

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data is on file

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-672-33345-3
ISBN-10: 0-672-33345-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana
First printing, December 2010

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Deadline Driven
Publishing

Indexer
Erika Millen

Proofreader
Jennifer Gallant

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Nonie Ratcliff

vContents at a Glance

Contents at a Glance
Introduction 1

1 Getting Started 5

2 Sprites and 2D Graphics 13

3 The Game Object and the Default Game Loop 29

4 Introduction to 3D Graphics 41

5 Lights, Camera, Action! 85

6 Built-In Shader Effects 105

7 States, Blending, and Textures 141

8 Introduction to Custom Effects 171

9 Using the Content Pipeline 215

10 Having Fun with Avatars 239

11 Understanding Performance 287

12 Adding Interactivity with User Input 311

13 Turn Up the Volume 353

14 Storage 375

15 Gamer Services 391

16 Multiplayer Networking 409

17 Using Media in XNA Game Studio 441

A Reach vs. HiDef Chart 455

B Using the Windows Phone FMRadio 459

C Windows Phone 7 Launchers and Choosers 463

D Dealing with Tombstoning 479

Index 487

vi Contents

Contents

Foreword xiv
Acknowledgments xv
About the Authors xvi

Introduction 1
So You Want to be a Game Developer? 1

A Brief History of XNA Game Studio 1

What Is Available in Game Studio 4.0? 3

Why This Book? 4

1 Getting Started 5
Installing XNA Game Studio 4.0 5

Downloading the Tools 6

App Hub Membership 6

XNA Game Studio Connect 9

Writing Your First Game 11

Your First XNA Game Studio Windows Game 11

Your First XNA Game Studio XNA Xbox 360 Game 11

Your First XNA Game Studio Windows Phone 7
Game 12

Download Samples 12

Summary 12

2 Sprites and 2D Graphics 13
What Does 2D Mean? 13

Show Me Something on Screen 14

Spritebatch 16

Drawing 16

Moving Things Around 19

Animation 20

Controlling State 21

Rendering Text 25

Summary 27

viiContents

3 The Game Object and the Default Game Loop 29
What Is in a New Project? 29

The Game Class 32

Virtual Methods 32

Methods 33

Properties 34

GameTime 34

Game Loop 36

Update and Draw 36

Components 38

GameComponents 38

Summary 40

4 Introduction to 3D Graphics 41
3D Graphics in XNA Game Studio 41

What Are 3D Graphics? 42

Makeup of a 3D Image 42

3D Math Basics 43

Coordinate Systems 44

Vectors in 3D Graphics 46

Matrix 53

Graphics Pipeline 61

Graphics Card 62

Vertex Shader 62

Backface Culling 63

Viewport Clipping 63

Rasterization 64

Pixel Shader 64

Pixel Tests 64

Blending 65

Final Output 65

Reach and HiDef Graphics Profiles 65

Graphics Profiles Define Platform Capabilities 66

The Reach Profile 66

The HiDef Profile 66

viii Contents

Let the 3D Rendering Start 67

GraphicsAdapter 67

GraphicsDevice 69

Drawing with Primitives 71

Summary 83

5 Lights, Camera, Action! 85
Why Do I See What I See? 85

View Matrix 87

Projection Matrix 88

Perspective 89

Orthographic 93

Camera Types 93

Static Cameras 94

Models 95

What Is a Model? 95

Rendering Models 99

Summary 103

6 Built-In Shader Effects 105
Using BasicEffect 106

Basic Lighting 108

Textures, Vertex Colors, and Fog 114

Using the Effect Interfaces 121

Using DualTextureEffect 122

Using AlphaTestEffect 124

Using EnvironmentMapEffect 124

Using SkinnedEffect 127

Summary 140

7 States, Blending, and Textures 141
Device States 141

BlendState 142

DepthStencilState 149

Render Targets 155

Faking a Shadow with a Depth Buffer and Render
Targets 158

ixContents

Back to Device States 161

The Stencil Buffer 161

RasterizerState 164

SamplerStates 166

Other Texture Types 169

Summary 170

8 Introduction to Custom Effects 171
What Is a Custom Effect? 171

High Level Shading Language 172

Creating Your First Custom Effect 172

Parts of an Effect File 173

Global Variables 174

Vertex Structures 174

Drawing with a Custom Effect 177

Vertex Color 179

Texturing 180

Setting Sampler States in Effect File 183

Textures Repeating 184

Lighting 186

Ambient Lighting 186

Triangle Normals 190

Diffuse Lighting 192

Emissive Lighting 198

Specular Lighting 199

Fog 202

Point Lights 206

Effect States 209

Alpha Blending Using Effect States 211

Summary 213

9 Using the Content Pipeline 215
Tracing Content Through the Build System 215

Content Processors 216

Content Importers 223

Combining It All and Building Assets 226

Combining What You Learned So Far 235

Summary 238

x Contents

10 Having Fun with Avatars 239
Introduction to Avatars 239

Accessing Avatar Information Using
AvatarDescription 240

Loading Avatar Animations with AvatarAnimation 243

Drawing the Avatar Using AvatarRenderer 246

Modifying Avatar Lighting 248

Playing Multiple Animations 249

Blending Between Animations 253

Interacting with Objects 260

2D Avatars Using Render Targets 263

Custom Avatar Animations 265

Creating the Custom Animation 266

Building the Custom Animation Type 267

Creating the Content Processor 273

Adding the Custom Animation to Your Game 283

Updating Your Game to Use the Custom
Animation 284

Summary 285

11 Understanding Performance 287
General Performance 287

Who Takes Out the Garbage? 289

Multithreading 292

Graphics Performance 293

Measuring Performance 295

Performance Measurement Tools 306

Cost of Built-In Shaders 307

Summary 309

12 Adding Interactivity with User Input 311
Using Input in XNA Game Studio 311

Polling versus Event-Based Input 312

The Many Keys Of A Keyboard 312

Reading Keyboard State 313

Moving Sprite Based on Keyboard Input 315

Onscreen Keyboard 316

xiContents

Precision Control of a Mouse 320

Reading Mouse State 320

Moving Sprite Based on Mouse Input 322

Setting the Mouse Position 324

Xbox 360 Gamepad 324

Reading Gamepad State 325

Moving Sprites Based on Gamepad Input 329

Thumb Stick Dead Zones 332

Other Types of Controllers 332

Is the Gamepad Connected? 333

Multitouch Input For Windows Phones 334

Reading the TouchPanel Device State 334

Determine Number of Touch Points 336

TouchPanel Width, Height, and Orientation 337

Moving Sprite Based on Multitouch Input 337

Reading Gestures from the TouchPanel 339

Displaying GestureSample Data 341

Windows Phone Sensors and Feedback 342

Acceleration Data using the Accelerometer 344

Locating a Windows Phone with the Location
Service 348

Providing User Feedback using Vibration 351

Summary 351

13 Turn Up the Volume 353
Playing Sound Effects 353

Using SoundEffect for Audio Playback 354

Microsoft Cross-Platform Audio Creations
Tool (XACT) 360

Dynamic Sound Effects 368

Recording Audio with a Microphone 368

Generating Dynamic Sound Effects 371

Summary 374

14 Storage 375
What Is Storage? 375

Isolated Storage 375

Saving and Loading Data 377

The IsolatedStorageFile Object 379

xii Contents

XNA Game Studio Storage 380

Recreating the Project on Xbox 380

Devices and Containers 382

Getting a Device 383

Looking at the API 387

Loading Loose Files from Your Project 388

Summary 390

15 Gamer Services 391
GamerServicesComponent 391

Guide Class 392

Trial Mode 392

Now the Bad News 397

Platform-Specific Guide Functionality 397

Gamers and Profiles 402

GameDefaults 405

Presence 406

Privileges 406

With Friends Like This... 407

Summary 408

16 Multiplayer Networking 409
Multiplayer Games 409

Getting Ready for Networking Development 410

Main Menu and State Management 412

Creating a Network Session 416

Building a Game Lobby 423

Playing the Game 425

Searching for an Available Network Session 430

Joining an Available Network Session 435

Sending Player Invites 438

Simulating Real World Network Conditions 439

Summary 440

xiiiContents

17 Using Media in XNA Game Studio 441
What Is Media? 441

Playing a Song 441

MediaPlayer 442

Songs and Metadata 443

Media Enumeration 444

Media Library 444

Video 448

Rendering a Video 448

Visualizations 451

Rendering Visualization Data 451

Summary 453

A Reach vs. HiDef Chart 455

B Using the Windows Phone FMRadio 459

C Windows Phone 7 Launchers and Choosers 463

D Dealing with Tombstoning 479

Index 487

Foreword
I got my first computer in 1989, when I was 13. It was an Oric-1 with a 1-MHz CPU
and 48k RAM. It didn’t come with any games, but when you switched it on, up came a
screen that said:

Ready
■
It was ready to be programmed, and the manual dived straight into teaching me how

to do this:

First the bad news. ORIC doesn’t understand English. But now the good news.
You don’t have to learn a complicated electronic language, because ORIC
speaks a language called BASIC. If your machine is switched on, we’ll see how
easy this is.Type:

PRINT "HELLO"

and then press the [RETURN] key.

Wow! I just made my first program, and the computer did exactly what I told it to do.
What a thrill! I was hooked.

