
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672334436
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672334436
https://plusone.google.com/share?url=http://www.informit.com/title/9780672334436
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672334436
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672334436/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana, 46240 USA

John Ray

SamsTeachYourself

24in

Hours

iOS®6
Application
Development

 Sams Teach Yourself iOS ® 6 Application Development in 24 Hours
 Copyright © 2013 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

 ISBN-13: 978-0-672-33443-6

 ISBN-10: 0-672-33443-7

 Library of Congress Cataloging-in-Publication Data i s on file and available upon request.

 Printed in the United States of America

 First Printing January 2013

 Trademarks
 All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

 Warning and Disclaimer
 Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this.

 Bulk Sales
 Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales
 international@pearsoned.com

 Editor-in-Chief

Greg Wiegand

 Acquisitions Editor

Laura Norman

 Development Editor

Keith Cline

 Managing Editor

Kristy Hart

 Senior Project

Editor

Lori Lyons

 Indexer

Cheryl Landes

 Proofreader

Sarah Kearns

 Technical Editor

Anne Groves

 Editorial Assistant

Cindy Teeters

 Interior Designer

Gary Adair

 Cover Designer

Anne Jones

 Compositor

Gloria Schurick

 Contents at a Glance

 Introduction . 1

 HOUR 1 Preparing Your System and iDevice for Development . 3

 2 Introduction to Xcode and the iOS Simulator . 27

 3 Discovering Objective-C: The Language of Apple Platforms 65

 4 Inside Cocoa Touch. 97

 5 Exploring Interface Builder . 125

 6 Model-View-Controller Application Design . 161

 7 Working with Text, Keyboards, and Buttons . 189

 8 Handling Images, Animation, Sliders, and Steppers . 221

 9 Using Advanced Interface Objects and Views . 247

 10 Getting the User’s Attention . 281

 11 Implementing Multiple Scenes and Popovers . 311

 12 Making Choices with Toolbars and Pickers . 363

 13 Advanced Storyboards Using Navigation and
Tab Bar Controllers . 409

 14 Navigating Information Using Table Views and
Split View Controllers . 447

 15 Reading and Writing Application Data . 489

 16 Building Responsive User Interfaces . 533

 17 Using Advanced Touches and Gestures . 571

 18 Sensing Orientation and Motion . 599

 19 Working with Rich Media . 625

 20 Interacting with Other Applications . 673

 21 Implementing Location Services . 707

 22 Building Background-Aware Applications . 737

 23 Building Universal Applications . 763

 24 Application Tracing and Debugging . 781

 Index . 803

 Table of Contents

Introduction 1

Who Can Become an iOS Developer? ..1

Who Should Use This Book? ...2

What Is (and Isn’t) in This Book? ...2

HOUR 1: Preparing Your System and iDevice for Development 3

Welcome to the iOS Platform ..3

Becoming an iOS Developer ...8

Creating and Installing a Development Provisioning Profile15

Running Your First iOS App ..19

Developer Technology Overview ..22

Further Exploration ...23

Summary ...24

Q&A ...24

Workshop ...25

Activities ..25

HOUR 2: Introduction to Xcode and the iOS Simulator 27

Using Xcode ...27

Using the iOS Simulator ..56

Further Exploration ...62

Summary ...62

Q&A ...63

Workshop ...63

Activities ..64

HOUR 3: Discovering Objective-C: The Language of Apple Platforms 65

Object-Oriented Programming and Objective-C ..65

Exploring the Objective-C File Structure ...70

Objective-C Programming Basics ..81

Memory Management and Automatic Reference Counting91

Further Exploration ...93

Contents v

Summary ...94

Q&A ...94

Workshop ...95

Activities ..95

HOUR 4: Inside Cocoa Touch 97

What Is Cocoa Touch? ..97

Exploring the iOS Technology Layers ...99

Tracing the iOS Application Life Cycle...105

Cocoa Fundamentals...106

Exploring the iOS Frameworks with Xcode ..116

Further Exploration ...122

Summary ...122

Q&A ...122

Workshop ...123

Activities ..123

HOUR 5: Exploring Interface Builder 125

Understanding Interface Builder ...125

Creating User Interfaces ..132

Customizing the Interface Appearance ..142

Connecting to Code ...146

Further Exploration ...156

Summary ...157

Q&A ...157

Workshop ...158

Activities ..159

HOUR 6: Model-View-Controller Application Design 161

Understanding the Model-View-Controller Design Pattern161

How Xcode Implements MVC ...163

Using the Single View Application Template ...167

Further Exploration ...184

Summary ...185

Q&A ...186

Workshop ...186

Activities ..187

vi Sams Teach Yourself iOS®6 Application Development in 24 Hours

HOUR 7: Working with Text, Keyboards, and Buttons 189

Basic User Input and Output ..189

Using Text Fields, Text Views, and Buttons ..191

Further Exploration ...218

Summary ...218

Q&A ...219

Workshop ...219

Activities ..219

HOUR 8: HANDLING IMAGES, ANIMATION, SLIDERS, AND STEPPERS 221

User Input and Output ..221

Creating and Managing Image Animations, Sliders, and Steppers223

Further Exploration ...244

Summary ...245

Q&A ...245

Workshop ...246

Activities ..246

HOUR 9: Using Advanced Interface Objects and Views 247

User Input and Output (Continued) ...247

Using Switches, Segmented Controls, and Web Views252

Using Scrolling Views ..268

Further Exploration ...277

Summary ...277

Q&A ...278

Workshop ...278

Activities ..279

HOUR 10: Getting the User’s Attention 281

Alerting the User ..281

Exploring User Alert Methods ...290

Further Exploration ...308

Summary ...309

Q&A ...309

Workshop ...310

Contents vii

HOUR 11: Implementing Multiple Scenes and Popovers 311

Introducing Multiscene Storyboards ...311

Understanding the iPad Popover ..332

Using a Modal Segue ...342

Using a Popover ...355

Further Exploration ...360

Summary ...361

Q&A ...361

Workshop ...362

Activities ..362

HOUR 12: Making Choices with Toolbars and Pickers 363

Understanding the Role of Toolbars ...363

Exploring Pickers ...367

Using the Date Picker ..375

Using a Custom Picker ..391

Further Exploration ...406

Summary ...407

Q&A ...407

Workshop ...408

Activities ..408

HOUR 13: Advanced Storyboards Using Navigation and Tab Bar Controllers 409

Advanced View Controllers ...409

Exploring Navigation Controllers ...411

Understanding Tab Bar Controllers ..417

Using a Navigation Controller ..422

Using a Tab Bar Controller ...433

Further Exploration ...443

Summary ...444

Q&A ...445

Activities ..446

HOUR 14: Navigating Information Using Table Views and
Split View Controllers 447

Understanding Tables ...447

Exploring the Split View Controller (iPad Only) ..456

viii Sams Teach Yourself iOS®6 Application Development in 24 Hours

A Simple Table View Application ...459

Creating a Master-Detail Application ..469

Further Exploration ...487

Summary ...487

Q&A ...488

Workshop ...488

Activities ..488

HOUR 15: Reading and Writing Application Data 489

iOS Applications and Data Storage ..489

Data Storage Approaches ...492

Creating Implicit Preferences ..500

Implementing System Settings ..508

Implementing File System Storage ..520

Further Exploration ...528

Summary ...529

Q&A ...530

Activities ..530

HOUR 16: Building Responsive User Interfaces 533

Responsive Interfaces ..533

Using Auto Layout ..538

Programmatically Defined Interfaces ...555

Swapping Views on Rotation ..562

Further Exploration ...569

Summary ...569

Q&A ...569

Workshop ...570

Activities ..570

HOUR 17: Using Advanced Touches and Gestures 571

Multitouch Gesture Recognition ...571

Adding Gesture Recognizers ..572

Using Gesture Recognizers...574

Further Exploration ...595

Summary ...596

Q&A ...596

Contents ix

Workshop ...596

Activities ..597

HOUR 18: Sensing Orientation and Motion 599

Understanding Motion Hardware ...599

Accessing Orientation and Motion Data ..602

Sensing Orientation ...606

Detecting Tilt and Rotation ...611

Further Exploration ...622

Summary ...623

Q&A ...623

Workshop ...624

Activities ..624

HOUR 19: Working with Rich Media 625

Exploring Rich Media ..625

The Media Playground Application ...640

Further Exploration ...668

Summary ...669

Q&A ...670

Workshop ...670

HOUR 20: Interacting with Other Applications 673

Extending Application Integration ...673

Using the Address Book, Email, Social Networking, and Maps686

Further Exploration ...703

Summary ...704

Q&A ...704

Workshop ...704

Activities ..705

HOUR 21: Implementing Location Services 707

Understanding Core Location ...707

Creating a Location-Aware Application ...714

Using the Magnetic Compass ...724

Further Exploration ...733

Summary ...734

Q&A ...734

x Sams Teach Yourself iOS®6 Application Development in 24 Hours

Workshop ...735

Activities ..735

HOUR 22: Building Background-Aware Applications 737

Understanding iOS Backgrounding ..737

Disabling Backgrounding ...742

Handling Background Suspension ..743

Implementing Local Notifications ..745

Using Task-Specific Background Processing ...748

Completing a Long-Running Background Task ...755

Further Exploration ...760

Summary ...760

Q&A ...761

Workshop ...761

Activities ..762

HOUR 23: Building Universal Applications 763

Universal Application Development ...763

Creating a Universal Application (Take 1) ..767

Creating a Universal Application (Take 2) ..772

Using Multiple Targets ..776

Further Exploration ...778

Summary ...779

Q&A ...779

Workshop ...780

Activities ..780

HOUR 24: Application Tracing and Debugging 781

Instant Feedback with NSLog ..781

Using the Xcode Debugger ..784

Further Exploration ...799

Summary ...800

Q&A ...800

Workshop ...800

Activities ..801

Index 803

 About the Author

 John Ray is currently serving as the Interim Director of the Office of Research Information

Systems for the Ohio State University. He has written numerous books for Macmillan/Sams/

Que, including Using TCP/IP: Special Edition , Teach Yourself Dreamweaver MX in 21 Days ,

 Mac OS X Unleashed , My Mountain Lion MacBook , and Teach Yourself iOS 5 Development in 24

Hours . As a Macintosh user since 1984, he strives to ensure that each project presents the

Macintosh with the equality and depth it deserves. Even technical titles such as Using TCP/IP

contain extensive information about the Macintosh and its applications and have garnered

numerous positive reviews for their straightforward approach and accessibility to beginner

and intermediate users.

 You can visit his website at http://teachyourselfios.com or follow him on Twitter at

@johnemeryray or #iOSIn24.

http://teachyourselfios.com

 Dedication

 This edition of iOS 6 is dedicated to the memory
of iOS 5 and the upcoming birth of iOS 7.

 Acknowledgments

 Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Anne Groves—for

slowly nudging me toward the finish line. As I read and re-read these chapters, I’m amazed

at how you can see the intention behind the seemingly random words that I type. The team

has performed pure magic in transforming the files I’ve submitted into clean, well-styled,

content.

 As always, thanks to everyone who puts up with me over the months of writing. I’m grateful

for your support.

 We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

 We welcome your comments. You can email or write to let us know what you did or didn’t

like about this book—as well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book.

 When you write, please be sure to include this book’s title and author as well as your

name and email address. We will carefully review your comments and share them with the

author and editors who worked on the book.

 Email: consumer@samspublishing.com

 Mail: Sams Publishing

 ATTN: Reader Feedback

 800 East 96th Street

 Indianapolis, IN 46240 USA

 Reader Services

 Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

This page intentionally left blank

 Introduction

 When you pick up an iOS device and use it, you feel connected. Whether it be an iPad, an

iPhone, or an iPod, the interface acts as an extension to your fingers; it is smooth, comfortable,

and invites exploration. Other competing devices offer similar features, and even sport gadgets

such as styluses and trackpads, but they cannot match the user experience that is iOS.

 When creating iOS and the Xcode tools used to develop for it, Apple considered everything from

interface to application performance and battery life. There is always the expectation that, no

matter what, the device will remain responsive and usable. As a developer, does this mean that

there are rules to follow? Absolutely. But, by following these rules, you can create applications

that are interactive works of art for your users to love—not software they will load and forget.

 Through the App Store, Apple has created the ultimate digital distribution system for iOS appli-

cations. Programmers of any age or affiliation can submit their applications to the App Store

for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-feature

applications have been built for everything from pre-K education to retirement living. No matter

what the content, with a user base as large as the iPhone, iPod Touch, and iPad, an audience

exists.

 Each year, Apple introduces new devices—bringing larger, faster, and higher-resolution capabili-

ties to the iOS family. With each new hardware refresh come new development opportunities

and new ways to explore the boundaries between software and art.

 My hope is that this book brings iOS development to a new generation of developers. Teach

Yourself iOS 6 Development in 24 Hours provides a clear and natural progression of skills develop-

ment, from installing developer tools and registering your device with Apple, to submitting an

application to the App Store. It’s everything you need to get started in 24 one-hour lessons.

 Who Can Become an iOS Developer?
 If you have an interest in learning, time to invest in exploring and practicing with Apple’s

developer tools, and an Intel Macintosh computer running Mountain Lion, you have everything

you need to begin creating software for iOS.

 Developing an app won’t happen overnight, but with dedication and practice, you can be writ-

ing your first applications in a matter of days. The more time you spend working with the Apple

developer tools, the more opportunities you’ll discover for creating new and exciting projects.

 You should approach iOS application development as creating software that you want to use,

not what you think others want. If you’re solely interested in getting rich quick, you’re likely to

be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of room—and

2 Sams Teach Yourself iOS 6 Application Development in 24 Hours

competition for top sales is fierce.) However, if you focus on building useful and unique apps,

you’re much more likely to find an appreciative audience.

 Who Should Use This Book?
 This book targets individuals who are new to development for iOS and have experience using

the Macintosh platform. No previous experience with Objective-C, Cocoa, or the Apple devel-

oper tools is required. Of course, if you do have development experience, some of the tools and

techniques may be easier to master, but the author does not assume that you’ve coded before.

 That said, some things are expected of you, the reader. Specifically, you must be willing to

invest in the learning process. If you just read each hour’s lesson without working through the

tutorials, you will likely miss some fundamental concepts. In addition, you need to spend time

reading the Apple developer documentation and researching the topics presented in this book.

A vast amount of information on iOS development is available, but only limited space in this

book. Therefore, this book covers what you need to forge your own path forward.

 What Is (and Isn’t) in This Book?
 The material in this book specifically targets iOS release 6 and later on Xcode 4.5 and later.

Much of what you’ll learn is common to all the iOS releases, but this book also covers several

important areas that have only come about in recent iOS releases, such as gesture recognizers,

embedded video playback with AirPlay, Core Image, social networking, multitasking, universal

(iPhone/iPad) applications, and more!

 Unfortunately, this is not a complete reference for the iOS application programming inter-

faces (APIs); some topics just require much more space than this book allows. Thankfully, the

Apple developer documentation is available directly within the free tools you install in Hour

 1 , “Preparing Your System and iDevice for Development.” In many hours, you’ll find a section

titled “Further Exploration.” This identifies additional related topics of interest. Again, a willing-

ness to explore is an important quality in becoming a successful developer.

 Each coding lesson is accompanied by project files that include everything you need to compile

and test an example or, preferably, follow along and build the application yourself. Be sure to

download the project files from this book’s website at http://teachyourselfios.com . If you have

issues with any projects, view the posts on this site to see whether a solution has been identified.

 In addition to the support website, you can follow along on Twitter! Search for #iOSIn24 on

Twitter to receive official updates and tweets from other readers. Use the hashtag #iOSIn24 in

your tweets to join the conversation. To send me messages via Twitter, begin each tweet with

@johnemeryray.

http://teachyourselfios.com

 HOUR 16
 Building Responsive

User Interfaces

 What You’ll Learn in This Hour:

 How to make an application “responsive”

 Using Auto Layout to enable automatic resizing and rotation

 Creating UI elements programmatically for the ultimate control

 How to swap views for landscape and portrait viewing

 You can use almost every iOS interface widget available, create multiple views and view control-

lers, add sounds and alerts, write files, and even manage application preferences, but until now,

your applications have been missing a very important feature: responsive interfaces. The ability

to create interfaces that display correctly regardless of your iDevice’s screen size or orientation

is one of the key features that users expect in an application—and the key goal of responsive

interface design.

 This hour’s lesson explores the Xcode Auto Layout system and three different ways of adding

rotatable and resizable interfaces to your apps. As you read this hour’s lesson, an important fact

to keep in mind is that there are many different ways to solve the problem of responsive inter-

face design. What works best for you may be entirely different than what I describe here.

 Responsive Interfaces
 Years ago, when I had my first Windows Mobile smartphone, I longed for an easy way to look

at web content in landscape mode. There was a method for triggering a landscape view, but it

was glitchy and cumbersome to use. The iPhone introduced the first consumer phone with on-

the-fly interface rotation that feels natural and doesn’t get in the way of what you’re trying

to do.

 The iPhone 5 shakes things up by introducing the first 4" iPhone screen with a different aspect

ration and resolution than the traditional 3.5" models. Does this mean that you need to worry

about iPhone 3.5" displays, 4" displays, iPad displays, and portrait and landscape orientations

534 HOUR 16: Building Responsive User Interfaces

for each? Nope! The iOS Auto Layout system makes it easy to adapt to different resolution dis-

plays and change your interface layout as your device resolution changes.

 TIP

 Using Auto Layout to adapt between 3.5" and 4" screens is no different from adapting to a device
that rotates between portrait and landscape. The resolution changes on-the-fly in the case of rota-
tion, but you’ll use the same tools to compensate. The only difference is that you can control
whether or not your application handles different orientations—you can’t control whether or not your
users buy a 4" iPhone screen.

 Although you should definitely plan to accommodate all sizes of the iPhone screen in your

iPhone apps, the decision to handle rotation is entirely up to you. Consider how the user will be

interfacing with the app. Does it make sense to force a portrait-only view? Should the view rotate

to accommodate any of the possible orientations the phone may assume? The more flexibility

you give users to adapt to their own preferred working style, the happier they’ll be. Best of all,

enabling rotation is a simple process.

 TIP

 Apple’s user interface guidelines for the iPad strongly encourage the support of any orientation/
rotation: portrait, left landscape, right landscape, and upside-down.

 Enabling Interface Rotation
 The projects that you’ve built to-date have had supported limited interface rotation because of a

single line of code in a single method in your view controller. This is added by default when you

use one of Apple’s iOS templates.

 When an iOS device wants to check to see whether it should rotate your interface, it sends the

 supportedInterfaceOrientations message to your view controller. The implementation of

 supportedInterfaceOrientations just returns a value that describes the supported orientation.

To cover more than one orientation, you just return the list of constants you want to use, sepa-

rated by the | character.

 There are seven screen orientation support constants, as listed here.

 Orientation Orientation Support Constant

 Portrait UIInterfaceOrientationMaskPortrait

 Portrait upside-down UIInterfaceOrientationMaskPortraitUpsideDown

 Landscape left UIInterfaceOrientationMaskLandscapeLeft

Responsive Interfaces 535

 Orientation Orientation Support Constant

 Landscape right UIInterfaceOrientationMaskLandscapeRight

 Any Landscape UIInterfaceOrientationMaskLandscape

 Anything but upside-down UIInterfaceOrientationMaskAllButUpsideDown

 Anything UIInterfaceOrientationMaskAll

 For example, to allow your interface to rotate to either the portrait or landscape left orientations,

you implement supportedInterfaceOrientations in your view controller with the code in

 Listing 16.1 .

 LISTING 16.1 This Method Activates Interface Rotation

 - (NSUInteger)supportedInterfaceOrientations {

 return UIInterfaceOrientationMaskPortrait |
 UIInterfaceOrientationMaskLandscapeLeft ;

 }

 The return statement handles everything. It returns the combination of the two constants that

describe landscape left and portrait orientations.

 NOTE

 In addition to adding this method to your view controllers, you must also choose the orientations
supported by your app by clicking the Supported Interface Orientation icons in the application
summary. This is described in the section “Setting Supported Device Orientations” in Hour 2 ,
“Introduction to Xcode and the iOS Simulator.”

 At this point, take a few minutes and go back to some of the earlier hours and modify this

method in your view controller code to allow for different orientations. Test the applications in

the iOS simulator or on your device. For iPhone apps, try switching between 3.5" and 4" displays.

 Some of the applications will probably look just fine, but you’ll notice that others, well, don’t

quite “work” in the different screen orientations and sizes, as shown in Figure 16.1 (ImageHop,

from Hour 8 , “Handling Images, Animation, Sliders, and Steppers”).

 Everything we’ve been building has defaulted to a portrait design and, for the iPhone, a 4"

screen, so how can we create interfaces that look good regardless of the orientation and size of

the screen? We obviously need to make some tweaks.

536 HOUR 16: Building Responsive User Interfaces

 Designing Rotatable and Resizable Interfaces
 In the remainder of this hour, we explore several different techniques for building interfaces that

rotate and resize themselves appropriately depending on the device, or when the user changes

the device’s screen orientation. Before we get started, let’s quickly review the different approaches

and when you’d want to use them.

 Auto Layout
 The Xcode Interface Builder (IB) editor provides tools for describing how your interface should

react when it is rotated or when the size of the screen can be variable. It is possible to define a

single view in IB that positions and sizes itself appropriately—no matter what the situation—

without writing a single line of code. This bit of Apple magic is called Auto Layout . It will be your

best friend and worst enemy in creating responsive interfaces.

 Using Auto Layout should be the starting point for all interfaces. If you can successfully define

portrait and landscape modes in a single view in the IB editor, your work is done.

 Unfortunately, Auto Layout doesn’t work well when there are many irregularly positioned inter-

face elements. A single row of buttons? No problem. Half a dozen fields, switches, and images all

mixed together? Probably not going to work.

Add a View Controller.

 FIGURE 16.1
 Enabling an orientation doesn’t mean it will look good.

Responsive Interfaces 537

 Programming Interfaces
 As you’ve learned, each UI element is defined by a rectangular area on the screen: its frame

property. If we programmatically define an application interface, we can make it into anything

we want. Although this might sound challenging, it’s actually very simple and very effective for

creating interfaces that vary dramatically between different sizes and orientations.

 For example, to detect when the interface rotates, we can implement the method didRotate-

FromInterfaceOrientation in our view controller. The view controller property interface

Orientation will tell us the current orientation of the interface, by containing one of these four

constants:

 Orientation Current Orientation Constant

 Portrait UIInterfaceOrientationPortrait

 Portrait upside-down UIInterfaceOrientationPortraitUpsideDown

 Landscape left UIInterfaceOrientationLandscapeLeft

 Landscape right UIInterfaceOrientationLandscapeRight

 The drawback to doing everything in code is that you are doing everything in code. It becomes

very difficult to prototype interface changes and visualize what your final interface will look like.

