

Microsoft®
Visual Studio®

LightSwitch®

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Alessandro Del Sole

Microsoft® Visual Studio® LightSwitch® Unleashed
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33553-2

ISBN-10: 0-672-33553-0

Library of Congress Cataloging-in-Publication Data:

Del Sole, Alessandro.

Microsoft Visual studio LightSwitch unleashed / Alessandro Del Sole.

p. cm.

Includes bibliographical references.

ISBN 978-0-672-33553-2

1. Microsoft Visual studio LightSwitch. 2. Visual programming (Computer science)—
Computer programs. 3. Application software—Development—Computer programs.
I. Title.

QA76.65.D45 2012

005.7'26—dc23

2012002305

Printed in the United States of America

First Printing: February 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Microsoft, Visual Studio, and LightSwitch are registered trademarks of Microsoft
Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Keith Cline

Indexer
Brad Herriman

Proofreader
Sarah Kearns

Technical Editor
Beth Massi

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Mark Shirar

Contents at a Glance

Part I Building Applications with LightSwitch

1 Introducing Visual Studio LightSwitch . 1

2 Exploring the IDE . 23

3 Building Data-Centric Applications . 43

4 Building More-Complex Applications

with Relationships and Details Screens . 95

Part II Manipulating Data

5 Customizing Data Validation. 149

6 Querying, Filtering, and Sorting Data. 177

7 Customizing Applications with Buttons,

COM Automation, and Extensions . 215

8 Aggregating Data from Different Data Sources . 235

Part III Securing and Deploying Applications

9 Implementing Authentication and Authorization . 291

10 Deploying LightSwitch Applications . 339

Part IV Advanced LightSwitch

11 Handling Events in Code . 409

12 Dissecting a LightSwitch Application . 443

13 Advanced LightSwitch with Visual Studio 2010 . 479

14 Debugging LightSwitch Applications . 517

Part V Extensibility

15 Customizing the IDE. 543

16 Customizing Applications with Custom Controls. 561

17 Implementing Printing and Reporting . 581

18 LightSwitch Extensibility: Themes, Shells, Controls, and Screens 619

19 LightSwitch Extensibility: Data and Extension Deployment. 693

Appendixes

A Installing and Configuring Visual Studio LightSwitch . 759

B Useful Resources. 765

Index . 771

Table of Contents

Part I Building Applications with LightSwitch

1 Introducing Visual Studio LightSwitch 1

Who Uses LightSwitch? . 3
A Short History of Microsoft Business Tools. 3

Microsoft Access with Visual Basic for Applications. 4
Microsoft Visual Basic 6 . 6
Microsoft Visual FoxPro . 9
Microsoft Visual Studio .NET (2002 to 2010) . 10

About Visual Studio LightSwitch. 13
Technologies Used Behind the Scenes . 15
Available Editions. 18
Companion Source Code . 18

Setting Up the Development Machine . 19
Operating System . 19
Development Environment. 19
Server Components . 19
Database Tools . 20
Controls and Toolkits. 21

What You Need to Know About Programming . 21
Summary . 22

2 Exploring the IDE 23

Getting Started with Visual Studio LightSwitch . 23
Introducing the Start Page . 25
Creating New Projects and Exploring Solutions . 26
The LightSwitch Designer . 29
The Entity Designer . 30
The Screen Designer . 30
The Properties Window . 32
The Query Designer . 33
The Application Designer . 34
The Code Editor . 35
Building, Running, and Debugging Applications. 35
Managing and Arranging Windows . 37

Getting Help . 38
Visual Studio 2010 with LightSwitch . 39
Summary . 41

Microsoft Visual Studio LightSwitch Unleashediv

3 Building Data-Centric Applications 43

Creating a New Application . 43
Creating a New Data Source. 45

Adding Entity Properties. 46
Building a Complete Entity . 50
Data Storage . 52

The User Interface: Implementing Screens . 52
Controls Overview. 53
Creating a Data Entry Screen. 55
Creating a Search Screen. 58

Testing the Application on the Development Machine . 60
Starting the Application as a Desktop Client . 61
Adding and Editing Data . 63
Displaying and Searching Data . 68
Exporting Data to Microsoft Excel . 77
Basic Screen Customizations. 78
Running the Application as a 3-Tier Desktop Client . 83
Running the Application in the Web Browser. 84

Input-Data Validation . 85
Required Fields Validation . 85
String-Length Validation. 86
Date Validation. 87
Number Validation . 90

Default Validation of Business Types . 91
Validating Email Addresses. 91
Validating Phone Numbers . 93
Validating Images . 93
Validating Money. 93

Summary . 93

4 Building More-Complex Applications with Relationships
and Details Screens 95

Creating a New LightSwitch Project . 96
Designing Complex Data Sources. 97

Entities That Define Choice Lists . 100
Working with the Money Data Type . 103
Adding Relationships . 105
Using Computed Properties . 112

More-Complex, Business-Oriented User Interfaces. 115
Creating Data Entry Screens . 115
Creating Search Screens . 116
Running the Application and Entering Data. 116
Editing Data with Editable Grids . 118

Contents v

Handling Master-Details Relationships with Details Screens 121
Editing the Screen Navigation Control . 133
Customizing the Look and Feel of Screens . 138

Implementing Data Validation. 146
Validation on Master-Details Relationships . 147

Summary . 148

Part II Manipulating Data

5 Customizing Data Validation 149

Understanding the Validation Model . 150
Built-In Validation Rules . 152

Writing Custom Validation Rules . 153
Client Validation: Validating Entity Properties . 154
Client and Server Validation: Validating a Single Entity. 167
Data Validation on the Server: Validating Entity Collections 169
Validation in Master-Details Relationships . 170
For the Experts: Implementing Complex Validation

Rules with the .NET Framework . 172
Summary . 175

6 Querying, Filtering, and Sorting Data 177

Querying Data in LightSwitch . 177
Applying Filters. 179

Applying Filters at the Data Level . 181
Understanding the Query Event Model . 205
Applying Filters at the Screen Level . 206

Applying Sorting Logic . 208
Sorting at the Data Level. 208
Sorting at the Screen Level . 211

Basing Queries on Other Queries. 212
Summary . 214

7 Customizing Applications with Buttons, COM Automation,
and Extensions 215

Customizing the Command Bars. 216
Adding Built-In Buttons to the Screen Command Bar 217
Adding and Managing Custom Buttons . 219
Handling More-Complex Scenarios with COM Interoperability 222

Downloading, Installing, and Using Extensions . 228
Extensions Types in Visual Studio LightSwitch. 228
Downloading and Installing Extensions. 229
Using Extensions . 232

Summary . 234

Microsoft Visual Studio LightSwitch Unleashedvi

8 Aggregating Data from Different Data Sources 235

Connecting to SQL Server Databases. 236
Installing the Sample Northwind Database. 237
Creating New Applications on Existing SQL Server Databases 239
Aggregating Data from Existing Databases into LightSwitch

Applications . 249
Database in the Cloud: Connecting to SQL Azure . 256

Establishing Connections to SQL Azure . 259
Creating a SQL Azure Database . 262
Connecting LightSwitch Applications to SQL Azure. 267

Collaboration: Working with Lists from SharePoint 2010 . 273
Running the Default Website . 274
Configuring a Vacation Plan Calendar on SharePoint 2010 275
Extending LightSwitch Applications with SharePoint Data. 280

Summary . 290

Part III Securing and Deploying Applications

9 Implementing Authentication and Authorization 291

Understanding Authentication . 292
Implementing Windows Authentication. 294

Setting Up the Development Environment. 296
Authorization: Settings Permissions . 297
Writing the Permission Logic . 298
Permission Logic on Entities . 299
Permission Logic on the User Interface . 307
Debugging the Application. 312
Creating User Roles and Administering the Application 312

Implementing Forms Authentication . 329
Publishing Applications with Forms Authentication 330
Testing the Application with Different Credentials . 334

Permission Elevation on Server Code . 336
Summary . 338

10 Deploying LightSwitch Applications 339

Deployment Fundamentals . 339
Understanding 2-Tier and 3-Tier Applications. 341

Preparing the Application for Deployment. 344
Specifying the Application Name and Logo . 345
Styling the Application . 348
Runtime Settings . 349
Localizing an Application. 350

Contents vii

Deploying 2-Tier Applications . 352
Client Configuration . 353
Application Server Configuration . 353
Publish Output. 353
Database Connections . 356
Prerequisites . 357
Other Connections . 360
Specifying a Certificate . 363
Publish Summary . 366
Publishing and Deploying the Application . 368

Deploying 3-Tier Applications . 373
Configuring the Target Web Server . 374
Publishing the Application . 377
Remotely Publishing to a Web Server . 379
Creating and Importing Packages into IIS . 385

Deploying to Windows Azure . 392
Preparing Applications to Deployment . 393

Summary . 408

Part IV Advanced LightSwitch

11 Handling Events in Code 409

Working with Entities in Code. 409
Understanding Data Objects . 410
Handling Data Events in Code . 413

Handling Custom Query Events in Code . 429
Handling Screen Events in Code . 430

Button Methods . 431
General Methods . 434
Collection Methods . 437

Launching Screens Programmatically . 438
Opening Screens Without Passing Parameters . 440
Opening Screens by Passing Parameters . 440

Summary . 442

12 Dissecting a LightSwitch Application 443

Applications Architecture and Tiers . 444
Architecture Overview . 444
Understanding the Data Access and Storage Tiers . 445
Understanding the Logic Tier. 452
Understanding the Presentation Tier . 462

Dissecting LightSwitch Projects. 469
Overview of LightSwitch Solutions . 470
Server-Side Projects . 471

Microsoft Visual Studio LightSwitch Unleashedviii

Middle-Tier Projects . 473
Client-Side Projects . 474

Summary . 478

13 Advanced LightSwitch with Visual Studio 2010 479

Managing the Application Life Cycle with TFS 2010. 479
Connecting to Team Foundation Server. 481
Creating New Team Projects . 483
Submitting Projects to Source Control . 485
Creating and Assigning Work Items . 494
Retrieving Specific Project Versions with Version Control 499
Automating Builds . 499

Code Metrics . 506
Unit Testing Your Helper Code . 508

Creating a Test Project . 509
Creating Unit Tests . 510

Analyzing the Execution Flow with IntelliTrace . 512
IntelliTrace Options . 513
IntelliTrace in Action with LightSwitch . 514
IntelliTrace Log Files . 515

Summary . 516

14 Debugging LightSwitch Applications 517

Debugging Applications. 518
The Error List Tool Window. 520
Breakpoints and Data Tips. 521
Debugging in Steps . 522
About Runtime Errors. 524
The Edit and Continue Feature . 526

Advanced Debugging Instrumentation . 527
Breakpoints and Trace Points Unleashed . 527
Showing a Variables Value in the Locals Window . 530
Evaluating Expressions in the Command Window . 531
Understanding the Method Calls Flow in the Call

Stack Window . 532
Watch Windows . 533
Analyzing Threads with the Threads Window. 534

Understanding Debugger Visualizers . 535
Debugging in Code. 536

The Debug Class. 536
Using Debugger Attributes in Code . 538

Summary . 541

Contents ix

Part V Extensibility

15 Customizing the IDE 543

Customizing Visual Studio LightSwitch . 543
Customizing Commands and Toolbars . 544

Customizing an Existing Toolbar . 544
Creating a New Custom Toolbar. 544

Managing User Settings . 546
Exporting Settings . 547
Importing Settings . 548

Using, Creating, and Managing Reusable Code Snippets . 550
Using Code Snippets . 551
The Code Snippet Manager . 553
Creating and Using Custom Code Snippets . 554

Summary . 559

16 Customizing Applications with Custom Controls 561

Building Custom Controls . 562
Creating Controls with Visual Studio 2010 . 563

Implementing and Aggregating Chart Controls. 565
Binding the User Control to Data and the Screen . 569

Integrating Bing Maps . 573
Claiming Your Bing Maps Developer Keys. 574
Making Bing Maps Available to LightSwitch . 575
Updating Entities to Support Bing Maps . 576
Adding Bing Maps to Screens. 576

Summary . 580

17 Implementing Printing and Reporting 581

Using the Office Integration Extension . 582
Overview of the Class Library . 582
Creating Emails and Appointments with

Microsoft Outlook . 583
Exporting to Microsoft Word and to PDF . 586
Importing and Exporting Data with

Microsoft Excel 2010 . 593
Using SQL Server Reporting Services . 597
Reporting Extensions from Microsoft Partners . 599

XtraReports from Developer Express . 600
NetAdvantage for LightSwitch from Infragistics . 605
OLAP Extension from Component One. 606
Telerik Reporting for Silverlight. 608

Microsoft Visual Studio LightSwitch Unleashedx

Using Custom Controls for Printing and Reporting . 609
Creating a Visual Report as a User Control . 609
Displaying the Report in the User Interface . 612
Silverlight’s Printing APIs . 613

Summary . 617

18 LightSwitch Extensibility: Themes, Shells, Controls, and Screens 619

Understanding the Extensibility Model . 620
Creating Themes . 621

Creating a New Extensibility Project . 621
Setting Extension Properties . 624
Adding a Theme to the Extensibility Project. 625
Editing Themes with Visual Studio 2010. 628
Editing Themes with Expression Blend 4 . 630
Making the Green Theme . 631
Testing the Custom Theme. 633

Creating Custom Shells . 636
Creating Extensibility Projects for Custom Shells . 638
Editing the Official Sample from Microsoft . 639

Sharing Custom Controls. 656
Available Control Types . 657
Creating Control Extensions. 657

Creating Screen Templates . 670
Designing Custom Screen Templates . 672
Implementing the IScreenTemplate Properties . 673
Generating the Screen Content Tree. 675
Adding Code to the Screen. 678
Testing the Screen Template . 685
Screen Templates Tips and Tricks . 686

Summary . 691

19 LightSwitch Extensibility: Data and Extension Deployment 693

Creating Business Types. 693
Implementing a New Business Type . 693
Implementing the Data Type Definition . 694
Implementing Data Validation. 696
Designing Controls . 700
Testing the Extension . 703

Creating and Using Custom Data Sources with WCF RIA Services 705
The .NET Framework for WCF RIA Services . 709
Creating WCF RIA Services to Work with XML Data 711
Calling WCF RIA Services from LightSwitch Applications 720
Calling Stored Procedures Through WCF RIA Services 726

Contents xi

Sharing Custom Data Sources . 745
Testing Custom Data Sources . 746
Handling Connection Strings . 749

Deploying Extensions to Others. 751
Preparing the Deployment Manifest. 752
Uploading VSIX Packages to the Visual Studio Gallery 753
Releasing Extension Updates . 757

Summary . 758

Appendixes

A Installing and Configuring Visual Studio LightSwitch 759

Installing Visual Studio LightSwitch . 759
Managing the Offline Documentation . 762

B Useful Resources 765

MSDN Resources . 765
LightSwitch Developer Center. 765
LightSwitch How-Do-I Videos . 766
LightSwitch Blogs . 766
LightSwitch Forums . 766
Training Kit and Starter Kits . 766
Extensibility Center . 767
The Visual Studio Gallery. 767
Code Samples . 767
Social Networks . 767

Community Resources. 767
Visual Studio LightSwitch Help Website. 767
LightSwitch Video Training on MyVBProf.com . 768
The CodeProject . 768
StackOverflow . 768
Italian LightSwitch Tips & Tricks Community. 768
Other LightSwitch Blogs and Websites. 768

Third-Party Extensions . 769
Document Toolkit for LightSwitch. 769
RSSBus Data Providers . 769
Infragistics NetAdvantage Light Edition. 770

Index 771

Microsoft Visual Studio LightSwitch Unleashedxii

About the Author

Alessandro Del Sole has been a Microsoft Most Valuable Professional (MVP) for Visual Basic
since 2008. He is well known throughout the global Visual Basic community worldwide.
He is a community leader on the Italian Visual Basic Tips & Tricks website (more than
44,100 developers) and on the LightSwitch Tips & Tricks website. He is a frequent contrib-
utor to the Visual Basic Developer Center on MSDN and the author of many articles
about .NET development. The author of five technical books, Alessandro was awarded
MVP of the Year for Visual Basic in 2009 and 2010.