A few years later, we upgraded to an Atari ST.This was better than the Oric in all ways
but one: bigger, faster, higher resolution.When I switched it on, excited to start program-
ming, I saw a desktop waiting for me to launch an application.Where was the program-
ming language? I was horrified to learn I could not program this machine without first
locating and buying an expensive third-party interpreter or compiler. If I had not already
learned to program on the Oric, this hurdle would have been too steep, so I would never
have bothered to program the Atari, never gotten a job in the games industry, never
joined the XNA team, and would not be writing this foreword today.

Learning to program is important for many reasons.As a society, we need skilled pro-
grammers to create and maintain the programs that make the modern world work.As a
democracy, we need people who understand computers well enough to make sure we
control these programs, and not the other way around.And as individuals, programming
can be great fun.

I worry that as computers have become more powerful, they also became more intimi-
dating. I think the best thing about XNA Game Studio is how it restores the immediacy
and fun I experienced with my Oric.To lower the barriers to entry, we have a free and
easy-to-learn programming language called C#.To provide that magical thrill of making
the machine do your bidding, we have powerful yet simple APIs, and the ability to run
your creations not just on PC, but also Xbox 360 and Windows Phone.And last but not
least, to learn how to put all these pieces together, we have books like this one. Nice work
Dean and Tom!

I hope you have as much fun making games with XNA as I did with my Oric.

—Shawn Hargreaves, Principal Software Design Engineer,
XNA Game Studio, Microsoft

Introduction

So You Want to be a Game Developer?

We’ve worked in what you would call the “game industry” for years, and during our
time, we’ve met many people and developers.They almost universally share a similar trait
in that they either have been or at some time wanted to be a game developer. Games are
everywhere—in movies, television, and the Internet.The audience of people playing
games has expanded, too, with the popularity of online social media sites such as Face-
book.

Much like a book or a movie, games can be a journey.They can tell a story and put
the person experiencing it into a whole new world. Unlike a book or a movie, though,
games are interactive.The player actually has an effect on the world. People can get
immersed in these worlds, and once they are, a natural extension of that is the desire to
create other (even better) worlds for others to get immersed in.With this desire to create
other worlds, we have a budding game developer.

You may find this surprising, but writing a game is hard work, or, writing a good game
is hard work. First, you need to have a good idea, and hopefully, that idea is fun.After you
have the idea, though (even if it is the best idea ever), you still have to write the actual
core game play and mechanics.After that, there is a ton of work to get something that
looks polished. Finishing developing a game is probably one of the most difficult things
for someone to do, particularly if he or she isn’t aware of how much work is required.

It isn’t easy to become a professional game developer. For established publishers and
studios, it is difficult to come in off the street and get a job writing games. Publishers and
studios want people with experience who have shipped games.Times are changing, how-
ever, with platforms that allow self-publishing (such as XNA Game Studio on Xbox or for
Windows Phone 7).Anyone can publish a game and actually charge for it to make money.

A Brief History of XNA Game Studio
This book covers XNA Game Studio 4.0, and it has been quite a journey to get to this
fourth release. XNA Game Studio 4.0 naturally builds on previous versions of XNA
Game Studio, which build on a combination of technologies that go way back.

The technologies go all the way back to Windows 95 as a matter of fact! When Win-
dows 95 was released, Microsoft released something called the Windows Game SDK,

2 Introduction

which would later be renamed to something you might be more familiar with—DirectX.
It is somewhat humorous that the X that is everywhere started off as a joke.The original
APIs released in DirectX 1.0 were DirectDraw, DirectInput, and DirectSound.The X was
used as shorthand to replace each of the actual API component names to talk about the
whole group, and that X soon became the official name. It migrated all the way through
to the original Xbox to XNA.

Before DirectX, making games was much more difficult than it is today.There wasn’t a
standard way of talking to the various pieces of hardware that existed on all the comput-
ers, so if you wanted to write a game that worked for everything, you had to write special
code for each piece of hardware you wanted to support.With DirectX, there was a stan-
dard way of accessing the hardware, and game developers and hardware manufacturers all
over rejoiced!

DirectX has gone through quite a few versions, adding new functionality as it devel-
oped (such as 3D graphics, networking, and music) and is now on version 11 that shipped
with Windows 7.When people talk about DirectX 11, though, they are almost always
talking about Direct3D 11, as no other components have changed since DirectX9.

I got ahead of myself, though. Let’s backtrack a little to DirectX 7.0.This was the first
version of DirectX that included functionality for a language other than C, as it included
DirectX for Visual Basic.This was actually when I joined the DirectX team, specifically to
work on that portion of the product. I continued to work on it through DirectX 8.0.

DirectX 8.0 was the first version to include programmable shaders, something you
read more about in Chapter 8. It’s actually hard to believe how far we’ve come since
then, as there isn’t any way to write graphics code without shaders! DirectX 8.0 is also
the time I began looking at this funny thing called .NET.

DirectX 9.0 was the first release of DirectX that included a component specifically
designed for the Common Language Runtime (CLR).This component is Managed
DirectX.A lot of work went into that project and although it looked only vaguely famil-
iar to people using DirectX, it fit right in for people using C# and the other managed
languages.

The response Managed DirectX received was surprising and a bit overwhelming.
Although DirectX for Visual Basic had expanded the development audience, Managed
DirectX did so even more.The API was cleaner, easier to use, and felt like all of the other
managed components that were out there.The biggest worry then (and one you still hear
about today) was related to performance. No one could believe that a managed API (par-
ticularly one with a garbage collector) could run fast.

After spending a few years working on Managed DirectX, I left the DirectX team in
January of 2006 to join a new group that wanted to develop this thing called XNA,
which was eventually released late in 2006 as XNA Game Studio Express.

Game Studio changed all the rules. It took the ease of use and power that Managed
DirectX had, made it even easier and more powerful, and added the capability to run
games on an Xbox 360. Historically, game consoles have always been closed systems,
including the Xbox 360. Before Game Studio, the only way to run code on an Xbox 360

3What Is Available in Game Studio 4.0?

was to be a registered native developer, which required a contract with Microsoft and an
approved game!

Much like DirectX, Game Studio kept evolving.With 2.0, support for networking via
Xbox LIVE was added.Any version of Visual Studio 2005 was allowed to be used (rather
than the C# Express that was required in the first version).At the launch of 3.0, new fea-
tures arrived with the inclusion of support for Zune and the capability to publish and sell
games on Xbox LIVE via the Xbox LIVE Community Games (now called Xbox LIVE
Indie Games).Version 3.1 included support for the Zune HD,Video, Xbox LIVE Parties,
and Avatars.

Game Studio 4.0 is the latest version where the biggest feature is the addition of the
Windows Phone 7 development.There are, of course, other updates, too, including a
much simpler graphics API and features such as microphone support and dynamic audio.
This version is what this book covers. It has been a wild ride getting here, and I can’t wait
to see where we go next.

What Is Available in Game Studio 4.0?
Game Studio 4.0 has everything you need to make great and compelling games for Win-
dows Phone 7, Xbox 360, and Windows.The Game Studio 4.0 release is broken into two
different profiles: One is called Reach, which encompasses features that exist on all plat-
forms, and the other is called HiDef, which includes extra features that exist only on
Xbox 360 and Windows (depending on the graphics card). Each of these areas is discussed
in depth later in the book.Table 1 shows the major namespaces and feature areas con-
tained in the framework.

Table 1 Namespaces included in XNA Game Studio 4.0

Namespace Features

Microsoft.Xna.Framework General framework features, math, and
game objects

Microsoft.Xna.Framework.Graphics All graphics features, including 2D and 3D

Microsoft.Xna.Framework.Audio All audio features

Microsoft.Xna.Framework.Input All input features, including game pads,
keyboard, and mouse

Microsoft.Xna.Framework.GamerServices Functionality for accessing portions of the
Xbox LIVE services

Microsoft.Xna.Framework.Media Media features for pictures, music, and
so on

Microsoft.Xna.Framework.Content Content pipeline features

Microsoft.Xna.Framework.Net All synchronous networking features

Microsoft.Xna.Framework.Storage Storage features for HiDef

4 Introduction

Why This Book?
This book is not only the best reference source for Game Studio 4.0, it also has the added
benefit of being authored by two of the people responsible for bringing this product to
you. It would be difficult to find two people more knowledgeable on this subject than us,
and we want to transfer that knowledge to you.

We cover every aspect of game development using Game Studio 4.0 for every plat-
form that it supports.This includes specifics for APIs that exist on Windows Phone 7
(such as accelerometer and other sensors) that are not part of the Game Studio API, but
are important for games.

This page intentionally left blank

3
The Game Object and the

Default Game Loop

When you create a new project, many things happen behind the scenes, and many fea-
tures to help drive the game available to you. In this chapter, you learn about these fea-
tures, including:

n The game class
n The standard game loop
n Game components

Up until now, you’ve created new projects and added some code to do other fancy
things, but you haven’t taken a step back to look at the default game template. Now is a
good time to take a look at what is provided for you automatically and the other features
available.

What Is in a New Project?
Open Visual Studio and create a new Game Studio 4.0 Windows Game project. Notice
that your main project includes two code files (program.cs and game1.cs), and you have a
content project you previously used.You can safely ignore everything in program.cs
because it is simply the stub that launches the game.As a matter of fact, this isn’t even
used on Windows Phone 7.

The interesting things that are discussed in this chapter are in game1.cs. Notice first
that the Game1 class that is created comes from the Game object provided by Game Studio.
The initial starting project gives you everything you need to start creating a game. It has a
spot for initialization, a spot to load the content your game needs, a spot to update the
game state, and a spot to render everything.

