
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672334504
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672334504
https://plusone.google.com/share?url=http://www.informit.com/title/9780672334504
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672334504
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672334504/Free-Sample-Chapter

 UNLEASHED

 800 East 96th Street, Indianapolis, Indiana 46240 USA

 Alessandro Del Sole

Visual Basic®
2015

 Visual Basic® 2015 Unleashed

 Copyright © 2016 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

 ISBN-13: 978-0-672-33450-4

 ISBN-10: 0-672-33450-X

Library of Congress Control Number: 2015906633

 Printed in the United States of America

 First Printing July 2015

Trademarks

 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

 Warning and Disclaimer

 Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book.

 Special Sales

 For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particu-
lar to your business, training goals, marketing focus, or branding interests), please
contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact
 international@pearsoned.com .

 Editor-in-Chief

Greg Wiegand

 Acquisitions Editor

Joan Murray

 Development Editor

Mark Renfrow

 Managing Editor

Kristy Hart

 Senior Project Editor

Betsy Gratner

 Indexer

Tim Wright

 Proofreader

Katie Matejka

 Technical Editors

Anthony D. Green
 Lucian Wischik

 Publishing Coordinator

Cindy Teeters

 Cover Designer

Mark Shirar

 Senior Compositor

Gloria Schurick

Contents at a Glance

 Introduction ...1

 Part I Learning the Basics of VB

 1 Introducing .NET 2015 ... 3

 2 The Visual Studio 2015 IDE for Visual Basic ... 17

 3 The Anatomy of a Visual Basic Project .. 71

 4 Data Types and Expressions ... 99

 5 Debugging Visual Basic 2015 Applications .. 199

 6 Errors, Exceptions, and Code Refactoring .. 231

 Part II Object-Oriented Programming with Visual Basic 2015

 7 Class Fundamentals .. 267

 8 Managing an Object’s Lifetime .. 313

 9 Organizing Types Within Namespaces .. 327

 10 Modules .. 347

 11 Structures and Enumerations ... 351

 12 Inheritance .. 369

 13 Interfaces ... 393

 14 Generics and Nullable Types .. 413

 15 Delegates and Events .. 427

 16 Working with Collections and Iterations .. 441

 17 Working with Objects: Visual Tools and Code Sharing 473

 Part III Advanced Language Features

 18 Manipulating Files and Streams ... 513

 19 The My Namespace .. 537

 20 Advanced Language Features ... 571

 Part IV Data Access with ADO.NET and LINQ

 21 Introducing ADO.NET and DataSets .. 599

 22 Introducing LINQ ... 609

 23 LINQ to Objects .. 615

 24 LINQ to SQL ... 645

 25 LINQ to DataSets .. 679

Visual Basic 2015 Unleashediv

 26 Introducing ADO.NET Entity Framework .. 687

 27 Manipulating XML Documents with LINQ and XML Literals 729

 Part V Building Windows Desktop Applications

 28 Creating WPF Applications .. 745

 29 WPF Common Controls ... 779

 30 Brushes, Styles, Templates, and Animations in WPF 811

 31 Manipulating Media and Documents .. 851

 32 Introducing Data-Binding .. 869

 33 Localizing Applications .. 901

 Part VI Building Web and Mobile Applications

 34 Building and Publishing ASP.NET Web Applications 909

 35 Building and Deploying Applications for Microsoft Azure 951

 36 Building Universal Apps for Windows 10 .. 973

 Part VII Networking and Exposing Data Through Networks

 37 Creating and Consuming WCF Services .. 1013

 38 Implementing and Consuming OData Services 1035

 Part VIII Advanced .NET Framework with VB 2015

 39 Serialization .. 1073

 40 Processes and Multithreading .. 1095

 41 Parallel Programming and Parallel LINQ ... 1105

 42 Asynchronous Programming .. 1139

 43 Working with Assemblies ... 1177

 44 Reflection .. 1191

 45 Coding Attributes ... 1217

 46 Platform Invokes and Interoperability with the COM Architecture 1229

 47 Documenting Source Code with XML Comments 1245

 Part IX Applications Deployment

 48 Understanding the Global Assembly Cache .. 1261

 49 Setup and Deployment Projects with InstallShield for Visual Studio 1269

 50 Deploying Applications with ClickOnce ... 1287

Contents v

 Part X Code Analysis with VB 2015

 51 Code Analysis: The .NET Compiler Platform and Tools 1305

 A Useful Resources and Tools for Visual Basic 2015 1363

 Index ...1367

 Online-Only Chapters

 52 Advanced IDE Features

 53 Testing Code with Unit Tests and Test-Driven Development

 NOTE

 In order to accommodate maximum page count for a print book and still be the exhaus-
tive reference on Visual Basic, Chapters 52 and 53 are only available online. To access
them, register your book at www.informit.com/title/9780672334504 . Click the Register
Your Product link. You will be prompted to sign in or create an account. When asked for
the ISBN, enter 9780672334504. This print book ISBN must be entered even if you have
a digital copy of the book. From there, click Access Bonus Content in the “Registered
Products” section of your account page.

http://www.informit.com/title/9780672334504

 Table of Contents

 Introduction 1

Code Samples and Software Requirements ..2

 Part I Learning the Basics of VB

 1 Introducing .NET 2015 3

.NET 2015: A New Vision for Development ..3
The .NET Framework 4.6 for Desktop ..5
Introducing .NET Core 5 ..10
Programming Languages in Visual Studio 2015 ..12
What’s New with Compilers ..13
The Windows Software Development Kit ..15
Summary ...15

 2 The Visual Studio 2015 IDE for Visual Basic 17

What’s New in Visual Studio 2015 ..17
Status Bar and Start Page ..18
Working with Projects and Solutions ..20
Working with Tool Windows ...35
The My Project Window ..42
Compiling Projects ...48
Debugging Overview ..58
Browsing the Visual Basic and .NET Documentation..................................65
Quick Launch Tool ...67
Showing the Hierarchy of Method Calls ...69
Summary ...70

 3 The Anatomy of a Visual Basic Project 71

Brief Overview of Types and Members ..71
Visual Basic 2015 Reserved Keywords ..80
Understanding Project Files ...82
Understanding References ..92
Summary ...97

 4 Data Types and Expressions 99

Introducing the Common Type System ..99
Understanding Value Types ...103
Understanding Reference Types ...113

Contents vii

Differences Between Value Types and Reference Types116
Converting Between Value Types and Reference Types121
Understanding Conversion Operators ...129
Working with .NET Fundamental Types ...135
Common Operators ..172
Iterations, Loops, and Conditional Code Blocks188
Summary ...197

 5 Debugging Visual Basic 2015 Applications 199

Preparing an Example...199
Debugging Instrumentation ...200
Inspecting Object Details with Debugger Visualizers215
Debugging in Code ...216
Summary ...230

 6 Errors, Exceptions, and Code Refactoring 231

Introducing Exceptions ..231
Handling Exceptions ..233
Refactoring Your Code: Light Bulbs and Quick Actions249
Summary ...266

 Part II Object-Oriented Programming with Visual Basic 2015

 7 Class Fundamentals 267

Declaring Classes ..267
Storing Information with Properties ..271
Types and Members Visibility: Scope ...276
Executing Actions with Methods ...278
Organizing Code with Partial Classes ..290
Splitting Method Definitions with Partial Methods293
Instantiating Objects with Constructors ..295
Shared Members ...301
Common Language Specification ..306
Summary ...311

 8 Managing an Object’s Lifetime 313

Understanding Memory Allocation ...313
Understanding Garbage Collection ..314
Understanding the Finalize Method ..315
Understanding Dispose and the IDisposable Interface317
Advanced Garbage Collection ..323
Summary ...326

Visual Basic 2015 Unleashedviii

 9 Organizing Types Within Namespaces 327

Understanding Namespaces ...327
Organizing Types Within Namespaces ..328
Global Namespaces and the Global Keyword ...342
Summary ...345

 10 Modules 347

Modules Overview ..347
Differences Between Modules and Classes ...349
Summary ...350

 11 Structures and Enumerations 351

Understanding Structures ...351
Overloading Operators ...356
Structures and Common Language Specification360
Grouping Constants with Enumerations ...361
Summary ...367

 12 Inheritance 369

Applying Inheritance ..370
Introducing Polymorphism ..375
Overriding Members ...377
Conditioning Inheritance ..380
Accessing Base Classes Members ..383
Constructors’ Inheritance ...387
Shadowing ..388
Overriding Shared Members ...389
Practical Inheritance: Building Custom Exceptions390
Summary ...392

 13 Interfaces 393

Defining Interfaces ...393
Implementing and Accessing Interfaces ..394
Partial Interfaces ...399
Interfaces and Polymorphism ..399
Interfaces Inheritance ...400
Defining CLS-Compliant Interfaces ...402
Most Common .NET Interfaces ..402
Summary ...412

Contents ix

 14 Generics and Nullable Types 413

Introducing Generics ..413
Creating and Consuming Generics ..414
Introducing Nullable Types ..422
Summary ...425

 15 Delegates and Events 427

Understanding Delegates ..427
Handling Events ...431
Offering Events to the External World ..433
Summary ...439

 16 Working with Collections and Iterators 441

Understanding Collections Architecture ...442
Working with Nongeneric Collections ..442
Working with Generic Collections ..451
The Null-Conditional Operator and Collections461
Building Custom Collections ...462
Concurrent Collections ..463
Immutable Collections ...463
Iterators ...464
Summary ...472

 17 Working with Objects: Visual Tools and Code Sharing 473

Visual Studio Class Designer ..473
Class View Window ..484
Creating Types with Generate from Usage ..485
Creating Portable Classes ...491
Shared Projects ..503
Summary ...512

 Part III Advanced Language Features

 18 Manipulating Files and Streams 513

Manipulating Directories and Pathnames ...513
Handling Exceptions for Directories and Pathnames519
Manipulating Files ..519
Introducing Streams ...524
Summary ...535

Visual Basic 2015 Unleashedx

 19 The My Namespace 537

Introducing the My Namespace ..537
My.Application ..538
My.Computer ..542
My.Settings ..550
My.Resources ..556
My.User ...560
My.WebServices ..562
Extending My ...562
My in Different Applications ...566
Summary ...570

 20 Advanced Language Features 571

Local Type Inference ..571
Array Literals ...575
Extension Methods ...577
Anonymous Types ..585
Relaxed Delegates ...586
Lambda Expressions ...587
Generic Variance ..596
Summary ...598

 Part IV Data Access with ADO.NET and LINQ

 21 Introducing ADO.NET and DataSets 599

System Requirements ...599
Introducing ADO.NET ..600
Introducing DataSets ..603
Summary ...608

 22 Introducing LINQ 609

What Is LINQ? ..609
LINQ Examples ...611
Language Support ...612
Understanding Providers ..613
Overview of LINQ Architecture ..613
Summary ...614

 23 LINQ to Objects 615

Introducing LINQ to Objects ...615
Querying in Memory Objects ...616

Contents xi

Introducing Standard Query Operators ...625
Summary ...644

 24 LINQ to SQL 645

Introducing LINQ to SQL ...646
Querying Data with LINQ to SQL ..658
Insert/Update/Delete Operations with LINQ ...663
Advanced LINQ to SQL ..672
Summary ...677

 25 LINQ to DataSets 679

Querying DataSets with LINQ ..679
LINQ to DataSets’ Extension Methods ...682
Summary ...685

 26 Introducing ADO.NET Entity Framework 687

Introducing Entity Framework ...687
Understanding Entity Data Models ...688
Insert/Update/Delete Operations for Entities ..703
Querying EDMs with LINQ to Entities ..710
Querying EDMs with Entity SQL ...712
Mapping Stored Procedures ..712
Introducing the Code First Approach ..716
Summary ...727

 27 Manipulating XML Documents with LINQ and XML Literals 729

Introducing LINQ to XML ...730
Writing XML Markup in VB with XML Literals ..735
Summary ...743

 Part V Building Windows Desktop Applications

 28 Creating WPF Applications 745

What Is WPF? ...746
Introducing the WPF Architecture ...747
Building WPF Applications with Visual Studio 2015749
Understanding the eXtensible Application Markup Language751
Understanding Visual Tree and Logical Tree ...757
Handling Events in WPF ..759
Arranging Controls with Panels ...762
Managing Windows ...770

Visual Basic 2015 Unleashedxii

Introducing the Application Object ...772
Brief Overview of WPF Browser Applications ..774
Live Visual Tree ..777
Summary ...778

 29 WPF Common Controls 779

Introducing WPF Controls Features ...779
Understanding the ContentControl ..780
Understanding Common Controls ..781
Using Common Dialogs ...809
Summary ...810

 30 Brushes, Styles, Templates, and Animations in WPF 811

Introducing Brushes ...812
Introducing Styles ...828
Introducing Control Templates ...833
Introducing Transformations ...836
Introducing Animations ...840
Summary ...849

 31 Manipulating Media and Documents 851

Viewing Images ...851
Playing Media ...853
Manipulating Documents ..857
Viewing XPS Documents ..866
Summary ...867

 32 Introducing Data-Binding 869

Introducing the Data-Binding in WPF ...869
Discussing the Drag and Drop Data-Binding ...876
Summary ...900

 33 Localizing Applications 901

Introducing .NET Localization ...902
Introducing the Multilingual App Toolkit ...902
Windows Forms Localization ...903
WPF Localization ..906
Summary ...908

Contents xiii

 Part VI Building Web and Mobile Applications

 34 Building and Publishing ASP.NET Web Applications 909

Introducing the ASP.NET Model ..910
Web Forms and Master Pages ...914
ASP.NET Controls ...917
Handling Events ...919
Understanding State Management ...920
Creating a Web Application with VB 2015 with Data Access

and Pages ..923
Publishing ASP.NET Web Applications ..940
Summary ...949

 35 Building and Deploying Applications for Microsoft Azure 951

Overview of the Microsoft Azure Platform ..951
Registering for Microsoft Azure ..953
Downloading and Installing Tools for Visual Studio954
Introducing the Management Portal ...954
Creating a SQL Azure Database ..955
Creating an ASP.NET Application for the Cloud961
Deploying Applications to Microsoft Azure ...964
A Step Further: Web Roles and Worker Roles ..967
Additional Tools ...970
Summary ...972

 36 Building Universal Apps for Windows 10 973

Introducing Universal Windows Apps ...974
Introducing the Universal Windows Platform ..975
Registering with the Windows Store ..976
Installing the Developer Tools ...976
Creating Apps with Visual Basic ..977
Customizing the Application Manifest ..998
Starting and Debugging Universal Windows Apps..................................1002
Creating and Testing App Packages ...1009
Submitting Apps to the Store ...1010
Summary ...1011

 Part VII Networking and Exposing Data Through Networks

 37 Creating and Consuming WCF Services 1013

Introducing Windows Communication Foundation1014
Implementing WCF Services ..1015

Visual Basic 2015 Unleashedxiv

Consuming WCF Services ..1024
Handling Exceptions in WCF ...1030
Hosting WCF Services in Internet Information Services and

Microsoft Azure ..1031
Configuring Services with the Configuration Editor1033
Summary ...1034

 38 Implementing and Consuming OData Services 1035

What Are OData Services? ..1035
Creating an OData Endpoint ...1036
Consuming OData Services ..1060
Implementing and Consuming Functions ..1068
Summary ...1071

 Part VIII Advanced .NET Framework with VB 2015

 39 Serialization 1073

Objects Serialization ...1074
XML Serialization ...1081
Custom Serialization ..1083
Serialization with XAML ..1086
Serialization in Windows Communication Foundation1088
Serialization in the ADO.NET Entity Framework1091
Summary ...1092

 40 Processes and Multithreading 1095

Managing Processes ..1096
Introducing Multithreading ...1098
Understanding the .NET Thread Pool ..1099
Threads Synchronization ..1101
Summary ...1104

 41 Parallel Programming and Parallel LINQ 1105

Introducing Parallel Computing ..1106
Understanding and Using Tasks...1107
Parallel Loops ..1116
Debugging Tools for Parallel Tasks ..1122
Concurrent Collections ..1124
Introducing Parallel LINQ ..1128
Summary ...1137

Contents xv

 42 Asynchronous Programming 1139

Overview of Asynchrony ..1140
The Old-Fashioned Way: Event-Based Asynchrony1140
The Old-Fashioned Way: The Asynchronous Programming Model1142
The Modern Way: The Async Pattern ..1143
Getting Started with Async/Await ..1147
Exception Handling in Async ...1161
Implementing Task-Based Asynchrony ..1161
Cancellation and Progress ..1165
Asynchronous Lambda Expressions ...1170
Asynchronous I/O File Operations in .NET 4.61171
Debugging Tasks ...1175
Summary ...1176

 43 Working with Assemblies 1177

Assembly Overview ...1177
Understanding Application Domains ..1179
Security Model in .NET 4.6 ..1182
Summary ...1189

 44 Reflection 1191

Introducing Reflection ...1191
Understanding Assemblies’ Metadata ..1192
Getting Assembly Information ...1194
Reflecting Types ..1196
Invoking Code Dynamically ..1204
Generating Code at Runtime with Reflection.Emit1206
Caller Information ..1212
Summary ...1215

 45 Coding Attributes 1217

Applying Attributes ..1217
Coding Custom Attributes ...1220
Reflecting Attributes ...1225
Summary ...1226

 46 Platform Invokes and Interoperability with the COM Architecture 1229

Importing and Using COM Objects ...1230
Catching Exceptions ...1233
Releasing COM Objects ..1233
Calling COM Objects from WPF ..1234

Visual Basic 2015 Unleashedxvi

P/Invokes and Unmanaged Code ...1237
References to the Win32 API Calls...1244
Summary ...1244

 47 Documenting Source Code with XML Comments 1245

Understanding XML Comments ..1246
Implementing XML Comments ...1248
Generating Compiled Help Files ..1258
Summary ...1259

 Part IX Applications Deployment

 48 Understanding the Global Assembly Cache 1261

The Dll Hell Problem ..1261
The Global Assembly Cache ...1263
Summary ...1267

 49 Setup and Deployment Projects with InstallShield for Visual Studio 1269

Windows Installer Overview ..1270
Introducing InstallShield ..1271
Creating a Setup Project ...1272
Configuring the Setup Project ..1283
Building and Deploying the Windows Installer Package1285
Summary ...1285

 50 Deploying Applications with ClickOnce 1287

Introducing ClickOnce ...1287
Deploying Applications with ClickOnce ...1289
Configuring ClickOnce ..1294
Security Considerations ..1299
Programmatically Accessing ClickOnce ...1301
Registration-Free COM ...1302
Summary ...1304

 Part X Code Analysis with VB 2015

 51 Code Analysis: The .NET Compiler Platform and Tools 1305

Live Code Analysis with the .NET Compiler Platform1306
Calculating Code Metrics ...1349
Diagnostic Tools and IntelliTrace ..1351
Code Clone Detection ..1359
Summary ...1361

Contents xvii

 A Useful Resources and Tools for Visual Basic 2015 1363

Visual Basic Resources in MSDN ..1363
Useful Developer Tools for Visual Basic ...1364

 Index 1367

 Online-Only Chapters

 52 Advanced IDE Features

 53 Testing Code with Unit Tests and Test-Driven Development

 NOTE

 In order to accommodate maximum page count for a print book and still be the exhaus-
tive reference on Visual Basic, Chapters 52 and 53 are only available online. To access
them, register your book at www.informit.com/title/9780672334504 . Click the Register
Your Product link. You will be prompted to sign in or create an account. When asked for
the ISBN, enter 9780672334504. This print book ISBN must be entered even if you have
a digital copy of the book. From there, click Access Bonus Content in the “Registered
Products” section of your account page.

http://www.informit.com/title/9780672334504

Foreword

Back in 2013 Alessandro Del Sole reached out to the Visual Basic team to let us know
that the VB Tips & Tricks user group in Italy had reached a 15-year milestone and that
what would make it even more special would be to have a team member come out and
celebrate with them. Being asked by the leader of one of our longest-running user groups
boasting a membership of 40,000+ strong, it was a no-brainer. I knew I had to go. So I
hopped on a 12-hour flight to Milan to give a 1-hour talk, a 10-minute speech, turned
around, and flew back home (another 12 hours)—and it was totally worth it!

I joined the Visual Basic team in 2010 and in the entire time that I’ve known him since
then, Alessandro has been an invaluable member of the VB community. He has consis-
tently exemplified the qualities of an MVP, demonstrating technical leadership in the
community, subject matter expertise, and receiving ongoing nominations and recognition
by his peers as MVP of the Year.

Being familiar with Alessandro’s VB books, I’ve always admired the comprehensiveness of
his writing style. So many books approach development from just the language, or just a
few libraries, but Alessandro covers the end-to-end—from language to library to IDE, in
keeping with the Visual Basic spirit. And that style continues in this new edition. Here in
Redmond, we’re all very proud of the tremendous value we’ve added for VB developers in
Visual Studio 2015, including a new ecosystem of Roslyn-powered diagnostic analyzers,
refactoring (for the first time), great productivity language features, and a brand new expe-
rience for developing universal Windows 10 apps that run on PCs, Windows Phone, Xbox
One, Microsoft Band, and HoloLens! True to form, Alessandro has taken the time to revisit
everything new; each of his chapters in this edition highlights those enhancements,
leaving nothing out. And personally, as the PM for the Roslyn APIs and a VB language
designer for the last five years, I was especially thrilled to see him take up the topic of
authoring code analysis tools with Roslyn (with his usual technical fervor) in the “Code
Analysis” chapter.

So if you’re looking for one-stop shopping to get the big picture (and get developing) in
.NET and Visual Studio for VB developers in 2015, then this is the book for you. You’ll be
glued to it for a week integrating all the little enhancements into your day-to-day. And
then after you’ve caught your breath, you’ll keep coming back to it again and again as
you explore whole new technologies over time. Much like those 24 hours of flying back in
2013, this book is totally worth it!

Anthony D. Green

Program Manager, Visual Basic, Microsoft

 About the Author

 Alessandro Del Sole , a Microsoft Most Valuable Professional (MVP) for .NET and Visual
Basic since 2008, is well known throughout the global VB community. He is a commu-
nity leader on the Italian Visual Basic Tips and Tricks website (http://www.visual-basic.
it), which serves more than 46,000 VB developers, as well as a frequent contributor to the
MSDN Visual Studio Developer Center. He has been awarded MVP of the Year five times
(2009, 2010, 2011, 2012, 2014) and enjoys writing articles on .NET development both in
English and Italian. He also writes blog posts and produces instructional videos as well
as Windows Store apps. You can find him online in forums and you can follow him on
Twitter at @progalex.

Dedication

 To my mom: Life without you is not the same. You still live inside
me through all of your lessons in life. I miss you.

 To my dad, a brave great man. I am still learning from you what
being a man means and I hope to be like you in my life.

 To my girlfriend, Angelica, a wonderful ray of light in my life.
Thanks for being there every day.

http://www.visual-basic.it
http://www.visual-basic.it

Acknowledgments

 First, I would like to thank Joan Murray, Betsy Gratner, Kitty Wilson, Mark Renfrow, and
everyone else at Sams Publishing for trusting me enough to write the third edition of this
book about Visual Basic. Writing books like this is hard work not only for the author but
also for all the people involved in the reviews and in the production process. Working
with these guys made the process much more pleasant. Thank you!

 Very special thanks to Lucian Wischik and Anthony D. Green from the Managed
Languages Team at Microsoft, who have been the technical editors for this book. They did
an incredible job walking through every single sentence and every single line of code. As
the people who best know the Visual Basic language in the world, their suggestions and
corrections were invaluable to me and definitely contributed to creating excellent and
precise content. Thank you so much.

 Great thanks also to the guys from the Italian subsidiary of Microsoft, Roberto Andreoli,
Lorenzo Barbieri, Erica Barone, and Matteo Pagani, for their continuous support and
encouragement for my activities. My deep thanks and appreciation for their passionate
work with communities and with MVPs to Alessandro Teglia, Cristina Gonzalez Herrero
(my MVP lead), and Marjorie di Clemente.

 I would like to thank my everyday friends who are always ready to encourage me even
if they are not developers and will never read my books. Most importantly, these people
always support me when I need their help. So my deep thanks to Nadia Paloschi, Roberto
Bianchi, Alessandro Ardovini, Michela Santini, Leonardo Amici, and Karin Meier. You are
in my heart.

 As a community leader in the Italian Visual Basic Tips and Tricks community (www.
visual-basic.it), I would like to thank all those guys who are the stimulus for making
things better every day; all those people who visited my blog at least once or who read
even one article of mine; and all those people who visit our website and follow us on
forums, videos, articles, and blogs. Special thanks to my MVP colleagues Diego Cattaruzza,
Antonio Catucci, Renato Marzaro, and Raffaele Rialdi for their great support and valuable
suggestions. Thanks to Marco Notari for his continuous support and encouragement.

http://www.visual-basic.it
http://www.visual-basic.it

We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

 We welcome your comments. You can email or write to let us know what you did or
didn't like about this book—as well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book.

 When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: consumer@samspublishing.com

 Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

 Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

 Introduction

 A new era is coming for Microsoft. From Windows 10, to embracing open source, to opening
to third-party platforms and operating systems, to the cloud first/mobile first vision, to the
release of Visual Studio 2015, it is really an exciting time to be a software developer working with
Microsoft products and technologies. From a developer perspective, Visual Studio 2015 marks a
very important milestone because it is the state of the art in representing Redmond’s new vision
and because it is the most productive version ever. Both the Visual Basic and C# compilers have
been open sourced, together with a tiny, modular subset of the .NET Framework called .NET
Core, which is intended for cross-platform development. There are many new features, many
new tools, and many new development opportunities with Visual Studio 2015 and the Visual
Basic language that certainly open up amazing new scenarios but that also require some changes
in how to approach building applications, especially with regard to mobile devices. As an experi-
enced developer working with Visual Basic for many years and as a community person who daily
connects with developers worldwide, I know very well what programmers using Visual Basic
need to face in the real world, what they expect from developer tools and learning resources, and
what they need to get the most out of their code and skills in order to build high-quality, rich
applications and to get appropriate information to look at the future.

 This book has two main goals: the first goal is to walk through the Visual Basic programming
language deeply, explaining all the available language features, object-oriented programming,
common patterns, and everything you need to know to really master the language. The second
goal is to show what you can do with Visual Basic in practice; for instance, you can build
Windows applications for the desktop, and you can also build apps for Windows 10 (which is a
brand-new topic), as well as applications for the web, the cloud, and other platforms. Describing
the VB language and what you can do with it is a tradition retaken from previous editions; but
technology evolves, and so does the Visual Basic Unleashed book. With updated content and
chapters that describe in details all the new language features, this new edition also focuses on
the latest tools and platforms. As a couple of significant examples, Visual Basic 2015 Unleashed
explains how to build universal Windows apps for Windows 10 and how to leverage the new
compiler APIs from the .NET Compiler Platform to write custom domain-specific live code analy-
sis rules. In addition, the book explains how to get the maximum out of the Visual Studio’s
development environment so that you can be more productive than ever. But there is a lot more;
this book embraces all the possible development areas available to Visual Basic today. A new era
is coming for Microsoft, and it’s coming for you, too.