In addition, it is harder to adapt to changes in the future. It’s best, in my opinion, to use a com-

bination of Auto Layout with hand-coded interfaces to provide the best flexibility and speed of

development.

 Swapping Views
 A more dramatic approach to changing your view to accommodate different screen orientations

is to use entirely different views for landscape and portrait layouts. When the user rotates the

device, the current view is replaced by another view that is laid out properly for the orientation.

 This means that you can define two views in a single scene that look exactly the way you want,

but it also means that you must keep track of separate IBOutlets for each view. Although it is

certainly possible for elements in the views to invoke the same IBActions , they cannot share the

same outlets, so you’ll potentially need to keep track of twice as many UI widgets within a single

view controller.

 NOTE

 To know when to change frames or swap views, you will be implementing the method didRotate-
FromInterfaceOrientation in your view controller. This message is sent to a view controller when
the interface has finished changing orientation. If you want to react prior to the orientation change
taking place, you could implement the willRotateToInterfaceOrientation:duration method.

538 HOUR 16: Building Responsive User Interfaces

 TIP

 Apple has implemented a screen-locking function so that users can lock the screen orientation with-
out it changing if the device rotates. (This can be useful for reading while lying on your side.) When
the lock is enabled, your application will not receive notifications about a change in orientation. In
other words, to support the orientation lock, you don’t need to do a thing.

 Using Auto Layout
 As already mentioned, Auto Layout enables us to build responsive interfaces without writing a

line of code. Because of that, our first tutorial is a series of examples that you can follow along

with, rather than a project that we build. I’ve included several sample storyboard files in this

hour’s Projects folder, but you should definitely get yourself into IB and attempt the examples on

your own.

 NOTE

 You’ll be making changes to the Empty.storyboard file in this example. I recommend copying this file
and making changes to your copies. This will save you the time of having to create a new storyboard
file (or deleing the contents of the current file) each time you want to try something new.

 In addition, the examples in this section all target the iPhone. Why? Because the iPhone screen is
the perfect place for practice. It can change between both portrait and landscape orientations and
resize from 3.5" to 4" displays.

 The Language and Tools of Auto Layout
 When I see something with Auto in the name, I expect that it is going to do things for me: auto-

matically. Auto Layout lives up to this, but not without a reasonably long “getting to know you”

phase. To use Auto Layout effectively, you must understand the terminology and know where to

look for the tools. We spend the next few minutes getting into details, and then walk through a

few examples that should get you started on the way to mastery. (Perhaps of archery or speed

skating. Auto Layout if you’re lucky.)

 Constraint Basics
 Auto Layout works by building a series of constraints for your onscreen objects. Constraints define

placement of objects, distances between objects, and how flexible these relationships are. A ver-

tical constraint for a button, for example, might be along the lines of “keep X many points of

space between this object and the top of the screen” or “keep object Y vertically centered in the

view.” Unfortunately, the language used for positioning can be a bit confusing; you may not be

familiar with these terms:

Using Auto Layout 539

 Leading: The “front” or left side of an object.

 Trailing: The “back” or right side of an object.

 Superview: The view that contains an object. In our examples, this is the “view” that

makes up the scene itself.

 NOTE

 Xcode must always have enough constraints defined for an object that it can determine its horizontal
and vertical position at any point in time (regardless of the screen orientation/size). This means that
if you don’t add constraints of your own (called user constraints and represented by a blue icon),
Xcode will add system constraints automatically (represented by a purple icon).

 For example, try adding a button to the window in the Empty.storyboard file; make sure is

located toward the top-left side of the view and that you’ve resized the button slightly. Notice

that parallel to the button in the document outline hierarchy a new Constraints entry shows up,

as well as a Constraints item within the button object itself, as shown in Figure 16.2 .

 Navigating the Constraints Objects

 Within the view’s Constraints object are two constraints: horizontal space and vertical space

constraint. The horizontal constraint states that the left side of the button will be a certain num-

ber of points from the left edge of the view. This is known as the leading space (versus the space

between the right side and the edge of the view, which is called the trailing space). The vertical

constraint is the distance from the top of the view to the top of the button.

 What constraints are added depend on where the object is in relation to its containing view.

Xcode does its best to choose what constraints make the most sense. If you position a button

near the bottom of the view, for example, it will add a constraint for the distance between the

bottom of the button and the bottom of the view.

 Constraints, however, are more than just entries that tie an object to the view it is within. They

can be flexible, ensuring that an object maintains at least or at most a certain distance from

another object, or even that two objects, when resized, maintain the same distance between one

another.

 TIP

 Alignment of objects is also a constraint, and is managed using the alignment tools you’ve already
learned about. In other words, when you set vertical or horizontal alignments, you’re actually config-
uring constraints that will be maintained regardless of the device’s screen size or orientation!

540 HOUR 16: Building Responsive User Interfaces

 Constraints that set a specific size or distance between objects are called pinning . The flexibility

(or inflexibility of a constraint) is managed by configuring a relationship .

 This brings us to the second constraint object in the document outline: constraints on the object

itself, not on its positioning. When you resize a user interface (UI) element or set constraints on

how the content within it is positioned, Xcode adds (or modifies) a constraint object within the UI

element itself. These constraints determine the width or height of the element. Not surprisingly,

when you’ve got dozens of components in your UI, you’ll have lots of constraints in your docu-

ment outline.

 Viewing and Editing Constraints via the Size Inspector
 While sorting through constraints in the document outline can be a pain, you can quickly view

 all the constraints applied to an element (whether located in the Constraints object on the view

Constraints

 FIGURE 16.2
 The Constraints object represents the positioning relationships within a view, or Constraints on the UI
elements themselves.

Using Auto Layout 541

the element is in, or within the UI element itself) within the Size Inspector (Option-Command-5).

For example, if you’ve added a resized button to the storyboard, opening the Size Inspector

should look something like Figure 16.3 . Here horizontal and vertical positioning for the button

are represented as constraints, as well as the width of the button.

Constraints

 FIGURE 16.3
 Use the Size Inspector to view your constraints.

 Using the gear menu to the right side of each constraint to do one of three things. First, you can

select and edit a constraint. For example, if you pick a width constraint and choose Select and

Edit, Xcode jumps you into the Attributes Inspector, where you can see and adjust the details of

the constraint, as shown in Figure 16.4 .

 The Relation drop-down determines what the constraint is trying to do. Is it trying to keep a dis-

tance or size equal to a value? Greater than or equal to it? Less than or equal? You choose the

relation that gives your interface the flexibility you need. With each relation, you can also set a

constant. This is a measurement, in points, that the relationship will be maintaining.

542 HOUR 16: Building Responsive User Interfaces

 You’ll also notice a Priority slider and a Standard check box (sometimes) appear in the editor.

The Priority slider determines how “strong” the constraint relationship is. There may, for exam-

ple, be instances when multiple constraints must be evaluated against one another. The priority

setting determines the importance of any given constraint. A value of 1000 is a constraint that

is required. If you move the Constraint slider, Xcode shows a description of what to expect at a

given constraint priority.

 The Standard check box lets Xcode use its internal database of spacing to set the recommended

space between two objects. This, in many cases, is preferred because it ensures a consistent

interface.

 In a few minutes, we’ll make use of the editor to configure a few relationships. Trust me, it

makes more sense once you get started.

 TIP

 Constraints can also be edited by selecting them in the design view and opening the Attributes
Inspector. If you’re good at clicking on thin lines, you can do this without first going into the Size
Inspector. I, personally, prefer starting by selecting the UI element, viewing the constraints in the
Size Inspector, then jumping into editing from there.

 The other options available in the gear menu in the Size Inspector are Promote to User

Constraint and Delete. With Promote to User Constraint, you can select a constraint that you

didn’t add manually, turn it into a user constraint. The other option, Delete, removes the con-

straint from the Storyboard. Remember that there must be constraints to describe the object’s

position complete, so if you delete a constraint, don’t be surprised to see Xcode add a new con-

straint back into the storyboard to fill in missing positioning details.

 FIGURE 16.4
 Use the Attributes Inspector to edit constraints.

Using Auto Layout 543

 NOTE

 You can edit system constraints and user constraints, so if the system constraints are serving your
needs, there’s no reason to turn it into a user constraint.

 Content Hugging and Content Compression Resistance
 When viewing an interface object with the Size Inspector, you probably noticed the settings

Content Hugging Priority and Content Compression Resistance Priority. These features are

related to Auto Layout, but what do they do?

 When inspecting an object that is within an Auto Layout XIB, these settings control how closely

the sides of an object “hug” the content in the object and how much the content can be com-

pressed or clipped. Imagine a button that you want to expand horizontally, but not vertically. To

allow horizontal expansion, you’d set horizontal hugging is a low priority. To keep it from grow-

ing vertically, you set vertical hugging to a high priority.

 Similarly, the content (the button label) should not be compressed or clipped at all, so the con-

tent compression resistance settings for both horizontal and vertical compression should be very

high priority.

 You will not often need to adjust these settings beyond their defaults, which IB adds for you.

 TIP

 UI objects like buttons have intrinsic constraints that do not appear in the interface. These are the
sizes that Xcode determines the object should have in order to display your content (such as a but-
ton label or button image). Xcode will automatically try to maintain these constraints unless you
override them with your own user constraints and content compression/hugging settings. Other
objects, such as switches, cannot resize at all, so there’s no tweaking that will cause them to vio-
late their intrinsic constraints. Text views, image views, and other “generic” content holders, how-
ever, will happily resize with no difficulty. You’ll see this behavior in a few minutes.

 I’m Beginning to See How This Works, But How Can You Create
Complex Responsive Layouts with Just These Simple Tools?

 There is no “one way” to build interfaces with Auto Layout, but there is a mindset that will be
helpful as you build your own designs. Specifically, you should start by identifying the interface
elements that you want to anchor somewhere on the screen, regardless of orientation or screen
size. From there, begin looking for the relationships between those elements and the other
objects that make up your interface. Building relationships between objects, rather than trying to
tie each element to specific coordinates within a view, is a good tactic for successful UI design.

544 HOUR 16: Building Responsive User Interfaces

 Example One: Centering Constraints
 Let’s look at a very simple example: a button that stays centered regardless of whether you use

a 3.5" or 4" iPhone (or any iPad), or rotates between portrait and landscape orientations. To do

this, begin by adding and positioning the button:

 1. If you already have a push button added to a window in the Empty.storyboard file, you’re

in good shape. If not, open the file and add one now.

 2. With the button highlighted, select Editor, Align, Vertical Center in Container.

 3. Reselect the button, then choose Editor, Align, Horizontal Center in Container. The layout

should now resemble Figure 16.5 .

 FIGURE 16.5
 Align the button to the vertical and hortizontal centers.

 The constraints that you’ve added show up as dark blue lines in the layout. Dark blue lines indi-

cate user constraints; that is, you added the alignment constraints to the system.

Using Auto Layout 545

 TIP

 If you don’t add your own constraints Xcode will add some for you. In this example, had you dragged
the button into the center of your view until both horizontal and vertical alignment guides appeared,
Xcode would actually have created these same constraints for you! They would be system con-
straints, not user constraints, but they’d do the exact same thing.

 Take a moment to view the constraints on the button via the Size Inspector. Select the button,

then press Command-Option-5; the Size Inspector should show at least two constraints (more if

you changed the size of the button), as shown in Figure 16.6 .

 Toggle between 3.5" and 4" iPhone screens.

 FIGURE 16.6
 Toggle the size of the screen.

 Now try toggling the size of the screen between 3.5" and 4", using the toggle icon shown in

 Figure 16.6 . The button should stay centered, regardless of the screen size. The final test is to try

the interface in another orientation.

 Make sure that the document outline is visible, select the view controller for the scene. Open the

Attributes Inspector (Option-Command-4) and choose Landscape from the Orientation drop-

down menu. IB updates to show the interface in landscape mode. Assuming your constraints are

correct, the button should also properly center itself in the view, as demonstrated in Figure 16.7 .

546 HOUR 16: Building Responsive User Interfaces

Set the simulated
orientation.

 FIGURE 16.7
 The button centers itself, regardless of orientation and screen size.

 That was pretty simple, wasn’t it? Of course, not all your applications will consist of just a single

button (only the best ones). For that reason, we cover a few more examples, starting with resiz-

ing controls.

 Example Two: Expanding Controls
 A common design problem is where you have a series of controls on the screen and they need

to expand to fill the size of the screen (or, in the case of a 3.5" iPhone display, properly shrink to

fit on the screen). For example, let’s create an interface with two text views at the top and a but-

ton at the bottom. The button should always remain anchored at the bottom, but should grow

horizontally to fill the width of the display. The text views should grow or shrink vertically, and

expand horizontally to fill the screen.

 Creating the Interface
 Starting from a fresh copy of Empty.storyboard, follow these steps:

 1. Drag a button to the storyboard, positioning it using the guide at the bottom of the view.

 2. Resize each side of the button by dragging toward the side of the view, and then release

when you see the blue guide appear.

 By using the guides in steps 1 and 2, you’ve created three constraints that anchor to the side and

bottom margins of the view, as shown in Figure 16.8 .

Using Auto Layout 547

 FIGURE 16.8
 These three constraints make the button resize and stay anchored at the bottom, regardless of the screen
size or orientation.

 The constraints that have been automatically created are a good start for the button. These

ensure that the sides of the button are always an equal distance from the sides of the view,

regardless of the orientation. The same goes for the distance from the bottom of the view to the

bottom of the button.

 Next, add two text views to the scene:

 1. Drag two text views to the scene, stacking one on top of the other.

 2. Resize the text views to fill the scene horizontally, until the blue guides appear.

 3. Size the text views vertically until the guides appear to keep the views from overlapping

the button, one another, or the top margin of the scene.

 4. Set the color of the text views to something other than white so that they are easier to see.

Your finished view should look like Figure 16.9 .

 The top text view has constraints generated to attach it to the top of the view and the sides of

the view. The bottom text view has constraints that keep it a set distance from the sides of the

view and the button at the bottom. Between the two text views is a constraint that keeps them a

set distance apart. Finally, one of the text views will have a height constraint applied.

548 HOUR 16: Building Responsive User Interfaces

 Setting the Constraints
 Try resizing and rotating the display. What you’ll notice is that resizing it vertically (switching

between 3.5" and 4" screens) likely works okay. What definitely doesn’t is rotating to landscape.

In landscape mode, one of the text views will shrink so much that it isn’t even visible. To make

the scene work right, you need to set some additional constraints.

 Specifically, you need to accomplish these things:

 1. Pin the height of the button so that at no point in time is it resized.

 2. Pick one of the text views to be the first to shrink when the size changes. We set this view

so that its height is greater than or equal to the smallest size we want it to reach. I will use

the top view for this purpose and set its minimum height to 100 points or greater.

 3. Set a fixed width on the bottom text view (I’ll use 210 points) so that it doesn’t change size.

 But , we need to set its priority to less than 1000 (the default). This lets the text view change

 FIGURE 16.9
 You’ve added three UI elements and quite a few system constraints.

Using Auto Layout 549

sizes in an extreme situation. That “extreme situation” would otherwise occur in landscape

mode where the top view would try to maintain a height of 100 points but the bottom

view’s fixed height of 210 would force a condition where both can’t hold.

 Begin by selecting the button and choosing, Editor, Pin, Height from the menu bar. Simple

enough!

 Next, choose the top text view and choose Editor, Pin, Height (again). You’ve just created a

height constraint, but it needs to be adjusted so that it is flexible. Select the height constraint

within the design view (or within the size inspector), and then open the Attributes inspector.

 Using the Relation drop-down, choose Greater Than or Equal. Set the constant to 100 (the text

view must be 100 points in height or greater) and leave the priority alone. Your configuration

should look like Figure 16.10 .

 FIGURE 16.10
 Set the relation for the height constraint.

550 HOUR 16: Building Responsive User Interfaces

 Now the top text view will shrink when it needs to, but it can also grow; in fact, until a con-

straint is set on the bottom text view, it can grow too large , pushing the bottom text view until it

is too small in any orientation.

 Select the bottom text view and again add a height constraint (Editor, Pin, Height, yet again).

Select the constraint and make sure that the relation is set to Equal with a constant around 210,

as shown in Figure 16.11 . This time, however, set the priority down to 999. This makes the con-

straint turn into a dotted line (visible in Figure 16.11) showing that the constaint will try to be

maintained, but, if necessary, it can resize to avoid violating other constraints.

 FIGURE 16.11
 Set a height constraint with a priority lower than 1000 to enable the text view to change sizes if absolutely
necessary.

 Go ahead and try resizing the view between 3.5" and 4" iPhone screen sizes and rotating to land-

scape mode. Everything should work like a charm, with the top text view resizing when needed

and the bottom text view resizing when it absolutely has to.

Using Auto Layout 551

 CAUTION

 What If It Doesn’t Work?
 It’s really easy to end up adding constraints you don’t want by inadvertantly dragging things around
in your view. If something doesn’t appear to be working, it’s likely because there are extra height
constraints. Look for multiple height constraints (or any others that look out of place) and delete
what you didn’t intentionally add.

 TIP

 Combining multiple constraints with variable relationships, like this, is what you need to do to
accommodate complex interfaces. Don’t be shy about trying different relationships and priorities to
see how they interact. There isn’t a “recipe” for making effective Auto Layout designs. Spend a few
hours playing with the tools—laying out interfaces in different ways. Hands-on is the only way you’ll
get the experience you need to be comfortable with Auto Layout.

 Example Three: Variable and Matching Sizes
(and Auto Layout Craziness!)
 Okay, one more quick exercise to round things out. I promise this one is easier than the last.

This time, we add three buttons in a horizontal line, and we add enough constraints to make the

buttons all resize equally when we shift to a landscape mode.

 CAUTION

 They’re My Constraints, Not Yours, Xcode!
 When I say “Auto Layout craziness,” I mean it. Even if you aren’t building the example, be sure to
read through this section to understand how Xcode can sometimes, without warning, start rewriting
your Auto Layout constraints and wreaking havock on your work.

 Let’s make this happen! Create a new copy of the Empty.storyboard document, and then drag

three buttons into the horizontal line on the screen. Label the buttons Button A , Button B , and

 Button C , as shown in Figure 16.12 .

552 HOUR 16: Building Responsive User Interfaces

 FIGURE 16.12
 Add three buttons, nothing more.

 You now know enough to make one of the buttons resize, but how could we constrain them so

that all the buttons resize to fill in the screen in landscape mode? These are the constraints that I

came up with:

 1. Align all the buttons to the vertical center in the container. This keeps them centered verti-

cally on the screen.

 2. Pin the Leading Space of Button A to the superview (the edge of the view). This is unneces-

sary if you used a guide to align the left edge of the button and Xcode already added a

constraint tying the edge of the button to the edge of the view.

 3. Pin the Trailing Space of Button C to the superview. Like the first constraint, you don’t

technically need this one if you aligned the right side of the button to a guide and Xcode

added a constraint for you.

 4. Pin the Horizontal Spacing between Button A and Button B.

Using Auto Layout 553

 5. Pin the Horizontal Spacing between Button B and C. (If we stopped here, the center button

(Button B) would stretch while the other buttons would stay the same size.)

 6. Pin the buttons so that they all share the same width. (Select all the buttons, and then

choose Editor, Pin, Widths Equally.)

 Use the Editor menu to add these constraints to your project; you should know how to do it by

now. There is no need to adjust the priority or relationships in this case. Your finished layout will

hopefully be similar to Figure 16.13 (one of the = constraints may be on a different button. This

is fine). Save your work before continuing .

 FIGURE 16.13
 Add these constraints to your scene.

 Now, here’s where it gets interesting (wake up!). When you rotate the view to landscape, all the

buttons should resize equally and fill in the space across the screen, as shown in Figure 16.14 .

554 HOUR 16: Building Responsive User Interfaces

 FIGURE 16.14
 The buttons’ constraints force them to spread out across the screen and match sizes.

 This is exactly what we want. But , what happens when you rotate back to a vertical position?

Chances are that the buttons get all weird looking and overlap. Switch back and forth between

horizontal and landscape orientations, and they may get even worse.

 So, what’s going on here? Xcode is being a pain, that’s what. When you switch to landscape, it is

rewriting the constraints as if you designed the view in landscape mode. You actually lose work

and constraint logic depending on how the complex your interface is.

 To deal with this bit of insanity, just use Command-Z to undo the switch to landscape orienta-

tion after validating that the interface looks okay. As long as it looks good in your original view

and when it first switches to landscape, you’re in good shape. The compiled view used in your

actual application will work just fine (even if it switches back and forth between portrait and

landscape orientations).

 Wait, There’s More

 There is much more to the Auto Layout system than can be described in an hour. Be sure to
explore the Pin menu to see the different types of constraints that you can put in place. Width/
height constraints enforce a given width or height on an object. Equal width/height constraints
ensure multiple objects maintain an equal width or height. The leading/trailing space pinnings tie
the left side of an object to the left side of its parent view (leading), or the right side of an object
to the right side of its parent view (trailing).

 Review Apple’s documentation, starting with Cocoa Auto Layout Guide , for more information.

Programmatically Defined Interfaces 555

 Programmatically Defined Interfaces
 In the previous example, you learned how the IB editor can help quickly create interface layouts

that look as good horizontally as they do vertically and that can resize between the 3.5" and 4"

iPhone displays. Unfortunately, in plenty of situations, IB can’t quite accommodate. Irregularly

spaced controls and tightly packed layouts rarely work out the way you expect. You may also

find yourself wanting to tweak the interface to look completely different—positioning objects that

were at the top of the view down by the bottom and so on.

 In cases like this, consider implementing the UI (or portions of it) completely in code. But, what

about the nice and neat drag-and-drop approach? Well, using code isn’t as convenient as draw-

ing your interface in IB, but it isn’t difficult. We’re going to move to a project that is the exact

opposite of our last few examples—rather than building a responsive interface without code,

we’re going to only use code to create an interface.

 Implementation Overview
 In this tutorial, we create a very simple application with three UI elements: two buttons (Button

A and Button B) and a label. The buttons trigger a method to set the label to the title of the

button. Most important, however, is that the interface reacts properly to orientation and size

changes.

 In the portrait orientation, the buttons are drawn with the label sandwiched between them. In

landscape, the buttons move closer to the bottom, and the label repositions above them. The

final output will resemble Figure 16.15 .

 Take note that the positioning of the buttons and the label cannot be handled in Auto Layout

(at least not through any straightforward approach). When you encounter issues that can’t be

solved in Auto Layout, there’s no harm in coding your way out of the forest.