30 Chapter 3 The Game Object and the Default Game Loop

More things happen behind the scenes than you are probably aware of, however. Start
with the first thing you see in the constructor, creating the GraphicsDeviceManager.

graphics = new GraphicsDeviceManager(this);

This one line of code starts a chain reaction of operations. It naturally creates a new
GraphicsDeviceManager (which is discussed in just a moment), but it does more than
that.This object implements IGraphicsDeviceService and IGraphicsDeviceManager.
When you create the object, it takes the game parameter you’ve passed in (that is, the
this parameter) and adds itself to the Services property of the game object.

Note
You can create and add your own services to this property (it maintains a list of services),
and it is a convenient way to get game-specific services directly from the game rather than
passing them around everywhere.

After the graphics device manager has been added to the services list, the actual graph-
ics device is created when the constructor has finished executing.The default options
work just fine, but you actually do have some control over the settings the device has.

Notice that quite a few different properties on this object can be used to control how
the device is created or to get information about it.The first one is the GraphicsDevice.
Right now, it hasn’t been created yet, but after it has been, it can be accessed here.You most
likely never need it, though, because the GraphicsDevice is a property of the Game itself.

The GraphicsProfile is another property you can access. Profiles are discussed in
Chapter 4,“Introduction to 3D Graphics”. Next is the IsFullScreen property that
behaves differently depending on the platform you run.The default value here is false,
although on Xbox 360, it doesn’t matter what this is set as because you are always full
screen on that platform. On Windows, setting this to true causes the device to be created
in what is called full screen exclusive mode, and your rendering encompasses the entire
screen. On Windows Phone 7, this controls whether the system tray bar is visible or not
visible.

Note
Taking over the full screen in exclusive mode on Windows is not a nice thing to do without
the user asking you to do so. In modern operating systems, the graphics hardware is shared
nicely between games and the operating system, and forcing the operating system to yield to
your game can cause behavior that some of your players may very well find annoying (the
authors here included).

The next set of properties is the most commonly changed, and it includes the prefer-
ences. Because they are preferences and not requirements, the runtime attempts to use
these settings, and if it cannot use them, it falls back to what it feels is the closest to what
you requested.These properties are PreferMultisampling, PreferredBackBufferWidth,
PreferBackBufferHeight, PreferBackBufferFormat, and PreferDepthStencilFormat.

31What Is in a New Project?

The back buffer is where your content is rendered, and the sizes in these preferences
(width and height), control how large that area is. On Windows, in nonfull screen mode,
this also controls the size of the window. In full screen mode, it controls the resolution of
the monitor when it takes exclusive control of it. On Xbox 360 and Windows Phone 7,
the devices have a built-in native resolution. For Windows Phone 7, the device has a reso-
lution of 480×800 (in portrait mode), whereas the Xbox is configurable. On each of these
platforms, if you ask for a different back buffer resolution, it is scaled to the native device
resolution.

Multisampling is the process used to remove what are called the “jaggies” from ren-
dered images.These jagged edges are formed normally on the edges of objects or on lines
that are not on pixel boundaries (for example, nonhorizontal or vertical lines). Multisam-
pling blends each pixel with other pixels around it to help soften these jagged edges. It
does this by rendering the image larger and blending multiple pixels down to a single
pixel.Although it doesn’t necessarily remove the jagged edges, it certainly can help.There
is a performance cost for doing this, so this defaults to false.

The last two preferences are the formats for the back buffer and the depth stencil. For-
mats are used to describe how data is laid out for the final rendered image. For the back
buffer, this is how the color is laid out, and the default for this is actually SurfaceFormat.
Color.This is a 32-bit format that has 8 bits for red, green, blue, and alpha.The depth
stencil buffer formats control how many bits are used for the depth buffer and stencil
buffer.

Note
Depth buffers are discussed in more detail in Chapter 7, “States, Blending, and Textures”.

The last two properties are SupportedOrientations, which is mainly used for Win-
dows Phone 7, and SynchronizeWithVerticalRetrace. Synchronizing with the vertical
retrace is a way to prevent tearing by pausing until the device is ready to render the entire
screen at once.These are discussed in depth in Chapter 11,“Understanding Performance”
when performance and measurement are discussed.

There are also six different events you can hook off of the graphics object, most
of which are self-explanatory based on the names.The one interesting one is
PreparingDeviceSettings.This event is triggered right before the device is created, and
it gives you the opportunity to override any of the settings before the device is actually
created. Use this only if you know the device supports the settings you request.

There are also two methods on the object, ApplyChanges which attempts to instantly
update the device to the current settings (or create a new device if required), and
ToggleFullscreen, which makes a windowed game full screen and a full screen game
windowed during runtime. Using either of these is rarely required.

The last thing the constructor does is set the root directory of the automatically created
content manager to “Content,” which is where your content project places the content
you add to your game.The content manager is created for you when the game is created,

32 Chapter 3 The Game Object and the Default Game Loop

so you can begin using it immediately.The content manager is discussed more in depth in
Chapter 9,“Using the Content Pipeline.”

Content.RootDirectory = "Content";

The default template has overrides for five common methods: Initialize,
LoadContent, UnloadContent, Update, and Draw.Although nothing happens in
Initialize and UnloadContent, the other three have basic stub code.The LoadContent

method creates the sprite batch object you almost certainly need.The Draw method clears
the screen to the infamous CornflowerBlue color. Finally, the Update method adds a
quick check to see if you’re pressing the Back button on your controller to see if it should
exit the game.We get into the flow of these methods and how they’re used in just a
moment, but first, let’s take a look at the Game class itself.

Note
For Windows Phone 7 projects, there is another very important aspect to the game lifetime
you need to understand called “Tombstoning”. It is discussed in depth in Appendix D, “Deal-
ing with Tombstoning”.

The Game Class
The Game class is where all of the magic in your game takes place.Almost everything in
your game is driven in some part by this class, and it is the root of your project. Let’s dive
in and see what it is made of.

Virtual Methods
The Game object you’re class derives from has many knobs and buttons (figuratively) to
help control your game and its flow. It has several virtual methods you can override to
help control different features, some of which we’ve seen already.

Initialize, as you would expect, is called once just after the object is created. It is
where you would do most of your initialization (aside from loading content) for your
game.This is an ideal place to add new game components for example (which are dis-
cussed later in this chapter). LoadContent and UnloadContent are two other areas where
you should load (or unload) your content. Content is loosely defined and can be any
external data your game needs, whether it’s graphics, audio, levels, XML files, and so on.

The Update method is where you handle updating anything your game requires, and
in many games, you can do things such as handle user input. Because most games are
essentially a simulation with external forces, you need a central spot where you can per-
form the operations to advance that simulation. Common things you’d do include moving
objects around the world, physics calculations, and other simulation updates.

Draw probably needs no further explanation.All drawing code for each scene occurs
here.There are two other drawing methods you can override: BeginDraw and EndDraw.
These are called directly before and after Draw is called, respectively. If you override the
EndDraw call, you need to ensure you call the base.EndDraw or manually call
GraphicsDevice.Present; otherwise, you never see your scenes drawn on screen.

33The Game Class

Note
Present is the last call made at the end of drawing and tells the graphics device, “Ok, I’m
done drawing now; show it all on screen.”

Much like the pre- and post-drawing methods, there are also BeginRun and EndRun

methods you can override that are called before the game begins and just after the game
run ends. In most cases, you do not override these, unless you are doing something such as
running multiple simulations as individual game objects.

You can override the method ShowMissingRequirementMessage. Most people proba-
bly don’t even realize it is there. By default, this does nothing on non-Windows platforms,
and on Windows, it shows a message box giving you the exception detail.This enables
customization if the platform you run on doesn’t meet the requirements of your game,
which is normally only an issue on a platform such as Windows where you can’t guaran-
tee which features it supports.

The last three methods you can override are mirrors of events you can hook.
OnActivated is called at the same time the Activated event is fired, and it happens when
your game becomes activated.Your game is activated once at startup, and then anytime it
regains focus after it has lost focus.To mirror that, you use the OnDeactivated method,
which is called when the Deactivated event is fired, and that happens when your game
becomes deactivated, such as it exits or it has lost focus. On Windows and Windows
Phone 7, your game can lose focus for any number of reasons (switching to a new app,
for example), whereas on Xbox 360, you see this only if the guide screen displays.

Finally, the OnExiting method is called along with the Exiting event.As you can
probably guess, this happens just before the game exits.

Methods
Most of the methods on the Game class are virtual so there aren’t many here to discuss,
and they’re almost all named well, so you can guess what they do.The Exit method,
which causes the game to start shutting down.The ResetElapsedTime method resets the
current elapsed time, and you’ll learn more about it later in this chapter.The Run method
is what starts the game running, and this method does not return until the game exits. On
Xbox 360 and Windows, this method is called by the autogenerated main method in pro-
gram.cs at startup, and on Windows Phone 7, this method throws an exception. Due to
platform rules, you can’t have a blocking method happen during startup on Windows
Phone 7.A timer starts and periodically calls RunOneFrame, which does the work of a sin-
gle frame.You can use this method on Xbox 360 and Windows, but you shouldn’t have to
use it since the game object is doing that for you.

The SuppressDraw method stops calling Draw until the next time Update is called.
Finally, the Tick method advances one frame; namely, it calls Update and Draw.

