 322

JButton objects, 174

JCheckBox class, 177-178

JComboBox class, 178-179

JDKs (Java Development Kits), 8, 320

applications

Saluton program, 14-15

writing, 13

installing, 9

JDTs (Java Development Tools), 390

JEE (Java Enterprise Edition), 373

Jendrock, Eric, 381

JFrame class, 171

GUIs (graphical user interfaces).
See GUIs

ItemListener, 204

KeyListener, 204, 206

labels, 176-177

layout managers, 187-189

BorderLayout manager,
190-191

BoxLayout manager, 191

GridLayout manager, 189

separating components, 191

NetBeans, 374

panels, 180

Runnable, 265

scroll panes, 219, 222

Service Implementation Bean,
316-317

text areas, 179-180

text fields, 176-177

windows, 170-173

Internet Explorer, 242

interpreted languages, 7, 10

interpreters, 28

definition of, 7

Java Plug-in, 28

ItemListener interface, 204

itemStateChanged() method,
204, 212

iteration, 97. See also loops

iterators, 97

J

JApplet class, 155-156, 235

inheritance, 156-157

methods

add(), 157

equals(), 156

JLabel class, 176-177

JME (Java Mobile Edition), 373

job opportunities, 385

Joy, Bill, 26

JPanel class, 180

JScrollPane class, 219

JScrollPane() method, 219

JSE (Java Standard Edition), 373

JSlider class, 222

JSlider() method, 222

JTextArea class, 179

JTextField class, 176-177

JTicker website, 32-33

JToolBar() method, 228

JVMs (Java Virtual Machines), 20, 28

K

keyboards, event handling, 206

KeyListener interface, 204-206

KeyViewer.java application, 205-206

keywords, this, 147-148

L

Label() method, 176

labels

creating, 176-177

sliders, 223

languages

OOP. See OOP

selecting, 4-5

layout managers, 187

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample application,
192-197

methods 409

PropertyFileCreator.java applica-
tion, 300

SalutonFrame.java application, 173

SquareRootClient application,
320-323

SquareRootServer application, 315

SquareRootServerImpl.
application, 316

SquareRootServerPublisher appli-
cation, 318

WeatherStation.java application,
305-307

Web Service Description
Language Contract
application, 319

lists, choice lists, 204

load() method, 292

loading applets, 43

Log.i() methods, 364

logic errors, 8

long variable type, 52

loops

Benchmark application, 103-104

definition of, 95

do-while, 99

exiting, 100-101

for, 95-97

complex for loops, 102

counter variables, 96

empty sections, 102

sample application, 97

syntax, 96-97

vectors, 162-163

infinite loops, 105

naming, 101

nesting, 101

while, 98-99

LottoEvent.java class, 209-211

LottoMadness application, 192-193,
196-197

applet versions, 216

event listeners, 208

LeaderActivity application, 362-368

length variable, 109, 117

length() method, 70, 285

lengths of strings, determining, 70-71

LGPL (GNU Lesser General Public
License), 303

libraries, XOM, 303. See also XOM

Line2D class, 330

lines, drawing, 329-330

LinkRotator applet, 273

links

revolving, displaying, 279

variables with strings, 68-69

listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

change listeners, 223

ColorSliders sample applica-
tion, 227

registering objects as,
223-224

LottoMadness application,
208-211

listFiles() method, 285

listings. See also code listings

Aggregator application, 307-309

ClockFrame application, 183

ClockPanel application, 181

Configurator.java application,
294-295

ConfigWriter.java application, 291

HomePage.java application, 259

LeaderActivity application,
362-368

NumberDivider application,
254-255

PageCatalog application, 260

PieFrame application, 338-339

Playback application, 175

properties.xml application, 301

LottoEvent.java class, 209, 211

methods

actionPerformed(), 212

addOneToField(), 212

clearAllFields(), 212

getActionCommand(), 212

itemStateChanged(), 212

matchedOne(), 212

numberGone(), 212

source code listing, 213, 215

LottoMadness() method, 197

lowercase, changing strings to, 71

M

magazines, JavaWorld, 29-30

MailWriter application, 221

main() blocks, Saluton program, 16

MalformedURLException errors,
258, 273

managers. See layout managers

managing resources, 356-358

manifest files, Android applications,
358-359

matchedOne() method, 212

memory errors, 262

messages, SOAP, 322

methods, 137, 140, 236

accessor, 142

actionPerformed(), 202-203,
212, 276

add(), 157

add(Component), 228

addActionListener(), 202

addChangeListener(), 223

addItemListener(), 204

addKeyListener(), 204

addOneToField(), 212

addSlice(), 335

methods410

getStateChange(), 204

getTime(), 315

getURL(), 272

getValue(), 304-305

getValueIsAdjusting(), 224

getVirusCount(), 149

GridLayout(), 197

ImageIcon(), 227

indexOf(), 71-72

init(), 237-238, 272

init() blocks, 43

Intent(), 365

itemStateChanged(), 204, 212

JScrollPane(), 219

JSlider(), 222

JToolBar(), 228

Label(), 176

length(), 70, 285

listFiles(), 285

load(), 292

Log.i(), 364

LottoMadness(), 197

main() blocks, 16

matchedOne(), 212

numberGone(), 212

overriding, 157-158

pack(), 172

paint(), 43, 157-158, 236-237

parseInt(), 130, 152

println(), 61, 66-67, 141

public, 142

read(), 285

readLine(), 290

renameTo(), 285

repaint(), 236, 273

return values, 75, 141

run(), 267, 274-275

setBackground(), 157

setColor(), 273

setContentView(), 363

setDefaultCloseOperation(), 172

applets, 235

arguments, 142-143

checkAuthor(), 148

class methods, declaring, 144

clearAllFields(), 212

close(), 291

constructors, 143

arguments, 144

declaring, 143

inheritance, 144

createNewFile(), 285

currentThread(), 275

declaring, 141

definition of, 70

destroy(), 238

displaySpeed(), 124-125

draw(), 330

drawRoundRect(), 332

drawString(), 141, 240

equals(), 70, 156

exists(), 284

fill(), 330

fillRect(), 329, 331

fillRoundRect(), 331

get(int), 304

getActionCommand(), 203, 212

getAttribute(), 304-305

getChildElements(), 304

getFirstChildElement(), 304

getId(), 364

getInsets(), 192

getKeyChar(), 205

getKeyCode(), 205

getKeyText(), 205

getName(), 284

getParameter(), 243

getPort(), 322

getProperty(), 293

getSeconds(), 142

getSource(), 203, 223

getSquareRoot(), 315, 320

setEditable(), 179, 198

setEnabled(), 206

setLayout(), 157, 188

setLayoutManager(), 175

setProperty(), 293

setSeconds(), 142

setSize(), 172

setText(), 217

setTitle(), 171

showDocument(), 276

showVirusCount(), 144

skip(), 286

sleep(), 266

sort(), 112

start(), 238, 274

stateChanged(), 223

stop(), 238, 270, 275

storeToXML(), 300

substring(), 287

System.out.println(), 127, 376

tauntUser(), 143

TextArea(), 180

toCharArray(), 110

toLowerCase(), 71

toUpperCase(), 71, 75

variable scope, 145-146

void keyPressed(), 204

void keyReleased(), 204

void keyTyped(), 205

write(), 290

mfl arrays, 111

minus sign (-)

decrement operator (––), 56

subtraction operator, 56

Modem class, 124, 132

Modem objects, 123

modems

CableModem class, 133

DslModem class, 133

Modem class, 132

ModemTester class, 133-134

operators 411

NetBeans Field Guide, 373

NetBeansProjects, 375

Netscape Navigator, downloading Java
Plug-ins, 242

New Android Project Wizard, 345,
349, 355

New File Wizard, 14

New Project button, 375

New Project Wizard, 375

new statements, 108, 143

NewCalculator application, 252

newline characters, 180

escape codes, 67

NewRoot application, 130

source code, 41

news aggregators, 307. See also RSS
syndication feeds

newSuffix variable, 129

Nines application, 97

nu.xom package, 304

NumberDivider application, 254-255

NumberFormatException, 253, 256

numberGone() method, 212

numbers, displaying sequence of
prime numbers, 268-269

numeric variable types, 52

Nvidia, 343

O

Oak language, 27

OBJECT tag (HTML), CODEBASE attrib-
ute, 247

object-oriented programming, See
OOP

objects, 137. See also classes

attributes, 122, 137

behavior, 122

casting, 132

classes, 122

converting, 127-131

ModemTester class, 133-134

modifying strings, case, 71

modulus operator (%), 56

Monitor objects, 123

Motorola, 343

mouse clicks, handling, 276

multidimensional arrays, 111

multiplication, 56, 59

multitasking, 265

multithreading, 31, 265

My Documents, 375

N

Name application

output, 113

source code, 112

names

file extensions, .class, 22

naming conventions

loops, 101

parameters, 243

variables, 54, 62

resources, 349

navigating Android applications,
346-348

Navigator, downloading Java
Plug-ins, 242

nesting

classes, 146-147

loops, 101

NetBeans, 8. See also IDEs (integrat-
ed development environments)

applying, 373

classes, creating, 376-377

errors, Saluton program, 19-20

installing, 9, 373

projects, creating, 374-375

running, 378

troubleshooting, 378, 380

creating, 124-125, 132-134

existing, 159-160

inheritance, 125-126, 155-157

Modem, 123

Monitor, 123

PieChart, 122

referencing, 147-148

storing, 160-163

tags, 245-246

variables, 137-139

private, 139

protected, 139

onCreate() method, 363

online communities, Stack
Overflow, 384

OOP (object-oriented programming),
33, 121-122, 170. See also classes

advantages of, 122-123

applications, debugging, 123

autoboxing/unboxing, 131

encapsulation, 142

inheritance, 125-126, 135,
155-157

objects

casting, 132

creating, 124-125, 132, 134

objects. See objects

overview, 33, 121

Open Handset Alliance, 343

operators

addition (+), 56

concatenation (+), 68-69

decrement (– –), 56

division (/), 56

equality (==), 81

greater than (>), 81

inequality (!=), 81

modulus (%), 56

multiplication (*), 56

precedence, 58-59

subtraction (-), 56

ternary (?), 86-87

Oracle412

parseInt() method, 130, 152

passing

arguments

to applications, 41

to methods, 142-143

parameters to applets, 243

pasting

into strings, 69

strings together, 68

percent sign (%), modulus operator, 56

performance, interpreted languages, 10

phones. See also Android

configuring, 394-395

running Java on, 35

pie charts, 121

pie graphs, creating, 333

PiePanel.java source code, 338

PieSlice class, 335-336

viewing, 339

PieChart object, 122

PieFrame application, 338-339

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

PieSlice class, 335-336

pipe (|) characters, 254

PlanetWeight application code listing,
60-61

platform independence, 29

Playback.java, 175

plug-ins

Android, 344, 391-393

definition of, 242

Java Plug-in, 242

plus signs (+)

addition operator, 56

concatenation operator, 68-69

increment operator (++), 56

Point class, 164

Oracle, 25

Oracle Technology Network for Java
Developers, 382

order of precedence, operators, 58-59

organizing

applications, block statements,
81-83

resources, 356-358

output. See I/O (input/output)

@Override annotation, 314

overriding methods, 157-158

P

P tag (HTML), 238

pack() method, 172

Package Explorer, applying, 348

packages, 139

Android SDKs, installing, 394

javax.xml.ws package, 317

JAX-WS library, 322

PageCatalog application, 258-261

pageTitle array, 271

paint() method, 236-237, 273

block statements, 43

overriding, 157-158

panels, creating, 180

PARAM tag (HTML), 242

NAME attribute, 243

VALUE attribute, 243

parameters

handling

ShowWeight applet, 244

WeightScale applet, 243-245

naming, 243

passing to applets, 243

receiving in applets, 243

values, assigning, 243

Point3D class, 164

creating, 164-165

testing, 165-166

postfixing, 57

precedence, operators, 58-59

preferences, configuring Android, 393

prefixing, 57

prime numbers, displaying sequence
of, 268-269

PrimeFinder application, 268-269

printing strings

println() method, 66-67

special character, 67-68

println() method, 61, 66-67, 141

private classes, 135

private variables, 139

program listings. See code listings

programming

Android, 389

configuring phones, 394-395

Eclipse, 390

plug-ins, 391-393

SDKs, 390

languages, selecting, 4-5

OOP (object-oriented program-
ming). See also OOP

advantages of, 122-123

casting, 129

creating objects, 124, 132-134

overview of, 121

Saluton program

creating, 14-15

running, 20

tools

installing, 9

selecting, 8-9

programs. See applications; software

proguard.cfg file, 348

Project Location text field, 375

Project Properties dialog box, 303

Project Selection dialog box, 352

rounded rectangles, drawing 413

Hour 17, 247

Hour 18, 263

Hour 19, 280

Hour 20, 296-297, 310-311

Hour 21, 341-342

quotation marks

double (“), 51

escape codes, 67

single (‘), 51

R

R class, 363

R.java file, 363

read() method, 285

ReadConsole application, 289

reading

configuration properties, 292-295

files, 285

ID3Reader application,
286-288

read() method, 285

skip() method, 286

RSS syndication feeds, 307, 309

streams, buffered input
streams, 288

XML files, 302-307

readLine() method, 290

real-word Java projects

JavaWorld website, 29-30

Visible Human Project website,
27, 29

receiving parameters to applets, 243

recommended reading, 381

Rectangle2D class, 331

rectangles, drawing, 331

Red, Green Blue (RGB) color
system, 329

Reference Chooser dialog box, 361

projects

Android applications, navigating,
346-348

creating, 355

NetBeans, 374-375

properties

configuration, reading/writing,
292-295

customizing, 361

Properties object, 293, 299

properties.xml application, 301

PropertyFileCreator.java
application, 300

protected variables, 139

public methods, 142

public statements, 124

publishing web services, 317-318

Q

QName, 321

question mark (?), 86-87

quizzes

Hour 1, 11

Hour 2, 23

Hour 3, 37

Hour 4, 47

Hour 5, 63

Hour 6, 76

Hour 7, 93-94

Hour 8, 105-106

Hour 9, 118

Hour 10, 135-136

Hour 11, 153

Hour 12, 167-168

Hour 13, 185-186

Hour 14, 199

Hour 15, 217-218

Hour 16, 232-233

referencing objects, this statement,
147-148

registering objects as change listen-
ers, 223-224

renameTo() method, 285

renaming files, 285

repaint() method, 236, 273

/res folder, 347, 357

resources, 381. See also websites

Android, 358

folders, viewing, 356

Java-related books, 381

job opportunities, 385

managing, 356-358

naming, 349

strings, editing, 348

restricting access, 138. See also
access control

return values (methods), 75, 141

Revolve applet, 270

class declaration, 271

error handling, 272

event handling, 276

methods

actionPerformed(), 276

init(), 272

run(), 274-275

start(), 274

stop(), 275

screen updates, 273

threads

running, 274-275

starting, 274

stopping, 275

variables, 271

Revolve class, creating, 271

revolving links, displaying, 279

RGB values (red, green, blue), 329

Root application, 40

RootApplet applet, 43-44

rounded rectangles, drawing, 331

RSS syndication feeds, reading414

Sams Teach Yourself Java 2 in 21
Days, 381

Sams Teach Yourself Java 2 in 24
Hours website, 387-388

Sams Teach Yourself Java in 24 Hours
website, 383

Samsung, 343

saving

applications, 7

Saluton programs, 18

scope (variables), 145-146

screens, updating, 273

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample application, 221

WriteMail sample application, 222

SDKs (Software Development Kits),
343, 390

searching strings, 71-72

searchKeywords variable, 69

security, 30

digital signatures, 30

trusted developers, 30

selecting

languages, 4-5

programming tools, 8-9

semicolon (;), 17, 22, 102

Service Implementation Bean,
316-317

services

clients, creating, 320-322

defining, 313

publishing, 317-318

SquareRootServer, 313

setBackground() method, 157

setColor() method, 273

setContentView() method, 363

setDefaultCloseOperation()
method, 172

setEditable() method, 179, 198

setEnabled() method, 206

RSS syndication feeds, reading,
307-309

run() method, 267, 274-275

RuneScape, 26

Runnable interface, 265

running

Android, 352-354

applications, 7

Java on phones, 35

NetBeans, 374-375, 378

Saluton program, 20

threads, 274-275

S

Saluton application

classes

declarations, 15

statements, 16

code listings, 18

compiling, 19

creating, 14-15

main() block, 16

running, 20

saving, 18

troubleshooting, 19-20

variables

declaring, 17

displaying, 18

SalutonApplet applet

displaying, 240

HTML markup, APPLET tag, 241

source code listing, 240

testing, 241-242

SalutonFrame.java, 174

Sams Publishing website, 382

Sams Teach Yourself Android
Application Development in 24
Hours, 390

setLayout() method, 157, 188

setLayoutManager() method, 175

setProperty() method, 293

setSeconds() method, 142

setSize() method, 172

setText() method, 217

setTitle() method, 171

shapes

arcs, 332-333, 341

circles, 332

drawing, 329-330

ellipses, 332

lines, 330

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

rectangles, 331

short variable type, 52

showDocument() method, 276

showVirusCount() method, 144

signatures (digital), 30

single quotation marks (‘), escape
code, 67

sizing applet windows, 239

skip() method, 286

SkyWatch, 31-32

slashes (//), 17

sleep() method, 266

sliders

creating, 222-223

labels, 223

slowing down threads, 266

SOAP messages, 322

software

Absolute program, 34

overview, 5-6

strings, viewing, 66-67

troubleshooting, 8

Software Development Kits. See SDKs

sort() method, 112

strings 415

continue, 100

default, 84

definition of, 5

example, 6

expressions, 50, 59-61

extends, 132, 157

float, 51

if, 79-80, 83, 92

blocks, 81-83

equal/not equal comparisons,
81

less/greater than compar-
isons, 80-81

if-else, 83

import, 237

init(), 43

int, 50

loops

definition of, 95

do-while, 99

exiting, 100-101

for, 95-97, 102

infinite loops, 105

naming, 101

nesting, 101

while, 98-99

new, 108, 143

paint(), 43

public, 124

static, 140, 144

super, 158-159, 165

switch, 84, 86

this, 158, 165

throw, 256

try-catch, 250-255, 261, 272

try-catch-finally blocks, 255

void, 141

static statement, 140, 144

stock analysis applications, 32-33

sorting arrays, 111-113

source code

black spaces, 22

code listings. See code listings

editors, 13

sources (casting), 127

SpaceRemover application, 110

spacing in source code, 22

Spartacus.java class, 377

special characters, escape codes,
67-68

speed, testing computer, 103-104

square brackets ([]), 108

SquareRootClient application,
320-323

SquareRootServer application,
313-315

SquareRootServerImpl
application, 316

SquareRootServerPublisher
application, 317-318

/src folder, 347

/src/org.cadenhead.android/
SalutonActivity.java, 347

sRGB, 329

stack overflows, 262, 384

standard applet methods, 235

Standard RGB, 329

start() method, 238, 274

starting

applets, 238

threads, 274

variables, 55

stateChanged() method, 223

statements, 49, 79. See also condi-
tionals

blocks, 16-17, 49, 81-83

break, 84, 92, 100

case, 84

catch, 280

class, 15-16, 124

stop() method, 238, 270, 275

stopping

applets, 238

threads, 275

storeToXML() method, 300

storing

looping, 162-163

objects, 160-162

variables, 54-55

streams, 283-284, 299

buffered input streams, 288-290

Console application, 289

creating, 288

ReadConsole application, 289

reading, 288

byte streams, 284

closing, 291

defined, 283-284

reading data from, 285

ID3Reader application,
286-288

read() method, 285

skip() method, 286

writing to, 290-291

String data type, 17

StringLister.java source code,
162-163

strings, 65-66

adding to, 69

arrays, 108. See also arrays

changing case of, 71, 75

characters, counting, 113-115

comparing, 70

equal/not equal
comparisons, 81

less/greater than
comparisons, 80-81

concatenating, 68

definition of, 51, 66

determining length of, 70-71

strings416

LottoMadness application,
208-211

image icons, 227-228

creating, 227

Tool sample application,
228, 230

JApplet class, 235

labels, creating, 176-177

layout managers, 187

BorderLayout, 190-191

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample applica-
tion, 192-197

panels, creating, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

WriteMail sample
application, 222

sliders

creating, 222-223

labels, 223

text

areas, 179

fields, 176-177

write protecting, 198

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228-230

switch statements, 84-86

syndication feeds, reading RSS,
307-309

syntax errors, 8

System.out.println() method,
127, 376

displaying

println() method, 66-67

special characters, 67-68

finding within other strings, 71-72

resources, editing, 348

variables, 51

declaring, 66

linking, 68-69

strings.xml file, 349

Stroustrop, Bjarne, 5

subclasses, 126

creating, 133, 157-159, 164-165

substring() method, 287

subtraction operator (-), 56

Sun website, 25-26, 382

super statement, 165

class declarations, 158-159

superclasses, 126

Swing, 169, 219

buttons, creating, 174-176

change listeners, 223

ColorSliders sample applica-
tion, 224-227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

combo boxes

creating, 178-179

event handling, 204

documentation, 232

enabling/disabling components,
206-207

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

T

T-Mobile G1s, 343

tabs, escape code, 67

tags

angle brackets (< >), 238

APPLET, 238-239

ALIGN attribute, 239

CODE attribute, 239

CODEBASE attribute, 239, 247

HEIGHT attribute, 239

WIDTH attribute, 239

CENTER, 238

HTML, 238, 242-243

objects

applying, 245-246

CODEBASE attribute, 247

P, 238

PARAM, 242

NAME attribute, 243

VALUE attribute, 243

tauntUser() method, 143

ternary operator (?), 86-87

testing

computer speed, 103-104

Points3D class, 165-166

SalutonApplet program, 241-242

SquareRootServerPublisher appli-
cation, 318

text

areas, 179

Color class, 328

editors, 13

fields

creating, 176-177

write-protecting, 198

Font class, 327-328

pasting into strings, 69

TextArea() constructor method, 180

this keyword, 147-148

variables 417

tools

appletviewer, 44

programming

installing, 9

selecting, 8-9

toUpperCase() method, 71, 75

travel Java Boutique, 33-35

troubleshooting

Android applications, 357

exceptions, 249-253. See also
exceptions

NetBeans, 378, 380

Saluton program, 19-20

software, 8

trusted developers, 30

try-catch blocks, 250-255, 261, 273

Calculator application, 251-252

DivideNumbers sample applica-
tion, 254

NewCalculator application, 253

NumberDivider sample applica-
tion, 254-255

SumNumbers sample application,
251, 261

try-catch statement, 272

try-catch-finally blocks, 255

TryPoints.java listing, 165

Twitter, 385

two slash characters (//), 258

type values (variables), casting, 127

types

Boolean, 53

byte, 52

char, 51

long, 52

short, 52

variables, 50

this statements, 165

class declarations, 158

Thread class, 265

threaded applets, 270

class declarations, 271

error handling, 272

event handling, 276

initializing, 272

screen updates, 273

threads

running, 274-275

starting, 274

stopping, 275

variables, 271

threaded classes, 266-270

threads, 265. See also threaded
applets

creating, 266-270

multithreading, 31

Runnable interface, 265

running, 274-275

slowing down, 266

starting, 274

stopping, 275

Thread class, 265

throw statements, 256

throwing exceptions, 250, 256-258

PageCatalog sample application,
258-261

throw statements, 256

time, displaying, 183

titles, frames, 171

toCharArray() method, 110

toLowerCase() method, 71

Tool application, 228-230

toolbars, 227

creating, 228

dockable toolbars, 228

docking, 230

Tool sample application, 228-230

U

Udovydchenko, Aleksey, 34

unboxing, 131

underscore (_) characters, 53, 54

University of British Columbia, 28

updating screens, 273

upper limits of arrays, checking, 109

uppercase, changing strings to,
71, 75

user events, 201

ActionListener interface, 202

combo boxes, 204

components, 206

handling, 202-203

keyboard events, 204-206

LottoMadness application,
207-208, 212-213

V

validity, 302

van de Panne, Michiel, 28

Variable application

code listing, 52

int statement, 50

variables

characters, 51

floating-point, 51

integers, 51

strings, 51

variables

access control, 138

arrays, 109, 111

declaring, 108

definition of, 107

elements, 108

initial values, 108

multidimensional, 111

variables418

integers, 50

long, 52

short, 52

strings, 51

values

assigning, 55

decrementing, 56-58

incrementing, 56-58

starting values, 55

vectors, objects

looping, 162-163

storing, 160-162

Verburg, Martijn, 383

VeriSign website, 30

vertical sliders, creating, 223

viewing

Android projects, 347

appletviewers, 44

pie graphs, 339

resources, 356

revolving links, 279

strings, 66-67

text areas, 179

web services, 323

Virus application, 148

class constructor, 143

methods

getSeconds(), 142

setSeconds(), 142

tauntUser(), 143

showVirusCount(), 144

Virus class, 137

VirusLab application

output, 150

source code, 149-150

Visual Basic, 4

void keyPressed() method, 204

void keyReleased() method, 204

void keyTyped() method, 205

void statement, 141

sample application, 110

sorting, 111-113

assigning values, 54-55

casting, 127-128

converting to objects, 129-131

counter variables

definition of, 96

initializing, 96

data types, String, 17

declaring, 17, 50

class variables, 139-140

object variables, 137-138

definition of, 49

displaying contents of, 18

initializing, definition of, 105

length, 117

naming conventions, 54, 62

newSuffix, 129

private, 139

protected, 139

referencing, this statement,
147-148

Revolve applet, 271

Revolve program, 271

scope, 145-146

searchKeywords, 69

strings, 66

changing case, 71, 75

comparing, 70

concatenating, 68

declaring, 66

determining length, 70-71

displaying, 66-67

escape codes, 67-68

linking, 68-69

types

assigning, 50

Boolean, 53

char, 51, 65

floating-point, 51

W

WeatherStation.application, 304-307

Web Service Description Language,
See WSDL

web services

clients, creating, 320-322

publishing, 317-318

SquareRootServer, 313

Web Tools Platform. See WTP

weblogs, 383

@WebMethod annotation, 315

websites

Cafe au Lait, 383

Gamelan, 385

InformIT, 382

JARS (Java Review Service), 384

Java Boutique, 33-35

JTicker, 32-33

JavaWorld, 29-30

Liberty BASIC interpreter, 6

Sams Publishing, 382

Sams Teach Yourself Java 2 in 24
Hours, 387-388

Sams Teach Yourself Java in 24
Hours, 383

Sun, 25-26, 382

VeriSign, 30

Workbench, 383

WeightScale applets, source code,
243-245

well-formed data (XML
formatting), 302

Wheel of Fortune application, 113

character arrays, 115

integer arrays, 115

letterCount array, 115

nested loops, 115

output, 114

source code, 113

while loops, 98-101

widgets, customizing properties, 361

Zamenhof, Ludwig 419

X-Y

XML (Extensible Markup Language)

editing, 349

files

creating, 299-302

reading, 302-307

RSS syndication feeds, 307-309

XOM (XML Object Model), 303

Z

Zamenhof, Ludwig, 20

WIDTH attribute (APPLET tag), 239

windows, 170-172, 174

Debug Configurations, 351

wizards

New Android Project Wizard,
345, 349

New File Wizard, 14

New Project Wizard, 375

Workbench website, 383

write protecting text fields, 198

write() method, 290

WriteMail application, 222

writing

applications, 13, 39

creating applets, 42-44

Saluton programs, 14-15

sending arguments to, 41-42

code, Android applications,
362-368

Color class, 328

configuration properties, 292-295

Font class, 327-328

streams, 290-291

WSDL (Web Service Description
Language), 318-320

WTP (Web Tools Platform), 390

	TABLE OF CONTENTS
	INTRODUCTION
	HOUR 3: Vacationing in Java
	First Stop: Oracle
	Going to School with Java
	Lunch in JavaWorld
	Watching the Skies at NASA
	Getting Down to Business
	Stopping by Java Boutique for Directions
	Running Java on Your Phone

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