About the Author xiii

Dedication

In your whole life, there will be only two people who will never
deceive you: your mum and your daddy. This book is dedicated to
my mum and daddy, who always helped me, who sacrificed much

in their lives to help make me become a man and see me happy. No
mere “thanks” will ever be enough to thank you as you would really

deserve. Take care.

Who finds a real friend, finds a treasure. My treasure and friend is
Nadia. You’re the one who knows when I’m happy, when I’m sad,
and what I really need without me speaking a single word. You’re
the best friend one could ever have, and I’m lucky to have you by

my side. I wish you all the happiness in the world.

Microsoft Visual Studio LightSwitch Unleashedxiv

Acknowledgments
I want to thank Neil Rowe, Brook Farling, and all at Sams Publishing for another great
experience of working together. Writing a book like this is a very hard work, but working
with people like you makes things easier. Thanks!

My deep, special thanks go to Beth Massi from the LightSwitch team at Microsoft. As the
technical editor of this book, Beth worked with a great passion and attention through
what I wrote and provided great suggestions about what readers needed to know, all the
while sharing her real-world experience. From her contribution to this book, I’ve learned
more about LightSwitch than I could have ever learned on my own. LightSwitch develop-
ers should always remember her words: “In LightSwitch, the only code you write is the
only code you could write, the business logic.” You are a great part of this success, Beth.

My thanks go, as well, to the whole Microsoft Visual Studio LightSwitch team for all the
amazing and important technical discussions we’ve had. In particular, I want to thank
John Stallo, who always answered my technical questions with great care and attention;
Joe Binder, for his helpful suggestions about custom shells; Michael Eng, for important
discussions about integrating LightSwitch with Team Foundation Server 2010; Karol
Zadora-Przylecki and Eric Erhardt, whose explanations about threading and shells have
been so important. This is a great team, and I have learned a lot from all of you.

A special mention goes to my friend Michael Washington, Silverlight MVP and one of the
foremost experts on LightSwitch in the world. He never tires of helping the LightSwitch devel-
oper community. We shared many interesting technical discussions, but most important,
Michael has in mind the noblest meaning of the word community. Many thanks, Michael.

Many thanks to Mei Liang and Lisa Feigenbaum at Microsoft, who are passionate about
their jobs. They have been very helpful to me, especially in connecting with the right
people for information.

There are moments in which you get tired of sleepless nights, and good words from a
special friend are always important, no matter how many times you see or talk on the
phone with them. So, Nicolle Prosser and Karin Meier, thank you!

Thanks to Alfonso Ghiraldini and Francesco Bosticco for their cordiality.

Great thanks also to the Italian subsidiary of Microsoft, which always encourages my
community contributions and important works like this. My special thanks to my MVP
lead Alessandro Teglia, who always does his job with an uncommon passion.

I would like to thank my everyday friends, who are always ready to encourage me and
who share my happiness for my technical successes, even if they are not techies. So,
thanks from the bottom of my heart to Roberto Bianchi, Alessandro Ardovini, Francesca
Bongiorni, Paolo Leoni, Leonardo Amici, and Sara Gerevini. You are my second family,
and I love you all.

Back in August 2010, I and some other fellow MVPs co-founded the one and only Italian
community about Visual Studio LightSwitch, called LightSwitch Tips & Tricks
(www.lightswitch.it). This has been an opportunity to share discussions on the product
and learn something new every day. So, thanks to my fellow Microsoft MVPs Diego
Cattaruzza, Renato Marzaro, and Antonio Catucci, but also to my great friend Marco
Notari, and to all of you readers who trusted me by purchasing this book and who come
to read my blog or my articles daily.

Acknowledgments xv

www.lightswitch.it

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Microsoft Visual Studio LightSwitch Unleashedxvi

Foreword

I’ve had the pleasure of knowing Alessandro for many years, ever since I started my career
at Microsoft. The first time I ever heard from Alessandro was through my blog contact
form, and we have collaborated on community content and activities ever since. Not long
after he published his first article on MSDN, Alessandro was awarded Microsoft Most
Valuable Professional (MVP) for his exceptional community leadership and technical
expertise. It’s always fun working with Alessandro and to see his excitement and passion
for the developer community, something we both share.

When Visual Studio LightSwitch was announced and the first beta released back in August
2010, Alessandro was right onboard creating a LightSwitch Tips & Tricks community
modeled after his successful Visual Basic Tips & Tricks forums and blogs. His passion for
Visual Studio LightSwitch is as strong as his passion for Visual Basic. Alessandro aims to
make programming easy, fun, and productive, just as we strive to do on the Visual Studio
LightSwitch team. It was an honor for us to have Alessandro as one of our community
rock stars and LightSwitch advocates so early on.

At that time, Alessandro started on a journey to write this book and asked me to be the
technical reviewer. I was very excited to do it, especially because I had just become the
Community Manager for the LightSwitch team and was diving head first into the product
myself. I was particularly excited to join the LightSwitch team because I have a long history
of building business applications and information systems, particularly for the healthcare
industry. I was immediately amazed at what I could build in such a short amount of time
with Visual Studio LightSwitch. I was also impressed with all the details it handles automati-
cally for you, such as CRUD plumbing, concurrency handling, dirty checking, automatic
screen navigation and lookup lists, user permissions, and so much more.

It doesn’t take long to realize how extremely productive you can be with Visual Studio
LightSwitch, regardless of your programming skills. Because of this, and the fact that we
made many enhancements from beta 1 to beta 2 to RTM, it was a challenge at times to
get the book organized in the optimal way. I think we achieved our goal. The book begins
with the beginner in mind and then moves deeper into professional developer topics. I
see LightSwitch developers progressing this way, as well, starting off with minimal coding,
releasing business productivity applications in no time, and becoming the company hero.
Then they may move on to more-advanced customizations as the requirements start to
hit the limits of what you can do out of the box. LightSwitch has an extensive extensibil-
ity model, and when you need it, you can do just about anything. The end of the book
shows you how to take advantage of this.

Alessandro explains Visual Studio LightSwitch in a way that is easy to understand, and his
passion comes through in every paragraph. I know you will find this book filled with
prescriptive guidance and tips and tricks that you can apply to the LightSwitch business
applications you are building today. I really enjoyed reviewing this book, and I’m sure
you will enjoy reading it.

—Beth Massi

Foreword xvii

This page intentionally left blank

CHAPTER 3

Building Data-Centric
Applications

IN THIS CHAPTER

. Creating a New
Application 43

. Creating a New Data
Source 45

. The User Interface:
Implementing Screens 52

. Testing the Application on the
Development Machine 60

. Input-Data Validation 85

. Default Validation of Business
Types 91

Visual Studio LightSwitch is a Rapid Application
Development (RAD) environment focused on making it easier
to build line-of-business applications (that is, data-centric
software). Up to now, you have learned what LightSwitch is
and a fair bit about its integrated development environment
(IDE), but there is a lot more to learn. Starting from this
chapter, you begin developing applications with
LightSwitch, and in the process, you learn how easy it is to
build complex applications in a very few steps. This is the
probably the most important chapter in the book because it
provides the fundamentals of LightSwitch development,
offering tons of information about creating data sources,
creating screens, and implementing data validation, and
covering important concepts such as business data types. In
this chapter, you create a simple application based on a
single data source. This is enough to understand how
LightSwitch works and how you can take advantage of all
its features to create high-quality, professional business soft-
ware quickly.

Creating a New Application
This chapter guides you through the process of building an
application that enables you to keep track of all your
contacts, such as family members, friends, and co-workers.
You will be able to store information about each person
you add to your contacts list. For example, you might
want to add information such as name, phone number,
email address, and so on. Although this might look simple,
this example teaches you how to use a number of
LightSwitch features.

44 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.1 Creating the new ContactsManager application.

To create a new project, select File, New Project, and in the New Project dialog, select the
LightSwitch Application (Visual Basic) project template.

WHY VISUAL BASIC?

Code examples in this book are presented in Visual Basic. If you develop in Visual C#,
you can download the C# version of the code from this book’s page on the InformIT
website. The reason for using Visual Basic is that one of the Visual Studio
LightSwitch’s purposes is to make migration to the .NET Framework easier for develop-
ers coming from Microsoft Visual Basic 6, Microsoft Access, or Microsoft Visual FoxPro.

Let’s name this new project ContactsManager, as shown in Figure 3.1.

Click OK. After a few seconds, LightSwitch shows the LightSwitch Designer introduced in
Chapter 2, “Exploring the IDE.” This is when you decide how to create the data source for
the application. As you will learn throughout this book, Visual Studio LightSwitch can
create new data sources or grab schemas and data from existing sources such as SQL Server
or other databases, SharePoint, or WCF RIA Services. Right now, however, you are at a
point when you still have a lot to learn about LightSwitch, so the best approach for a
complete understanding is to create a new table from scratch.

45Creating a New Data Source

FIGURE 3.2 The Table Designer shows a new empty entity.

3

Creating a New Data Source
Tables are primitive data containers. A table represents a series of items of the same type.
For example, a table can represent a list of customers or of employees or of cars or of any
object that has some properties. Tables are divided into rows and columns. A row repre-
sents a single item. For example, if you have a table storing a list of customers, a row
represents a single customer in the list. In LightSwitch terminology, a single item is
referred to as an entity, and a list of items is called entity collection. Columns represent
properties of the elements that the table stores. For example, a customer has a company
name, an address, and so on. This information is represented with columns. In
LightSwitch terminology, a column is also referred to as a property. Actually, columns also
allow you to specify the type of the property (such as date and time, strings, numbers), as
detailed later in this section. Continuing with the creation of this application, the first
step is to create a new entity that will represent a single person in the contacts list. Do so,
and name it Contact. In the LightSwitch Designer, click Create New Table. Doing so
opens the Table Designer, as shown in Figure 3.2.

Here you can design your entity by specifying its properties. By default, the focus is on the
entity’s title, which is Table1Item. Rename this Contact.

46 CHAPTER 3 Building Data-Centric Applications

AVOID CONFUSION BETWEEN TABLES AND ENTITIES

Although the Table Designer looks like a table editor, it actually allows you to design a
single entity. This is why the entity name is singular (Contact). After you design your
entity, Visual Studio LightSwitch generates a table for you, pluralizing the entity’s name.
So, in the current example, the generated table will be named Contacts.

At this point, you can begin designing your new entity by adding properties. Notice that,
by default, LightSwitch adds an Id property of type Integer (a type representing integer
numbers), which identifies the entity as unique in the table (this is why such a property
cannot be edited or removed). Therefore, such a property is an auto-incrementing index
that is incremented by one unit each time a new element is added to the table. If you
have some experience with other data-access tools such as Microsoft SQL Server or
Microsoft Access, you might think of this as an identity field.

Adding Entity Properties

Each property has three requirements: the name, the type, and whether it is required
(meaning that the information is mandatory or not). With regard to an entity that repre-
sents a contact, the first property you may want to add is the last name. So, click inside
the Add Property field under the Name column and type LastName. Remember that prop-
erty names are alphanumeric combinations of characters and digits and cannot contain
blank spaces. If you want to provide some form of separation between words, you can use
the underscore (_) character or you can use the so-called camel-case notation, where the
words that compose an identifier start with an uppercase letter. LastName is an example of
a camel-case identifier. LightSwitch automatically sets labels in the user interface to
contain a space between camel-cased words automatically.

After you type the property name, you can press Tab on the keyboard to switch to the
Type field. You can see the list of available data types and select a different one by expand-
ing the Type combo box. By default, LightSwitch assigns the String type to each newly
added property. Because the last name is actually a string, you can leave unchanged the
default selection. Before providing the full list of available data types, let’s focus on the
Required field. You mark a property as required when you want to ensure that the user
must provide information for that property. In this example, the last name is mandatory
because it is the piece of information that allows the identification of a person on our list
of contacts, so Required is checked. LightSwitch marks new properties as required by
default, so you need to manually unselect the box if specific property information is
optional. Figure 3.3 shows the result of the previous addition.

Each entity can expose different kinds of information. This is accomplished by assigning
the most appropriate data type to each property. Before adding more properties to the
Contact entity, it is important for you to understand what data types are and what data
types Visual Studio LightSwitch offers.

47Creating a New Data Source

3

FIGURE 3.3 The new property has been added to the entity and marked as required.

TABLE 3.1 Available Data Types in Visual Studio LightSwitch

Data Type Description

Binary Represents an array of bytes

Boolean Accepts true or false values

Date Represents a date without time information

DateTime Represents a date including time information

Decimal Represents a decimal number in financial and scientific calculations with large
numbers (a range between –79228162514264337593543950335 and
79228162514264337593543950335)

Understanding Data Types
Whatever tasks your application performs, it manipulates data. Data can be of different
kinds, such as numbers, strings, dates, or true or false values. When you add a property to
an entity, you need to specify its data type to clarify what kind of data that property is
going to manipulate. Visual Studio LightSwitch provides some built-in data types that are
based on types exposed by the .NET Framework 4.0 and that in most cases are sufficient to
satisfy your business needs. Table 3.1 summarizes available data types.

48 CHAPTER 3 Building Data-Centric Applications

TABLE 3.1 Available Data Types in Visual Studio LightSwitch

Data Type Description

Double Represents a large floating number (double precision) with a range from
–1.79769313486232e308 to 1.79769313486232e308

Email
Address

Represents a well-formed email address

Image Represents an image in the form of binary data

ShortInteger Represents a numeric value with a range between –32768 and 32767

Integer Represents a numeric value with a range between –2147483648 and
2147483647

LongInteger Represents a numeric value with a range between –9223372036854775808
and 9223372036854775807

Money Represents a monetary value, including the currency symbol and the appropriate
punctuation according to the local system culture

Phone
Number

Represents a well-formed phone number according to U.S.-supported formats

String Represents a string

Guid Represents a globally unique identifier, which is a complex, randomly generated
number typically used when you need a unique identifier across different
computers and networks

Using the appropriate data type is very important because it makes data manipulation
easier, provides the right mapping against the back-end database, and in most cases can
save system resources. As an example, instead of using a String to represent a date, you
use the Date type. This is useful (other than natural) because SQL Server has a correspond-
ing data type and the .NET Framework provides specific objects for working with dates if
you need to write custom code. The same consideration applies to numbers, Boolean
values, and binary data.

49Creating a New Data Source

3

MAPPING OTHER .NET DATA TYPES

Table 3.1 summarizes data types that Visual Studio LightSwitch supports when adding
new entities. By the way, to provide the best experience possible, when importing exist-
ing data from external data sources (such as SQL Server databases), LightSwitch maps
imported types into a more convenient .NET type, even if this is not generally available
in the Entity Designer. For a better understanding, consider the Northwind database,
which is a free sample database from Microsoft popular in the developer community
(see http://archive.msdn.microsoft.com/northwind). If you consider such a database,
the Picture column in the Category table is of the SQL type IMAGE, but LightSwitch
does not map it as an Image. Instead, it maps it to a Binary type (which is an array of
System.Byte in .NET), but you are still allowed to change it into an Image. Another
example is the Discount column in the Order_Details table; this is of the SQL type
REAL, but it is mapped to a Single .NET type. In this case, the mapping cannot be
changed because this is a primitive type. Generally, you can leave unchanged the
default mapping because LightSwitch takes care of translating data for you into the
most appropriate form.

PREFER INTEGER FOR NUMBERS

With regard to numbers, both the Visual Basic and Visual C# compilers are optimized
to work with the Integer data type. For this reason, you should always prefer Integer
even when an integer number is in the range of ShortInteger. For the same reason,
you should use LongInteger only when you are sure that your application will work
with numbers greater than the range supported by Integer.

The Concept of Business Data Types
In Table 3.1, you might have noticed something new in the LightSwitch approach to data
types. In contrast to other development tools and technologies, including .NET
Framework 4 and Visual Studio 2010, LightSwitch introduces the concept of business data
types. For example, suppose you want to add a property to an entity for inserting or
displaying monetary information. Before LightSwitch, this was accomplished by using the
Decimal data type, which can display decimal numbers and is therefore the most appropri-
ate .NET type in this scenario. This is correct but has some limitations: For example, you
must write some code to add the currency symbol or format the information according to
the local system culture. Next, consider email addresses. Developers usually represent
email addresses with the String data type but they have to implement their own valida-
tion logic to ensure that the string is a well-formed email address. The same is true for
phone numbers. This approach makes sense in a general-purpose development environ-
ment such as Visual Studio 2010. But Visual Studio LightSwitch is a specialized environment

http://archive.msdn.microsoft.com/northwind

50 CHAPTER 3 Building Data-Centric Applications

TABLE 3.2 Properties That Complete the Contact Entity

Property Name Type

FirstName String

Age Integer

Address String

City String

Country String

PostalCode String

focusing on business applications, so the LightSwitch team at Microsoft introduced four
new data types, specifically to solve business problems:

. Money, a data type for displaying currency information that provides the appropri-
ate currency symbol and culture information according to the user’s system
regional settings.

. Image, which allows storing and returning an image in the form of binary data.

. Email Address, which accepts only valid email addresses and implements validation
logic that throws errors if the supplied email address is not well formed.

. Phone Number, which accepts only valid phone numbers and which implements vali-
dation logic that throws errors in case the supplied phone number is not well
formed. This data type can be customized to accept phone numbers in a format
different from the default one, built specifically for the United States.

If you think that any data-centric applications must validate the user input to ensure that
the entered data is valid, business data types can save you a lot of time, especially because
you do not need to write the validation logic: LightSwitch does it for you. You will get a
visual sensation of the power of business data types in this chapter when you run the
application and test the validation functionalities. In addition, Visual Studio LightSwitch
provides an extensibility point where you can add custom business types, as described in
Chapter 19, “LightSwitch Extensibility: Data and Extension Deployment.” Now you know
everything important about data types in LightSwitch and are ready to complete the
design of the Contact entity by adding specialized properties.

Building a Complete Entity

So far, the Contact entity exposes only the LastName property, so it needs to be extended
with additional properties that complete the single contact information. Table 3.2 shows
the list of new properties (and their data type) that are added to the entity. You add prop-
erties by clicking inside the Add Property field and specifying types from the drop-down
Type combo box, as you learned earlier.

51Creating a New Data Source

3

TABLE 3.2 Properties That Complete the Contact Entity

Property Name Type

Email Email Address

HomePhone Phone Number

OfficePhone Phone Number

MobilePhone Phone Number

Picture Image

JobRole String

FIGURE 3.4 The Contact entity has been completed.

None of the new properties is required because the entity already provides two ways to
identify a contact as unique: the Id property and the LastName property. After you
complete adding properties, the Contact entity looks like Figure 3.4.

The Contact entity represents a single contact, but Visual Studio LightSwitch also gener-
ates a Contacts table that represents a list of items of type Contact. If you open Solution
Explorer and expand the Data Sources node, you can see how such a table is visible, as

52 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.5 The new Contacts table is visible in Solution Explorer.

demonstrated in Figure 3.5. If you name your entities with words from the English
language, LightSwitch automatically pluralizes the entity’s name when generating the
table, thus providing the appropriate name for the new table.

Now that you have successfully created a new entity and a table for storing a list of enti-
ties, you might wonder where data is stored by your application. This is briefly explained
in the next subsection and is revisited in Chapter 12, “Dissecting a LightSwitch
Application.”

Data Storage

LightSwitch applications use the Microsoft SQL Server database engine to store their data.
In fact, one of the prerequisites when you install LightSwitch is the presence on your devel-
opment machine of SQL Server Express Edition. Supported versions are 2005, 2008, and
2008 R2. When you create an application, Visual Studio LightSwitch creates a SQL Server
database for the application itself, also known as the intrinsic database, naming such a data-
base ApplicationDatabase.mdf. This is the physical storage for your data until you run the
application on the development machine. When you deploy the application to a web server
or a networked computer, you also need to deploy the database. You can decide to export
the current database and attach it to the running instance of Microsoft SQL Server, and its
name is replaced with the name of the application (for example, ContactsManager.mdf).
Alternatively, you can let the deployment process build and attach to SQL Server a brand-
new database with a different name, but you can also publish the database in the cloud by
deploying it to your SQL Azure storage. LightSwitch can perform these tasks for you, espe-
cially if you use the one-click deployment systems covered in Chapter 10, “Deploying
LightSwitch Applications.” For now, you just need to know that data is stored into
ApplicationDatabase.mdf, which is located in the %ProjectFolder%\Bin\Data folder.

The User Interface: Implementing Screens
The Contact entity and the Contacts table represent your data structure. A professional
standalone application needs a graphical user interface that enables users to enter and
retrieve data easily from the database. In LightSwitch applications, the user interface has
the form of screens, which are what users see. You may think of screens as of windows

53The User Interface: Implementing Screens

3

made of fields you fill in with data, of grids showing lists of data, and of buttons (or other
controls) bound to perform some actions such as saving or searching data. You do not
need to build screens manually because LightSwitch ships with a number of full-feature,
reusable screen templates that satisfy most of the needs in a business application. Such
templates implement fields, buttons, grids, and all other user interface elements required
to work with data. Default command buttons are organized inside tabs exposed by a
Ribbon Bar control (which mimics the Microsoft Office user interface). If you ever devel-
oped applications with Microsoft Access, you can easily compare LightSwitch screens to
Access forms. Offering predefined screen templates is another benefit in Visual Studio
LightSwitch because these enable you to quickly build the user interface for an application
without writing a single line of code or without any work from the developer. At a higher
level, you can customize screens as follows:

. Rearrange predefined controls, moving them to different positions on the screen

. Add tabs and buttons

. Style screens with different themes

. Add custom Silverlight controls

. Delete the entire content tree and add data items manually or create an empty
screen and still add items manually (Chapter 8, “Aggregating Data from Different
Data Sources,” provides an example)

So, what you basically cannot do is lay out the screen pixel by pixel, as you would do in
other development environments, but this makes sense in LightSwitch development: The
goal of LightSwitch is to provide tools to build fully functional business applications in
the quickest way possible, extending such an experience to novices and nonprofessional
developers, as well. The idea is that you do not want to (or need to) waste your time in
building the user interface; you just take advantage of what LightSwitch has ready to run.
Visual Studio LightSwitch currently offers five screen templates. In this chapter, you use
only two of them. In Chapter 4, “Building More-Complex Applications with Relationships
and Details Screens,” you begin to work with the other three templates. The reason for
this is that in this chapter, you are working with a single table database and therefore you
will learn about screens that work well in this scenario. This approach is also useful for
understanding how screens work, how you can customize their properties, and how
binding data to screens is really straightforward. In Chapter 4, you learn how to build
master-details applications, and thus you will also learn about screens that enable you to
work with one-to-many relationships. In the current scenario, our users need a way to add
new contacts to the database and one to show the list of available contacts.

Controls Overview

The user interface of any application is made of controls.

Each control is a graphical element that the user can easily associate with a particular
action in the application. Buttons and text boxes are examples of controls. These are typi-
cally arranged within containers (or panels). For example, the main application’s window

54 CHAPTER 3 Building Data-Centric Applications

TABLE 3.3 Common Controls in LightSwitch

Control Description Supported Data Type

Screen
Command Bar

A control that replicates the Microsoft
Office Ribbon UI and that is a container
for buttons organized in tabs

At the screen level

Button A clickable button that executes a
particular action

At the screen level

TextBox A field where the user can enter text String, ShortInteger, Integer,
LongInteger, Double, Decimal,
Guid

Date Picker A control for easily selecting dates Date

Date Viewer A control that displays date according
to specific formatting rules

Date

DateTimePicker Works like the Date Picker but also
allows users to select a time of day

DateTime

DateTimeViewer Works like the Date Viewer but also
displays a time of day

DateTime

Label A control used for displaying simple
text messages

String, ShortInteger, Integer,
LongInteger, Double, Decimal,
Guid

Image Editor A control used for uploading images
to the application

Image

Image Viewer A control able of displaying images
stored inside the database

Image

Email Address
Editor

A special text box used to enter and
validate email addresses

Email Address

Email Address
Viewer

A special control used to display
well-formed email addresses

Email Address

Phone Number
Editor

A specialized text box to enter, validate,
and format phone numbers

Phone Number

is the root container for nested control containers and controls. In Visual Studio
LightSwitch, screens are made of controls, too. Because screens are based on a predeter-
mined set of templates, LightSwitch offers a common set of controls that you interact
with at both design time and at runtime. This section provides a brief overview of
common controls in LightSwitch so that you can have a general idea about which
elements are actually used within screen templates. Table 3.3 summarizes controls in
LightSwitch.

55The User Interface: Implementing Screens

3

TABLE 3.3 Common Controls in LightSwitch

Control Description Supported Data Type

Phone Number
Editor

A read-only text box that displays phone
numbers according to specific formatting
rules

Phone Number

DataGrid Shows the content of data coming from
an entity collection in a tabular represen-
tation

Entity collection

DataGridRow Represents a single row (that is a single
entity) in a DataGrid

Single entity

List Shows the content of data coming from
an entity collection under the form of a
scrollable list

Entity collection

Money Editor A specialized text box where you can
enter monetary information

Money

Money Viewer A read-only text box specific for display-
ing monetary information, including the
currency symbol and localized informa-
tion such as the symbol used for the
decimal point

Money

CheckBox A control that allows users to select a
true or false condition

Boolean

This set of controls is the most common in LightSwitch development and covers the
needs for almost any business application. Of course, you can create and add custom
Silverlight user controls, which you learn in Chapter 7, “Customizing Applications with
Buttons, COM Automation, and Extensions.” You first need to understand how to create,
manage, and customize screens. Let’s begin by creating a data entry screen, which is the
place where users enter data and is also the first contact you have with screens in
LightSwitch.

Creating a Data Entry Screen

To add a screen to the project, you use one of the following options:

. Right-click the Screens folder in Solution Explorer and select Add Screen.

. Click the Screen button in the Entity Designer.

. Select Project, Add Screen.

Whichever option you use, you are prompted to specify a screen template, a screen name,
and screen data in the Add New Screen dialog, shown in Figure 3.6.

56 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.6 You can add new screens to the project in the Add New Screen dialog.

On the left side of the dialog, you see the list of available templates. Select the New Data
Screen one. Notice that in the center of the dialog, you can see a preview of what the
screen looks like. Next, you need to specify the data source that will be associated with the
screen. In the Screen Data combo box, pick up the table you want to associate with the
screen. Basically, here you see the list of all the entities you defined in your project.
Currently, there is only the Contact entity, so just select this one. After you select the
screen data, a check box becomes visible. In this case, it is named Contact Details and, if
you check it, the resulting application will also allow editing the entity’s details. When
you choose the data source, LightSwitch automatically changes the content of the Screen
Name text box, providing a more meaningful value (CreateNewContact) in the current
example. Now click OK. At this point, Visual Studio LightSwitch switches to the Screen
Designer view. As explained in Chapter 2, you will not get an interactive designer for the
screen; instead, you get a list of controls laid out in a content tree comprising the screen’s
user interface. Figure 3.7 shows the Designer screen for the CreateNewContact screen.

WHERE’S THE XAML? A NOTE FOR WPF AND SILVERLIGHT DEVELOPERS

If you have had any experience developing Windows Presentation Foundation (WPF) and
Silverlight applications, this is the point at which you might wonder where the user
interface elements are actually declared. In WPF and Silverlight, you define the user
interface via the Extensible Application Markup Language (XAML), and you would proba-
bly expect that this happens in LightSwitch, too. In LightSwitch applications, you have
no XAML. The user interface (and the entire visual tree) is generated and compiled for
you when you build the application.

57The User Interface: Implementing Screens

3

FIGURE 3.7 The Screen Designer for the CreateNewContact screen.

The user interface composition is shown in a hierarchical fashion. At the top is an
element named Rows Layout that specifies how the user interface is globally organized.
Nested are the Screen Command Bar (that is, the Ribbon) with two buttons (one for
saving data and one for refreshing controls) and an element named Rows Layout that
contains all controls that allow user input. In particular, you can see a number of text
boxes that accept input from the user, a control named Email Address Editor that is
specific for accepting email addresses, a Phone Number Editor control that can accept and
format phone numbers, and an Image Editor control that allows uploading an image.
Rows Layout consists of two containers of controls that are part of a major set that is
described later. For now, you need to understand how the user interface is organized and
that you have no form designer as in Visual Studio 2010. It is worth mentioning that the
new screen now appears in Solution Explorer (see Figure 3.7). On the left side of the
designer, you have an element named ContactProperty that represents a single contact on
the screen. This element is expanded to show the data properties, which basically are the
same properties you defined in the Contact entity. There are also some elements referring
to buttons (Close, Refresh, and Save).

This also ensures that nobody can accidentally make changes to the user interface
that might prevent the application from running correctly. This might seem disappoint-
ing if you are an expert developer, but it makes sense because LightSwitch is intended
for both experts and novices.

58 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.8 Selecting the Search Data Screen template.

AVAILABLE CONTROLS AND CUSTOMIZATIONS

This chapter has one important goal: showing how easily and quickly you can create
and run a LightSwitch application. There is a lot more to say about screens, controls,
and screen customization, but this is not yet the time for that. For now, focus on build-
ing the application. Later in this chapter and then in Chapter 4, you learn all about con-
trols and how to customize your screens by working with controls and by adding/
removing elements in the user interface using the Screen Designer.

There is nothing else to do. With a simple sequence of mouse clicks, you successfully
added a new screen to your project. But adding data is not the only requirement in this
application; we also need to enable users to display and search available data.

Creating a Search Screen

Every business application must provide some user interface for displaying the data stored
inside the database. In addition, it should enable users to easily search data. Visual Studio
LightSwitch provides a screen template that includes such requirements. Open again the
Add New Screen dialog and select the Search Data Screen template (see Figure 3.8).

Select the Contacts data from the Screen Data combo box so that the Screen Name box’s
content is also updated to SearchContacts. Notice that you have now specified a table
rather than a single entity. This is because the search screen is for showing a list of entities.

59The User Interface: Implementing Screens

3

FIGURE 3.9 The Screen Designer shows the composition of the search screen.

TABLE SELECTION

Whatever screen template you add to your application, selecting the table data is
always accomplished via the Screen Data combo box.

After you click OK, the Screen Designer displays the composition of the search screen, as
shown in Figure 3.9.

As you can see, the screen consists of the following components:

. A container of type Rows Layout, which allows arranging nested controls.

. The Screen Command Bar element, representing the Ribbon user interface, with
nested buttons.

. A Data Grid control, which provides the ability of displaying tabular data.

. Nested controls such as a Command Bar, which contains action buttons, and a Data
Grid Row element. This represents a single entity (one contact in our scenario), and

60 CHAPTER 3 Building Data-Centric Applications

it is made of several nested elements, each representing a field in the contact defini-
tion. In particular, you can see labels and specific viewers (Email Address Viewer,
Image Viewer, and Phone Number Viewer) for business data types.