34 Chapter 3 The Game Object and the Default Game Loop

Properties
After covering all of the methods, properties are naturally the next item on the list.You’ve
already seen the Services property, which enables you to add new services to the game
and query for existing ones.You’ve also already seen the Content and GraphicsDevice

properties, which store the default content manager and graphics device.
A property called InactiveSleepTime gives you some control of how your game

handles itself when it is not the foreground window.This value tells the system how long
to “sleep” when it is not the active process before checking to see if it is active again.The
default value of this is 20 milliseconds.This is important on Windows were you can have
many processes run at once.You don’t want your game to run at full speed when it isn’t
even active.

Speaking of being active, the IsActive property tells you the current state of the game.
This maps to the Activated and Deactivated events, too, as it turns true during
Activated and false during Deactivated. Chapter 12,“Adding Interactivity with User
Input” discusses the IsMouseVisible property, even though you can probably guess what
it does.

The LaunchParameters property is used for Windows Phone 7 to get information
about parameters required for launching, but this can be used for any platformand trans-
lates the command-line parameters on Windows into this object. It is a dictionary of key
value pairs. On Windows, if your command line is as follows, the object would have a dic-
tionary with three members:

game.exe /p /x:abc "/w:hello world"

The first member would have a key of “p” with a value of an empty string.The second
member would have a key of “x” with a value of “abc.”The third member has a key of
“w” with a value of “hello world.”

On Windows Phone 7, applications are launched with a URI that includes these
parameters; for example, if your launch command is as follows, the object would have a
dictionary with two members:

app://{appguid}/_default#/Main.xaml?myparam1=one&myparam2=two

The first member would have a key of “myparam1” and a value of “one.”The second
member would have a key of “myparam2” and a value of “two.”

The last two properties are IsFixedTimeStep and TargetElapsedTime.Timing is so
important to game development there is a whole section on that! Because anticipation is
probably overwhelming, that section is next.

GameTime
You may not realize it, but a lot of things in a game depend on time. If you create a race
game and your cars are going 60 miles per hour, you need to know how much to move
them based on a given time.The framework tries to do a lot of the work of handling time
for you.

35The Game Class

There are two major ways to run a game, and in the framework, they are referred to as
“fixed time step,” and “variable time step.”The two properties mentioned in the previous
section—IsFixedTimeStep and TargetElapsedTime—control how time is handled.
IsFixedTimeStep being true naturally puts the game into fixed time step mode, whereas
false puts the game into variable time step mode. If you are in fixed time step mode,
TargetElapsedTime is the target time for each frame.The defaults for projects are true for
IsFixedTimeStep and 60 frames per second for TargetElapsedTime (which is measured
in time, so approximately 16.6667 milliseconds).

What do these time steps actually mean? Variable time step means that the amount of
time between frames is not constant.Your game gets one Update, then one Draw, and then
it repeats until the game exits. If you noticed, the parameter to the Update method is the
GameTime.

The GameTime object has three properties that you can use. First, it has the
ElapsedGameTime, which is the amount of time that has passed since the last call to
Update. It also includes TotalGameTime, which is the amount of time that has passed since
the game has started. Finally, it includes IsRunningSlowly, which is only important in
fixed time step mode.

During variable time step mode, the amount of time recorded in ElapsedGameTime
passed to update can change depending on how long the frame actually takes (hence, the
name “variable” time step).

Fixed time step is different. Every call to Update has the same elapsed time (hence, it is
“fixed”). It is also different from variable time step in the potential order of Update and
Draw calls.While in variable time step, you get one update for every draw call; in fixed
time step, you potentially get numerous Update calls in between each Draw.

The logic used for fixed time step is as follows (assuming you’ve asked for a
TargetElapsedTime of 60 frames per second).

Update is called as many times as necessary to catch up to the current time. For exam-
ple, if your TargetElapsedTime is 16.667 milliseconds, and it has been 33 milliseconds
since your last Update call, Update is called, and then immediately it is called a second
time. Draw is then called.At the end of any Draw, if it is not time for an Update to occur,
the framework waits until it is time for the next Update before continuing.

If at any time, the runtime detects things are going too slow (for example, you need to
call Update multiple times to catch up), it sets the IsRunningSlowly property to true.
This gives the game the opportunity to do things to run faster (such as rendering less or
doing fewer calculations).

If the game gets extremely far behind, though, as would happen if you paused the
debugger inside the Update call if your computer just isn’t fast enough, or if your Update
method takes longer than the TargetElapsedTime, the runtime eventually decides it can-
not catch up.When this happens, it assumes it cannot catch up, resets the elapsed time, and
starts executing as normal again. If you paused in the debugger, things should just start
working normally. If your computer isn’t good enough to run your game well, you should
notice things running slowly instead.

36 Chapter 3 The Game Object and the Default Game Loop

You can also reset the elapsed time yourself if you know you are going to run a long
operation, such as loading a level or what have you.At the end of any long operation
such as this, you can call ResetElapsedTime on the game object to signify that this oper-
ation takes a while, don’t try to catch up, and just start updating from now.

Notice that in Windows Phone 7 projects, the new project instead sets the
TargetElapsedTime to 30 frames per second, rather than the 60 used on Windows and
Xbox 360.This is done to save battery power, among other reasons. Running at half the
speed can be a significant savings of battery life.

Note
Which time step mode you actually use is a matter of personal preference. We personally
choose fixed time step mode, but either can work for any type of game. During performance
measurement, though, you should use variable time step mode. This is discussed in
Chapter 11, “Understanding Performance.”

Game Loop
This chapter has been nothing but text so far.Words, words, and rambling—that just isn’t
exciting. Let’s get something on the screen!

Update and Draw
The basic flow of your game is to initialize everything, and then call Update and Draw

continually until you exit the game.This is what is called the game loop.You’ve already
seen it in action in Chapter 2,“Sprites and 2D Graphics,” without even realizing it most
likely.To ensure you do realize it, let’s do a slightly more complex example.

First, you need to add the XnaLogo.png file to your content project from the accom-
panying CD. Because you are drawing this image much like before, you need to declare a
texture variable to hold it.This time, though, also declare a position variable, as follows:

Texture2D texture;

Vector2 position;

Of course, you need to load that texture, so in your LoadContent method add this line:

texture = Content.Load<Texture2D>("XnaLogo");

You should probably also initialize that position to something! Add the following to
the Initialize method:

position = Vector2.Zero;

Finally, because you need to actually draw the image, replace your Draw method with
the following:

protected override void Draw(GameTime gameTime)

{

GraphicsDevice.Clear(Color.CornflowerBlue);

spriteBatch.Begin();

37Game Loop

spriteBatch.Draw(texture, position, Color.White);

spriteBatch.End();

base.Draw(gameTime);

}

Running the project now shows you (as you might have guessed) the image in the
upper left corner of the window. Because of the position variable in the Draw call, you are
set up to get that thing moving! Add the following to the Update method:

position = new Vector2(position.X + (float)gameTime.ElapsedGameTime.TotalSeconds,

position.Y + (float)gameTime.ElapsedGameTime.TotalSeconds);

Running the project now has the image slowly moving down and to the right, and if
you leave it running long enough, it eventually goes off screen! If you want the image to
bounce around the screen, though, it would be complicated code. Do you add to the posi-
tion or subtract? Instead, store your direction in a new variable:

Vector2 velocity;

Then, update the Initialize method to include:

velocity = new Vector2(30, 30);

Finally, change your update method to:

position += (velocity * (float)gameTime.ElapsedGameTime.TotalSeconds);

These updates provide faster movement and easier code, although the image still goes
off screen if you let it.You need to detect if the image has gone off screen and make
changes to ensure it “bounces” off the edges.This is the largest section of code you’ve seen
so far, but it makes the image bounce around, so modify your Update call to this:

position += (velocity * (float)gameTime.ElapsedGameTime.TotalSeconds);

if (!GraphicsDevice.Viewport.Bounds.Contains(new Rectangle(

(int)position.X, (int)position.Y, texture.Width, texture.Height)))

{

bool negateX = false;

bool negateY = false;

// Update velocity based on where you crossed the border

if ((position.X < 0) || ((position.X + texture.Width) >

GraphicsDevice.Viewport.Width))

{

negateX = true;

}

if ((position.Y < 0) || ((position.Y + texture.Height) >

GraphicsDevice.Viewport.Height))

{

negateY = true;

}

// Move back to where you were before

position -= (velocity * (float)gameTime.ElapsedGameTime.TotalSeconds);

38 Chapter 3 The Game Object and the Default Game Loop

if (negateX) velocity.X *= -1;

if (negateY) velocity.Y *= -1;

// Finally do the correct update

position += (velocity * (float)gameTime.ElapsedGameTime.TotalSeconds);

}

Run the project now and you can see the image bounce around the screen! You simply
check to see if the image is currently in the bounds of the viewport, and if it is not, check
to see which edge it is currently over.Then, move it back to where it was before the
update, swap the velocity axis of the sides you’ve crossed, and update the position again.

Components
As you can probably imagine, if you had to draw everything inside a single class, your
code would quick become a mess of things to keep track of!

GameComponents
Luckily, the framework provides an easy way to encapsulate objects called game compo-
nents.There are three types of game components you can use for your games:
GameComponent, DrawableGameComponent, and GamerServicesComponent.The latter is
discussed later, but let’s dive into the others now.

First, you want to take the image-bouncing code you wrote and move it into a com-
ponent, so in your main game project, right-click the project and select Add -> New
Item. Choose Game Component from the list of templates (it might be easier to find if
you choose the XNA Game Studio 4.0 section in the list on the left), name it
BouncingImage.cs, and then click the Add button.