 To handle the rotation and resizing of the objects, we use the bounds property of the scene’s

view. This gives us the width and height of the device corresponding to whatever orientation it is

in. We then use these values to position the UI elements on the screen. By basing the positioning

on the bounds , the size of the device screen and orientation are largely irrelevant, as you’ll soon

see.

 Setting Up the Project
 Unlike the previous example, we can’t rely pointing and clicking for the interface, so there is

a bit of code in the project. Once again, create a new single-view iOS application project and

name it AllInCode .

556 HOUR 16: Building Responsive User Interfaces

 Planning the Properties and Connections
 In this exercise, you manually resize and reposition three UI elements: two buttons (UIButton)

and one label (UILabel). Although we aren’t creating these with outlets, we define properties for

them: buttonA , buttonB , and theLabel should suffice.

 Why Aren’t You Using Private Instance Variables?

 Good question. You’re welcome to do this, exactly as we have in some of our other projects. In
this case, however, it might be useful for our view controller to expose these other elements so
that they could be used by other classes. This also matches how IB itself handles UI elements. If
you disagree with this approach, no worries; instance variables will work just fine.

 We also implement a method: handleButton , which updates the onscreen label to show the

title of a button that was tapped. Like the properties, this won’t be declared using IB, but we’ll

be using it just like an IBAction . We also add two additional methods, initInterface and

 updateInterface , to handle setting up and updating the interface, respectively. These will be

triggered by a change in orientation, so our next step is to set up the project to properly handle

orientation changes.

 FIGURE 16.15
 Buttons resize and reposition appropriately (all handled in code).

Programmatically Defined Interfaces 557

 Enabling Orientation Changes
 For this project, enable support of all orientations. To do this, start by updating the project

summary (click the blue project icon at the top of the project navigator) and select all the

device orientations within the Supported Interface Orientations section. Next, add the sup-

portedInterfaceOrientations method to ViewController.m and have it return the constant

 UIInterfaceOrientationMaskAll , as shown in Listing 16.2 .

 LISTING 16.2 Support All Interface Orientations

 - (NSUInteger)supportedInterfaceOrientations {

 return UIInterfaceOrientationMaskAll ;

 }

 Programming the Interface
 We’ve now reached the point in the project where normally I’d say, “Let’s design the interface.”

This time, however, there isn’t going to be a visual design, just code. In fact, you’ve already seen

the two screenshots that accompany this project, so if you’re just skimming pictures, you’d better

flip through a few more pages.

 Defining Properties and Methods
 We start by defining the properties and methods that the view controller will be using. Recall

that we’re adding three properties: buttonA , buttonB , and theLabel . We’ also have three

methods that we should prototype in ViewController.h: initInterface , updateInterface , and

 handleButton .

 Edit ViewController.h, adding the properties and method prototypes, as shown in Listing 16.3 .

 LISTING 16.3 Add the Properties and Method Prototypes to ViewController.h

 #import <UIKit/UIKit.h>

 @interface ViewController : UIViewController

 @property (weak,nonatomic) UIButton *buttonA;

 @property (weak,nonatomic) UIButton *buttonB;

 @property (strong,nonatomic) UILabel *theLabel;

 - (void)initInterface;

 - (void)updateInterface;

 - (void)handleButton:(id)sender;

 @end

558 HOUR 16: Building Responsive User Interfaces

 Look closely and you’ll notice that theLabel is set to use a strong property reference.

Unfortunately, this is a result of overzealous memory cleanup by ARC. If we use weak instead,

the label will actually be removed from memory before we can even get it onto the screen. Using

 strong ensures that the label sticks around as long as the ViewController object is active.

 Everything else should look pretty straightforward. The initInterface and updateInter-

face methods don’t take any arguments or return any values. The handleButton method is

styled after a typical IBAction because it will behave exactly like a typical action; it’s just being

defined by hand rather than being built for us.

 Initializing the Interface Properties
 The next step is to add the initInterface method to ViewController.m. The purpose of this

method is to configure all the interface elements (the two buttons and the label) so that they’re

ready to be added to the interface, but not display them just yet.

 By keeping the display logic separated from the initialization logic, we can build a method that

can be called at any time to update the interface. This method, aptly named updateInterface ,

is called at the end of the initInterface and anytime interface rotation is sensed.

 Add the initInterface method from Listing 16.4 to ViewController.m.

 LISTING 16.4 Prepare the Interface But Don’t Display It Yet

 1: - (void)initInterface {

 2: self . buttonA =[UIButton buttonWithType : UIButtonTypeRoundedRect];

 3: [self . buttonA addTarget : self action : @selector (handleButton:)

 4: forControlEvents : UIControlEventTouchUpInside];

 5: [self . buttonA setTitle : @"Button A" forState : UIControlStateNormal];

 6:

 7: self . buttonB =[UIButton buttonWithType : UIButtonTypeRoundedRect];

 8: [self . buttonB addTarget : self action : @selector (handleButton:)

 9: forControlEvents : UIControlEventTouchUpInside];

 10: [self . buttonB setTitle : @"Button B" forState : UIControlStateNormal];

 11:

 12: self . theLabel =[[UILabel alloc] init];

 13: self . theLabel . text = @"Welcome" ;

 14: [self updateInterface];

 15: }

 This might be the first time we’ve manually created a number of UI elements, but because

you’ve been working with these objects and adjusting their properties for hours, this code

shouldn’t seem completely foreign.

Programmatically Defined Interfaces 559

 Line 2 initializes the buttonA property as a button of type UIButtonTypeRoundedRect —the stan-

dard button we use in our views. Lines 3–4 use the button’s addTarget:action:forControl

Events method to choose what will happen when the Touch Up Inside event occurs for the

button. The @selector directive specifies which method will be called during the event—such as

 handleButton . This is exactly the same as connecting a button to an IBAction in IB.

 Line 5 sets the title for the button to Button A.

 Lines 7–10 repeat the same process for Button B (buttonB).

 Lines 12–13 allocate and initialize a label (theLabel) with the default text Welcome.

 Lastly, line 14 invokes the updateInterface method so that the newly defined user elements

can be placed on the screen. So, what do we do now? Implement updateInterface .

 Implementing the Interface Update Method
 The updateInterface method does the heavy lifting for the application. It checks to see what

the current orientation is, and then it draws content based on the view’s bounds property. By

basing the drawing on the height and width contained within bounds , you can scale to any

screen size at all.

 For example, consider this code snippet:

 float screenWidth;

 float screenHeight;

 screenWidth= self . view . bounds . size . width ;

 screenHeight= self . view . bounds . size . height ;

 This grabs and stores the current screen width and height in the variables screenWidth and

 screenHeight . The dimensions and position of UI objects are determined by their frame , which

is a property of type CGRect . To set the frame of a button property named theButton so that it

filled the top half of the screen, I’d write the following:

 self . theButton . frame = CGRectMake (0.0 , 0.0 ,screenWidth,screenHeight/ 2);

 The first two values of CGRectMake (which create a CGRect data structure) set the origin point at

0,0. The second two parameters determine the width and height of the CGRect . Using screen-

Width sets the button to the same width of the screen and screenHeight/2 sets the height of the

button to half the height of the screen. In an actual implementation, you want to include some

margin around the edges. This is why you’ll see +20 and other values tacked onto my coordi-

nates. Speaking of which, go ahead and implement updateInterface , as shown in Listing 16.5 .

When you’re done, we step through the code.

560 HOUR 16: Building Responsive User Interfaces

 LISTING 16.5 The updateInterface Implementation

 1: - (void)updateInterface {

 2: float screenWidth;

 3: float screenHeight;

 4: screenWidth= self . view . bounds . size . width ;

 5: screenHeight= self . view . bounds . size . height ;

 6:

 7: if (self . interfaceOrientation == UIInterfaceOrientationPortrait ||

 8: self . interfaceOrientation == UIInterfaceOrientationPortraitUpsideDown) {

 9: self . buttonA . frame = CGRectMake (20.0 , 20.0 ,screenWidth- 40.0 ,

 10: screenHeight/ 2 - 40.0);

 11: self . buttonB . frame = CGRectMake (20.0 ,screenHeight/ 2 + 20 ,

 12: screenWidth- 40.0 ,screenHeight/ 2 - 40.0);

 13: self . theLabel . frame = CGRectMake (screenWidth/ 2 - 40 ,

 14: screenHeight/ 2 - 10 , 200.0 , 20.0);

 15: } else {

 16: self . buttonA . frame = CGRectMake (20.0 , 60.0 ,screenWidth- 40.0 ,

 17: screenHeight/ 2 - 40.0);

 18: self . buttonB . frame = CGRectMake (20.0 ,screenHeight/ 2 + 30 ,

 19: screenWidth- 40.0 ,screenHeight/ 2 - 40.0);

 20: self . theLabel . frame = CGRectMake (screenWidth/ 2 - 40 , 20.0 , 200.0 , 20.0);

 21: }

 22:

 23: [self . view addSubview : self . buttonA];

 24: [self . view addSubview : self . buttonB];

 25: [self . view addSubview : self . theLabel];

 26: }

 Lines 2–5 grab and store the current screen size in screenWidth and screenHeight .

 Lines 7–8 checks the interfaceOrientation property of the view controller, and, if it is in one

of the portrait orientations, lines 8–14 are executed. Otherwise, lines 16–20 are evaluated. These

blocks both have the same purpose: defining the frame properties for each of the UI elements

(buttonA , buttonB , and theLabel).

 Lines 8–14 define positions for the buttons so that there are margins on the edges of the screen

and a space in the middle for the label. Lines 16–20 position the buttons lower on the screen

and put the label at the top. The margins and spacing I used is completely arbitrary. You can try

changing these values around to see what effect they have.

 Finally, lines 23–25 add the buttons and label to the view so that they are visible onscreen.

 Everything is now in place for the interface, but we need to take care of three small tasks before

the project is complete. First, we need to make sure that the interface is drawn when the applica-

tion first loads. Second, the interface must update when an orientation change occurs. Third, we

need to implement handleButton to update the label when the buttons are pressed.

Programmatically Defined Interfaces 561

 Drawing the Interface When the Application Launches
 When the application first launches, there isn’t an orientation change to trigger the interface to

be drawn. To make sure there is something on the screen, we need to call initInterface when

the application loads. Add this to viewDidLoad , as shown in L isting 16.6 .

 LISTING 16.6 Initialize the Interface When the Application Loads

 - (void)viewDidLoad

 {

 [super viewDidLoad];

 [self initInterface];

 }

 We’re getting closer. The application will now initialize and display the interface, but it still can’t

adapt to a change in orientation.

 Updating the Interface When Orientation Changes
 To handle orientation changes, the application needs to call updateInterface within an imple-

mentation of didRotateFromInterfaceOrientation . We also need to remove the existing but-

tons, otherwise the old version of the interface will still be visible; this is surprisingly easy to do.

 Add didRotateFromInterfaceOrientation to ViewController.m, as shown in Listing 16.7 .

 LISTING 16.7 Handle Rotation in didRotateFromInterfaceOrientation

 1: - (void)didRotateFromInterfaceOrientation:

 2: (UIInterfaceOrientation)fromInterfaceOrientation {

 3: [[self . view subviews]

 4: makeObjectsPerformSelector : @selector (removeFromSuperview)];

 5: [self updateInterface];

 6: }

 Lines 3–4 use the very cool makeObjectsPerformSelector method on all the subviews in the

scene’s view (all of our UI elements) to send them the message removeFromSuperview . This, as

expected, removes the buttons and label from the view.

 Line 5 calls updateInterface and draws the appropriate version of the interface for whatever

orientation we are currently in.

 Handling the Button Touches
 The last piece of the puzzle is implementing handleButton so that it updates the onscreen label

with the label of the button being touched. This is just a single line, so add Listing 16.8 to the

view controller, and you’re done.

562 HOUR 16: Building Responsive User Interfaces

 LISTING 16.8 Handle Button Touches

 - (void)handleButton:(id)sender {

 self . theLabel . text =((UIButton *)sender). currentTitle ;

 }

 The one line of the implementation uses the sender parameter (typecast as a UIButton) to grab

the title of the button (currentTitle) that was pressed.

 Building the Application
 Build and run the application. It should rotate and resize with no problem. What’s more,

because all of the interface layout was based on the height and width of the view, this same code

will work, without changes, in an iPad or iPhone project.

 I hope this didn’t scare you too much. The purpose of this exercise was to show that responsive

and flexible interfaces can be accomplished in code without it being too much of a hassle. The

biggest challenge is determining how the controls will be laid out and then coming up with the

 CGRectMake functions to define their locations.

 Swapping Views on Rotation
 Some applications display entirely different UIs depending on the device’s orientation. The

iPhone Music application, for example, displays a scrolling list of songs in portrait mode and a

“flickable” Cover Flow view of albums when held in landscape. You, too, can create applications

that dramatically alter their appearance by simply switching between views when the phone is

rotated.

 Our last tutorial in this hour is short and sweet and gives you the flexibility to manage your

landscape and portrait views all within the comfort of the IB editor. What’s more, you can still

use Auto Layout within each of these views to position your interface objects to accommodate

different screen sizes (like the 3.5" and 4" iPhone screens).

 Implementation Overview
 The previous examples used a single view and rearranged it (either through Auto Layout or

code) to fit a different orientation. When the view is too different or complex for this to be fea-

sible, however, you can use two individual views with a single view controller. This is precisely

what we do in this application. We start by adding a second view to the traditional single-view

application, and then we design both views and make sure we can easily access them through

properties in our code.

Swapping Views on Rotation 563

 Once that is complete, we write the code necessary to swap the views when the device rotates.

There is a catch, which you’ll learn about in a bit, but nothing that poses too much of a problem

to coders as experienced as we are.

 Setting Up the Project
 Create a new project named Swapper using the Single View Application template. Although

this includes a single view already (which we’ll use for the default portrait display), we need to

supplement it with a second landscape view.

 Planning the Property and Connections
 This application does not implement any real UI elements, but we need to access two UIView

instances programmatically. One view is for portrait orientation (portraitView) and another

for landscape orientation (landscapeView). We will implement a method to handle orientation

changes, but it will not be triggered by any actions.

 Adding a Degree to Radians Constant
 Later in this exercise, we have to call a special Core Graphics method to define how to rotate

views. The method requires a value to be passed in radians rather than degrees. In other words,

instead of saying we want to rotate the view 90 degrees, we have to tell it we want to rotate

1.57 radians. To help us handle the conversion, we define a constant for the conversion factor.

Multiplying degrees by the constant gets us the resulting value in radians.

 To define the constant, add the following line after the #import line in ViewController.m:

 #define kDeg2Rad (3.1415926 / 180.0)

 Enabling Orientation Changes
 As with the previous example, we need to ensure that the implementation of supportedInter-

faceOrientations is behaving as we expect in our view controller. Unlike the previous imple-

mentation, however, this time we allow the device to rotate only between the two landscape

modes and upright portrait.

 Update ViewController.m to include the implementation in Listing 16.9 .

 LISTING 16.9 Disable the Upside-Down Orientation

 - (NSUInteger)supportedInterfaceOrientations {

 return UIInterfaceOrientationMaskAllButUpsideDown ;

 }

564 HOUR 16: Building Responsive User Interfaces

 Be sure to also go into the project summary and set the allowed orientations to everything but

upside-down.

 Designing the Interface
 When you are swapping views, the sky is the limit for the design. You build them exactly as you

would in any other application. The only difference is that if you have multiple views handled

by a single view controller, you must define outlets that encompass all the interface elements.

 This example demonstrates just how to swap views, so our work will be a piece of cake.

 Creating the Views
 Open the MainStoryboard.storyboard file and drag a new instance of the UIView object from the

Object Library to the document outline, placing it at the same level in the hierarchy as the view

controller, as shown in Figure 16.16 . Don’t put the UIView inside the existing view.

Add a second
view to the scene.

 FIGURE 16.16
 Add a second view to the scene.

 TIP

 It might seem counterintuitive, but there’s no reason that a scene can’t contain multiple views if
they are going to be managed by the same view controller. Only the view nested within the view con-
troller is displayed by default. Additional views have to be displayed manually.

 Now, open the default view and add a label, such as Portrait View ; make sure that it is selected.

Use Editor, Align from the menu bar to set constraints so that it is aligned to the horizontal and

vertical centers of the view. Now set a background color to differentiate the view. That finishes

Swapping Views on Rotation 565

one view, but we still have another to do. Unfortunately, you can only edit a view that is

assigned to a view controller in IB, so we have to be creative.

 Drag the view you just created out of the view controller hierarchy in the document outline,

placing it at the same level as the view controller. Drag the second view onto the view controller

line in the document outline. You can now edit it by adding a unique background color and a

label such as Landscape View . You may want to switch the view controller to simulate a land-

scape mode while making these edits. When the second view is done, rearrange the view hier-

archy again, nesting the portrait view inside the view controller and the landscape view outside

the view controller.

 If you want to make this more interesting, you’re welcome to add other controls and design the

view as you see fit. Our finished landscape and portrait views are shown in Figure 16.17 .

 FIGURE 16.17
 Edit the two views so that you can tell them apart.

 Creating and Connecting the Outlets
 To finish up our interface work, we need to connect the two views to two outlets. The default

view (nested in the view controller) will be connected to portraitView . The second view will be

connected to landscapeView . Switch to the assistant editor and make sure that the document

outline is visible.

 Because we’re dealing with views rather than objects in our interface design, the easiest way to

make these connections is to Control-drag from the respective lines in the document outline to

the ViewController.h file. In addition, unlike with most of the projects in this book, we need to

566 HOUR 16: Building Responsive User Interfaces

create outlets with the storage set to Strong; otherwise, ARC will conveniently get rid of the views

when they aren’t visible.

 Control-drag from the default (nested) view to below the @interface line in ViewController.h.

Create a new outlet for the view called portraitView , with the storage set as Strong. Repeat

the process for the second view, naming the connection landscapeView as demonstrated in

 Figure 16.18 .

 FIGURE 16.18
 Connect the views to corresponding outlets using a storage type of Strong.

 Implementing the Application Logic
 For the most part, swapping views is actually easier than the reframing logic we implemented

in the last project—with one small exception. Even though we designed one of the views to be in

landscape view, it doesn’t “know” that it is supposed to be displayed in a landscape orientation.

 Understanding the View-Rotation Logic
 For a landscape view to be successfully swapped onto the screen, we need to rotate it and define

how big it is. The reason for this is that there is no inherent logic built in to a view that says

“hey, I’m supposed to be sideways.” As far as it knows, it is intended to be displayed in portrait

mode but has UI elements that are pushed off the sides of display.

 Each time we change orientation, we go through three steps: swapping the view, rotating the

view to the proper orientation through the transform property, and setting the view’s origin and

size via the bounds property.

Swapping Views on Rotation 567

 For example, assume we’re rotating to landscape right orientation:

 1. First, we can grab the current view size (after rotation) by accessing and storing

 self.view.bounds . This can be used later to make sure that the new view is set to the

proper size:

 currentBounds=self.view.bounds;

 2. Second, we swap out the view by assigning self.view , which contains the current view

of the view controller, to the landscapeView property. If we left things at that, the view

would properly switch, but it wouldn’t be rotated into the landscape orientation. A land-

scape view displayed in a portrait orientation isn’t a pretty thing. For example:

 self.view=self.landscapeView;

 3. Next, to deal with the rotation, we define the transform property of the view. This prop-

erty determines how the view will be altered before it is displayed. To meet our needs, we

have to rotate the view 90 degrees to the right (for landscape right), –90 degrees to the left

(for landscape left), and 0 degrees for portrait. As luck would have it, the Core Graphics

C function, CGAffineTransformMakeRotation() , accepts a rotation value in radians and

provides an appropriate structure to the transform property to handle the rotation. For

example:

 self.view.transform=CGAffineTransformMakeRotation(deg2rad*(90));

 NOTE

 Note that we multiply the rotation in degrees (90, –90, and 0) by the constant kDeg2Rad that we
defined earlier so that CGAffineTransformMakeRotation() has the radian value it expects.

 4. The final step is to set the bounds property of the view to the bounds that we stored in step

1. For example:

 self.view.bounds=currentBounds;

 Now that you understand the steps, let’s take a look at the actual implementation.

 Adding the View-Rotation Logic
 All the rotation magic happens within a single method: supportedInterfaceOrientations.

 Open the ViewController.m file and implement the method, as shown in Listing 16.7 .

568 HOUR 16: Building Responsive User Interfaces

 LISTING 16.10 Rotate the View into the Proper Orientation

 1: - (void)didRotateFromInterfaceOrientation:

 2: (UIInterfaceOrientation)fromInterfaceOrientation {

 3:

 4: CGRect currentBounds= self . view . bounds ;

 5:

 6: if (self . interfaceOrientation == UIInterfaceOrientationLandscapeRight) {

 7: self . view = self . landscapeView ;

 8: self . view . transform = CGAffineTransformMakeRotation (kDeg2Rad *(90));

 9: } else if (self . interfaceOrientation == UIInterfaceOrientationLandscapeLeft) {

 10: self . view = self . landscapeView ;

 11: self . view . transform = CGAffineTransformMakeRotation (kDeg2Rad *(- 90));

 12: } else {

 13: self . view = self . portraitView ;

 14: self . view . transform = CGAffineTransformMakeRotation (0);

 15: }

 16: self . view . bounds =currentBounds;

 17: }

 Line 4 grabs the current bounds of the scene’s view after the rotation has occurred, and stores it

in currentBounds .

 Lines 6–8 handle rotation to the right (landscape right). Lines 9–11 deal with rotation to the left

(landscape left). Finally, lines 13–14 configure the view for the default orientation, portrait.

 In the very last step, line 16, the bounds of the view we swapped in are set to the currentBounds

that we stored when the method started.

 NOTE

 Although we used an if-then-else statement in this example, you could easily use a switch
structure instead. The toInterfaceOrientation parameter and orientation constants are integer
values, which means they can be evaluated directly in a switch statement.

 TIP

 In this hour’s exercises, we used didRotateFromInterfaceOrientation to detect and react to a
change in orientation. If you’d prefer to being reacting immediately prior to iOS adjusting the orienta-
tion, you can use the method willRotateToInterfaceOrientation:duration instead.

 Building the Application
 Save the implementation file, and then run and test the application. As you rotate the device or

the iOS simulator, your views should be swapped in and out appropriately. This approach gives

Q&A 569

you a good combination of flexibility while keeping the benefits of Auto Layout. Unfortunately,

it also means that you have to manage twice as many objects in your code.

 When designing your own applications, you need to strike a balance between interface flexibility

and code complexity. In some cases, it’s just easier to design a different scene and use a second

view and view controller to handle other orientations.

 Further Exploration
 Although we covered several different ways of working with rotation in the iPhone interface, you

may want to explore additional features outside of this hour’s lesson. Using the Xcode documen-

tation tool, review the UIView instance methods. You’ll see that there are additional methods

that you can implement, such as willAnimateRotationToInterfaceOrientation:duration ,

which is used to set up a single-step animated rotation sequence. What’s more, you can combine

these methods with segues—programmatically triggering a segue to a new scene when an orien-

tation event occurs.

 In short, there are a number of ways to create interfaces that do anything you want. It’s a good

idea to practice the techniques discussed here to learn what will work best for your projects.

Summary
 iDevices are all about the user experience—a touchable display, intuitive controls, and now,

rotatable and resizable interfaces. Using the techniques described in this hour, you can adapt to

almost any type of rotation scenario. To handle interface size changes without a line of code, for

example, you can take advantage of the Auto Layout. For more complex changes, however, you

might want to programmatically define your onscreen elements, giving you complete control

over their size and placement. Finally, for a good balance in flexibility, you can create multiple

different views and swap them as the device rotates.

 By implementing rotation and size-aware applications, you give your users the ability to use

their devices in the way that feels most comfortable to them.

 Q&A
 Q. Why don’t many iPhone applications implement the upside-down portrait mode?

 A. Although there is no problem implementing the upside-down portrait orientation using the
approaches described in this hour, it isn’t recommended. When the iPhone is upside-down,
the Home button and sensors are not in the “normal” location. If a call comes in or the
user needs to interact with the phone’s controls, the user will need to rotate the phone
180 degrees—a somewhat complicated action to perform with one hand.

570 HOUR 16: Building Responsive User Interfaces

 Q. How do I get the controls in application XYZ to behave using Auto Layout?

 A. This is a difficult question with no clear answer because there may be dozens of ways of
implementing constraints that have the desired effect. I have implemented Auto Layout con-
straints for 3.5" and 4" iPhone displays in all my sample projects. You may want to take a
look at those to get an idea of how I solved resizing problems (landscape, however, is up to
you!) .

 Workshop

 Quiz
 1. The iDevice interface can rotate through three different orientations. True or false?

 2. How does an application communicate which rotation orientations it supports?

 3. What was the purpose of the kDeg2Rad constant that we defined in the final exercise?

 Answers
 1. False. There are four primary interface orientations: landscape right, landscape left, portrait,

and upside-down portrait.

 2. As long as the the supportedInterfaceOrientations method is implemented in the view
controller, the application identifies which of the four orientations it will operate in.

 3. We defined the kDeg2Rad constant to give us an easy way of converting degrees to radians
for the Core Graphics C function CGAffineTransformMakeRotation() .

 Activities
 1. Edit the Swapper example so that each view presents and processes user input. Keep in

mind that because both views are handled by a single view controller, you must add all the
outlets and actions for both views to the view controller interface and implementation files.

 2. Return to an earlier lesson and revise the interface to support multiple different orienta-
tions and iPhone screen sizes. Use any of the techniques described in this hour’s exercises
for the implementation.

 A

 A chips, 6

 ABPeoplePickerNavigaion-

Controller class, 675

 Accelerate framework, 104

 accelerometers

 described, 7 , 600 - 601

 reading with Core Motion,

604 - 606

 updates to, 617 - 620

 accessibility attributes, setting,

142 - 144

 Accessibility Inspector, 145

 accessing

 instance variables directly, 75

 orientation and motion data,

 603 - 606

 properties inside classes, 75

 variable lists, 796

 accessors, 73

 Accounts framework, 102

 accuracy of code, 183

 action sheet buttons, 304 - 306

 action sheets, 285 - 287 , 303 - 306

 actions

 buttons, toggling animations

on and off with, 225 - 226

 creating and connecting in

apps

 BestFriend, 689 - 690

 with custom pickers,

396 - 397

 with the date picker,

381 - 383

 detecting tilt and rotation,

 614 - 616

 flashlight, 502 - 504

 FlowerWeb, 260 - 264

 gesture apps, 583 - 586

 Interface Builder, 151 - 153

 looped animations,

234 - 237

 MediaPlayground,

644 - 645

 with modal segues, 351

 with navigation controllers,

 430 - 431

 scrolling views, 274 - 275

 Single View Application

template, 179 - 182

Index

804 actions

 story creators, 206 - 209

 survey, 523 - 524

 with tab bar controllers,

 438 - 440

 with user alerts, 293 - 295

 defining, 164

 defining in

GenericViewController class,

 428

 described, 148 - 149

 identifying, 175

 triggering with UI elements,

 193

 active calls, simulating toggles

to, 61

 Add Contact button type, 204

 addGestureRecognizer method,

 573

 Address Book framework, 100 ,

 102 , 677 , 691

 address books

 BestFriend app

 building, 702

 creating and connecting

outlets and actions,

689 - 690

 designing the interface,

 688 - 689

 implementing logic in,

 690 - 695

 setting up the project,

 686 - 688

 integrating with apps,

674 - 677

 addresses

 email, populating with current,

 353

 web. See URLs

 alert view buttons, 299 - 301

 alert view fields, 301

 alert view text fields, 302 - 303

 alert views, 282 - 285

 alertBody property, 745

 alerts for users

 action sheets, 285 - 287

 alert views, 282 - 285

 creating apps

 designing the interface,

 293 - 294

 implementing action

sheets, 303 - 306

 implementing alert sounds

and vibrations, 307 - 308

 implementing alert views,

 296 - 303

 setting up the project,

 291 - 292

 System Sound Services,

288 - 290 , 307

 vibrations, 288 , 290

 alertViewStyle property, 283

 aligning objects, 135 - 137 , 539

 alloc message, 83

 allocating objects, 83 - 84

 allowsEditing property, 636

 allowsPickingMultipleItems

property, 662

 Amazon Mobile app, 7

 analyzing apps, 46

 anchors, setting, 380 - 381 , 396

 angle brackets, in protocols, 72

 animated loops

 designing the interface for

 adding Hop buttons, 232

 adding image views, 226

 adding speed output

labels, 232

 building the app, 243

 controlling speed with

sliders, 228 - 231

 copying image views,

227 - 228

 creating and connecting

outlets and actions,

 234 - 237

 implementing application

logic, 237 - 243

 incrementing speed of,

 242 - 243

 setting background images

and colors, 232 - 233

 setting default images,

 226 - 227

 setting the speed,

240 - 242

 starting and stopping,

 239 - 240

 as frames, 227

 setting up the project,

224 - 226

 animation resources, adding to

looped animations, 225

 animationDuration property, 239

 animationImages property, 239

 annotations, maps, 684 - 686 ,

 696 - 699

 APIs (application programming

interfaces), multitasking, 6

 app developers. See iOS

developers

 app icons, setting, 53 - 54

 App ID, 18

 App Store, 2 , 8

How can we make this index more useful? Email us at indexes@samspublishing.com

805apps

 AppDelegate files, 170

 Appearance trait, 198

 appearances

 custom pickers, 369

 table views, 448 - 449

 user interfaces, customizing,

 142 - 145

 Apple Developer Program, joining,

 8 - 12

 Apple Developer Registration

Center, 9

 Apple TV, 4

 application:didFinishLaunching

WithOptions method, 741

 Application category, 29

 application data, storage of, 30 ,

 497 - 498

 application delegate class,

105 , 173

 application logic implementation

in apps

 BestFriend app

 address books, 690 - 695

 email, 700 - 701

 maps, 695 - 699

 social networking,

701 - 702

 detecting tilt and rotation,

 616 - 621

 flashlight apps, 504 - 506

 FlowerWeb app, 248 - 268

 gesture apps, 587 - 595

 location-aware apps, 719 - 723

 long-running background

tasks, 756 - 760

 looped animations, 237 - 243

 with magnetic compass,

726 - 732

 with modal segues, 352 - 353

 with navigation controllers,

 432 - 433

 orientation sensing apps,

 608 - 610

 with popovers, 358 - 360

 scrolling views, 275 - 276

 Single Application View

template, 183 - 184

 story creators, 216 - 217

 survey app, 525 - 528

 swapping views on rotation,

 566 - 568

 with tab bar controllers,

440 - 443

 with table views, 463 - 469

 universal apps, 771 , 774 - 775

 application objects, 107

 application programming inter-

faces (APIs), multitasking, 6

 application resource constraints,

iOS platform, 6

 applicationDidBecomeActive

method, 741

 applicationDidEnterBackground

method, 740 , 741

 applicationIconBadgeNumber

property, 745

 applications. See apps

 applicationWillEnterForeground

method, 741 , 743 - 744

 applicationWillResignActive

method, 741

 applicationWillTerminate method,

 740 , 741

 apps

 building

 looped animations, 243

 with Single Application

View template, 184 - 185

 story creators, 217

 in Xcode, 46 - 50

 closing, 184

 compiling, 211

 creating

 best practices in, 161 - 163

 in Xcode, 168 - 169

 data storage in

 approaches to, 491 - 500

 limiting preferences for,

 489 - 491

 detecting devices running

on, 764

 generating multitouch

events, 59

 identifiers for, 29

 integrating with other apps

 address books, 674 - 677

 BestFriend app, 686 - 702

 email messages, 678 - 680

 maps, 682 - 686

 social networking sites,

 680 - 682

 launching, drawing interfaces

while, 561

 life cycle of, 105 - 106

 projects for, creating and

managing, 28 - 36

 recovering from crashes

of, 61

 running, 19 - 22 , 39 , 105 , 211

 simulating

 esoteric conditions, 60 - 61

 rotations, 60

806 apps

 technology used in

developing, 22 - 23

 testing in iOS Simulator,

launching, 57 - 59

 tracing and debugging

 feedback for, 782 - 783

 with Xcode debugger,

784 - 799

 troubleshooting, 105

 tutorial, 18

 Welcome, 22

 See also projects; specific app

names ; user interfaces

 ARC. See automatic reference

counting

 areas, functional, Xcode, 31 - 32

 ARM processors, 6

 arrays, described, 109 - 110

 arrow directions, popovers,

335 - 336

 assignments, with variables,

75 - 82

 assistant editor mode, 42

 asterisks, in variables, 82

 attributed text fields, 196

 attributes

 bar button, 366

 date picker, 368 - 369

 editing

 buttons, 204 - 205

 text fields, 194 - 196

 text views, 200 - 202

 setting

 accessibility, 142 - 144

 navigation bar item,

414 - 415

 prototype cell, 451 - 452

 slider range, 229 - 231

 stepper range, 231 - 232

 tab bar item, 420 - 434

 tables, 450 - 451

 web view, 259

 strong, 75 - 76

 weak, 75 - 76

 Attributes Inspector, 142 ,

204 , 581

 audio

 adding feedback, 751

 adding resources to

apps, 291

 adding to projects, 34 - 35 ,

631

 implementing directions for,

 750 - 753

 implementing in apps,

307 - 308

 implementing recording and

playback, 649 - 655

 playing, 289 , 307 - 308 , 639

 preparing apps for, 748 - 749

 recording keys, 635

 supported file formats

for, 628

 System Sound Services,

288 - 290 , 307 , 632

 variables and constants,

adding to apps, 749

 AudioToolbox framework, adding

to apps, 291 - 292 , 748

 Auto-Enable Return Key trait, 198

 Auto Layout system

 adapting between varying

sizes of screens, 534

 constraints

 centering, 544 - 546

 content hugging and

content compression

resistance, 543

 described, 538 - 554

 expanding controls,

546 - 551

 navigating Constraints

objects, 539 - 540

 Pin menu, 554

 variable and matching

sizes, 551 - 554

 viewing and editing in Size

Inspector, 541 - 543

 described, 139 - 141 , 538

 designing rotatable and

resizable interfaces, 536

 auto layouts, 575

 autocompletion of code, 38 - 40

 automatic reference counting

(ARC), 92 - 93 , 340 , 639

 autosizing storyboards, 141

 AV audio player, 633 - 634

 AV audio recorder, 634 - 635

 AV Foundation framework ,

101, 632

 AVAudioPlayer class, 633

 AVAudioPlayerDelegate protocol,

 634

 AVAudioRecorder class, 633 , 635

 AVEncoderAudioQualityKey, 635

 AVFormatIDKey, 635

 AVNumberofChannelsKey, 635

 AVSampleRateKey, 635

How can we make this index more useful? Email us at indexes@samspublishing.com

807button attributes

 B

 back button attribute, 415

 background-aware apps

 adding background modes

key, 753 - 754

 backgrounding

 disabling, 742

 types of, 739

 completing long-running back-

ground tasks, 739 , 754 - 760

 handling background

suspension, 743 - 744

 implementing directions for

audio in, 750 - 753

 life cycle methods, 739 - 742

 task-specific background

processing, 739 , 747 - 753

 background image resources, add-

ing to location-aware apps, 715

 background modes key, adding to

apps, 753 - 754

 background processing, task-

specific, 739 , 747 - 753

 background suspension, 743 - 744

 background tasks, long-running,

 739 , 754 - 760

 background touch, hiding

keyboards with, 214 - 215

 backgrounds

 buttons, customizing, 206

 changing colors of, 201

 hiding keyboards by touching,

 214 - 215

 setting for looped animations,

 232 - 233

 badges, tab bar item, 441 - 443

 bar button attributes, 366

 bar button items, 365 , 412

 bar button titles, setting, 485 - 486

 barItem outlet, 438

 bars

 navigation, 412

 tab, 418

 Basic table style, 452

 battery life, 712

 beginGeneratingDeviceOrientation-

Notifications method, 603

 BestFriend app

 building, 702

 creating and connecting

outlets and actions,

689- 690

 designing the interface,

688 - 689

 implementing logic in

 address books, 690 - 695

 email, 700 - 701

 maps, 695 - 699

 social networking,

701 - 702

 setting up the project,

686 - 688

 beta versions

 access to, 8

 Xcode, 13

 blocks

 functional building. See

classes

 in methods, 86 - 87

 Bluetooth, 7

 brackets, in protocols, 72

 breakpoint navigator, 797

 breakpoints, setting, 786 - 796

 build schemes, choosing, 46

 building apps

 BestFriend, 702

 with custom pickers, 406

 with the date picker, 390

 detecting tilt and rotation,

 621 - 622

 flashlight, 506

 FlowerWeb, 268

 with gestures, 595

 location-aware, 723 - 724

 long-running background

tasks, 739, 754 - 760

 looped animations, 243

 with magnetic compass, 733

 with Master-Detail Application

templates, 486

 with navigation controllers,

 433

 with orientation sensing, 610

 with popovers, 360

 programmatically defined

interfaces, 562

 scrolling views, 276

 Settings, 520

 with Single View Application

templates, 184 - 185

 story creators, 217

 swapping views on rotation,

 569

 with tab bar controllers, 443

 with table views, 469

 universal, 771 , 775 - 776

 in Xcode, 46 - 50

 bundle identifiers, 29

 bundles, settings, 494 - 496 ,

511 - 517

 button attributes, editing,

204 - 205

808 button templates

 button templates, implementing,

 209 - 212

 button touches, 561 - 562

 button types, 204 - 205

 buttons

 action sheet, 304 - 306

 alert view, 299 - 301

 bar, 365 , 412 , 485 - 486

 Clear, 195

 constraints of, 543

 Done, hiding keyboards with,

 213 - 214

 editing attributes of, 204 - 205

 editing text in, 415

 with gradients, 190

 Hop, adding to looped

animations, 232

 implementing templates for,

 209 - 212

 purpose of, 113 , 189 - 190

 setting custom images for,

 205 - 206

 styled, adding to user

interfaces, 203 - 204

 tab bar item, as part of

scenes, 420

 toggling animations on and off

with outlets, 225 - 226

 X, 145

 Xcode, 31 - 32

 buttonTitleAtIndex method, 306

 C

 calculations

 dates, 386 - 390

 mathematical operations, 82

 calls, active, simulating toggles

to, 61

 cameras, implementing in apps,

 656 - 659

 cancelButtonTitle parameter,

283 , 286

 canPerformUnwindSegueAction

method, 327

 Capitalize trait, 197 , 199

 case sensitivity, Objective-C, 70

 categories, 68

 Application, 29

 creating, 80

 described, 79

 empty, 78

 overriding methods with, 80

 cell phones, locating devices

with, 44

 cells

 disabling editing of, 483

 displaying in table views, 466

 table, 448 , 451 - 452

 cellular providers, connecting

iPhones and iPads with, 7

 center alignment constraints, 141

 centering, constraints, 544 - 546

 central processing units (CPUs), 6

 CFNetwork framework, 102

 CGRectMake function, values

in, 49

 changing. See editing

 characters

 hiding while typing, 198

 underscore, 72

 chooseImage method, 656 - 657

 choosing

 build schemes, 46

 contacts, address books,

675 - 677 , 691 - 695

 segue styles, 321 , 323

 templates for projects, 28 - 29

 See also pickers

 chosenColor outlet, 149

 circular references, 75

 @class directive, 319

 class files, 170 - 171

 class methods, 68 , 76

 class prefixes, 30 , 171

 classes

 ABPeoplePickerNavigation-

Controller, 675

 accessing properties

inside, 75

 application delegate,

105 , 173

 AVAudioPlayer, 633

 AVAudioRecorder, 633 , 635

 CMMotionManager, 605

 colons in, 72

 core application, 107 - 108

 creating to share, 78

 data type, 109 - 112

 date chooser view controller,

 376

 described, 23 , 67

 EditorViewController, 331

 generic view controller,

424 , 435

How can we make this index more useful? Email us at indexes@samspublishing.com

809code

 GenericViewController, 428

 instance variables, 68

 interface, 113 - 116

 location of code for,

Xcode, 33

 master, 69

 Media Player framework, 626

 MPMediaItem, 626 , 632

 MPMediaItemCollection, 626

 MPMediaPickerController,

 626 , 629 - 631 , 635 - 636 ,

 662 - 668

 MPMoviePlayerController,

 626 - 629

 MPMusicPlayerController,

 626 , 631

 MSURL, 112

 names of, sharing with file

names, 73

 navigation controller, 424

 NSArray, 109 - 110

 NSDate, 112

 NSDictionary, 110 , 634 - 635

 NSMutableArray, 109-110

 NSMutableDictionary, 110

 NSMutableString, 109

 NSNotificationCenter, 628

 NSNumber, 111

 NSObject, 65 , 107

 NSOperationQueue, 605

 NSString, 109

 NSURL, 250 - 251

 NSURLRequest, 250 - 251

 NSUserDefault class, 493

 prewritten, 69

 requestWithURL, 250 - 251

 root, 107

 SLComposeViewController,

 680 - 681

 tab bar controller, 435

 UIActionSheet, 285 - 287

 UIApplication, 107 , 170

 UIBarButtonItem, 412

 UIButton, 82 , 113 , 189

 UIControl, 108

 UIDatePicker, 115 , 368 - 369

 UIDevice, 603

 UIImagePickerController,

635 - 638

 UIImageView, 223 , 239 , 576 ,

 660

 UILabel, 113 , 165 , 174 , 191 ,

 576

 UINavigationBar, 412

 UINavigationController,

411 - 416 , 424

 UINavigationItem, 412

 UIPicker, 115

 UIPickerView, 369 - 374

 UIPopoverController, 115 - 116 ,

 340 - 341

 UIResponder, 108 , 171

 UIResponderStandardEdit-

Actions, 199

 UIScrollView, 251

 UISegmentedControl, 114

 UISlider, 114 , 221

 UIStepper, 114 , 222

 UISwitch, 113

 UITabBar, 418

 UITabBarController, 435

 UITabBarItem, 418 , 420 - 421

 UITapGestureRecognizer, 573

 UITextField, 115 , 190

 UITextView, 115 , 190

 UIView, 108 , 130 , 171

 UIViewController, 108 , 316 ,

 331 , 424 , 775

 UIWindow, 107

 view controller, 108, 171 - 173

 ViewController, 108 , 171 - 173 ,

 331

 See also instances; objects

 Clear button, 195

 clickedButtonAtIndex method,

 306

 CLLocationManagerDelegate

protocol, 708 - 710

 closing

 apps, 184

 Xcode, 14

 CMMotionManager class, 605

 Cocoa framework, 99

 Cocoa Touch

 classes in

 core application, 107 - 108

 data type, 109 - 112

 interface, 113 - 116

 described, 23 , 97 - 99

 roles of in app life cycle,

105 - 106

 UIKit framework as

component of, 105

 Cocoa Touch layer, 100 - 101

 code

 accuracy of, 183

 adding new files to a

project, 34

 angle brackets in, 72

 asterisks in, 82

 colons in, 72 , 76 , 85

810 code

 connecting user interfaces to,

 146 - 156 , 164

 editing and navigating in

Xcode

 activating tabbed editing,

 44

 adding pragma marks, 42

 assistant editor mode,

 43 - 42

 with code completion,

 38 - 40

 finding methods and

properties, 37 - 38

 finding with search

navigator, 41

 managing snapshots,

 44 - 46

 overview, 36 - 37

 keyboard-hiding, adding to

user interfaces, 215 - 216

 plus and minus signs in, 76

 semicolons in, 72

 spaghetti, 162

 stepping through, 786 - 796

 underscore characters in,

 72 , 74

 when and when not to, 410

 code classes, location of in

Xcode, 33

 code completion, 38 - 40

 code libraries, location of in

Xcode, 33

 Code Snippet library, 133

 codecs supported by Apple, 628

 colons

 in classes, 72

 in methods, 76 , 85

 colorChoice outlet, 149

 colors

 background

 changing, 201

 setting for looped

animations, 232 - 233

 setting for status bars, 53

 company identifiers, 29 - 30

 compasses

 digital, 7

 magnetic, See magnetic

compass

 compiling apps, 211

 completing long-running tasks,

 739 , 754 - 760

 components, changing sizes of,

 402 - 403

 compose view, 60 - 61

 Compression Resistance setting,

 139 , 141

 condition-based loops, 90 - 91

 configureView method, 485

 Connection Inspector, 151

 viewing connections in, 586

 connections

 creating in apps

 in apps detecting tilt and

rotation, 614 - 616

 in apps with custom

pickers, 396 - 397

 in apps with magnetic

compass, 726

 in apps with Master-Detail

Application templates,

 474 - 476

 in apps with modal

segues, 351

 in apps with navigation

controllers, 430 - 431

 in apps with orientation

sensing, 607 - 608

 in apps with popovers,

 358

 in apps with tab bar

controllers, 438 - 440

 in apps with the date

picker, 381 - 383

 in apps with user alerts,

 293 - 295

 in BestFriend app,

689 - 690

 to exit and unwind segues,

 325

 in flashlight app, 502 - 504

 in flower apps, 260 - 264

 in gesture apps, 583 - 586

 in Interface Builder,

151 - 153

 in location-aware apps,

 719

 in long-running background

tasks, 755

 in looped animations,

234 - 237

 MediaPlayground app,

 644 - 645

 in scrolling views, 274 - 275

 Settings app, 511

 in Single Application View

template, 179 - 182

 in story creators, 206 - 209

 in survey app, 523 - 524

 universal apps, 770 ,

774 - 775

 planning in apps

 in apps with gestures, 576

 BestFriend app, 687 - 688

How can we make this index more useful? Email us at indexes@samspublishing.com

811Core Graphics framework

 with the date picker, 377

 detecting tilt and rotation,

 612 - 613

 flashlight app, 501

 location-aware apps,

715 - 716

 long-running background

tasks, 754

 looped animations,

225 - 226

 with Master-Detail

Application templates,

 472

 MediaPlayground app, 642

 modal segues, 346

 with navigation controllers,

 427 - 428

 with popovers, 356

 programmatically defined

interfaces, 556

 scrolling views, 270

 Settings app, 509

 Single View Application

templates, 173 - 175

 story creators, 193

 swapping views on

rotation, 563

 with tab bar controllers,

 436

 with table views, 461

 universal apps, 769

 user alert apps, 292

 from user interfaces to code,

 146 - 156 , 164

 viewing in Connection

Inspector, 586

 views through segues, 429

 connectivity, iOS devices, 7

 constants

 audio, adding to apps, 749

 custom picker component,

 393

 degree conversion, 725

 for displaying popovers, 342

 key

 adding to flashlight app,

 501

 adding to Settings app,

 509

 location, adding to location-

aware apps, 716

 radian conversion, 725

 radians, adding degrees to,

 563

 table section, adding to apps

with table views, 461

 Constraint setting, 139

 constraints

 centering, 544 - 546

 content hugging and content

compression resistance,

 543

 described, 538 - 539

 expanding controls, 546 - 551

 Pin menu, 554

 variable and matching sizes,

 551 - 554

 viewing and editing in Size

Inspector, 541 - 543

 Constraints objects, 140 - 141 ,

 539 - 540

 content, remote, loading, 250 - 251

 content compression resistance,

 543

 content hugging, 543

 Content Hugging setting, 139 ,

 141

 content types, web views, 250

 contentViewController property,

 358 , 384

 controlHardware method,

617 - 618

 controllers

 detail view, 484 - 485

 master view, 480 - 484

 navigation

 creating apps with,

423 - 433

 described, 411 - 416

 split view, 456 - 459 , 471 - 472

 tab bar, 417 - 422 , 433 - 443

 view. See view controllers

 controls

 expanding, 546 - 551

 onscreen, 108

 segmented

 adding to apps, 254

 described, 114 , 248 - 249

 using in flower apps, 254 ,

 255 - 256

 convenience methods, 83 - 84

 copy and paste process,

customizing, 199

 copying, image views, 227 - 228

 core application classes, 107 - 108

 Core Audio framework, 101

 Core Bluetooth framework, 104

 core data, 30 , 167

 Core Data layer, 102

 Core Foundation framework, 103

 Core Graphics framework, 101

812 Core Image filters

 Core Image filters, 639 , 659 - 662

 Core Image framework, 101 ,

 638 - 639

 Core Location framework, 103 ,

 695 - 696 , 707 - 716

 Core Motion framework, 103 ,

 612 - 613

 Core Motion motion manager

 initializing, 616 - 617

 reading accelerometer and

gyroscope with, 604 - 606

 Core OS layer, 104

 Core Services layer, 102 - 104

 Core Text framework, 101

 CoreGraphics framework, 100

 correcting errors and warnings,

 48 - 50

 Correction trait, 197 , 199

 costs, Apple Developer

Program, 8

 count-based loops, 89

 counters

 incrementing and displaying,

 432 - 433 , 441

 initializing, 757

 updating, 758

 viewing output of, 783 - 784

 CountingNavigationController

subclass, 424

 cover vertical option, transition

types, 323

 CPUs (central processing units), 6

 crashes in iOS Simulator,

recovering from, 61

 createStory method, 193 ,

216 - 217

 cross dissolve option, transition

types, 323

 curls, page, 323

 current context presentation style,

 323

 Custom button type, 204

 custom images, setting for

buttons, 205 - 206

 custom option, segues, 321

 custom pickers

 appearance of, 369

 creating apps with

 building the app, 406

 creating and connecting

outlets and actions,

396 - 397

 creating segues, 396

 designing the interface,

 394 - 395

 implementing custom

picker view, 399 - 405

 setting up the project,

 392 - 393

 D

 data

 application, storage of, 30 ,

 497 - 498

 core, 30 , 167

 orientation and motion,

accessing, 603 - 606

 passing between scenes,

 329 - 331

 picker, loading, 399 - 400

 reading and writing, 499 - 500

 reusing in other applications,

 162

 sharing between scenes, 416 ,

 422

 data detectors, 201 - 202

 data models, 166 - 167

 data storage

 approaches to

 direct file system access,

 496 - 500

 settings bundles, 494 - 496

 user defaults, 493 - 494

 implementing

 for file systems, 520 - 528

 system settings, 507 - 520

 limiting preferences for,

489 - 491

 data type classes, 109 - 112

 data types

 float, 111

 int, 111

 object, 82 - 83

 primitive, 81 - 82

 Date & Time mode, 369

 date calculation logic,

implementing, 386 - 390

 date chooser scene, 380 ,

384 - 386

 date chooser view controller class,

 376

 date format string, 387

 date method, 112

 Date mode, 369

 date picker

 creating apps with

 building the app, 390

How can we make this index more useful? Email us at indexes@samspublishing.com

813 designing

 creating and connecting

outlets and actions,

381 - 383

 creating segues, 379 - 381

 designing the interface,

 378 - 380

 implementing date calcula-

tion logic, 386 - 390

 implementing scene segue

logic, 383 - 386

 setting up the project,

 376 - 377

 described, 368 - 369

 date picker attributes, 368 - 369

 dates

 determining differences

between, 387 - 390

 viewing time and, 386 - 387

 working with, 112

 debug area, 31 - 32

 debug navigators, 798 - 799

 debugging apps

 feedback from, 782 - 783

 with Xcode debugger, 784 - 799

 defaults

 app displays in iOS Simulator,

 59

 images, setting for looped ani-

mations, 226 - 227

 iPhone screen size, 131

 resetting iOS Simulator to, 58

 sound, preparing audio play-

ers with, 653

 status bar display, 53

 user, data storage, 493 - 494

 degree conversion constants, 725

 degrees, adding to radians con-

stant, 563

 delegate object, 106

 delegate parameter, 283 , 286

 delegate property, 398

 delegates

 creating and setting, 383 - 384

 location manager, 708 - 711 ,

 720 - 723

 mail compose view controller,

 680

 media picker controller,

630 - 631

 navigation controller, 638

 people picker, 675 - 677

 UI image picker controller,

 637 - 638

 deleting. See removing

 designing

 apps with custom pickers

 building the app, 406

 creating and connecting

outlets and actions,

396 - 397

 creating segues, 396

 designing the interface,

 394 - 395

 implementing custom

picker view, 399 - 405

 setting up the project,

 392 - 393

 apps with gestures

 adding gesture recogniz-

ers, 579 - 583

 building the app, 595

 creating and connecting

outlets and actions,

583 - 586

 creating the interface,

 577 - 579

 implementing application

logic, 587 - 595

 setting up the project,

 576 - 579

 apps with magnetic compass

 building, 733

 creating and connecting

outlets, 726

 setting up the project,

 724 - 725

 updating application logic,

 726 - 732

 updating the user

interface, 725

 apps with Master-Detail

Application templates

 building the app, 486

 implementing application

data source, 476 - 480

 implementing master view

controller, 480 - 484

 setting up the project,

 470 - 472

 tweaking the iPad

interface, 472 - 475

 tweaking the iPhone

interface, 474 - 476

 apps with modal segues

 building the app, 354

 creating and connecting

outlets and actions, 351

 creating the interface,

 347 - 349

 creating the modal segue

for, 349

 implementing application

logic, 352 - 353

 setting up the project,

 343 - 347

814 designing

 unwinding back to initial

scene, 350 - 351

 apps with navigation

controllers, 423 - 433

 apps with orientation sensing,

 606 - 610

 apps with popovers, 355 - 360

 apps with tab bar controllers,

 433 - 443

 apps with table views

 building the app, 469

 designing the interface,

 461 - 463

 implementing application

logic, 463 - 469

 setting up the project,

 460 - 461

 apps with the date picker

 building the app, 390

 creating and connecting

outlets and actions,

381 - 383

 creating segues, 379 - 381

 creating the interface,

 378 - 380

 implementing date calcula-

tion logic, 386 - 390

 implementing scene segue

logic, 383 - 386

 setting up the project,

 376 - 377

 apps with user alerts

 creating and connecting

outlets and actions,

293 - 295

 creating the interface, 293

 implementing action

sheets, 303 - 306

 implementing alert sounds

and vibrations, 307 - 308

 implementing alert views,

 296 - 303

 setting up the project,

 291 - 292

 BestFriend app

 building, 702

 creating and connecting

outlets and actions, 689

 creating the interface,

 688 - 689

 implementing logic in,

 690 - 702

 setting up the project,

 686 - 688

 flashlight app

 building the app, 506

 creating and connecting

outlets and actions,

 502 - 504

 creating the interface,

 501 - 502

 implementing application

logic, 504 - 506

 setting up the project, 501

 FlowerWeb app

 adding and configuring

segments, 254 - 255

 adding switches, 257 - 258

 adding web views,

259 - 260

 building the app, 268

 creating and connecting

outlets and actions,

 260 - 264

 implementing application

logic, 248 - 268

 segmented controls,

254 - 256

 setting up the project, 253

 location-aware apps

 building the app, 723 - 724

 creating and connecting

outputs, 719

 creating the view, 716 - 718

 implementing application

logic, 719 - 723

 setting up the project,

 715 - 716

 looped animations

 adding Hop buttons, 232

 adding image views, 226

 adding speed output

labels, 232

 building the app, 243

 changing speed with

steppers, 231 - 232

 controlling speed with

sliders, 228 - 231

 copying image views,

 227 - 228

 creating and connecting

outlets and actions,

234 - 237

 implementing application

logic, 237 - 243

 incrementing speed of,

 242 - 243

 setting background images

and colors, 232 - 233