On the left side of the designer, you can see the data source composition. There is a
Contacts element that, as its name implies, represents a collection of items of type
Contact. Basically, a collection of items is nothing but a .NET representation of a database
table. The Contacts object is the data source for the screen, and each item is data-bound
to a single row on the screen itself. LightSwitch performs this work for you. Then the
Selected Item property from the collection represents a single entity that is selected
within the search screen at runtime, and this is why in the designer, you see the list of
properties exposed by your entity. Now that you have added the second necessary screen,
the application is ready to run. In a few minutes, you have built a business application
that can add, edit, and display your favorite contacts. Now it is time to see how your
application works.

Testing the Application on the Development Machine
LightSwitch applications can be executed on the desktop or inside a web browser. This is a
tremendous benefit because you can make your programs available as desktop or web
applications just by changing one setting. In this chapter, you see how to run your
program both as a desktop client and as a web application, starting from the default
setting that is the desktop client.

SILVERLIGHT 4 UNDER THE HOOD: OUT-OF-BROWSER APPLICATIONS

You learned in Chapter 1 that LightSwitch applications are nothing but applications
built on Silverlight 4. Starting from version 3, Silverlight introduced a feature known as
out-of-browser applications, which allows installing and running a Silverlight application
as if it were a classic desktop client program. Out-of-browser applications run effec-
tively as desktop clients, so they have more permission over the target machine than
web clients. When you create a new LightSwitch application, it runs by default as a
2-tier desktop client. This is actually an out-of-browser Silverlight application unless you
change a specific setting in the Application Designer, as demonstrated later in this sec-
tion. Another great benefit is that (and in contrast to the classic Silverlight develop-
ment, where you need to manually set some options) in LightSwitch, you just need one
mouse click to switch between desktop clients and web clients, and this can be done
as many times as you want during the application development process. It is important
to emphasize that most of the power of your LightSwitch applications results from the
Silverlight infrastructure that runs behind the scenes.

61Testing the Application on the Development Machine

3

FIGURE 3.10 The application is finally running.

Starting the Application as a Desktop Client

RUNNING FROM WITHIN LIGHTSWITCH

When you run applications from within the LightSwitch development environment, the
IDE automatically attaches an instance of the debugger to the application. In other
words, applications running from within the IDE are always in debugging mode (in con-
trast to other editions of Visual Studio 2010, in which you can switch from the debug
configuration to the release configuration). Actually, this is not a problem. You will read
more about debugging in LightSwitch in Chapter 14, “Debugging LightSwitch
Applications”; this current chapter focuses instead on how the application works based
on entities and screens you build.

To run the application, press F5. After a few seconds, it displays what you see in Figure 3.10.

Before going into detail about how the application works, there are a few things to point
out:

. The application implements a Ribbon Bar showing a built-in tab (Home) that
includes two default buttons: Save and Refresh. This piece of the user interface is

62 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.11 Screens are organized in tabs.

common to all screens and can be customized by adding new buttons or new tabs
via the Screen Designer or in custom code.

. There is a Menu bar that is common to all screens and that includes collapsible
panels nesting common shortcuts. By default, LightSwitch creates a Tasks panel that
lists available screens and that you use for navigation between screens.

. Names of items in the user interface, including data fields and shortcuts, are auto-
generated and are taken from tables and screen definitions.

. The remaining client area of the application is about screens. In Figure 3.10, you see
the Create New Contact screen, which you use to add a new contact. Screen naviga-
tion is organized in tabs. If you click Search Contacts in the Tasks panel, another
tab shows the Search Contacts screen (see Figure 3.11).

The user interface is intelligent enough to understand that the search screen is not used
for data editing, so here the Save button is not available. It is also worth mentioning that
what you are now seeing on screen has been created without writing one line of code,
because LightSwitch takes care of all the plumbing for you. Let’s now see how the applica-
tion works by adding/editing data and displaying lists of data.

63Testing the Application on the Development Machine

3

FIGURE 3.12 Filling the screen with information for a new contact.

REFERRING TO SCREEN NAMES

In this book, we refer to screen names by invoking either the name as it appears in the
designer or the name that is generated in the user interface. This means that
SearchContacts and Search Contacts (the latter has a blank space in the middle) are
two ways to refer to the same screen. Typically, the first way is used when referring to
the screen while designing the user interface, whereas the second way is used when
running the demo applications.

Adding and Editing Data

To add new data, you can either click Create New Contact in the Tasks panel or on the
Create New Contact tab. This screen opens first because it was the first to be created. If
you want to change the startup screen, you can go to the Application Properties and select
the Screen Navigation tab. This feature is discussed in detail in Chapter 4.

You just fill in fields according to the information you want to add. Notice that required
fields are presented in bold (such as Last Name in the current example). To fill the Picture
field (and ones like it), simply pass the mouse over such a field and click the green arrow
to add the picture from disk or the click the black cross to remove an existing picture from
the field. Figure 3.12 shows what the screen looks like when filled with custom data.

64 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.13 The screen changes after saving data.

After you have finished adding information, click Save to permanently store the informa-
tion to the database. When you save your data, the application shows an edit screen for
the newly added item.

The star symbol also disappears, and the tab title is replaced with the content of the Last
Name field. (This automatic choice is because it was the first property added to the entity.)
Finally, the Id read-only field shows the record number of the element inside the database.
Figure 3.13 shows what the screen looks like after saving data.

It is worth mentioning that data is still available for editing. So, you might change your
data by replacing the content of fields and then save again. In this case, a star appears
inside the tab’s title, indicating some pending changes.

Adding and Formatting Phone Numbers
While entering data, you might have noticed that fields of type Phone Number were auto-
matically formatted. The Phone Number Editor control in LightSwitch applications can
parse phone numbers and present them in one of the built-in formats if they are recog-
nized as valid; otherwise, data remains as you entered it. The default formatting can be
overridden by passing the mouse over the field and clicking the down arrow on the right

65Testing the Application on the Development Machine

3

FIGURE 3.14 Providing local information for phone numbers.

side of the field. This shows a group of fields that you fill with your local phone number
information, as shown in Figure 3.14.

In particular, you can specify the following information:

. Country Code: The phone number prefix for your country

. Area Code: The local prefix for your area

. Local Number: The actual phone number without any prefixes

. Extension: Additional information for the phone number

After you specify such information, the Phone Number field is updated to reflect changes.
Sometimes the built-in phone number formats are not enough to satisfy your require-
ments, especially if you do not live in the United States. Fortunately, LightSwitch enables
you to add custom phone number formats and edit built-in formats, as explained in the
next subsection.

Customizing Phone Number Formats
The Phone Number Editor control provides automatic phone number formatting capabili-
ties by comparing the phone number entered by the user with one of the built-in phone

66 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.15 The Properties window for properties of type Phone Number.

number formats available for the Phone Number data type. If the phone number entered by
the user matches one of the available formats, the Phone Number Editor presents the
number according to this format. You can customize phone number formats by both
editing built-in formats and providing new ones. To accomplish this, you need to close
the application and open the Table Designer for the desired entity (Contact in the current
example). Once the entity is shown in the designer, select one of the properties of type
Phone Number. Continuing the current example, select the HomePhone property, and then
press F4 to enable the Properties window. Figure 3.15 shows what this window looks like
with regard to the selected property.

FIRST CONTACT WITH THE PROPERTIES WINDOW

This is the first time you use the Properties window in this book. Basically, this is the
place where you can assign all customizable properties for a data type with the appro-
priate values. In most cases, customization possibilities are self-explanatory (such as
Maximum Length). In other cases, however, explanations are required. You will use the
Properties window many times throughout this book, and you will see it in action with
almost all available data types and in the most common scenarios (with all the neces-
sary explanations where needed).

67Testing the Application on the Development Machine

3

FIGURE 3.16 The Phone Number Formats dialog enables you to customize phone number
formats.

Among the available properties, you can find a shortcut named Phone Number Formats. If
you click it, the Phone Number Formats dialog appears, showing all the available built-in
phone number formats, as shown in Figure 3.16.

To edit an existing format, just click the box related to the format and replace it with
custom information, remembering that

. The letter C represents the country code. You can enter up to three C letters for
country codes requiring three numbers.

. The letter A represents area code numbers. There is basically no limit to the number
of A letters.

. You can enclose letters between parentheses to provide this kind of formatting.

. The letter N represents the local number. You must specify the exact number of N
letters to match a fixed phone number length. For instance, you add six N letters if
you want to match a phone number exactly six characters long, but not numbers
that are seven or five characters long.

You can test whether a phone number matches one of the listed formats by typing it
inside the Test a Phone Number text box. This is useful to understand how formats work.
You follow exactly the same rules if you want to specify a new custom format. Just click
inside the Add Format field at the bottom of the list and begin writing your format by
following the explanations provided in the previous bulleted list. Notice that Visual

68 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.17 LightSwitch performs validation when you are adding a custom format.

Studio LightSwitch validates your format while you write it. If it does not comply with
built-in rules, LightSwitch shows validation error messages, as shown in Figure 3.17 with
regard to C letters.

After you finish adding your custom phone number format, click OK. If the user enters a
phone number that matches your format, it is formatted according to your rules.

Automatic Check for Pending Changes
The LightSwitch infrastructure automatically provides to applications the so-called dirty
checking feature, which is the ability to check whether the user is attempting to close a
screen or the application without saving pending changes (and ask for confirmation that
the user really wants to do this). For example, if you are adding or editing a contact and
then try to close the CreateNewContact screen before saving your changes, the application
asks whether you want to save or discard changes before closing, as shown in Figure 3.18.

Similarly, users are asked for confirmation when attempting to close the application but
there are some unsaved changes. It is important to underline that such a feature is imple-
mented automatically, meaning that you do not need to enable it manually or write a
single line of code.

Displaying and Searching Data

So far, you have seen how to add items to and edit items in the application’s database via
the user interface of the ContactsManager application example. Now it is time to see how
the application can list and search existing data via the search screen implemented earlier.
Let’s suppose you have added a number of contacts to the application. Now, in the Tasks
panel, click the SearchContacts element. You will get the full list of data in a tabular

69Testing the Application on the Development Machine

3

FIGURE 3.18 The application asks for user confirmation before discarding unsaved changes.

FIGURE 3.19 The search screen displays the full list of data.

form, similar to what you would get in Microsoft Excel. Figure 3.19 shows an example
taken from my machine, showing a list of friends of mine.

70 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.20 The DataPager control allows moving between data pages.

As you can see, the tabular representation shows all the available information organized in
columns, one per property exposed by the Contact entity. By default, the search screen is
read-only, so you cannot directly edit items inside the grid (although there are two ways
to accomplish editing that are discussed later). Data is shown via a DataGrid control; and
phone numbers, email addresses, and images are displayed respectively via Phone Number
Viewer, Email Address Viewer, and Image Viewer controls. The search screen also offers
lots of interesting built-in functionalities that the LightSwitch infrastructure offers without
the need to write a single line of code, as described in the following sections.

Paging
Suppose that you have added thousands of records to your application’s database. If a
search screen had to show them all, it would have to load all items in memory and then
render the list to the user interface, and this would heavily affect performances. In addi-
tion, scrolling the list of records on the screen would also be slow because the user inter-
face would refresh each time you scrolled the list. Because of this, LightSwitch applications
offer a built-in paging mechanism. Thanks to paging, the application divides data into
virtual pages and loads and displays 45 items at a time. For example, when you run an
application that stores 100 elements, it divides the data into 3 virtual pages (45 + 45 + 10)
and then it loads and displays the first 45 items. Then you can go to page 2 or 3 (and then
go back) by using the DataPager control shown in Figure 3.20.

The first button on the left side of the control brings you back to the first page, and the
last button on the right side of the control moves to the last page. Intermediate controls
browse data by one page. Only when you click one of these buttons does the LightSwitch
application load and display the corresponding number of items. This paging mechanism
is a convenient way to maintain optimal performances and is something that is provided
by default, without writing a single line of code. The page size is not fixed; you can replace
the default value of 45 with a custom one. To do so, open the Screen Designer and select
the collection in the upper-left corner (which is Contacts in the current example). Then,
in the Properties window, edit the value of the No. of Items to Display per Page property.

Searching and Filtering
As its name implies, a search screen not only displays the list of items from a table, but it
also provides search tools. By default, search screens in LightSwitch applications imple-
ment a search text box where you can type your search key. Then you click the button
with a lens inside or you simply press Enter. For example, you might want to retrieve a
specific record from the list. Figure 3.21 shows how to retrieve a contact by its last name.

71Testing the Application on the Development Machine

3

FIGURE 3.21 Searching for a specific record.

FIGURE 3.22 Filtering items: first example.

You can simply return to the full list by clicking the button with a blue X near the search
box. It is important to mention that the search tool filters all the items that contain the
specified text in every string column. For example, if you use the “cat” search key in the
sample application, the search screen returns all the items that contain the specified key,
and in this case, this is true in the Last Name column, as shown in Figure 3.22.

72 CHAPTER 3 Building Data-Centric Applications

Similarly, if you type the “de” key search, the search screen filters all the items that
contain the search key in every string column that in the current example is contained in
the Job Role column, as shown in Figure 3.23.

Refreshing the Search Results
Search screens provide a Refresh button on the Ribbon Bar.

You use this button to reload the full list of data, and it is useful when you add a new or
edit an existing item. In fact, when you are editing items, the search results do not auto-
matically reflect changes, so you need to refresh the list with the Refresh button. To
understand how this works, follow these steps:

1. In the Tasks panel, click Create New Contact.

2. Add a new contact by specifying real or sample information, and then save your
changes.

3. Return to the search screen.

At this point, you might notice that the new contact is not automatically displayed in the
search results. The reason is that the screen displays a snapshot of items stored in the
database at the time you executed the search, which is similar to requesting a web page in
your browser.

So, click the Refresh button on the Ribbon Bar to get the list updated with the new data.

Editing Data from the Search Screen
By default, you cannot edit data directly inside cells. By the way, LightSwitch presents
cells in the first column (for each row) with a hyperlink that you can click to edit the

FIGURE 3.23 Filtering items: second example.

73Testing the Application on the Development Machine

3

FIGURE 3.24 Accessing the edit screen from the search screen.

current item. This refers to the summary property of your table, which by default is the
first property you added to your entity and that is used as the default column. You can
change this in the Table Designer.

Continuing the previous example, the Contact column refers to the LastName property in
the Contact entity, and you can click the last name of each contact to easily edit the item.
Figure 3.24 shows what happens when you click the last name of a contact.

As you can see, a new tab appears containing a screen that allows editing the item you
selected. Here you just make your changes and then click Save when you are done. It is
worth mentioning that LightSwitch created this editing screen for you, saving you a lot of
time. You can return to the search results by closing the current tab or by clicking the
Search Screen tab.

Understanding Summary Properties and the Show as Link Feature Earlier you saw how
LightSwitch presents the first property added to the entity with a hyperlink in search
screens. By clicking this hyperlink, you can immediately access detail properties for the
selected item (see Figures 3.19, 3.22, and 3.23). In the current example, the LastName
property value is presented with a hyperlink because that was the first property added to
the entity. Of course, you can change the default setting, and this is an easy task. For
instance, with regard of the current ContactsManager application, you might want to

74 CHAPTER 3 Building Data-Centric Applications

make the Email property the hyperlink. If you just want to change the property that is
displayed as a hyperlink, in the Screen Designer you simply select the control mapped to
the property, and in the Properties window you check the Show as Link check box, as
shown in Figure 3.25.

Notice that selecting a new property does not automatically deselect the previous one (in
this case, LastName). Therefore, LightSwitch allows you to present multiple properties as
hyperlinks, but you have to manually uncheck the Show as Link check box for undesired
properties. If you now run the application, you can open contact details by clicking the
Email hyperlink. Using Show as Link is the simplest way possible to change the default
behavior, but in some situations, this is not enough. In fact, some screens use the Summary
control to display a list of items but present them via only one property. For a better
understanding, consider Figure 3.26, which is taken from the sample application that will
be built in Chapter 4. Notice how the Customer property shows a list of customers but
only the company name is displayed. That is an example of Summary control, and the
property that is displayed is referred to as a summary property.

By default, the summary property is the first property added to the entity. To change the
summary property, double-click the desired table in Solution Explorer, and then in the
Table Designer, click the table name. In the Properties window, you can see at this point
the Summary Property field, where you can select a different entity property to identify a
list of items within a Summary control. With regard to customers, you could select the
email address or the name of the contact. Figure 3.27 demonstrates how to change the
current summary property.

FIGURE 3.25 Setting the hyperlink for a different property.

75Testing the Application on the Development Machine

3

FIGURE 3.26 Summary properties enable you to display one entity property within the
Summary control.

FIGURE 3.27 Setting summary properties.

76 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.28 An unchecked Use Read-Only Controls check box.

TESTING SUMMARY PROPERTIES

Generally, search screens are not the place in which summary properties are used. By
the way, you could replace the Data Grid control in a search screen with a List con-
trol. This uses a Summary control that points to summary properties. You can test this
yourself with the current sample application.

Using Controls That Support Editing
The default behavior for search screens is that they are read-only and that you cannot
directly edit data within cells, but you can access the edit screen by clicking the hyperlink
provided for each row. If you do not like to invoke an external screen for editing data, you
can override the default behavior by changing the Use Read-Only Controls property for
the screen.

EDITABLE GRID SCREEN

LightSwitch also offers a screen template called Editable Grid, which works exactly like
a search screen but that also allows editing data within cells. It is discussed further
in Chapter 4. For now, though, focus your attention on modifying properties of a
search screen.

To accomplish this, follow these steps:

1. Close the application if it is running.

2. In Solution Explorer, double-click the SearchContacts screen and then press F4 to
enable the Properties window.

3. Uncheck the Use Read-Only Controls check box, as shown in Figure 3.28.

77Testing the Application on the Development Machine

3

FIGURE 3.29 Editing data directly inside the cells.

If you now rerun the application and open the search screen, you can click inside the cells
you want to edit and type your information without opening an external screen. Figure
3.29 shows an example, where the Address property for the first contact in the list is
being edited.

You can also edit email addresses, phone numbers, and images. This is because the viewer
controls (for example, Image Viewer) are replaced with the editor counterparts (for
example, Image Editor). Of course, you can still edit data by clicking the hyperlink in each
row, which points to the edit screen for the current item. Editing data inside cells is a plus.

Exporting Data to Microsoft Excel

In most business applications, interaction with the Microsoft Office suite is a common
scenario. For example, you might want to export a report to a Microsoft Excel spreadsheet,
or you might want to produce letters in Microsoft Word starting from a list of customers.
One goal of Visual Studio LightSwitch is to make Office integration easier. Because export-
ing data to Microsoft Excel is a common scenario, the LightSwitch infrastructure provides
automation for this particular task from within search screens. Under the search box is an
Export to Excel button, identified with the typical Excel icon. If you click this button,
after a few seconds your search results are exported into a new Excel workbook, as shown
in Figure 3.30.

78 CHAPTER 3 Building Data-Centric Applications

The generated Excel workbook shows a list of columns representing exactly the columns in
the Data Grid, including column headers. Below, there is the actual list of data that you can
treat as you would in any other Excel spreadsheet. For example, you might want to format
column headers in bold, but you can also add formulas, edit cells, and so on. Just notice that
with regard to pictures, there is no Excel counterpart for the Image data type in LightSwitch,
so the Picture column just reports the string representation of the .NET data type that handles
images, which is [Image]. (System.Byte() is the .NET representation of the type.) Excel inte-
gration is, without a doubt, a requirement in most cases, and LightSwitch makes this easy.

MICROSOFT OFFICE INTEGRATION

You might wonder what other built-in possibilities LightSwitch offers for integrating appli-
cations with Microsoft Office, other than exporting to Excel. The answer is: none, out of
the box. You can still automate Office applications by taking advantage of different tech-
niques (such as COM interoperability, which is covered in Chapter 7, Chapter 8, and the
Office Integration Pack, which is covered in Chapter 17), but all these techniques require
writing code and that you understand some important .NET programming concepts.

Basic Screen Customizations

So far, you have generated a fully functional LightSwitch application without making any
changes to the user interface. You can customize screens in a number of ways, both basic
and advanced. In this chapter, you learn about basic customizations. In Chapter 4, you
learn about advanced customizations.

FIGURE 3.30 Microsoft Excel shows the data exported from the LightSwitch application.

79Testing the Application on the Development Machine

3

FIGURE 3.31 Adding a more meaningful description for the Display Name property.

Customizing Display Names and Descriptions
When generating screens, LightSwitch automatically provides descriptive text for controls
by picking up the name of the related entity’s property. For example, you have a LastName
property in the entity. When you create screens, LightSwitch generates a text box into
which you can type the last name and names that text box Last Name (refer to Figure 3.10
for an example).

Properties in entities expose two particular subproperties, Name and Display Name. The
first identifies the control within the application; it cannot contain blank spaces and can
be changed, although it is preferable to leave the autogenerated name unchanged. The
application infrastructure refers to the control via the Name property (for example, when
binding the data to the control). The Display Name property refers to the text you see on
the screen, so you can replace this with more meaningful content. Let’s see how to provide
the CreateNewContact screen with a more meaningful user interface. Close the application,
if it is running, and open the Screen Designer for the CreateNewContact screen by double-
clicking it in Solution Explorer. When ready, select the top-level element named Rows
Layout, Create New Contact and press F4 to enable the Properties window. Locate the
Display Name property and replace its content with Add a New Contact. Figure 3.31 shows
this edit.

CHANGING PROPERTIES AT RUNTIME: IMMEDIATE CUSTOMIZATION

Visual Studio LightSwitch introduces a great feature called Immediate Customization,
which enables you to rearrange elements in the user interface and set screen proper-
ties while the application is running. The feature is described later as you learn about
more-complex user interfaces. For now, just know that by clicking the customize screen
in the upper-right corner, you can access the customization page on which you can
change element properties and arrangement in the user interface. A screen preview
shows how changes will appear, and when you save these, the screen layout is automat-
ically updated. The benefit of Immediate Customization is that you do not need to break
the application execution every time you want to make a change to the user interface.

80 CHAPTER 3 Building Data-Centric Applications

After you change display name values, such changes are reflected in the Screen Designer,
which shows the new display name for each element. At this point, you can update the
user interface for any other screen in the application by following the steps described
here. Another step that you can take is to add a description for each property. For
example, you might want to indicate to the user how to fill in a particular field, why it is
required, or any other useful information. With LightSwitch, you can provide descriptive
text inside the Description property in the Properties window. (Refer to Figure 3.31 to
understand how to locate it.) Text that you type inside the Description property is shown
via a yellow tooltip when you click inside the related field. For example, with regard to
the LastName entity’s property, add the following text inside the Description property:
Required. Specifies the contact’s last name.

Customizations described in this subsection are summarized in Figure 3.29. Before
running the application to see how what the user interface now looks like, however, you
should replace the application’s name with a more meaningful one.

Changing the Application’s Name
When you create a new application, LightSwitch assigns the application a name that is
taken from the project name. This makes sense except for the user interface. In fact,
considering the current example of the ContactsManager application, you can easily see
from the previous figures how the application’s window title reports ContactsManager, but
a professional user interface should say Contacts Manager (with a blank space). The appli-
cation’s name is an application-level setting and can be changed within the Application
Designer. So, double-click Properties in Solution Explorer, and on the General tab of the
Application Designer, replace the content of the Application Name box with Contacts
Manager, and then save your changes.

FIRST CONTACT WITH THE APPLICATION DESIGNER

The Application Designer is the place where you set application-level properties, includ-
ing themes, version information, deployment strategy, and security. You will use the
Application Designer several times in this book, but each aspect is related to a particu-
lar chapter. In this chapter, you just change the application’s name, whereas in Chapter
4 you learn about other features, such as screen navigation. Access control and appli-
cation types are topics covered, respectively, in Chapters 14, “Debugging LightSwitch
Applications,” and 15, “Customizing the IDE.”

At this point, run the application again. You can now see a more professional layout, with
the window’s title and descriptions updated with more meaningful information, as shown
in Figure 3.32.

Adding and Removing Data
You will sometimes need additional data on the entity side and so must add the appropri-
ate control on the screen side to map the new property. LightSwitch makes updating the
user interface really easy; you just drag and drop. For example, suppose you want to add a
WebSite property to the Contact entity. To accomplish this, open the Table Designer and

81Testing the Application on the Development Machine

3

FIGURE 3.32 The user interface now has high-quality descriptive text.

add a new property called WebSite of type String, marking it as not required, and then
save your changes. Double-click the CreateNewContact screen in Solution Explorer so that
the Screen Designer displays. On the left side of the IDE, you can see that the new
WebSite property has been added to the ContactProperty item. Now click the WebSite
item and drag it under the Job Role text box, as shown in Figure 3.33.

When you release the mouse button, you can see how LightSwitch adds a new TextBox
control, which is data-bound to the WebSite property. This is enough to update the user
interface to reflect changes to the data structure.

Repeat the same steps to update the SearchContacts search screen, dragging the WebSite
property under the Job Role text box (inside the Data Grid Row element). If you now run
the application, you can see how screens have been updated with the new item, which
correctly accepts (or shows, in case of the search screen) the specified information, as
shown in Figure 3.34.

The important thing to remember here is that you updated the user interface with a
simple mouse click, without writing a single line of code to associate the new property
with the appropriate text box.

82 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.34 The screen now reflects updates to the entity structure.

FIGURE 3.33 Dragging the new property onto the designer surface.

83Testing the Application on the Development Machine

3

FIGURE 3.35 Changing the application type in the Application Designer.

Running the Application as a 3-Tier Desktop Client

When you run the application as a 3-tier client from Visual Studio LightSwitch, the
ASP.NET development server is used.

Internet Information Services (IIS) is actually required only on the web server that you use
for deployment, as described further in Chapter 15. As a general rule, you change the
application type and deployment topology for your application in the Application
Designer. So, in Solution Explorer, double-click Properties. When the Application Designer
is available, select the Application Type tab on the left. Figure 3.35 shows how things
look at this point.

As you can see, LightSwitch shows the list of available application types. You just need to
click the desired type and nothing else. Select the Desktop client type, and then select the
Host Application Services on an Internet Information Services (IIS) Service applica-
tion server option type. When you build the project, Visual Studio LightSwitch generates
a 3-tier application in which the middle tier is hosted by IIS and that exposes services
responsible for working with data and responsible for communications between the user
interface and the data. If you try to run the application, you will see no difference in how
the application looks. The reason why is that this application type is, again, a desktop
client, even though behind the scenes there is a middle tier working in IIS. For now, this is

84 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.36 Running the application as a 3-tier browser client.

enough. Later in Chapter 15, when discussing deployment and installations, a complete
explanation of the IIS requirement is provided.

Running the Application in the Web Browser

LightSwitch applications can run inside a web browser such as Microsoft Internet Explorer,
Mozilla FireFox, or any other browser that supports Silverlight 4. This is without a doubt a
great benefit because you can easily create and deploy applications that end users can use via
a web interface. In addition, a 3-tier browser client means that the application is available
online only, without the need of a local installation as instead happens for n-tier desktop
clients. This is discussed in detail in Chapter 15. For now, let’s see how to run the application
in a web browser for testing purposes. Open the Application Designer and go to the
Application Type tab shown in Figure 3.32. Now simply select the Web client application
type. With this simple selection, you switch to a web interface. Press F5 to run the application
again and see the magic happen. The application now runs inside your default web browser
and provides the same functionalities that desktop clients offer, as shown in Figure 3.36.

The program is nothing but a complete Silverlight 4 application available online only,
running inside a web browser like any other Silverlight application would do, unless you
turn it into an out-of-browser application. Before going on, in the Application Designer
revert to the default setting, which is a 2-tier desktop client. This is the application type
that is used to demonstrate other important LightSwitch built-in features, such as data
validation.

85Input-Data Validation

3

Input-Data Validation
Business applications need to validate user input to ensure that entered data is valid,
meaningful, and correct with regard to a particular data type. For example, when users
enter an email address, the application must validate it to ensure that it is well formed.
Other examples are checking that a required field is not empty or checking that a string is
shorter than a fixed number of characters or checking that a date is earlier than another
one. The main reason for this is that the back-end SQL Server database cannot accept
invalid data, and therefore validation is important so that no errors occur when sending
data to storage. As a developer, you write validation rules, which are procedures ensuring
that data adheres to specific requirements. In other development environments (including
Visual Studio 2010), you must write validation rules on your own for every single column
in a table. Visual Studio LightSwitch offers a built-in validation mechanism that does most
of the work for you, as explained in the following subsections.

Required Fields Validation

Probably the most common requirement in data validation is checking that a required
field is neither null nor empty. Visual Studio LightSwitch makes this easy because the
generated applications implement a built-in mechanism that automatically checks for
empty fields and notify the user about the error. For instance, when you run the Contacts
Manager application and you attempt to save changes by leaving the Last Name field
empty, the application surrounds the field with a red border and tells you that an error
must be fixed before saving changes, as shown in Figure 3.37.

By clicking the error message, you can get detailed information about the issue that
caused the error. In this particular case, the user is informed that the Last Name value
cannot be null, as shown in Figure 3.38.

MULTIPLE VALIDATION ISSUES

Of course, screens can handle multiple validation issues. If multiple fields do not pass
the validation, the screen shows the total number of validation issues at the top of the
screen and displays a list of error messages in the details box. This affects not only
strings, but any supported data type.

It is important to understand that the error message is not raised by the user interface.
Instead, it is raised by the entity, and the user interface is responsible for catching the
error, presenting it to the user, and ensuring that validation issues are fixed before saving
changes. Entities provide the actual validation mechanism by implementing built-in vali-
dation rules.

You can override the default behavior by writing custom validation rules, as described in
Chapter 5, “Customizing Data Validation.” For now, focus on the fact that (without
writing a single line of code) you have a fully functional, built-in data validation mecha-
nism, which ensures that the user enters correct data without writing a single line of code.

86 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.38 Getting detailed information about the error.

FIGURE 3.37 The validation fails and the user interface notifies the user.

String-Length Validation

Another common requirement in data validation is ensuring that a string is shorter than a
fixed number of characters. The default length for the String data type in LightSwitch is
255, but you can make this larger or smaller.

Sometimes this limit is unnecessarily high, so you may decide to reduce the maximum
length of a string. For example, the name of a country will never be 255 characters long,
so you might want to limit user input for a country name to 50 characters maximum. To
accomplish this, you first open the Entity Designer and select the property for which you
want to edit validation. Continuing with the Contacts Manager application, select the
Country property. Then, open the Properties window and locate the Validation group.

87Input-Data Validation

3

FIGURE 3.39 Changing a string’s maximum length.

THE VALIDATION GROUP

The Validation group in the Properties window is something common to all properties.
This group enables you to edit default validation rules for each data type you use in
your entity. In addition, it allows you to access the code editor in case you want to write
custom validation rules. From now on, it is understood that editing default validation
rules is accomplished by locating the Validation group in the Properties window, regard-
less of the current data type.

To shorten the maximum string length, you just change the value of the Maximum
Length text box from 255 to the desired value (to 50 in our example). Figure 3.39 shows
what the box looks like after the change. If you previously entered some string longer
than the new limit, you get a warning message about data truncation.

Now run the application and, in the Country field, try to write a string longer than 50
characters. At this point, you will get a validation error informing you that the entered
string is longer than allowed.

This ensures that the validation rule is respected, keeping the user interface’s behavior
consistent. Figure 3.40 shows this validation scenario.

Date Validation

The LightSwitch infrastructure provides default validation mechanisms for the Date type,
as well. To understand how this works, open the Table Designer and add a new property
named Anniversary, of type Date, not required. At this point, open the Properties window
and locate the Validation group shown in Figure 3.41.

It is a good idea to provide a suitable range, from the minimum to the maximum value. So,
replace the Minimum Value content with 1/1/1920 and the Maximum Value content with
12/31/2000. This will prevent users from adding people born before January 1, 1920 and
after December 31, 2000. Next, following the instructions described earlier in the “Adding
and Removing Data” section, open the Screen Designer for the CreateNewContact screen
and drag the Anniversary item onto the designer surface. Notice that when you add items
of type Date, LightSwitch, by default, wraps them via a DatePicker control. This control
displays a calendar that allows easy selection of a date (with just a single click).

88 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.40 Strings greater than the maximum length are not allowed.

FIGURE 3.41 The Validation group for properties of type Date.

89Input-Data Validation

3

FIGURE 3.42 Default validation results against items of type Date.

DISPLAYING DATES AND TIME

When mapped to an entity property of type DateTime, the DatePicker control can dis-
play either a date or a time interval or both. This is accomplished by selecting the con-
trol in the designer and then modifying the appropriate property value in the Properties
window. In addition, the DatePicker control can display dates in an extended format
(which includes the name of the day and month); just check the Long Date property.

Now run the application and try to specify an out-of-range date in the Anniversary
field. Again, the application shows validation errors explaining the details, as shown in
Figure 3.42.

By taking advantage of the LightSwitch built-in mechanism, you can perform validation
against dates without writing a single line of code.

90 CHAPTER 3 Building Data-Centric Applications

Number Validation

The LightSwitch validation mechanism also provides an easy way to validate numbers.
This kind of validation is typically used to check whether a number falls within a specified
range. This applies to the following types:

. Integer numbers, meaning Short Integer, Integer, and Long Integer data types

. Decimal numbers, meaning the Decimal data type

. Double precision numbers, meaning the Double data type

To understand how it works, consider the Age property, of type Integer, in the Contact
entity of the Contacts Manager application.

DIFFERENCES BETWEEN INTEGER TYPES

Validation for integer numbers is exactly the same for Int16, Int32, Int64, and
Double. The validation mechanism is simply applied by checking whether the number is
within the range specified by the MinimumValue and MaximumValue properties. The
only difference is in the types themselves, because each has different minimum and
maximum values.

Earlier, we decided that only dates between 1920 and 2000 will be accepted, so the
person’s age must be within a range of 80 years. If we consider that at the moment when
this chapter is being written we are in 2010, according to the dates range, the person
cannot be younger than 10 and cannot be older than 90. With that said, open the Entity
Designer for the Contact entity, and then select the Age property. Then open the
Properties window. Locate the Validation group and replace the content of the Minimum
Value and Maximum Value (empty by default) fields, respectively, with 10 and 90.

USING COMPUTED PROPERTIES

This discussion requires manual calculations to fit the age of a person with a date
range. Actually, LightSwitch provides a more convenient way to automate calculations
based on other properties in the entity, known as computed properties (discussed in
Chapter 4). The current example is just to demonstrate validation against numbers.

If you now run the application and try to enter a value for the Age field that does not fall
within the expected range, you get a validation error, as shown in Figure 3.43.

Notes About Decimal Numbers
Numbers of type Decimal provide two additional properties for validation: Precision and
Scale. The first one represents the maximum number of digits for the value in the entire
field, including digits that are both on the left and on the right of the decimal point. Scale
allows you to specify the number of digits to the right of the decimal point.

91Default Validation of Business Types

3

FIGURE 3.43 Validation fails because the numbers do not fall within the expected range.

Default Validation of Business Types
In this chapter, you learned that Visual Studio LightSwitch introduces the concept of busi-
ness data types. You also learned what business data types are about and why they are so
useful. Continuing the discussion about data validation, business data types provide
default validation mechanisms specific to their role. For instance, think of email addresses.
These are not simply text; they are something requiring specific validation, such as the
presence of a domain name or of the @ (at) symbol. LightSwitch provides a sophisticated
validation mechanism that does the work for you, for all business data types. This section
explains the default validation of the various business types.

SUPPORT FOR CUSTOM VALIDATION RULES

As with primitive types described earlier in this chapter, the validation mechanism for
business data types can be personalized by writing custom validation rules. For more
information, see Chapter 5.

Validating Email Addresses

The Email Address data type has a built-in validation mechanism that checks whether the
supplied email address is well formed. Therefore, if the user enters an invalid email
address, the application throws a notification reporting the error and prevents invalid

92 CHAPTER 3 Building Data-Centric Applications

FIGURE 3.44 Default validation on Email Address data types.

changes from being saved. Figure 3.44 shows the validation error the user receives if a
pound symbol (#) is entered rather than the required @.

After you fix the error, the validation test passes and you can save your changes.

Setting the Default Domain
The validation mechanism for the Email Address data type works against three proper-
ties: IsRequired and MaximumLength, which you already encountered when studying other
primitive types; and Require Email Domain. When enabled, this last one requires the user
to supply a valid domain name in the email address. For example, in my email address,
the domain is @visual-basic.it. This can be quite annoying if you want to build a list of
contacts from the same group of people, such as your colleagues, because in such a
circumstance, all of your contacts’ email addresses have the same domain. Fortunately,
the Email Address data type also provides the possibility of specifying a default domain
that is automatically added to each email address. To provide a default domain, follow
these steps:

1. In the Entity Designer for the Contact entity, select the Email property and open
the Properties window.

2. Locate the Validation group and uncheck the Require Email Domain property.

93Summary

3

3. Locate the General group and, inside the Default Email Domain field, type the
desired email domain. If you do not add the @ symbol at the beginning, LightSwitch
adds it for you.

When you run the application next, you will notice that each time you add an email
address, the specified domain is automatically added for you, saving a lot of time.

Validating Phone Numbers

Validation for properties of type Phone Number works as it does for strings, in that you can
just specify whether the property is mandatory (IsRequired) and the length of the string
representing the phone number (255 characters by default). More than for validation, the
Phone Number data type is interesting for its customization and formatting methods,
described earlier in this chapter.

Validating Images

The Image data type has just one validation property: IsRequired. This is because this type
works in conjunction with controls that automatically determine whether an image is
valid and can be accepted by properties of type Image.

Validating Money

The Money business data type is basically an evolution of the Decimal primitive type. In
fact, their behavior is pretty identical; the difference is that Money provides the currency
symbol and localized information according to the system’s regional settings. So, default
validation for this type checks for the same properties as in Decimal: MinimumValue,
MaximumValue, Precision, and Scale.

Summary
Visual Studio LightSwitch wants developers to be able to develop business applications
quickly and easily. This kind of application is all about data, so in this chapter, you
learned how LightSwitch organizes data in tables, entities, and entity collections. Then
you learned how entities can handle specific data types, such as strings, integer numbers,
dates, email addresses, and so on. This chapter also explained the main steps you follow in
the development process:

. Create a new Visual Basic or Visual C# project.

. Design data sources via the Table Designer, by providing properties and setting data
types for each property.

. Add screens from a set of common templates, understanding how LightSwitch auto-
matically binds data to the user interface.

. Test the application by running it as a 2-tier or 3-tier client, both on the desktop and
in the web browser.

. Validate data and customize the default validation behaviors.

94 CHAPTER 3 Building Data-Centric Applications

An overview of the most common controls and of the application architecture was
provided to give you the basics about topics that are discussed in more detail later in this
book. This chapter provided the basics of the LightSwitch development for a single-table
database and a user interface that has no relationships with other screens. But real-world
applications are more complex, both on the data side and on the user interface side. This
is what we cover in the next chapter.

Index

A
Access, 4-6

benefits, 4

data entry form, 4

drawbacks, 6

adding, phone numbers, 64-65

adding relationships, 105-112

administrators, specifying, 314-319

aggregating data, 236

data sources, 236-256

analysis, execution flow, IntelliTrace, 512-515

Application Designer, 34-35

General Properties, 345

Application icon property (Application Designer),
345

Application name property (Application
Designer), 345

Application Server Configuration screen (Publish
Application Wizard), 353

Application version property (Application
Designer), 345

Applications, 443. See also projects

aggregating data into, 250-256

architecture, 444-445

business, 1-2

custom controls, 561-562

building, 562-563

creating with Visual Studio 2010,
563-573

customizing, command bars, 216-228

data-centric, 43, 93-94

adding entity properties, 46-50

creating, 43-44

creating data sources, 45-52

data entry screens, 55-58

data validation, 87-89

default validation of business types,
91-93

exporting data to Excel, 77-78

implementing screens, 52-60

input-data validation, 85-90

number validation, 90

required fields validation, 85

running as 3-tier desktop client, 83-84

running in web browsers, 84

screen customization, 78-84

search screens, 58-60

string-length validation, 86-87

testing, 60-84

data storage, 444

debugging, 36, 312, 517-527

analyzing threads, 534

breakpoints, 521-522, 527-532

code, 536-541

data tips, 521-522

debugger visualizers, 535-536

displaying variable values, 530

evaluating expressions, 531-532

method calls, 532-533

runtime errors, 524-526

steps, 522-524

trace points, 527-532

Watch windows, 533-534

deploying, 312, 339-344

MSDeploy, 343-344

one-click deployment, 340-341

preparation, 344-352

runtime settings, 349-350

three-tier applications, 373-392

two-tier applications, 352-373

Windows Azure, 392-407

extending, SharePoint 2010, 280-290

life cycles, managing, 480-506

localizing, 350-352

logos, specifying, 345-348

naming, 80, 345-348

out-of-browser, 60

publishing

Forms authentication, 330-334

Windows authentication, 314-319

running, 116-118

SQL Server databases, creating on,
239-249

starting as desktop clients, 61-63

styling, 348-349

technologies, 444-445

testing, credentials, 327-329, 334-335

three-tier, 341-344

publishing, 377-379

tiers

data storage, 445-452

logic, 444, 452-462

presentation, 445, 462-469

two-tier, 341-344

publishing, 368-373

WCF RIA Services, calling from, 720-726

applying filters

data level, 181-205

screen level, 206-208

appointments, Outlook, creating, 586

architecture, applications, 444-445

arranging windows, 37-38

asynchrony, 178

attributes, debuggers, 538-541

authentication, 291-294, 338

Forms authentication, implementing,
329-335

Applications772

mechanisms, RIA services, 717

strategies, choosing, 295

Windows authentication, implementing,
294-329

authorization, 291-292

permissions

entity logic, 299-307

logic, 298-299

user interface logic, 307-312

settings permissions, 297-298

Autogenerated Code for CreateNewCustomer
listing (12.1), 477

Azure

configuring

role instances, 407

services, 398-402

SQL, 402-404

connecting to, 256-273, 394-398

deploying applications to, 392-407

B
Binary data type, 47

binding

imported tables, to screens, 253-256

user controls to screens, 569-572

Bing Maps

adding to screens, 576-578

developer keys, claiming, 574

integrating, 573-578

making available to LightSwitch, 575

updating entities, 576

blogs, 766, 768

Boolean data type, 47

How can we make this index more useful? Email us at indexes@samspublishing.com

breakpoints, 527-532

Breakpoints window, 527-528

code, 521-522

labels, editing, 528

Breakpoints window, 527-528

Building a Composite Control for Data
Visualization listing (16.1), 566

Building a Custom Code Snippet listing (15.2),
556-557

Building a Silverlight Reporting Control listing
(17.1), 610-612

building custom controls, 562-563

built-in query events, handling, 424-427

built-in validation rules, 152-153

business applications, 1-2

business data types, 49-50

business types, 228

creating, 693-705

default validation, 91-93

business-oriented user interfaces, 115-146

Button control, 54

button methods, screen events, 431-434

buttons

built-in, 216

CanExecute method, 312

command bars, adding to, 217-218

custom, adding and managing, 219-222

C
C# 4 Unleashed, 22

calendars, SharePoint 2010, configuring,
275-280

Call Stack window, method calls, 532-533

calling WCF RIA Services, 720-726

stored procedures, 726-745

CanExecute method, 312

CanExecute method 773

change sets, 459

chart controls, implementing, 565-569

CheckBox control, 55

choice lists, defining, entities, 100-103

Chowdhury, Kunal, 768

class coupling index (Code Metrics), 506

class library, Office Integration Extension,
582-583

classes

Debug, 536-538

RIA services, 710

ClickOnce, 340-341

client operating systems, IIS (Internet
Information Services), 342

Client project, 475-477

client validation, 154-167

ClientGenerated project, 475

client-side projects, 474-478

Client, 475-477

ClientGenerated, 475

compiled files, 477-478

code

breakpoints, 521-522, 527-532

debugging, 536-541

entities, 409-429

data objects, 410-413

events

data-related operations, 416

handling, 409, 429-438

queries, customizing, 195-205

runtime errors, 524-526

screens, adding to, 678-685

trace points, 527-532

unit testing, 508-512

Code Editor, 35

code listings, 696

Autogenerated Code for
CreateNewCustomer, 477

Building a Composite Control for Data
Visualization, 566

Building a Custom Code Snippet, 556-557

Building a Silverlight Reporting Control,
610-612

Creating a Custom Screen Template,
680-685

Creating a User Control for the WebAddress
Type, 701

Definition File for the Custom Theme,
625-626

Editing the Control’s Definition File, 702

Examining an Existing Code Snippet, 555

Implementing a Business Object to
Represent a Single Feed, 712

Implementing a Domain Service Class, 715

Implementing a Metadata Class for the
Domain Service, 718

Implementing a Validator Class for the
WebAddress Type, 697

Implementing Properties in the Control
Definition File, 661-663

Implementing Security Methods for
Multiple Entities, 304-305

Implementing Security Methods on Custom
Queries, 306

Implementing the Control’s UI, 663-664

Implementing the Validator Factory Class, 699

Implementing the Viewer Control, 702

Modifying the Code for Debugging
Purposes, 519

Representing the New Business Type in a
.NET Manner, 696

Sending Email via Outlook Automation,
224-225

Setting Security Permissions at the Screen
Level, 308-311

WebAddress.lsml Definition File, 695

Code Metrics, 506-508

Indexes, 506

code samples, 767

change sets774

Code Snippet Manager, 553-554

code snippets

creating custom, 554-559

using, 551-554

CodeProject, 768

collapsing screens, navigation panel, 187

collection methods, screen events, 437-438

collections, entity, validation, 169-170

Columns Layout control, 138

COM interoperability, 16, 222-228

command bars

buttons

adding to, 217-218

managing custom, 219-222

customizing, 216-228

command panel, styling, 641-644

Command window, evaluating expressions,
531-532

community resources, 767-768

company logo, displaying, 653-654

comparison operators, 182-183

compiled files, 477-478

complex data sources, designing, 97-115

Component One, OLAP, 606-608

composite control for data visualization,
building, 566

compound properties, 112-115

computed properties, controls, 122

configuration

Azure

role instances, 407

services, 398-402

SQL, 402-404

IntelliTrace, 513-514

LightSwitch, 759

web servers, 374-376

connection strings, handling, 749-751

How can we make this index more useful? Email us at indexes@samspublishing.com

connections

SQL Server, 256-273

databases, 236-256

TFS (Team Foundation Server), 481-482

ContactsManager application, 93-94

creating, 43-44

data sources, creating, 45-52

data validation, 87-89

default validation of business types, 91-93

entity properties, adding, 46-50

exporting data to Excel, 77-78

input-data validation, 85-90

number validation, 90

running as 3-tier desktop client, 83-84

running in web browsers, 84

screen customization, 78-84

screens

data entry, 55-58

implementing, 52-60

search, 58-60

string-length validation, 86-87

testing, development machines, 60-84

control tree, screens, 466-468

controls, 21, 53-55, 619-620

chart, implementing, 565-569

computed properties, 122

custom, 561-562

building, 562-563

sharing, 656-670

custom controls, 228

dependency properties, implementing,
664-667

designing, 700-703

editing, 76-77

extensions, creating, 657-670

icons, replacing, 658

making programmable, 667

controls 775

Modal Window, 138

MSDN documentation, 669-670

Picture and Text, 138

printing, custom, 609-617

reporting, custom, 609-617

Rows Layout, 138

Screen Navigation, 133-138

shells, restyling, 655-656

string resources, adding, 658-659

Table Layout, 138

Tabs Layout, 138

testing, 667-669

Text and Picture, 138

types, 657

user interfaces, designing, 663-664

viewer, creating, 701-703

CreateNewCustomer, 477

Creating a Custom Screen Template listing
(18.4), 680-685

Creating a User Control for the WebAddress
Type listing (19.5), 701

credentials

applications, testing, 334-335

testing applications, 327-329

Culture property (Application Designer), 345

currency codes, 103

custom buttons, adding and managing,
219-222

custom code snippets, creating, 554-559

custom controls, 228, 561-562

Bing Maps, integrating, 573-578

building, 562-563

creating with Visual Studio 2010,
563-573

printing, 609-617

reporting, 609-617

sharing, 656-670

testing, 667-669

custom data sources

creating, 705-745

sharing, 745-751

testing, 746-749

custom query events, handling, 429-430

custom rules, validation, writing, 153-174

custom shells

creating, 636-656

extensibility projects, creating for, 638-639

testing, 654-655

custom themes, testing, 633-634

Customer entity, 97-98

customization

applications, command bars, 216-228

data validation, 149

IDE (integrated development environment),
543

toolbars, 544-545

queries, code, 195-205

screens, 78-81, 138-146

cyclomatic complexibility index (Code Metrics),
506

D
data

asynchrony, 178

editing, 118-121

filtering, 177, 179-208

paging, 178

querying, 177

based on other queries, 212-214

sorting, 177

data level, 208-211

logic, 208-211

screen level, 211

controls776

data access tier, applications, 445-452

data aggregation, data sources, 236-256

data connections, 16

data entry forms, Access, 4

data entry screens, creating, 55-58, 116

data level

data, sorting, 208-211

filters, applying, 181-205

data objects, 410-413

data paging, 16

data providers

logic tier, 461

SharePoint 2010, 448

SQL Azure, 445-446

SQL Server, 445-446

data service clients, presentation tier, 468-469

data services, logic tier, 452-453

Data Source Methods, data source events,
handling, 423-424

data sources, 229

aggregating data from, 235-256

creating, 705-745

custom

sharing, 745-751

testing, 746-749

data-centric applications, creating, 45-52

designing, 101-115

events, handling, 423-424

data storage, 52

applications, 444

data storage tier, applications, 445-452

data tips, 521-522

data types, 47-49

business, 49-50

definition, implementing, 694-696

Integer, 49-50

mapping, 49, 448-452

How can we make this index more useful? Email us at indexes@samspublishing.com

Money, 103-105

validating, 160-165

data validation, 16, 175

built-in rules, 152-153

custom rules, writing, 153-174

customizing, 149

data-centric applications, 87-89

entity collections, 169-170

implementing, 146-148, 696-700

model, 150-153

rule types, 151

data workspace, presentation tier, 468

Database Connections screen (Publish
Application Wizard), 356-357

database tools, 20-21

databases

aggregating data from, 250-256

intrinsic, 446-447

membership, 447-448

SQL Azure, connecting to, 256-273

SQL Server

connecting to, 236-256

creating applications on, 239-249

data-binding, 16

data-centric applications, 43, 93-94

creating, 43-44

data sources, creating, 45-52

data validation, 87-89

default validation of business types, 91-93

entity properties, adding, 46-50

Excel, exporting data to, 77-78

input-data validation, 85-90

number validation, 90

required fields validation, 85

running as 3-tier desktop client, 83-84

running in web browsers, 84

screen customization, 78-84

data-centric applications 777

screens

data entry, 55-58

implementing, 52-60

search, 58-60

string-length validation, 86-87

testing, development machines, 60-84

DataGrid control, 55

DataGridRow control, 55

data-related operations, events, 416

Date data type, 47

Date Picker control, 54

Date Viewer control, 54

dates, displaying, 89

DateTime data type, 47

DateTimePicker control, 54

DateTimeViewer control, 54

de Smet, Bart, 22

Debug class, 536-538

DebuggerBrowsable attribute, 539

DebuggerDisplay attribute, 539

DebuggerHidden attribute, 540

debuggers

attributes, 538-541

visualizers, 535-536

DebuggerStepThrough attribute, 540

DebuggerTypeProxy attribute, 541

debugging, 531-532

applications, 36, 312, 517-527

analyzing threads, 534

breakpoints, 521-522, 527-532

data tips, 521-522

debugger visualizers, 535-536

displaying variable values, 530

Error List tool window, 520

evaluating expressions, 531-532

method calls, 532-533

runtime errors, 524-526

steps, 522-524

trace points, 527-532

Watch windows, 533-534

code, 536-541

Decimal data type, 47

decimal numbers, 90

default queries, 180

default validation of business types,
data-centric applications, 91-93

defining choice lists, entities, 100-103

definition, data types, implementing, 694-696

Definition File for the Custom Theme listing
(18.1), 625-626

deleting, entities, 422

dependency calculation, logic tier, 457

dependency properties, implementing, 664-667

deploying, extensions, 751-758

deploying applications, 312, 339-344

MSDeploy, 343-344

one-click deployment, 340-341

preparation, 344-352

runtime settings, 349-350

three-tier applications, 373-392

two-tier applications, 352-373

Publish Application Wizard, 353-373

Windows Azure, 392-407

deployment manifest, preparing, 752

depth of inheritance index (Code Metrics), 506

Designer, 29-30

designing

controls, 700-703

screen templates, 672-673

desktop clients, starting applications as, 61-63

details lists, creating, 129

Details screen, master-details relationships,
handling, 121-133

details screens, 95-96

Developer Center, 21

data-centric applications778

Developer Express, XtraReports, 600-605

developer keys, Bing Maps, claiming, 574

developers, 3

development environments, 19

display names, customizing, 79, 185

displaying reports, user interfaces, 612-613

Document Toolkit for LightSwitch, 769

Double data type, 48

downloading extensions, 229-232

drawbacks, Access, 6

E
Edit and Continue feature, 526-527

editable grids, 76, 118-121

editing

breakpoint labels, 528

data, 118-121

relationships, 109-110

Screen Navigation control, 133-138

themes

Expression Blend 4, 630-631

Visual Studio 2010, 628-629

Editing the Control’s Definition File listing
(19.6), 702

Editor control, creating, 700-701

elevation, permissions, server code, 336-337

email, sending, Outlook, 224-225, 583-585

Email Address data type, 48

Email Address Editor control, 54

Email Address Viewer data type, 54

email addresses, validating, 91-93

entities

adding properties, 46-50

building, 50-52

choice lists, defining, 100-103

How can we make this index more useful? Email us at indexes@samspublishing.com

code, 409-429

data objects, 410-413

Customer, 97-98

deleting, 422

intrinsic database, adding to, 250-253

Invoice, 102

managing, presentation tier, 469

OrderDetail, 99

OrderHeader, 98

permissions, logic, 299-307

Product, 100

versus tables, 46

updating, Bing Maps, 576

validation, single entity, 167-169

entity collections, data validation, 169-170

Entity Designer, 30

entity properties, validating, 154-156

Error List tool window, 520

errors, runtime, 524-526

event method handlers, 414

events

code

data-related operations, 416

handling, 429-438

handling, 409

entities, 409-429

property-related events, handing, 427-429

queries, 205

query events, handling, 424-427, 429-430

screen events

button methods, 431-434

collection methods, 437-438

general methods, 434-436

handling, 430-438

Examining an Existing Code Snippet listing
(15.1), 555

Examining an Existing Code Snippet listing (15.1) 779

Excel

exporting data to, 77-78, 593-594

importing data from, 594-597

exceptions, save pipeline, 459-460

execution flow, analyzing, IntelliTrace, 512-515

exporting

data to Excel, 77-78, 593-594

data to PDF documents, 586-592

data to Word documents, 586-592

user settings, 547-548

Expression Blend 4, themes, editing, 630-631

expressions, evaluating, Command window,
531-532

extending applications, SharePoint 2010,
280-290

extensibility, MEF (Managed Extensibility
Framework), 620-621

Extensibility Center, 767

extensibility projects

creating, 621-624

custom shells, creating for, 638-639

themes, adding to, 625-628

Extensible Application Markup Language
(XAML), 620

extensions, 228-229

business types, 228

controls, creating, 657-670

custom controls, 228

data sources, 229

deploying, 693

deploying to others, 751-758

downloading and installing, 229-232

NetAdvantage, 605-606

Office Integration Extension, 582-597

OLAP, 606-608

properties, setting, 624

reporting, 599-600

NetAdvantage, 605-606

OLAP, 606-608

Telerik, 606-608

XtraReports, 600-605

screen templates, 228

shells, 228

testing, 703-705

themes, 229

third-party, 769-770

updates, releasing, 757-758

using, 232-233

F
files, compiled, 477-478

Filter Designer, 181-184

filtering data, 70-72, 177, 179-208

filters

applying

data level, 181-205

screen level, 206-208

comparison operators, 182-183

Filter Designer, 181-184

group filters, adding, 190-192

query parameters, 193-200

formats, phone numbers, customizing, 65-68

formatting, phone numbers, 64-65

Forms authentication, 338

implementing, 329-335

forums, LightSwitch, 766

Excel780

G
general methods, screen events, 434-436

General Properties, Application Designer, 345

gradient stops, editing, 628

group filters, adding, 190-192

Guide data type, 48

H
handling

connection strings, 749-751

events, 409, 430-438

screen, 430-438

master-details relationships, Details
screen, 121-133

relationships, 110-112

Haugen, Nicole, 766

Help Viewer, 38-39

helper code, unit testing, 508-512

hosting service, presentation tier, 463

”How-do-I” videos, 766

I
icons, controls, replacing, 658

IDE (integrated development environment),
23-25, 43, 543, 559

Application Designer, 34-35

Code Editor, 35

code snippets

creating custom, 554-559

using, 551-554

creating new projects, 26-29

customizing, 543

command bars, 216-228

How can we make this index more useful? Email us at indexes@samspublishing.com

Designer, 29-30

Entity Designer, 30

extensions, 228-229

business types, 228

custom controls, 228

data sources, 229

downloading and installing, 229-232

screen templates, 228

shells, 228

themes, 229

using, 232-233

Help Viewer, 38-39

Properties window, 32

Query designer, 33-34

Screen Designer, 30-31

Solution Explorer, 27-29

Start Page, 25-26

toolbars, customizing, 544-545

user settings, managing, 546-550

windows, managing and arranging, 37-38

IIS (Internet Information Services), 20

client operating systems, 342

Image data type, 48

Image Editor control, 54

Image Viewer control, 54

images, validating, 93

Implementing a Business Object to Represent a
Single Feed listing (19.8), 712

Implementing a Domain Service Class listing
(19.9), 715

Implementing a Metadata Class for the Domain
Service listing (19.10), 718

Implementing a Validator Class for the
WebAddress Type listing (19.3), 697

Implementing Properties in the Control
Definition File listing (18.2), 661-663

Implementing Security Methods for Multiple
Entities listing (9.1), 304-305

Implementing Security Methods for Multiple Entities listing (9.1) 781

Implementing Security Methods on Custom
Queries listing (9.2), 306

Implementing the Control’s UI listing (18.3),
663-664

Implementing the Validator Factory Class listing
(19.4), 699

Implementing the Viewer Control listing (19.7),
702

imported tables, screens, binding to, 253-256

importing

MSDeploy packages, IIS (Internet
Information Services), 385-392

user settings, 548-550

importing data from Excel, 594-597

indexes, Code Metrics, 506

Infragistics, NetAdvantage, 605-606

Infragistics NetAdvantage Light Edition, 770

INotifyDataErrorInfo, 457-458

input-data validation, data-centric applications,
85-90

installation

extensions, 229-232

LightSwitch, 19-21, 759-761

Northwind database, 237-238

Integer data type, 48-50

integer types, differences, 90

integrated development environment (IDE). See
IDE (integrated development environment)

integration, Bing Maps, 573-578

IntelliTrace

configuring, 513-514

execution flow, analyzing, 512-515

log files, 515

interfaces, business-oriented, 115-146

interoperability (COM), 222-228

intrinsic database, 446-447

entities, adding to, 250-253

invalid data, saving, 422-423

Invoice entity, 102

IScreenTemplate properties, implementing,
673-675

J
Jennings, Roger, 768

L
Label control, 54

labels, breakpoints, editing, 528

Language Integrated Query (LINQ), 171

launching screens programmatically, 438-442

life cycles, applications, managing, 480-506

LightSwitch, 13-19, 22

configuring, 759

editions, 18

installing, 19-21, 759-761

LightSwitch Developer Center, 765

LightSwitch Team, 766

limitations, Visual Basic 6, 7-8

lines of code index (Code Metrics), 506

LINQ (Language Integrated Query), 171

List control, 55

listings

Autogenerated Code for
CreateNewCustomer, 477

Building a Composite Control for Data
Visualization, 566

Building a Custom Code Snippet, 556-557

Building a Silverlight Reporting Control,
610-612

Creating a Custom Screen Template,
680-685

Creating a User Control for the WebAddress
Type, 701

Implementing Security Methods on Custom Queries listing (9.2)782

Definition File for the Custom Theme,
625-626

Editing the Control’s Definition File, 702

Examining an Existing Code Snippet, 555

Implementing a Business Object to
Represent a Single Feed, 712

Implementing a Domain Service Class, 715

Implementing a Metadata Class for the
Domain Service, 718

Implementing a Validator Class for the
WebAddress Type, 697

Implementing Properties in the Control
Definition File, 661-663

Implementing Security Methods for
Multiple Entities, 304-305

Implementing Security Methods on Custom
Queries, 306

Implementing the Control’s UI, 663-664

Implementing the Validator Factory Class,
699

Implementing the Viewer Control, 702

Modifying the Code for Debugging
Purposes, 519

Representing the New Business Type in a
.NET Manner, 696

Sending Email via Outlook Automation,
224-225

Setting Security Permissions at the Screen
Level, 308-311

WebAddress.lsml Definition File, 695

lists, SharePoint 2010, 273-290

literal properties, 558

localizing, applications, 350-352

Locals window, variable values, displaying, 530

log files, IntelliTrace, 515

logic

data sorting, 208-211

permissions, writing, 298-299

logic tier, applications, 444, 452-462

change sets, 459

data providers, 461

How can we make this index more useful? Email us at indexes@samspublishing.com

data services, 452-453

dependency calculation, 457

queries, 453-454

static spans, 454-455

transaction management, 459-460

validation framework, 456

Logo image property (Application Designer),
345

logos

applications, specifying, 345-348

displaying, 653-654

LongInteger data type, 48

M
maintainability index (Code Metrics), 506

Managed Extensibility Framework (MEF),
620-621

managing

custom buttons, 219-222

offline documentation, 762-763

user settings, 546-550

many-to-many relationships, 105-108

mapping

data types, 49, 448-452

stored procedures, .NET methods, 727-736

Massi, Beth, 766

master-details relationships

handling, Details screen, 121-133

validation, 147-148, 170-172

MEF (Managed Extensibility Framework),
620-621

membership database, 447-448

method calls, Call Stack window, 532-533

methods

button, screen events, 431-434

CanExecute, 312

methods 783

collection, screens, 437-438

general, screen events, 434-436

Metro theme, 621

middle-tier projects, 473-474

Modal Window control, 138

Modifying the Code for Debugging Purposes
listing (14.1), 519

money, validating, 93

Money data type, 48, 103-105

Money Editor control, 55

Money View control, 55

MSDeploy, 343-344

packages, creating and importing, 385-392

MSDN, resources, 765

MSDN documentation, controls, 669-670

multiple validation issues, 85

MyVBProf.com, video training, 768

N
namespaces, RIA services, 710

naming, applications, 80, 345-348

navigation, screens, rearranging, 185

Navigation area, styling, 650-653

navigation panel, collapsing, 187

.NET data types, 449-450

.NET Framework, 21-22

validation rules, implementing, 172-174

WCF RIA Services, 709-711

.NET methods, stored procedures, mapping,
727-736

NetAdvantage, 605-606

Northwind database, installing, 237-238

null checks, 162

number validation, data-centric applications, 90

O
Oakleaf Systems, 768

objects, data objects, 410-413

OData, endpoints, exposing, 713

Office, integration, 78

Office Integration Extension, 582-597

class library, 582-583

Excel

exporting data to, 593-594

importing data from, 594-597

Outlook

creating appointments, 586

sending email, 583-585

PDF documents, exporting data to, 586-592

Word documents, exporting data to,
586-592

offline documentation, managing, 762-763

OLAP, 606-608

one-click deployment, applications, 340-341

one-to-many relationships, 105

one-to-one relationships, 105-108

operating systems, requirements, 19

operators, comparison, 182-183

OrderDetail entity, 99

OrderHeader entity, 98

Other Connections screen (Publish Application
Wizard), 360-363

out-of-browser applications, 60

out-of-browser functionality, 16

Outlook

appointments, creating, 586

automation, sending email via, 224-225

sending email, 583-585

methods784

P
paging data, 70, 178

Patterson, Paul, 768

PDF documents, exporting data to, 586-592

permissions

elevation, server code, 336-337

logic

entities, 299-307

user interfaces, 307-312

writing, 298-299

settings, 297-298

user roles, 320-323

Phone Number data type, 48

Phone Number Editor data type, 54

phone numbers

adding and formatting, 64-65

customizing formats, 65-68

validating, 93

Picture and Text control, 138

preparation, application deployment, 344-352

Prerequisites screen (Publish Application
Wizard), 357-360

presentation tier, applications, 445, 462-469

data service clients, 468-469

data workspace, 468

hosting service, 463

managing entities, 469

screens, 465-468

shell, 463-465

theming service, 465

printing

APIs, 613-617

custom controls, 609-617

implementing, 581-582

Office Integration Extension, 582-597

printing APIs, 613-617

How can we make this index more useful? Email us at indexes@samspublishing.com

Product entity, 100

programmatically launching screens, 438-442

programmable controls, creating, 667

programming, 21-22

projects. See also applications

automating builds, 499-506

client-side, 474-478

Client, 475-477

ClientGenerated, 475

compiled files, 477-478

creating, 26-29, 96-97

dissecting, 469-478

middle-tier, 473-474

server-side, 471-473

Server, 472-473

ServerGenerated, 472

solutions, 470-471

test projects, creating, 509-510

version control, 499

properties

changing, runtime, 79-80

compound, 112-115

entity

adding, 46-50

validation, 154-167

extensions, setting, 624

literal, 558

summary, 73-76

testing, 76

Properties window, 32

property-related events, handling, 427-429

Publish Application Wizard

Application Server Configuration screen, 353

Database Connections screen, 356-357

Other Connections screen, 360-363

Prerequisites screen, 357-360

Publish Output screen, 353

Publish Application Wizard 785

Publish Summary screen, 366-368

Specify a Certificate screen, 363-366

two-tier applications, deploying, 353-373

Publish Output screen (Publish Application
Wizard), 353

Publish Summary screen (Publish Application
Wizard), 366-368

publishing

applications

Forms authentication, 330-334

Windows authentication, 314-319

three-tier applications, 377-379

MSDeploy packages, 385-392

to web servers, 379-383

two-tier applications, 368-373

Q
queries

basing on other queries, 212-214

code, customizing, 195-205

default, 180

events, 205

logic tier, 453-454

query parameters, 193-200

Query designer, 33-34

Query Designer, 181-182

query events, handling, 424-427

custom, 429-430

query parameters, 193-200

querying, data, 177-179

R
RAD (Rapid Application Development)

environment, 43

refreshing, search results, 72

relationships, 95-96

adding, 105-112

editing, 109-110

handling, 110-112

many-to-many, 105-108

master-details

handling, 121-133

validation, 147-148, 170-172

one-to-many, 105

one-to-one, 757-758

releasing, extension updates, 757-758

renaming, applications, 80

reporting

custom controls, 609-617

extensions, 599-600

XtraReports, 600-605

implementing, 581-582

Office Integration Extension, 582-597

SQL Server Reporting Services, 597-599

reports

creating as user control, 609-612

displaying, user interface, 612-613

Representing the New Business Type in
a .NET Manner listing (19.2), 696

required fields validation, data-centric
applications, 85

resources

community, 767-768

MSDN, 765-767

third-party extensions, 769-770

restyling controls, shells, 655-656

RIA services

authentication mechanisms, 717

classes, 710

namespaces, 710

Ribbon Bar, buttons, adding to, 217-218

role instances, Azure, configuring, 407

Publish Application Wizard786

roles, users

creating, 312-329

permissions, 320-323

root container, styling, 641

Rows Layout control, 138

RSSBus data providers, 769

rule types, validation, 151

rules, validation, 456-457

writing custom, 153-174

running applications, 116-118

runtime, changing properties, 79-80

runtime components, 16

runtime errors, 524-526

runtime settings, application deployment,
349-350

S
Sampson, Matt, 766

save pipeline, 424, 458-459

exceptions, 459-460

saving, invalid data, 422-423

Screen Command Bar control, 54

Screen Content area, styling, 644-650

screen content trees, generating, 675-678

Screen Designer, 30-31

screen events

button methods, 431-434

collection methods, 437-438

general methods, 434-436

handling, 430-438

screen level

data, sorting, 211

filters, applying, 206-208

Screen Navigation control, editing, 133-138

How can we make this index more useful? Email us at indexes@samspublishing.com

screen templates, 228

creating, 670-691

designing, 672-673

details, entity and items, 687-690

testing, 685-686

screens, 619-620

adding code to, 678-685

Bing Maps, adding to, 576-578

customization, 78-81, 138-146

data entry, creating, 55-58, 116

data-centric applications, implementing,
52-60

display names, customizing, 185

imported tables, binding to, 253-256

launching programmatically, 438-442

navigation panel, collapsing, 187

predefined templates, 31

presentation tier, 465-468

rearranging navigation, 185

screen templates, creating, 670-691

search, creating, 58-60, 116-118

templates

adding local screen members, 690-691

creating, 678-685

designing, 672-673

details, 687-690

IScreenTemplate properties, 673-675

testing, 685-686

user controls, binding to, 569-572

search results, refreshing, 72

search screens

creating, 58-60, 116-118

editing data from, 72

searching, data, 70-72

searching, data 787

security

authentication, 291-294

Forms authentication, 329-335

strategies, 295

Windows authentication, 294-329

authorization, 291-292

settings permissions, 297-298

permissions

entity logic, 299-307

server code elevation, 336-337

user interface logic, 307-312

sending email

automation, 224-225

Outlook, 583-585

Sending Email via Outlook Automation listing
(7.1), 224-225

server code, permission elevation, 336-337

server components, 19-20

Server project, 472-473

ServerGenerated projects, 472

server-side projects, 471-473

Server, 472-473

ServerGenerated, 472

services, Windows Azure, configuring, 398-402

setting properties, extensions, 624

Setting Security Permissions at the Screen
Level listing (9.3), 308-311

settings permissions, 297-298

SharePoint 2010, 20, 448

calendars, configuring, 275-280

extending applications, 280-290

lists, 273-290

sharing

custom controls, 656-670

custom data sources, 745-751

Shell property (Application Designer), 345

shell UI, presentation tier, 463-465

shells, 228, 619-620

command panel, styling, 641-644

company logo, displaying, 653-654

controls, restyling, 655-656

creating, 636-656

extensibility projects, creating for, 638-639

Navigation area, styling, 650-653

root container, styling, 641

Screen Content area, styling, 644-650

testing, 654-655

User Information area, styling, 653

view models, 640-641

ShortInteger data type, 48

Silverlight, Telerik, 608

single entity, validation, 167-169

snippets (code)

creating custom, 554-559

using, 551-554

software, 1

software developers, 3

Solution Explorer, 27-29

solutions, projects, 470-471

sorting

data

data level, 208-211

logic, 208-211

screen level, 211

data-centric applications, 177

source control, team projects, submitting to,
485-492

Specify a Certificate screen (Publish Application
Wizard), 363-366

spreadsheets (Excel)

exporting data to, 593-594

importing data from, 594-597

SQL (Structured Query Language), 171

security788

SQL Azure, 21, 445-446

configuring, 402-404

connecting to, 256-273

SQL Server, 16-18, 445-446

databases

connecting to, 236-256

creating applications on, 239-249

intrinsic database, 446-447

supported editions, 237

SQL Server Reporting Services, 597-599

SSME (SQL Server Management Studio
Express), 256-273

SQL Azure, connecting via, 256-273

StackOverflow, 768

Start Page, 25-26

starter kits, 766

static spans, logic tier, 454-455

steps, debugging, 522-524

stored procedures

.NET methods, mapping, 727-736

WCF RIA Services, calling through, 726-745

String data type, 48

string resources, controls, adding, 658-659

string-length validation, data-centric
applications, 86-87

Structured Query Language (SQL), 171

styling

applications, 348-349

command panel, 641-644

Navigation area, 650-653

root container, 641

Screen Content area, 644-650

User Information area, 653

summary properties, 73-76

testing, 76

How can we make this index more useful? Email us at indexes@samspublishing.com

T
tabbed windows, arranging, 37-38

Table Designer, 45-46

Table Layout control, 138

tables, 45

binding to screens, 253-256

versus entities, 46

Tabs Layout control, 138

target web servers, configuring, 374-376

tasks, optimization, 1

Team Foundation Server (TFS). See TFS
(Team Foundation Server)

team projects

automating builds, 499-506

creating, 483-484

source control, submitting to, 485-492

version control, 499

technologies, applications, 444-445

Telerik, 608

templates

screen

creating, 670-691

details, 687-690

testing, 685-686

screens

adding local screen members, 690-691

IScreenTemplate properties, 673-675

test projects, creating, 509-510

testing

applications, credentials, 327-329, 334-335

custom controls, 667-669

custom data sources, 746-749

custom shells, 654-655

custom themes, 633-634

extensions, 703-705

screen templates, 685-686

summary properties, 76

testing 789

Text and Picture control, 138

TextBox control, 54

TFS (Team Foundation Server)

applications, managing life cycles, 480-506

connecting to, 481-482

team projects

automating builds, 499-506

creating, 483-484

submitting to source control, 483-484

version control, 499

work items, creating and assigning,
494-497

Thalman, Matt, 766

Theme property (Application Designer), 345

themes, 229, 619-620

creating, 621-634

custom, testing, 633-634

editing, 628-629

Expression Blend 4, 630-631

extensibility projects, adding to, 625-628

green, creating, 631-633

Metro, 621

theming service, presentation tier, 465

third-party extensions, 769-770

threads, analyzing, Threads window, 534

Threads window, analyzing threads, 534

three-tier applications, 341-344

deploying, 373-392

publishing, 377-379

MSDeploy packages, 385-392

to web servers, 379-383

three-tier desktop clients, running applications
as, 83-84

tiers, applications

data access, 445-452

data source, 445-452

logic, 444-462

presentation, 445, 462-469

time, displaying, 89

Tips & Tricks community, 768

toolbars, customizing, 544-545

toolkits, 21

topologies, deployment, selecting, 353

trace points, 527-532

training kits, 766

transaction management, logic tier, 459-460

two-tier applications, 341-344

deploying, 352-373

deployment topologies, 353

Publish Application Wizard, 352-368

publishing, 368-373

types

business, creating, 693-705

controls, 657

U
unit testing, helper code, 506-512

updates

entities, Bing Maps, 576

extensions, releasing, 757-758

uploading VSIX package, Visual Studio Gallery,
753-756

user controls

reports, creating, 609-612

screens, binding to, 569-572

User Information area, styling, 653

user interfaces

business-oriented, 115-146

controls, 53-55

designing, 663-664

data entry screens, creating, 116

permissions, logic, 307-312

reports, displaying, 612-613

Text and Picture control790

screens, implementing, 52-60

search screens, creating, 116-118

user roles

creating, 312-329

permissions, 320-323

user settings

exporting, 547-548

importing, 548-550

managing, 546-550

users, roles, assigning, 323-327

V
validation

built-in rules, 152-153

client, 154-167

custom rules, writing, 153-174

data, 175

customizing, 149

data types, 160-165

data validation, implementing,
146-148, 696-700

data-centric applications

default validation of business types,
91-93

input-data validation, 85-90

entity collections, 169-170

entity properties, 156-167

master-details relationships,
147-148, 170-172

model, 150-153

multiple validation issues, 85

rule types, 151

rules, .NET Framework, 172-174

single entity, 167-169

validation framework, logic tier, 456

validation rules, 456-457

How can we make this index more useful? Email us at indexes@samspublishing.com

ValidationSeverity enumeration, 159

Validator Factory class, 699

variable values, displaying, Locals window, 530

VB (Visual Basic) 6, 6-8

view models, 640-641

viewer controls, creating, 701-703

Visual Basic 6, 6-8

Visual Basic 2010 Unleashed, 22

Visual FoxPro, 9-10

Visual Studio 2010

custom controls, creating, 563-572

LightSwitch, 39-40

Visual Studio Express, 11-13

Visual Studio Gallery, 767

VSIX package, uploading to, 753-756

Visual Studio LightSwitch Help website,
767-768

Visual Studio .NET, 10-11

visualizers, debuggers, 535-536

VSIX package

signing, 752

uploading to Visual Studio Gallery, 753-756

W
Watch windows, 533-534

WCF (Windows Communications Foundation),
709

WCF RIA Services

calling from applications, 720-726

creating, 727

custom data sources, creating and using,
705-745

deploying, 719

.NET Framework, 709-711

stored procedures, calling through, 726-745

XML data, 711-719

WCF RIA Services 791

web browsers, applications, running in, 84

web servers

configuring, 374-376

three-tier applications, publishing to,
379-383

WebAddress.lsml Definition File listing (19.1),
695

Wilson, Glenn, 768

Window menu, 38

windows

arranging, 37-38

managing, 37-38

Windows authentication, 338

implementing, 101, 294-300

Windows Azure

configuring

role instances, 407

services, 398-402

SQL, 402-404

connecting to, 394-398

deploying applications to, 392-407

Windows Communication Foundation (WCF),
709

Word documents, exporting data to, 586-592

work items, creating and assigning, TFS (Team
Foundation Server), 494-497

writing custom rules, validation, 153-174

X
XAML (Extensible Application Markup

Language), 620

XML data, WCF RIA Services, 711-719

XtraReports, 600-605

web browsers, applications, running in792

	Table of Contents
	3 Building Data-Centric Applications
	Creating a New Application
	Creating a New Data Source
	The User Interface: Implementing Screens
	Testing the Application on the Development Machine
	Input-Data Validation
	Default Validation of Business Types
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