This adds a new file to your project with a new class deriving from GameComponent,
which is close to what you want but not quite. Open up BouncingImage.cs (it should
have opened when you added the component), and change it to derive from
DrawableGameComponent instead:

public class BouncingImage : Microsoft.Xna.Framework.DrawableGameComponent

Now you can begin moving the code you used in your Game class to render your
bouncing image to this component. Start by moving the three variables you added to the
new BouncingImage class (texture, position, and velocity). Move the code initializing your
two vectors into the new classes Initialize method and move the code were you mod-
ify the vectors in update to the new classes Update method.You need to do just a few
things to complete your bouncing image component.

You need a way to load the texture, and DrawableGameComponent has the same virtual
LoadContent method that the game has, so you can simply override it in your
BouncingImage class now:

39Components

protected override void LoadContent()

{

texture = Game.Content.Load<Texture2D>("XnaLogo");

base.LoadContent();

}

Finally, all you need now is to draw the image. Just like LoadContent,
DrawableGameComponent also has a Draw virtual method you can override:

public override void Draw(GameTime gameTime)

{

spriteBatch.Begin();

spriteBatch.Draw(texture, position, Color.White);

spriteBatch.End();

base.Draw(gameTime);

}

As you might have seen already, this won’t compile.The spriteBatch variable is
declared in the game, and it is a private member variable.You can create a new sprite
batch for this component, but it isn’t necessary. If you remember back to earlier in this
chapter, we talked about the Services property on the Game class.

Go back to the game1.cs code file and to the LoadContent method. Replace the load-
ing of the texture (which you just did in the BouncingImage class) with the following line
(directly after the sprite batch has been created):

Services.AddService(typeof(SpriteBatch), spriteBatch);

This adds a “service” of type SpriteBatch to the game class and uses the just created
sprite batch as the provider of that service.This enables you to use the “service” from any-
thing that has access to the game. Back in the BouncingImage.Draw method, before the
Begin call, add the following:

SpriteBatch spriteBatch = Game.Services.GetService(

typeof(SpriteBatch)) as SpriteBatch;

Now that you have your drawing code in your component compiling, you can remove
it from the Draw call in the game. It should have nothing but the Clear call and the
base.Draw call now.With everything compiling, you can run your project and you will
see absolutely nothing except a blank cornflower blue screen.This is because your com-
ponent was never actually used! Back in the Initialize method in the game, add the
following:

Components.Add(new BouncingImage(this));

That’s it. Running the code gets you back to where you were before, but with every-
thing much more encapsulated. It’s also much easier to add new instances of the bouncing
image; for example, add this to your games Update method:

if (((int)gameTime.TotalGameTime.TotalSeconds % 5) == 4)

Components.Add(new BouncingImage(this));

40 Chapter 3 The Game Object and the Default Game Loop

Running it now adds a new set of bouncing images every 5 seconds (actually it adds
quite a few because it adds one for every update that happens during that second).You can
go ahead and remove that code; it is just an example of how easy it is to include more.

You might have noticed that you didn’t actually have to do anything outside of add
your component to the Components collection for it to start working magically.Your
Initialize method is called for you, as is your LoadContent method, and the Update
and Draw methods were called for each frame.

By default, components are updated and drawn in the order they were added, and they
are always updated and drawn. However, these are all changeable, too. If you set the
DrawOrder property, when the components are being drawn, the components with the
lower DrawOrder values are drawn first. Similarly, if you use the UpdateOrder property, the
components with the lower UpdateOrder value are updated first.The higher value these
properties have, the later they happen in the list of components. If you want something
drawn as the last possible component, you set the DrawOrder to int.MaxValue, for
example. Of course, if you have more than one component with the same UpdateOrder
or DrawOrder, they are called in the order they were added.

Of course, there might be times when you don’t want your component to be drawn at
all! If this is the case, you can simply set the Visible property to false, and your Draw
override is no longer called until that property switches back to true. If you need to tem-
porarily suspend updating for a while, you can just change the Enabled property to false!

There are also events (and virtual methods) to notify you when any of these properties
change if you need to know about the changes.

Note
The GameComponent class has the same behavior as the DrawableGameComponent class
without the extra methods and properties used for Drawing, such as LoadContent and
DrawOrder.

Summary
Now you have a basic understanding of how game flow is executed and the order of

operations of a normal game.You also understand components and how they interact. It is
time to move into some 3D graphics before getting back to some of the more advanced
2D operations.

Index

Numbers
2D avatars, render targets, 263-265

2D graphics

coordinate system, 13
drawing to screen, 14-16

animation, 20-21
controlling state, 21-25
Draw method, 16-19
moving things around, 19-20

explained, 13-14
GraphicsDeviceManager, 14
SpriteBatch object, 16

animation, 20-21
controlling state, 21-25
drawing, 16-19
moving things around, 19-20

text rendering, 25-27
Texture2D class, 14

2D sprites, 43

3D audio positioning, 356-357

3D graphics, 41-43

coordinate systems, 44-45
defined, 42
matrix, 53-54

combining matrix transforms, 58
identity, 54-55
manipulating vectors, 59, 61
rotation, 56-57

scale, 57
translation, 55

vectors, 46
addition, 47-48
cross product, 50
dot product, 49
negation, 49
point versus direction and

magnitude, 46
scalar multiplication, 48
subtraction, 48
Vector4, 46
XNA Game Studio, 51, 53

3D math, 43

3D rendering

drawing primitives, 71-72
DrawIndexedPrimitives, 80, 82
DrawPrimitives, 78-80
DrawUserIndexedPrimitives, 75-78
DrawUserPrimitives, 72-75
primitive types, 71
vertex types, 71

GraphicsAdapter class, 67-68
GraphicsDevice, 69-70

creating, 70
reference devices, 71

A
acceleration data

accelerometer, 344-346
autorotation and, 348
reading, 344

accelerometer, 344-346

moving sprites, 346-347
AccelerometerSensor, 344

accessing AvatarDescription, 240-241

adding

custom animation to games, 283-284
SoundEffectInstance, 357-360
wave files, XACT, 361, 363-364

AllowOnlineCommunication, 407

AllowOnlineSessions, 407

AllowPremiumContent, 407

AllowPurchaseContent, 407

AllowTradeContent, 407

AllowUserGeneratedContent, 407

alpha blending, effect states, 211-213

AlphaTestEffect, 105, 124, 309

ambient light, 108, 186-190

analog input, 312

angles, converting to radians, 19

animated model properties, 138

animation

2D graphics, 20-21
avatars, 243-244

blending, 253-257, 259-260
functionality through

interfaces, 246
playing multiple, 249-252
transforms and expressions, 245
updating, 244

custom animations
avatars, 265-273
content processors, creating,

273-282
AnimationBlender, 254, 257, 259

API, storage, 387-388

App Hub membership, installing XNA Game
Studio 4.0, 6-7

Apply3D, 360

ApplyChanges, 31

aspect ratio, 90

AspectRatio, 90

488 3D graphics

assets, content pipeline, 226-234

AsyncCallback, 385

attenuation, 209

audio playback

looping with SoundEffect, 356
using cue, 364-366

AudioEmitter, 356

AudioEngine, 365

AudioListener, 357

autorotation, accerlation data and, 348

AvailableNetworkSession, 433

AvatarAnimation, 243-244, 250

functionality through interfaces, 246
transforms and expressions, 245
updating, 244

AvatarAnimationPreset, 244

AvatarCustomAnimation, 270, 285

AvatarDescription

accessing avatar information, 240-241
Changed event, 243
constructing from byte arrays, 242
creating random, 242

AvatarExpression, 270

AvatarEye, 245

AvatarEyebrow, 245

AvatarMouth, 245

AvatarRenderer, 246-247

deterring current state of, 248
drawing while loading, 247-248

avatars, 239-240

2D avatars, render targets, 263-265
accessing information using

AvatarDescription, 240-241
Changed event, 243
constructing AvatarDescription, 242
creating random, 242

animations, 243-244
blending, 253-257, 259-260
functionality through

interfaces, 246
playing multiple, 249-252
transforms and expressions, 245
updating, 244

custom animations, 265-273
adding to games, 283-284
content processors, 273-282
updating games to use, 284-285

drawing with AvatarRenderer,
246-247

deterring current state of, 248
while loading, 247-248

interacting with objects, 260-263
modifying lighting, 248-249

B
backbuffer, 65

backface culling, 63

base.Draw method, 303

BasicEffect, 105-107, 307

effect interfaces, 121-122
fog, 119-121
lighting, 108-114
textures, 114-115, 118-119
vertex colors, 115-118