 setting default images,

 226 - 227

 setting the speed,

240 - 242

How can we make this index more useful? Email us at indexes@samspublishing.com

815development provisioning profile

 setting up the project,

 224 - 226

 starting and stopping,

 239 - 240

 MediaPlayground app

 accessing and playing the

music library, 662 - 668

 creating and connecting

outlets and actions,

644 - 645

design ing the interface,

 642

 implementing audio record-

ing and playback,

649 - 655

 implementing Core Image

filter, 659 - 662

 implementing movie player,

 646 - 650

 implementing photo library

and camera, 656 - 659

 setting up the project,

 640 - 642

 multiscene projects

 controlling model segues

manually, 324

 creating segues, 320 - 323

 exit and unwind segues in,

 325 - 327

 passing data between

scenes, 329 - 331

 preparing the project,

 314 - 319

 popovers

 creating popover segues,

 333 - 336

 displaying manually, 337

 preparation for, 333

 programming popover

displays, 340 - 342

 responding to dismissals

of, 337 - 339

 scenes in tab bar controllers,

 418 - 422

 scrolling views, 269 - 277

 Settings app

 building the app, 520

 creating and connecting

outlets, 511

 creating the interface,

 509 - 510

 creating the settings bun-

dles, 494 - 496 , 511 - 517

 implementing application

logic, 518 - 520

 setting up the project,

 507 - 509

 with Single View Application

templates, 176 - 178

 story creators

 adding styled buttons,

 203 - 204

 adding text fields, 193 - 194

 adding text views, 199

 building the app, 217

 creating and connecting

outlets and actions,

206 - 209

 editing button attributes,

 204 - 205

 editing text field attributes,

 194 - 196

 editing text view attributes,

 199 - 202

 hiding keyboards, 212 - 216

 implementing application

logic, 216 - 217

 implementing button tem-

plates, 209 - 212

 setting custom button

images, 205 - 206

 setting scrolling options,

 203

 setting up the project,

 192 - 193

 survey app

 creating and connecting

outlets and actions,

523 - 524

 designing the interface,

 521 - 522

 implementing application

logic, 525 - 528

 setting up the project, 521

 destinationViewController

property, 384

 destructiveButtonTitle parameter,

 286

 Detail Disclosure button type, 204

 detail scenes, updating, 474 - 476

 detail view, 484 - 485

 detail view controller, 484 - 485

 detailItem method, 484 - 485

 detectors, data, 201 - 202

 developers. See iOS developers

 development devices

 configuring with Xcode, 16 - 19

 registering, 17 , 18

 development preparation

 iOS platform tour, 3 - 7

 overview, 3

 development provisioning profile,

creating and installing, 15 - 19

816 device orientations

 device orientations, setting, 51 - 53

 device preparation

 configuring with Xcode, 16 - 19

 iOS platform tour, 3 - 7

 overview, 3

 device support components,

adding to Xcode, 14

 dictionaries, described, 110

 didRotateFromInterfaceOrienta-

tion method, 561

 digital compasses, 7

 direction image resources, 724

 directives

 @class, 319

 IBAction, 164 , 166

 IBOutlet, 164 - 165

 @implementation, 78

 #import, 71 - 72 , 77 , 319

@ interface, 72 - 73

 @optional, 80 - 81

 @property, 73-75 , 174

 @required, 80 - 81

 directories

 creating groups in, 35

 Xcode, 32

 See also subgroups

 disabling

 backgrounding, 742

 Welcome to Xcode screen, 28

 dismissal method, 337 - 339 , 360

 dismissAnimalChooser action,

 397

 dismissDateChooser action, 382

 displaying. See viewing

 displays

 counters, 432 - 433 , 441

 default status bar, 53

 iOS devices, 4 - 5

 keyboard, customizing with

text input traits, 197 - 199

 maps, 696 - 699

 navigator area, filtering

information in, 33

 Non-Retina

 app icons for, 53

 launch images for, 55 - 56

 popovers, programming,

340 - 342

 Retina

 app icons for, 53

 image views, 223

 launch images for, 55 - 56

 loading high-resolution

images for, 228

 updating, 758

 web views, hiding and

showing, 264 - 265

 doAcceleration method, 619 - 620

 doAlert method, 745

 document outline objects,

130 - 131

 document outlines, storyboards,

 127 - 131

 documentation

 Cocoa Touch, 98

 using tables in apps, 456

 Xcode, 117 - 119

 domain names, using identifiers

for, 29

 Done button, hiding keyboards

with, 213 - 214

 doRotation method, 620 - 621

 doSound method, 307

 dot notation, 74

 downloading, Xcode, 12

 dragging and dropping

 images in Xcode image wells,

 767

 objects, 579

 duplicating. See copying

 E

 earlierDate method, 112

 editing

 attributes

 text fields, 194 - 196

 text views, 200 - 202

 cells, disabling, 482

 code in Xcode

 activating tabbed editing,

 44

 adding pragma marks, 42

 assistant editor mode,

 43 - 42

 with code completion,

 38 - 40

 finding methods and

properties, 37 - 38

 finding with search

navigator, 41

 managing snapshots,

 44 - 46

 overview, 36 - 37

 connections with Quick

Inspector, 153

How can we make this index more useful? Email us at indexes@samspublishing.com

817files

 constraints in Size Inspector,

 541 - 543

 text in buttons, 415

 titles in navigation bars,

414 - 415

 user interfaces

 disabling, 482

 Interface Builder, 135 - 139

 variable states, 791

 viewDidLoad method, 786 - 787

 editor area, 31

 editor scene field, setting initial

scene label to, 353

 EditorViewController class, 331

 email

 BestFriend app

 building, 702

 creating and connecting

outlets and actions, 689

 designing the interface,

 688 - 689

 implementing logic in,

 700 - 701

 setting up the project,

 686 - 688

 integrating with apps,

678 - 680

 email addresses, populating fields

with current, 353

 Empty Application template, 29

 empty categories, 78

 empty files, adding to projects

manually, 34

 empty selections, media picker,

 666

 enterprise developer program, 8

 errors

 correcting, 48 - 50

 location, 710 - 711

 in older device versions, 741

 esoteric conditions, simulating,

 60 - 61

 Event Kit framework, 103

 Event Kit UI framework, 100

 events

 detecting outside fields, 214

 interface rotation, 603

 low-memory, simulating, 61

 multitouch, generating in iOS

Simulator, 59

 Touch Up Inside, 153 , 189

 Exit icon, 129

 exit segues, 324 - 325 , 353

 exiting

 apps, 184

 Xcode, 14

 exits

 described, 313

 preparing view controllers for,

 325 , 347

 expressions

 described, 87 - 88

 making decisions with, 88 - 89

 extensions for files, xcodeproj, 31

 External Accessory

framework, 104

 F

 Facebook, integrating with other

apps, 680 - 682

 feedback

 app tracing and debugging,

 782 - 783

 audio, 751

 iOS devices, 7

 fees, Apple Developer Program, 8

 fields

 alert views, 301

 detecting events outside, 214

 editor scene, setting initial

scene label to, 353

 populating with current email

addresses, 353

 text

 adding to user interfaces,

 193 - 194

 alert view, 302 - 303

 attributed, 196

 editing attributes of,

194 - 196

 plain, 196

 purpose of, 115 , 190

 text entry, alertViewStyle

property, 283

 treating as passwords, 198

 file extensions, xcodeproj, 31

 file paths, data storage, 498 - 499

 file system storage,

implementing, 520 - 528

 File Template library, 133

 files

 AppDelegate, 170

 class, 170 - 171

818 files

 empty, adding to projects

manually, 34

 finding strings in, 41

 icon, universal apps, 766 - 767

 implementation, 77 - 79

 interface

 described, 71

 ending, 76 , 79

 importing, 397

 logical groupings in Xcode

folders, 32 , 33

 MainStoryboard, 172 - 173

 media, adding to projects,

 641 - 642

 names of, sharing with class

names, 73

 new code, adding to projects,

 34

 PNG, as app icons, 54

 removing from projects, 35 - 36

 stored data, direct access to,

 496 - 500

 storyboard, 171 - 173

 structure in Objective-C

 automatic setup of, 79

 categories and protocols,

 79 - 81

 defining methods, 75 - 76

 implementation files,

77 - 79

 #import directive, 71 - 72 ,

 77

 interface (header) files, 71

 @interface directive and

instance variables, 72 - 73

 @property directive and

instance variables, 73 - 75

 supported formats for rich

media, 628

 ViewController, 170 , 174 - 175 ,

 237

 See also resources

 filtering

 information displayed in

project navigator, 33

 search criteria in Xcode

libraries, 119

 search results, 41

 filters

 Core Image, 639 , 659 - 662

 location accuracy and update,

 712

 media picker, 630

 finding

 code with search navigator,

 41

 files in Xcode folders, 32

 information in Xcode library,

 118 - 119

 methods and properties in

symbol navigator, 37 - 38

 sounds, 289

 strings in files, 41

 fireDate property, 745

 first responder, 593 - 594

 First Responder icon, 129

 flashlight app

 building, 506

 creating and connecting out-

lets and actions, 502 - 504

 designing the interface,

501 - 502

 implementing application

logic, 504 - 506

 setting up the project, 501

 flip horizontal option, transition

types, 323

 float data type, 111

 floating-point numbers

 float data type, 111

 initializing strings with, 109

 flowerView outlet, 149

 FlowerWeb app

 designing the interface for

 adding and configuring

segments, 254 - 255

 adding switches, 257 - 258

 adding web views,

 259 - 260

 building the app, 268

 creating and connecting

outlets and actions,

260 - 264

 implementing application

logic, 248 - 268

 segmented controls,

 254 - 256

 setting up the project, 253

 folders

 creating groups in, 35

 Xcode, 32

 See also subgroups

 for loops, 90

 form sheet presentation style,

 323

 Foundation framework, 100

 foundPinch method, 584 ,

 589 - 590

 foundRotation method, 584 ,

590 - 593

 foundSwipe method, 583 , 588

 foundTap method, 573 , 583 , 588

How can we make this index more useful? Email us at indexes@samspublishing.com

819 hardware

 Frame Rectangle setting, 139

 frames

 animations as, 227

 changing, 537

 frameworks

 Address Book, 100 , 102 ,

 677 , 691

 Address Book UI, 674 - 675

 AudioToolbox, adding to apps,

 291 - 292

 AV Foundation, 632 - 635

 Cocoa, 99

 Cocoa Touch layer, 100 - 101

 Core Foundation, 103

 Core Graphics, 101

 Core Image, 101 , 638 - 639

 Core Location , 103 , 695 - 696 ,

 707 - 714 , 715 - 716

 Core Motion, 103 , 612 - 613

 Core OS layer, 104

 Core Services layer, 102 - 104

 exploring with Xcode, 116 - 122

 Map Kit. See Map Kit

framework

 Media layer, 101 - 102

 Media Player, 102 , 626 - 632 ,

 646

 Message UI, 100 , 700

 in templates, 100

 Frameworks subgroup, 33

 free developer accounts, testing

applications with, 15

 full screen presentation style, 323

 functional areas, Xcode, 31 - 32

 functional building blocks. See

classes

 functions

 CGRectMake, values in, 49

 main, 105

 NSLog, 782 - 783 , 788

 UIApplicationMain, 105

 G

 Game Kit framework, 100

 generic view controller classes,

 424 , 435

 GenericViewController class, 428

 gesture recognizers

 adding to projects, 572 - 573

 adding to views, 579 - 583

 responding to, 588 - 593

 gestures

 creating apps with

 adding gesture

recognizers, 579 - 583

 building the app, 595

 creating and connecting

outlets and actions,

583 - 586

 designing the interface,

 577 - 579

 implementing application

logic, 587 - 595

 setting up the project,

 576 - 579

 simulating, 61 , 571

 getFlower action, 149

 getters (accessors), 73

 global positioning systems (GPSs),

 7 , 712

 goBack action, 153

 goForward action, 153

 GPSs (global positioning systems),

 7 , 712

 GPUs (graphics processing

units), 6

 gradients, buttons with, 190

 graphics. See images

 graphics processing units

(GPUs), 6

 groups

 creating, 33 , 35

 logical, files, 32- 33

 Resources, 33

 Supporting Files, 33

 guides, 135 - 136

 gyroAvailable property, 605

 gyroscopes

 described, 7 , 599 - 602

 reading with Core Motion,

 604 - 606

 updates to, 617 - 618 ,

620 - 621

 H

 handler blocks. See blocks

 handles, selection, 136 - 137

 hardware

 motion and orientation

detection

 accelerometers, 7 ,

600 - 601

 gyroscopes, 7 , 599 ,

 601 - 602

 simulating keyboards for, 61

820 header files

 header files. See interface files

 headings

 magnetic compass, 712 - 714 ,

 727 - 732

 table view sections, 466

 height value, 276

help, Quick Help, 119-122

 hideKeyboard method, 214

 hiding

 characters while typing, 198

 functional areas, Xcode, 32

 keyboards, 212 - 216

 web views, 264 - 265

 Welcome to Xcode screen, 28

 Hint attribute, 144

 Hop button, adding to looped

animations, 232

 horizontal constraints, 141

 horizontalAccuracy property, 708

 host method, 112

 hugging, content, 543

 I

 iAd framework, 101

 IBAction directive, 164 , 166

 IBOutlet directive, 164 - 165

 IBOutlet keyword, 74 , 174

 icons

 storyboards, 128 - 129 , 131

 universal apps, 766 - 767

 icons. See images

 id type, 76 , 166

 IDE (integrated development

environment), 27

 identifiers. See IDs

 Identity Inspector, 142 - 144 , 155

 IDs

 bundle, 29

 company, 29 - 30

 developer registration, 9

 restoration, 492

 segues, 322

 view controllers, setting,

326 - 328

 if-then-else statement, 88 - 89

 Image I/O framework, 101

 image picker, 635 - 638 , 656 - 659

 image resources

 adding to gestures, 576

 adding to Settings app, 509

 background, 715

 direction, 724

 Master-Detail Application

templates, 471

 table views, 461

 image views

 adding instance variables to

sizes of, 577

 copying, 227 - 228

 described, 223

 looped animations, 226 ,

238 - 239

 removing constraints from,

 575

 replacing, 587

 image wells, dragging and

dropping images into, 767

 images

 adding to projects, 34 - 35

 dragging and dropping into

Xcode image wells, 767

 high-resolution, loading for

Retina displays, 228

 iOS devices, 4 - 5

 launch, universal apps,

766 - 767

 loading and displaying,

265 - 267

 setting

 application icons, 53 - 54

 for buttons, 205 - 206

 launch images, 55 - 56

 for looped animations,

 226 - 227 , 232 - 233

 tab bar, sizes of, 421

 tab bar item, 435

 See also pictures

 imageView property, 576

 imperative programming, 66 - 67

 implementation files, 77 - 79

@ implementation directive, 78

 implicit preferences, flashlight

app, 500 - 507

 #import directive, 71 - 72 , 77 , 319

 importing, interface files, 383 ,

 397

 incrementCount method, 432

 incrementCountFirst action, 439

 incrementCountSecond action,

 439

 incrementCountThird action, 439

 incrementing

 counters, 432 - 433 , 440 - 441

 integers, 90

 speed, looped animations,

 242 - 243

 tab bar item badges, 441 - 443

 Info Dark button type, 204

How can we make this index more useful? Email us at indexes@samspublishing.com

821 iOS platform

 Info Light button type, 204

 inheritance, 67

 initial scene label, setting to

editor scene field, 353

 initializing

 Core Motion motion manager,

 616 - 617

 interface properties, 558 - 559

 interfaces, when apps load,

 561

 movie players, 646 - 647

 objects, 83 - 84

 strings with values, 109

 timers and counters, 757

 initWithMediaTypes method, 662

 initWithTitle parameter, 283 , 286

 input, iOS devices, 7

 inspecting objects, 141

 inspectors

 Accessibility, 145

 Attributes, 142 , 204

 Connection, 151 , 586

 Identity, 142 - 144 , 155 -

 Quick Help, 120

 Size, 138 - 139 , 541 - 543

 installing

 apps in iOS Simulator, 58

 development provisioning

profile, 15 - 19

 Xcode, 12 - 13

 Xcode documentation

updates, 119

 instance methods, 68 , 76

 instance variables

 accessing directly, 75

 adding to image view

sizes, 577

 declaring with properties, 74

 defining names of, 78

 described, 68

 @interface, 72 - 73

methods , 73, 76

private, 556

 properties compared with,

 427

 @property directive, 73 - 75

 semicolons in, 72

 using instead of properties,

 75

 using properties instead of,

 377

 instances

 described, 68

 location manager, 720 - 734

 tapRecognizer, 573

 See also classes; objects

 instantiation, 68 , 127

 int data type, 111

 integers

 incrementing, 90

 initializing strings with, 109

 integrated development

environment (IDE), 27

 Interface Builder , 125

 creating user interfaces in

 adding objects to views,

 134 - 135

 Auto Layout system,

139 - 141

 connecting to code,

146 - 156

 editing tools, 135 - 139

 Object Library, 131 - 133

 customizing appearances of

user interfaces, 142 - 145

 described, 125 - 126

outlets and actions, 148-153

 storyboards, 127 - 131

 zooming in and out in, 135

 interface classes, 113 - 116

@ interface directive, 72 - 73

 interface files

 described, 71

 ending, 76 , 79

 importing, 383 , 397

 interface properties, initializing,

 558 - 559

 interface rotation events, 603

 interface update method,

559 - 560

 interfaces. See user interfaces

 iOS 6, launch images for, 55

 iOS apps. See apps

 iOS developers

 creating and installing devel-

opment provisioning profiles,

 15 - 19

 development possibilities

for, 3

 equipment needed by, 8

 joining Apple Developer

Program, 8 - 12

 qualifications for 1 - 2

 technology used to create

apps by, 22 - 23

 iOS device preparation

 iOS platform tour, 3 - 7

 overview, 3

 iOS platform

 application resource

constraints, 6

822 iOS platform

 connectivity of, 7

 input and feedback, 7

life cycle, 105-106

 overview, 3 - 4

 screen resolution and

graphical display, 4 - 5

 iOS Simulator

 Accessibility Inspector, 145

 alternate names for, 46

 as an Apple developer tool,

 22

 generating multitouch events

in, 59

 launching applications in,

 57 - 59

 limitations of, 8 , 56

 recovering from crashes in, 61

 removing installed apps from,

 58

 resetting to defaults, 58

 running first app in, 19 - 22

 simulations with

 accelerometers and

gyroscopes, 600

 esoteric conditions, 60 - 61

 gestures, 571

 interface rotations, 60

 user interfaces, 145

 testing applications with, 8 ,

 15

 as time-saver in development,

 56

 iOS technology layers

 Cocoa Touch, 100 - 101

 Core OS, 104

 Core Services, 102 - 104

 Media, 101 - 102

 iPad app icons, 53

 iPad Simulator. See iOS Simulator

 iPad to iPhone targets, 777 - 778

 iPad view, associating iPadView-

Controller class with, 772 - 773

 iPad view controllers, setting up in

universal apps, 772 - 773

 iPads

 chips used in, 6

 connectivity of, 7

 developing projects on, 4

 enforcement of popovers on,

 638

 input and feedback on, 7

 resolution of, 4

 split view controller, 456 - 459

 tweaking interfaces of,

472 - 475

 user interface guidelines for,

 534

 See also popovers

 iPadViewController subclass,

772 - 775

 iPhone Simulator. See iOS

Simulator

 iPhone to iPad targets, 776 - 777

 iPhones

 app icons for, 53

 application resource

constraints, 6

 chips used in, 6

 connectivity of, 7

 default screen size, 131

 developing projects on, 4

 input and feedback on, 7

 iPhone 5, launch images

for, 55

 launch images for, 55

 resolution of, 4 , 5

 sizes of designs, 199

 tweaking interfaces of,

474 - 476

 iPod touch, 4

 iPodMusicPlayer method, 662

 isAvailableForServiceType method,

 681

 issue navigator, correcting errors

and warnings in, 48 - 50

 items

 bar button, 365 , 412

 navigation and bar buttons,

 412

 tab bar, 418

 J

 joining Apple Developer Program,

 8 - 12

 K

 key constants

 adding to flashlight app, 501

 adding to Settings app, 509

 Keyboard trait, 197

 keyboards

 customizing displays with text

input traits, 197 - 199

 hardware, simulating, 61

 hiding, 212 - 216

 iOS devices, 7

 keychains, 18

How can we make this index more useful? Email us at indexes@samspublishing.com

823 looped animations

 keys

 audio recording, 635

 background modes, adding to

apps, 753 - 754

 Main storyboard file base

name, 172

 keywords, IBOutlet, 74 , 165 , 174

 L

 Label attribute, 144

 labels

 described, 37

 initial scene, setting to editor

scene field, 343

 purpose of, 113 , 191

 speed output, adding to

looped animations, 232

 symbol, 38

 languages for programming,

Objective-C, 22

 launch images

 setting, 55 - 56

 universal apps, 766 - 767

 launching

 apps

 drawing interfaces when,

 561

 in iOS Simulator, 57 - 59

 images, universal apps,

766 - 767

 Xcode, 27 - 28

 layers, technology. See iOS

technology layers

 laying out interfaces. See user

interfaces (UIs), creating

 Layout Rectangle setting, 139

 Left Detail table style, 452

 libraries

 code, location of in Xcode, 33

 music, accessing and playing,

 662 - 668

 Object, Interface Builder,

131 - 133

 photo, implementing in apps,

 656 - 659

 Xcode, searching for

information in, 118 - 119

 life cycle, apps, 105 - 106

 life cycle methods, background-

aware apps, 739 - 742

 location accuracy and update

filter, 712

 location constants, adding to

location-aware apps, 716

 location manager delegate,

 708 - 711 , 720 - 723

 location manager instance,

720 - 734

 location services

 Core Location framework,

 103 , 695 - 696 , 707 - 714

 creating apps with magnetic

compass

 building, 733

 creating and connecting

outlets, 726

 setting up the project,

 724 - 725

 updating application logic,

 726 - 732

 updating the user

interface, 725

 creating location-aware apps

 building the app, 723 - 724

 creating and connecting

outputs, 719

 designing the view,

716 - 718

 implementing application

logic, 719 - 723

 setting up the project,

 715 - 716

 locked devices, simulating, 61

 logic. See application logic

implementation

 logical groupings, files, 32 , 33

 long pressing gesture, 572

 long-running tasks, completing,

 739 , 754 - 760

 looped animations

 designing the interface for

 adding Hop buttons, 232

 adding image views, 226

 adding speed output

labels, 232

 building the app, 243

 changing speed with

steppers, 231 - 232

 controlling speed with

sliders, 228 - 231

 copying image views,

 227 - 228

 creating and connecting

outlets and actions,

 234 - 237

 implementing application

logic, 237 - 243

 incrementing speed of,

 242 - 243

824 looped animations

 setting background images

and colors, 232 - 233

 setting default images,

 226 - 227

 setting the speed,

 240 - 242

 starting and stopping,

 239 - 240

 setting up the project,

224 - 226

 loops

 condition-based, 90 - 91

 count-based, 89

 for, 90

 repetition with, 89 - 91

 M

 machines for development,

configuring with Xcode, 16 - 19

 magnetic compass

 creating apps with

 building, 733

 creating and connecting

outlets, 726

recent location, 728

 setting up the project,

 724 - 725

 updating application logic,

 726 - 732

 updating the user

interface, 725

 retrieving headings with,

712 - 714

 magnification, adjusting in

Interface Builder, 135

 mail compose view, 700 - 701

 mail compose view controller

delegate, 680

 main function, 105

 Main storyboard file base name

key, 172

 MainStoryboard file, 172 - 173

 Map Kit framework

 BestFriend app

 creating and connecting

outlets and actions,

689-690

 designing the interface,

 688 - 689

 implementing logic in,

 695 - 699

 setting up the project ,

686- 688

 described, 100

 integrating with other apps,

 682 - 686

 maps

 annotations in, 684 - 686 ,

 696 - 699

 BestFriend app

 building, 702

 creating and connecting

outlets and actions,

689 - 690

 designing the interface,

 688 - 689

 setting up the project,

 686 - 688

controlling display, 696

 integrating with other apps,

 682 - 686

 master class, 69

 Master-Detail Application

template

 creating apps for, tweaking

the iPad interface, 472 - 475

 creating apps with

 building the app, 486

 implementing application

data source, 476 - 480

 implementing master view

controller, 480 - 484

 setting up the project,

 470 - 472

 tweaking the iPhone

interface, 474 - 476

 described, 459

 master scenes, updating,

472 - 475

 master view controller, 480 - 484

 matching sizes, 551 - 554

 mathematical operations, with

variables, 82

 media files, adding to projects,

 641 - 642

 Media layer, 101 - 102

 Media library, 133

 media picker, 629 - 631 , 662 - 668

 media picker controller delegate,

 630 - 631

 Media Player framework, 102 ,

 626 - 632 , 646

 MediaPlayground app

 accessing and playing the

music library, 662 - 668

 creating and connecting out-

lets and actions, 644 - 645

 designing the interface, 642

 implementing audio recording

and playback, 649 - 655

How can we make this index more useful? Email us at indexes@samspublishing.com

825 methods

 implementing Core Image

filter, 659 - 662

 implementing movie player,

 646 - 650

 implementing photo library

and camera, 656 - 659

 setting up the project,

640 - 642

 membership, Apple Developer

Program, 8 - 12

 memory

 cleaning up objects in, 75

 iPhones, 6

 simulating low-memory event,

 61

 menus

 Pin, 554

 Xcode, 31 - 32

 message parameter, 283

 Message UI framework, 100 , 700

 messages

 alloc, 83

 described, 68

 email. See email

 nested, 86

 retain and release, 67 - 68

 sending to objects, 85 - 86

 methods

 addGestureRecognizer, 573

 adding instance variables to,

 80

 application:didFinishLaunching

WithOptions, 741

 applicationDidBecomeActive,

 741

 applicationDidEnterBack-

ground, 740- 741

 applicationWillEnterFore-

ground, 741 , 743 - 744

 applicationWillResignActive,

 741

 applicationWillTerminate, 740 ,

 741

 beginGeneratingDevice-

OrientationNotifications, 603

 blocks in, 86 - 87

 buttonTitleAtIndex, 306

 canPerformUnwindSegue-

Action, 327

 chooseImage, 656 , 657

 class, 68

 class (+), 76

 clickedButtonAtIndex, 306

 colons in, 76 , 85

 configureView, 485

 controlHardware, 617 - 618

 convenience, 83 - 84

 createStory, 193 , 216 - 217

 date, 112

 declaring variables in, 81 - 83

 defining

 Objective-C, 75 - 76

 programmatically defined

interfaces, 557 - 558

 detailItem, 484 - 485

 didRotateFromInterface

Orientation, 561

 dismissal, 337 - 339 , 360

 doAcceleration, 619 - 620

 doAlert, 745

 doRotation, 620 - 621

 doSound, 307

 earlierDate, 112

 finding in symbol navigator,

 37 - 38

 foundPinch, 584 , 589 - 590

 foundRotation, 584 , 590 - 593

 foundSwipe, 583 , 588

 foundTap, 573 , 583 , 588

 hideKeyboard, 214

 host, 112

 implementation of, 78 - 79

 incrementCount, 432

 initWithMediaTypes, 662

 instance, 68 , 76

 interface update, 559 - 560

 iPodMusicPlayer, 662

 isAvailableForServiceType,

 681

 life cycle, background-aware

apps, 739 - 742

 messages and, 68

 newBFF, 691

 numberOfComponentsInPicker-

View, 369

 numberOfSectionsInTableView,

 453

 objectForKey, 110

 overriding with categories, 80

 pause, 662

 pickerView:didSelectRow:

in-Component, 371- 372

 pickerView:numberOfRowsIn-

Component, 369

 pickerView:rowHeightFor-

Component, 373

 pickerview:titleForRow:

forComponent, 371 , 373

 pickerView:widthFor-

Component, 373

826 methods

 play, 662

 playAudio, 654

 playMusic, 667

 prepareForSegue:sender,

 330 - 331

 private, 77 - 78

 protocols and, 68

 providing parameters for, 40

 recordAudio, 652 , 655

 removeConstraints

NSLayoutConstraint, 575

 replacing objects with nil value

in, 85

 required, 81

 resignFirstResponder, 212

 self.presentingViewController,

 331

 semicolons in, 72

 setIncrement, 226

 setLightSourceAlphaValue,

 504 - 505

 setOutput, 183 - 184

 setQueueWithItemCollection,

 662

 setSpeed, 226

 setStartBarHidden, 636

 sharing with #import and

@class directives, 319

 showFromRect, 305

 showResults, 527

 stopAccelerometerUpdates,

 605

 stopGyroUpdates , 605, 618

 storeSurvey, 525 - 526

 stub, 153 - 155

 tableView:cellForRowAtIndex-

Path, 453

 tableView:numberOfRowsIn-

Section, 452

 tableView:titleForHeaderIn-

Section, 453

 toggleButtonAnimation, 226

 typecasting objects for, 84

 UIPopoverController, 342

 valueForProperty, 632

 viewDidAppear, 276 , 587

 viewDidLoad, 209 - 210 , 653 ,

 663 , 750 , 786 - 787

 viewWillAppear:animated, 433

 void type, 76

 MFMailComposeResult value, 680

 MFMailComposeViewController-

Delegate protocol, 680

 minus sign, 76

 modal option, segues, 320

 modal segues

 controlling manually, 324

 creating apps with

 building the app, 354

 creating and connecting

outlets and actions, 351

 creating the modal segue

for, 349

 designing the interface,

 347 - 349

 implementing application

logic, 352 - 353

 setting up the project,

 343 - 347

 unwinding back to initial

scene, 350 - 351

 dismissing, 385

 modal views, described, 313

 model user interface

elements, 282

 Model-View-Controller (MVC)

 application design pattern

 avoiding spaghetti code

in, 162

 described, 161

 Single View Application

template, 167 - 184

 structured design with,

 162 - 163

 described, 23

 implementing in Xcode,

 163 - 167

 models, data, 166 - 167

 modifying. See editing

 motion

 accessing data for, 603 - 606

 hardware for detecting. See

accelerometers; gyroscopes

 tilt and rotation, creating app

detecting, 611 - 622

 movie player, 627 - 629 , 646 - 650

 movies. See videos

 MPMediaItem class, 626 , 632

 MPMediaItemAlbumTitle property,

 632

 MPMediaItemCollection class,

 626

 MPMediaItemPropertyArtist

property, 632

 MPMediaItemPropertyGenre

property, 632

 MPMediaItemPropertyLyrics

property, 632

 MPMediaPickerController class,

 626 , 629 - 631 , 635 - 636 ,

662 - 668

 MPMediaTypeAnyAudio value, 630

How can we make this index more useful? Email us at indexes@samspublishing.com

827 notifications

 MPMediaTypeAudioBook value,

 630

 MPMediaTypeMusic value, 630

 MPMediaTypePodcast value, 630

 MPMoviePlayerController class,

 626 , 627 - 629

 MPMusicPlaybackStatePaused

value, 631

 MPMusicPlaybackStatePlaying

value, 631

 MPMusicPlaybackStateStopped

value, 631

 MPMusicPlayerController class,

 626 , 631

 MSURL class, 112

 multibutton alerts, creating,

298 - 299

 multiscene storyboard, passing

data between scenes, 329 - 331

 multiscene storyboards

 creating projects with

 controlling modal segues

manually, 324

 creating segues, 320 - 323

 preparing the project,

314 - 319

 exit and unwind segues in,

 325 - 327

 overview, 312 - 313

 multitasking, application program-

ming interfaces (APIs) for, 6

 multitasking support, checking

older devices for, 739 - 741

 multitouch events, generating in

iOS Simulator, 59

 multitouch gestures. See gesture

recognizer

 music libraries, accessing and

playing, 662 - 668

 music player, 631 - 632 , 663 - 664

 mutators, 73

 MVC. See Model-View-Controller

 myLabel property, 165

 myLabel variable, 165

 N

 names

 domain, using identifiers

for, 29

 files

 app icons, 54

 category, 80

 sharing with class

names, 73

 instance variables, defining,

 78

 products and organizations,

 29 - 30

 scenes

 keeping unique, 129

 in multiscreen projects,

 316 - 319

 navigating

 code in Xcode

 activating tabbed editing,

 44

 adding pragma marks, 42

 assistant editor mode,

 43 - 42

 with code completion,

 38 - 40

 finding methods and

properties, 37 - 38

 finding with search

navigator, 41

 managing snapshots,

 44 - 46

 overview, 36 - 37

 Constraints objects, 539 - 540

 projects in the project

navigator, 32 - 33

 Xcode user interface, 31 - 32

 navigation bar item attributes,

setting, 414 - 415

 navigation bars and items, 412

 navigation controller classes, 424

 navigation controller delegate,

 638

 navigation controllers

 creating apps with, 423 - 433

 described, 411 - 416

 navigation scenes, 413 - 416

 navigator area, 31- 33

 nested messaging, 86

 newBFF method, 691

 Newsstand framework, 103

 NeXTSTEP platform, 99

 nil value, 85 , 110

 Nintendo Wii, 599

 Non-Retina displays

 app icons for, 53

 launch images for, 55

 notation, dot, 74

 notifications

 common properties for, 745

 creating and scheduling,

745 - 747

 orientation, 603

828 NSArray class

 NSArray class, 109 - 110

 NSDate class, 112

 NSDecimalNumber subclass, 111

 NSDictionary class, 110 , 634 - 635

 NSLog function, 782 - 783 , 788

 NSMutableArray class, 109-110

 NSMutableDictionary class, 110

 NSMutableString class, 109

 NSNotificationCenter class, 628

 NSNumber class, 111

 NSObject class, 69 , 107

 NSOperationQueue class, 605

 NSString class, 109

 NSURL class, 250 - 251

 NSURLRequest class, 250 - 251

 NSUserDefaults class, 493

 numberOfComponentsInPicker-

View method, 369

 numberOfSectionsInTableView

method, 453

 numberOfTapsRequired property,

 573

 numberOfTouchesRequired

property, 573

 numbers. See values

 O

 object data types, 82 - 83

 Object Library, 132 - 133

 object-oriented programming

(OOP), 65 - 69

 objectForKey method, 110

 Objective-C

 automatic reference counting

in, 92 - 93

 case sensitivity of, 70

 described, 22 , 65 , 69 - 70

 file structure of

 automatic setup of, 79

 categories and protocols,

 79 - 81

 defining methods, 75 - 76

 implementation files,

77 - 79

 #import directive, 71 - 72 ,

 77

 interface (header) files, 71

 @interface directive and

instance variables, 72 - 73

@ property directive and

instance variables, 73 - 75

 as object-oriented program-

ming language, 65 - 69

 programming basics in

 allocating and initializing

objects, 83 - 84

 declaring variables, 81 - 83

 expressions and decision

making, 87 - 91

 sending messages to

objects, 85 - 86

 readability of, 69

 retaining and releasing objects

in, 91 - 92

 objects

 adding to scroll view, 272

 adding to user interfaces,

 176 - 178

 adding to views, 134 - 135

 aligning, 135 - 137

 allocating and initializing,

 83 - 84

 application, 107

 cleaning up in memory, 75

 Constraints, 140 - 141 ,

539 - 540

 delegate, 106

 described, 68

 document outline, 130 - 131

 dragging and dropping, 579

 id type, 76

 inspecting, 141

 messages in, 68

 pointers to, 82 - 83

 replacing with nil value, 85

 retaining and releasing, 91 - 92

 retrieving properties from, 75

 self as reference to, 68

 sending messages to, 85 - 86

 sizing, 136 - 139

 switch, 113

 traits in, 144

 typecasting, 84

 UIAlertView, 282 - 285

 variables as pointers to, 82

 viewing distance between

other objects and, 139

 window, 107

 See also classes; instances

 onscreen controls, 108

 OOP (object-oriented

programming), 65 - 69

 Open GL ES framework, 102

 OpenGL standard, 5

 opening

 projects in Xcode, 146

 Xcode, 27 - 28

 operations, mathematical, with

variables, 82

How can we make this index more useful? Email us at indexes@samspublishing.com

829passthrough views

 @optional directive, 80 - 81

 organization names, 29 - 30

 orientations

 accessing data for, 603 - 606

 enabling changes in,

557 - 543 , 563

 hardware for detecting. See

accelerometers; gyroscopes

 proper, rotating views into,

 568

 responsive user interfaces,

 534 - 538

 sensing, creating app for,

 606 - 610

 setting for devices, 51 - 53

 tilt and rotation, creating app

detecting, 611 - 622

 updating interfaces when

changing, 561

 upside-down, disabling, 563

 otherButtonTitles parameter, 283 ,

 286

 out signals, simulating, 61

 outlets

 buttons, toggling animations

on and off with, 225 - 226

 creating and connecting in

apps

 BestFriend app, 689 - 690

 with custom pickers,

396 - 397

 with the date picker,

381 - 383

 detecting tilt and rotation,

 614 - 616

 flashlight app, 502 - 504

 flower apps, 260 - 264

 gesture apps, 583 - 586

 Interface Builder, 149

 location-aware apps, 719

 long-running background

tasks, 755

 looped animations,

234 - 237

 with magnetic compass,

 726

 with Master-Detail

Application templates,

 474 - 476

 MediaPlayground app,

 644 - 645

 with modal segues, 351

 with navigation controllers,

 430 - 431

 with orientation sensing,

 607 - 608

 with popovers, 358

 scrolling views, 274 - 275

 Settings app, 511

 Single View Application

template, 179 - 182

 story creators, 206 - 209

 survey app, 523 - 524

 with tab bar controllers,

 438 - 440

 universal apps, 770 ,

774 - 775

 with user alerts, 293 - 295

 defining, 164

 defining in

GenericViewController class,

 428

 described, 148 - 149

 identifying, 175

 planning, in apps with

magnetic compass, 725

 referencing one scene's view

controller from another, 410

 for switches, 253

 when needed, 193

 See also instance variables

 outlines for documents,

storyboards, 127 - 131

 output, viewing, NSLog function,

 783 - 784

 outputLabel outlet, 381 , 397 , 438

 outputLabel property, 576

 P

 page curls, 323

 page sheet presentation style,

 323

 paid developer programs

 creating and installing devel-

opment provisioning profiles,

 15 - 19

 joining, 10 - 12

 panning gesture, 572

 parameters

 action sheets, 286

 alert views, 283

 colons in, 85

 described, 68

 providing for methods, 40

 sender, 166

 setSpeed, 243

 parent classes. See superclasses

 partial curl option, transition

types, 323

 passthrough views, popovers,

 335 - 336

830 passwords

 passwords, treating fields as, 198

 paste process, customizing, 199

 paths, data storage files, 498 - 499

 pause method, 662

 people picker, address books,

 675 - 677 , 691 - 695

 photo libraries, implementing in

apps, 656 - 659

 picker view data source protocol,

 369 - 371 , 395 , 400 - 401

 picker view delegate protocol,

 371 - 374 , 395 , 401 - 402

 picker views, 369 - 374

 pickers

 custom. See custom picker

 date. See date picker

 described, 115 , 367 - 368

 image, 635 - 638 , 656 - 659

 media, 629 - 631 , 662 - 668

 people, 675 - 677 , 691 - 695

 views in, 369 - 374

 See also choosing

 pickerView:didSelectRow:inCompo

nent method, 371 , 372

 pickerView:numberOfRowsInComp

onent method, 369

 pickerView:rowHeightForCompone

nt method, 373

 pickerview:titleForRow:forCompon

ent method, 371 , 373

 pickerView:viewForRow:viewForCo

mponent:ReusingView method,

 373

 pickerView:widthForComponent

method, 373

 pictures, 4-6. See also images

 Pin menu, 554

 pinch recognizer, 582 - 583 ,

589 - 590

 pinching gesture, 572

 pinning, 141

 pixels vs. points, 4

 placeholder text, 195 - 196 , 217

 plain text fields, 196

 platforms, NeXTSTEP, 99

 play method, 662

 playAudio method, 654

 playback

 audio, 649 - 655

 implementing for movies, 648

 playbackState property, 631

 players

 AV audio, 633 - 634

 movie, 627 - 629 , 646 - 650

 music, 631 - 632 , 663 - 664

 playing

 music, 666 - 668

 sounds, 289 , 307 - 308 , 639

 videos, 639

 playMusic method, 667

 plus sign, 76

 PNG files, as app icons, 54

 pointers, declaring variables as,

 82 - 83

 points vs. pixels, 4

 pop segues, 411

 popover option, segues, 321

 popover segues, 333 - 336 , 356 ,

 411

 popovers

 challenges with, 366 , 383

 creating

 creating popover segues,

 333 - 336

 displaying manually, 337

 overview, 333

 preparation for, 333

 programming popover dis-

plays, 340 - 342

 creating apps with, 355 - 360

 described, 115 - 116

 displaying image pickers in,

 657 - 658

 enforcement of, 638

 responding to dismissals of,

 337 - 339

 setting sizes of, 334 , 356 ,

 380 - 381 , 396

 showing action sheets in, 305

 See also iPads

 posts, preparing for Facebook,

 681

 pragma marks, adding to code,

 42

 preferences

 implicit, flashlight app,

500 - 507

 limiting for data storage,

 489 - 491

 prefixes, class, 30 , 171

 prepareForSegue:sender method,

 330 - 331

 presentation styles, 323 , 326

 preservation, state, 492

 prices, Apple Developer

Program, 8

 primitive data types, 81 - 82

 private instance variables, 556

 private variables, properties, and

methods, 77 - 78

 procedural programming, 66

How can we make this index more useful? Email us at indexes@samspublishing.com

831properties

 processing

 long-running background

tasks, 758 - 760

 task-specific background,

 739 , 747 - 753

 processors used in iOS devices, 6

 product names, 29 - 30

 Products subgroup, 33

 profiles, development

provisioning, 15 - 19

 programmatically defined

interfaces, creating, 555 - 562

 programmers. See iOS developers

 programming languages,

Objective-C, 22

 Project Code subgroup, 33

 project development preparation

 iOS platform tour, 3 - 7

 overview, 3

 project navigator

 adding resources to projects,

 34 - 35

 described, 32 - 33

 editing code in, 36

 managing project properties

in, 50 - 56

 project properties, managing in

project navigator, 50 - 56

 projects

 adding empty files manually

to, 34

 adding media files to,

641 - 642

 creating and managing with

Xcode, 28 - 36

 adding new code files, 34

 adding resources, 34 - 35

 choosing project types,

 28 - 31

 filtering information

currently displayed, 33

 looping animation,

223 - 245

 navigating projects in,

 32 - 33

 opening Xcode, 27 - 28

 removing files and

resources, 35 - 36

 user interface tour, 31 - 32

 managing properties of

 overview, 50 - 51

 setting application icons,

 53 - 54

 setting launch images,

 55 - 56

 setting supported device

orientations, 51 - 53

 opening in Xcode, 146

 saving, 30

 selecting templates for, 28 - 29

 See also apps; user

interfaces

 prompt attribute, 415

 prompt property, 662

 properties

 accessing from popovers upon

dismissal, 339

 action sheets, 286

 alertBody, 745

 alertViewStyle, 283

 allowsEditing, 636

 allowsPickingMultipleItems,

 662

 animationDuration, 239

 animationImages, 239

 applicationIconBadgeNumber,

 745

 cancelButtonTitle, 283

 compared with instance

variables, 427

 contentViewController, 358 ,

 384

 declaring instance variables

with, 74

 defining, programmatically

defined interfaces, 557 - 558

 delegate, 283 , 383 - 384 , 398

 described, 68

 destinationViewController, 384

 finding in symbol navigator,

 37 - 38

 fireDate, 745

 gyroAvailable, 605

 horizontalAccuracy, 708

 imageView, 576

 including @synthesize line

with, 78

 initWithTitle, 283

 interface, initializing, 558 - 559

 message, 283

 MPMediaItemAlbumTitle, 632

 MPMediaItemPropertyArtist,

 632

 MPMediaItemPropertyGenre,

 632

 MPMediaItemPropertyLyrics,

 632

 myLabel, 165

 notification, 745

 numberOfTapsRequired, 573

 numberOfTouchesRequired,

 573

832 properties

 otherButtonTitles, 283

 outputLabel, 576

 planning

 in apps detecting tilt and

rotation, 612 - 613

 in apps with gestures, 576

 in apps with magnetic

compass, 725

 in apps with Master-Detail

Application templates,

 472

 in apps with navigation

controllers, 427 - 428

 in apps with popovers,

 356

 in apps with tab bar

controllers, 436

 in apps with the date

picker, 377

 in BestFriend app,

 687 - 688

 in flashlight app, 501

 in location-aware apps,

 715 - 716

 in long-running background

tasks, 754

 in looped animations,

225 - 226

 in MediaPlayground app,

 642

 in modal segues, 346

 in programmatically

defined interfaces, 556

 in scrolling views, 270

 in Settings app, 509

 in Single View Application

templates, 173 - 175

 in story creators, 193

 swapping views on

rotation, 563

 universal apps, 769

 in user alert apps, 292

 playbackState, 631

 private, 77 - 78

 projects, managing in project

navigator, 50 - 56

 prompt, 662

 push count, 432 , 440

 repeatInterval, 745

 retrieving from objects, 75

 semicolons in, 72

 sharing with #import and

@class directives, 319

 soundName, 745

 timeZone, 745

 UIDeviceOrientation, 603

 UIImagePickerController-

SecureTypeSavedPhotos-

Album, 636

 UIImagePickerController-

SourceTypeCamera, 636

 UIImagePickerController-

SourceTypePhotoLibrary,

 636

 underscores in, 74

 using instance variables

instead of, 75

 using instead of instance

variables, 377

 window, 173

 property value, 172

@ property directive, 73 - 75 , 174

 protocols

 angle brackets in , 72

 AVAudioPlayerDelegate, 634

 CLLocationManagerDelegate,

 708 - 710

 creating, 80 - 81

 described, 68 , 73 , 79

 MFMailComposeView-

ControllerDelegate, 680

 picker view data source,

369 - 371 , 395 , 400 - 401

 picker view delegate,

371 - 374 , 395 , 401 - 402

 table view data source,

453 - 456 , 465 - 467

 table view delegate, 468 - 469

 UIImagePickerController-

Delegate, 637 - 638

 UIPopoverControllerDelegate,

 337 - 339

 prototype cell attributes, setting,

 451 - 452

 push count property, 432 , 440

 push option, segues, 321

 push segues, 411 , 415 - 416 , 428

 Q

 Quartz Core framework, 102

 Quick Help, Xcode, 119 - 122

 Quick Help Inspector, 120 - 121

 Quick Inspector, editing

connections with, 153

 Quick Look framework, 103

 quitting

 apps, 184

 Xcode, 14

How can we make this index more useful? Email us at indexes@samspublishing.com

833 rich media

 R

 radian conversion constants, 725

 radians constant, adding degrees

to, 563

 RAM (random access memory),

iPhones, 6

 random access memory (RAM),

iPhones, 6

 recognizers, gestures. See gesture

recognizers

 recordAudio method, 652 , 655

 recorders, AV audio, 634 - 635

 recording, audio, 649 - 655

 references

 circular, 75

 to objects, 82

 removing from projects, 35 - 36

 registration

 development devices, 17 , 18

 iOS developer, 9

 orientation updates, 608 - 609

 relationships

 creating between controllers,

 414 , 421

 described, 313

 tab bar, creating, 436 - 437

 release message, 67 - 68

 remote content, loading, 250 - 251

 removeConstraints

NSLayoutConstraint method,

 575

 removing

 connections, 154

 constraints from image views,

 575

 files and resources from

projects, 35 - 36

 installed apps from iOS

Simulator, 58

 repeatInterval property, 745

 repetition, with loops, 89 - 91

 replace option, segues, 321

 replacing, image views, 587

 requestWithURL class, 250 - 251

 @required directive, 80 - 81

 resetting iOS Simulator to

defaults, 58

 resignFirstResponder method,

 212

 resistance, content compression,

 543

 resolutions, iOS devices, 4 - 5

 resources

 adding to projects, 34 - 35

 animation, adding to looped

animations, 225

 image

 adding to gestures, 576

 adding to Settings app,

 509

 background, 715

 direction, 724

 Master-Detail Application

templates, 471

 table views, 461

 removing from projects, 35 - 36

 sound, adding to apps, 291

 See also files

 Resources group, 33

 responders, described, 108

 responsive interfaces, program-

matically defined, 555 - 562

 responsive user interfaces

 described, 533 - 534

 designing rotatable and resiz-

able interfaces, 536 - 538

 enabling interface rotation,

 534 - 535

 See also Auto Layout system

 restoration, 492

 retain message, 91 - 92

 Retina displays

 app icons for, 53

 image views, 223

 launch images for, 54 -55

 locating high-resolution

images for, 228

 resolution of, 4

 Return Key trait, 198

 rich media

 AV Foundation framework,

 632 - 635

 creating MediaPlayground app

 accessing and playing the

music library, 662 - 668

 creating and connecting

outlets and actions,

644 - 645

 designing the interface,

 642 - 643

 implementing audio

recording and playback,

 649 - 655

 implementing Core Image

filter, 659 - 662

 implementing movie player,

 646 - 650

 implementing the photo

library and camera,

656 - 659

 setting up the project,

 640 - 642

834 rich media

 Media Player framework,

 626 - 632

 supported file formats for,

 628

 Right Detail table style, 452

 root class, 107

 rotating gesture, 572

 rotation recognizer, 583 , 590 - 593

 rotations

 creating app detecting tilt and,

 611 - 622

 interface rotation events, 603

 into proper orientations, 568

 responsive user interfaces,

 534 - 538

 simulating, 60

 swapping views on, 562 - 569

 Rounded Rect button type, 204

 rows

 changing sizes of, 402 - 403

 counting, 465

 selecting, 468

 running apps

 compiling and, 211

 consequences of skipping

steps in this book and, 39

 detecting devices, 764

 first, trying out, 19 - 22

 troubleshooting, 105

 in Xcode, 46

 See also iOS Simulator

 S

 saving projects, 30

 scales, reversing in sliders, 229

 scaling, effects of, 260

 scaling factors, 4 - 5

 scene segue logic, implementing,

 383 - 386 , 397 - 399

 scenes

 adding to storyboards, 314 ,

 344 - 346

 associating view controllers

with

 date picker, 376 - 377

 navigation controller,

425 - 426

 tab bar controller, 385 - 436

 creating in tab bar controllers,

 418 - 422

 date chooser, 380 , 384 - 386

 described, 164 , 313

 detail, updating, 474 - 476

 loading, 172 - 173

 master, updating, 472 - 475

 multiscene storyboards. See

multiscene storyboards

 naming, 316 - 319

 navigation, 413 - 416

 passing data between,

329 - 331

 in storyboard outlines,

127 - 129

 tab bar item buttons as part

of, 420

 See also storyboards

 scheduling notifications, 745 - 747

 schemes, build, choosing, 46

 screen resolutions, iOS devices,

 4 - 5

 screens, Welcome to Xcode, 27

 scrolling options, setting, 203

 scrolling views

 described, 251

 designing the interface for,

 270 - 277

 SDKs. See software development

kits

 search, in Xcode library, 118 - 119

 search navigator, finding code

with, 40-41

 search results, filtering, 41

 searching. See finding

 Secure trait, 198

 Security framework, 104

 segmented controls

 adding to apps, 254

 described, 114 , 248 - 249

 using in flower apps, 254 ,

 255 - 256

 segments, adding and configuring,

 254 - 255

 segues

 challenges with, 366

 creating

 in apps with custom

pickers, 396

 in apps with the date

picker, 379 - 381

 in multiscene storyboards,

 320 - 323

 described, 313

 exit and unwind, 324 - 325 ,

 353

 implementing logic for,

383 - 386 , 397 - 399

 modal. See modal segues

 popover, 333 - 336 , 356 , 411

 push, 411 , 415 - 416 , 428

 referencing one scene's view

controller from another, 410

 selecting. See choosing

How can we make this index more useful? Email us at indexes@samspublishing.com

835software development kits (SDKs)

 selection handles, 136 - 137

 selection process, customizing,

 199

 self, 68

 self.presentingViewController

method, 331

 semicolons, in code, 72

 sender parameter, 166

 sender variable, 212 - 213

 setDateTime action, 382

 setIncrement method, 226

 setLightSourceAlphaValue

method, 504- 505

 setOutput method, 183 - 184

 setQueueWithItemCollection

method, 662

 setSpeed method, 226

 setSpeed parameter, 243

 setStartBarHidden method, 636

 setters (mutators), 73

 Settings app

 building, 520

 creating and connecting

outlets, 511

 creating the settings bundles,

 494 - 496 , 511 - 517

 designing the interface,

509 - 510

 implementing application

logic, 518 - 520

 setting up the project,

 507 - 509

 settings bundles, 494 - 496 ,

511 - 517

 setValueFromPreferences value,

 519

 shake recognizer, 593

 shaking gestures, 61 , 572 , 576 ,

 594 - 595

 sharing

 classes, 78

 data

 between navigation

scenes, 416

 between tab bar scenes,

 422

 properties and methods with

#import and @class direc-

tives, 319

 sheets, action, 285 - 287 , 303 - 306

 ShowAnimalChooser action, 397

 showDateChooser action, 381

 showFromRect method, 305

 showing, functional areas, Xcode,

 32

 showResults method, 527

 signals, TV out, simulating, 61

 simulated sizes, view controllers,

 271 - 274

 simulators.

 Sina Weibo, integrating with other

apps, 680 - 682

 Single View Application template,

 167 - 184 , 414 , 419

 singletons, 67

 Size Inspector, 138 - 139 , 541 - 543

 sizes

 components and rows,

changing, 402 - 403

 image view, adding instance

variables to, 577

 iPhone designs, 199

 launch images, 767

 popovers, setting, 334 , 356 ,

 380 - 381 , 396

 simulated, view controllers,

 271 - 274

 tab bar images, 421

 variable and matching,

551 - 554

 sizing objects, 136 - 139

 skeletons, 155

 SLComposeViewController class,

 680 - 681

 slider range attributes, setting in

looped animations, 229 - 231

 sliders

 controlling looped animation

speed with, 228 - 231

 described, 114 , 221 - 222

 reversing scales in, 229

 snapshots, managing in Xcode,

 44 - 46

 Social framework, 103

 social networking

 BestFriend app

 building, 702

 creating and connecting

outlets and actions, 689

 designing the interface,

 688 - 689

 implementing logic in,

 701 - 702

 setting up the project,

 686 - 688

 integrating with other apps,

 680 - 682

 software development kits (SDKs)

 access to beta versions of, 8

 classes in

 core application, 107 - 108

 data type, 109 - 112

 interface, 113 - 116

 versions available, 13

836 sound

 sound. See audio

 soundID variable, 307

 soundName property, 745

 spaghetti code, 162

 speed

 looped animations

 changing with steppers,

 231 - 232

 controlling with sliders,

 228 - 231

 incrementing, 242 - 243

 setting, 240 - 242

 speed output labels, adding to

looped animations, 232

 split view controller, 456 - 459 ,

 471 - 472

 standard developer program, 8

 standard editor mode, 42

 state preservation, 492

 statements

 if-then-else, 88 - 89

 readability of, 69

 switch, 88 - 89

 status bar settings, 52 - 53

 status bars, toggle in-call,

simulating, 61

 stepper range attributes, setting

for looped animations, 231 - 232

 steppers

 changing looped animation

speed with, 231 - 232

 described, 114 , 222 - 223

 stepping through code, 786 - 796

 stopAccelerometerUpdates

method, 605

 stopGyroUpdates method ,

605, 618

 storage of data

 approaches to

 direct file system access,

 496 - 500

 settings bundles, 494 - 496

 user defaults, 493 - 494

 implementing for file systems,

 520 - 528

 implementing system settings,

 507 - 520

 limiting preferences for,

489 - 491

 Store Kit framework, 104

 storeSurvey method, 525 - 526

 storing, data, 30

 story creators

 building the app, 217

 creating and connecting out-

lets and actions, 206 - 209

 designing the interface for

 adding styled buttons,

 203 - 204

 adding text fields, 193 - 194

 adding text views, 199

 editing button attributes,

 204 - 205

 editing text field attributes,

 194 - 196

 editing text view attributes,

 199 - 202

 setting custom button

images, 205 - 206

 setting scrolling options,

 203

 using attributed and plain

text, 196

 hiding keyboards, 212 - 216

 implementing application

logic, 216 - 217

 implementing button

templates, 209 - 212

 setting up the project,

192 - 193

 storyboard files, 171 - 173

 storyboards

 adding scenes to, 314

 anatomy of, 127 - 131

 creating universal apps with,

 767 - 776

 described, 313

 multiscene

 controlling modal segues

manually, 324

 creating segues, 320 - 323

 exit and unwind segues in,

 325 - 327

 overview, 312 - 313

 passing data between

scenes, 329 - 331

 preparing the project,

314 - 319

 navigation controllers in,

413 - 416

 reverting to old layout, 141

 scenes compared to, 164

 tab bar controllers in,

418 - 421

 See also scenes

 stretching objects, 136 - 137

 strings

 date format, 387

 described, 109

 finding in files, 41

 strong attribute, 75 - 76

 stub methods, 155

How can we make this index more useful? Email us at indexes@samspublishing.com

837task-specific background processing

 styled buttons, adding to user

interfaces, 203 - 204

 styles

 action sheets, 286

 cells, 452

 presentation, 323 , 326

 segues, choosing, 321 , 323

 tables, 452

 subclasses

 described, 67

 generic view controllers, 424

 iPadViewController, 772 - 773 ,

 775

 master class for, 69

 navigation controllers, 424

 NSDecimalNumber, 111

 similarities in, 775

 view controller, 316 - 319

 subgroups

 project navigator, 33

 See also folders

 Subtitle table style, 452

 superclasses

 described, 67

 UIControl, 108

 Supporting Files group, 33 , 54

 survey, implementing application

logic, 525 - 528

 survey app

 creating and connecting out-

lets and actions, 523 - 524

 designing the interface,

 521 - 522

 setting up the project, 521

 survey results, viewing, 527 - 528

 suspension, background, 743 - 744

 swapping views, 537 , 562 - 569

 swipe recognizer, 580 - 581 , 588

 swiping gesture, 572

 switch objects, purpose of, 113

 switch statement, 88 - 89

 switches

 adding to flower apps,

 257 - 258

 described, 248

 outlets for, 253

 symbol label, 38

 symbol navigator, finding methods

and properties in, 37 - 38

 @synthesize line, 78

 System Configuration framework,

 104

 System framework, 104

 system preparation

 iOS platform tour, 3 - 7

 overview, 3

 System Sound Services, 288 - 290 ,

 307 , 632

 T

 tab bar controller classes, 435

 tab bar controllers

 creating apps with, 433 - 443

 described, 417 - 422

 tab bar images, sizes of, 421

 tab bar item attributes, setting,

 420 - 434

 tab bar item badges,

incrementing, 441 - 443

 tab bar item images, 435

 tab bar relationships, creating,

 436 - 437

 tab bars and items, 418

 tabbed editing, activating, 44

 tabbed templates, 418

 table attributes, setting, 450 - 451

 table section constants, adding to

apps with table views, 461

 table view data source protocol,

 453 - 456 , 465 - 467

 table view delegate protocol,

468 - 469

 table views

 adding tables to, 450 - 456

 appearance of, 448 - 449

 cells in, 448

 creating apps with

 building the app, 469

 designing the interface,

 461 - 463

 implementing application

logic, 463 - 469

 setting up the project,

 460 - 461

 described, 448

 tableView:cellForRowAtIndexPath

method, 453

 tableView:numberOfRowsIn-

Section method, 452

 tableView:titleForHeaderInSection

method, 453

 tap recognizer, 579 - 580 , 588

 tapping gesture, 572

 tapRecognizer instance, 573

 targets, universal apps, 776 - 778

 task completion, long-running

tasks, 739 , 754 - 760

 task-specific background

processing, 739 , 747 - 753

838 Team Provisioning Profile

 Team Provisioning Profile, 18

 technology layers. See iOS

technology layers

 televisions. See TVs

 templates

 buttons, implementing,

209 - 212

 frameworks in, 100

 Master-Detail Application

 creating apps with,

469 - 486

 described, 459

 selecting for iOS programming

projects, 28 - 29

 Single View Application,

167 - 184 , 414 , 419

 tabbed, 418

 universal apps, 764 - 765

 testing

 apps in iOS Simulator

 generating multitouch

events, 59

 launching, 57 - 59

 simulating esoteric

conditions, 60 - 61

 simulating rotations, 60

 unit, 30

 testing applications, on iOS

Simulator, 8 , 15

 text, placeholder, 195 - 196 , 217

 text entry fields, alertViewStyle

property, 283

 text field attributes

 editing, 194 - 196

 traits of, 197 - 199

 text fields

 adding to user interfaces,

 193 - 194

 alert view, 302 - 303

 attributed, 196

 editing attributes of, 194 - 196

 plain, 196

 purpose of, 115 , 190

 text input traits, 197 - 199

 text views

 adding to user interfaces, 199

 purpose of, 193

 three-dimensional (3D) displays, 5

 tilt, creating app detecting

rotation and, 611 - 622

 time, viewing dates and, 386 - 387

 Time mode, 369

 Timer mode, 369

 timers, initializing, 757

 timeZone property, 745

 Tinting setting, 53

 title attribute, 415

 titles, bar button, setting, 485 - 486

 toggle in-call status bar,

simulating, 61

 toggleButtonAnimation method,

 226

 Toolbar area, 31

 toolbars

 challenges with, 366

 described, 363 - 366

 touch gestures. See gestures

 Touch Up Inside event, 153 , 189

 touching backgrounds, hiding

keyboards by, 214 - 215

 tracing apps

 feedback from, 782 - 783

 with Xcode debugger, 784 - 799

 traits, text input, 197 - 199

 Traits attribute, 144

 transition types, segues, 323 , 326

 troubleshooting

 app tracing and debugging

 feedback from, 782 - 783

 with Xcode debugger,

784 - 799

 location errors, 710 - 711

 running apps, 105

 tutorial apps, 18

 TVs

 Apple, 4

 out signals, simulating, 61

 Twitter

 compose view, 60 - 61

 integrating with other apps,

 680 - 682

 two-dimensional (2D) displays, 5

 typecasting, 84

 types

 button, 204 - 205

 content, web views, 250

 data

 float, 111

 int, 111

 object, 82 - 83

 primitive, 81 - 82

 described, 81

 id, 76 , 166

 transition, segues, 323 , 326

 void, 76

 typing, hiding characters

while, 198

How can we make this index more useful? Email us at indexes@samspublishing.com

839 universal apps

 U

 UI image picker controller

delegate, 637 - 638

 UIActionSheetStyleAutomatic

property, 286

 UIActionSheet class, 285 - 287

 UIActionSheetStyleBlackOpaque

property, 286

 UIActionSheetStyleBlack-

Translucent property, 286

 UIActionSheetStyleDefault

property, 286

 UIAlertView object, 282 - 285

 UIAlertViewStyleDefault field, 283

 UIAlertViewStyleLoginAnd-

PasswordInput field, 283

 UIAlertViewStylePlainTextInput

field, 283

 UIAlertViewStyleSecureTextInput

field, 283

 UIApplication class, 107 , 170

 UIApplicationMain function, 105

 UIBarButtonItem class, 412

 UIButton class, 82 , 113 , 189

 UIControl class, 108

 UIDatePicker class, 115 , 368 - 369

 UIDevice class, 603

 UIDeviceOrientation property, 603

 UIDeviceOrientationFaceDown

value, 603

 UIDeviceOrientationFaceUp value,

 603

 UIDeviceOrientationLandscapeLeft

value, 603

 UIDeviceOrientationLandscape-

Right value, 603

 UIDeviceOrientationPortrait value,

 603

 UIDeviceOrientationPortraitUpside

Down value, 603

 UIImagePickerController class,

 635 - 638

 UIImagePickerControllerDelegate

protocol, 637 - 638

 UIImagePickerControllerSecure-

TypeSavedPhotosAlbum

property, 636

 UIImagePickerControllerSource-

TypeCamera property, 636

 UIImagePickerControllerSource-

TypePhotoLibrary property, 636

 UIImageView class, 223 , 239 ,

 576 , 660

 UIKit framework, 100

 UILabel class, 113 , 165 , 174 ,

 191 , 576

 UINavigationBar class, 412

 UINavigationController class,

411 - 416 , 424

 UINavigationItem class, 412

 UIPicker class, 115

 UIPickerView class, 369 - 374

 UIPickerViewDataSource protocol,

 369 - 371

 UIPopoverArowDirectionDown

constant, 342

 UIPopoverArrowDirectionAny

constant, 342

 UIPopoverArrowDirectionLeft

constant, 342

 UIPopoverArrowDirectionRight

constant, 342

 UIPopoverArrowDirectionUp

constant, 342

 UIPopoverController class,

115 - 116 , 340 - 341

 UIPopoverController method, 342

 UIPopoverControllerDelegate

protocol, 337 - 339

 UIResponder class, 108 , 171

 UIResponderStandardEditActions

class, 199

 UIs. See user interfaces

 UIScrollView class, 251

 UISegmentedControl class, 114

 UISlider class, 114 , 221

 UIStepper class, 114 , 222

 UISwitch class, 113

 UITabBar class, 418

 UITabBarController class, 435

 UITabBarItem class, 418 , 420 - 421

 UITapGestureRecognizer class,

 573

 UITextField class, 115 , 190

 UITextView class, 115 , 190

 UIView class, 108 , 130 , 171

 UIViewController class, 108 , 316 ,

 331 , 424 , 775

 UIViewController subclass,

316 - 319

 UIWindow class, 107

 underscore character, 72 , 74

 uniform resource locators. See

URLs

 unit testing, 30

 universal apps

 creating, 767 - 776

 development overview, 763

 setup information changes in,

 766 - 767

840 universal apps

 templates, 765

 using multiple targets on,

 776 - 778

 unwind, described, 313

 unwind segues, 325 - 327

 updateinterface method, 559 - 560

 upside-down orientation,

disabling, 563

 URLs (uniform resource locators)

 allocating and initializing,

 83 - 84

 manipulating, 112

 user alerts

 action sheets, 285 - 287 ,

303 - 306

 alert views, 282 - 285 ,

296 - 303

 creating apps with

 designing the interface,

 293 - 294

 implementing action

sheets, 303 - 306

 implementing alert sounds

and vibrations, 307 - 308

 implementing alert views,

 296 - 303

 setting up the project,

 291 - 292

 System Sound Services,

288 - 290 , 307

 vibrations, 288 , 290

 user IDs, developer registration, 9

 user interfaces (UIs)

 Address Book, 674 - 675

 connecting to code, 146 - 156 ,

 164

 creating

 adding objects to views,

 134 - 135

 Auto Layout system,

139 - 141

 editing tools for, 135 - 139

 Object Library, 131 - 133

 creating apps with custom

pickers

 building the app, 406

 creating and connecting

outlets and actions,

396 - 397

 creating segues, 396

 designing the interface,

 394 - 395

 implementing custom

picker view, 399 - 405

 setting up the project,

 392 - 393

 creating apps with gestures

 adding gesture recogniz-

ers, 579 - 583

 building the app, 595

 creating and connecting

outlets and actions,

 583 - 586

 designing the interface,

 577 - 579

 implementing application

logic, 587 - 595

 setting up the project,

 576 - 579

 creating apps with magnetic

compass

 building, 733

 creating and connecting

outlets, 726

 setting up the project,

 724 - 725

 updating application logic,

 726 - 732

 updating the user

interface, 725

 creating apps with Master-

Detail Application templates

 building the app, 486

 implementing application

data source, 476 - 480

 implementing master view

controller, 480 - 484

 setting up the project,

 470 - 472

 tweaking the iPad

interface, 472 - 475

 tweaking the iPhone

interface, 474 - 476

 creating apps with modal

segues

 building the app, 354

 creating and connecting

outlets and actions, 351

 creating the modal segue

for, 349

 designing the interface,

 347 - 349

 implementing application

logic, 352 - 353

 setting up the project,

 343 - 347

 unwinding back to initial

scene, 350 - 351

 creating apps with navigation

controllers, 423 - 433

 creating apps with orientation

sensing, 606 - 610

How can we make this index more useful? Email us at indexes@samspublishing.com

841user interfaces (UIs)

 creating apps with popovers,

 355 - 360

 creating apps with tab bar

controllers, 433 - 443

 creating apps with table views

 building the app, 469

 designing the interface,

 461 - 463

 implementing application

logic, 463 - 469

 setting up the project,

 460 - 461

 creating apps with the date

picker

 building the app, 390

 creating and connecting

outlets and actions,

 381 - 383

 creating segues, 379 - 381

 designing the interface,

 378 - 380

 implementing date calcula-

tion logic, 386 - 390

 implementing scene segue

logic, 383 - 386

 setting up the project,

 376 - 377

 creating apps with user alerts

 creating and connecting

outlets and actions,

293 - 295

 designing the interface,

 293

 implementing action

sheets, 303 - 306

 implementing alert sounds

and vibrations, 307 - 308

 implementing alert views,

 296 - 303

 setting up the project,

 291 - 292

 creating BestFriend app

 building, 702

 creating and connecting

outlets and actions,

689- 690

 designing the interface,

 688 - 689

 implementing logic in,

 690 - 702

 setting up the project,

 686 - 688

 creating flashlight app

 building the app, 506

 creating and connecting

outlets and actions,

502 - 504

 designing the interface,

 501 - 502

 implementing application

logic, 504 - 506

 setting up the project, 501

 creating FlowerWeb app

 adding and configuring

segments, 254 - 255

 adding switches, 257 - 258

 adding web views,

259 - 260

 building the app, 268

 creating and connecting

outlets and actions,

260 - 264

 implementing application

logic, 248 - 268

 segmented controls,

254 - 256

 setting up the project, 253

 creating location-aware apps

 building the app, 723 - 724

 creating and connecting

outputs, 719

 designing the view,

716 - 718

 implementing application

logic, 719 - 723

 setting up the project,

 715 - 716

 creating looped animations

 adding Hop buttons, 232

 adding image views, 226

 adding speed output

labels, 232

 building the app, 243

 changing speed with

steppers, 231 - 232

 controlling speed with

sliders, 228 - 231

 copying image views,

227 - 228

 creating and connecting

outlets and actions,

234 - 237

 implementing application

logic, 237 - 243

 incrementing speed of,

 242 - 243

 setting background images

and colors, 232 - 233

 setting default images,

 226 - 227

 setting the speed,

240 - 242

 setting up the project,

 224 - 226

 starting and stopping,

 239 - 240

842 user interfaces (UIs)

 creating MediaPlayground app

 accessing and playing the

music library, 662 - 668

 creating and connecting

outlets and actions,

644 - 645

 designing the interface,

 642 - 643

 implementing audio record-

ing and playback,

649 - 655

 implementing Core Image

filter, 659 - 662

 implementing movie player,

 646 - 650

 implementing the photo

library and camera,

656 - 659

 setting up the project,

 640 - 642

 creating multiscene projects

 controlling modal segues

manually, 324

 creating segues, 320 - 323

 exit and unwind segues in,

 325 - 327

 passing data between

scenes, 329 - 331

 preparing the project,

314 - 319

 creating popovers

 creating popover segues,

 333 - 336

 displaying manually, 337

 preparation for, 333

 programming popover

displays, 340 - 342

 responding to dismissals

of, 337 - 339

 creating scenes in tab bar

controllers, 418 - 422

 creating scrolling views,

269 - 277

 creating Settings app

 building the app, 520

 creating and connecting

outlets, 511

 creating the settings bun-

dles, 494 - 496 , 511 - 517

 designing the interface,

 509 - 510

 implementing application

logic, 518 - 520

 setting up the project,

 507 - 509

 creating story creators

 adding styled buttons,

 203 - 204

 adding text fields, 193 - 194

 adding text views, 199

 with attributed and plain

text, 196

 building the app, 217

 creating and connecting

outlets and actions,

 206 - 209

 editing button attributes,

 204 - 205

 editing text field attributes,

 194 - 196

 editing text view attributes,

 199 - 202

 hiding keyboards, 212 - 216

 implementing application

logic, 216 - 217

 implementing button

templates, 209 - 212

 setting custom button

images, 205 - 206

 setting scrolling options,

 203

 setting up projects,

192 - 193

 creating survey app

 creating and connecting

outlets and actions,

523 - 524

 designing the interface,

 521 - 522

 implementing application

logic, 525 - 528

 setting up the project, 521

 creating with Single View

Application templates,

176 - 178

 customizing appearances of,

 142 - 145

 described, 27

 disabling editing of, 483

 Message, 100 , 700

 model elements, 282

 responsive

 described, 533 - 534

 designing rotatable and

resizable interfaces,

 536 - 538

 enabling interface rotation,

 534 - 535

 programmatically defined,

 555 - 562

 swapping views on

rotation, 562 - 569

 See also Auto Layout

system

How can we make this index more useful? Email us at indexes@samspublishing.com

843viewDidLoad method

 reusing in other applications,

 162

 simulating, 145

 simulating rotations of, 60

 Xcode, tour of, 31 - 32

 See also apps; projects

 utility area, 31 - 32

 V

 valueForProperty method, 632

 values

 in CGRectMake function, 49

 floating-point

 float data type, 111

 initializing strings with,

 109

 height, 276

 initializing strings with, 109

 inputting on iPads, 7

 media picker filters, 630

 MFMailComposeResult, 680

 nil, 85 , 110

 numbers, referring by, 393

 playbackState property, 631

 property, 172

 retrieving and setting, 73

 setValuesFromPreferences,

518-519

 UIDeviceOrientation property,

 603

 width, 276

 working with, 111

 variable lists, accessing, 796

 variable sizes, 551 - 554

 variable states, examining and

changing, 791

 variables

 assignments with, 82

 audio, adding to apps, 749

 declaring as pointers, 82 - 83

 described, 68

 instance. See instance

variables

 mathematical operations with,

 82

 myLabel, 165

 planning

 in apps with Master-Detail

Application templates,

 472

 in apps with table views,

 461

 as pointers to objects, 82

 private, 77 - 78

 private instance, 556

 sender, 212 - 213

 soundID, 307

 states of, examining and

changing, 791

 version control, snapshots as, 46

 versions

 devices, simulating apps on

each, 61

 iOS, checking for multitasking

support in, 739 - 741

 vertical constraints, 141

 vibrations, 288 , 290 , 308

 videos

 capturing on iOS devices, 7

 playing, 639

 supported file formats

for, 628

 View Controller icon, 128

 view controller subclasses,

316 - 319

 view controllers

 associating with projects,

 344 - 346

 associating with scenes

 date picker, 376 - 377

 navigation controller,

425 - 426

 tab bar controller, 435 - 436

 becoming first responders,

 593 - 594

 changing simulated size of,

 271 - 272

 Cocoa Touch, 106

 described, 164 - 166 , 313

 displaying, 329

 generic, classes of, 424

 instantiating, 326

 iPad, setting up in universal

apps, 772 - 773

 preparing for exits, 325 , 347

 referencing one scene's view

controller from another, 410

 setting identifiers for,

326 - 328

 stacks of, 411

 View icon, 128

 view-rotation logic, 567 - 568

 ViewController class, 108 ,

171 - 173 , 331

 ViewController file, 237

 ViewController files, 170 , 174 - 175

 viewDidAppear method, 276 , 587

 viewDidLoad method, 209 - 210 ,

 653 , 663 , 750 , 786 - 787

844 viewing

 viewing

 cells in table views, 466

 constraints in Size Inspector,

 541 - 543

 counters, 432 - 433 , 440 - 441

 dates and time, 386 - 387

 detail view, 484 - 485

 development provisioning

profiles, 18

 distances between selected

objects and other objects,

 139

 functional areas, Xcode, 32

 icons in storyboards, 131

 libraries in Interface Builder,

 133

 snapshots, 45 - 46

 storyboards, 127

 survey results, 527 - 528

 text field attributes, 194

 variable states, 791

 view controllers, 329

 web views, 264 - 265

 views

 adding gesture recognizers to,

 579 - 583

 adding objects to, 134 - 135

 alert, 282 - 285 , 296 - 303

 annotation, 699

 compose, 60 - 61

 connecting through segues,

 429

 date and time settings, 369

 described, 108 , 164 , 313

 designing, location-aware

apps, 716 - 718

 detail, 484 - 485

 image

 adding instance variables

to sizes of, 577

 copying, 227 - 228

 described, 223

 looped animations, 226 ,

 238 - 239

 removing constraints from,

 575

 replacing, 587

 instantiating, 326

 iPad, associating iPadView-

Controller class with,

772 - 773

 mail compose, 700 - 701

 modal, described, 313

 passthrough, popovers,

335 - 336

 pickers, 369 - 374

 popover, setting sizes of, 356

 scrolling

 described, 251

 designing the interface for,

 269 - 277

 setting button templates after

loading, 209 - 210

 swapping, 537 , 562 - 569

 table

 creating apps with,

 460 - 469

 described, 448 - 456

 text

 adding to user interfaces,

 199

 editing attributes of,

199 - 202

 purpose of, 193

 web

 adding to flower apps,

 259 - 260

 described, 249 - 251

 hiding and showing,

264 - 265

 viewWillAppear:animated method,

 433

 Voiceover, 142

 void type, 76

 W

 warnings

 correcting, 48 - 50

 low-memory, simulating, 61

 watchpoints, setting, 795

 weak attribute, 75 - 76

 web addresses. See URLs

 web view attributes, setting, 259

 web views

 adding to flower apps,

 258 - 260

 described, 249 - 251

 hiding and showing, 264 - 265

 Welcome app, 22

 Welcome to Xcode screen, 27

 wells, image, 767

 width value, 276

 WiFi, locating devices with, 44

 Wii, 599

 window objects, 107

 window property, 173

 Word Lens, 7

How can we make this index more useful? Email us at indexes@samspublishing.com

845zooming in and out

 X

 X button, 145

 Xcode

 adding device support

components to, 14

 as an Apple developer tool,

 22

 application delegate class,

 105

 building apps in, 46 - 50

 configuring development

machine with, 16 - 19

 correcting errors and warnings

in, 48 - 50

 creating and managing

projects with , 28

 adding new code files, 34

 adding resources, 34 - 35

 choosing project types,

 28 - 31

 filtering information

currently displayed, 33

 navigating projects in,

 32 - 33

 opening Xcode, 27 - 28

 removing files and

resources, 35 - 36

 in Single View Application

templates, 168 - 169

 user interface tour, 31 - 32

 creating groups in, 33 , 35

 creating projects in, 168 - 169 ,

 192 - 193

 Mad Libs-style story

creator, 192 - 193

 creating the right code in, 183

 documentation for, 117 - 119

 documentation for Cocoa

Touch in, 98

 dragging and dropping images

in image wells, 767

 editing and navigating code in

 activating tabbed editing,

 44

 adding pragma marks, 42

 assistant editor mode,

 43 - 42

 with code completion,

 38 - 40

 finding code with search

navigator, 41

 finding methods and

properties, 37 - 38

 managing snapshots,

 44 - 46

 overview, 36 - 37

 implementing Model-View-

Controller in, 163 - 167

 installing, 12 - 13

 Interface Builder

 connecting user interfaces

to code, 146 - 156

 creating user interfaces in,

 131 - 141

 customizing appearances

of user interfaces,

142 - 145

 described, 125 - 126

 storyboards, 127 - 131

 zooming in and out in, 135

 managing project properties in

 overview, 50 - 51

 setting application icons,

 53 - 54

 setting launch images,

 55 - 56

 setting supported device

orientations, 51 - 53

 opening projects in, 146

 Quick Help for, 119 - 122

 running first iOS app with,

 19 - 22

 Single View Application tem-

plate, 167 - 184

 Xcode debugger, troubleshooting

with, 784 - 799

 Y-Z

 zooming in and out, Interface

Builder, 135

	Table of Contents
	Introduction
	Who Can Become an iOS Developer?
	Who Should Use This Book?
	What Is (and Isn’t) in This Book?

	HOUR 16: Building Responsive User Interfaces
	Responsive Interfaces
	Using Auto Layout
	Programmatically Defined Interfaces
	Swapping Views on Rotation
	Further Exploration
	Summary
	Q&A
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