2 Introduction

 Code Samples and Software Requirements
 Good explanations often require effective code examples. The companion source code
for this book can be downloaded from www.informit.com/title/9780672334504 . Code
samples are organized by chapter so that it is easy to find the code you need. In order to
load, compile, and test the source code, you need Microsoft Visual Studio 2015. If you
are not an MSDN subscriber or you did not purchase one of the paid editions, you can
download Visual Studio 2015 Community, which is available for free and is enough to
run the sample code. You can download Visual Studio 2015 Community (as well as a trial
of the Enterprise edition) from https://www.visualstudio.com/downloads/visual-studio-
2015-downloads-vs . You are also encouraged to download and install the Visual Studio
2015 Software Development Kit (SDK), which is a requirement in some chapters and is
available from the same location as the free download.

 Code-Continuation Arrows

 When a line of code is too long to fit on the page of the printed book, a code-
continuation arrow (➥) appears to mark the continuation. Here is an example:

 somePeople.Add(New Person With {.FirstName = "First Name: " &

➥ i.ToString,

http://www.informit.com/title/9780672334504
https://www.visualstudio.com/downloads/visual-studio-2015-downloads-vs
https://www.visualstudio.com/downloads/visual-studio-2015-downloads-vs

This page intentionally left blank

 IN THIS CHAPTER

 ▶ Overview of Asynchrony

 ▶ The Old-Fashioned Way:
Event-Based Asynchrony

 ▶ The Old-Fashioned Way: The
Asynchronous Programming
Model

 ▶ The Modern Way: The Async
Pattern

 ▶ Getting Started with
 Async / Await

 ▶ Exception Handling in Async

 ▶ Implementing Task-Based
Asynchrony

 ▶ Cancellation and Progress

 ▶ Asynchronous Lambda
Expressions

 ▶ Asynchronous I/O File
Operations in .NET 4.6

 ▶ Debugging Tasks

 CHAPTER 42

 Asynchronous
Programming

 When you go to the restaurant, there are waiters and
waitresses ready to serve your table. A waiter takes your
order, brings the order to the kitchen, goes to serve another
table, and then comes back to your table to bring you your
meals. While waiting for you to finish, the waiter does
similar operations for other patrons. So, the waiter does
not stand at your table from when you arrive until you
finish your meal before going to serve another table; if he
did, the restaurant would need to hire one waiter per table
to avoid the block of their activity, which is not practical.
If you compare this real-world description with computer
programming, the waiter is some code in your applica-
tion. If this code must perform a long-running operation
and you write such a code in the user interface (UI) thread
or, more generally, in one thread, your code will act like
a waiter that waits from the start to the end of the meal
on a table and cannot do anything else in the meantime,
thereby blocking the application activity. This is what
happens when you write code in a synchronous approach;
synchronous code performs one task at a time and the
next task starts only when the previous one completes. To
avoid blocking the application, you can use multithread-
ing and instances of the Thread class, described in Chapter
 40 , “Processes and Multithreading.” With multithread-
ing, you can write code that performs a long-running
operation on a separate thread and keep the application
responsive. Threading is a way to write asynchronous code
that developers have been using for a long time, along
with two patterns: the Event-based Asynchronous Pattern
and the Asynchronous Programming Model. But actually,
asynchrony does not necessarily mean running on a back-
ground thread. Instead, it means that a task is executed in

CHAPTER 42 Asynchronous Programming1140

different moments. Threading is one way to achieve asynchrony, but it is quite complex
and not always the best choice. For this reason, back in .NET 4.5 Microsoft introduced
new libraries and new keywords to the Visual Basic and Visual C# languages to make
asynchronous calls easy. In this chapter, you get an overview of both the Event-based
Asynchronous Pattern and the Asynchronous Programming Model; then you learn about
the Asynchronous Pattern, which is without a doubt one of the most important features
in Visual Basic language. You will see how easily you can now write modern and respon-
sive applications via asynchronous code.

 Overview of Asynchrony
 Modern applications often need to perform complex computations or access resources
through a network. Complex computations can become very long, a network resource
might not be available, or the application might not scale well on the server. If the code
that performs this kind of operation is running in the same thread as the caller, the thread
gets blocked until all operations complete. If such a thread is the UI thread, the user inter-
face becomes unresponsive and can no longer accept the user input until all operations
have been completed. This type of approach is called synchronous because only one opera-
tion at a time is executed until all the processes are completed.

 Having an unresponsive user interface is not acceptable in modern applications, so this is
the place where asynchrony comes in. Asynchrony enables you to execute some pieces of
code in a different thread or context, so that the caller thread never blocks. If this is the
UI thread, the user interface remains responsive even if other operations are running. The
other thread (or context) then tells the caller thread that an operation completed, regard-
less of the successful or unsuccessful result. The .NET Framework has been offering, for a
long time, two thread-based approaches to asynchrony called Event-based Asynchrony and
 Asynchronous Programming Model in which you launch operations in a different thread
and get notification of their completion via delegates. As you saw in Chapter 41 , “Parallel
Programming and Parallel LINQ,” the .NET Framework 4.0 introduced the Task Parallel
Library and the concept of parallelism. TPL makes it easier to create applications capable
of scaling long-running operations across all the available processors. TPL also makes
applications faster and more responsive while executing complex tasks concurrently,
but this all about concurrency, which is not the same as asynchrony. In this chapter,
you first learn about the Event-based Asynchrony and the Asynchronous Programming
Model to get started with the important concepts; then you start putting your hands on
the possibilities offered by the .NET Framework 4.6. By doing so, it will be easier for you
to compare the old way to the new way and understand why you should migrate your
exiting code to use the new patterns.

 The Old-Fashioned Way: Event-Based Asynchrony
 More often than not, applications need to perform multiple tasks at one time, while still
remaining responsive to user interaction. One of the possibilities offered by the .NET
Framework since the early days is the Event-based Asynchronous Pattern (EAP). A class that
adheres to this pattern implements a number of methods whose names terminate with the

The Old-Fashioned Way: Event-Based Asynchrony 1141
4

2

 Async suffix and that execute some work on a different thread. Such methods mirror their
synchronous counterparts, which instead block the caller thread. Also, for each of these
asynchronous methods, there is an event whose name terminates with the Completed
suffix and that is raised when the asynchronous operation completes. This way, the
caller gets notification of the completion. Because the user might want to cancel an asyn-
chronous operation at a certain point, classes adhering to the EAP must also implement
methods whose names terminate with CancelAsync , each related to one of the asynchro-
nous methods that actually performs the requested work. When such work is completed,
a delegate will handle the operation result before control is sent back to the caller; this
delegate is also known as callback . This pattern also requires classes to support cancellation
and progress reporting. To understand how EAP works, let’s consider a simple example
based on the System.Net.WebClient class, which enables you to access networks from
client applications. Consider the following code:

 Sub Main()

 Dim client As New System.Net.WebClient

 AddHandler client.DownloadStringCompleted,

 AddressOf client_DownloadStringCompleted

 client.DownloadStringAsync(New Uri("http://msdn.microsoft.com"))

 End Sub

 A new instance of the WebClient class is created. To receive notification of completion,
you must subscribe the DownloadStringCompleted event (assuming you will download
a string, but other methods and related events are available) and supply a delegate
that will be invoked when the event is raised. After you have subscribed the event,
you can then invoke the desired method; in the current example, it’s the WebClient.
DownloadStringAsync method that downloads contents from the specified URL as a string.
If you write other lines of code after the invocation of DownloadStringAsync , these are
not necessarily executed after the download operation has completed as it would instead
happen in synchronous code. So, if you need to manipulate the result of an asynchronous
operation, you must do it inside the callback, which is the delegate invoked after the
completion event is raised. The following code provides an example:

 Private Sub client_DownloadStringCompleted(sender As Object,

 e As DownloadStringCompletedEventArgs)

 If e.Error Is Nothing Then

 Console.WriteLine(XDocument.Parse(e.Result).ToString)

 Console.WriteLine("Done")

 End If

 End Sub

 As you can see, the DownloadStringCompletedEventArgs class contains information about
the result of the asynchronous operation. Usually, a specific class inherits from System.
EventArgs and stores the result of an asynchronous operation, one per asynchronous
method. You can check for errors, and if everything is successful, you can then work with
the e.Result property that contains the actual result of the task. Classes that adhere to

CHAPTER 42 Asynchronous Programming1142

the EAP also enable you to report the progress of an asynchronous operation by exposing
a ProgressChanged event. Continuing the previous example, the WebClient class exposes
an event called ProgressChanged and a class called DownloadProgressChangedEventArgs
that stores information about the operation progress. To handle such an event, you must
first subscribe it like this:

 AddHandler client.DownloadProgressChanged,

 AddressOf client_DownloadProgressChanged

 You then handle the ProgressChanged event to report progress:

 Private Sub client_DownloadProgressChanged(sender As Object,

 e As DownloadProgressChangedEventArgs)

 Console.WriteLine(e.ProgressPercentage)

 'Use e.BytesReceived for the number of bytes received in progress

 'Use e.TotalBytesToReceive to get the total bytes to be downloaded

 End Sub

 You can eventually use lambda expressions and statement lambdas as anonymous dele-
gates, as demonstrated in the following code:

 Private Sub Download()

 Dim client As New WebClient

 AddHandler client.DownloadStringCompleted,

 Sub(sender, e)

 If e.Error Is Nothing Then

 Console.WriteLine(XDocument.

 Parse(e.Result).

 ToString)

 End If

 End Sub

 client.DownloadStringAsync(New Uri("http://msdn.microsoft.com"))

 End Sub

 The EAP has been very popular among developers for years because the way you write
code is similar to how you handle events of the user interface. This certainly makes the
asynchronous approach simpler. Later in this chapter, when comparing EAP to the new
 Async pattern, you will better understand why the old way can lead to confusion and
become very complex to handle.

 The Old-Fashioned Way: The Asynchronous
Programming Model
 The Asynchronous Programming Model (APM) is still based on threading. In this model,
an operation is launched on a separated thread via a method whose name starts with
 Begin (e.g., BeginWrite). A method like this must accept, among its parameters, an

1143
4

2
The Modern Way: The Async Pattern

argument of type IAsyncResult . This is a special type used to store the result and the
state of an asynchronous operation. The most important members of this interface are
two properties: AsyncState (of type Object), which represents the result of the opera-
tion under the form of either a primitive or a composite type, and IsCompleted (of type
 Boolean), which returns if the operation actually completed. As another parameter, these
methods must receive a delegate that will be executed when the asynchronous operation
is completed. Within this delegate, you will be able to analyze the result of the asyn-
chronous operation, but you will also need to explicitly end the asynchronous operation
by invoking a method whose name starts with End (e.g., EndWrite). Some classes in the
.NET Framework are built to be APM-ready, such as Stream and its derived classes. So, to
demonstrate how APM works, a good example can be based on the FileStream class. The
following code demonstrates how to write some bytes to a stream asynchronously and
how the callback receives information from the caller with IAsyncResult .

 Private Sub OpenStreamAsync()

 Dim someBytes(1000) As Byte

 Dim randomGenerator As New Random()

 'Generate a random sequence of bytes

 randomGenerator.NextBytes(someBytes)

 Using fs As New FileStream("Somedata.dat", FileMode.Create, FileAccess.Write)

 Dim result As IAsyncResult =

 fs.BeginWrite(someBytes, 0, someBytes.Length,

 AddressOf fs_EndWrite, fs)

 End Using

 End Sub

 Private Sub fs_EndWrite(result As IAsyncResult)

 Dim stream As FileStream = CType(result.AsyncState, FileStream)

 stream.EndWrite(result)

 'Additional work goes here...

 End Sub

 The IAsyncResult.AsyncState property contains the actual data sent from the caller and
must be explicitly converted into the type that you need to work with; in this case, the
stream. The reason is that you also must explicitly invoke the EndWrite method that final-
izes the asynchronous operation. You can also pass custom objects as the IAsyncResult
argument for the callback, to pass more complex and detailed information that you might
need to elaborate when the task completes.

 The Modern Way: The Async Pattern
 Visual Basic 2012 introduced a new pattern that solves some problems related to thread-
ing and enables you to write better and cleaner code. It does this with two keywords:
 Async and Await . Async is a modifier you use to mark methods that run asynchronous

CHAPTER 42 Asynchronous Programming1144

operations. Await is an operator that gets a placeholder for the result of an asynchronous
operation and waits for the result, which will be sent back at a later time while other
operations are executed. This enables you to keep the caller thread responsive. For a first
understanding of how this pattern works, let’s take a look at the following function that
downloads the content of a website as a string, returning the result as an XDocument that
can be manipulated with LINQ:

 Function DownloadSite() As XDocument

 Dim client As New System.Net.WebClient

 Dim content As String =

 client.DownloadString("http://www.microsoft.com")

 Dim document As XDocument = XDocument.Parse(content)

 Return document

 End Function

 This code is pretty easy because it creates an instance of the WebClient class, then
downloads the content of the specified website, and finally returns the XML document
converted through XDocument.Parse . This code is synchronous, meaning that the caller
thread will remain blocked until all the operations in the method body are completed. If
the caller thread is the UI thread, the user interface will remain blocked. Figure 42.1 shows
a graphical representation of how a synchronous call works.

UI Thread

DownloadString
is invoked.

1

The UI gets
blocked.

2

Parsing the result.

3

The UI gets back
control and is
responsive again.

4

 FIGURE 42.1 Representation of a synchronous call.

 This is how you can rewrite the previous code using the Async pattern:

 Async Function DownloadSiteAsync() As Task(Of XDocument)

 Dim client As New System.Net.WebClient

 Dim content As String =

 Await client.DownloadStringTaskAsync("http://www.microsoft.com")

 Dim document As XDocument = XDocument.Parse(content)

 Return document

 End Function

1145
4

2
The Modern Way: The Async Pattern

 Await AS A RESERVED KEYWORD

 The Await keyword is not a reserved word everywhere in the code. It is a reserved word
when it appears inside a method or lambda marked with the Async modifier and only if it
appears after that modifier. In all other cases, it is not a reserved word.

 This code is asynchronous, so it will never block the caller thread because not all the code
is executed at the same time. Figure 42.2 shows a representation of an asynchronous call.

UI Thread

DownloadStringTaskAsync
is invoked.

1

The UI gets back
control while
awaiting the result.

2

Result is yielded.
Parsing the result.

3

The UI never got
blocked.

4

 FIGURE 42.2 Representation of an asynchronous call.

 THE STORY OF THREADS WITH Async / Await

 The Async pattern relies on the concept of Task described in the previous chapter. For
this reason, asynchronous code written with Async / Await does not necessarily run on a
separate thread. In fact, it is represented by an instance of the Task class. Because one
thread can run multiple Task instances, it is normal that asynchronous code can run in
the same caller thread, such as the UI thread.

 The following is a list of important considerations that will be discussed in the next
section:

 ▶ A method that runs asynchronous code must be marked with the Async modifier.
When the compiler encounters this modifier, it expects an Await expression inside
the method body.

 ▶ Methods marked with Async are also referred to as asynchronous methods .

 ▶ By convention, names of asynchronous methods must end with the Async suffix.

 ▶ Asynchronous methods must return a Task (if they return no value) or a Task(Of T) ,
where T is the type that you would return with synchronous methods. See the previ-
ous XDocument example.

 ▶ Asynchronous methods support the standard access modifiers (such as Private ,
 Public , and so on), but they cannot be iterator methods at the same time, so the
 Iterator modifier cannot be used along with Async .

CHAPTER 42 Asynchronous Programming1146

 ▶ The Main method of an application can never be asynchronous. Notice that if you
mark the Main method as asynchronous and write asynchronous calls in its body,
the background compiler will not report any warnings or exceptions. It will report
an error when you compile or try to run the code.

 ▶ Any method that returns a Task or Task(Of T) can be used along with Await
(“awaitable”).

 ▶ The Await expression puts a placeholder for the result of the invoked task. The
result will be returned later at some time, making the application remain responsive.
However, the next code will actually run when the result has been returned. This
is because the compiler ideally splits the method into two parts; the second part is
nothing but a callback that is executed when the awaited task notifies the caller of
its completion.

 ▶ Although you should return a Task or Task(Of T) , the compiler automatically infers
the task-based type even if you return the original type. The second code snippet in
the previous example demonstrates how the Return statement returns XDocument but
the compiler automatically returns Task(Of XDocument) .

 Although these first important considerations might sound confusing, you will soon
appreciate the benefits of using the Async pattern. It enables you to avoid multithreading
and explicit callbacks, enabling you to write much easier and cleaner code. In the next
section, you get started with the Async pattern with a practical example so that all the
concepts described so far will be explained better.

 Where Do I Use Async ?

 The Async libraries are in the .NET Framework 4.6, so you can use the pattern in whatever
technology uses .NET 4.6. WPF, Windows Forms, ASP.NET, and even Windows Store apps.
These are all technologies that can leverage the power of these libraries.

 In other words, you have no limits in using the new pattern and should always use this
new way to asynchrony.

 Async AND WINDOWS 8.X STORE APPS

 There is another important reason beyond the availability of the Async pattern in .NET
languages now: developing Windows 8.x Store Apps. Windows 8.x Apps require you to
write most of the code asynchronously, and using old techniques would make develop-
ing apps really difficult. Instead, with the Async pattern, coding for Windows 8.x is much
faster, easier, and cleaner. Because the user interface of Windows 8.x apps must always
be responsive with no exceptions, using the Async pattern is very common. Also, the unifi-
cation of the programming model with the Windows Phone 8.1 platform made the Async
pattern natively available in these kinds of apps. This is another reason to read this
chapter with particular attention.

1147
4

2
Getting Started with Async/Await

 When and Why to Use Async / Await and Comparisons with the TPL

 Using the Async pattern enables you to write applications that are more responsive and
that perform better, but you will not use it everywhere. In fact, there are specific situations
in which Async has benefits. As a general rule, Async ’s main purpose is to keep the UI
responsive while tasks running in the UI thread might become potentially blocking. You
use Async in the following scenarios:

 ▶ Potentially blocking tasks running in the user interface thread

 ▶ Image processing

 ▶ I/O operations (disk, networking, web access)

 ▶ Working with sockets

 Using Async and Await differs from parallel programming because the purpose is not to
have pieces of code that run concurrently; instead, the purpose is keeping the user inter-
face responsive. In parallel programming, you have code that is CPU-consuming, so you
use Task instances to split the execution of your code into multiple units of work. Thus,
most of the code is executed at the same time by using a multicore architecture. In Async ,
instead, you do not have CPU-consuming code. You might have potentially blocking
tasks, though, so your goal is to keep the UI thread free. This is possible because the result
of an Await expression is delayed and control is yielded to the caller while waiting.

 Getting Started with Async / Await
 In this section you see the Async pattern with an example based on retrieving information
from the Internet. You will build a WPF application that downloads RSS feeds information
from the Web, simulating a long-running process over a network. You first, though, create
an application that works synchronously; then you see how to implement the Event-based
Asynchronous Pattern described at the beginning of this chapter. Finally, you learn how
things change in a third example built using the new Async and Await keywords.

 The Synchronous Approach

 Create a new WPF project with Visual Basic 2015 and .NET Framework 4.6. The applica-
tion will consume the Visual Basic RSS feed exposed by the Microsoft’s Channel9 website,
with particular regard to the list of published videos. Each item in the feed has a large
number of properties, but for the sake of simplicity only the most important will be
presented in the application’s UI. So, the first thing you need to do is create a class that
represents a single video described in the feed. Listing 42.1 demonstrates how to imple-
ment a class called Video .

 LISTING 42.1 Representing a Single Video

 Public Class Video

 Public Property Title As String

 Public Property Url As String

CHAPTER 42 Asynchronous Programming1148

 Public Property Thumbnail As String

 Public Property DateRecorded As String

 Public Property Speaker As String

 Public Shared FeedUrl As String = _

 "http://channel9.msdn.com/Tags/visual+basic/RSS"

 End Class

 Notice that all the properties are of type String just to represent values as they
exactly come from the feed. Also, a shared field contains the feed URL. Now open the
MainWindow.xaml file, to prepare the application’s user interface. The goal is to show the
videos’ thumbnails and summary information and to provide the ability to click a thumb-
nail to open the video in its original location. The ListBox control is a good choice to
display a collection of items. This will be placed inside the default Grid panel. Each item
in the ListBox will be presented via a custom template made of a Border and a StackPanel
that contains an Image control (for the video thumbnail) and a number of TextBlock
controls that are bound to properties of the Video class. Listing 42.2 shows the full code
for the main window.

 LISTING 42.2 Implementing the Application’s User Interface

 <Window x:Class="MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="MainWindow" Height="350" Width="525">

 <Grid>

 <ListBox Name="VideoBox" ItemsSource="{Binding}"

 ScrollViewer.HorizontalScrollBarVisibility="Disabled">

 <ListBox.ItemsPanel>

 <ItemsPanelTemplate>

 <WrapPanel VirtualizingPanel.IsVirtualizing="True"/>

 </ItemsPanelTemplate>

 </ListBox.ItemsPanel>

 <ListBox.ItemTemplate>

 <DataTemplate>

 <Border BorderBrush="Black" Margin="5"

 BorderThickness="2" Tag={Binding Url}

 MouseLeftButtonUp="Border_MouseLeftButtonUp_1"

 Width="200" Height="220">

 <StackPanel>

 <Image Source="{Binding Thumbnail}"

 Width="160" Height="120" />

 <TextBlock Text="{Binding Title}" TextWrapping="Wrap"

 Grid.Row="1"/>

 <TextBlock Text="{Binding DateRecorded}" Grid.Row="2"/>

 <TextBlock Text="{Binding Speaker}" Grid.Row="3"/>

1149
4

2
Getting Started with Async/Await

 </StackPanel>

 </Border>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </Grid>

 </Window>

 It is worth mentioning that the code replaces the default items container (a
 VirtualizingStackPanel) with a WrapPanel container so that items are not forced to be
presented on one line horizontally. This requires disabling the horizontal scrollbar on the
 ListBox (ScrollViewer.HorizontalScrollBarVisibility="Disabled") and changing the
 ListBox.ItemsPanel content with the WrapPanel . Also notice how the Border.Tag prop-
erty is bound to the Url property of the Video class. This enables you to store the video’s
URL and click the Border at runtime to open the video in its original location. Now switch
to the code-behind file. The first thing you must do is add a number of Imports directives,
some for importing XML namespaces needed to map information from the RSS feed and
some for working with additional .NET classes:

 Imports System.Net

 Imports <xmlns:media="http://search.yahoo.com/mrss/">

 Imports <xmlns:dc="http://purl.org/dc/elements/1.1/">

 The next step is implementing a method that queries the RSS feed returning the list of
videos. In this first implementation, you will use a synchronous approach, which will
block the user interface when the application is running:

 Private Function QueryVideos() As IEnumerable(Of Video)

 Dim client As New WebClient

 Dim data As String = client.DownloadString(New Uri(Video.FeedUrl))

 Dim doc As XDocument = XDocument.Parse(data)

 Dim query = From video In doc...<item>

 Select New Video With {

 .Title = video.<title>.Value,

 .Speaker = video.<dc:creator>.Value,

 .Url = video.<link>.Value,

 .Thumbnail = video...<media:thumbnail>.

 FirstOrDefault?.@url,

 .DateRecorded = String.Concat("Recorded on ",

 Date.Parse(video.<pubDate>.Value,

 Globalization.CultureInfo.InvariantCulture).

 ToShortDateString)}

 Return query

 End Function

CHAPTER 42 Asynchronous Programming1150

 The code is simple. An instance of the WebClient class, which provides simplified access
to networked resources, is created and the invocation of its DownloadString method
downloads the entire content of the feed under the form of a String object. Notice that
this is the point at which the user interface gets blocked. In fact, it will need to wait
for DownloadString to complete the operation before returning to be responsive. After
the feed has been downloaded, it is converted into an object of type XDocument and a
LINQ query enables you to retrieve all the needed information (refer to Chapter 27 ,
“Manipulating XML Documents with LINQ and XML Literals,” for further information
on LINQ to XML). Finally, a method called LoadVideos will run the query and assign
the result to the Window’s DataContext ; such a method will be invoked at startup. You
can change this type of implementation, but it will be more useful later when making
comparisons with the asynchronous implementation. The following code demonstrates
this, plus the event handler for the MouseLeftButtonUp event of the Border control,
where you launch the video in its original web page:

 Private Sub LoadVideos()

 Me.DataContext = QueryVideos()

 End Sub

 Private Sub MainWindow_Loaded(sender As Object,

 e As RoutedEventArgs) Handles Me.Loaded

 LoadVideos()

 End Sub

 Private Sub Border_MouseLeftButtonUp_1(sender As Object,

 e As MouseButtonEventArgs)

 'Tag is of type Object so an explicit conversion to String is required

 Dim instance = CType(sender, Border)

 Process.Start(CStr(instance.Tag))

 End Sub

 You can now run the application. Figure 42.3 shows the result of the query over the video
feed.

1151
4

2
Getting Started with Async/Await

 FIGURE 42.3 Loading an RSS feed the synchronous way.

 The application works as expected, but the real problem with this approach is that the
user cannot interact with the interface while the query is running. The reason is that the
query’s code is running in the UI thread, so the user interface is busy with the query and
does not accept any interaction. This can be easily demonstrated by attempting to move
the window while the query is running because you will not be able to move it elsewhere.
This has other implications: you cannot refresh controls that display the status of the task
because they would be refreshed only when the query completes. Also, you cannot enable
users to cancel the operation because you would need a button that the user would never
be able to click.

 Event-Based Asynchrony and Callbacks

 A much better approach is moving the long-running operation into a separate thread,
so that the UI can remain responsive while the other thread executes the operation.
Lots of classes in the .NET Framework, especially those whose job is interacting with the
Web and with networks-expose event-based asynchrony through methods that launch
and execute an operation on a separate thread and raise an event when it is completed,
passing the result to the caller via a callback. The WebClient class has an asynchronous
counterpart of DownloadString , called DownloadStringAsync , that you can use to execute
the code on a separate thread and wait for the query result via a callback. The following

CHAPTER 42 Asynchronous Programming1152

code demonstrates how to accomplish this (do not worry if you notice something wrong
because an explanation is provided in moments):

 Private Function QueryVideos() As IEnumerable(Of Video)

 Dim client As New WebClient

 Dim query As IEnumerable(Of Video)

 AddHandler client.DownloadStringCompleted, Sub(sender, e)

 If e.Error IsNot Nothing Then

 'Error handling logic here..

 End If

 Dim doc = _

 XDocument.Parse(e.Result)

 Dim query = From video

 In doc...<item>

 Select _

 New Video With {

 .Title =

 video.<title>.Value,

 .Speaker =

 video.<dc:creator>.

 Value,

 .Url = video.<link>.Value,

 .Thumbnail =

 video...<media:thumbnail>.

 FirstOrDefault?.@url,

 .DateRecorded =

 String.Concat("Recorded on ",

 Date.Parse(video.

 <pubDate>.Value,

 Globalization.CultureInfo.

 InvariantCulture).

 ToShortDateString)}

 End Sub

 client.DownloadStringAsync(New Uri(Video.FeedUrl))

 Return query

 End Function

 The code specifies a statement lambda as an event handler for the DownloadString-
Completed event, instead of declaring a separate delegate and pointing to this via an
 AddressOf clause. The e object is of type DownloadStringCompletedEventArgs and
contains the result of the operation. The problem in this code is that the Return statement
does not work because it is attempting to return a result that has not been produced yet.
On the other side, you cannot write something like this:

1153
4

2
Getting Started with Async/Await

 Private Function QueryVideos() As IEnumerable(Of Video)

 Dim client As New WebClient

 Dim query As IEnumerable(Of Video)

 AddHandler client.DownloadStringCompleted, Sub(sender, e)

 If e.Error IsNot Nothing Then

 'Error handling logic here..

 End If

 Dim doc = _

 XDocument.Parse(e.Result)

 Dim query = From ...

 Return query

 End Sub

 client.DownloadStringAsync(New Uri(Video.FeedUrl))

 End Function

 This code does not work because you cannot return a result from a Sub and because it
should be returned from the outer method, not the inner. In conclusion, Return state-
ments do not work well with event-based asynchrony. The solution at this point is
returning the result via a callback and an Action(Of T) object. So the appropriate imple-
mentation of the QueryVideos method in this approach is the following:

 Private Sub QueryVideos(listOfVideos As Action(Of IEnumerable(Of Video),

 Exception))

 Dim client As New WebClient

 AddHandler client.DownloadStringCompleted, Sub(sender, e)

 If e.Error IsNot Nothing Then

 listOfVideos(Nothing,

 e.Error)

 Return

 End If

 Dim doc = _

 XDocument.Parse(e.Result)

 Dim query =

 From video In doc...<item>

 Select New Video With {

 .Title =

 video.<title>.Value,

 .Speaker =

 video.<dc:creator>.

 Value,

 .Url = video.<link>.Value,

CHAPTER 42 Asynchronous Programming1154

 .Thumbnail =

 video...<media:thumbnail>.

 FirstOrDefault?.@url,

 .DateRecorded =

 String.Concat("Recorded on ",

 Date.Parse(video.

 <pubDate>.Value,

 Globalization.CultureInfo.

 InvariantCulture).

 ToShortDateString)}

 listOfVideos(query, Nothing)

 End Sub

 Try

 client.DownloadStringAsync(New Uri(Video.FeedUrl))

 Catch ex As Exception

 listOfVideos(Nothing, ex)

 End Try

 End Sub

 The previous code does the following:

 1. Holds the list of videos from the RSS feed in an Action(Of IEnumerable(Of Video),
Exception) object. The Exception instance here is useful to determine whether an
error occurred during the query execution.

 2. If the query completes successfully, the query result is passed to the Action object
(that is, the callback).

 3. If an exception occurs during the query execution (see the first If block inside the
statement lambda), the callback receives Nothing as the first parameter because the
collection of items was not retrieved successfully and the exception instance as the
second parameter.

 4. If an exception occurs immediately when the web request is made, the callback still
receives Nothing and the exception instance. This is at the Try..Catch block level.

 So using a callback here has been necessary for two reasons: sending the query result back
to the caller correctly and handling two exception scenarios. But you are not done yet.
In fact, you have to completely rewrite the LoadVideos method to hold the result of the
callback and determine whether the operation completed successfully before assigning the
query result to the Window’s DataContext . The following code demonstrates this:

 Private Sub LoadVideos()

 Dim action As Action(Of IEnumerable(Of Video),

 Exception) = Nothing

 action =

 Sub(videos, ex)

1155
4

2
Getting Started with Async/Await

 If ex IsNot Nothing Then

 MessageBox.Show(ex.Message)

 Return

 End If

 If (videos.Any) Then

 Me.DataContext = videos

 Else

 QueryVideos(action)

 End If

 End Sub

 QueryVideos(action)

 End Sub

 As you can see, the code is not easy, unless you are an expert. There is an invocation to
the previous implementation of QueryVideos , passing the instance of the callback. When
the result is sent back, the statement lambda first checks for exceptions and, if not, takes
the query result as the data source. If you now run the application again, you will get the
same result shown in Figure 42.3 ; however, this time the user interface is responsive and
the user can interact with it. But reaching this objective had costs. You had to completely
rewrite method implementations and write code that is complex and difficult to read and
to extend. So, the multithreading in this situation has not been very helpful. This is the
point in which the Async / Await pattern comes in to make things simple.

 Asynchrony with Async / Await

 The Async / Await pattern has the goal of simplifying the way developers write asynchro-
nous code. You will learn a lot about the underlying infrastructure, but before digging into
that, it is important for you to see how your code can be much cleaner and readable. Let’s
start by modifying the QueryVideos method to make some important considerations:

 Private Async Function QueryVideosAsync() As _

 Task(Of IEnumerable(Of Video))

 Dim client As New WebClient

 Dim data = Await client.DownloadStringTaskAsync(New Uri(Video.FeedUrl))

 Dim doc = XDocument.Parse(data)

 Dim query = From video In doc...<item>

 Select New Video With {

 .Title = video.<title>.Value,

 .Speaker = video.<dc:creator>.Value,

 .Url = video.<link>.Value,

 .Thumbnail = video...<media:thumbnail>.

 FirstOrDefault?.@url,

 .DateRecorded = String.Concat("Recorded on ",

CHAPTER 42 Asynchronous Programming1156

 Date.Parse(video.<pubDate>.Value,

 Globalization.CultureInfo.InvariantCulture).

 ToShortDateString)}

 Return query

 End Function

 Asynchronous methods must be decorated with the Async modifier. When the compiler
encounters this modifier, it expects that the method body contains one or more Await
statements. If not, it reports a warning saying that the method will be treated as synchro-
nous, suggesting that the Async modifier should be removed. Async methods must return
an object of type Task . If the method returns a value (Function), then it must return a
 Task(Of T) where T is the actual result type. Otherwise, if the method returns no value,
both following syntaxes are allowed:

 Async Function TestAsync() As Task

 'You can avoid Return statements, the compiler assumes returning no values

 End Function

 Async Sub TestAsync()

 '...

 End Sub

 The difference between the two implementations is that the first one can be called inside
another method with Await , but the second one cannot (because it does not need to
be awaited). A typical example of the second syntax is about event handlers: they can
be asynchronous and can use Await , but no other method will wait for their result.
By convention, the suffix of asynchronous methods is the Async literal. This is why
 QueryVideos has been renamed into QueryVideosAsync . An exception is represented by
asynchronous methods already existing in previous versions of the .NET Framework,
based on the EAP, whose name already ends with Async . In this case Async is replaced
with TaskAsync . For instance (as you discover in moments), the DownloadStringAsync
method in the WebClient class has a new counterpart called DownloadStringTaskAsync .
Any method that returns a Task or Task(Of T) can be used with Await . With Await , a
task is started but the control flow is immediately returned to the caller. The result of the
task will not be returned immediately, but later and only when the task completes. But
because the control flow immediately returns to the caller, the caller remains responsive.
 Await can be thought as of a placeholder for the task’s result, which will be available after
the awaited task completes. In the previous QueryVideosAsync method, Await starts the
 WebClient.DownloadStringTaskAsync method and literally waits for its result but, while
waiting, the control flow does not move to DownloadStringAsyncTask , while it remains in
the caller. Because in the current example the code is running in the UI thread, the user
interface remains responsive because the requested task is being executed asynchronously.

 In other words, what Await actually does is sign up the rest of the method as a callback
on the task, returning immediately. When the task that is being awaited completes, it will
invoke the callback and will resume the execution from the exact point it was left.

1157
4

2
Getting Started with Async/Await

 After the operation has been completed, the rest of the code can elaborate the result.
With this kind of approach, your method looks much simpler, like the first synchronous
version, but it is running asynchronously with only three edits (the Async modifier,
 Task(Of T) as the return type, and the Await operator).

 WHY THE Task TYPE?

 In Chapter 41 you learned a lot about the Task class and saw how this can run
CPU-intensive work on a separate thread, but it also can represent an I/O operation such
as a network request. For this reason, the Task class is the natural choice as the result
type for asynchronous operations using Async / Await .

 Continuing considerations on the previous method, take a look at the final Return state-
ment. It is returning an IEnumerable(Of Video) , but actually the method’s signature
requires returning a Task(Of IEnumerable(Of Video)) . This is possible because the
compiler automatically makes Return statements to return a Task -based version of their
result even if they do not. As a result, you will not get confused because you will write
the same code but the compiler will take care of converting the return type into the
appropriate type. This also makes migration of synchronous code to asynchronous easier.
Technically speaking, the compiler synthesizes a new Task(Of T) object at the first Await
in the method. This Task(Of T) object is returned to the caller at the first Await . Later on,
when it encounters a Return statement, the compiler causes that already-existing Task(Of
T) object to transition from a “not yet completed” state into the “completed with result”
state. Continuing the migration of the code example to the Async / Await pattern, you now
need a few edits to the LoadVideos method. The following code demonstrates this:

 Private Async Function LoadVideosAsync() As Task

 Me.DataContext = Await QueryVideosAsync()

 End Sub

 The method is now called LoadVideoAsync and marked with the Async modifier. The
reason is that it contains an Await expression that invokes the QueryVideosAsync method.
The result of this invocation is taken as the main window’s data source. Finally, you have
to edit the MainWindow_Loaded event handler and make it asynchronous like this:

 Private Async Sub MainWindow_Loaded(sender As Object,

 e As RoutedEventArgs) Handles Me.Loaded

 Await LoadVideosAsync()

 End Sub

 If you now run the application, you will still get a responsive user interface that you can
interact with while the long-running task (the query) is executing, but you have achieved
this by modifying existing code with very few edits.

CHAPTER 42 Asynchronous Programming1158

 How Async and Await Work Behind the Scenes

 Behind the scenes of the ease of the Async pattern, the compiler does incredible work to
make the magic possible. When you make an asynchronous call by using Await , that invo-
cation starts a new instance of the Task class. As you know from Chapter 41 , one thread
can contain multiple Task instances. So you might have the asynchronous operation
running in the same thread but on a new Task . Internally, it’s as if the compiler could
split an asynchronous method in two parts, a method and its callback. If you consider
the QueryVideosAsync shown previously, you could imagine a method defined until the
invocation of Await . The next part of the method is moved into a callback that is invoked
after the awaited operation is completed. This has two benefits. The first benefit is that it
ensures that code that needs to manipulate the result of an awaited operation will work
with the actual result, which has been returned after completion of the task (this is in fact
the moment in which the callback is invoked). Second, such callback is invoked in the
same calling thread, which avoids the need of managing threads manually or using the
 Dispatcher class in technologies like WPF or Silverlight. Figure 42.4 gives you an ideal
representation of how the asynchronous method has been split.

 FIGURE 42.4 An asynchronous method is split into two ideal parts; the second is a callback.

 Beyond considerations like the ones about threading, it is interesting to analyze the code
the compiler generated to make asynchrony so efficient in Visual Basic 2015. For this exer-
cise, you need a decompiler tool such as .NET Reflector from Red-Gate, which is available
as a free trial from https://www.red-gate.com/products/dotnet-development/reflector/ . If
you open the compiled .exe file with a tool like this, you can see that the implementation
of asynchronous methods is completely different from the one you wrote and that the

https://www.red-gate.com/products/dotnet-development/reflector

1159
4

2
Getting Started with Async/Await

compiler generated several structures that implement a state machine that supports asyn-
chrony. Figure 42.5 shows the QueryVideosAsync real implementation.

 FIGURE 42.5 Investigating the actual generated code with .NET Reflector.

 For your convenience, the following is the auto-generated code for QueryVideosAsync :

 <AsyncStateMachine(GetType(VB$StateMachine_1_QueryVideosAsync))> _

 Private Function QueryVideosAsync() As Task(Of IEnumerable(Of Video))

 Dim stateMachine As New VB$StateMachine_1_QueryVideosAsync With { _

 .VBMe = Me, _

 .$State = -1, _

 .$Builder = AsyncTaskMethodBuilder(Of IEnumerable(Of Video)).Create _

 }

 stateMachine.$Builder.

 Start(Of VB$StateMachine_1_QueryVideosAsync)(stateMachine)

 Return stateMachine.$Builder.Task

 End Function

 You do not need to know the code in detail because this implementation is purely inter-
nal; however, the real code relies on the AsyncTaskMethodBuilder class, which creates
an instance of an asynchronous method and requires specifying a state machine that
controls the execution of the asynchronous task (which is returned once completed).
For each asynchronous method, the compiler generated an object representing the state

CHAPTER 42 Asynchronous Programming1160

machine. For instance, the compiler generated an object called VB$StateMachine_1_
QueryVideosAsync that represents the state machine that controls the execution of
the QueryVideosAsync method. Listing 42.3 contains the code of the aforementioned
structure.

 LISTING 42.3 Internal Implementation of a State Machine for Async Methods

 <CompilerGenerated> _

 Private NotInheritable Class VB$StateMachine_1_QueryVideosAsync

 Implements IAsyncStateMachine

 ' Methods

 Public Sub New()

 <CompilerGenerated> _

 Friend Sub MoveNext() Implements IAsyncStateMachine.MoveNext

 <DebuggerNonUserCode> _

 Private Sub SetStateMachine(stateMachine As IAsyncStateMachine) _

 Implements IAsyncStateMachine.SetStateMachine

 ' Fields

 Friend $A0 As TaskAwaiter(Of String)

 Public $Builder As AsyncTaskMethodBuilder(Of IEnumerable(Of Video))

 Public $State As Integer

 Friend VBMe As MainWindow

 Friend VBResumableLocal_client$0 As WebClient

 Friend VBResumableLocal_data$1 As String

 Friend VBResumableLocal_doc$2 As XDocument

 Friend VBResumableLocal_query$3 As IEnumerable(Of Video)

 End Class

 The code in Listing 42.3 is certainly complex, and you are not required to know how it
works under the hood, but focus for a moment on the MoveNext method. This method is
responsible of the asynchronous execution of tasks; depending on the state of the task,
it resumes the execution at the appropriate point. You can see how the compiler trans-
lates the Await keyword into an instance of the TaskAwaiter structure, which is assigned
with the result of the invocation to the Task.GetAwaiter method (both are for compiler-
use only). If you compare the result of this analysis with the ease of usage of the Async
pattern, it is obvious that the compiler does tremendous work to translate that simplicity
into a very efficient asynchronous mechanism.

 Documentation and Examples of the Async Pattern

 Microsoft offers a lot of useful resources to developers who want to start coding the new
way. The following list summarizes several resources that you are strongly encouraged to
visit to make your learning of Async complete:

 ▶ Visual Studio Asynchronous Programming: The official developer center for Async .
Here you can find documentation, downloads, instructional videos, and more on

Implementing Task-Based Asynchrony 1161
4

2

language specifications. It is available at http://msdn.microsoft.com/en-us/vstudio/
async.aspx .

 ▶ 101 Async Samples: An online page that contains a huge number of code examples
based on Async for both Visual Basic and Visual C#. You can find samples at http://
www.wischik.com/lu/AsyncSilverlight/AsyncSamples.html .

 ▶ Sample code: Available on the MSDN Code Gallery (http://code.msdn.microsoft.
com).

 Do not leave out of your bookmarks the root page of the .NET Framework 4.5 and 4.6
documentation (http://msdn.microsoft.com/en-us/library/w0x726c2).

 Exception Handling in Async
 Another great benefit of using the Async pattern is that exception handling is done
the usual way. In fact, if an awaited method throws an exception, this can be naturally
handled within a Try..Catch..Finally block. The following code provides an example:

 Private Async Sub DownloadSomethingAsync()

 Dim client As New System.Net.WebClient

 Try

 Dim result = Await client.

 DownloadStringTaskAsync("http://msdn.com/vbasic")

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 Finally

 Console.WriteLine("Operation completed.")

 End Try

 End Sub

 As you can see, there is no difference in handling exceptions inside asynchronous
methods compared to classic synchronous methods. This makes code migration easier.

 Implementing Task-Based Asynchrony
 As you remember from Chapter 41 , the Task class provides methods and other members
that enable you to execute CPU-intensive work, by splitting code across all the avail-
able processors so that most of the code is executed concurrently, when possible. Such
members of the Task class return instances of the Task class itself, and therefore can be
used along with Await . This possibility has some advantages:

 ▶ You can execute synchronous code on a separate thread more easily.

 ▶ You can run multiple tasks concurrently and wait for them to complete before
making further manipulations.

 ▶ You can use Await with CPU-consuming code.

http://msdn.microsoft.com/en-us/vstudio/async.aspx
http://www.wischik.com/lu/AsyncSilverlight/AsyncSamples.html
http://www.wischik.com/lu/AsyncSilverlight/AsyncSamples.html
http://code.msdn.microsoft.com
http://code.msdn.microsoft.com
http://msdn.microsoft.com/en-us/library/w0x726c2
http://msdn.microsoft.com/en-us/vstudio/async.aspx

CHAPTER 42 Asynchronous Programming1162

 This approach is known as Task-Based Asynchrony, and in this section you learn how to
get the most out of it.

 Switching Threads

 In Chapter 40 you learned how to write code that can run on a separate thread, how
to create new threads manually, and how to use the Thread Pool managed by the .NET
Framework. With this approach, you run a portion of synchronous code in a separate
thread, thus keeping the caller thread-free from an intensive and potentially blocking
work. In the .NET Framework 4.6, you have additional alternatives to reach the same
objective but writing simpler code. The Task.Run method enables you to run a new
task asynchronously, queuing such a task into a thread in the Thread Pool. The result is
returned as Task handle for the intensive work, so that you can use Await to wait for the
result. Task.Run takes as the first argument a delegate that defines the work that will be
executed in the background thread. Such a delegate can be represented either by a method
that you point to via the AddressOf clause or by lambdas. In the latter case, the delegate
can be a System.Action represented by a statement lambda or a System.Func(Of T) repre-
sented by a lambda expression. The following example demonstrates how synchronous
code is easily executed in a separate thread by invoking Task.Run :

 Private Async Sub RunIntensiveWorkAsync()

 'This runs on the UI thread

 Console.WriteLine("Starting...")

 'This runs on a Thread Pool thread

 Dim result As Integer = Await Task.Run(Function()

 Dim workResult As Integer = _

 SimulateIntensiveWork()

 Return workResult

 End Function)

 'This runs again on the UI thread

 Console.WriteLine("Finished")

 Console.ReadLine()

 End Sub

 Private Function SimulateIntensiveWork() As Integer

 Dim delay As Integer = 5000

 Threading.Thread.Sleep(delay)

 Return delay

 End Function

 While the result of Task.Run is being awaited, the control is immediately returned to
the user interface, which remains responsive in the Console window. All the Console.
WriteLine and Console.ReadLine statements are executed on the UI thread, whereas the
simulated CPU-consuming code runs on the separate thread. Task.Run schedules a new

Implementing Task-Based Asynchrony 1163
4

2

task exactly as Task.Factory.StartNew does; you saw this method in Chapter 41 . So, this
code has the same effect as using Task.Run :

 Dim result As Integer = Await Task.Factory.StartNew(Function()

 Dim workResult _

 As Integer = _

 SimulateIntensiveWork()

 Return workResult

 End Function)

 In summary, Task.Run lets you easily execute intensive computations on a separate
thread, taking all the benefits of Await .

 Using Combinators

 The Task class has other interesting usages, such as managing concurrent operations.
This is possible because of two methods, Task.WhenAll and Task.WhenAny , also known as
 combinators . Task.WhenAll creates a task that will complete when all the supplied tasks
complete; Task.WhenAny creates a task that will complete when at least one of the supplied
tasks completes. For example, imagine you want to download multiple RSS feeds informa-
tion from a website. Instead of using Await against individual tasks to complete, you can
use Task.WhenAll to continue only after all tasks have completed. The following code
provides an example of concurrent download of RSS feeds from the Microsoft Channel 9
feed used previously:

 Private Async Sub DownloadAllFeedsAsync()

 Dim feeds As New List(Of Uri) From

 {New Uri("http://channel9.msdn.com/Tags/windows+8/RSS"),

 New Uri("http://channel9.msdn.com/Tags/windows+phone"),

 New Uri("http://channel9.msdn.com/Tags/visual+basic/RSS")}

 'This task completes when all of the requests complete

 Dim feedCompleted As IEnumerable(Of String) = _

 Await Task.

 WhenAll(From feed In feeds

 Select New System.Net.WebClient().

 DownloadStringTaskAsync(feed))

 'Additional work here...

 End Sub

 This code creates a collection of tasks by sending a DownloadStringTaskAsync request for
each feed address in the list of feeds. The task completes (and thus the result of awaiting
 WhenAll is returned) only when all three feeds have been downloaded, meaning that the
complete download result will not be available if only one or two feeds have been down-
loaded. WhenAny works differently because it creates a task that completes when any of the

CHAPTER 42 Asynchronous Programming1164

tasks in a collection of tasks completes. The following code demonstrates how to rewrite
the previous example using WhenAny :

 Private Async Sub DownloadFeedsAsync()

 Dim feeds As New List(Of Uri) From

 {New Uri("http://channel9.msdn.com/Tags/windows+8/RSS"),

 New Uri("http://channel9.msdn.com/Tags/windows+phone"),

 New Uri("http://channel9.msdn.com/Tags/visual+basic/RSS")}

 'This task completes when any of the requests complete

 Dim feedCompleted As Task(Of String) = Await Task.WhenAny(From feed In feeds

 Select New System.Net.WebClient().

 DownloadStringTaskAsync(feed))

 'Additional work here...

 End Sub

 In this case a single result will be yielded because the task will be completed when any of
the tasks completes. You can also wait for a list of tasks defined as explicit asynchronous
methods, like in the following example:

 Public Async Sub WhenAnyRedundancyAsync()

 Dim messages As New List(Of Task(Of String)) From

 {

 GetMessage1Async(),

 GetMessage2Async(),

 GetMessage3Async()

 }

 Dim message = Await Task.WhenAny(messages)

 Console.WriteLine(message.Result)

 Console.ReadLine()

 End Sub

 Public Async Function GetMessage1Async() As Task(Of String)

 Await Task.Delay(700)

 Return "Hi VB guys!"

 End Function

 Public Async Function GetMessage2Async() As Task(Of String)

 Await Task.Delay(600)

 Return "Hi C# guys!"

 End Function

 Public Async Function GetMessage3Async() As Task(Of String)

 Await Task.Delay(500)

 Return "Hi F# guys!"

 End Function

Cancellation and Progress 1165
4

2

 Here you have three asynchronous methods, each returning a string. The code builds a
list of tasks including each asynchronous method in the list. Task.WhenAny receives the
instance of the collection of tasks as an argument and completes when one of the three
methods completes. In this example, you are also seeing for the first time the Task.Delay
method. This is the asynchronous equivalent of Thread.Sleep , but while the latter blocks
the thread for the specified number of milliseconds, with Task.Delay the thread remains
responsive.

 ADDITIONAL SAMPLES ON WhenAny

 The 101 Async Samples include a couple of interesting examples of different usages of
 WhenAny , such as interleaving one request at a time and limiting the number of concurrent
downloads. You find them under the Combinators node of the samples page mentioned at
the beginning of the chapter.

 Cancellation and Progress
 Because the Async pattern relies on the Task class, implementing cancellation is
something similar to what you have already studied back in Chapter 41 , thus the
 CancellationTokenSource and CancellationToken classes are used. In this section you see
how to implement cancellation both for asynchronous methods and for Task.Run opera-
tions. Next, you learn how to report the progress of an operation, which is common in
asynchronous programming and improves the user experience.

 Implementing Cancellation

 Let’s look at the WPF sample application created in the section “Getting Started with
 Async / Await .” Imagine you want to give users the ability of cancelling the download of
the RSS feed from the Microsoft Channel9 website. First, make a slight modification to the
user interface so that the main Grid is divided into two rows, and in the first row add a
 Button like this:

 <Grid.RowDefinitions>

 <RowDefinition Height="40"/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Button Width="120" Height="30" Name="CancelButton"

 Content="Cancel"/>

 Do not forget to add the Grid.Row="1" property assignment for the ListBox control.
Double-click the new button so that you can quickly access the code editor. Declare a
new CancellationTokenSource object that will listen for cancellation requests. The event
handler for the new button’s Click event will invoke the Cancel method on the instance
of the CancellationTokenSource :

CHAPTER 42 Asynchronous Programming1166

 Private tokenSource As CancellationTokenSource

 Private Sub CancelButton_Click(sender As Object, e As RoutedEventArgs) _

 Handles CancelButton.Click

 'If Me.tokenSource IsNot Nothing Then

 ' Me.tokenSource.Cancel()

 'End If

 Me.tokenSource?.Cancel()

 End Sub

 The user can now request cancellation by clicking this button. Next, you need to make
a couple of edits to the QueryVideosAsync method created previously. The first edit is
making this method receive a CancellationToken object as an argument. This object
will handle cancellation requests during the method execution. The second edit requires
replacing the WebClient class with a new class called HttpClient . The reason for this
change is that the WebClient ’s asynchronous methods no longer support cancellation
as in the first previews of the Async library, although asynchronous methods in System.
Net.Http.HttpClient do. Among the others, this class exposes a method called GetAsync
that retrieves contents from the specified URL and receives the cancellation token as
the second argument. The result is returned under the form of a System.Net.Http.
HttpResponseMessage class. As the name implies, this class represents an HTTP response
message including the status of the operation and the retrieved data. The data is repre-
sented by a property called Content , which exposes methods to convert data into a stream
(ReadAsStreamAsync), into an array of bytes (ReadAsByteArrayAsync), and into a string
(ReadAsStringAsync). Other than changing the code to use HttpClient and to receive the
cancellation token, you only need to handle the OperationCanceledException , which is
raised after the cancellation request is received by the asynchronous method. The follow-
ing code demonstrates the QueryVideosAsync method:

 'The following implementation with HttpClient supports Cancellation

 Private Async Function QueryVideosAsync(token As CancellationToken) As _

 Task(Of IEnumerable(Of Video))

 Try

 Dim client As New HttpClient

 'Get the feed content as an HttpResponseMessage

 Dim data = Await client.GetAsync(New Uri(Video.FeedUrl), token)

 'Parse the content into a String

 Dim actualData = Await data.Content.ReadAsStringAsync

 Dim doc = XDocument.Parse(actualData)

 Dim query = From video In doc...<item>

 Select New Video With {

 .Title = video.<title>.Value,

 .Speaker = video.<dc:creator>.Value,

 .Url = video.<link>.Value,

Cancellation and Progress 1167
4

2

 .Thumbnail = video...<media:thumbnail>.

 FirstOrDefault?.@url,

 .DateRecorded = String.Concat("Recorded on ",

 Date.Parse(video.<pubDate>.Value,

 Globalization.CultureInfo.InvariantCulture).

 ToShortDateString)}

 Return query

 Catch ex As OperationCanceledException

 MessageBox.Show("Operation was canceled by the user.")

 Return Nothing

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return Nothing

 End Try

 End Function

 The very last edit to the application is changing the LoadVideosAsync method to launch
the query passing a cancellation token:

 Private Async Function LoadVideosAsync() As Task

 Me.tokenSource = New CancellationTokenSource

 Me.DataContext = Await QueryVideosAsync(Me.tokenSource.Token)

 End Function

 If you now run the application, not only will the user interface remain responsive, but
you will be also able to click the Cancel button to stop the query execution. Notice that
in a synchronous approach, implementing cancellation has no benefits. In fact, if on
one side writing code to support cancellation is legal, on the other side the user would
never have a chance to click a button because the UI thread would be blocked until the
completion of the task. Similarly, you can add cancellation to tasks running in a separate
thread and started with Task.Run . By continuing the example shown previously about this
method, you can first rewrite the SimulateIntensiveWork method as follows:

 Private Function SimulateIntensiveWork(token As CancellationToken) _

 As Integer

 Dim delay As Integer = 5000

 Threading.Thread.Sleep(delay)

 token.ThrowIfCancellationRequested()

 Return delay

 End Function

 You should be familiar with this approach because it has been discussed in Chapter 41 .
The method receives the cancellation token and checks for cancellation requests. If any

CHAPTER 42 Asynchronous Programming1168

exist, it throws an OperationCanceledException . Next, you add support for cancellation
by passing an instance of the CancellationTokenSource class to the method invocation
inside Task.Run :

 Private cancellationToken As CancellationTokenSource

 Private Async Sub RunIntensiveWorkAsync()

 cancellationToken = New CancellationTokenSource

 'This runs on the UI thread

 Console.WriteLine("Starting...")

 Try

 'This runs on a Thread Pool thread

 Dim result As Integer = Await Task.Run(Function()

 Dim workResult As Integer = _

 SimulateIntensiveWork(_

 cancellationToken.Token)

 Return workResult

 End Function)

 'This runs again on the UI thread

 Console.WriteLine("Finished")

 Catch ex As OperationCanceledException

 Console.WriteLine("Canceled by the user.")

 Catch ex As Exception

 End Try

 Console.ReadLine()

 End Sub

 To request cancellation, you should call the cancellationToken.Cancel method. At that
point, the request is intercepted and an OperationCanceledException is thrown.

 Reporting Progress

 Reporting the progress of an asynchronous method execution is a common requirement.
There is a pattern that you can use and that makes things easier. This pattern relies on
the System.IProgress(Of T) interface and the System.Progress(Of T) class, which
expose a ProgressChanged event that must be raised when the asynchronous operation is
in progress. To provide an example that is easy to understand, imagine you still want to
download the content of some feeds from the Microsoft Channel9 website and refresh the
progress every time a site has been downloaded completely. The current example is based
on a Console application. Consider the following code:

 Private progress As Progress(Of Integer)

 Private counter As Integer = 0

Cancellation and Progress 1169
4

2

 Sub Main()

 Try

 progress = New Progress(Of Integer)

 AddHandler progress.ProgressChanged, Sub(sender, e)

 Console.

 WriteLine _

 ("Download progress: " & _

 CStr(e))

 End Sub

 DownloadAllFeedsAsync(progress)

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 Finally

 Console.ReadLine()

 End Try

 End Sub

 You first declare an object of type Progress(Of Integer) and a counter. The first object
will receive the progress value when the ProgressChanged event is raised. In this case,
the code uses the Integer type to pass a simple number, but you can pass more complex
information with a different or custom type. Then the code specifies a handler for the
 ProgressChanged event, with type inference for the lambda’s parameters. Sender is always
 Object , whereas e is of the same type as the generic type you assigned to Progress . So, in
this case it is of type Integer . Here you are working in a Console application and are thus
displaying the value as a text message. But in real-world applications, this is the value that
you could assign to a ProgressBar control to report the progress in the user interface. The
instance of the Progress class must be passed to the asynchronous method that performs
the required tasks. The Progress class has just one method called Report ; you invoke it
after an Await invocation. The following code demonstrates how to report the progress of
downloading a number of feeds:

 Private Async Sub DownloadAllFeedsAsync(currentProgress As IProgress(Of Integer))

 Dim client As New System.Net.WebClient

 Dim feeds As New List(Of Uri) From

 {New Uri("http://channel9.msdn.com/Tags/windows+8/RSS"),

 New Uri("http://channel9.msdn.com/Tags/windows+phone"),

 New Uri("http://channel9.msdn.com/Tags/visual+basic/RSS")}

 For Each URL In feeds

 Await client.DownloadStringTaskAsync(URL)

 counter += 1

 If currentProgress IsNot Nothing Then currentProgress.Report(counter)

 Next

 End Sub

CHAPTER 42 Asynchronous Programming1170

 Report receives as an argument an object of the same type that you assigned as the
generic argument of the Progress class declaration in this case a counter of type Integer
that is incremented every time a feed is downloaded. If you run this code, every time a
feed is returned, the progress is also shown in the user interface, as demonstrated in Figure
 42.6 .

 FIGURE 42.6 Reporting the progress of an asynchronous method.

 This pattern makes reporting the progress of a task and in real-world applications, such
as WPF and Windows apps, easy. It also makes updating controls like the ProgressBar
incredibly simple by assigning to such controls the value stored in the instance of the
 Progress class.

 Asynchronous Lambda Expressions
 Methods can be asynchronous, but so can lambda expressions. To be asynchronous, a
lambda must have the Async modifier and must return Task or Task(Of T) , but it cannot
accept ByRef arguments and cannot be an iterator function. A lambda can be asynchro-
nous when its code uses the Await operator to wait for a Task result. An example of asyn-
chronous lambdas is with event handlers. For instance, you might need to wait for the
result of a task when an event is raised, as in the following code snippet that handles a
button’s Click :

 AddHandler Me.Button1.Click, Async Sub(sender, e)

 Await DoSomeWorkAsync

 End Sub

 You do not need an asynchronous lambda if the work you are going to execute does
not return a Task . Another typical usage of asynchronous lambdas is with Task.Run . The
following code shows the same example described when introducing Task.Run , but now

Asynchronous I/O File Operations in .NET 4.6 1171
4

2

the lambda that starts the intensive work is marked with Async and the method that actu-
ally performs intensive computations returns a Task so that it can be awaited:

 Private Async Sub RunIntensiveWorkAsync()

 cancellationToken = New CancellationTokenSource

 'This runs on the UI thread

 Console.WriteLine("Starting...")

 Try

 'This runs on a Thread Pool thread

 Dim result As Integer = Await Task.Run(Async Function()

 Dim workResult As Integer = _

 Await _

 SimulateIntensiveWorkAsync()

 Return workResult

 End Function)

 'This runs again on the UI thread

 Console.WriteLine("Finished")

 Catch ex As OperationCanceledException

 Console.WriteLine("Canceled by the user.")

 Catch ex As Exception

 End Try

 Console.ReadLine()

 End Sub

 Private Async Function SimulateIntensiveWorkAsync() As Task(Of Integer)

 Dim delay As Integer = 1000

 Await Task.Delay(delay)

 Return delay

 End Function

 This code simulates CPU-intensive work inside an asynchronous method. However, this is
not best practice and should be avoided when possible. Here it is shown for demonstration
purposes only. For additional tips about asynchronous methods, visit http://channel9.
msdn.com/Series/Three-Essential-Tips-for-Async/Async-Library-Methods-Shouldn-t-Lie .

 Asynchronous I/O File Operations in .NET 4.6
 Before .NET Framework 4.5, you could perform asynchronous operations over files and
streams by using the Asynchronous Programming Model and methods such as Stream.
BeginRead and Stream.EndRead . This kind of approach can be good, but it has the limita-
tions described in the section “Getting Started with Async / Await ” in this chapter. With
.NET Framework 4.5 and after, asynchronous I/O operations can be simplified by using
the Async pattern and by implementing asynchronous versions of methods that work
with files and stream to avoid blocking the main thread. Such methods are exposed by the

http://channel9.msdn.com/Series/Three-Essential-Tips-for-Async/Async-Library-Methods-Shouldn-t-Lie
http://channel9.msdn.com/Series/Three-Essential-Tips-for-Async/Async-Library-Methods-Shouldn-t-Lie

CHAPTER 42 Asynchronous Programming1172

 Stream , FileStream , MemoryStream , TextReader , and TextWriter classes that you saw in
action back in Chapter 18 , “Manipulating Files and Streams.” Table 42.1 summarizes the
available asynchronous methods.

 TABLE 42.1 Asynchronous Methods for Stream Classes

 Method Description Return Type

 ReadAsync Reads a sequence of bytes from a stream and
advances the position by the number of bytes
read, with an asynchronous approach

 Task(Of Integer)

 WriteAsync Writes a sequence of bytes to a stream, with an
asynchronous approach

 Task

 FlushAsync Clears buffers associated with the stream
sending buffered data to the stream, using
asynchrony

 Task

 CopyToAsync Asynchronously copies a number of bytes from a
stream to another

 Task

 ReadLineAsync Reads a line of characters using asynchrony and
returns a string

 Task(Of String)

 ReadToEndAsync Asynchronously reads all characters from the
current position to the end of the stream, and
returns one string

 Task(Of String)

 To see some of these methods in action, create a new WPF project. The user interface of
this sample application will have to look like Figure 42.7 .

 FIGURE 42.7 The user interface of the new sample application.

Asynchronous I/O File Operations in .NET 4.6 1173
4

2

 That said, add the following controls in the designer:

 1. Three buttons, named ReadTextButton , CopyButton , and WriteButton . Then,
set their Content properties with Read text , Copy files , and Write Something ,
respectively.

 2. Four TextBox controls, named ReadTextBox , SourceTextBox , DestinationTextBox ,
and StatusTextBox .

 3. Three TextBlock controls. You do not need to specify a name, but make sure their
 Text property is set with Source folder, Destination folder, and Status, respectively.

 The first example uses the StreamReader class to read a text file asynchronously. The event
handler for the ReadTextButton.Click event looks like this:

 Private Async Sub ReadTextButton_Click(sender As Object,

 e As RoutedEventArgs) _

 Handles ReadTextButton.Click

 Using reader As New StreamReader("TextFile1.txt")

 Me.ReadTextBox.Text = Await reader.ReadToEndAsync

 End Using

 End Sub

 You mark the event handler with Async , and because this method will not be awaited by
any other methods, it does not need to return a Task . Therefore, it can be defined as a
 Sub . Notice how you use Await together with the ReadToEndAsync method, while the rest
of the implementation is made the usual way. The next example is about copying streams
asynchronously. The following code shows the implementation of the CopyButton.Click
event handler:

 Private Async Sub CopyButton_Click(sender As Object,

 e As RoutedEventArgs) _

 Handles CopyButton.Click

 If Me.SourceTextBox.Text = "" Then

 MessageBox.Show("Please specify the source folder")

 Exit Sub

 End If

 If Me.DestinationTextBox.Text = "" Then

 MessageBox.Show("Please specify the target folder")

 Exit Sub

 End If

 For Each fileName As String In Directory.

 EnumerateFiles(Me.SourceTextBox.Text)

CHAPTER 42 Asynchronous Programming1174

 Using SourceStream As FileStream = File.Open(fileName, FileMode.Open)

 Using DestinationStream As FileStream =

 File.Create(String.Concat(Me.DestinationTextBox.Text,

 fileName.

 Substring(fileName.LastIndexOf("\"c))))

 Await SourceStream.CopyToAsync(DestinationStream)

 Me.StatusTextBox.Text = "Copied " + DestinationStream.Name

 End Using

 End Using

 Next

 End Sub

 In particular, the code enumerates the content of the source folder and for each file it
opens a stream for reading and another one for writing into the target folder. Await
enables you to execute asynchronously the operation with the asynchronous method
called CopyToAsync . It is worth mentioning that, with this approach, you can refresh the
user interface with useful information, like showing the name of the last copied file. In a
synchronous approach, this would not be possible because the UI would be blocked until
the completion of the operation. The last example demonstrates how to write some text
into a file asynchronously. This is the event handler for the WriteButton.Click event:

 Private Async Sub WriteButton_Click(sender As Object,

 e As RoutedEventArgs) Handles WriteButton.Click

 Dim uniencoding As UnicodeEncoding = New UnicodeEncoding()

 Dim filename As String =

 "c:\temp\AsyncWriteDemo.txt"

 Dim result As Byte() = uniencoding.GetBytes("Demo for Async I/O")

 Using SourceStream As FileStream = File.Open(filename, FileMode.OpenOrCreate)

 SourceStream.Seek(0, SeekOrigin.End)

 Await SourceStream.WriteAsync(result, 0, result.Length)

 End Using

 End Sub

 In this particular example, the code is written exactly like in the synchronous counter-
part, except for the Async modifier and the Await statement that invokes the WriteAsync
method (instead of running Write). By using the Async pattern, writing applications that
work with streams and remain responsive has become dramatically simpler.

Debugging Tasks 1175
4

2

 IMPLEMENTING CUSTOM AWAITERS

 By using the Task-based asynchrony, you can work with instances of the Task class and
use Await when waiting for their results. Using Task.Run and combinators will usually
avoid the need to create custom types that can be used along with Await . However, in
some situations you might want to define your own awaitable types. Reasons for making
this can be various for example, performing some work over a control in the user inter-
face from within a background thread. To accomplish this, you define a Structure or
 Class that implements the INotifyCompletion interface to expose a method called
 OnCompleted ; then you need a method called GetAwaiter . The MSDN documentation
does not provide enough information about building custom types that can be used with
Await, but fortunately a blog post series by Lucian Wischik from Microsoft shows how to
create one. You can find it at http://blogs.msdn.com/b/lucian/archive/2012/11/28/
how-to-await-a-storyboard-and-other-things.aspx . There is also another blog post from
the Stephen Toub, in which he discusses how to implement a custom awaitable type
to perform asynchronous operations with sockets; you can find it at http://blogs.msdn.
com/b/pfxteam/archive/2011/12/15/10248293.aspx .

 Debugging Tasks
 Visual Studio 2015 allows you to collect information about asynchronous tasks with the
Tasks window. This is not a new tool; it has been available since Visual Studio 2012, but
only for the Task Parallel Library. It now provides support for the Async / Await pattern in
Visual Studio 2013 and requires Windows 8 or higher. To understand how it works, place
a breakpoint on the QueryVideosAsync method in the sample WPF application and press
 F5 . When the breakpoint is hit, select Debug, Windows, Tasks and press F11 to step into
the code. As you step into asynchronous method calls, the Tasks window shows informa-
tion on each task, as shown in Figure 42.8 .

 FIGURE 42.8 The Tasks window.

 As you can see, the Tasks window shows what task is active and what other tasks are
awaiting the completion of the active task. It shows the duration, the method that started
the asynchronous task (in the Location column), and the actual running task, such as a
state machine (in the Task column). If you hover over the values in the ID column, you
will also get additional information about the task execution order. This very useful tool
helps you understand the execution flow of your asynchronous code.

http://blogs.msdn.com/b/lucian/archive/2012/11/28/how-to-await-a-storyboard-and-other-things.aspx
http://blogs.msdn.com/b/pfxteam/archive/2011/12/15/10248293.aspx
http://blogs.msdn.com/b/lucian/archive/2012/11/28/how-to-await-a-storyboard-and-other-things.aspx
http://blogs.msdn.com/b/pfxteam/archive/2011/12/15/10248293.aspx

CHAPTER 42 Asynchronous Programming1176

 Summary
 Building applications that remain responsive whatever task they are executing is some-
thing that developers must take care of, especially from the user interface perspective. This
chapter explained how to use asynchrony to build responsive applications by first discuss-
ing old-style programming models such as the Event-based Asynchronous Pattern and
the Asynchronous Programming Model. Both provide techniques to write asynchronous
code that runs on separate threads. However, both have some limitations, such as code
complexity, issues in returning information to caller threads or functions, and managing
errors effectively. Visual Basic 2015 offers the asynchronous pattern based on the Async
and Await keywords, which enable you to keep the UI thread free and write code that is
similar to the synchronous approach and is much easier to read and maintain. You invoke
an asynchronous task, and then its result is returned some time later, but the control
is immediately returned to the caller. When the result is available, an implicit callback
enables you to consume the result of the asynchronous operation effectively. The Async
pattern relies on the concept of task and on the Task class, which means that asynchrony
easily includes support for cancellation, progress, anonymous delegates, and concurrent
operations. The .NET Framework 4.6 itself exposes built-in classes that use the new Async
pattern for making asynchronous I/O operations much easier with particular regard to
streams and network requests. The Async pattern and the Async / Await keywords can be
used across multiple platforms and presentation technologies.

Index

 Symbols & Numerics
 <c> tag, 1253 - 1254

 <param> tag, 1255

 ' (comment symbol), 72

 1-click deployment, 940 - 941

 A
 ABC (Address, Binding, Contract), 1014 - 1015

 autogenerated contracts, 1018 - 1019

 IService1.vb file, 1017 - 1018

 abstract classes, inheritance, 383

 abstraction, 646

 accessing

 base class members, 383 - 387

 MyBase keyword, 383 - 385

 MyClass keyword, 385 - 387

 ClickOnce, programmatic access,
 1301 - 1302

 directories, 515 - 518

 Microsoft Azure Management Portal,
 954 - 955

 properties, 275

 recently used templates, 23 - 24

 actions, 207 - 208

 adaptive user interfaces, 1007

 AddHandler keyword, 431 - 432

 adding references to COM libraries, 94 - 95

 Address property (WCF), 1014 - 1015

 ADO.NET, 599 - 603

 connecting to databases, 601 - 603

 deleting data, 602 - 603

 insert operations, 601 - 602

1368 ADO.NET1368

 query operations, 603

 updating data, 602

 connection modes, 601

 data providers, 600 - 601

 DataSets, 603 - 608

 creating, 604 - 608

 serialization, 1091 - 1092

 ADO.NET Entity Framework. See EF (Entity
Framework)

 advanced compiling options, 55 - 58

 conditional compilation, 57

 constants, 57 - 58

 extension methods, custom extension
methods, 581 - 583

 generating serialization assemblies, 58

 optimizations, 56 - 57

 advanced language features

 anonymous types, 585 - 586

 array literals, 575 - 577

 extension methods, 577 - 584

 exporting, 583 - 584

 generic variance, 596 - 598

 contra variance, 597 - 598

 covariance, 596 - 597

 lambda expressions, 587 - 595

 debugging, 594 - 595

 lexical closures, 593 - 594

 multiline lambdas, 591

 Sub lambdas, 591 - 593

 type inference, 590

 local type inference, 571 - 575

 relaxed delegates, 586 - 587

 advantages of generics, 413 - 414

 aggregation operators, 628 - 629

 aliasing, 77

 analyzers, building, 1315 - 1336

 animations, 840 - 848

 ColorAnimation, 844 - 845

 creating, 847 - 848

 DoubleAnimation, 841 - 843

 events, 845 - 847

 annotating documents, 862 - 864

 anonymous iterators, 469 - 470

 anonymous types, 585 - 586

 APIs

 for ASP.NET, 910

 Compiler APIs, 1308

 Fluent APIs, 724 - 726

 Scripting APIs, 1309

 in UWP, 975 - 976

 Windows APIs

 P/Invokes, 1237 - 1238

 P/Invokes, encapsulating, 1239 - 1240

 APM (Asynchronous Programming Model),
 1142 - 1143

 Application class

 members, 773

 Startup and Exit events, handling, 774

 application domains, 1179 - 1181

 creating, 1179 - 1181

 sandboxing, 1186 - 1188

 application events, 569 - 570

 Application state, 920

 Application tab settings (My Project window),
 43 - 48

 Application Type field (My Project window), 44

 Application.myapp file, 83 - 85

 applications

 debugging, 58 - 65 , 199 - 200

 breakpoints, 60 - 62 , 204 - 208

 debug attributes, 226 - 230

 Edit and Continue feature, 64 - 65

 exceptions, 231 - 232

 "Just My Code" debugging, 202 - 203

 light bulb icon, 249 - 254

 in managed code, 216 - 230

1369ArrayList collection

 Microsoft Azure Debugging Environment,
 968

 Mixed Mode debugging, 202

 PerfTips, 208 - 209

 preparing an example, 199 - 200

 Run to Cursor command, 201

 runtime errors, 62 - 64

 Set Next Statement command, 201

 Show Next Statement command, 202

 Step Into command, 201

 Step Over command, 201

 visualizers, 215 - 216

 warnings, 247 - 249

 deploying

 with ClickOnce, 1289 - 1294

 with InstallShield LE, 1272 - 1283

 to Microsoft Azure, 964 - 967

 with Windows Installer, 1270 - 1271

 execution environment, 3

 localizing, 901 - 902 , 906 - 908

 MAT, 902

 settings, 90 - 92

 updating with ClickOnce, 1296 - 1297

 WPF, creating, 749 - 751

 Canvas panel, 767 - 768

 DockPanel panel, 768

 Grid panel, 762 - 764

 Logical Tree, 757 - 758

 StackPanel panel, 765 - 766

 ViewBox panel, 769

 Visual Tree, 758

 WrapPanel panel, 766 - 767

 XAML, 751 - 757

 applying

 animations

 ColorAnimation, 844 - 845

 DoubleAnimation, 841 - 843

 attributes, 1217 - 1220

 arguments, 1218

 assembly-level, 1219

 CLS, 307

 custom attributes, 1221 - 1223

 inheritance, 370 - 375

 styles, 828 - 833

 inheritance, 831

 triggers, 831 - 833

 apps, creating universal Windows apps,
 977 - 998

 app bar, 987 - 994

 app manifest, 998 - 1001

 defining a data template, 986 - 987

 implementing a data model, 980 - 981

 Internet connection, 981 - 986

 navigation, 987 - 994

 playing media, 997 - 998

 project templates, 978 - 980

 raising Toast notifications, 996 - 997

 sharing content, 995 - 996

 architecture

 of collections, 442

 of LINQ, 613 - 614

 of .NET Core 5, 11 - 12

 of .NET Framework 4.6, 6

 of WPF, 747 - 749

 DirectX libraries, 747

 PresentationFramework layer, 748

 arguments, 73 , 280 - 285

 for attributes, 1218

 CObj conversion function, 1223 - 1224

 optional arguments, 283 - 284

 optional nullable arguments, 284 - 285

 ParamArray arguments, 282 - 283

 arithmetic operators, 172 - 174

 ArrayList collection, 442 - 445

1370 arrays

 arrays, 165 - 167 , 311

 jagged arrays, 169 , 576 - 577

 literals, 575 - 577

 multidimensional arrays, 168 - 169

 ParamArray arguments, 282 - 283

 passing as arguments, 282

 ReDim keyword, 168

 System.Array class, 169 - 172

 ASP.NET applications

 controls, 917 - 919

 HTML controls, 918 - 919

 server controls, 917 - 918

 creating for the cloud, 961 - 964

 creating with Visual Studio

 data controls, adding, 929 - 932

 data model, adding, 927

 filtering capabilities, adding, 932 - 933

 forcing login for security, 937 - 939

 master pages, 924 - 927

 model binding, 935 - 937

 navigation controls, adding, 933

 new web form, adding, 927 - 929

 strongly typed data controls, 934 - 935

 developing, 910 - 914

 event handling, 919 - 920

 page requests, 911

 platforms, 910

 web forms, 914 - 916

 project templates, 912 - 914

 scalability, 911 - 912

 state management, 920 - 923

 Application state, 920

 Cache state, 921 - 922

 Context state, 922

 cookies, 922

 Session state, 922

 ViewState state, 923

 assemblies, 1177 - 1179

 application domains, 1179 - 1181

 creating, 1179 - 1181

 sandboxing, 1186 - 1188

 Async pattern, 1158 - 1160

 binding, 1178

 CAS, 1182

 deploying, XCopy deployment, 1262

 Event-based Asynchrony, Async pattern,
 1155 - 1157

 executing, 1179 - 1181

 GAC, 1263 - 1267

 information stored in, 1178

 installing and uninstalling, 1264 , 1267

 loading, 1194

 location of, 1178

 marking as CLS compliant, 307 - 308

 metadata, 1179 , 1192 - 1194 , 1217

 inspecting, 1195 - 1196

 retrieving, 1194 - 1196

 MsCorlib.dll, 10

 in .NET Compiler Platform, 1309

 in .NET Framework 4.6, 8 - 9

 PIAs, 95

 Deploy Without PIAs feature, 95 - 97

 private assemblies, 1178

 probing, 1178

 references, 92 - 97

 reflection, 1191 - 1192

 Caller Information, 1212 - 1215

 late binding, 1212

 System.Reflection.Emit namespace,
 1206 - 1212

 resources, 86 - 90

 serialization assemblies, generating, 58

 shared assemblies, 1178

 signing with strong names, 1179 ,
 1265 - 1267

 types, reflecting, 1196 - 1204

1371Base Class Library

 Assembly Information button (My Project win-
dow), 44 - 46

 Assembly Name field (My Project window), 43

 AssemblyInfo.vb file, 85 - 86

 assembly-level attributes, 1219

 assigning structures to variables, 354

 assignment operators, 174 - 175

 associations, 646

 Async pattern, 1143 - 1151 , 1155 - 1160

 documentation, 1160 - 1161

 exception handling, 1161

 implementing cancellation, 1165 - 1168

 reporting progress, 1168 - 1170

 when to use, 1147

 where to use, 1146

 asynchronous I/O file operations, 1171 - 1175

 asynchronous lambda expressions, 1170 - 1171

 asynchronous programming, 1139 - 1140

 APM, 1142 - 1143

 Async pattern, 1143 - 1151 , 1155 - 1157

 asynchronous lambda expressions,
 1170 - 1171

 documentation, 1160 - 1161

 reporting progress, 1168 - 1170

 when to use, 1147

 where to use, 1146

 EAP, 1141 - 1142

 Event-Based Asynchrony, 1140

 callbacks, 1151 - 1155

 Task-Based Asynchrony, 1161 - 1165

 combinators, 1163 - 1165

 debugging tasks, 1175

 switching threads, 1162 - 1163

 attributes, 78 , 1217

 applying, 1217 - 1220

 arguments, 1218

 CObj conversion function, 1223 - 1224

 assembly-level, 1219

 conditional APTCA, 1186 - 1188

 custom attributes, 1220 - 1225

 applying, 1221 - 1223

 writing, 1220 - 1221

 debug attributes, 226 - 230

 DllImport attribute, performing P/Invokes,
 1237 - 1238

 inheritance, 1224 - 1225

 .NET Framework 4.6 security attributes,
 1185

 parameters, applicable data types, 1221

 reflecting, 1225 - 1226

 StructLayout, converting types to unman-
aged, 1241 - 1243

 VBFixedString, converting types to unman-
aged, 1243

 audio files, playing, 545

 auto-completing code typing, 30 - 32

 auto-implemented read-only properties, 73 ,
 271 - 272

 Autos window, 215

 avoiding namespace ambiguities, 340 - 341

 Await keyword, 1145 , 1158 - 1160

 custom awaiters, 1175

 Azure platform

 cloud storage, 952 - 953

 services offered by Microsoft Azure, 952

 B
 background compiler, 52

 Background GC, 324

 BAML (Binary Application Markup Language),
 906

 Barrier class, 1115 - 1116

 Base Class Library, 5

1372 base classes

 base classes, 369

 members, accessing, 383 - 387

 MyBase keyword, 383 - 385

 MyClass keyword, 385 - 387

 BCL (Base Class Library), 9 - 10

 GAC, 1263 - 1267

 namespaces, 328

 BigInteger value type, 112 - 113

 binary files, reading and writing, 525 - 526

 binary serialization

 deep copy, 1076

 exception handling, 1075

 binding, 1178

 built-in bindings (WCF), 1028 - 1029

 late binding, 1212

 Binding markup extension, 870 - 871

 Binding property (WCF), 1014 - 1015

 bit flags, 366

 BitArray collection, 449 - 450

 BitmapCacheBrush, 826 - 828

 BitVector32 collection, 450 - 451

 bitwise operators, 177 - 179

 Blend, 833

 Blob storage, 953

 BlockingCollection(of T) collection, 1127 - 1128

 Border control, 781 - 782

 boxing, 123 - 124

 breaking method execution, 289 - 290

 breakpoints, 60 - 62 , 204 - 208

 actions, 207 - 208

 conditions, 205 - 207

 Browser Applications (WPF), 774 - 777

 browsing online code samples, 25 - 26

 brushes, 812 - 828

 BitmapCacheBrush, 826 - 828

 CaretBrush, 822 - 823

 DrawingBrush, 825

 ImageBrush, 818 - 821

 LinearGradientBrush, 815 - 816

 RadialGradientBrush, 817

 SelectionBrush, 822 - 823

 SolidColorBrush, 813 - 814

 VisualBrush, 823 - 825

 bubbling strategy, 761

 building

 analyzers, 1315 - 1336

 code refactoring, 1336 - 1345

 complex queries with anonymous types,
 681 - 682

 custom collections, 462 - 463

 custom exceptions, 390 - 392

 custom value types, 113

 built-in bindings (WCF), 1028 - 1029

 built-in extension methods, 579 - 580

 built-in trace listeners, 219

 built-in types, inspecting, 67 - 68

 Button control, 782

 ByRef keyword, 281

 ByVal keyword, 280

 C
 Cache state, 921 - 922

 cached events, 915 - 916

 Calendar control, 782 - 783

 Call Hierarchy window (Visual Studio 2015),
 69 - 70

 Call Stack window, 210 - 212

 callbacks, 1151 - 1155

 Caller Information, 1191 , 1212 - 1215

 canceling tasks, 1113 - 1114

 cancellation, implementing in Async,
 1165 - 1168

 Canvas panel, 767 - 768

 CaretBrush, 822 - 823

1373classes

 CAS (Code Access Security), 1182

 catching exceptions, 240 - 241 , 246 - 247

 from wrapped objects, 1233

 CheckBox control, 783

 CIL (Common Intermediate Language), 8 - 9

 Class Designer, 473 - 484

 designing objects, 475 - 479

 diagrams

 creating, 482 - 483

 exporting, 483 - 484

 enabling, 474 - 475

 implementing derived classes, 479 - 482

 Class View window (Visual Studio), 484

 classes, 72 , 267 , 310 . See also collections

 abstract classes, inheritance, 383

 Application class, 772 - 774

 members, 773

 Startup and Exit events, handling, 774

 attributes, 78

 Barrier class, 1115 - 1116

 base classes, 369

 members, accessing, 383 - 387

 comparing with modules, 349 - 350

 CultureInfo class, 902

 custom attributes, 1220 - 1225

 writing, 1220 - 1221

 DataContext class, instantiating, 658

 DbContext class, 697 - 698

 Debug class, 216 - 219

 methods, 216

 output, 217 - 219

 declaring, 267 - 268

 derived classes, 369

 fields, 269 - 270

 inheritance, 74 - 75

 attribute inheritance, 1224 - 1225

 constraints, 420 - 421

 custom exceptions, building, 390 - 392

 interfaces, 400 - 402

 MustInherit keyword, 382 - 383

 MustOverride keyword, 382 - 383

 NotInheritable keyword, 381 - 382

 overriding, 375

 polymorphism, 375 - 376

 shadowing, 388 - 389

 instantiating, 76

 iterator classes, implementing, 470 - 472

 libraries, 268

 LINQ to SQL, 647 - 658

 .dbml files, 652

 declaring, 658

 inheritance, 651

 System.Data.Linq.DataContext class,
 650

 members, invoking, 76

 MessageBox, 340 - 341

 Monitor class, 1103

 nested classes, 268 - 269

 Parallel class, 1106

 ParallelEnumerable class, 1133 - 1134

 ParallelLoopState class, 1122

 ParallelOptions class, 1107

 partial classes, 290 - 293

 portable classes, creating, 491 - 494

 shared classes, 302

 System.Array class, 169 - 172

 System.Console class, 29

 System.Data.Linq.DataContext class, 650

 System.Diagnostics.Process class, 1096

 System.Enum, 362 - 365

 System.GC, 323 - 324

 System.IO.Directory class, 515 - 518

 System.IO.DirectoryInfo class, 518

 System.IO.DriveInfo class, 519

1374 classes

 System.IO.File class, 520 - 521

 System.IO.FileInfo class, 522 - 523

 System.IO.Path class, 514 - 515

 System.IO.Stream class, 524

 System.Object, 373 - 375

 Task class, 1109 - 1110

 TaskFactory class, 1107

 TaskScheduler class, 1107

 Trace class, 219 - 225

 variables, local variables, 270

 classic publishing, 941 - 943

 ClickOnce, 1287

 application files, configuring, 1295

 applications

 deploying, 1289 - 1294

 handling, 1288

 updating, 1296 - 1297

 configuring, 1294 - 1299

 options, configuring, 1297 - 1299

 prerequisites, 1296

 programmatically accessing, 1301 - 1302

 Registration-Free COM, 1302 - 1304

 security, configuring, 1299 - 1300

 when to use, 1288 - 1289

 cloning reference types, 126

 closing processes, 1097

 cloud computing

 application templates, 961 - 962

 Microsoft Azure, 951

 ASP.NET applications, creating, 961 - 964

 Cloud Storage Studio, 972

 Management Portal, 954 - 955

 registering for, 953

 roles, 967 - 970

 SDK, downloading, 954

 services offered, 952

 SQL databases, creating, 955 - 961

 storage, 952 - 953

 WCF services, hosting, 1031 - 1032

 WebJobs, 970

 Cloud Storage Studio, 972

 CLR (Common Language Runtime), 6 - 9

 POCO, 1091

 writing unmanaged code, 7 - 8

 CLS (Common Language Specification),
 306 - 311

 abstract classes, 383

 applying, 307

 arrays, 311

 classes, 310

 enumerations, 366 - 367

 interfaces, 402

 marking assemblies as compliant, 307 - 308

 methods, 310

 namespaces, 342

 naming conventions, 308 - 309

 properties, 310

 structures, rules for, 360

 CObj conversion function, 1223 - 1224

 code . See also live code analysis

 breakpoints, 60 - 62

 CAS, 1182

 comments, 72

 generating, 1210 - 1211

 implicit line continuation, 78 - 80

 invoking dynamically, 1204 - 1206

 managed code, debugging, 216 - 230

 organizing with partial classes, 290 - 293

 redundant code, organizing, 263 - 266

 refactoring, 254 - 266

 Encapsulate Field quick action, 261 - 262

 Extract Interface quick action, 254 - 256

 Extract Method refactoring, 256 - 257

 Inline Rename, 257 - 259

1375collections

 Introduce Constant refactoring, 262 - 263

 Introduce Local Variable refactoring,
 260 - 261

 Introduce Temporary Variable refactoring,
 259 - 260

 sample code

 browsing online code samples, 25 - 26

 downloading, 2

 unmanaged code, 1237

 code editor, 28 - 35

 IntelliSense technology, 30 - 32

 live static code analysis, 250 - 254

 Navigate To feature, 34 - 35

 Peek Definition, 32 - 33

 scroll bar, 33 - 34

 touch improvements, 32

 XML literals, 735 - 737

 embedded expressions, 740 - 743

 iterators, 743

 LINQ queries, 738 - 740

 local type inference, 736 - 737

 null-propagating operator, 740

 zooming in/out, 30

 Code First approach for EF, 716 - 726

 coding your model, 717 - 719

 data annotations, 722 - 724

 executing data operations, 719 - 722

 Fluent APIs, 724 - 726

 Code First Migration tool, 1044

 Code Metrics, 1349 - 1351

 Code Snippet Editor, 1364

 code-continuation arrows, 2

 Codelens, 35

 CodeRush Xpress, 1364

 coercion, 287

 Collect method, 323

 collection initializers, 453 - 454

 collections, 441

 architecture, 442

 concurrent collections, 463 , 1124 - 1128

 BlockingCollection(of T), 1127 - 1128

 ConcurrentBag(of T), 1124 - 1125

 ConcurrentDictionary(TKey, TValue),
 1126 - 1127

 ConcurrentQueue(of T), 1125

 ConcurrentStack(of T), 1126

 custom collections, building, 462 - 463

 generic collections, 451 - 461

 Dictionary(of TKey, TValue) collection,
 455 - 456

 LinkedList(of T) collection, 458 - 460

 List(of T) collection, 451 - 453

 ObservableCollection(of T) collection,
 456 - 458

 Queue(of T) collection, 460

 ReadOnlyCollection(of T) collection,
 454 - 455

 ReadOnlyObservableCollection(of T) col-
lection, 458

 serializing, 1087

 SortedDictionary(of TKey, TValue) collec-
tion, 456

 Stack(of T) collection, 460

 immutable collections, 463 - 464

 iterators, 464 - 472

 anonymous iterators, 469 - 470

 benefits of, 465 - 466

 exiting from, 468

 iterator classes, implementing, 470 - 472

 scope of, 465

 simple iterators, 467 - 468

 Try..Catch..Finally blocks, 469

 nongeneric collections, 442 - 451

 ArrayList collection, 442 - 445

 BitArray collection, 449 - 450

 BitVector32 collection, 450 - 451

1376 collections

 HashTable collection, 446 - 447

 HybridDictionary collection, 448

 ListDictionary collection, 447

 NameValueCollection collection, 449

 OrderedDictionary collection, 447 - 448

 Queue collection, 445 - 446

 SortedList collection, 448

 Stack collection, 446

 StringCollection collection, 448

 StringDictionary collection, 448 - 449

 null-conditional operator, 461 - 462

 ColorAnimation, 844 - 845

 COM (Component Object Model) architecture,
 1229

 calling objects from WPF, 1234 - 1237

 catching exceptions, 1233

 importing components into Visual Studio,
 1230 - 1232

 libraries

 Dll hell, 1261 - 1262

 references, adding, 94 - 95

 releasing objects, 1233 - 1234

 using in .NET code, 1233

 combinators, 1163 - 1165

 combining

 delegates, 430 - 431

 multiple constraints, 420 - 421

 ComboBox control, 784 - 785

 Command window, 210

 comments, 72

 XML comments, 1245 - 1246

 <c> tag, 1253 - 1254

 <param> tag, 1255

 compiled help files, generating, 1258

 complex documentation, 1251

 documenting permissions requirements,
 1257

 enabling, 1247

 generics, 1258

 implementing, 1248 - 1258

 links to other references, specifying,
 1257 - 1258

 lists, creating, 1256 - 1257

 MSDN recommended tags, 1250 - 1251

 referring to external documentation file,
 1256

 scope of, 1250

 Common Type System, 99 - 103

 boxing, 123 - 124

 reference types, 113 - 116

 unboxing, 124 - 125

 value types, 103 - 113

 analyzing content of, 110 - 111

 applying, 106 - 108

 assigning, 108 - 110

 BigInteger, 112 - 113

 building custom value types, 113

 naming conventions, 104

 comparing

 classes and modules, 349 - 350

 delegates and function pointers, 427

 .NET Framework 4.6 and 4.5, 7

 reference and value types, 116 - 120

 strings, 136 - 138

 comparison operators, 182 - 184

 compiled help files, generating, 1258

 Compiler APIs, 1308

 compiling projects, 13 - 15 , 48

 advanced compiling options

 conditional compilation, 57

 constants, 57 - 58

 generating serialization assemblies, 58

 advanced options, 55 - 58

 optimizations, 56 - 57

 background compiler, 52

1377 consuming

 configurations

 creating, 50 - 52

 warning configurations, 53 - 55

 Debug configuration, 49

 JIT compiler, 9

 light bulb icon, 249 - 254

 .NET Compiler Platform, 13 - 14

 .NET Native compiler, 14 - 15

 options, 52 - 53

 target CPU, specifying, 53

 complex documentation, 1251

 complex queries, building with anonymous
types, 681 - 682

 components

 of .NET 2015, 3

 of .NET Core 5, 11

 compressing data

 with streams, 527 - 532

 Zip archives, 532 - 534

 concatenating strings, 149 - 150

 concatenation operators, 182 , 641

 Conceptual Scheme Definition Language,
 693 - 694

 concurrent collections, 463 , 1124 - 1128

 BlockingCollection(of T), 1127 - 1128

 ConcurrentBag(of T), 1124 - 1125

 ConcurrentDictionary(TKey, TValue),
 1126 - 1127

 ConcurrentQueue(of T), 1125

 ConcurrentStack(of T), 1126

 ConcurrentBag(of T) collection, 1124 - 1125

 ConcurrentDictionary(TKey, TValue) collection,
 1126 - 1127

 ConcurrentQueue(of T) collection, 1125

 ConcurrentStack(of T) collection, 1126

 conditional APTCA, 1186 - 1188

 conditional code blocks, 193 - 196

 conditional compilation, 57

 conditioning inheritance, 380 - 383

 conditions, 205 - 207

 configurations

 creating, 50 - 52

 Debug configuration, 49

 Release configuration, 49 - 50

 warning configurations, 53 - 55

 configuring

 ClickOnce, 1294 - 1299

 application files, 1295

 options, 1297 - 1299

 prerequisites, 1296

 security, 1299 - 1300

 WCF services, 1033

 connecting to databases, 601 - 603

 connection modes for ADO.NET, 601

 constants, 196

 compilation constants, 57 - 58

 grouping with enumerations, 361 - 367

 constraints, 419 - 421

 inheritance constraints, 420 - 421

 method constraints, 419

 multiple constraints, combining, 420 - 421

 type constraints, 419 - 420

 constructors, 119 - 120 , 295 - 301

 inheritance, 387

 invoking, 296

 nested invocations, 299 - 300

 object initializers, 300 - 301

 overloading, 298 - 300

 private constructors, 300

 shared constructors, 306

 XmlSerializer, 1081

 consuming

 functions, 1068 - 1070

 generics, 416 - 417

 OData services, 1060 - 1068

 creating a client application, 1061 - 1065

 CRUD operations, 1067 - 1068

 querying data, 1065 - 1067

1378 consuming

 WCF services, 1024 - 1029

 invoking service members, 1026 - 1029

 proxy class, 1025 - 1026

 service references, adding, 1024 - 1025

 ContentControl element, 780 - 781

 contra variance, 597 - 598

 Contract property (WCF), 1014 - 1015

 control templates, 833 - 836

 controls, 779 - 780

 ASP.NET, 917 - 919

 server controls, 917 - 918

 Border control, 781 - 782

 Button control, 782

 Calendar control, 782 - 783

 CheckBox control, 783

 ComboBox control, 784 - 785

 ContentControl element, 780 - 781

 DataGrid, 872 - 876

 DataGrid control, 784 - 785

 DatePicker control, 786

 DocumentViewer control, 787

 Expander control, 788

 Frame control, 789

 GroupBox control, 790

 HTML controls, 918 - 919

 Image control, 790

 Label control, 790

 ListBox control, 791

 ListView control, 792 - 793

 MediaElement control, 794

 Menu control, 794 - 796

 panels, 762 - 769

 Canvas panel, 767 - 768

 DockPanel panel, 768

 Grid panel, 762 - 764

 StackPanel panel, 765 - 766

 ViewBox panel, 769

 WrapPanel panel, 766 - 767

 PasswordBox control, 796 - 797

 ProgressBar control, 797 - 798

 RadioButton control, 799

 RichTextBox, 864 - 866

 RichTextBox control, 800

 ScrollBar control, 800

 ScrollViewer control, 800 - 801

 Separator control, 801

 Slider control, 801 - 802

 StatusBar control, 802

 strongly typed data controls, 934 - 935

 TabControl control, 803 - 804

 TextBlock control, 804 - 805

 TextBox control, 805

 ToolBar control, 805 - 806

 TreeView control, 806 - 807

 VirtualizingStackPanel control, 767

 WebBrowser control, 808

 WindowsFormsHost control, 808 - 809

 conversion functions, 131 - 132

 conversion operators, 129 - 135 , 630 - 632

 CType, 133 - 135

 DirectCast operator, 133 - 135

 narrowing conversions, 130 - 131

 widening conversions, 130

 converting

 between reference and value types

 boxing, 123 - 124

 deep copy, 127 - 128

 GetType keyword, 128 - 129

 implicit conversion, 121 - 123

 shallow copy, 126 - 127

 unboxing, 124 - 125

 strings to dates, 155 - 156

1379 creating

 types to unmanaged, 1240 - 1243

 StructLayout attribute, 1241 - 1243

 VBFixedString attribute, 1243

 cookies, 922

 copying strings, 143

 CopyToDataTable method, 682 - 683

 CoreCLR, 11

 covariance, 596 - 597

 CPU

 parallel computing, 1105

 debugging tools, 1122 - 1123

 Parallel class, 1106

 ParallelOptions class, 1107

 TaskFactory class, 1107

 TaskScheduler class, 1107

 target CPU, specifying, 53

 creating

 animations, 847 - 848

 application domains, 1179 - 1181

 bindings, 872

 configurations, 50 - 52

 custom events, 437 - 439

 custom exceptions, 390 - 392

 DataSets, 604 - 608

 dates, 153 - 155

 diagrams in Class Designer, 482 - 483

 EDMs, 688 - 702

 generics, 414 - 415

 master-details forms, 886 - 891

 .msi packages, 1274 - 1283

 adding installation files, 1277 - 1278

 configuring Registry on target machine,
 1280

 creating shortcuts, 1279 - 1280

 environment variables, 1283

 installation requirements, 1275 - 1277

 setting properties, 1283

 specifying application information, 1274

 specifying dialogs, 1282

 OData endpoints, 1036 - 1063

 adding a data model, 1038 - 1044

 adding controllers, 1045 - 1046

 CRUD operations, 1047 - 1052

 enabling Code First Migration, 1044

 handling relationships between entities,
 1052 - 1054

 implementing queries, 1046 - 1047

 publishing the endpoints, 1054 - 1055

 querying data via HTTP requests,
 1056 - 1060

 registering the OData service,
 1044 - 1045

 portable classes, 491 - 494

 portable libraries, 494 - 503

 projects, 21 - 22 , 27 - 29

 refactoring, 1336 - 1345

 shared projects, 504 - 512

 SQL databases for Microsoft Azure, 955 - 961

 structures, 351

 tabular data forms, 877 - 885

 threads, 1098 - 1099

 types, 485 - 491

 universal Windows apps, 977 - 998

 app bar, 987 - 994

 app manifest, 998 - 1001

 defining a data template, 986 - 987

 implementing a data model, 980 - 981

 Internet connection, 981 - 986

 navigation, 987 - 994

 playing media, 997 - 998

 project templates, 978 - 980

 raising Toast notifications, 996 - 997

 sharing content, 995 - 996

1380 creating

 WPF applications, 745 - 746 , 749 - 751

 Canvas panel, 767 - 768

 DockPanel panel, 768

 Grid panel, 762 - 764

 Logical Tree, 757 - 758

 StackPanel panel, 765 - 766

 ViewBox panel, 769

 Visual Tree, 758

 WrapPanel panel, 766 - 767

 XAML, 751 - 757

 XML documents, 732

 CType operator, 133 - 135

 overloading, 359 - 360

 CultureInfo class, 902

 cultures, 539 - 540

 custom attributes, 1220 - 1225

 applying, 1221 - 1223

 arguments, CObj conversion function,
 1223 - 1224

 inheritance, 1224 - 1225

 parameters, data types, 1221

 writing, 1220 - 1221

 custom awaiters, 1175

 custom collections, building, 462 - 463

 custom events, creating, 437 - 439

 custom exceptions, building, 390 - 392

 custom extension methods, 581 - 583

 custom logic, implementing for WCF,
 1019 - 1023

 custom objects, serialization, 1078 - 1080

 custom providers for LINQ, 613

 custom serialization, 1083 - 1086

 events, 1085 - 1086

 custom types, exposing, 274 - 275

 custom validations, 673 - 675

 D
 data annotations, 722 - 724

 data binding, 869 - 876

 Binding markup extension, 870 - 871

 bindings, creating, 872

 DataGrid control, 872 - 876

 drag-and-drop data binding, 876 - 900

 master-details forms, creating, 886 - 891

 IValueConverter interface, implementing,
 897 - 900

 modes, 871 - 872

 ObservableCollection(of T) collection,
 872 - 876

 string formatters, implementing, 895 - 897

 views, 891 - 895

 data providers, 600 - 601

 databases . See also LINQ; SQL databases

 connecting to, 601 - 603

 insert operations, 601 - 602

 LINQ, queries, 658 - 663

 querying, 603

 SQL databases for Microsoft Azure

 creating, 955 - 961

 migrating to, 958 - 959

 updating data, 602

 DataContext class, instantiating, 658

 DataGrid control, 784 - 785 , 872 - 876

 DataSets, 603 - 608

 creating, 604 - 608

 LINQ to DataSets, 679 - 682

 CopyToDataTable method, 682 - 683

 Field(of T) method, 684

 SetField(of T) method, 684

 DatePicker control, 786

 dates, 153

 adding values to, 158 - 159

 creating, 153 - 155

 formatting, 156 - 158

1381 deploying

 DateTimeOffset structure, 159 - 160

 DbContext class, 697 - 698

 instantiating, 703 - 704

 .dbml files, 652

 Debug class, 216 - 219

 methods, 216

 output, 217 - 219

 Debug configuration, 49

 DebuggerBrowsable attribute, 226 - 227

 DebuggerDisplay attribute, 227 - 228

 DebuggerStepperBoundary attribute, 226

 DebuggerTypeProxy attribute, 228 - 230

 debugging applications, 58 - 65 , 199 - 200

 attributes, 226 - 230

 breakpoints, 60 - 62 , 204 - 208

 actions, 207 - 208

 conditions, 205 - 207

 Edit and Continue feature, 64 - 65

 exceptions, 231 - 232

 catching, 240 - 241

 hierarchy, 236 - 237

 ignoring, 240 - 241

 System.Exception, 233

 Try..Catch..Finally blocks, 233 - 236

 When keyword, 245 - 246

 “Just My Code” debugging, 202 - 203

 light bulb icon, 249 - 254

 in managed code, 216 - 230

 Debug class, 216 - 219

 Trace class, 219 - 225

 Microsoft Azure Debugging Environment,
 968

 Mixed Mode debugging, 202

 PerfTips, 208 - 209

 preparing an example, 199 - 200

 Run to Cursor command, 201

 runtime errors, 62 - 64

 Set Next Statement command, 201

 Show Next Statement command, 202

 Step Into command, 201

 Step Over command, 201

 universal Windows apps, 1002 - 1009

 visualizers, 215 - 216

 warnings, 247 - 249

 declarative mode (XAML), 756 - 757

 Declare keyword, performing P/Invokes,
 1237 - 1238

 declaring

 classes, 267 - 268

 LINQ to SQL, 658

 delegates, 428 - 430

 interface variables, 397

 objects, 432 - 433

 optional parameter overloads, 288

 deep copy, 127 - 128 , 1076

 default imports, 338 - 339

 default properties, 275 - 276

 deferred execution in LINQ to Objects, 623 - 625

 defining, interfaces, 393 - 394

 delegates, 427

 comparing with function pointers, 427

 declaring, 428 - 430

 generics support, 428

 multicast delegates, 430 - 431

 relaxed delegates, 586 - 587

 syntax, 428 - 429

 deleting

 directories, 517

 entities, 705 - 706

 entities with LINQ to SQL, 667 - 668

 Deploy Without PIAs feature, 95 - 97

 deploying

 applications

 with ClickOnce, 1289 - 1294

 with InstallShield LE, 1272 - 1283

 to Microsoft Azure, 964 - 967

 with Windows Installer, 1270 - 1272

 assemblies, XCopy deployment, 1262

1382 deploying

 web applications, 927 - 949

 1-click deployment, 940 - 941

 classic publishing, 941 - 943

 MSDeploy, 943 - 946

 XBAP applications, 777

 derived classes, 369 , 479 - 482

 deserialization, 1073

 binary deserialization, 1074

 XAML content, 1088

 XML deserialization, 1082

 designer tools, 751

 Class Designer, 473 - 484

 designing objects, 475 - 479

 diagrams, creating, 482 - 483

 enabling, 474 - 475

 implementing derived classes, 479 - 482

 EDM designer tool windows, 698 - 702

 Desktop mode (Windows 10), 1008 - 1009

 destroying object instances, 313 - 314

 destructors

 Dispose method, 317 - 323

 Finalize method, 315 - 316

 implementing, 319 - 322

 developing ASP.NET web applications, 910 - 914

 controls, 917 - 919

 HTML controls, 918 - 919

 server controls, 917 - 918

 event handling, 919 - 920

 page requests, 911

 platforms, 910

 project templates, 912 - 914

 scalability, 911 - 912

 state management, 920 - 923

 Application state, 920

 Cache state, 921 - 922

 Context state, 922

 cookies, 922

 Session state, 922

 ViewState state, 923

 web forms, 914 - 916

 Diagnostic Tools, 1351 - 1354

 diagrams, exporting, 483 - 484

 dialogs, 809 - 810

 Dictionary(of TKey, TValue) collection, 455 - 456

 direct routing strategy, 761

 DirectCast operator, 133 - 135

 directives

 Imports directives, 76 - 77

 default imports, 338 - 339

 namespace alias, 336 - 338

 organizing, 263 - 266 , 339

 Option Infer directive, 573 - 574

 Region directives, 77 - 78

 directories

 accessing, 515 - 518

 deleting, 517

 exception handling, 519

 manipulating, System.IO.Path class,
 514 - 515

 DirectX libraries, 747

 Discover What's New section (Visual Studio
2015), 20

 Dispose method, 317 - 323

 Dll hell, 1261 - 1262

 DllImport attribute, performing P/Invokes,
 1237 - 1238

 docking, tool windows, 36

 DockPanel panel, 768

 documentation . See also documents

 for Async pattern, 1160 - 1161

 compiled help files, generating, 1258

 Microsoft Azure Developer Center, 953

 MSDN Library, 65 - 66

 Object Browser window, 66 - 67

 online help, 65 - 66

1383encapsulating P/Invokes

 for Windows API, 1244

 XML comments

 lists, creating, 1256 - 1257

 referring to external documentation file,
 1256

 documents

 annotating, 862 - 864

 highlighting, 862 - 864

 manipulating, 857 - 866

 XPS documents, viewing, 866 - 867

 DocumentViewer control, 787

 DoubleAnimation, 841 - 843

 downloading

 Cloud Storage Studio, 972

 InstallShield LE, 1271 - 1272

 Microsoft Azure SDK, 954

 source code for this book, 2

 drag-and-drop data binding, 876 - 900

 IValueConverter interface, implementing,
 897 - 900

 master-details forms, creating, 886 - 891

 string formatters, implementing, 895 - 897

 tabular data forms, creating, 877 - 885

 views, 891 - 895

 DrawingBrush, 825

 duplicate or overlapping catch blocks warning,
 55

 dynamic code, executing, 1204 - 1206

 E
 EAP (Event-Based Asynchronous Pattern),

 1141 - 1142

 Edit and Continue feature, 64 - 65

 editing

 default values in thread pool, 1101

 strings, 145 - 148

 EDMs (Entity Data Models), 688 , 1023 , 1036

 creating, 688 - 702

 DbContext class, 697 - 698

 designer tool windows, 698 - 702

 entities

 adding, 704 - 705

 deleting, 705 - 706

 updating, 706 - 707

 foreign key columns support, 691

 object context, 697

 optimistic concurrency, handling, 707 - 708

 querying

 with Entity SQL, 712

 with LINQ to Entities, 710 - 712

 schemas

 Conceptual Scheme Definition Language,
 693 - 694

 Mapping Definition Language, 696

 Store Schema Definition Language,
 694 - 696

 validating data, 708 - 710

 EF (Entity Framework), 687 - 688

 Code First approach, 716 - 726

 coding your model, 717 - 719

 data annotations, 722 - 724

 executing data operations, 719 - 722

 Fluent APIs, 724 - 726

 EF 7, 689

 mapping stored procedures, 712 - 716

 Model First approach, 716

 elements operators, 641 - 642

 Ellipse shape, 787 - 788

 embedded expressions, 740 - 743

 empty strings, checking for, 138

 enabling

 Class Designer, 474 - 475

 XML comments, 1247

 Encapsulate Field quick action, 261 - 262

 encapsulating P/Invokes, 1239 - 1240

1384 endpoints

 endpoints

 OData, creating, 1036 - 1063

 adding a data model, 1038 - 1044

 adding controllers, 1045 - 1046

 CRUD operations, 1047 - 1052

 enabling Code First Migration, 1044

 handling relationships between entities,
 1052 - 1054

 implementing queries, 1046 - 1047

 publishing the endpoints, 1054 - 1055

 querying data via HTTP requests,
 1056 - 1060

 registering the OData service,
 1044 - 1045

 WCF, 1014

 entities, 646

 ADO.NET Entity Framework. See EF (Entity
Framework)

 DbContext class, instantiating, 703 - 704

 deleting, 667 - 668

 insert operations, 663 - 666

 updating, 666 - 667

 using SQL syntax, 676

 Entity SQL, querying EDMs, 712

 enumerations

 as bit flags, 366

 grouping constants, 361 - 367

 as return values from methods, 365 - 366

 environment variables, specifying for .msi pack-
ages, 1283

 equality operators, 640

 Error List window, 39 - 40

 errors

 exceptions, 231 - 232

 for binary serialization, handling, 1075

 catching, 240 - 241 , 246 - 247

 catching from wrapped objects, 1233

 custom exceptions, building, 390 - 392

 for directories and pathnames, handling,
 519

 for files, handling, 523

 hierarchy, 236 - 237

 ignoring, 240 - 241

 from P/Invokes, handling, 1243 - 1244

 System. Exception, 233

 task exceptions, 1111 - 1113

 throwing, 242 - 245

 Try..Catch..Finally blocks, 233 - 236

 for WCF, handling, 1030 - 1031

 When keyword, 245 - 246

 fixing, 250 - 254

 warnings, 247 - 249

 Event-based Asynchrony, 1140 - 1142

 Async pattern, 1155 - 1160

 documentation, 1160 - 1161

 callbacks, 1151 - 1155

 events, 427 , 431 - 433

 animation events, 845 - 847

 application events, 569 - 570

 for ASP.NET applications, 919 - 920

 cached events, 915 - 916

 custom events, creating, 437 - 439

 for custom serialization, 1085 - 1086

 GC, subscribing to, 324 - 325

 My.Settings, 555 - 556

 nonserialized events, 1080

 passing information, 435 - 437

 postback events, 915 - 916

 raising, 434 - 437

 registering for, 431 - 432

 routed events, 760 - 761

 WithEvents keyword, 432 - 433

 WPF events, 759 - 761

 examples of LINQ, 611 - 612

 exceptions, 231 - 232

 for Async pattern, 1161

 for binary serialization, handling, 1075

1385 files

 catching, 240 - 241 , 246 - 247

 from wrapped objects, 1233

 custom exceptions, building, 390 - 392

 for directories and pathnames, handling,
 519

 Exit Try statements, 241

 for files, handling, 523

 hierarchy, 236 - 237

 ignoring, 240 - 241

 from P/Invokes, handling, 1243 - 1244

 PLINQ exceptions, handling, 1136 - 1137

 System.Exception, 233

 properties, 237 - 240

 task exceptions, 1111 - 1113

 throwing, 242 - 245

 Try..Catch..Finally blocks, 233 - 236

 nesting, 241

 for WCF, handling, 1030 - 1031

 When keyword, 245 - 246

 executing

 assemblies, 1179 - 1181

 dynamic code, 1204 - 1206

 execution environment, 3

 Exit Try statements, 241

 exiting

 from iterators, 468

 from methods, 289 - 290

 Expander control, 788

 exporting

 diagrams from Class Designer, 483 - 484

 extension methods, 583 - 584

 exposing custom types, 274 - 275

 extending

 My namespace, 562 - 566

 My.Application, 564 - 566

 My.Resources, 566

 My.Settings, 566

 extension methods, 344 , 577 - 584

 customizing, 581 - 583

 exporting, 583 - 584

 external processes, launching, 1096

 Extract Interface quick action, 254 - 256

 Extract Method refactoring, 256 - 257

 F
 Featured Videos section (Visual Studio 2015),

 20

 Fiddler, 1365

 Field(of T) method, 684

 fields

 of classes, 269 - 270

 read-only fields, 270

 scope, 270

 shared fields, 302

 files

 asynchronous I/O file operations,
 1171 - 1175

 code files

 Application.myapp file, 83 - 85

 AssemblyInfo.vb file, 85 - 86

 Resources.resx file, 86 - 90

 Settings.settings file, 90 - 92

 .dbml files, 652

 exception handling, 523

 help files

 compiled help files, generating, 1258

 complex documentation, 1251

 IService1.vb file, 1017 - 1018

 manipulating

 System.IO.File class, 520 - 521

 System.IO.FileInfo class, 522 - 523

 media files, playing, 853 - 856

 permissions, 523 , 1183 - 1184

1386 files

 prerequisites, 1296

 text files, reading and writing, 524 - 525

 Web.Config file, 1017

 FileSystem property, 543 - 544

 Finalize method, 315 - 316

 finalizers, 120

 finding projects, 29

 fixing errors, 250 - 254

 Flexera, 1271

 flow documents, 857 - 862

 Fluent APIs, 724 - 726

 folders

 accessing, 515 - 518

 deleting, 517

 formatting

 dates, 156 - 158

 strings, 138 - 143

 forms

 master-details forms, creating, 886 - 891

 tabular data forms, creating, 877 - 885

 web forms, 914 - 916

 cached and postback events, 915 - 916

 page lifetime, 915

 Frame control, 789

 frameworks

 .NET Core 5, 3 , 10 - 12 . See also .NET Core 5

 architecture, 11 - 12

 components, 11

 CoreCLR, 11

 open source layers, 12

 .NET Framework 4.6, 5 - 10 . See also .NET
Framework 4.6

 architecture, 6

 assemblies, 8 - 9

 BCL, 9 - 10

 CLR, 7 - 9

 comparing with .NET Framework 4.5, 7

 ILDasm, 9

 function/operator without return value warning,
 54

 functions

 consuming, 1068 - 1070

 conversion functions, 131 - 132

 installing and uninstalling, 1264 , 1267

 signing with strong names, 1265 - 1267

 FxCop live code analysis, 1345 - 1349

 G
 GAC (global assembly cache), 93 , 1261 - 1267 .

 See also assemblies

 garbage collection, 314 - 315 , 323 - 325

 Background GC, 324

 Finalize method, 315 - 316

 forcing, 315

 generations, 324 - 325

 subscribing to events, 324 - 325

 System.GC class, 323 - 324

 Generate from Usage feature (Visual Studio),
 485 - 491

 generating complex objects, 489 - 491

 generating shared members, 488

 generating

 code, 1210 - 1211

 compiled help files, 1258

 serialization assemblies, 58

 shared members, 488

 generation operators, 632 - 633

 generations, 324 - 325

 generic collections, 451 - 461

 Dictionary(of TKey, TValue) collection,
 455 - 456

 LinkedList(of T) collection, 458 - 460

 List(of T) collection, 451 - 453

 ObservableCollection(of T) collection,
 456 - 458

1387IFormattable interface

 ObservableCollection(of T) collection,
 872 - 876

 Queue(of T) collection, 460

 ReadOnlyCollection(of T) collection, 454 - 455

 ReadOnlyObservableCollection(of T) collec-
tion, 458

 serializing, 1087

 SortedDictionary(of TKey, TValue) collection,
 456

 Stack(of T) collection, 460

 generic variance, 596 - 598

 contra variance, 597 - 598

 covariance, 596 - 597

 generics, 287 - 288 , 413 - 414 . See also con-
straints

 advantages of, 413 - 414

 consuming, 416 - 417

 creating, 414 - 415

 delegate support for, 428

 generic methods, implementing, 418 - 419

 nullable types, 422 - 425

 GetValueOrDefault method, 423 - 424

 syntax, 422

 overloading type parameters, 421 - 422

 in WCF, 1022 - 1023

 XML comments, 1258

 GetName method, 364

 GetType keyword, 128 - 129

 GetValueOrDefault method, 423 - 424

 GetValues method, 363

 Global keyword, 343

 global namespaces, 342 - 345

 goals of this book, 1

 gradient brushes

 LinearGradientBrush, 815 - 816

 RadialGradientBrush, 817

 graphical representation of inheritance, 370

 Grid panel, 762 - 764

 GroupBox control, 790

 grouping constants with enumerations,
 361 - 367

 grouping operators, 634 - 637

 GUIDs, 164 - 165

 H
 handling errors

 exceptions

 hierarchy, 236 - 237

 ignoring, 240 - 241

 System.Exception, 233

 throwing, 242 - 245

 Try..Catch..Finally blocks, 233 - 236

 warnings, 247 - 249

 HashTable collection, 446 - 447

 help page (Visual Studio 2015), 65 - 66

 highlighting documents, 862 - 864

 historical debugger, 1354 - 1359

 hosting WCF services, 1031 - 1032

 HTML controls, 918 - 919

 HybridDictionary collection, 448

 I
 IComparable interface, 405 - 407

 Icon field (My Project window), 44

 icons, light bulb, 249 - 254

 IConvertible interface, 408 - 410

 identifiers, 80

 for namespaces, 342

 IDisposable interface, 317 - 319

 IEnumerable interface, 403 - 405

 IFormattable interface, 410 - 412

1388 ignoring

 ignoring

 exceptions, 240 - 241

 warning messages, 54

 IIS (Internet Information Services), hosting WCF
services, 1031 - 1032

 ILDasm (IL Disassembler), 9

 Image control, 790

 ImageBrush, 818 - 821

 images, viewing, 851 - 853

 immutable collections, 463 - 464

 imperative mode (XAML), 756 - 757

 implementing

 destructors, 319 - 322

 dynamic code, 1204 - 1206

 events, 434 - 437

 generic methods, 418 - 419

 interfaces, 394 - 399

 behaviors, 398

 IComparable, 405 - 407

 IConvertible, 408 - 410

 IEnumerable, 403 - 405

 IFormattable, 410 - 412

 iterator classes, 470 - 472

 permissions, 1183 - 1184

 WCF

 autogenerated contracts, 1018 - 1019

 custom logic, 1019 - 1023

 WCF services, 1015 - 1023

 project templates, 1015 - 1016

 XML comments, 1248 - 1258

 implicit conversion, 121 - 123

 implicit conversion warning, 54

 implicit line continuation, 78 - 80

 LINQ, 612

 implicit type warning, 54

 importing COM components into Visual Studio,
 1230 - 1232

 Imports directives, 76 - 77

 default imports, 338 - 339

 namespace alias, 336 - 338

 organizing, 263 - 266 , 339

 information messages, 39

 inheritance, 74 - 75

 from abstract classes, 383

 applying, 370 - 375

 attribute inheritance, 1224 - 1225

 constraints, 420 - 421

 constructors, 387

 custom exceptions, building, 390 - 392

 graphical representation of, 370

 interfaces, 400 - 402

 "is-a" relationships, 369

 LINQ to SQL classes, 651

 MustInherit keyword, 382 - 383

 MustOverride keyword, 382 - 383

 NotInheritable keyword, 381 - 382

 overriding, 375

 NotOverridable keyword, 379 - 380

 shared members, 389 - 390

 polymorphism, 375 - 376

 shadowing, 388 - 389

 structures, 355

 style inheritance, 831

 Inherits keyword, 370

 Inline Rename, 257 - 259

 insert operations, 601 - 602

 using LINQ to SQL, 663 - 666

 inspecting

 assembly information, 1195 - 1196

 built-in types, 67 - 68

 strings, 143 - 145

 installed templates, searching for, 25

 installing . See also ClickOnce; InstallShield LE;
Windows Installer

 assemblies, 1264

 Windows 10 SDK, 976

1389IValueConverter interface, implementing

 InstallShield LE, 1269 - 1270

 downloading, 1271 - 1272

 .msi packages, creating

 adding installation files, 1277 - 1278

 configuring Registry on target machine,
 1280

 creating shortcuts, 1279 - 1280

 environment variables, 1283

 installation requirements, 1275 - 1277

 setting properties, 1283

 specifying application information, 1274

 specifying dialogs, 1282

 Project Assistant, 1273 - 1274

 SetupExample project, 1271 - 1272

 Windows Installer distributable packages,
deploying, 1285

 instance variable accesses shared members
warning, 55

 instantiating

 classes, 76

 DataContext class, 658

 DbContext class, 703 - 704

 objects, 295 - 301

 structures, 352

 IntelliSense technology, 30 - 32 , 207

 overriding, 378 - 379

 XML comments, 1246 - 1247 , 1250 ,
 1255 - 1256

 IntelliTrace, 1354 - 1359

 interfaces, 119 , 402 - 412

 CLS-compliant, 402

 defining, 393 - 394

 IComparable, 405 - 407

 IConvertible, 408 - 410

 IEnumerable, 403 - 405

 IFormattable, 410 - 412

 implementing, 394 - 399

 behaviors, 398

 inheritance, 400 - 402

 IValueConverter interface, implementing,
 897 - 900

 naming conventions, 402

 partial interfaces, 399

 passing as method arguments, 398 - 399

 polymorphism, 399 - 400

 scope of, 394

 variables, declaring, 397

 interpolating strings, 141 - 143

 Introduce Constant refactoring, 262 - 263

 Introduce Local Variable refactoring, 260 - 261

 Introduce Temporary Variable refactoring,
 259 - 260

 invoking . See also P/Invokes

 code, 1204 - 1206

 constructors, 296

 nested invocations, 299 - 300

 members, 76

 methods, 279 - 280

 structures, 352

 WCF service members, 1026 - 1029

 "is-a" relationships, 369

 IsDefined method, 364

 IService1.vb file, 1017 - 1018

 isolation, 1179

 iterators, 188 - 191 , 441 , 464 - 472

 anonymous iterators, 469 - 470

 benefits of, 465 - 466

 exiting from, 468

 iterator classes, implementing, 470 - 472

 scope of, 465

 simple iterators, 467 - 468

 Try..Catch..Finally blocks, 469

 XML literals, 743

 IValueConverter interface, implementing,
 897 - 900

1390 jagged arrays

 J
 jagged arrays, 169 , 576 - 577

 JIT (just-in-time) compiler, 9

 JSON (JavaScript Object Notation), serialization,
 1091

 "Just My Code" debugging, 202 - 203

 JustDecompile, 1365

 K
 keyboard, managing, 545

 keywords

 AddHandler, 431 - 432

 Await keyword, 1145 , 1158 - 1160

 ByRef, 281

 ByVal, 280

 Declare, performing P/Invokes, 1237 - 1238

 Default, 276

 GetType, 128 - 129

 Global, 343

 Inherits, 370

 Let, 630

 Me, 270

 MustInherit, 382 - 383

 MustOverride, 382 - 383

 MyBase, 383 - 385 , 387

 MyClass, 385 - 387

 NotInheritable, 381 - 382

 NotOverridable, 379 - 380

 Overridable, 377 - 380

 Partial, 294

 RaiseEvent, 434

 ReDim, 168

 REM keyword, 72

 reserved keywords, 80 - 82

 Throw, 242 - 245

 unreserved, 82

 When, 245 - 246

 WithEvents, 432 - 433

 killing unresponsive processes, 1097

 kinds, 1313

 L
 Label control, 790

 lambda expressions, 587 - 595

 debugging, 594 - 595

 lexical closures, 593 - 594

 multiline lambdas, 591

 Sub lambdas, 591 - 593

 type inference, 590

 language features in Visual Basic 2015, 571

 anonymous types, 585 - 586

 array literals, 575 - 577

 extension methods, 577 - 584

 custom extension methods, 581 - 583

 exporting, 583 - 584

 generic variance

 contra variance, 597 - 598

 covariance, 596 - 597

 lambda expressions, 587 - 595

 debugging, 594 - 595

 lexical closures, 593 - 594

 multiline lambdas, 591

 Sub lambdas, 591 - 593

 type inference, 590

 local type inference, 571 - 575

 relaxed delegates, 586 - 587

 languages, translating, 903 - 905

 late binding, 1212

 late binding warning, 54

 launching external processes, 1096

1391LINQ

 layered architecture, WPF, 747 - 749

 DirectX libraries, 747

 PresentationFramework layer, 748

 learning resources for Visual Studio 2012,
 1363 - 1364

 lexical closures, 593 - 594

 libraries, 268

 assemblies, 1177 - 1179

 binding, 1178

 executing, 1179 - 1181

 information stored in, 1178

 installing and uninstalling, 1264

 loading, 1194

 location of, 1178

 metadata, 1179 , 1192 - 1194

 private assemblies, 1178

 probing, 1178

 reflection, 1191 - 1192

 shared assemblies, 1178

 signing with strong names, 1179 ,
 1265 - 1267

 COM libraries, adding references, 94 - 95

 portable libraries, creating, 494 - 503

 Task Parallel Library, 1105 - 1107

 tasks, 1108 - 1116

 TPL, 463

 lifetime of objects, managing

 destructors, 319 - 322

 Dispose method, 317 - 323

 Finalize method, 315 - 316

 garbage collection, 314 - 315 , 323 - 325

 generations, 324 - 325

 memory allocation, 313 - 314

 object resurrection, 322 - 323

 releasing objects, 314 - 315

 Using..End Using statement, 319

 light bulb icon, 249 - 254

 limitations

 of LINQ, 610

 of Model First approach, 716

 of XML serialization, 1081

 LinearGradientBrush, 815 - 816

 LinkedList(of T) collection, 458 - 460

 LINQ, 599 - 611

 architecture, 613 - 614

 examples of, 611 - 612

 implicit line continuation, 612

 language support, 612

 limitations of, 610

 LINQ to DataSets, 679 - 682

 CopyToDataTable method, 682 - 683

 Field(of T) method, 684

 SetField(of T) method, 684

 LINQ to Objects, 615 - 616

 aggregation operators, 628 - 629

 concatenation operators, 641

 conversion operators, 630 - 632

 deferred execution, 623 - 625

 elements operators, 641 - 642

 equality operators, 640

 generation operators, 632 - 633

 grouping operators, 634 - 637

 ordering operators, 633

 partitioning operators, 643 - 644

 projection operators, 626 - 627

 querying in-memory objects, 616 - 623

 restriction operators, 627 - 628

 set operators, 633 - 634

 standard query operators, 625 - 626

 union operators, 637 - 639

 LINQ to XML, 730 - 735

 System.Xml.Linq namespace, 730

 XML documents, creating, 732

 XML documents, parsing, 732 - 733

 XML documents, querying, 734 - 735

1392 LINQ

 Parallel LINQ, 1128 - 1137

 controlling queries, 1134 - 1136

 exception handling, 1136 - 1137

 ParallelEnumerable class, 1133 - 1134

 providers, 613

 queries, measuring performance of,
 1129 - 1131

 query expressions, 611

 syntax, 610 - 611

 LINQ to Entities

 querying EDMs, 710 - 712

 LINQ to SQL, 645 - 658

 abstraction, 646

 associations, 646

 classes, 647 - 658

 .dbml files, 652

 declaring, 658

 inheritance, 651

 System.Data.Linq.DataContext class,
 650

 custom validations, 673 - 675

 entities, 646

 deleting, 667 - 668

 inserting, 663 - 666

 SQL syntax, 676

 updating, 666 - 667

 logging, 671 - 672

 mapping stored procedures, 668 - 671

 optimistic concurrency, 675 - 676

 Parallel LINQ

 binary operators, 1133

 intensive work, simulating, 1129

 ordering sequences, 1132 - 1133

 queries, 658 - 663

 LINQPad, 1365

 ListBox control, 791

 ListDictionary collection, 447

 listeners, trace listeners, 219 - 225

 built-in trace listeners, 219

 setting in configuration files, 224 - 225

 List(of T) collection, 451 - 453

 lists, creating for documentation, 1256 - 1257

 ListView control, 792 - 793

 live code analysis, 1306 - 1349

 analyzers, building, 1315 - 1336

 FxCop, 1345 - 1349

 live static code analysis, 250 - 254

 Live Visual Tree, 777

 loading

 assemblies, 1194

 XML documents, 732 - 733

 Local LB, 599

 local type inference, 571 - 575 , 736 - 737

 scope of, 574 - 575

 local variables, 270

 localization, 901 - 902

 MAT, 902

 Windows Forms, 903 - 906

 WPF, 906 - 908

 Locals window, 209 - 210

 location of assemblies, 1178

 logging

 Caller Information, 1212 - 1215

 LINQ to SQL, 671 - 672

 logical operators, 175 - 176

 Logical Tree, 757 - 758

 loops, 191 - 193

 M
 managed code

 application domains, 1179 - 1181

 creating, 1179 - 1181

1393methods

 debugging, 216 - 230

 Debug class, 216 - 219

 Trace class, 219 - 225

 Management Portal (Microsoft Azure), 954 - 955

 managing

 documents, 857 - 866

 annotation service, 862 - 864

 object lifetime

 destructors, 319 - 322

 Dispose method, 317 - 323

 Finalize method, 315 - 316

 garbage collection, 314 - 315 , 323 - 325

 memory allocation, 313 - 314

 object resurrection, 322 - 323

 releasing objects, 314 - 315

 Using..End Using statement, 319

 windows in WPF, 770 - 772

 manipulating

 classes, System.IO.Path class, 514 - 515

 documents, 857 - 866

 files

 System.IO.File class, 520 - 521

 System.IO.FileInfo class, 522 - 523

 strings, 527

 manual installation, packaging applications for,
 947 - 949

 map-mode scroll bar, 33 - 34

 Mapping Definition Language, 696

 mapping stored procedures, 668 - 671

 in EF, 712 - 716

 marking assemblies as CLS compliant,
 307 - 308

 master pages, 924 - 927

 master-details forms, creating, 886 - 891

 MAT (Multilingual App Toolkit), 902

 Me keyword, 270

 measuring performance

 of LINQ queries, 1129 - 1131

 of PLINQ queries, 1131 - 1132

 media

 images, viewing, 851 - 853

 playing, 853 - 856

 MediaElement control, 794

 members

 of Application class, 773

 of base classes, accessing, 383 - 387

 MyBase keyword, 383 - 385

 MyClass keyword, 385 - 387

 invoking, 76

 of My namespace, 537 - 538

 My.Application, 538 - 542

 of My.User, 560

 shared members, 301 - 306

 overriding, 389 - 390

 memory allocation

 object lifetime, managing, 313 - 314

 structures, 355

 memory streams, 526 - 527

 Menu control, 794 - 796

 MessageBox class, 340 - 341

 messages

 in Error List window, 39 - 40

 WCF, 1014

 metadata, 8 , 1179 , 1192 - 1194 , 1217

 inspecting, 1195 - 1196

 reflection, 1191 - 1192

 retrieving, 1194 - 1196

 methods, 73 , 278 - 290

 arguments, 73 , 280 - 285

 optional arguments, 283 - 284

 optional nullable arguments, 284 - 285

 ParamArray arguments, 282 - 283

 Call Hierarchy window (Visual Studio 2015),
 69 - 70

1394 methods

 Collect, 323

 constraints, 419

 CopyToDataTable, 682 - 683

 for Debug class, 216

 Dispose, 317 - 323

 enumerations as return values, 365 - 366

 exiting from, 289 - 290

 extension methods, 344 , 577 - 584

 customizing, 581 - 583

 exporting, 583 - 584

 Field(of T), 684

 Finalize, 315 - 316

 generic methods, implementing, 418 - 419

 generics, 287 - 288

 GetName, 364

 GetValueOrDefault, 423 - 424

 GetValues, 363

 invoking, 279 - 280

 IsDefined, 364

 overloading, 285 - 289

 coercion, 287

 generics, 287 - 288

 optional parameter overloads, 288

 parameters, 280

 Parse, 364 - 365

 partial methods, 293 - 295

 custom validations, 673 - 675

 ReRegisterForFinalize, 323

 scope of, 278

 SetField(of T) method, 684

 shared methods, 304 - 306

 SuppressFinalize, 323

 System.Convert methods, 132 - 133

 TestResurrection, 322 - 323

 ToString, 364 - 365

 WaitForPendingFinalizers, 323

 Microsoft Azure, 951

 applications

 deploying, 964 - 967

 templates, 961 - 962

 ASP.NET applications, creating for the cloud,
 961 - 964

 cloud storage, 952 - 953

 Cloud Storage Studio, 972

 Management Portal, 954 - 955

 registering for, 953

 roles, 967 - 970

 multiple roles, adding to projects, 970

 options, configuring, 968 - 969

 SDK, downloading, 954

 services offered, 952

 SQL databases

 creating, 955 - 961

 migrating to, 958 - 959

 WCF services, hosting, 1031 - 1032

 WebJobs, 970

 Microsoft Azure Debugging Environment, 968

 Microsoft Azure Developer Center, 953

 migrating

 to Azure SQL databases, 958 - 959

 from CAS to .NET Framework 4.6, 1189

 Code First Migration tool, 1044

 Visual Basic 6 to 2015, 233

 MilCore, 747

 Mixed Mode debugging, 202

 model binding, 935 - 937

 Model First approach, 716

 modules, 73 - 74 , 347 - 349

 comparing with classes, 349 - 350

 partial modules, 348 - 349

 scope of, 349

 Monitor class, 1103

 MSBuild, 5

 MsCorlib.dll, 10

1395My.Computer

 MSDeploy, 943 - 946

 manual installation, packaging applications
for, 947 - 949

 packages, 943 - 944

 Web Deploy, 945 - 946

 MSDN Library, 65 - 66

 .msi packages, 1270

 creating, 1274 - 1283

 adding installation files, 1277 - 1278

 configuring Registry on target machine,
 1280

 creating shortcuts, 1279 - 1280

 environment variables, 1283

 installation requirements, 1275 - 1277

 setting properties, 1283

 specifying application information, 1274

 specifying dialogs, 1282

 multicast delegates, 430 - 431

 multidimensional arrays, 168 - 169 , 576 - 577

 multiline lambdas, 591

 multiline strings, 148 - 149

 Multilingual App Toolkit, 1365

 multiple constraints, combining, 420 - 421

 multi-targeting, 22 - 23

 multithreading, 1098 - 1099 , 1139 - 1140

 passing parameters, 1099

 threads, creating, 1098 - 1099

 MustInherit keyword, 382 - 383

 MustOverride keyword, 382 - 383

 MVC (Model-View-Controller), 910

 scaffolding, 923

 My namespace, 537 - 538

 customizations, 566 - 570

 extending, 562 - 566

 My.Application, 538 - 542

 cultures, 539 - 540

 deployment information, 540 - 541

 retrieving command-line arguments, 542

 retrieving environment information, 541

 writing entries to Windows' application
log, 541 - 542

 My.Computer, 542 - 550

 accessing the network, 547 - 548

 clipboard, 544 - 545

 FileSystem property, 543 - 544

 managing the keyboard, 545

 playing audio files, 545

 Registry, 546 - 547

 retrieving computer information, 548 - 550

 My.Resources, 556 - 560

 retrieving resources by name in code,
 560

 WPF resources, 556 - 557

 My.Settings, 550 - 556

 application-level only settings, 552 - 553

 events, 555 - 556

 My.User, 560 - 562

 My.WebServices, 562

 My Project window, 42 - 48 , 83

 Application tab settings, 43 - 48

 resources, 86 - 90

 My.Application, 538 - 542

 cultures, 539 - 540

 deployment information, 540 - 541

 extending, 564 - 566

 retrieving command-line arguments, 542

 retrieving environment information, 541

 writing entries to Windows' application log,
 541 - 542

 MyBase keyword, 383 - 385 , 387

 MyClass keyword, 385 - 387

 My.Computer, 542 - 550

 accessing the network, 547 - 548

 clipboard, 544 - 545

 extending, 564 - 566

 FileSystem property, 543 - 544

1396 My.Computer

 managing the keyboard, 545

 playing audio files, 545

 Registry, 546 - 547

 retrieving computer information, 548 - 550

 My.Resources, 556 - 560

 extending, 566

 retrieving resources by name in code, 560

 WPF resources, 556 - 557

 My.Settings

 application-level only settings, 552 - 553

 events, 555 - 556

 extending, 566

 My.User, 560 - 562

 My.WebServices, 562

 N
 NameOf operator, 150 - 153

 namespaces, 10 , 75 , 327 - 330

 aliasing, 77

 avoiding ambiguities, 340 - 341

 CLS rules, 342

 extending, 344 - 345

 global namespaces, 342 - 345

 identifiers, 342

 imported namespaces, 752 - 753

 Imports directives, 336 - 338

 default Imports, 338 - 339

 My Namespace, 537 - 538

 My namespace

 customizations, 566 - 570

 extending, 562 - 566

 My.Application, 538 - 542

 My.Computer, 542 - 550

 My.Settings, 542 - 550

 nested namespaces, 76 , 332 - 335

 in .NET Compiler Platform, 1309

 purpose of, 331 - 332

 root namespace, 335 - 336

 scope of visibility, 335

 Smart Name Resolution, 341 - 342

 System.Reflection.Emit, 1206 - 1212

 System.Xml namespace, 729

 System.Xml.Linq namespace, 730

 naming conventions

 for CLS, 308 - 309

 for identifiers, 80

 for interfaces, 402

 for value types, 104

 narrowing conversions, 130 - 131

 Navigate To feature (code editor), 34 - 35

 navigation bar (Visual Studio 2015), 28

 nested classes, 268 - 269

 nested invocations, 299 - 300

 nested namespaces, 76 , 332 - 335

 nested Try..Catch..Finally blocks, 241

 .NET, 3

 .NET 2015, 3 - 4

 .NET Compiler Platform, 13 - 14

 analyzers, building, 1315 - 1336

 assemblies, 1309

 Code Metrics, 1349 - 1351

 Compiler APIs, 1308

 live code analysis, 1306 - 1349

 analyzers, building, 1315 - 1336

 FxCop, 1345 - 1349

 namespaces, 1309

 refactoring, building, 1336 - 1345

 Scripting API, 1309

 semantics, 1313 - 1315

 syntax, 1309 - 1313

 workspaces, 1315

1397NotOverridable keyword

 .NET Core 5, 1 , 3 , 10 - 12

 architecture, 11 - 12

 components, 11

 CoreCLR, 11

 .NET Native, 14 - 15

 open source layers, 12

 for Windows 10, 1009

 .NET Foundation, 12

 .NET Framework 4.6, 5 - 10

 ADO.NET, 600 - 603

 connecting to databases, 601 - 603

 connection modes, 601

 data providers, 600 - 601

 DataSets, 603 - 608

 ADO.NET Entity Framework. See EF (Entity
Framework)

 architecture, 6

 assemblies, 8 - 9

 asynchronous I/O file operations,
 1171 - 1175

 Base Class Library, 5

 BCL, 9 - 10

 CLR, 7 - 9

 writing unmanaged code, 7 - 8

 COM objects, using in code, 1233

 comparing with .NET Framework 4.5, 7

 ILDasm, 9

 LINQ

 architecture, 613 - 614

 examples of, 611 - 612

 implicit line continuation, 612

 language support, 612

 limitations of, 610

 providers, 613

 query expression, 611

 localization, 902

 MAT, 902

 Windows Forms, 903 - 906

 migration from CAS-based code, 1189

 MSBuild, 5

 objects, exposing in COM, 1235 - 1237

 security, 1182 - 1189

 attributes, 1185

 migration from CAS-based code, 1189

 permissions, 1183 - 1184

 sandboxing, 1186 - 1188

 Transparency Level 2, 1184 - 1186

 transparency model, 1182 - 1183

 updates to, 1182 - 1183

 thread pool, 1099 - 1101

 editing default values, 1101

 querying, 1100

 .NET Native, 14 - 15

 networking with streams, 534 - 535

 new features in Visual Studio 2015, 17 - 18

 New Project window (Visual Studio 2015), 22

 News section (Visual Studio 2015), 19

 nongeneric collections, 442 - 451

 ArrayList collection, 442 - 445

 BitArray collection, 449 - 450

 BitVector32 collection, 450 - 451

 HashTable collection, 446 - 447

 HybridDictionary collection, 448

 ListDictionary collection, 447

 NameValueCollection collection, 449

 OrderedDictionary collection, 447 - 448

 Queue collection, 445 - 446

 SortedList collection, 448

 Stack collection, 446

 StringCollection collection, 448

 StringDictionary collection, 448 - 449

 nonserialized events, 1080

 NotInheritable keyword, 381 - 382

 NotOverridable keyword, 379 - 380

1398 nullable types

 nullable types, 422 - 425

 GetValueOrDefault method, 423 - 424

 null-propagating operator, 424 - 425

 syntax, 422

 null-conditional operator, 185 - 188 , 461 - 462

 syntax, 461 - 462

 null-propagating operator, 424 - 425

 and XML literals, 740

 O
 Oasis Consortium, 1036

 Object Browser window, 66 - 67 , 442

 objects

 complex objects, generating, 489 - 491

 declaring with WithEvents keyword, 432 - 433

 initializers, 300 - 301

 instantiating, 295 - 301

 lifetime, managing

 destructors, 319 - 322

 Dispose method, 317 - 323

 Finalize method, 315 - 316

 garbage collection, 314 - 315 , 323 - 325

 memory allocation, 313 - 314

 object resurrection, 322 - 323

 Using..End Using statement, 319

 LINQ to Objects, 615 - 616

 aggregation operators, 628 - 629

 concatenation operators, 641

 conversion operators, 630 - 632

 deferred execution, 623 - 625

 elements operators, 641 - 642

 equality operators, 640

 generation operators, 632 - 633

 grouping operators, 634 - 637

 ordering operators, 633

 partitioning operators, 643 - 644

 projection operators, 626 - 627

 querying in-memory objects, 616 - 623

 restriction operators, 627 - 628

 set operators, 633 - 634

 union operators, 637 - 639

 .NET, exposing in COM, 1235 - 1237

 out-of-scope, 315

 releasing, 314 - 315

 serialization, 1074 - 1080

 binary serialization, 1074 - 1076

 custom objects, 1078 - 1080

 nonserialized events, 1080

 SOAP serialization, 1077 - 1078

 in System.Xml.Linq namespace, 730

 ObservableCollection(of T) collection, 456 - 458 ,
 872 - 876

 OData (Open Data Protocol), 1035 - 1036

 endpoints, creating, 1036 - 1063

 adding a data model, 1038 - 1044

 adding controllers, 1045 - 1046

 CRUD operations, 1047 - 1052

 enabling Code First Migration, 1044

 handling relationships between entities,
 1052 - 1054

 implementing queries, 1046 - 1047

 publishing the endpoints, 1054 - 1055

 querying data via HTTP requests,
 1056 - 1060

 registering the OData service,
 1044 - 1045

 functions, consuming, 1068 - 1070

 services, consuming, 1060 - 1068

 creating a client application, 1061 - 1065

 CRUD operations, 1067 - 1068

 querying data, 1065 - 1067

 One ASP.NET, 912

 online help, 65 - 66

 online templates, 23 - 24

1399overriding

 OOP (object-oriented programming), 267

 polymorphism, 375 - 376

 open source layers, .NET Core 5, 12

 operators

 arithmetic operators, 172 - 174

 assignment operators, 174 - 175

 binary operators, 1133

 bitwise operators, 177 - 179

 comparison operators, 182 - 184

 concatenation operators, 182

 conversion operators, 129 - 135

 CType, 133 - 135

 DirectCast operator, 133 - 135

 narrowing conversions, 130 - 131

 TryCast operator, 133 - 135

 widening conversions, 130

 CType, overloading, 359 - 360

 logical operators, 175 - 176

 null-conditional operator, 185 - 188 , 461 - 462

 null-propagating operator, 424 - 425

 overloading, 356 - 360

 shift operators, 179 - 180

 short-circuiting operators, 176 - 177

 standard query operators, 625 - 626

 aggregation operators, 628 - 629

 concatenation operators, 641

 conversion operators, 630 - 632

 elements operators, 641 - 642

 equality operators, 640

 generation operators, 632 - 633

 grouping operators, 634 - 637

 ordering operators, 633

 partitioning operators, 643 - 644

 projection operators, 626 - 627

 quantifiers, 640 - 641

 restriction operators, 627 - 628

 set operators, 633 - 634

 union operators, 637 - 639

 ternary If operator, 180 - 182

 optimistic concurrency

 in EDMs, 707 - 708

 resolving, 675 - 676

 optimizations, 56 - 57

 optional arguments, 283 - 284

 optional nullable arguments, 284 - 285

 OrderedDictionary collection, 447 - 448

 ordering operators, 633

 organizing

 Imports directives, 263 - 266 , 339

 structures, 356

 types within namespaces, 327 - 330

 CLS rules, 342

 global namespaces, 342 - 345

 nested namespaces, 332 - 335

 root namespace, 335 - 336

 scope of visibility, 335

 Smart Name Resolution, 341 - 342

 out-of-scope objects, 315

 Output window, 41 - 42

 overloading

 constructors, 298 - 300

 derived classes, 380

 methods

 coercion, 287

 declaring optional parameter overloads,
 288

 generics, 287 - 288

 properties, 288 - 289

 operators, 356 - 360

 type parameters, 421 - 422

 overloading methods, 285 - 289

 overriding, 375 , 377 - 380

 MustOverride keyword, 382 - 383

 NotOverridable keyword, 379 - 380

 shared members, 389 - 390

1400 packages

 P
 packages, 943 - 944

 app packages, creating and testing,
 1009 - 1010

 manual installation, packaging applications
for, 947 - 949

 page lifetime for web forms, 915

 page requests, 911

 panels, 762 - 769

 Canvas panel, 767 - 768

 DockPanel panel, 768

 Grid panel, 762 - 764

 StackPanel panel, 765 - 766

 ViewBox panel, 769

 WrapPanel panel, 766 - 767

 Parallel class, 1106

 parallel computing

 concurrent collections, 1124 - 1128

 BlockingCollection(of T), 1127 - 1128

 ConcurrentBag(of T), 1124 - 1125

 ConcurrentDictionary(TKey, TValue),
 1126 - 1127

 ConcurrentQueue(of T), 1125

 ConcurrentStack(of T), 1126

 Parallel class, 1106

 parallel loops, 1116 - 1122

 Parallel..For loop, 1117 - 1119

 Parallel..ForEach loop, 1119 - 1121

 partitioning, 1121 - 1122

 ParallelOptions class, 1107

 Task Parallel Library, 1106 - 1107

 TaskFactory class, 1107

 tasks

 canceling, 1113 - 1114

 debugging tools, 1122 - 1123

 exception handling, 1111 - 1113

 returning values, 1110 - 1111

 running with Parallel.Invoke, 1108 - 1109

 Task class, 1109 - 1110

 TaskScheduler class, 1107

 Parallel LINQ, 1128 - 1137

 binary operators, 1133

 exception handling, 1136 - 1137

 intensive work, simulating, 1129

 ordering sequences, 1132 - 1133

 ParallelEnumerable class, 1133 - 1134

 queries

 controlling, 1134 - 1136

 measuring performance of, 1131 - 1132

 ParallelEnumerable class, 1133 - 1134

 Parallel..For loop, 1117 - 1119

 Parallel..ForEach loop, 1119 - 1121

 ParallelLoopState class, 1122

 ParallelOptions class, 1107

 ParamArray arguments, 282 - 283

 parameters, 280

 applicable data types for attributes, 1221

 Parse method, 364 - 365

 parsing XML documents, 732 - 733

 partial classes, 290 - 293

 Partial keyword, 294

 partial methods, 293 - 295

 custom validations, 673 - 675

 partial modules, 348 - 349

 partitioning operators, 643 - 644

 passing event information, 435 - 437

 PasswordBox control, 796 - 797

 pathnames

 exception handling, 519

 manipulating, 514 - 515

 Peek Definition, 32 - 33

 performance of LINQ queries, measuring,
 1129 - 1131

 performing P/Invokes, 1237 - 1238

 PerfTips, 208 - 209

1401projects

 permissions, 523

 in .NET Framework 4.6, 1183 - 1184

 requirements, documenting, 1257

 PIAs (primary interoperability assemblies), 95

 Deploy Without PIAs feature, 95 - 97

 PInvoke.net website, 1244

 P/Invokes, 1237

 encapsulating, 1239 - 1240

 exception handling, 1243 - 1244

 types, converting to unmanaged, 1240 - 1243

 StructLayout attribute, 1241 - 1243

 VBFixedString attribute, 1243

 platforms for ASP.NET, 910

 playing audio files, 545

 playing media, 853 - 856

 POCO (Plain Old CLR Objects), 1091

 polymorphism, 375 - 376

 interfaces, 399 - 400

 overriding, 376

 portable classes, creating, 491 - 494

 portable libraries, creating, 494 - 503

 postback events, 915 - 916

 preparing

 debugging example, 199 - 200

 reflection example, 1193 - 1194

 PresentationFramework layer (WPF), 748

 private assemblies, 1178

 private constructors, 300

 private scope, 276

 probing, 1178

 processes

 closing, 1097

 isolation, 1179

 killing, 1097

 launching, 1096

 querying, 1097

 programmatically accessing ClickOnce,
 1301 - 1302

 programming languages in Visual Studio 2015,
 12 - 13

 ProgressBar control, 797 - 798

 Project Assistant (InstallShield), 1273 - 1274

 Project Roslyn, 14

 projects . See also My Project window

 code files, 82 - 83

 Application.myapp file, 83 - 85

 AssemblyInfo.vb file, 85 - 86

 Resources.resx file, 86 - 90

 compiling, 48

 advanced options, 55 - 58

 conditional compilation, 57

 creating configurations, 50 - 52

 Debug configuration, 49

 generating serialization assemblies, 58

 options, 52 - 53

 Release configuration, 49 - 50

 target CPU, specifying, 53

 warning configurations, 53 - 55

 compiling projects

 background compiler, 52

 optimizations, 56 - 57

 creating, 21 - 22 , 27 - 29

 finding, 29

 multi-targeting, 22 - 23

 role options, configuring, 968 - 969

 round-tripping, 20

 SetupExample, 1271 - 1272

 shared projects, 503 - 512

 solutions, 20

 templates, 21

 accessing recently used templates,
 23 - 24

 cloud-hosted application templates,
 961 - 962

 online templates, 23 - 24

 searching for installed templates, 25

 WPF template, 749

1402 properties

 properties, 72 - 73 , 271 - 276 , 310

 accessing, 275

 auto-implemented read-only properties,
 271 - 272

 default properties, 275 - 276

 overloading, 288 - 289

 read-only properties, 272 - 274

 setting for .msi packages, 1283

 shared properties, 303 - 304

 for System.Exception, 237 - 240

 of WPF windows, 770

 write-only properties, 274

 Properties window, 40 - 41

 proxy class, 1025 - 1026

 public scope, 276

 publish process (ClickOnce), 1289 - 1294

 Q
 quantifiers, 640 - 641

 query expressions, 611

 querying . See also LINQ

 databases, 603

 DataSets, 679 - 682

 EDMs

 with Entity SQL, 712

 with LINQ to Entities, 710 - 712

 in-memory objects, 616 - 623

 with LINQ to SQL, 658 - 663

 .NET thread pool, 1100

 processes, 1097

 standard query operators, 625 - 626

 XML documents, 734 - 735

 Queue collection, 445 - 446

 Queue(of T) collection, 460

 quick actions

 Encapsulate Field, 261 - 262

 Extract Interface, 254 - 256

 Quick Launch tool, 67 - 69

 Quick Watch window, 213 - 214

 R
 RadialGradientBrush, 817

 RadioButton control, 799

 RaiseEvent keyword, 434

 raising events, 434 - 437

 reading

 binary files, 525 - 526

 text files, 524 - 525

 read-only auto-implemented properties, 73

 read-only fields, 270

 read-only properties, 272 - 274

 ReadOnlyCollection(of T) collection, 454 - 455

 ReadOnlyObservableCollection(of T) collection,
 458

 read/write locks, 1103 - 1104

 recently used templates, accessing, 23 - 24

 rectangle shape, drawing, 799 - 800

 recursive cloning, 128

 recursive operator or property access warning,
 55

 ReDim keyword, 168

 redundant code, organizing, 263 - 266

 refactoring, 254 - 266

 building, 1336 - 1345

 Encapsulate Field quick action, 261 - 262

 Extract Interface quick action, 254 - 256

 Extract Method refactoring, 256 - 257

 Inline Rename, 257 - 259

 Introduce Constant refactoring, 262 - 263

 Introduce Local Variable refactoring,
 260 - 261

 Introduce Temporary Variable refactoring,
 259 - 260

1403 scope

 reference types, 100 - 103 , 113 - 116

 cloning, 126

 comparing with value types, 116 - 120

 converting to value type

 boxing, 123 - 124

 deep copy, 127 - 128

 GetType keyword, 128 - 129

 implicit conversion, 121 - 123

 shallow copy, 126 - 127

 unboxing, 124 - 125

 references, 92 - 97

 adding to COM libraries, 94 - 95

 ByRef keyword, 281

 reflection, 1191 - 1192 , 1225 - 1226

 assemblies, loading, 1194

 Caller Information, 1212 - 1215

 late binding, 1212

 metadata, inspecting, 1195 - 1196

 sample assembly, preparing, 1193 - 1194

 System.Reflection.Emit namespace,
 1206 - 1212

 types, 1196 - 1204

 Region directives, 77 - 78

 registering

 for events, 431 - 432

 for GC events, 324 - 325

 for Microsoft Azure, 953

 OData service, 1044 - 1045

 with Windows Store, 976

 Registration-Free COM, 1302 - 1304

 regular expressions, 294

 relaxed delegates, 586 - 587

 Release configuration, 49 - 50

 releasing objects, 314 - 315

 COM objects, 1233 - 1234

 Using..End Using statement, 319

 REM keyword, 72

 RemoveHandler keyword, 431 - 432

 ReRegisterForFinalize method, 323

 reserved keywords, 80 - 82

 resolving optimistics concurrency, 675 - 676

 Resources.resx file, 86 - 90

 restriction operators, 627 - 628

 resurrecting objects, 322 - 323

 rethrowing exceptions, 243

 RichTextBox control, 800 , 864 - 866

 roles, 967 - 970

 multiple roles, adding to projects, 970

 options, configuring, 968 - 969

 root namespace, 335 - 336

 Root Namespace field (My Project window), 43

 RotateTransform, 838

 round-tripping, 20

 routed events, 760 - 761

 routing strategies, 761

 Run to Cursor command, 201

 runtime errors, 62 - 64

 S
 sample code

 browsing online code samples, 25 - 26

 downloading, 2

 sandboxing, 1186 - 1188

 scaffolding, 923

 scalability of web applications, 911 - 912

 ScaleTransform, 838

 scope

 of fields, 270

 of interfaces, 394

 of iterators, 465

 of local type inference, 574 - 575

 of methods, 278

1404 scope

 of modules, 349

 of namespaces, 335

 of types, 276 - 278

 of XML comments, 1250

 Scripting API, 1309

 scroll bar (code editor), 33 - 34

 ScrollBar control, 800

 ScrollViewer control, 800 - 801

 SDKs

 Windows 10 SDK, 976

 Windows SDK, 15

 searching for installed templates, 25

 security

 CAS, 1182

 ClickOnce, configuring, 1299 - 1300

 login, forcing on web applications, 937 - 939

 in .NET Framework 4.6, 1182 - 1189

 attributes, 1185

 conditional APTCA, 1186 - 1188

 migration from CAS-based code, 1189

 permissions, 1183 - 1184

 sandboxing, 1186 - 1188

 Transparency Level 2, 1184 - 1186

 transparency model, 1182 - 1183

 updates to, 1182 - 1183

 permissions, 523

 requirements, documenting, 1257

 SelectionBrush, 822 - 823 , 922

 semantics, .NET Compiler Platform, 1313 - 1315

 Separator control, 801

 serialization, 1073

 in ADO.NET Entity Framework, 1091 - 1092

 custom serialization, 1083 - 1086

 events, 1085 - 1086

 JSON serialization, 1091

 objects, 1074 - 1080

 binary serialization, 1074 - 1076

 custom objects, 1078 - 1080

 nonserialized events, 1080

 SOAP serialization, 1077 - 1078

 WCF serialization, 1088 - 1091

 with XAML, 1086 - 1088

 deserialization, 1088

 generic collections, 1087

 XML serialization, 1081 - 1083

 customizing, 1082 - 1083

 limitations of, 1081

 serialization assemblies, generating, 58

 server controls, 917 - 918

 Server Explorer tool (Visual Studio), 970 - 971

 services

 Microsoft Azure offerings, 952

 OData, 1035 - 1036

 consuming, 1060 - 1068

 registering, 1044 - 1045

 OData (Open Data Protocol)

 endpoints, creating, 1036 - 1063

 WCF, 1014

 ABC, 1014 - 1015

 configuring, 1033

 consuming, 1024 - 1029

 custom logic, implementing, 1019 - 1023

 EDM, 1023

 endpoints, 1014

 exception handling, 1030 - 1031

 generics, 1022 - 1023

 implementing, 1015 - 1023

 Set Next Statement command, 201

 set operators, 633 - 634

 settings, 90 - 92

 Application tab settings (My Project window),
 43 - 48

 SetupExample project, 1271 - 1272

 shadowing, 380 , 388 - 389

 shallow copy, 126 - 127

 shared assemblies, 1178

1405Startup Object field (My Project window)

 shared classes, 302

 modules, 347 - 349

 partial modules, 348 - 349

 scope of, 349

 shared constructors, 306

 shared fields, 302

 shared members

 generating, 488

 overriding, 389 - 390

 shared methods, 304 - 306

 shared projects, 503 - 512

 shared properties, 303 - 304

 shift operators, 179 - 180

 short-circuiting operators, 176 - 177

 shortcuts, creating for .msi files, 1279 - 1280

 Show Next Statement command, 202

 signing assemblies with strong names, 1179 ,
 1265 - 1267

 Silverlight, 6

 simple iterators, 467 - 468

 single types, reflecting, 1203 - 1204

 SkewTransform, 838 - 839

 Slider control, 801 - 802

 Smart Name Resolution, 341 - 342

 SOAP serialization, 1077 - 1078

 SolidColorBrush, 813 - 814

 Solution Explorer window, 36 - 38

 solutions, 20

 SortedDictionary(of TKey, TValue) collection,
 456

 SortedList collection, 448

 spans, 1313

 spell check for RichTextBox control, 865 - 866

 SQL databases

 creating for Microsoft Azure, 955 - 961

 LINQ to SQL, 645 - 646

 abstraction, 646

 associations, 646

 classes, 647 - 658

 custom validations, 673 - 675

 deleting entities, 667 - 668

 entities, 646

 inserting entities, 663 - 666

 logging, 671 - 672

 mapping stored procedures, 668 - 671

 optimistic concurrency, 675 - 676

 SQL syntax for entities, 676

 updating entities, 666 - 667

 migrating to Microsoft Azure, 958 - 959

 Stack collection, 446

 Stack(of T) collection, 460

 StackPanel panel, 765 - 766

 standard query operators, 625 - 626

 aggregation operators, 628 - 629

 concatenation operators, 641

 conversion operators, 630 - 632

 elements operators, 641 - 642

 equality operators, 640

 generation operators, 632 - 633

 grouping operators, 634 - 637

 ordering operators, 633

 partitioning operators, 643 - 644

 projection operators, 626 - 627

 quantifiers, 640 - 641

 restriction operators, 627 - 628

 set operators, 633 - 634

 union operators, 637 - 639

 Start method, 1096

 Start Page (Visual Studio 2015), 18 - 19

 Discover What's New section, 20

 Featured Videos section, 20

 News section, 19

 What's New on Microsoft Platforms
section, 20

 Startup Object field (My Project window), 44

1406 state management

 state management, 920 - 923

 Application state, 920

 Cache state, 921 - 922

 Context state, 922

 cookies, 922

 Session state, 922

 ViewState state, 923

 status bar colors in Visual Studio 2015, 18 - 19

 StatusBar control, 802

 Step Into command, 201

 Step Over command, 201

 storage, cloud storage, 952 - 953

 Store Schema Definition Language, 694 - 696

 stored procedures, mapping, 668 - 671

 in EF, 712 - 716

 streams, 524 - 535

 binary streams, reading and writing,
 525 - 526

 compressing data, Zip archives, 532 - 534

 data compression, 527 - 532

 manipulating strings, 527

 memory streams, 526 - 527

 networking with, 534 - 535

 text streams, reading and writing, 524 - 525

 string formatters, implementing, 895 - 897

 StringCollection collection, 448

 StringDictionary collection, 448 - 449

 strings, 135 - 136

 comparing, 136 - 138

 concatenating, 149 - 150

 converting to dates, 155 - 156

 copying, 143

 editing, 145 - 148

 formatting, 138 - 143

 inspecting, 143 - 145

 interpolating, 141 - 143

 manipulating, 527

 multiline strings, 148 - 149

 null strings, checking for, 138

 strong-named assemblies, 1265 - 1267

 StructLayout attribute, converting types to
unmanaged, 1241 - 1243

 structure of ClickOnce deployments, 1294

 structures, 74 , 351 - 356

 assigning to variables, 354

 CLS rules, 360

 creating, 351

 DateTimeOffset, 159 - 160

 inheritance limitations, 355

 instantiating, 352

 invoking, 352

 members, scope qualifiers, 354 - 355

 memory allocation, 355

 organizing, 356

 passing to methods, 354

 styles, 828 - 833

 inheritance, 831

 triggers, 831 - 833

 Sub lambdas, 591 - 593

 submitting apps to Windows Store, 1010 - 1011

 subscribing to GC events, 324 - 325

 SuppressFinalize method, 323

 symbols, comment symbol ('), 72

 synchronous programming, 1140

 SyncLock..End..SyncLock statement,
 1101 - 1102

 syntax

 for delegates, 428 - 429

 for LINQ, 610 - 611

 .NET Compiler Platform, 1309 - 1313

 for nullable types, 422

 null-conditional operator, 461 - 462

 SQL syntax for entities, 676

 System.Array class, 169 - 172

 System.Console class, 29

1407templates

 System.Convert methods, 132 - 133

 System.Data.Linq.DataContext class, 650

 System.Diagnostics.Process class, 1096

 System.Enum class, 362 - 365

 System.Exception, 233

 properties, 237 - 240

 System.GC class, 323 - 324

 System.IO.Directory class, 515 - 518

 System.IO.DirectoryInfo class, 518

 System.IO.DriveInfo class, 519

 System.IO.File class, 520 - 521

 System.IO.FileInfo class, 522 - 523

 System.IO.Path class, 514 - 515

 System.IO.Stream class, 524

 System.Object class, 373 - 375

 System.Reflection.Emit namespace, 1206 - 1212

 System.Runtime.CompilerServices.
RuntimeWrappedException, catching excep-
tions from wrapped objects, 1233

 System.Windows.Style class, 828

 System.Xml namespace, 729

 System.Xml.Linq namespace, 730

 T
 Tablet mode (Windows 10), 1007

 tabular data forms, creating, 877 - 885

 tags (XML)

 <c> tag, 1253 - 1254

 <param> tag, 1255

 recommended tags for XML comments,
 1250 - 1251

 target CPU, specifying, 53

 Target Framework combo box (My Project win-
dow), 48

 Task class, 1109 - 1110

 Task Parallel Library, 1105 - 1107

 Parallel class, 1106

 parallel loops, 1116 - 1122

 Parallel..For loop, 1117 - 1119

 Parallel..ForEach loop, 1119 - 1121

 partitioning, 1121 - 1122

 ParallelOptions class, 1107

 TaskFactory class, 1107

 tasks, 1108 - 1116

 canceling, 1113 - 1114

 exception handling, 1111 - 1113

 returning values, 1110 - 1111

 running with Parallel.Invoke, 1108 - 1109

 Task class, 1109 - 1110

 TaskScheduler class, 1107

 Task-Based Asynchrony, 1161 - 1165

 combinators, 1163 - 1165

 custom awaiters, 1175

 debugging tasks, 1175

 switching threads, 1162 - 1163

 TaskFactory class, 1107

 tasks, 1108 - 1116

 Barrier class, 1115 - 1116

 canceling, 1113 - 1114

 debugging tools, 1122 - 1123

 exception handling, 1111 - 1113

 returning values, 1110 - 1111

 running with Parallel.Invoke, 1108 - 1109

 TaskScheduler class, 1107

 templates

 accessing recently used templates, 23 - 24

 for cloud-hosted applications, 961 - 962

 control templates, 833 - 836

 online templates, 23 - 24

 project templates, 21

 searching for installed templates, 25

 for universal Windows apps, 978 - 980

 WCF project templates, 1015 - 1016

 WPF project template, 749

1408 ternary If operator

 ternary If operator, 180 - 182

 testing app packages, 1009 - 1010

 TestResurrection method, 322 - 323

 text files, reading and writing, 524 - 525

 TextBlock control, 804 - 805

 TextBox control, 805

 themes for Visual Studio 2015, 19

 thread pool

 editing default values, 1101

 querying, 1100

 threading, 1095

 APM, 1142 - 1143

 creating threads, 1098 - 1099

 killing unresponsive processes, 1097

 multithreading, 1098 - 1099 , 1139 - 1140

 .NET thread pool, 1099 - 1101

 passing parameters, 1099

 processes

 closing, 1097

 launching, 1096

 querying, 1097

 synchronization, 1101 - 1104

 Monitor class, 1103

 read/write locks, 1103 - 1104

 SyncLock..End..SyncLock statement,
 1101 - 1102

 Task-Based Asynchrony, 1162 - 1163

 Threads window, 214

 Throw keyword, 242 - 245

 time, representing, 160 - 161

 TimeZone type, 162 - 164

 TimeZoneInfo type, 164

 Toast notifications, implementing in universal
Windows apps, 996 - 997

 tool windows

 docking, 36

 Error List window, 39 - 40

 Output window, 41 - 42

 Properties window, 40 - 41

 Solution Explorer window, 36 - 38

 tool windows (Visual Studio 2015), 35 - 42

 ToolBar control, 805 - 806

 ToString method, 364 - 365

 touch improvements to code editor, 32

 TPL (Task Parallel Library), 463

 Trace class, 219 - 225

 trace listeners, 219 - 225

 built-in trace listeners, 219

 setting in configuration files, 224 - 225

 transformations, 836 - 840

 multiple transformations, applying, 840

 RotateTransform, 838

 ScaleTransform, 838

 SkewTransform, 838 - 839

 TranslateTransform, 839 - 837

 TranslateTransform, 839 - 837

 translating languages, 903 - 905

 Transparency Level 2, 1184 - 1186

 transparency model, 1182 - 1183

 TreeView control, 806 - 807

 triggers, applying styles with, 831 - 833

 TryCast operator, 133 - 135

 Try..Catch..Finally blocks, 233 - 236

 exiting from, 241

 iterators, 469

 nesting, 241

 tunnel strategy, 761

 type inference, 590

 types, 9

 anonymous types, 585 - 586

 applicable data types for attributes, 1221

 built-in types, inspecting, 67 - 68

 constraints, 419 - 420

 converting to unmanaged, 1240 - 1243

 StructLayout attribute, 1241 - 1243

 VBFixedString attribute, 1243

1409UWP (Universal Windows Platform)

 creating, 485 - 491

 custom types, exposing, 274 - 275

 enumerations, 361 - 367

 generics, 287 - 288 , 413 - 414

 consuming, 416 - 417

 creating, 414 - 415

 generic methods, implementing, 418 - 419

 overloading type parameters, 421 - 422

 late binding, 1212

 namespaces, 75 , 327 - 330

 aliasing, 77

 avoiding ambiguities, 340 - 341

 CLS rules, 342

 extending, 344 - 345

 global namespaces, 342 - 345

 My namespace, 537 - 538

 nested namespaces, 332 - 335

 purpose of, 331 - 332

 root namespace, 335 - 336

 scope of visibility, 335

 Smart Name Resolution, 341 - 342

 nullable types, 422 - 425

 GetValueOrDefault method, 423 - 424

 null-propagating operator, 424 - 425

 syntax, 422

 Peek Definition, 32 - 33

 properties, 72 - 73

 reference types, 100 - 103 , 113 - 116

 cloning, 126

 reflecting, 1196 - 1204

 scope, 276 - 278

 TimeZone, 162 - 164

 value types, 100 - 113

 analyzing content of, 110 - 111

 applying, 106 - 108

 assigning, 108 - 110

 BigInteger, 112 - 113

 building custom value types, 113

 naming conventions, 104

 U
 UAC (User Account Control), application set-

tings, 46 - 48

 unboxing, 124 - 125

 uninstalling assemblies, 1264

 union operators, 637 - 639

 Universal Windows Platform, creating universal
Windows apps, 977 - 998

 app bar, 987 - 994

 app manifest, 998 - 1001

 defining a data template, 986 - 987

 implementing a data model, 980 - 981

 Internet connection, 981 - 986

 navigation, 987 - 994

 playing media, 997 - 998

 project templates, 978 - 980

 raising Toast notifications, 996 - 997

 sharing content, 995 - 996

 unmanaged code, 1237

 writing, 7 - 8

 unreserved keywords, 82

 unresponsive processes, killing, 1097

 unused local variable warning, 54

 updating

 applications with ClickOnce, 1296 - 1297

 entities, 666 - 667 , 706 - 707

 use of variable prior to assignment warning, 54

 Using..End Using statement, 319

 UWP (Universal Windows Platform), 12 ,
 974 - 976

 APIs, 975 - 976

1410 validation rules, LINQ to SQL

 V
 validation rules, LINQ to SQL, 673 - 675

 value types, 100 - 113

 analyzing content of, 110 - 111

 applying, 106 - 108

 assigning, 108 - 110

 BigInteger, 112 - 113

 building custom value types, 113

 comparing with reference types, 116 - 120

 converting to reference type

 boxing, 123 - 124

 deep copy, 127 - 128

 GetType keyword, 128 - 129

 implicit conversion, 121 - 123

 shallow copy, 126 - 127

 unboxing, 124 - 125

 enumerations, 361 - 367

 naming conventions, 104

 variables

 interface variables, declaring, 397

 local variables, 270

 structures, assigning, 354

 variance

 contra variance, 597 - 598

 covariance, 596 - 597

 VBFixedString attribute, converting types to
unmanaged, 1243

 View Windows Settings button (My Project win-
dow), 46 - 48

 ViewBox panel, 769

 viewing

 images, 851 - 853

 XPS documents, 866 - 867

 views, 891 - 895

 ViewState state, 923

 VirtualizingStackPanel control, 767

 Visual Basic 14, 13

 Visual Basic 2012, learning resources,
 1363 - 1364

 Visual Basic 6, migrating to Visual Basic 2015,
 233

 Visual Studio 2015 IDE, 17

 Autos window, 215

 Blend, 833

 Call Hierarchy window, 69 - 70

 Call Stack window, 210 - 212

 Class Designer, 473 - 484

 designing objects, 475 - 479

 diagrams, creating, 482 - 483

 diagrams, exporting, 483 - 484

 enabling, 474 - 475

 implementing derived classes, 479 - 482

 Class View window, 484

 code editor, 29 - 35

 IntelliSense technology, 30 - 32

 Navigate To feature, 34 - 35

 Peek Definition, 32 - 33

 scroll bar, 33 - 34

 touch improvements, 32

 zooming in/out, 30

 Code Snippet Editor, 1364

 CodeRush Xpress, 1364

 Command window, 210

 designer tools, 751

 Diagnostic Tools, 1351 - 1354

 Generate from Usage feature, 485 - 491

 generating shared members, 488

 Generate from Usage feature (Visual Studio),
generating complex objects, 489 - 491

 help page, 65 - 66

 importing COM objects, 1230 - 1232

 InstallShield LE, 1269 - 1270

 integrated programming languages, 12 - 13

 IntelliTrace, 1354 - 1359

 Locals window, 209 - 210

1411WCF (Windows Communication Foundation)

 Microsoft Azure SDK, downloading, 954

 My Project window, 42 - 48 , 83

 Application tab, 43 - 48

 navigation bar, 28

 new features, 17 - 18

 New Project window, 22

 projects, 20 - 21

 Application.myapp file, 83 - 85

 AssemblyInfo.vb file, 85 - 86

 compiling, 48

 creating, 21 - 22 , 27 - 29

 finding, 29

 multi-targeting, 22 - 23

 Resources.resx file, 86 - 90

 role options, configuring, 968 - 969

 templates, 21

 Quick Launch tool, 68 - 69

 scaffolding, 923

 Server Explorer tool, 970 - 971

 Start Page, 18 - 19

 Discover What's New section, 20

 Featured Videos section, 20

 News section, 19

 What's New on Microsoft Platforms
section, 20

 status bar colors, 18 - 19

 themes, 19

 Threads window, 214

 tool windows, 35 - 42

 docking, 36

 Error List window, 39 - 40

 Output window, 41 - 42

 Properties window, 40 - 41

 Solution Explorer window, 36 - 38

 user developer tools

 Fiddler, 1365

 LINQPad, 1365

 Watch windows, 212 - 214

 web applications, creating

 data controls, adding, 929 - 932

 data model, adding, 927

 filtering capabilities, adding, 932 - 933

 forcing login for security, 937 - 939

 master pages, 924 - 927

 model binding, 935 - 937

 navigation controls, adding, 933

 new web form, adding, 927 - 929

 strongly typed data controls, 934 - 935

 Visual Studio Gallery, 1366

 Visual Studio Power Tools, 1365

 Visual Tree, 758

 VisualBrush, 823 - 825

 visualizers, 215 - 216

 W
 WaitForPendingFinalizers method, 323

 warning configurations, 53 - 55

 warning messages, 39

 ignoring, 54

 warnings, 247 - 249

 Watch windows, 212 - 214

 WCF (Windows Communication Foundation),
 1013 - 1014

 ABC, 1014 - 1015

 autogenerated contracts, 1018 - 1019

 IService1.vb file, 1017 - 1018

 built-in bindings, 1028 - 1029

 custom logic, implementing, 1019 - 1023

 EDM, 1023

 endpoints, 1014

 exceptions, handling, 1030 - 1031

 generics, 1022 - 1023

 JSON serialization, 1091

 serialization, 1088 - 1091

1412 WCF (Windows Communication Foundation)

 services

 configuring, 1033

 consuming, 1024 - 1029

 hosting, 1031 - 1032

 implementing, 1015 - 1023

 services, implementing, 1015 - 1016

 web applications, ASP.NET, 910 - 914

 creating with Visual Studio

 data controls, adding, 929 - 932

 data model, adding, 927

 filtering capabilities, adding, 932 - 933

 forcing login for security, 937 - 939

 master pages, 924 - 927

 model binding, 935 - 937

 navigation controls, adding, 933

 new web form, adding, 927 - 929

 strongly typed data controls, 934 - 935

 deploying, 927 - 949

 1-click deployment, 940 - 941

 classic publishing, 941 - 943

 MSDeploy, 943 - 946

 developing

 controls, 917 - 919

 event handling, 919 - 920

 web forms, 914 - 916

 page requests, 911

 platforms, 910

 project templates, 912 - 914

 scalability, 911 - 912

 state management, 920 - 923

 Application state, 920

 Cache state, 921 - 922

 Context state, 922

 cookies, 922

 Session state, 922

 ViewState state, 923

 Web Deploy, 945 - 946

 web forms, 914 - 916

 cached and postback events, 915 - 916

 page lifetime, 915

 web roles, 968

 WebBrowser control, 808

 Web.Config file, 1017

 WebJobs, 970

 websites

 Flexera, 1271

 .NET Foundation, 12

 Oasis Consortium, 1036

 PInvoke.net, 1244

 Visual Studio Gallery, 1366

 What's New on Microsoft Platforms section
(Visual Studio 2015), 20

 When keyword, 245 - 246

 widening conversions, 130

 windows, managing in WPF, 770 - 772

 Windows 8.X, 1229

 Windows 10

 adaptive user interfaces, 1007

 Desktop mode, 1008 - 1009

 .NET Core, 1009

 SDK, installing, 976

 Tablet mode, 1007

 UWP, 975 - 976

 APIs, 975 - 976

 Windows API

 documentation, 1244

 P/Invokes

 encapsulating, 1239 - 1240

 exception handling, 1243 - 1244

 performing, 1237 - 1238

 Windows Forms, localization, 903 - 906

 Windows Installer, 1270

 Windows Registry, 546 - 547

 Windows SDK, 15

1413WPF (Windows Presentation Foundation)

 Windows Store

 apps, 1270

 registering with, 976

 submitting apps to, 1010 - 1011

 WindowsFormsHost control, 808 - 809

 WinRT (Windows Runtime), 1229

 with..end with statements, 196 - 197

 WithEvents keyword, 432 - 433

 worker roles, 968

 workspaces, 1315

 WPF (Windows Presentation Foundation), 746

 animations, 840 - 848

 ColorAnimation, 844 - 845

 creating, 847 - 848

 DoubleAnimation, 841 - 843

 events, 845 - 847

 Application class, 772 - 774

 members, 773

 Startup and Exit events, handling, 774

 applications, creating, 745 - 746 , 749 - 751

 Canvas panel, 767 - 768

 DockPanel panel, 768

 Grid panel, 762 - 764

 Logical Tree, 757 - 758

 StackPanel panel, 765 - 766

 ViewBox panel, 769

 Visual Tree, 758

 WrapPanel panel, 766 - 767

 XAML, 751 - 757

 Browser Applications, 774 - 777

 brushes, 812 - 828

 BitmapCacheBrush, 826 - 828

 CaretBrush, 822 - 823

 DrawingBrush, 825

 ImageBrush, 818 - 821

 LinearGradientBrush, 815 - 816

 RadialGradientBrush, 817

 SelectionBrush, 822 - 823

 SolidColorBrush, 813 - 814

 VisualBrush, 823 - 825

 COM objects, calling, 1234 - 1237

 control templates, 833 - 836

 controls, 779 - 780

 Border control, 781 - 782

 Button control, 782

 Calendar control, 782 - 783

 CheckBox control, 783

 ComboBox control, 784 - 785

 ContentControl element, 780 - 781

 DataGrid control, 784 - 785

 DatePicker control, 786

 DocumentViewer control, 787

 Expander control, 788

 Frame control, 789

 GroupBox control, 790

 Image control, 790

 Label control, 790

 ListBox control, 791

 ListView control, 792 - 793

 MediaElement control, 794

 Menu control, 794 - 796

 PasswordBox control, 796 - 797

 ProgressBar control, 797 - 798

 RadioButton control, 799

 RichTextBox control, 800

 ScrollBar control, 800

 ScrollViewer control, 800 - 801

 Separator control, 801

 Slider control, 801 - 802

 StatusBar control, 802

 TabControl control, 803 - 804

 TextBlock control, 804 - 805

 TextBox control, 805

 ToolBar control, 805 - 806

1414 WPF (Windows Presentation Foundation)

 TreeView control, 806 - 807

 WebBrowser control, 808

 WindowsFormsHost control, 808 - 809

 data binding, 869 - 876

 bindings, creating, 872

 DataGrid control, 872 - 876

 drag-and-drop data binding, 876 - 900

 IValueConverter interface, implementing,
 897 - 900

 modes, 871 - 872

 ObservableCollection(of T) collection,
 872 - 876

 string formatters, implementing, 895 - 897

 views, 891 - 895

 dialogs, 809 - 810

 documents, manipulating, 857 - 866

 Ellipse shape, 787 - 788

 event handling, 759 - 761

 images, viewing, 851 - 853

 improvements to, 747

 layered architecture, 747 - 749

 DirectX libraries, 747

 PresentationFramework layer (WPF), 748

 Live Visual Tree, 777

 localization, 906 - 908

 media, playing, 853 - 856

 RichTextBox control, 864 - 866

 styles, 828 - 833

 inheritance, 831

 triggers, 831 - 833

 transformations, 836 - 840

 multiple transformations, applying, 840

 RotateTransform, 838

 ScaleTransform, 838

 SkewTransform, 838 - 839

 TranslateTransform, 839 - 837

 window management, 770 - 772

 WrapPanel panel, 766 - 767

 wrappers, exception handling, 1233

 write-only properties, 274

 writing

 binary files, 525 - 526

 custom attributes, 1220 - 1221

 entries to Windows' application log,
 541 - 542

 text files, 524 - 525

 unmanaged code, 7 - 8

 WSDL (Web-Service Definition Language), 1021

 X
 XAML, 751 - 757

 controls, adding to user interface, 753 - 757

 declarative mode, 756 - 757

 imperative mode, 756 - 757

 imported namespaces, 752 - 753

 serialization

 deserialization, 1088

 generic collections, 1087

 Windows Store apps, 752

 XBAP (XAML Browser Application), 774

 XCopy deployment of assemblies, 1262

 XML

 app manifest, 998 - 1001

 LINQ to XML, 730 - 735

 System.Xml.Linq namespace, 730

 XML documents, creating, 732

 XML documents, parsing, 732 - 733

 XML documents, querying, 734 - 735 . See
also XML comments; XML literals

 serialization, 1081 - 1083

 customizing, 1082 - 1083

 deserialization, 1082

 limitations of, 1081

1415zooming code editor in/out

 Settings.settings file, 90 - 92

 WSDL, 1021

 XML comments, 1246

 <c> tag, 1253 - 1254

 <param> tag, 1255

 compiled help files, generating, 1258

 complex documentation, 1251

 documenting permissions requirements,
 1257

 enabling, 1247

 generics, 1258

 implementing, 1248 - 1258

 links to other references, specifying,
 1257 - 1258

 lists, creating, 1256 - 1257

 MSDN recommended tags, 1250 - 1251

 referring to external documentation file,
 1256

 scope of, 1250

 XML literals, 735 - 736 , 737

 embedded expressions, 740 - 743

 iterators, 743

 LINQ queries, 738 - 740

 local type inference, 736 - 737

 null-propagating operator, 740

 XmlSerializer constructor, 1081

 XPS documents, viewing, 866 - 867

 Y-Z
 Zip archives, 532 - 534

 zooming code editor in/out, 30

OTHER UNLEASHED TITLES

C# 5.0 Unleashed

ISBN-13: 9780672336904

ASP.NET Dynamic

Data Unleashed

ISBN-13: 9780672335655

Microsoft System Center

2012 Unleashed

ISBN-13: 9780672336126

System Center 2012

Configuration Manager

(SCCM) Unleashed

ISBN-13: 9780672334375

System Center 2012 R2

Configuration Manager

Unleashed: Supplement

to System Center 2012

Configuration Manager

(SCCM) Unleashed

ISBN-13: 9780672337154

Windows Server 2012

Unleashed

ISBN-13: 9780672336225

Microsoft Exchange

Server 2013 Unleashed

ISBN-13: 9780672336119

Microsoft Visual Studio

2015 Unleashed

ISBN-13: 9780672337369

System Center 2012

Operations Manager

Unleashed

ISBN-13: 9780672335914

Microsoft Dynamics

CRM 2013 Unleashed

ISBN-13: 9780672337031

Microsoft Lync Server

2013 Unleashed

ISBN-13: 9780672336157

Visual Basic 2012

Unleashed

ISBN-13: 9780672336317

Microsoft SQL Server

2014 Unleashed

ISBN-13: 9780672337291

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts, and the most
in-depth coverage of the latest technologies.

informit.com/unleashed

informit.com/sams

XAML Unleashed

ISBN-13: 9780672337222

WPF 4.5 Unleashed

ISBN-13: 9780672336973

Universal Windows Apps

with XAML and C# Unleashed

ISBN-13: 9780672337260

UNLEASHED

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

	Table of Contents
	Introduction
	Code Samples and Software Requirements
	42 Asynchronous Programming
	Overview of Asynchrony
	The Old-Fashioned Way: Event-Based Asynchrony
	The Old-Fashioned Way: The Asynchronous Programming Model
	The Modern Way: The Async Pattern
	Getting Started with Async/Await
	Exception Handling in Async
	Implementing Task-Based Asynchrony
	Cancellation and Progress
	Asynchronous Lambda Expressions
	Asynchronous I/O File Operations in .NET 4.6
	Debugging Tasks
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