Begin method, 22

BeginMark, 299

BeginShowKeyboardInput, 316, 318-320

BeginShowMessageBox, 396

BeginShowSelector method, 387

BinaryWriter helper class, 379

BlendFactor, 147

489BlendFactor

blending, 65

animations for avatars, 253-260
BlendState object, 142-148

premultiplied alpha, 148-149
Blinn-Phong shading, specular lighting,

200-202

bones, 98-99

BouncingImage class, 38

build systems, tracing content, 215-216

BuildAndLoadAsset method, 232, 237

built-in shaders, cost of, 307-308

ButtonPressed method, 415

byte arrays, constructing
AvatarDescription, 242

C
calculating lighting, 110

cameras, 85-86

static cameras, 94-95
Changed event (AvatarDescription), 243

chatpad input, 313

chatpads, input, 313

choosers, Windows Phone 7, 472-476

choosing

content processors, 220
storage devices, 385

Clamp, 168

CleanSkeleton method, 280

ClearOptions, 153

CLR (Common Language Runtime), 2

CLR profiler, 306

color, vertex, 179-180

color value, 65

combining

content, 226-234
matrix transforms, 58

Common Language Runtime (CLR), 2

CompareFunction.LessEqual, 151

components, GameComponents, 38-40

connections, Xbox 360 gamepad, 333

constructing AvatarDescription from byte
arrays, 242

containers, storage, 382-383

content, tracing through build system,
215-216

content importers, 223-226

Content object, 15

content pipeline, 216

combining and building assets,
226-234

combining what you have learned so
far, 235-237

content importers, 223-226
content processors, 216-222
extensions, debugging, 222
tracing content, 215

content processors, 216-222

choosing, 220
creating, 273-276, 278-282
properties, 221

ContentImporter, 230, 233

ContentManager, 237

controllers, Xbox 360 gamepad, 332-333

converting angles to radians, 19

coordinate systems, 13

3D graphics, 44-45
CopyAbsoluteBoneTransformsTo, 99

CopyBoneTransformsFrom method, 99

CopyBoneTransformsTo method, 99

cost, 288

of AlphaTestEffect, 309
of built-in shaders, 307-308
of DualTextureEffect, 308
of EnvironmentMapEffect object, 308
of SkinnedEffect object, 308

490 blending

CPU bound, 294

CreateFile method, 378

CreateLookAt, 86, 88

CreateOrthographic, 93

CreateOrthographicOffCenter, 93

CreatePerspective method, 92

CreatePerspectiveFieldOfView, 86, 89

CreatePerspectiveOffCenter method, 92

CreateSessionDraw, 417

CreateSessionUpdate, 424

cross product, vectors, 50

cue, audio playback, 364-366

culling, backface, 63

CullMode, 166

CurrentPosition, 255, 272

custom animations

adding to games, 283-284
avatars, 265-273

content processors, 273-282
updating games to use, 284-285

custom effects, 171

creating, 172-173
drawing with, 177-178
effect states, 209-210

alpha blending, 211-213
HLSL (High Level Shading

Language), 172
lighting, 186

ambient lighting, 186-190
diffuse lighting, 192-197
emissive lighting, 198
fog, 202-206
point lights, 206-209
specular lighting, 199-202
triangle normals, 190-192

parts of effect files, 173
global variables, 174
vertex structures, 174-177

texturing, 180-183
repeating textures, 184-186
setting sampler states, 183-184

vertex color, 179-180
cutouts, depth, 153

D
DancePad, 332

data, isolated storage, saving and loading,
377-379

dead zones, thumb sticks (Xbox 360
gamepad), 332

DebugCommandUI, 306

debugging content pipeline extensions, 222

DebugManager, 306

DefaultProcessor, 231

depth, cutouts, 153

depth buffer, faking shadows, 158-161

depth test, 65

DepthBufferEnable property, 154

DepthBufferFunction, 154

DepthBufferWriteEnable, 154

DepthStencilState, 149-155

deterring current state of
AvatarRenderer, 248

device states, 141-142

BlendState object, 142-148
premultiplied alpha, 148-149

DepthStencilState, 149-155
RasterizerState, 164-166
stencil buffer, 161, 163-164

491device states

devices

getting, 383-386
storage, 382-383

choosing, 385
diffuse lighting, 192-196

multiple lights, 196-197
oversaturation, 197

digital input, 312

direction versus point (vectors), 46

directional diffuse lighting, 196

directional lighting, 109-111, 193

DirectX, 2

DiscardContents, 156

displaying GestureSample data, 341-342

dot product, 49

downloading tools, installing XNA Game
Studio 4.0, 6

Draw method, 16-19

game loop, 36-38
virtual methods, Game class, 32

DrawIndexedPrimitives, 80, 82

drawing

2D objects to screen, 14-16
animation, 20-21
controlling state, 21-25
Draw method, 16-19
moving things around, 19-20

avatars with AvatarRenderer, 246-248
with custom effects, 177-178
primitives, 71-72

DrawIndexedPrimitives, 80, 82
DrawPrimitives, 78-80
DrawUserIndexedPrimitives, 75-78
DrawUserPrimitives, 72-75
primitive types, 71
vertex types, 71

DrawModel call, 101-102

DrawModeViaMeshes, 101

DrawOrder property, 40

DrawPrimitives, 78-80

DrawString method, 25

DrawUserIndexedPrimitives, 75-78

DrawUserPrimitives, 72-75

DrumKit, 332

DualTextureEffect, 105, 122-124, 160, 308

dynamic sound effects, generating, 371-374

DynamicSoundEffectInstance, 370-371

E
effect files, 173

global variables, 174
sampler states, setting, 183-184
vertex structures, 174-177

effect interfaces, 121-122

effect states, 209-210

alpha blending, 211-213
Effect type, 177

effects. See custom effects

Effects collection, 96

ElapsedGameTime, 35

emissive lighting, 198

EmissiveColor, 114

EnableDefaultLighting, 111

EndMark, 299

enumerating microphones, 368

enumerations

SpriteEffects, 19
SpriteSortMode, 22

EnvironmentMapAmount parameter, 127

EnvironmentMapEffect, 105, 124-127, 308

EnvironmentMapSpecular parameter, 126

event-based input versus polling, 312

expressions, avatar animation, 245

extensions, debugging content pipeline, 222

492 devices

F
faking shadows with depth buffer and

render targets, 158-161

feedback, Windows Phones, 342, 344

vibration, 351
fields of matrix, 59

FindSession method, 431-432

FindSessionDraw, 432

FindSkeleton method, 279

fire and forget audio playback, 354-355

FlattenSkeleton method, 279

FlattenTransforms helper method, 135

FlightStick, 332

floats, 90

FMRadio, 459-460

fog, 202-206

BasicEffect, 119-121
FontName node, 25

FresnelFactor parameter, 126

FriendRequestReceivedFrom, 407

FriendRequestSentTo, 408

G
Game class, 29, 32, 413

methods, 33
ResetElapsedTime, 33
Run, 33
RunOneFrame, 33
SuppressDraw, 33

properties, 34
InactiveSleepTime, 34
IsActive, 34
IsFixedTimeStep, 34
LaunchParameters, 34
TargetElapsedTime, 34

time, 34-36
virtual methods, 32

Draw, 32
Initialize, 32
OnActivated, 33
OnDeactivated, 33
ShowMissingRequirementMessage,

33
Update, 32

game loop

Draw, 36-38
Update, 36-38

Game Studio 2.0, 3

GameComponents, 38-40

GameDefaults, 405-406

GameLobbyUpdate method, 439

gamepad (Xbox 360), 324-325

connections, 333
controllers, 332-333
moving sprites, 329-331
reading gamepad state, 325-326

gamepad buttons, 326-328
gamepad direction pad, 328
gamepad thumb sticks, 329
gamepad triggers, 329

thumb stick dead zones, 332
gamepad state, reading, 325-326

gamepad buttons, 326-328
gamepad direction pad, 328
gamepad thumb sticks, 329
gamepad triggers, 329

GamePad.GetState, 327

GamePadButtons, 326-328

GamePadDPad, 328

GamePadThumbSticks, 329

GamePadTriggers, 329

493GamePadTriggers

GamePadType, 332

Gamer Services, 391

GameDefaults, 405-406
gamers, 402-405
GamerServicesComponent, 391-392
Guide class, 392

platform-specific guide
functionality, 397-402

trial mode, 392-396
IsFriend, 407-408
Presence property, 406
Privileges property, 406-407
profiles, 402-405

GamerObject, 427

GamerPresence object, 406

GamerProfile, 404

gamers, 402-405

GameDefaults, 405-406
IsFriend, 407-408
Presence property, 406
Privileges property, 406-407

GamerServicesComponent, 391-392

Gamertag, 426

games

multiplayer. See multiplayer games
writing first game, 11-12

GameServices, 409

GameState, 413

GameTime object, 35

garbage collectors, 289, 291-292

general performance, 287-289

garbage collectors, 289, 291-292
multithreading, 292-293

generating

sound effects, 371-374
vectors, 301

GeoCoordinate, 350

geometry, 43

GestureSample, 340-341

displaying data, 341-342
GestureType, 339-340

GetFriends, 407

GetGamerPicture, 403

GetState method, 321

GetUserStoreForApplication method, 378

global variables, effect files, 174

GPU (graphics processing unit), 62

GPU bound, 294, 307

graphics. See 2D graphics; 3D graphics

graphics cards, 62

graphics performance, 293, 295

graphics pipeline, 61

backface culling, 63
blending, 65
color value, 65
graphics cards, 62
pixel shaders, 64
pixel tests, 64

depth test, 65
scissor test, 64
stencil test, 64

rasterization, 64
vertex shaders, 62

projection space, 63
view space, 62
world space, 62

viewport clipping, 63
graphics processing unit (GPU), 62

graphics profiles

HiDef profile, 66-67
platform capabilities, 66
Reach profile, 66

graphics resources, tombstoning, 484-485

494 GamePadType

GraphicsAdapter class, 67-68

GraphicsDevice, 17, 30, 69-70

creating, 70
reference devices, 71

GraphicsDeviceManager, 14, 30

GraphicsProfile, 30, 66, 455

HiDef, 455, 457
Reach, 455, 457

Guide class, 392

platform-specific guide
functionality, 397

messaging and signing in, 400-402
notifications, 397
players, 398-400

trial mode, 392-396
Windows Phone 7, 397

Guide.DelayNotifications method, 397

Guitar, 333

H
HiDef profile, 3

graphics profiles, 66-67
GraphicsProfile, 455, 457

history of XNA Game Studio, 1-3

HLSL (High Level Shading Language), 172

homogeneous divide, 63

I
IAvatarAnimation, 246

identity matrix, 3D graphics, 54-55

images. See 2D graphics; 3D graphics

InactiveSleepTime, 34

IndexBuffer, 82

Initialize virtual methods (Game class), 32

input, 311

analog, 312
chatpads, 313
digital, 312
event-based input versus polling, 312
keyboards, 312-313

moving sprites, 315-316
onscreen keyboards, 316, 318-320
reading keyboard state, 313-315

mouse, 320
moving sprites, 322-324
reading mouse state, 320-322
setting position, 324

multitouch. See multitouch input
polling versus event-based input, 312
Xbox 360 gamepad, reading gamepad

state, 325-326
gamepad buttons, 326-328
gamepad direction pad, 328
gamepad thumb sticks, 329
gamepad triggers, 329

input vertex structures, 174

installing XNA Game Studio 4.0, 5

App Hub membership, 6-7
downloading tools, 6
XNA Game Studio Connect, 9-10
XNA Windows Phone Developer

Registration tool, 11
integers, 90

interacting with objects (avatars), 260-263

interfaces, avatar animation, 246

InverseDestinationColor, 146

InverseSourceColor, 146

InviteAccepted, 408

InviteREjectedProperty, 408

IsActive, 34

495IsActive

IsFixedTimeStep, 34

IsFriend, 407-408

IsFullScreen, 30

isolated storage, 375-377

IsolatedStorageFile object, 379-380
saving and loading data, 377-379

IsolatedStorageFile object, 379-380

IsTrial, 394

IsVisualizationEnabled, 443

J–K
jaggies, 31

joining available network sessions, 435-436

JoinSession method, 435-436

key lights, 111

keyboard state, reading, 313-315

keyboards, input, 312-313

moving sprites, 315-316
onscreen keyboards, 316, 318-320
reading keyboard state, 313-315

L
launchers, Windows Phone 7, 463-472

LaunchParameters, 34

Level object, 227-228

libraries, time ruler, 306

lightDirection, 193

lighting, 186

ambient lighting, 108, 186-190
BasicEffect, 108-114
calculating, 110
diffuse lighting, 192-196

multiple lights, 196-197
oversaturation, 197

directional lights, 109-111
emissive lighting, 198

fog, 202-206
key lights, 111
modifying avatars, 248-249
point lights, 206-209
specular color, 113
specular highlights, 112
specular lighting, 199

Blinn-Phong shading, 200-202
Phong shading, 199

triangle normals, 190-192
LinearClamp, 168

LinearWrap, 168

LoadContent method, 15, 38-39

loading

avatars while drawing, 247-248
data, isolated storage, 377-379
loose files from projects, 388-390

location service, Windows Phones, 348

reading location data, 348-351
looping audio playback (SoundEffect), 356

M
main menu, multiplayer games, 412-416

MainMenuDraw, 416

Managed DirectX, 2

managing performance, 295-303, 305

performance measurement tools,
306-307

manipulating vectors with matrices, 59, 61

matrix

3D graphics, 53-54
combining matrix transforms, 58
identity, 54-55
manipulating vectors, 59, 61
rotation, 56-57
scale, 57
translation, 55

496 IsFixedTimeStep

fields of, 59
methods, 60-61
properties of, 60

MeasureString method, 27

media, 441

MediaPlayer, 442-443
songs

metadata and, 443-444
playing, 441-442

media enumeration, 444-448

media libraries, 444-448

MediaPlayer, 442-443, 449

Meshes, 96-98

messaging, Guide class, 400-402

metadata, songs and, 443-444

methods, 86

Begin, 22
Draw, 16-19
DrawString, 25
Game class, 33

ResetElapsedTime, 33
Run, 33
RunOneFrame, 33
SuppressDraw, 33

LoadContent, 15
MeasureString, 27
ToRadians, 19

microphones

enumerating, 368
reading data, 369
recording with, 368-371

Microsoft Cross-Platform Audio Creation Tool
(XACT), 353

Microsoft.Xna.Framework.Net, 410

mipmapping, 169

ModelBone object, 98

models, 95

bones, 98-99
Meshes property, 96-98
rendering, 99-103

modifying avatar lighting, 248-249

mouse, 320

moving sprites, 322-324
reading mouse state, 320-322
setting position, 324

mouse state, reading, 320-322

mouse window handle, setting, 324

MouseState structure, 322

moving sprites

with accelerometer data, 346-347
with keyboard input, 315-316
with mouse, 322-324
multitouch input, 337-339
Xbox 360 gamepad, 329-331

multiplalyer networking, 409

multiplayer games, 409-410

joining available network sessions,
435-436

main menu and state management,
412-416

network sessions, creating,
416-417, 424

networking development, 410, 412
playing, 427-430
searching for available network

sessions, 430-434
sending player invites, 438-439
simulating real world network

conditions, 439-440
multiple lights, diffuse lighting, 196-197

multisampling, 31

multithreading, 292-293

497multithreading

multitouch input for Windows Phones, 334

displaying GestureSample data,
341-342

moving sprites, 337-339
number of touch points, 336
reading gestures from TouchPanel,

339-341
reading TouchPanel device state,

334-336
TouchPanel width, height,

orientation, 337
MyContentProcessor class, 236

N
namespaces, table of, 3

.NET runtime, 289

network sessions

joining, 435-436
multiplayer games, 416, 418, 424
searching for available, 430-434

networking, multiplayer, 409

networking development, multiplayer games,
410, 412

networks, simulating real world network
conditions, 439-440

NetworkSession, 424-425

NetworkSession.Create, 432

NetworkSession.Find, 432

NetworkSession.SimulatedLatency
property, 439

NetworkSession.SimulatedPacketLoss
property, 440

new projects, 29-32

nonuniform scale, 57

normals, triangle normals, 190-192

notifications, Guide class, 397

NumVertices, 97

O
objects

Content, 15
GraphicsDevice, 17
interacting with (avatars), 260-263
SpriteBatch, 16

animation, 20-21
controlling state, 21-22, 24-25
drawing, 16-19
moving things around, 19-20

OnActivated virtual methods
(Game class), 33

OnDeactivated virtual methods
(Game class), 33

onscreen keyboard, 316, 318-320

OpaqueDataDictionary, 237

opening XACT, 360

orthographic (projection matrix), 93

otherPlayer, 398

output vertex structures, 175

oversaturation, diffuse lighting, 197

P
packetReader, 429

Pan, 356

ParentBone, 98, 251

party invites, 439

party user interfaces, 400

passes, effect files, 176

performance

general performance, 287-289
garbage collectors, 289, 291-292
multithreading, 292-293

graphics performance, 293, 295
managing, 295-303, 305

performance measurement tools,
306-307

498 multitouch input for Windows Phones

perspective, projection matrix, 89-92

phone-specific features, handling
tombstoning, 482-484

Phong shading, specular lighting, 199

photo choosers, Windows Phone 7, 472

photos, rendering, 473

Pitch, 356

pixel shaders, 64, 176, 182

pixel tests, 64

depth test, 65
scissor test, 64
stencil test, 64

platform capabilities, graphics profiles, 66

PlatformContents, 156

playback, DynamicSoundEffectInstance,
370-371

player invites, sending, 438-439

players, Guide class, 398-400

playing

multiplayer games, 427-430
multiple animations, 249-252
songs, 441-442
sound effects, 353

SoundEffect. See SoundEffect
XACT. See XACT

PlayingGameUpdate, 427-428

point versus direction (vectors), 46

point lights, 206-209

polling versus event-based input, 312

PreparingDeviceSettings, 31

Presence property, 406

PresenceMode, 406

PresentInterval, 69

PreserveContents, 156

primitives, drawing, 71-72

DrawIndexedPrimitives, 80, 82
DrawPrimitives, 78-80
DrawUserIndexedPrimitives, 75-78
DrawUserPrimitives, 72-75
primitive types, 71

private void CreateSession(GameType
gameType), 425

private void CreateSessionDraw(), 418

Privileges property, 406-407

ProcessAnimation, 282

processAnimations helper methods, 136

profilers, 307

profiles, 402-405

GameDefaults, 405-406
IsFriend, 407-408
Presence property, 406
Privileges property, 406-407

projection matrix, 88

orthographic, 93
perspective, 89-92

projection space, 63

projects

loading loose files from, 388-390
new projects, 29-32
recreating on Xbox, 380-382
XACT, creating new, 360

properties

content processors, 221
Game class, 34

InactiveSleepTime, 34
IsActive, 34
IsFixedTimeStep, 34
LaunchParameters, 34
TargetElapsedTime, 34

matrix, 60

499properties

Q–R
radians, converting to angles, 19

rasterization, 64

RasterizerState, 164-166

Reach profile, 3

graphics profiles, 66
GraphicsProfile, 455, 457

reacting to tombstoning, 480-482

reading

acceleration data, 344
gamepad state, 325-326

gamepad buttons, 326-328
gamepad direction pad, 328
gamepad thumb sticks, 329
gamepad triggers, 329

gestures from TouchPanel, multitouch
input, 339-341

keyboard state, 313-315
location data, 348-351
microphone data, 369
mouse state, 320-322
TouchPanel device state, 334-336

ReceiveData, 429

recording with microphones, 368-371

reference devices, GraphicsDevice, 71

reference types, 288

ReferenceStencil value, 163

render targets

2D avatars, 263-265
faking shadows, 158-161

rendering

3D. See 3D rendering
models, 99-103
photos, 473
targets, 155-158

text, 25-27
video, 448-450
visualization data, 451-453

RenderScene helper, 160

RenderState object, 141

RenderTarget2D, 155, 158

RenderTargetUsage options, 156

repeating textures, 184-186

ResetElapsedTime, 33, 36

ReverseSubtract value, 145

rotation matrix, 3D graphics, 56-57

Run, 33

RunOneFrame, 33

S
Sampler, 182

sampler states, 166-169

setting in effect files, 183-184
texture types, 169

SampleRate, 372

SamplerState object, 141

saving data, isolated storage, 377-379

scale matrix, 3D graphics, 57

scissor test, 64

screens, drawing 2D objects to, 14-16

animation, 20-21
controlling state, 21-22, 24-25
Draw method, 16-19
moving things around, 19-20

searching for available network sessions,
430-434

SearchQuery, 471

SecularColorPower, 201

SendDataOptions, 429

sending player invites, 438-439

500 radians, converting to angles

sensors, Windows Phones, 342, 344

sessions, creating, 423

shader models, 172

shaders

built-in, cost of, 307-308
pixel shaders, 176, 182
vertex, 182
vertex shaders, 175

shading

Blinn-Phong, 200-202
Phong, 199

shadows, faking with depth buffer and
render targets, 158-161

ShowGameInvite, 400

ShowMarketplace, 394

ShowMissingRequirementMessage virtual
methods (Game class), 33

SignedIn event, 403

SignedInGamers, 241, 403

signing in Guide class, 400-402

SimulateTrialMode, 393

simulating real world network conditions,
439-440

Size node, 25

SkinnedEffect, 105, 127-140, 308

songs

metadata and, 443-444
playing, 441-442

sound effects

generating, 371-374
playing, 353

SoundEffect. See SoundEffect
XACT. See XACT

recording audio with microphones,
368-371

SoundEffect, 354

3D audio positioning, 356-357
adding SoundEffectInstance to games,

357-360
adjusting Pitch, Pan, and Volume, 356
fire and forget, 354-355
loading from files, 354
looping audio playback, 356
SoundEffectInstance, 355

SoundEffectInstance, 355

adding to games, 357-360
Spacing node, 25

specular color, 112-113

specular highlights, 112

specular lighting, 199

Blinn-Phong shading, 200-202
Phong shading, 199

SpecularColor, 113

SpecularLightColor, 201

SpriteBatch object, 16

animation, 20-21
controlling state, 21-25
drawing, 16-19
moving things around, 19-20

SpriteEffects enumeration, 19

sprites, moving

with accelerometer data, 346-347
with keyboard input, 315-316
with mouse, 322-324
with multitouch input, 337-339
with Xbox 360 gamepad, 329-331

SpriteSortMode enumeration, 22

StartIndex, 97

state management, multiplayer games,
412-416

StateBlock object, 141

501StateBlock object

states

controlling (2D graphics), 21-25
device state

BlendState object. See BlendState
object

DepthStencilState, 149-155
device states, 141-142

RasterizerState, 164-166
stencil buffer, 161, 163-164

sampler states, 166-169
texture types, 169

static cameras, 94-95

stencil buffer, 161, 163-164

stencil test, 64

storage, 375

API, 387-388
containers, 382-383
devices, 382-383

choosing, 385
getting, 383-386

isolated storage, 375-377
IsolatedStorageFile object, 379-380
saving and loading data, 377-379

loading loose files from your project,
388-390

recreating projects on Xbox, 380-382
StorageContainer object, 388

streaming XACT, 366-368

StreamReader class, 226

Style node, 26

SupportedOrientations, 31

SuppressDraw, 33

SurfaceFormatColor, 31

SynchronizeWithVerticalRetrace, 31

synchronizing vertical retrace, 31

SystemLink, 410

T
Tag property (models), 96

TargetElapsedTime, 34-35

targets, rendering, 155-158

techniques, effect files, 176

tex2D function, 182

text, rendering, 25-27

Texture parameter, 126

Texture2D, 14, 169

TextureContent, 229

TextureCoordinate values, 185

TextureCube, 169

textures

AlphaTestEffect, 124
BasicEffect, 114-115, 118-119
DualTextureEffect, 122-124
repeating, 184-186
sampler states, 166

texturing custom effects, 180-183

repeating textures, 184-186
setting sampler states, 183-184

thumb sticks, dead zones (Xbox 360
gamepad), 332

time, game class, 34-36

time ruler library, 306

TimeRuler, 296

TimeSpan, 351

ToggleFullscreen, 31

tombstoning, 476, 479

graphics resources, 484-485
handling with phone-specific features,

482-484
reacting to, 480-482

tools

downloading for installing XNA
Game Studio 4.0, 6

502 states

Windows Phone Developer
Registration tool, 11

ToRadians method, 19

TotalGameTime, 35

touch points, multitouch input, 336

TouchCollection, 335

TouchLocation, 335, 337

TouchPanel

device state, reading, 334-336
reading gestures from, 339-341
width, height, and orientation, 337

TouchPanelCapabilities, 336

tracing content through build system,
215-216

transforms, avatar animation, 245

translation matrix, 3D graphics, 55

trial mode, Guide class, 392-396

triangle normals, 190-192

U
Update, 35

game loop, 36-38
virtual methods, Game class, 32

UpdateBoneTransforms, 273

UpdateOrder property, 40

updating

avatar animation, 244
games to use custom animation,

284-285
user input. See input

V
ValidateMesh call, 135

value types, 289

variables, global, 174

vector addition, 47-48

vector cross product, 50

vector dot product, 49

vector negation, 49

vector scalar multiplication, 48

vector subtraction, 48

Vector2 class, 18

Vector3, 46, 51-53

Vector4, 46

vectors, 46

3D graphics, 46
addition, 47-48
cross product, 50
dot product, 49
negation, 49
point versus direction and

magnitude, 46
scalar multiplication, 48
subtraction, 48
Vector4, 46
XNA Game Studio, 51, 53

generating, 301
manipulating with matrices, 59, 61

vertex buffer, 116-117

vertex color, 179-180

BasicEffect, 115-118
vertex shaders, 62, 175, 182

projection space, 63
view space, 62
world space, 62

vertex structures, effect files, 174-177

vertex types, drawing primitive types, 71

VertexBuffer, 78-79

VertexDeclaration, 116

VertexElement, 116

503VertexElement

VertexOffset, 97

vertical retrace, synchronizing, 31

VibrateController, 351

vibration, Windows Phones feedback, 351

video, rendering, 448-450

VideoPlayer object, 449

view matrix, 87-88

view space, 62

viewport clipping, 63

virtual methods, Game class, 32

Draw, 32
Initialize, 32
OnActivated, 33
OnDeactivated, 33
ShowMissingRequirementMessage, 33
Update, 32

visualization data, rendering, 451-453

visualizations, 451-453

visualizers, 442

Volume, 356

W
wave files, adding to XACT projects, 361,

363-364

Wheel, 332

Windows desktop runtime, 291

Windows Game SDK, 1

Windows Phone 7

choosers, 472-476
FMRadio, 459-460
Guide class, 397
launchers, 463-472
writing first game, 12

Windows Phone Developer Registration tool,
installing XNA Game Studio 4.0, 11

Windows Phones

acceleration data using accelerometer,
344-346

feedback, 342, 344
vibration, 351

location service, 348
reading location data, 348-351

multitouch input, 334
displaying GestureSample data,

341-342
moving sprites, 337-339
number of touch points, 336
reading gestures from TouchPanel,

339-341
reading TouchPanel device state,

334-336
TouchPanel width, height, and

orientation, 337
sensors, 342, 344

WireFrame, 165

world space, vertex shaders, 62

Wrap, 169

wrap texture, 168

writing first game, 11-12

X–Z
X axis, 13

XACT (Microsoft Cross-Platform Audio
Creation Tool), 353, 360

adding wave files to projects, 361,
363-364

creating new projects, 360
opening, 360
sound playback using cue, 364-366
streaming, 366-368

504 VertexOffset

Xbox, recreating projects, 380-382

Xbox 360

chatpad input, 313
devices, 382
game data, 382
shader models, 172
writing first game, 11

Xbox 360 gamepad, 324-325

connections, 333
controllers, 332-333
moving sprites, 329-331
reading gamepad state, 325-326

gamepad buttons, 326-328
gamepad direction pad, 328
gamepad thumb sticks, 329
gamepad triggers, 329

thumb stick dead zones, 332
XNA Game Studio

3D graphics, 41-42
vectors, 51, 53

XNA Game Studio 4.0, installing, 5

App Hub membership, 6-7
downloading tools, 6
Windows Phone Developer

Registration tool, 11
XNA Game Studio Connect, 9-10

XNA Game Studio Connect, installing XNA
Game Studio 4.0, 9-10

XNA Game Studio Device Center, 10

Y axis, 13

505Y axis

	Contents
	Foreword
	Introduction
	So You Want to be a Game Developer?
	A Brief History of XNA Game Studio
	What Is Available in Game Studio 4.0?
	Why This Book?

	3 The Game Object and the Default Game Loop
	What Is in a New Project?
	The Game Class
	Virtual Methods
	Methods
	Properties
	GameTime

	Game Loop
	Update and Draw

	Components
	GameComponents

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

	text:

