

800 East 96th Street, Indianapolis, Indiana, 46240 USA

John Ray

SamsTeachYourself

24in

Hours

iPad™

Application Development

Sams Teach Yourself iPad™ Application Development in 24 Hours

Copyright © 2011 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33339-2
ISBN-10: 0-672-33339-2

Library of Congress Cataloging-in-Publication Data:

Ray, John, 1971-

Sams teach yourself iPad application development in 24 hours / John Ray.

p. cm.

Includes index.

ISBN 978-0-672-33339-2

1. iPad (Computer)—Programming. 2. Application software—Development. I. Title.

QA76.8.I863R392 2011

005.3—dc22

2010023693

Printed in the United States of America

First Printing July 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate
Publisher
Greg Wiegand

Acquisitions Editor
Laura Norman

Development
Editor
Keith Cline

Managing Editor
Kristy Hart

Project Editor
Lori Lyons

Indexer
Angela Martin

Proofreader
Kathy Ruiz

Technical Editor
Matthew David

Publishing
Coordinator
Cindy Teeters

Multimedia
Developer
Dan Scherf

Book Designer
Gary Adair

Compositor
Gloria Schurick

Contents at a Glance
Introduction..1

HOUR 1 Preparing Your System and iPad for Development...................................5

2 Introduction to XCode and the iPhone Simulator29

3 Discovering Objective-C: The Language of Apple Platforms..................55

4 Inside Cocoa Touch ..83

5 Exploring Interface Builder..107

6 Model-View-Controller Application Design...133

7 Working with Text, Keyboards, and Buttons...157

8 Handling Images, Animation, and Sliders..187

9 Using Advanced Interface Objects and Views211

10 Getting the User’s Attention...241

11 Presenting Options with Popovers and Toolbars...................................261

12 Making Multivalue Choices with Pickers and Action Sheets................283

13 Focusing on Tasks with Modal Views ..325

14 Implementing Multipleview Applications...341

15 Navigating Information Using Table Views and Split View-based

Applications ...379

16 Reading and Writing Application Data ..415

17 Building Rotatable and Resizable User Interfaces.................................461

18 Extending the Touch Interface...489

19 Sensing Movement with Accelerometer Input509

20 Working with Rich Media ..527

21 Interacting with Other Applications ...557

22 Building Universal Applications..579

23 Application Debugging and Optimization ...601

24 Distributing Applications Through the App Store631

Index...659

Table of Contents
Introduction 1

HOUR 1: Preparing Your System and iPad for Development 5

Welcome to the iPad Platform ..5

Becoming an iPad Developer ..8

Creating a Development Provisioning Profile ..13

Developer Technology Overview ..25

Summary..27

Q&A ..27

Workshop ..28

HOUR 2: Introduction to Xcode and the iPhone Simulator 29

Using Xcode ..29

Using the iPhone Simulator ..47

Further Exploration..52

Summary..52

Q&A ..53

Workshop ..53

HOUR 3: Discovering Objective-C: The Language of Apple Platforms 55

Object-Oriented Programming and Objective-C ..55

Exploring the Objective-C File Structure ..60

Objective-C Programming Basics ..67

Memory Management ..76

Further Exploration..78

Summary..79

Q&A ..79

Workshop ..80

HOUR 4: Inside Cocoa Touch 83

What Is Cocoa Touch? ..83

Exploring the iPhone OS Technology Layers ..85

Contents

v

Tracing the iPad Application Life Cycle..89

Cocoa Fundamentals ..91

Exploring the iPhone OS Frameworks with Xcode ..100

Summary..104

Q&A ..104

Workshop ..104

HOUR 5: Exploring Interface Builder 107

Understanding Interface Builder ..107

Creating User Interfaces ..112

Customizing Interface Appearance ..117

Connecting to Code ..122

Further Exploration..130

Summary..131

Q&A ..131

Workshop ..132

HOUR 6: Model-View-Controller Application Design 133

Understanding the Model-View-Controller Paradigm133

How Xcode and Interface Builder Implement MVC ..136

Using the View-Based Application Template ..139

Further Exploration..153

Summary..154

Q&A ..154

Workshop ..154

HOUR 7: Working with Text, Keyboards, and Buttons 157

Basic User Input and Output ..157

Using Text Fields, Text Views, and Buttons ..159

Further Exploration..184

Summary..185

Q&A ..185

Workshop ..186

vi

Sams Teach Yourself iPad™ Application Development in 24 Hours

HOUR 8: Handling Images, Animation, and Sliders 187

User Input and Output ..187

Creating and Managing Image Animations and Sliders188

Further Exploration..207

Summary..208

Q&A ..208

Workshop ..209

HOUR 9: Using Advanced Interface Objects and Views 211

User Input and Output (Continued) ..211

Using Switches, Segmented Controls, and Web Views......................................216

Using Scrolling Views ..232

Further Exploration..238

Summary..239

Q&A ..239

Workshop ..240

HOUR 10: Getting the User’s Attention 241

Exploring User Alert Methods..241

Generating Alerts ..245

Using Alert Sounds ..255

Further Exploration..258

Summary..259

Q&A ..259

Workshop ..260

HOUR 11: Presenting Options with Popovers and Toolbars 261

Understanding Popovers and Toolbars ..262

Using Popovers with Toolbars..264

Further Exploration..279

Summary..280

Q&A ..280

Workshop ..281

Contents

vii

HOUR 12: Making Multivalue Choices with Pickers and Action Sheets 283

Popover-centric UI Elements ..283

The PopoverPlayground Project ..289

Using Date Pickers ..289

Implementing a Custom Picker View..299

Using Action Sheets ..316

Further Exploration..321

Summary..322

Q&A ..322

Workshop ..323

HOUR 13: Focusing on Tasks with Modal Views 325

Modal Views ..325

Using Modal Views ..328

Further Exploration..339

Summary..339

Q&A ..339

Workshop ..340

HOUR 14: Implementing Multiview Applications 341

Exploring Single Versus Multiview Applications ..341

Creating a Multiview Application ..342

Building a Multiview Tab Bar Application ..354

Further Exploration..374

Summary..376

Q&A ..376

Workshop ..376

HOUR 15: Navigating Information Using Table Views and Split View-Based
Applications 379

Understanding Table Views and Split Views ..380

Building a Simple Table View Application ..383

Creating a Split View-Based Application ..396

Further Exploration..411

Summary..411

Q&A ..412

Workshop ..412

HOUR 16: Reading and Writing Application Data 415

Design Considerations ..415

Reading and Writing User Defaults ..418

Understanding the iPad File System Sandbox ..433

Implementing File System Storage ..436

Further Exploration..457

Summary..458

Q&A ..458

Workshop ..459

HOUR 17: Building Rotatable and Resizable User Interfaces 461

Rotatable and Resizable Interfaces ..461

Creating Rotatable and Resizable Interfaces with Interface Builder465

Reframing Controls on Rotation ..471

Swapping Views on Rotation ..479

Further Exploration..485

Summary..486

Q&A ..486

Workshop ..487

HOUR 18: Extending the Touch Interface 489

Multitouch Gesture Recognition..490

Using Gesture Recognizers ..491

Further Exploration..506

Summary..507

Q&A ..507

Workshop ..508

viii

Sams Teach Yourself iPad™ Application Development in 24 Hours

HOUR 19: Sensing Movement with Accelerometer Input 509

Accelerometer Background..510

Sensing Orientation ..513

Detecting Tilt..518

Detecting Movement..522

Further Exploration..523

Summary..524

Workshop ..524

HOUR 20: Working with Rich Media 527

Exploring Rich Media ..527

Preparing the Media Playground Application..529

Using the Movie Player..534

Creating and Playing Audio Recordings ..539

Using the iPad Photo Library ..544

Accessing and Playing the iPod Library ..548

Further Exploration..554

Summary..555

Q&A ..555

Workshop ..556

HOUR 21: Interacting with Other Applications 557

Extending Application Integration ..557

Using Address Book, Email, and Maps… Oh My! ..561

Further Exploration..577

Summary..577

Q&A ..577

Workshop ..578

HOUR 22: Building Universal Applications 579

Universal Application Development ..579

Understanding the Universal Window Application Template581

Other Universal Application Tools ..597

Further Exploration..599

Contents

ix

Summary..599

Q&A ..599

Workshop ..600

HOUR 23: Application Debugging and Optimization 601

Debugging in Xcode ..602

Monitoring with Instruments ..615

Profiling with Shark ..622

Further Exploration..629

Summary..629

Workshop ..630

HOUR 24: Distributing Applications Through the App Store 631

Preparing an Application for the App Store ..632

Submitting an Application for Approval..642

Promoting Your Application..649

Exploring Other Distribution Methods..654

Summary..656

Q&A ..656

Workshop ..657

Index 659

x

Sams Teach Yourself iPad™ Application Development in 24 Hours

About the Author
John Ray is currently serving as a Senior Business Analyst and Development Team

Manager for the Ohio State University Research Foundation. He has written numerous

books for Macmillan/Sams/Que, including Using TCP/IP: Special Edition, Sams Teach Yourself

Dreamweaver MX in 21 Days, Mac OS X Unleashed, and Sams Teach Yourself iPhone Development

in 24 Hours. As a Macintosh user since 1984, he strives to ensure that each project presents

the Macintosh with the equality and depth it deserves. Even technical titles such as Using

TCP/IP contain extensive information on the Macintosh and its applications—and have gar-

nered numerous positive reviews for its straightforward approach and accessibility to begin-

ning and intermediate users.

Dedication
This book is dedicated to everyone who can see beyond the count of

USB ports, RAM slots, and technical jargon to recognize the beauty of a
platform as a whole. I’m excited to see what you create.

Acknowledgments
Thank you to the group at Sams Publishing—Laura Norman, Kristy Hart, Lori Lyons, Keith

Cline, Matthew David, Gloria Schurick, Kathy Ruiz—for recognizing the importance of the

iPhone OS/iPad platform, and helping to create this book. Skilled editors make authors

coherent.

As always, thanks to my family and friends for keeping me sane for the duration of the pro-

ject. It wasn’t that bad, was it?

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Greg Wiegand

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

Introduction

“It’s just a big iPod Touch.”

Few words have puzzled me more during the weeks leading up to the iPad launch. Let’s

break down exactly what it means to be a “big iPod Touch.”

First, it means a large, bright, colorful display, coupled with an amazingly thin enclosure

and amazing battery life. Second, it means a user experience based on the world’s most

popular portable Internet device.

Perhaps the most important aspect of being a “big iPod touch” is that it is a device

designed to be controlled by human fingers. Every aspect of development is centered on

touch interactions. Quite simply, the iPad is a multitouch device that is 100% dedicated to

running applications that you control with your fingers.

Terrible, isn’t it?

Less than a month after the iPad launched, Apple has sold more than a million units. It’s

reassuring that people still recognize and embrace innovation. It also means that there is

no end to the opportunity that the iPad affords to you, the developer.

The iPad is an open canvas. On the iPhone, there are plenty of apps, but less of an oppor-

tunity to experiment with user interfaces. On the iPad, apps take on new life. The display

begs to be touched, and complex gestures are fun and easy to implement. Computing

truly becomes a personal experience, similar to curling up with a good book.

Our hope is that this book will bring iPad development to a new generation of developers

who want to create large-scale multitouch applications. Sams Teach Yourself iPad

Application Development in 24 Hours provides a clear natural progression of skills develop-

ment—from installing developer tools and registering with Apple, to submitting an appli-

cation to the App Store. It’s everything you need to get started in just 24 hour-long lessons.

Who Can Become an iPad Developer?
If you have an interest in learning, time to invest in exploring and practicing with Apple’s

developer tools, and an Intel Macintosh computer, you have everything you need to begin

developing for the iPad.

2 Sams Teach Yourself iPad Development in 24 Hours

Developing an application won’t happen overnight, but with dedication and prac-

tice, you can be writing your first applications in a matter of days. The more time

you spend working with the Apple developer tools, the more opportunities you’ll dis-

cover for creating new and exciting projects.

You should approach iPad application development as creating software that you

want to use, not what you think others want. If you’re solely interested in getting

rich quick, you’re likely to be disappointed. (The App Store is a crowded market-

place—albeit one with a lot of room—and competition for top sales is fierce.)

However, if you focus on building useful and unique apps, you’re much more likely

to find an appreciative audience.

Who Should Use This Book?
This book targets individuals who are new to development for the iPhone OS and

have experience using the Macintosh platform. No previous experience with

Objective-C, Cocoa, or the Apple developer tools is required. Of course, if you do

have development experience, some of the tools and techniques may be easier to

master, but this book does not assume that you’ve coded before.

That said, some things are expected from you, the reader. Specifically, you must be

willing to invest in the learning process. If you just read each hour’s lesson without

working through the tutorials, you will likely miss some fundamental concepts. In

addition, you need to spend time reading the Apple developer documentation and

researching the topics covered in this book. A vast amount of information on iPhone

development is available, but only limited space is available in this book. However,

this book does cover what you need to forge your own path forward.

What Is (and Isn’t) in This Book?
This book targets the initial release of the iPad OS 3.2. Much of what you’ll be learn-

ing is common to all iPhone OS releases (the iPad is built on top of the iPhone OS),

but we also cover several important advances, such as popovers, modal views, and

more!

Unfortunately, this is not a complete reference for the iPhone OS application pro-

gramming interfaces. Some topics require much more space than the format of this

book allows. Thankfully, the Apple developer documentation is available directly

within the free tools you’ll be downloading in Hour 1, “Preparing Your System and

iPad for Development.” Many lessons include a section titled “Further Exploration”

Introduction 3

that will guide you toward additional related topics of interest. Again, a willingness

to explore is an important quality in becoming a successful developer!

Each coding lesson is accompanied by project files that include everything you need

to compile and test an example or, preferably, follow along and build the applica-

tion yourself. Be sure to download the project files from the book’s website at

http://teachyourselfipad.com.

In addition to the support website, you can follow along on Twitter! Search for

#iPadIn24 on Twitter to receive official updates and tweets from other readers. Use

the hashtag #iPadIn24 in your tweets to join the conversation. To send me messages

via Twitter, begin each tweet with @johnemeryray.

http://teachyourselfipad.com

This page intentionally left blank

HOUR 11

Presenting Options with
Popovers and Toolbars

What You’ll Learn in This Hour:
. How to add toolbars and toolbar buttons to your projects
. The role of popovers in the iPhone OS
. How to generate custom popover views in your projects
. Tricks for checking to see whether a popover is already displayed

On the iPhone, what you see is typically what you get. The user interface elements either

show the options that are available to you, offer the ability to scroll to additional options,

or swap out the current screen for another view that displays more information. The mul-

tiple-window model used in Mac OS X is gone. Although you might encounter an occa-

sional alert dialog, windowing is not a standard in iPhone interfaces. On the iPad, things

have changed. Apple has introduced the popover: a user interface element that can pres-

ent views on top of other views.

In this hour, we explore how to prepare views for use in popovers, including adding tool-

bars and toolbar buttons (the most frequent UI element used to invoke a popover). You’ll

also configure the different display attributes associated with popovers, and communicate

information between popover views and your main application view. Popovers are such a

prevalent and important UI element that we’ll be focusing on them for the next few

hours, so be sure to work through this lesson carefully.

262 HOUR 11: Presenting Options with Popovers and Toolbars

Understanding Popovers and Toolbars
Popovers are everywhere in the iPad interface, from Mail to Safari, as demonstrated

in Figure 11.1. Using a popover enables you to display new information to your

users without leaving the screen you are on, and to hide the information when the

user is done with it. There are few desktop counterparts to popovers, but they are

roughly analogous to tool palettes, inspector panels, and configuration dialogs. In

other words, they provide user interfaces for interacting with content on the iPad

screen, but without eating up permanent space in your UI.

FIGURE 11.1
Popovers are
unique to the
iPad UI.

Popovers, although capable of being displayed when a user interacts with any

onscreen object, are most often shown when the user presses a toolbar button

(UIBarButton) from within a toolbar object (UIToolbar). This is exactly the scenario

shown in Figure 11.1. Because of this relationship, we will be presenting both of

these objects within this hour’s lesson. Let’s quickly review what we need for each

before we get started coding.

Popovers
Unlike other UI elements, popovers aren’t something you just drag into a view from

the Interface Builder Library. They are, in fact, entirely independent views, designed

just like your main application view. The display of the views is governed by a

popover controller (UIPopoverController). The controller displays the popover

Understanding Popovers and Toolbars 263

when a user event is triggered, such as touching a toolbar button. When the user is

done with the popover, touching outside of its visible rectangle automatically closes

the view.

To create a popover, we’ll need to cover three different requirements. First, we need

to make a view and view controller specially designed for the popover’s contents.

Second, when the proper event occurs in the user interface, we need to allocate and

initialize an instance of popover controller. Third, when the user is done with the

popover, we want to make sure that any changes made in the popover are reflected

in the main application.

Popover Views
You’ve been developing views and view controllers for the past several hours, so

you’ll feel right at home working with a popover view. It uses the same

UIViewController that we’ve been using all along, but with the addition of one

unique property: contentSizeForViewInPopover.

This property should be set to the width and height of the popover to be displayed.

Apple allows popovers up to 600 pixels wide and the height of the iPad screen, but

recommends that they be kept to 320 pixels wide, or less. For example, to set the

content size of 320 pixels by 200 pixels for a view controller that will be displaying a

popover, we might add the following to the viewDidLoad method:

self.contentSizeForViewInPopover=CGSizeMake(320.0,200.0);

In fact, that’s exactly what we’re going to be doing in the tutorial shortly.

Popover Controller
Like views need view controllers, popovers need popover controllers

(UIPopoverController). Popover controllers take care of all the hard work of ren-

dering popovers on the screen in the right place. We’ll focus on two methods of the

popover controller:

initWithContentViewController—Initializes the popover with the contents

of a view controller. When the popover is displayed, whatever the view con-

troller’s view is, is displayed.

presentPopoverFromBarButtonItem:permittedArrowDirections:animated

—Invokes the display of the popover so that it appears to emerge from (and

point to) a toolbar button. The parameters for this method allow fine-tuning

of the arrow from the popover to the UI element it is appearing from, and

whether its display is animated.

The popover controller will also need the delegate property set to an object that

will take care of all the “cleanup” when the popover is dismissed by the user. This

264 HOUR 11: Presenting Options with Popovers and Toolbars

includes releasing the popover controller and updating the contents of the main

application to reflect the user’s actions in the popover. This leads us to the final

popover requirement: the UIPopoverControllerDelegate protocol.

Popover Controller Delegate Protocol
To make the full use of a popover, we’ll need an additional protocol method added

to one of our classes. In our sample application, we’ll be using our main applica-

tion’s view controller class for this purpose. This means we need to add a line to our

main view controller’s interface (.h) file to state that we’re conforming to the

UIPopverControllerDelegate protocol. Second, we’ll be adding the protocol

method popoverControllerDidDismissPopover to our application’s view con-

troller implementation file. That’s it.

When the popover is dismissed by the user touching outside of its display, the

popoverControllerDidDismissPopover method is invoked and we can react

appropriately.

Toolbars
Toolbars (UIToolbar) are, comparatively speaking, one of the simpler UI elements

that you have at your disposal. A toolbar is implemented as a solid bar, either at

the top or bottom of the display, with buttons (UIBarButtonItem) that correspond to

actions that can be performed in the current view. The buttons provide a single

selector action, which works nearly identically to the typical Touch Up Inside event

that you’ve encountered before.

Toolbars, as their name implies, are used for providing a set of static choices to the

user—interface options that should be visible regardless of whether the application’s

primary content is changing. As you’ll see, they can be implemented almost entirely

visually and are the de facto standard for triggering the display of a popover on the

iPad.

Although implementing popovers might be sounding a bit convoluted at this point,

hang in there. After you’ve created one, the process will seem incredibly simple, and

you’ll want to use them everywhere!

Using Popovers with Toolbars
Popovers are used to display interface elements that configure how your application

behaves but that don’t need to be visible all the time. Our sample implementation

will display a toolbar, complete with a Configure button, that invokes a popover.

The popover will display configuration four switches (UISwitch) for a hypothetical

time-based application: Weekends, Weekdays, AM, and PM.

Using Popovers with Toolbars 265

The user will be able to update these switches in the popover, and then touch out-

side the popover to dismiss it. Upon dismissal, four labels in the main application

view will be update to show the user’s selections. The final application will resemble

Figure 11.2.

FIGURE 11.2
This application
will display a
popover and
update the main
application view
to reflect a
user’s actions in
the popover.

Implementation Overview
The implementation of this project is simpler than it may seem at the onset. You’ll

be creating a View-based iPad application that includes a toolbar with the

Configure button and four labels that will display what a user has chosen in the

popover. The popover will require its own view controller and view. We’ll add these

to the main project, but they’ll be set up almost entirely independently from the

main application view.

Building the connection between the main view and the popover will require sur-

prisingly few lines of code. We need to be careful that touching the Configure button

doesn’t continue to add popovers to the display if one is already shown, but you’ll

learn a trick that keeps it all under control.

Setting Up the Project
This project will start with the View-Based Application template; we’ll be adding in

another view and view controller to handle the popover. Let’s begin. Launch Xcode

266 HOUR 11: Presenting Options with Popovers and Toolbars

(Developer/Applications), and then create a new View-based iPad project called

PopoverConfig.

Xcode will create the basics structure for your project, including the

PopoverConfigViewController classes. We’ll refer to this as the main application

view controller (the class the implements the view that the user sees when the appli-

cation runs). For the popover content itself, we need to add a new view controller

and XIB file to the PopoverConfig project.

Adding an Additional View Controller Class
With the Classes group selected in your Xcode project, choose File, New File, from

the menu bar. Within the New File dialog box, choose the Cocoa Touch Class within

the iPhone OS category, and then the UIViewController subclass icon, as shown in

Figure 11.3.

FIGURE 11.3
Create the
popover’s con-
tent view con-
troller and XIB
file.

Be sure that Targeted for iPad and With XIB for user interface are selected, and then

choose Next. When prompted, name the new class PopoverContentViewController

and click Finish.

The PopoverContentViewController implementation and interface files are added

to the Classes group.

Using Popovers with Toolbars 267

Did you
Know?

Depending on your version of Xcode, the XIB file may also be added to the folder
you had selected when creating the class files. If this is the case, drag it to the
Resources group.

Preparing the Popover Content
This hour’s project is unique in that most of your interface work takes place in a

view that is only onscreen occasionally when the application is running—the

popover’s content view. The view will have four switches (UISwitch), which we’ll

need to account for.

We only need to be able to read values from the popup view, not invoke any

actions, so we’ll just add four IBOutlets.

Adding Outlets
Open the PopoverContentViewController.h interface file and add outlets for four

UISwitch elements: weekendSwitch, weekdaySwitch, amSwitch, pmSwitch. Be sure

to also at @property directives for each switch. The resulting interface file is shown

in Listing 11.1.

LISTING 11.1
#import <UIKit/UIKit.h>

@interface PopoverContentViewController : UIViewController {
IBOutlet UISwitch *weekendSwitch;
IBOutlet UISwitch *weekdaySwitch;
IBOutlet UISwitch *amSwitch;
IBOutlet UISwitch *pmSwitch;

}

@property (nonatomic,retain) UISwitch *weekendSwitch;
@property (nonatomic,retain) UISwitch *weekdaySwitch;
@property (nonatomic,retain) UISwitch *amSwitch;
@property (nonatomic,retain) UISwitch *pmSwitch;

@end

For each of the properties we’ve declared, we need to add a @synthesize directive in

the implementation (popoverContentViewController.m) file. Open this file and make

your additions following the @implementation line:

@synthesize weekdaySwitch;
@synthesize weekendSwitch;
@synthesize amSwitch;
@synthesize pmSwitch;

268 HOUR 11: Presenting Options with Popovers and Toolbars

Setting the Popover Content Size
Our next step is easy to overlook, but amazingly important to the final application.

For an application to present an appropriately sized popover, you must manually

define the popover’s content size. The easiest (and most logical) place to do this is

within the popover’s view controller.

Continue editing the popoverContentViewController.m file to uncomment its

viewDidLoad method and add a size definition:

- (void)viewDidLoad {
self.contentSizeForViewInPopover=CGSizeMake(320.0,200.0);
[super viewDidLoad];

}

For this tutorial project, our popover will be 320 pixels wide and 200 pixels tall.

Remember that Apple supports values up to 600 pixels wide and a height as tall as

the iPad’s screen area allows.

Releasing Objects
Even though this view controller sits outside of our main application, we still need to

clean up memory properly. Finish up the implementation of the

popoverContentViewController class by releasing the four switch instance vari-

ables in the dealloc method:

- (void)dealloc {
[weekdaySwitch release];
[weekendSwitch release];
[amSwitch release];
[pmSwitch release];
[super dealloc];

}

That finishes the popoverContentViewController logic! Although we still have a

little bit of work to do in Interface Builder, the rest of the programming efforts will

take place in the main popoverConfig view controller class.

Preparing the View
Building a popover’s view is identical to building any other view with one small dif-

ference: You can only use the portion of the view that fits within the size of the

popover you’re creating. Open the popoverContentViewController XIB file in

Interface Builder and add four labels (Weekends, Weekdays, AM, and PM) and four

corresponding switches (UISwitch) from the library.

Position these in the upper-left corner of the view to fit within the 320x200 dimen-

sions we’ve defined, as shown in Figure 11.4.

Using Popovers with Toolbars 269

Connecting the Outlets
After creating the view, connect the switches to the IBOutlets. Control-drag from

the File’s Owner icon in the Document window to the first switch in the view (the

Weekends switch in my implementation) and choose the weekendSwitch outlet

when prompted, as shown in Figure 11.5.

FIGURE 11.4
Add four config-
uration switches
and correspon-
ding labels to
the popover
content view.

FIGURE 11.5
Connect the
switches to
their outlets.

Repeat these steps for the other three switches, connecting them to the

weekdaySwitch, amSwitch, and pmSwitch outlets.

The popover content is now complete. Let’s move to the main application.

Did you
Know?

270 HOUR 11: Presenting Options with Popovers and Toolbars

Preparing the Application View
With the popover content under control, we’ll build out the main application

view/view controller. There are only a few “gotchas” here, such as declaring that

we’re going to conform to the UIPopoverControllerDelegate protocol, and mak-

ing sure that we create an instance of the popover content view.

Conforming to a Protocol
To conform to the popover controller delegate, open the

popoverConfigViewController.h interface file, and modify the @interface line to

include the name of the protocol, enclosed in <>. The line should read as follows:

@interface PopoverConfigViewController : UIViewController
<UIPopoverControllerDelegate> {

We still need to implement a method for the protocol within the view controller, but

more on that a bit later.

Adding Outlets, Actions, and Instance Variables
We need to keep track of quite a few things within the main application’s view con-

troller. We’re going to need an instance variable for the popover’s controller

(popoverController). This will be used to display the popover, and to check

whether the popover is already onscreen. We’ll also need an IBAction defined

(showPopover) for displaying the popover.

In addition, five IBOutlets are required—four for UILabels that will display the

values the user enters in the popover (weekdayOutput, weekendOutput, amOutput,

pmOutput), and the last for the popover’s view controller (popoverContent).

Sound like enough? Not quite! Because we’re going to be using the

popoverContentViewController class within the main application, we need to

import its interface file, too.

What About the Configure Button?
If you’re following closely, you might wonder whether we need an instance variable
for the Configure button. When we initialize the popover controller, we need to tell
it what onscreen object it should point to (that is, the Configure button).
Thankfully, the button passes a reference of itself to the action it calls when
pressed, so we can use that reference rather than keeping track of the button
separately.

Edit the interface file so that it matches Listing 11.2.

Using Popovers with Toolbars 271

LISTING 11.2
#import <UIKit/UIKit.h>
#import “PopoverContentViewController.h”

@interface PopoverConfigViewController : UIViewController
<UIPopoverControllerDelegate> {

UIPopoverController *popoverController;
IBOutlet UILabel *weekdayOutput;
IBOutlet UILabel *weekendOutput;
IBOutlet UILabel *amOutput;
IBOutlet UILabel *pmOutput;
IBOutlet popoverContentViewController *popoverContent;

}

@property (retain,nonatomic) UILabel *weekdayOutput;
@property (retain,nonatomic) UILabel *weekendOutput;
@property (retain,nonatomic) UILabel *amOutput;
@property (retain,nonatomic) UILabel *pmOutput;
@property (retain,nonatomic) PopoverContentViewController *popoverContent;

-(IBAction)showPopover:(id)sender;

@end

For each @property directive, there needs to be a corresponding @synthesize in the

popoverConfigViewController.m file. Edit the file now, adding these lines following

the @implementation line:

@synthesize popoverContent;
@synthesize weekdayOutput;
@synthesize weekendOutput;
@synthesize amOutput;
@synthesize pmOutput;

This gives us everything we need to build and connect the main application inter-

face elements, but before we do, let’s make sure that everything we’re added here is

properly released.

Releasing Objects
Edit popoverConfigViewController.m’s dealloc method to release the UILabels, and

the instance of the popover content view controller (popoverContent):

- (void)dealloc {
[weekdayOutput release];
[weekendOutput release];
[amOutput release];
[pmOutput release];
[popoverContent release];
[super dealloc];

}

272 HOUR 11: Presenting Options with Popovers and Toolbars

Nicely done! All that’s left now is to edit the popoverConfigViewController XIB file to

create the main application interface and write the methods for showing and han-

dling the subsequent dismissal of the popover.

Creating the View
Open the popoverConfigViewController XIB file in Interface Builder. We need to add

a toolbar, a toolbar button, and some labels to display our application’s output.

Let’s start with the labels, because we’ve got plenty of experience with them. Drag a

total of eight UILabel objects to the screen. Four will hold the application’s output,

and four will just be labels (fancy that!).

Arrange the labels near the center of the screen, forming a column with Weekends:,

Weekdays:, AM:, and PM: on the left, and On, On, On, On aligned with them on the

right. The On labels are the labels that will map to the IBOutlet output variables;

they’ve been set to a default value of On because the switches in the popover content

view default to the On position.

If desired, use the Attributes Inspector (Command+1) to resize the labels to some-

thing a bit larger than the default. I’ve used a 48pt font in my interface, as shown

in Figure 11.6.

FIGURE 11.6
Add a total of
eight labels to
the view.

Using Popovers with Toolbars 273

Adding a Toolbar and Toolbar Button
Using the Interface Builder Library, drag an instance of a toolbar (UIToolbar) to top

of the view. The toolbar object includes, by default, a single button called Item.

Double-click the button to change its title to Configure; the button will automatical-

ly resize itself to fit the label.

In this application, the single button is all that is needed. If your project needs more,

you can drag Bar Button Items from the library into the toolbar. The buttons are

shown as subviews of the toolbar within the Interface Builder Document window.

Figure 11.7 shows the final interface and the Document window showing the inter-

face hierarchy.

FIGURE 11.7
Labels, and
toolbar, and a
toolbar button
complete the
interface.

Connecting the Outlets and Actions
It’s time to connect the interface we’ve built to the outlets and actions we defined in

the view controller. Control-drag from the File’s Owner icon in the IB Document win-

dow to the first On label, connecting to the weekendOutput outlet, as shown in

Figure 11.8. Repeat for the other three labels, connecting to weekdayOutput,

amOutput, and pmOutput.

274 HOUR 11: Presenting Options with Popovers and Toolbars

Next, Control-drag from the Configure toolbar button to the File’s owner icon.

Choose showPopover when prompted, as shown in Figure 11.9. Note that we didn’t

have to worry about connecting from a Touch Up Inside event because toolbar but-

tons have only one event that can be used.

FIGURE 11.8.
Connect each
output label to
its outlet.

FIGURE 11.9
Connect the
configure button
to the
showPopover
action.

Only one step remains to be completed in interface builder: instantiating the

popover content view controller.

Instantiating the Popover Content View Controller
Earlier in the tutorial, we developed the popover content view controller and view

(popoverContentViewController). What we haven’t done, however, is actually use

it anywhere. We can take two approaches to creating an instance of the controller

so that we can use it in the application:

Did you
Know?

Using Popovers with Toolbars 275

1. The content view controller is instantiated whenever the popover is invoked,

and released when the popover is dismissed.

2. The content view controller is instantiated when main application view loads

and is released when the application is finished.

I’ve chosen to go with approach number 2. By instantiating the popover’s view con-

troller when the main application view loads, we can use it repeatedly without

reloading the view. This means that if the user displays the popover and updates the

switches, those changes will be visible no matter how many times the user dismisses

or opens the popover.

If you are creating an application with many popovers, go with method 1; other-
wise, all the views will be kept in memory simultaneously.

Without adding any code, we can instantiate popoverContentViewController

when the popoverConfigViewController.xib file is loaded:

1. Open the popoverConfigViewController.xib file’s document window in

Interface Builder.

2. Drag a View Controller object from the Library into the document window.

3. Select the view controller in the Document window, and press Command+4 to

open the Identity Inspector.

4. Set the class to the popoverContentViewController rather than the generic

UIViewController class set by default. This can be seen in Figure 11.10.

FIGURE 11.10
Set the object to
be an instance of
popoverContent
ViewController.

276 HOUR 11: Presenting Options with Popovers and Toolbars

5. Switch to the Attributes Inspector (Command+1) and set the NIB name field to

popoverContentViewController so that the view controller knows where its

view is stored.

6. Close the Inspector window.

7. Control drag from the File’s Owner icon to the popover content view controller

icon within the Document window. Choose popoverContent when prompted,

as shown in Figure 11.11.

8. Save the XIB file.

FIGURE 11.11
Connect the
popover content
view controller
to the
popoverContent
outlet.

Our views and view controllers are completed. All that remains is writing the code

that handles the application logic.

Implementing the Application Logic
We need to implement two methods to complete this tutorial. First, we need to

implement showPopover to display the popover and allow the user to interact with

it. Second, the popover controller delegate method

popoverControllerDidDismissPopover must be built to take care of cleaning up

the popover when the user is done with it, and to update the application’s view with

any changes the user made within the popover.

Displaying the Popover
Open the popoverConfigViewController.m file and add the showPopover method,

shown in Listing 11.3, immediately following the @synthesize directives.

Using Popovers with Toolbars 277

LISTING 11.3
1: -(IBAction)showPopover:(id)sender {
2: if (popoverController==nil) {
3: popoverController=[[UIPopoverController alloc]
4: initWithContentViewController:popoverContent];
5: [popoverController presentPopoverFromBarButtonItem:sender
6: permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
7: popoverController.delegate=self;
8: }
9: }

There are three steps to displaying and configuring the popover.

First, in lines 3–4, the popover controller, popoverController, is allocated and ini-

tialized with the popover’s content view, popoverContent.

Second, lines 5 and 6 display the popover using the (very verbose) method

presentPopoverFromBarButtonItem:permittedArrowDirections:animated. The

bar button item (our toolbar button) can be referenced through the sender variable,

which is passed to showPopover when the button is pressed. The

permittedArrowDirections parameter is passed the constant

UIPopoverArrowDirectionAny, meaning the popover can be drawn with an arrow

that points in any direction (as long as it points to the specified interface element).

The animated parameter gives the iPad the go-ahead to animate the appearance of

the popover (currently a nice fade-in effect).

Third, line 7 sets the popover controller’s delegate to the same object that is execut-

ing the code (self)—in other words, the popoverConfigViewController. By doing

this, the popover controller will automatically call the method

popoverControllerDidDismissPopover within popoverConfigViewController.m

when the user is done with it.

Nothing too scary, right? Right. But what about lines 2 and 8? The entire display of

the popover is wrapped in an if-then statement. The reason for this can be easily

demonstrated by removing the if-then and running the application. Without the

conditional, multiple copies of the popover will be displayed (one on top of the

other) each time the Configure button is pressed. This is a large memory leak and

would make the application behave very strangely for the user. To get around the

problem, we perform a simple comparison: popoverController==nil. When the

popover controller hasn’t been initialized, it will have a value of nil (that is, no

value at all). In this case, the statements to initialize the controller and show the

popover are executed. Once the popover is displayed, however, the

popoverController has a value and will no longer equal nil, keeping any further

instances of it from being displayed.

Did you
Know?

278 HOUR 11: Presenting Options with Popovers and Toolbars

Of course, we want the user to be able to dismiss and redisplay the popover, so we

need to release the popoverController and set it back to nil when we hide the

popover again. Let’s look at that implementation now.

What Constants Can I Provide for a Popover’s Arrow
Direction?
You can force the popover’s arrow (and subsequent onscreen positioning) by using
one of five different constants:

UIPopoverArrowDirectionUp—The popover points up toward the interface ele-
ment.

UIPopoverArrowDirectionDown—The popover points down toward the interface
element.

UIPopoverArrowDirectionLeft—The popover points left toward the interface
element.

UIPopoverArrowDirectionRight—The popover points right toward the interface
element.

UIPopoverArrowDirectionAny—The popover can be oriented in whatever posi-
tion the iPhone OS finds most appropriate.

Apple recommends using the “Any” option whenever possible in your applications.

Reacting to the Popover Dismissal
When the user gets rid of the popover by touching outside of its content area, we

want our application to react and display any changes the user made within the

popover view. We also want to prepare the popover’s controller to show the popover

again. Enter the popover controller delegate method

popoverControllerDidDismissPopover as shown in Listing 11.4.

LISTING 11.4
1: -(void)popoverControllerDidDismissPopover:
2: (UIPopoverController *)controller {
3: weekdayOutput.text=@”On”;
4: weekendOutput.text=@”On”;
5: amOutput.text=@”On”;
6: pmOutput.text=@”On”;
7:
8: if (!popoverContent.weekdaySwitch.on) {
9: weekdayOutput.text=@”Off”;
10: }
11: if (!popoverContent.weekendSwitch.on) {
12: weekendOutput.text=@”Off”;
13: }
14: if (!popoverContent.amSwitch.on) {
15: amOutput.text=@”Off”;
16: }

Watch
Out!

Did you
Know?

Further Exploration 279

17: if (!popoverContent.pmSwitch.on) {
18: pmOutput.text=@”Off”;
19: }
20: [popoverController release];
21: popoverController=nil;
22: }

Most of the display logic used in this method should be familiar to you by now.

Lines 3–6 set the four output labels to On, because this is the default state of our

switches. Lines 8–19 are simple if-then statements which check to see whether a

switch is not set to on, and, if so, sets the corresponding output label to Off.

Because we have an instance variable for the popover’s view controller

(popoverContent) and have defined the UISwitches as properties, we can access the

individual state of a given switches using its on property in a single line:

popoverContent.<switch instance variable>.on.

In the final two lines, 20 and 23, the popover controller is released and its instance

variable (popoverController) set to nil. This prepares it for the next time the user

presses the Configure button.

It might surprise you to learn that releasing an object does not automatically set
its instance variable to nil. In fact, the instance variable is not changed at
release and will reference a nonexistent object, potentially causing major prob-
lems if you attempt to use it.

You might be wondering why we didn’t just use the controller reference rather
than popoverController instance variable. The answer is that we need to be
able to set the popoverController variable to nil. If we use controller, we
reference the same object as popoverController, but setting controller to
nil doesn’t change the value of popoverController.

The application is now complete. Use Build and Run to test the popover’s display on

your iPad. You’ve just implemented one of the most important and flexible UI fea-

tures available on the iPad platform!

Further Exploration
In this hour’s sample project, you attached a toolbar to a “bar button” (toolbar but-

ton) using the

presentPopoverFromBarButtonItem:permittedArrowDirections:animated

method. This, granted, is a very popular approach, but you can create popovers

280 HOUR 11: Presenting Options with Popovers and Toolbars

anywhere within your view by using the UIPopoverController method

presentPopoverFromRect:inView:permittedArrowDirections:animated. With

this method you can present the popover so that it appears from any rectangular

areas, within any view. In addition, popover content does not need to be static! If

you’d like, your popover’s view controller can update its content on-the-fly, and the

popover will update dynamically to display the changes. You’ll need to manually

update the popoverContentSize property of the controller so that all of your con-

tent fits, but size changes are animated smoothly for the end user.

To learn more about popovers, be sure to review Apple’s UIPopoverController class

reference within the developer documentation to get a complete picture of this

important class and UI element.

Summary
Popovers provide a canvas for creating a range of unique interface elements that

can be displayed virtually anywhere in your application. The approach that we took

in this hour’s lesson (creating a popover that is displayed when a toolbar button is

pressed) is the most common implementation that you’ll encounter.

You’ve learned not only how a popover is designed and displayed, but how to access

data from within its view, and ways of keeping the popover controller from getting

out of hand. In the next hour’s lesson, you’ll learn about several UI elements that

Apple will allow only if they are displayed from within a popover. So even if you

can’t think of any uses for them yet, chances are, you will!

Q&A
Q. Can I have multiple popover’s within a single application view?

A. Yes, you can, but keep in mind that the example here uses a single delegate

for handling the dismissal of a popover. There are a number of ways to get

around this, including structuring your code so that changes within a popover

are immediately reflected in the application, or you can segment your appli-

cation so that each popover has a different delegate.

Q. You told me to drag the toolbar to the top of the window. The developer
docs say to drag it to the bottom. What gives?

A. At the time of this writing, Apple has not yet updated all the descriptions of

the toolbar UI element to state that it can be used at the top and bottom of

the iPad screen.

Workshop 281

Workshop

Quiz
1. What class is a toolbar button?

2. How do you set where a popover appears?

3. Why do we need to compare the popover controller to nil before initializing

it?

Answers
1. A toolbar button is an instance of the bizarrely named class

UIBarButtonItem.

2. The iPhone OS determines where a popover appears onscreen. Setting the

permittedArrowDirections parameter when displaying the popover, howev-

er, limits where the OS may position the popover so that it can be drawn with

an arrow pointing to the UI element invoking it.

3. If the popover controller is not nil, that means the popover is visible onscreen

and a new copy of it should not be created.

Activities
1. Explore the possibilities of popovers outside of toolbars. Implement an addi-

tional button (UIButton) within the popoverConfig application that displays

the same popover, but located in the center of the screen.

2. Implement a second toolbar-based popover within the popoverConfig applica-

tion. If you choose to use a single delegate for each, you can check to see

which popover is being dismissed by comparing each controller instance vari-

able to the controller variable passed to the

popoverControllerDidDismissPopover method.

This page intentionally left blank

659

response to user, 320
UIActionSheetDelegate

protocol, 288
view controller logic, 319

actionMessage string, 310
actions, 124-129, 161-162

action sheets, 318-320
area view (multiview

applications), 361-362, 365
built-in capabilities, 563
connection to

buttons, 178-179
notification project

interface, 243-245
sliders, 200
switches, 223

flashlight application, 420-421
FlowerWeb application,

217-218
GetFlower, 125, 221
image views, 190-192
lsetLightSourceAlpha, 418
main view (modal views), 333
Media Playground application,

533-534
multiview application

toolbars, 349-350
newBFF, 561
popover application view,

270-273
segmented controls, 221-222
sendEmail, 561
view controllers, 144-145,

149-150
volume view (multiview

applications), 367-370
actionSheet:clickedButtonAtIndex

method, 288, 320
Active Configuration setting, 43
active device (universal

applications), 588-590
Active SDK setting, 42
Activity Monitor instrument, 621
ad hoc deployment of

applications, 654-655

Add Contact button, 173
Add Horizontal Guide command

(Layout menu), 115
Add Vertical Guide command

(Layout menu), 115
addButtonWithTitle method, 320
Address Book framework,

557-558, 563-565
Cocoa Touch layer, 87
contact selection, 565
delegate methods, 566
displaying contact

information, 566-569
addSubview method, 386
Alert View Delegate protocol,

250-251
alertDialog variable, instantiation,

246-247
alerts (user notifications), 241

alert sounds, 255-258
connecting to outlets and

actions, 243-245
creating notification project

interface, 243
generating, 245-246

multi-option alerts,
248-255

simple alerts, 246-248
prepping project files,

242-243
alignment (IB layout tool),

115-116
Alignment command (Layout

menu), 115
allocation of objects, 69-70
Anderson, Fritz, Xcode 3

Unleashed, 629
animalNames array, 304
animalSounds array, 304
animated action sheets, 288
animation, 188

action sheets, 288
image views, 190, 195-197
implementation, 189-190
starting/stopping, 197

Index

Symbols
#import directive, 61, 65
#pragma mark directive, 41
%@ string format specifier, 602
%f string format specifier, 602
%i string format specifier, 602
@implementation directive, 65
@interface directive, 61-62
@property directive, 3-64, 6137
@synthesize directive, 66, 137

A
A4 processor, 7
About group (ReturnMe

preferences), 428
ABPeoplePickerNavigation-

ControllerDelegate protocol, 564
ABPersonHasImageData

function, 569
ABRecordCopyVal method, 568
ABRecordCopyValue function, 567
abstract, Quick Help results, 103
accelerometer, 8

API, 511-513
background, 510-511
ColorTilt application, 518-520
Orientation application,

513-516
sensing movement, 522-523

accelerometer:didAccelerate
method, 512, 515

Accessibility Programming Guide
for iPhone OS, 131

Accessibility settings (Interface
Builder), 119-120

action sheets, 287, 316
animated versus

non-animated, 288
changing appearance and

behavior, 321
implementation, 316
interface, 317-319
project setup, 316-317

animationDuration property, 196
API accelerometer, 511-513
App ID, 16, 636-637
App store

distribution of applications,
631-642

promotion of applications,
649-653

submitting applications for
approval, 642-649

appearance
action sheets, 321
segmented controls, 220
table views, 396
text input trait, 165

Apple Developer Program, 8
costs, 9
registration, 9-12

Apple Developer Suite, 25-26.
See also Interface Builder;
iPhone Simulator; Xcode

Apple ID, 10
Apple tutorials, 185
Apple website, 9
application view
application:DidFinishLaunching-

WithOptions method, 357,
586, 592

applications
building, 42-45

user input/output, 183-184
built-in capabilities, 557

Address Book frameworks,
557-558, 563-569

connecting to outlets and
actions, 563

Core Location framework,
560, 569-573

creating app interface,
562-563

implementation, 561
Map Kit framework, 560,

569-573
Message UI framework,

559, 573-577
project setup, 561-562

charging for, 653-654
ColorTilt, 518-520
DebugPractice, 616
decision making, 72

expressions, 72-73
if-then-else statements, 73
repetition with loops,

74-76
switch statements, 73

distribution, 631-632
ad hoc deployment,

654-655
App ID, 636-637
artwork, 632-634
Distribution Certificates,

634-636
Distribution Provisioning

Profile, 638
Enterprise Deployment,

655-656
project configuration,

639-642
FlowerWeb. See FlowerWeb

application
life cycles, 89-91
logic

flash card application,
447-449

flashlight application,
421-422

popovers, 276-279
Media Playground, 529-534
multiview. See multiview

applications
Orientation, 513-516
OS X Installer, 13
preferences, 415

design considerations,
415-417

file system storage
implementation, 436-457

iPad file system sandbox,
433-436

reading and writing,
418-423

Settings application,
424-433

popovers, 270-276
promotion, 649-653
Property List Editor, 423
resizable interfaces, 461-462

design, 464-465
implementation of

reframing logic, 477-478

Interface Builder, 465-471
reframing controls,

471-477
swapping views, 479-485

ReturnMe, 424
rotatable interfaces, 461-462

design, 464-465
implementation of

reframing logic, 477-478
Interface Builder, 465-471
orientation constants, 463
reframing controls,

471-477
swapping views, 479-485

Shark profiler, 622-625
Split View-based Application

template. See Split View-
based Application template

submitting for approval,
642-649

table views, 383
appearance, 396
implementation, 384
project setup, 384-388
providing data to, 389-394
reacting to a row touch

event, 394-395
testing

Interface Builder, 120
iPhone Simulator, 47-52
View-Based Application

template, 152-153
tracing, 615-621
UIApplication class, 92
universal. See universal

applications
updates, 653
user input/output, 183-184
Xcode, 29-30

building applications,
42-45

editing code, 36-42
modifying project

properties, 45-47
navigating code, 36-42
project management,

31-35
removal of files and

resources, 35-36
Applications Library (iTunes), 632

660

animationDuration property

How can we make this index more useful? Email us at indexes@samspublishing.com

buttons

661

approval, submitting applications,
642-643

binary upload, 648-649
profile preparation, 643-648

archiveFlashCards method, 456
archiveRootObject:toFile

method, 456
archiving Flash cards, 455-457
area calculation logic, 365-367
area view (multiview

applications), 361
area calculation logic,

365-367
creating the view, 362-364
outlets and actions, 361-365

arrays, 95
animalNames, 304
animalSounds, 304
CFBundleIconFiles, 583
flowerSections, 403
NSMutableArray, 402

arrow constants (popovers), 278
artwork, distribution of

applications, 632-634
attributes, 117-119

Accessibility settings, 119-120
buttons, 173-174
Date Pickers, 292-293
non-atomic, 64
retain, 64
sliders, 198-199
text fields, 163-165
text views, 168-169
web views, 225

Attributes Inspector, 117-119,
163, 225

Attributes Inspector command
(Tools menu), 117, 163

audio playback, 539
cleanup, 543-544
control, 541-543
implementation, 540-541

Audio Toolbox framework
Media layer, 87
playing alert sounds, 257-258

audioPlayerDidFinishPlaying:
successfully: method, 539,
542-543

AudioServicesCreateSystem-
SoundID function, 257

AudioServicesPlaySystemSound
function, 257

Auto-Enable Return Key (text
input trait), 165

Autocompletion (Xcode editor),
38-39

autorelease method, 76
autoresizing, 464, 473
autorotation, 464
Autosizing settings (Size

Inspector), 117
AV Foundation framework,

528-529
audio playback, 539

cleanup, 543-544
control, 541-543
implementation, 540-541

AVAudioPlayer class, 529
AVAudioPlayerDelegate protocol,

539, 542
AVAudioRecorder class, 529, 539
axes, accelerometer, 510

B
background

accelerometer, 510-511
graphics/color, 202-203
touch, hiding keyboard,

181-182
Background menu, 175
behavior, action sheets, 321
binary upload, submitting applica-

tions for approval, 648-649
BlueTooth supplementation, 7
bookmarks, 40-41
boolForKey method, 423
bounds property, 483
breakpoints, 605-608
Build and Run button, 43-44
Build command (Build menu), 43
build configurations (Xcode), 604
Build menu commands, 43
building applications, 42-45

Active Configuration
setting, 43

Active SDK setting, 42
Build and Run button, 43-44
errors and warnings, 44-45
user input/output, 183-184

built-in capabilities, 557
Address Book frameworks,

557-558, 563-565
contact selection, 565
delegate methods, 566
displaying contact

information, 566-569
connecting to outlets and

actions, 563
Core Location framework,

560, 569-573
creating app interface,

562-563
implementation, 561
Map Kit framework, 560,

569-573
Message UI framework, 559,

573-577
project setup, 561-562

Bundle (Settings application),
416, 427-431

Bundle Identifier, 637
button bars, 123
buttons, 97, 158

action sheets, 317-318
Add Contact, 173
Build and Run, 43-44
Check for Leaks Now, 619
Clear, 164
Configure, 270
connection to actions,

178-179
Custom, 173
customization, 172
Detail Disclosure, 173
Done, 180-181
editing attributes, 173-174
Export Developer Profile, 23
FlowerWeb application,

226-227
Generate Story, 175
Hop, 201-202
Import Developer Profile, 23
Info Dark, 173

Info Light, 173
multi-option alerts, 248-249
multiview application

toolbars, 347-348
popovers, 273
radio, 212
Rounded Rect, 172-173
setting images, 174-178
toolbar buttons, 262

buttonTitleAtIndex method,
250, 320

C
CA (certificate authority), 635
calculate method, 365
cancelButtonIndex method, 320
cancelButtonTitle parameter, 247
capacitive multitouch screen, 7
Capitalize (text input trait), 165
card view controller (flash card

application), 444-445
cards (flash card application),

450-453
cells, table views, 391-394
cellular technology, 560
centerMap method, 571
Certificate Assistant, 17-18
certificate authority (CA), 635
Certificate Revocation List

(CRL), 635
CFBundleIconFiles array, 583
CFNetwork framework, 89
CGAffineTransformMakeRotation

function, 502
CGRectMake() function, 478
changing state, 174
charging for applications,

653-654
check boxes, 212
Check for Leaks Now button, 619
chooseImage method, 544
chooseiPod: method, 549
ChosenColor outlet, 125
class methods

definition, 58
imagenamed, 177

classes, 33. See also objects
AVAudioPlayer, 529
AVAudioRecorder, 529, 539
core, 91-94

data type, 94-97
definition, 58
DetailViewController, 383
files, 33
FirstViewController, 355
FlashCard, 437
gesture recognizers, 490
interface, 97-99
iPadViewController, 584
iPhoneViewController, 585
MPMediaItem, 528
MPMediaItemCollection, 528
MPMediaPickerController,

528, 548
MPMoviePlayerController,

528, 534
MPMusicPlayerController,

528, 548
NSNotificationCenter, 537
NSObject, 59
NSURL, 214
NSURLRequest, 214
NSUserDefaults, 418
PopoverConfigViewController,

266
single, 134
UIActionSheet, 287-288
UIAlertView, 245-255
UIDevice, 588
UIImagePickerController, 544
View-Based Application

template, 142
cleanup

audio playback, 543-544
Image Picker, 546-547
Media Picker, 551
movie playback, 537-538

Clear button, 164
Cocoa versus Cocoa Touch, 85
Cocoa Touch, 26

Cocoa Touch layer,
frameworks, 86-87

Cocoa versus, 85
core classes, 91-94
data type classes, 94-97
functionality, 84-85
interface classes, 97-99
origins, 85

Cocoa Touch layer,
frameworks, 86

Address Book UI, 87
Game Kit, 87
Map Kit, 86
Message UI, 87
UIKit, 86

code
adding to projects, 34
connection to user

interfaces, 122
implementation, 123
launching IB from

Xcode, 122
outlets and actions,

124-129
code snapshots, 39-40
codecs, 535
color, background, 202-203
ColorChoice outlet, 125, 217, 221
ColorTilt application, 518

interface, 519
project setup, 518
UIAccelerometerDelegate

implementation, 519-520
commands

Build menu, Build, 43
Edit menu, Duplicate, 194
File menu

Make Snapshot, 40
New Project, 31
Simulate Interface,

120, 471
Snapshots, 40

Help menu
Developer Documentation,

100
Quick Help, 102

Layout menu, 115
Project menu

New Smart Group, 34
Set Active Build

Configuration,
Debug, 604

Run menu, Run, 43
Tools menu

Attributes Inspector,
117, 163

Connections Inspector, 178
Identity Inspector, 129

662

buttons

How can we make this index more useful? Email us at indexes@samspublishing.com

custom picker views

663

Library, 112, 162
Size Inspector, 116

Window menu, Document, 192
Xcode menu, Preferences, 101

components, 284
componentsSeparatedByString

method, 572
condition-based loops, 75
configuration

map view, 563
segments (segmented

controls), 219
view controller classes, 360

Configure button, 270
configureView method, 410
connections

buttons to actions, 178-179
outlets to image views,

194-195
popover content to

outlets, 269
preferences to applications,

432-433
scrolling views to outlets, 237
segmented controls to

actions/outlets, 221-222
sliders to actions/outlets,

199-200
switches to actions, 223
text fields to outlets,

166-167
text views to outlets,

171-172
web views to outlets, 225

Connections Inspector, 127,
178, 223

Connections Inspector command
(Tools menu), 178

connectivity (platform), 7
constants

popover arrow, 278
swipe directions, 499

constraints (platform), 7
Contact Information group

(ReturnMe preferences), 428
contacts, Address Book

frameworks, 565-569

content
loading remote content,

214-215
multiview applications,

344-345
popovers, 267

connection to outlets, 269
object release, 268
outlets, 267
size, 268
views, 268

web view support, 214
contentSize property, 233
ContentViewController view

controller, 333
Continue icon (debugger), 609
Continue to Here option (gutter

context menu), 611
controllers

modal view, 333-334
MVC structure, 135-136

IBAction directive, 138
IBOutlet directive, 137

navigation, 383, 398
popovers, 263-264
root view table controller,

406-408
tab bars, 357

adding, 358-359
item images, 359-360

UIPopoverController, 262
UIViewController, 263
view

multiview applications,
343-344

UIControl class, 94
controls

audio, 541-543
reframing, 471-477
segmented, 213

FlowerWeb application,
218-222

UISegmentedControl
class, 98

UIControl class, 93
convenience methods, 69-70
converting interfaces, universal

applications, 598

copies, image views, 194
Core Animation instrument, 621
core classes, 91-94

NSObject, 92
UIApplication, 92
UIControl, 93
UIResponder, 93
UIView, 92
UIViewController, 94
UIViewWindow, 92

Core Data framework, 88
Core Data instrument, 621
Core Foundation framework, 88
Core Graphics framework, 87
Core Location framework, 88,

560, 569-573
Core OS layer, frameworks, 89
Core Services layer, frameworks,

88-89
CoreGraphics framework, 86
Correction (text input trait), 165
costs, Apple Developer Program, 9
count-based loops, 74
CPU Sampler instrument, 621
Create iPhone/iPod Touch Version

(Interface Builder), 598
CreateCardDelegate protocol,

444, 451
createFlowerData method, 402
createStory method, 182
creating

projects, Xcode, 31-32
universal applications

GenericViewController
view controller class,
590-596

Window-based template,
583-590

CRL (Certificate Revocation
List), 635

currentCard method, 447
currentDevice method, 588
Custom button, 173
custom picker views, 299

adding picker views, 302-303
implementation, 299
interface, 303-304
project setup, 300-301

providing data to, 304
application data

structures, 304-305
data source methods,

306-307
populating data

structures, 305-306
populating picker display,

307-308
response to user, 309-311
UIPickerViewDelegate optional

methods, 311-315
customization

application preferences, 415
design considerations,

415-417
file system storage

implementation, 436-457
iPad file system sandbox,

433-436
reading and writing,

418-423
Settings application,

424-433
buttons, 172
keyboard display, 165-166
user interfaces, 117

Accessibility settings,
119-120

Attributes Inspector,
117-119

D
data

custom picker views,
304-308

detectors, 171
models, MVC structure,

138-139
providing to Split View-based

Application template,
401-405

providing to table view,
389-394

storage, iPad file system
sandbox, 433-434

file paths, 435-436
implementation, 436-457

storage locations,
434-435

structures, 402-405
data source methods

pickers, 306-307
root view table controller, 406
table views, 390-391

data type classes, 94-97
NSArray, 95
NSDate, 96
NSDecimalNumber, 95-96
NSDictionary, 95
NSMutableArray, 95
NSMutableDictionary, 95
NSMutableString, 94
NSNumber, 95-96
NSString, 94
NSURL, 96-97

datatip, variable examination,
608-609

Date Pickers, 285
adding, 291

attributes, 292-293
connection to actions,

293-294
implementation, 289
interface, 294-295
project setup, 290-291
view controller logic, 295

calculating difference
between dates, 297

current date, 296
displaying date and

time, 296
implementing date

calculation, 297-299
dates, 96
dealloc method, 77-78, 152, 183,

206, 232, 472, 480
Debug build configuration, 604
Debugger Console, 602
Debugger view (GNU Debugger),

613-615
debugging Xcode, 601

GNU Debugger, 603-615
Instruments tool, 615-621
NSLog function, 602-603
Shark profiler, 622-629

Debugging with GDB: The GNU
Source-Level Debugger, 629

DebugPractice application, 616
decision making, 72

expressions, 72-73
if-then-else statements, 73
repetition with loops, 74-76
switch statements, 73

declaration
Quick Help results, 103
variables, 67-69

default image (image views), 193
default state, switches, 223
delegate methods, Address Book

frameworks, 566
delegate parameter, 247
describeInteger method, 605, 610
design

application preferences,
415-417

rotatable and resizable
interfaces, 464-465

destructiveButtonIndex
method, 320

Detail Disclosure button, 173
Detail view

controller, 409-410
Split View-based Application

template, 399-401
detail web view, 228-229
detailURLString string, 230
DetailViewController class, 383
detecting tilt, 518

interface, 519
project setup, 518
UIAccelerometerDelegate

implementation, 519-520
Developer Documentation com-

mand (Help menu), 100
Developer Program (Apple), 8

costs, 9
registration, 11-12

Developer Suite, 25-26. See also
Interface Builder; iPhone
Simulator; Xcode

developer tools (iPhone OS),
12-13

Developer/Applications folder, 13
development paradigms, 56-57
Development Provisioning

Assistant, 14
App ID, 16

664

custom picker views

How can we make this index more useful? Email us at indexes@samspublishing.com

files

665

Certificate Assistant, 17-18
device ID, 16-17
provisioning profile, 13-14

downloading, 20-21
generation and

installation, 14-23
installing, 21-22
naming, 18-20
testing, 24-25

launching, 15
unique device identifiers, 14

device identifiers, 14-17
deviceType outlet, 589
dictionaries, 95
didCancelCardCreation

method, 444
didCreateCardWithQuestion:

answer method, 444
digital compass, 8
directives

#import, 61, 65
@implementation, 65
@interface, 61-62
@property, 63-64, 137
@synthesize, 66, 137
definition, 61
IBAction, 138
IBOutlet, 137

directories
Documents, 435
Library/Caches, 435
Library/Preferences, 434
tmp, 435

disabling autoresizing, 473
disclosure indicators, 408
dismissal

modal views, 337-338
popovers, 278-279

dismissModalViewController-
Animated method, 326, 337

dismissPopoverAnimated
method, 546

display
platform, 6
popovers, 262

Distribution Certificates, 634-636

distribution
applications, 631-632

ad hoc deployment,
654-655

App ID, 636-637
artwork, 632-634
Distribution Certificates,

634-636
Distribution Provisioning

Profile, 638
Enterprise Deployment,

655-656
project configuration,

639-642
profiles, 14, 638

Distribution Provisioning
Profiles, 638

doActionSheet method, 319
Document command (Window

menu), 192
Document icons (XIB files),

111-112
document sets, 101
Document window (XIB file),

109-111
documentation system (Cocoa

Touch), 83
core classes, 91-94
data type classes, 94-97
functionality, 84-85
interface classes, 97-99
origins, 85

Documents directory, 435
Done button, 180-181
double primitive data type, 67
downloading provisioning profile,

20-21
Duplicate command (Edit

menu), 194

E
Edit menu commands,

Duplicate, 194
editing

button attributes, 173-174
code, 36-42
text field attributes, 163-165

text view attributes, 168-169
toolbar control buttons,

347-348
editor (Xcode), 38-39
email, built-in capabilities, 559,

573-577
encodeObject:forKey method, 454
encodeWithCoder method, 454
ending

implementation files, 66
interface files, 64

Enterprise Deployment, 655-656
enterprise program (Developer

Program), 9
errors, 44-45
existing resources, 35
Export Developer Profile

button, 23
expressions, 72-73
External Accessory framework, 89

F
feedback

mechanisms, 7-8
Xcode errors and warnings,

44-45
fees, Apple Developer Program, 9
fields

adding to alerts, 251-255
Minimum, 198

File menu commands
Make Snapshot, 40
New Project, 31
Simulate Interface, 120, 471
Snapshots, 40

File’s Owner icon (XIB files), 109
files, 60

adding to projects, 34
data storage, 433

file paths, 435-436
implementation, 436-457
storage locations,

434-435
header, 33, 60-64
implementation, 33, 65-66
locating methods and

properties, 37

666

files

project management, 31
adding existing resources

to files, 35
adding new code files, 34
editing/navigating code,

36-42
identifying project type,

31-32
project groups, 32-34
removal of files from

project, 35-36
removal from projects, 36
XIB (Interface Builder), 108

Document icons, 111-112
Document window,

109-111
View-Based Application

template, 142-144
finances, charging for

applications, 653-654
first responder icon (XIB files),

109
first responders, 179, 505
FirstViewController class, 355
flash card application

application logic, 447-449
archiving Flash cards,

455-457
card view controller, 444-445
cards, 450-453
interface, 438-446
object archiving, 453-455
project setup, 436-438

Flash cards, archiving, 455-457
FlashCard class, 437
flashlight application, 418-423
flexibility, rotatable and resizable

interfaces, 466-471
float primitive data type, 67
floatForKey method, 423
flow of program execution, GNU

Debugger, 609-612
flowerData structure, 403
flowerDetailView outlet, 225
flowerSections array, 403
FlowerView outlet, 125, 225
FlowerWeb application, 216

buttons, 226-227
object release, 232, 238
outlets and actions, 217-218

project setup, 217
scrolling views, 232-234

adding objects, 235-236
implementation, 233,

237-238
outlets, 234, 237
project setup, 234

segmented controls, 218
appearance selection, 220
configuration of

segments, 219
connection to actions,

221-222
connection to outlets, 221
sizing controls, 220

switches, 222-223
testing, 232, 238
view controller logic

implementation
detail web view, 228-229
loading/displaying details,

229-231
running application,

231-232
web views, 224-225

format specifiers (strings), 602
Foundation framework, 86-88
foundPinch method, 501
foundRotation method, 504
foundSwipe method, 500
foundTap method, 499
frame property, 464
frameworks, 33

Address Book, 557-558
contact selection, 565
delegate methods, 566
displaying contact

information, 566-569
AudioToolbox, 257-258
AV Foundation, 528-529,

539-544
Core Location, 560, 569-573
Map Kit, 560, 569-573
Media Player, 528, 535-538
Message UI, 559, 573-577
technology layers, 86-89
Xcode documentation,

100-103
Freeverse, Postman, 652
functionality, Cocoa Touch, 84-85

functions. See also methods;
protocols

ABPersonHasImageData, 569
ABRecordCopyValue, 567
AudioServicesCreateSystem-

SoundID, 257
AudioServicesPlaySystem-

Sound, 257
CGAffineTransformMake-

Rotation, 502
CGRectMake(), 478

G
g (gravity) unit, accelerometer, 510
Game Kit framework, 87
gdb (GNU Debugger), 604

breakpoints, 605-608
Debugger view, 613-615
flow of program execution,

609-612
variable states, 608-609
watchpoints, 612-613

GDB Pocket Reference, 629
Generate Story button, 175
generating alerts, 245-246

multi-option alerts, 248-255
simple alerts, 246-248

GenericViewController view
controller class, creating
universal applications, 590-596

adding device-specific views,
590-591

adding to application
delegates, 591-592

implementation, 595-596
instantiating view controller,

592-594
iPhone and iPad views, 596
XIB files, 594-595

geocoding, 560
gesture-recognition capabilities,

489-491
implementation, 491
interface, 494-497
pinch recognizer, 500-502
project setup, 492-494
rotation recognizer, 503-505
shake recognizer, 505-506
swipe recognizer, 499-500
tap recognizer, 497-499

How can we make this index more useful? Email us at indexes@samspublishing.com

Info Light button

667

GetFlower action, 125, 221
getter methods, 63
GNU Debugger (gdb), 603-604

breakpoints, 605-608
Debugger view, 613-615
flow of program execution,

609-612
variable states, 608-609
watchpoints, 612-613

Google Analytics, 653
Google Maps/Google

Earth API, 560
GPS technology, 8, 560
graphics

background, 202-203
OpenGL ES implementation, 6
platform, 6

gravity (g) unit, accelerometer, 510
Greeked text, 167
grouped table views, 380-381
groups (projects), Xcode, 32-34
guides (IB layout tool), 114-115
gutter (Xcode), 605

H
hardware requirements, 8
header files, 33, 60

#import directive, 61
@interface directive, 61-62
@property directive, 63-64
ending, 64
method declaration, 62-63

Heavy view, 626
Help menu commands

Developer Documentation, 100
Quick Help, 102

hideKeyboard method, 180, 364
hideModal method, 335
hiding keyboard, 179-180

background touch, 181-182
Done button, 180-181

Hop button, 201-202

I
IBAction directive, 138
IBOutlet directive, 137

icon files, universal applications,
582-583

id return type (methods), 63
IDE (integrated development

environment). See Xcode
identifiers, unique device, 14
Identity Inspector, 129-130
Identity Inspector command

(Tools menu), 129
if-then-else statements, 73
image animations, 188-190
Image Picker, 529

implementation, 544
cleanup, 546-547
displaying chosen images,

545-546
image resources

gesture recognition project
setup, 493-494

Split View-based Application
template, 405

image views, 188
animation, 190, 195-197
default image, 193
implementation, 189-190
making copies, 194
outlets and actions, 190-195
project setup, 190

imagenamed method, 177
imagePickerController:didFinish-

PickingMediaWithInfo method,
544-546

imagePickerControllerDidCancel
delegate method, 546

images, buttons, 174-178
imageURLString string, 230
imageWithData method, 567
imperative development, 56
implementation

action sheets, 316
audio recording, 540-541
built-in capabilities, 561
connecting interface to

code, 123
custom picker views, 299
Date Pickers, 289
file system storage, 436-457

flashlight application logic,
421-422

GenericViewController class,
595-596

gesture recognition, 491
image animations, 189-190
Image Picker, 544

cleanup, 546-547
displaying chosen images,

545-546
input techniques, 159-160
Media Picker, 549-550
Media Playground application,

529-530
methods, 67-76
modal view logic, 336-338
modal views, 329
movie playback, 535-538
multiview applications,

342-343, 354-355
Music Player, 552-553
reframing logic, 477-478
scrolling views, FlowerWeb

application, 233
Settings application, 424-433
Split View-based Application

template, 397
table views, 384
UIAccelerometerDelegate,

515-516, 519-520
using popovers with

toolbars, 265
view controller logic,

151-152, 203
FlowerWeb application,

228-232
starting/stopping

animation, 204
View-Based Application

template, 139-140
implementation files, 33, 65-66
implicit preferences, 418-423
Import Developer Profile

button, 23
indexed tables, 380
Info Dark button, 173
Info Light button, 173

Info property list resource, 45
inheritance, 57
initialization of objects, 69-70
initWithCoder method, 454
initWithContentsOfURL:encoding:

error method, 572
initWithContentURL: method, 534
initWithContentViewController

method, 263
initWithFormat: method, 231
initWithFrame: method, 314
initWithMediaTypes: method, 548
initWithObjects instance

method, 196
initWithQuestion:answer

method, 437
initWithString class method, 231
initWithTitle parameter, 247
initWithURL:settings:error:

method, 539
input techniques, 187

buttons, 158, 226-227
entering text, 159

application building,
183-184

buttons, 172-179
hiding keyboard, 179-182
implementation, 159-160
object release, 183
preparation of outlets and

actions, 161-162
project setup, 160-161
text fields, 162-167
text views, 167-172
view controller logic,

182-183
labels, 159
platform, 7-8
scrolling views, 215, 232-238
segmented controls, 213,

218-222
sliders, 188, 197-200
switches, 212, 222-223
text fields, 158
view controller logic

implementation, 228-232
views, 158
web views, 213-215, 224-225

insertSubview:atIndex:
method, 350

installation
development provisioning

profile, 14-23
iPhone OS developer tools,

12-13
provisioning profile, 21-22

instance methods
buttonTitleAtIndex, 250
definition, 58
initWithObjects, 196
isOn, 212
setTitle:forState, 204
stretchableImageWithLeftCap-

Width:topCapHeight, 177
stringByReplacingOccurrences

OfString:WithString, 182
titleForSegmentAtIndex, 213

instance variables
@interface directive, 61
declaration, 67-69
definition, 58
popover application view,

270-271
releasing, 77-78
text fields, 252

instances
definition, 58
MKMapView, 560

instantiation
alertDialog variable, 246-247
definition, 58, 109
modal view controllers,

333-334
multiview application view

controllers, 345-347
popover view controller,

274-276
view controllers

GenericViewController
class, 592-594

universal applications,
586-588

Instruments Library, 620
Instruments tool, 615

available instruments,
620-621

leak detector, 615-619
Instruments User Guide, 629
int primitive data type, 67

integrated development
environment (IDE). See Xcode

integration, 557
Address Book frameworks,

557-565
contact selection, 565
delegate methods, 566
displaying contact

information, 566-569
Core Location framework,

560, 569-573
Map Kit framework, 560,

569-573
Message UI framework, 559,

573-577
Interface Builder, 25, 107-108

connecting interfaces to
code, 122

implementation, 123
launching IB from

Xcode, 122
outlets and actions,

124-129
Create iPhone/iPod Touch

Version, 598
Identity Inspector, 129-130
rotatable/resizable interfaces

flexibility, 466-471
project setup, 465

user interfaces, 112
customization, 117-120
layout tools, 114-117
Objects Library, 112-114
simulation, 120

XIB files, 108-112
Interface Builder User Guide, 130
interface classes, 97-99
interface files, 60

#import directive, 61
@interface directive, 61-62
@property directive, 63-64
ending, 64
method declaration, 62-63

interfaces
action sheets, 317-319
background graphics/color,

202-203
built-in capabilities, 562-563
ColorTilt application, 519
connection to code, 122-129

668

Info property list resource

How can we make this index more useful? Email us at indexes@samspublishing.com

life cycle (applications)

669

converting (universal
applications), 598

creating with Interface
Builder, 112-117

custom picker views, 303-304
customization, 117-120
Date Pickers, 294-295
flash card application,

438-446
flashlight application,

419-420
gesture recognition, 494-497
Hop button, 201-202
input/output techniques. See

input techniques; output
techniques

labels, 200
main view (modal views),

331-332
Media Playground application,

532-533
modal UI elements, 245
object release, 206
Orientation application,

513-515
popovers. See popovers
resizable. See resizable

interfaces
ReturnMe application,

426-427
rotatable. See rotatable

interfaces
simulation, 120
Split View-based Application

template. See Split-View
based Application template

table views. See table views
user notifications. See user

notifications
view controller logic

animation speed, 204-206
implementation, 203-204

iPad Human Interface
Guidelines, 130

iPad view (GenericViewController
class), 596

iPadViewController class, 584

iPhone Dev Center (Apple
website), 9

iPhone OS
developer tools, 12-13
frameworks, 100-103
SDK (Software Development

Kit), 8
technology layers, 85

Cocoa Touch, 86-87
Core OS, 89
Core Services, 88-89
Media, 87-88

iPhone Simulator, testing
applications, 47, 152-153

esoteric conditions, 51-52
generating multitouch

events, 50
Interface Builder, 120
launching applications, 48-49
rotation simulation, 50

iPhone target, 597-598
iPhone view (GenericView-

Controller class), 596
iPhoneViewController class, 585
iPod Library, Media Picker,

548-549
cleanup, 551
implementation, 549-550
Music Player, 552-553
playlists, 551

iPodMusicPlayer method, 548
isAnimating property, 197
isOn method, 212, 228
iTunes Applications Library, 632
iTunes Connect, application

promotion, 650-651

J–K
keyboard

customization, 165-166
hiding, 160, 179-182
input process, 159

buttons, 172-179
implementation, 159-160
preparation of outlets and

actions, 161-162

project setup, 160-161
text fields, 162-167
text views, 167-172

Keyboard (text input trait), 165
keychain, 16
Keychain Access utility, 635
keys, Launch image, 583

L
labels, 97, 159, 200

action sheets, 317-318
adding to views, 163
SimpleSpin, 469

landscape left orientation, 463
landscape right orientation, 463
landscapeView outlet, 482
lastAction outlet, 303
launch images

Launch image (iPad) key, 583
modifying project

properties, 47
universal applications, 583

launching
applications in iPhone

Simulator, 48-49
Development Provisioning

Assistant, 15
Mac OS X Installer, 13

layers (iPhone OS), 85
Cocoa Touch, 86-87
Core OS, 89
Core Services, 88-89
Media, 87-88

Layout menu commands, 115
layout tools (Interface Builder)

alignment, 115-116
guides, 114-115
selection handles, 115
Size Inspector, 116-117

leak detector (Instruments tool),
616-619

Leaks instrument, 621
Library command (Tools menu),

112, 162
Library/Caches directory, 435
Library/Preferences directory, 434
life cycle (applications), 89-91

lightSource view, 421
limitations

platform, 7
rotation, 480
single classes, 134

loadFirstView method, 353
loadHTMLString:baseURL

method, 215
loading remote content, 214-215
loadRequest method, 231, 409
loadSecondView method, 351
loadThirdView method, 351
location services

Core Location framework,
560, 569-573

Map Kit framework, 560,
569-573

lock feature, iPhone Simulator, 51
logic, view controllers, 151-152

action sheets, 319
Date Pickers, 295-299
FlowerWeb application,

228-232
implementation, 203-206
multiview applications, 360
text entry, 182-183
using popovers with

toolbars, 266
loops, repetition, 74-76

M
Mac OS X Advanced Development

Techniques, 79
Mac OS X Installer application, 13
main view, modal views, 330-331

instantiating modal view
controller, 333-334

interface, 331-332
outlets and actions, 333

Make Snapshot command (File
menu), 40

managing sales, iTunes Connect,
650-651

map display, 570-573
Map Kit framework, 86, 560,

569-573
map view, configuration, 563
marketing applications, 631-632

ad hoc deployment, 654-655
App ID, 636-637

artwork, 632-634
Distribution Certificates,

634-636
Distribution Provisioning

Profile, 638
Enterprise Deployment,

655-656
project configuration,

639-642
promotion, 649-653
submitting for approval,

642-643-649
matchResult outlet, 303
measurable axes,

accelerometer, 510
media files, 535
Media layer (frameworks), 87-88
Media Picker, 548-549

cleanup, 551
implementation, 549-550
Music Player, 552-553
playlists, 551

Media Player framework,
528, 534

media files, 535
Media layer, 87
movie playback, 535-538

Media Playground application, 529
implementation, 529-530
interface, 532-533
outlets and actions, 533-534
project setup, 530-532

mediaPicker:didPickMediaItems:
protocol method, 551

mediaPickerDidCancel protocol
method, 551

memory
limitations, 7
management, 76-78
object release, 152
warning, testing with iPhone

Simulator, 51
menus

Background, 175
Overview drop-down, 604
State Configuration, 174
State pop-up, 223
Style drop-down, 220

message parameter, instantiation
of alertDialog variable, 247

Message UI framework, 87, 559,
573-577

messages, definition, 58
messaging syntax, 70-72
methods. See also functions;

protocols
ABRecordCopyVal, 568
accelerometer:didAccelerate,

512, 515
actionSheet:clickedButton-

AtIndex, 288
addButtonWithTitle, 320
addSubview, 386
application:DidFinish-

LaunchingWithOptions, 357,
586, 592

archiveFlashCards, 456
archiveRootObject:toFile, 456
audioPlayerDidFinishPlaying:

successfully:, 539, 542-543
autorelease, 76
boolForKey, 423
buttonTitleAtIndex, 320
calculate, 365
cancelButtonIndex, 320
centerMap, 571
chooseImage, 544
chooseiPod:, 549
componentsSeparatedBy-

String, 572
configureView, 410
createFlowerData, 402
createStory, 182
currentCard, 447
currentDevice, 588
dealloc, 78, 152, 183, 206,

232, 472, 480
declaration in interface files,

62-63
definition, 37
dequeueReusableCellWith-

Identifier UITableView, 392
describeInteger, 605, 610
destructiveButtonIndex, 320
didCancelCardCreation, 444
didCreateCardWithQuestion:

answer, 444
dismissModalViewController-

Animated, 326, 337

670

lightSource view

How can we make this index more useful? Email us at indexes@samspublishing.com

methods

671

dismissPopoverAnimated,
546

doActionSheet, 319
encodeObject:forKey, 454
encodeWithCoder, 454
floatForKey, 423
foundPinch, 501
foundRotation, 504
foundSwipe, 500
foundTap, 499
getters, 63
hideKeyboard, 180, 364
hideModal, 335
imagenamed, 177
imagePickerController:did-

FinishPickingMediaWithInfo,
545-546

imagePickerControllerDid-
Cancel, 546

imageWithData, 567
implementation

convenience methods,
69-70

declaration of variables,
67-69

expressions and decision
making, 72-76

files, 66
messaging syntax, 70-72
object allocation and

initialization, 69
initWithCoder, 454
initWithContentsOfURL:

encoding:error, 572
initWithContentURL:, 534
initWithFormat, 231
initWithFrame:, 314
initWithMediaTypes:, 548
initWithObjects, 196
initWithQuestion:answer, 437
initWithString, 231
initWithURL:settings:error:,

539
insertSubview:atIndex:, 350
iPodMusicPlayer, 548
isOn, 212, 228
loadFirstView, 353

loadHTMLString:baseURL, 215
loadRequest, 231, 409
loadSecondView, 351
loadThirdView, 351
locating, 37
mediaPicker:didPickMedia-

Items: protocol, 551
mediaPickerDidCancel

protocol, 551
motionEnded:withEvent, 505
MPMediaPickerController-

Delegate protocol, 550
numberOfComponentsInPicker

View, 286, 306
pause, 548
pickerView:didSelectRow:

inComponent, 287,
309-310

pickerView:numberOfRowsIn-
Component, 286, 306-307

pickerView:rowHeightFor-
Component:, 315

pickerView:titleForRow:
forComponent, 287, 307

pickerView:viewForRow:
forComponent:reusingView:,
313

pickerView:widthFor
Component:, 315

play, 534, 548
playAudio:, 542
playMedia:, 535
playMediaFinished:, 537
popover controllers, 263-264
popoverControllerDidCancel,

547
popoverControllerDidDismiss-

Popover, 264, 278, 551
presentModalViewController:

animated, 326
record, 539
recordAudio:, 540
registerDefaults, 432
release, 152
removeFromSuperview, 353
requestWithURL, 214-215
resignFirstResponder, 180
return types, 63

selectedRowInComponent:,
309

sendEmail, 575
setBool, 422
setDelegate, 543
setFloat, 422
setFullscreen:animated, 534
setLightSourceAlphaValue,

420
setQueueWithItemCollection,

548
setRegion:animated, 570
setSpeed, 191, 200
setters, 63
setText, 392
setTitle:forState, 204
setToRecipients, 574
setValuesFromPreferences,

432
shouldAutorotateToInterface-

Orientation, 462
showDate:, 293, 297
showFromRect:inView:

animated, 321
showInView:, 319, 321
showModal, 330, 336
showNextCard, 447
standardUserDefaults, 422
startAnimating, 197
stop, 539
stretchableImageWithLeftCap-

Width:topCapHeight, 177
stringByAppendingPath-

Component, 435
stringByReplacingOccurrence-

OfString:WithString, 182
stringFromDate:, 296
System Sound Services, 241
tableView:cellForRowAtIndex-

Path, 391
tableView:heightForRowAt-

IndexPath, 408
tableView:titleForHeaderIn-

Section, 391, 406
timeIntervalSinceDate:,

289, 297
titleForSegmentAtIndex, 213

672

methods

toggleAnimation, 191, 204
toggleFlowerDetail, 217,

223, 228
UIAlertView, 241
UIPickerViewDelegate,

311-315
unarchiveObjectWithFile, 456
updateRightWrongCounters,

449
updateTotal, 371
valueForProperty:, 552
viewDidLoad, 176, 195, 268,

305, 423, 605
viewWillDisappear, 422

MKMapView instance, 560
Mobile Safari, 651
modal UI elements, 245
modal views, 325

controllers, 333-334
implementation, 329
logic, 336-338
main view, 330-334
preparing the view, 334-336
project setup, 329-330
styles and transitions,

326-328
modalContent outlet, 330
modalContent view controller, 337
modalPresentationStyle

property, 327
Model-View-Controller structure.

See MVC structure
models, MVC structure, 135,

138-139
modifying project properties,

45-47
monitoring sales, iTunes Connect,

650-651
motionEnded:withEvent

method, 505
movement, sensing, 522-523
movie playback, 535-538
MPMediaItem class, 528
MPMediaItemCollection class,

528, 551
MPMediaPickerController,

528-529, 548-550
MPMoviePlayerController class,

528, 534

MPMoviePlayerPlaybackDidFinish-
Notification notification, 538

MPMusicPlayerController class,
528, 548

multi-option alerts, 248
adding fields to alerts,

251-255
Alert View Delegate protocol,

250-251
buttons, 248-249

multitouch events, iPhone
Simulator, 50

multitouch screens, 7, 489
gesture recognition, 490-491

implementation, 491
interface, 494-497
pinch recognizer, 500-502
project setup, 492-494
rotation recognizer,

503-505
shake recognizer, 505-506
swipe recognizer, 499-500
tap recognizer, 497-499

multiview applications, 342
area view, 361

area calculation logic,
365-367

creating the view, 362-364
outlets and actions,

361-365
configuring view controller

classes, 360
implementation, 342-343
instantiating view controllers,

345-347
project setup, 343-345
summary view, 371-374
tab bars, 354

implementation, 354-355
project setup, 355-357
tab bar controllers,

357-360
toolbar controls, 347

adding/editing buttons,
347-348

clearing current view,
352-354

implementing view switch
methods, 350-351

outlets and actions,
349-350

setting view with
application start, 352

versus single-view, 341-342
volume view, 367

creating the view, 368-370
outlets and actions,

367-370
volume calculation logic,

370-371
MultiViewsViewController

object, 349
Music Player, 552-553
musicPickerPopoverController

object, 550
MVC structure (Model-View-

Controller), 26, 133
application design, 134-135
controllers, 136-138
data models, 138-139
View-Based Application

template. See View-Based
Application template

views, 136
myHTML string, 215

N
naming provisioning profiles,

18-20
navigating code, 36-42
navigation controllers, 383, 398
navigation events (Split View-

based Application template),
408-409

nested messaging, 71-72
New project command (File

menu), 31
New Smart Group command

(Project menu), 34
newBFF action, 561
NeXTSTEP platform, 85
nil value, 71
non-animated action sheets, 288
non-atomic attribute, 64
notifications. See user

notifications
NSArray class, 95
NSCoder object, 454

How can we make this index more useful? Email us at indexes@samspublishing.com

outlets

673

NSCoding protocol, 454
NSDate class, 96
NSDateFormatter object, 289,

296, 299
NSDecimalNumber class, 95-96
NSDictionary class, 95
NSIndexPath object, 392
NSLog function (debugging tool),

602-603
NSMutableArray class, 95, 402
NSMutableDictionary class,

95, 403
NSMutableString class, 94
NSNotificationCenter class, 537
NSNumber class, 95-96
NSObject class, 59, 92
NSSearchPathForDirectoriesIn-

Domains C function, 435
NSString class, 94, 182
NSTemporaryDirectory

C function, 436
NSURL class, 96-97, 214
NSURLRequest class, 214
NSUserDefaults class, 418
numberOfComponentsInPicker-

View method, 286, 306
numberOfTapsRequired

property, 498
numberOfTouchesRequired

property, 498
numbers, 95-96

O
Object Allocations instrument, 621
object archiving, 453-455
object data types, declaration of

variables, 68-69
object graphs, 453
Object-Oriented Programming

with Objective-C document, 79
object-oriented programming.

See OOP
Objective-C, 26, 55-60

decision-making, 72-76
file structure, 60-66
memory management, 76-78
messaging syntax, 70-72

method implementation, 67-69
object allocation and

initialization, 69-70
Objective-C 2.0 Programming

Language (document), 79
objects. See also classes

adding to scrolling views,
235-236

adding to views, 145-149
allocation and initialization,

69-70
application, 92
definition, 58
instantiation, 109
messaging syntax, 70-72
MPMediaItemCollection, 551
MultiViewsViewController, 349
musicPickerPopoverController,

550
NSCoder, 454
NSDateFormatter, 289,

296, 299
NSIndexPath, 392
release, 152, 183, 206

convenience methods,
69-70

custom picker views, 301
dealloc method, 472, 480
FlowerWeb application,

232, 238
memory management, 76
popover application

view, 271
popovers, 268

retaining, 77
SplitViewController, 398-399
switch, 98
UIAcceleration, 512
UIBarButton, 347
UIBarButtonItem, 264
UIDatePicker, 285, 289-294
UIImagePickerController, 529
UIImageView, 363
UINavigationBar, 398
UINavigationController, 398
UINavigationItem, 399
UIPickerView, 285-287,

299-301

UIPopoverController, 531
UISwitch, 264
UITabBar, 354
UITabBarController, 354, 357
UITable, 380, 383-388
UITableViewController, 380
UIToolbar, 264, 273, 347
UIViewController, 342-343
window, 92

Objects Library (Interface
Builder), 112-114

Online Certificate Status Protocol
(OSCP), 635

onscreen controls (UIControl
class), 93

OOP (object-oriented
programming), 55

definition, 56-57
Objective-C, 26, 55-60

decision-making, 72-76
declaration of variables,

67-69
file structure, 60-66
memory management,

76-78
messaging syntax, 70-72
object allocation and

initialization, 69-70
terminology, 57-58

Open GL ES
framework, 87
implementation, 6
instrument, 621

OpenStep platform, 85
Orientation application, 513

interface, 513-515
project setup, 513
UIAccelerometerDelegate

implementation, 515-516
orientation constants, 463
origins, Cocoa Touch, 85
OSCP (Online Certificate Status

Protocol), 635
Other Sources (code files), 33
otherButtonTitles parameter,

247-248
outlets, 124-129, 161-162

action sheets, 303, 318-319
area view (multiview

applications), 361-365
built-in capabilities, 563
ChosenColor, 125
colorChoice, 217, 221
connection to

image views, 194-195
notification project

interface, 243-245
popovers, 269
scrolling views, 237
sliders, 199
text fields, 166-167
text views, 171-172
web views, 225

custom picker views, 301
deviceType, 589
flashlight application,

420-421
flowerDetailView, 225
FlowerView, 125, 225
FlowerWeb application,

217-218
gesture recognition interface,

496-497
image views, 190-192
landscapeView, 482
lastAction, 303
main view (modal views), 333
matchResult, 303
Media Playground application,

533-534
modalContent, 330
multiview application

toolbars, 349-350
padViewController, 585
pinchView, 496
popover application view,

270-273
popover content, 267
portraitView, 482
presentationStyle, 333
Reframe application project,

471-472
rotateView, 496
scrolling views, 234
segmented controls, 221
swipeView, 496
tabBarController, 358

table view applications,
385-386

tapView, 496
theScroller, 237
transitionStyle, 333
userOutput, 242
view controllers, 144-145,

149-150
volume view (multiview

applications), 367-370
output labels, 123

action sheets, 303
Date Pickers, 294-295

output techniques (image views),
187, 211. See also input
techniques

animation, 195-197
animation resources, 190
default image, 193
implementation, 189-190
making copies, 194
outlets and actions, 190-195
project setup, 190

Overview drop-down menu, 604

P
padViewController outlet, 585
paid developer programs, 11
parameters

definition, 58
instantiation of alertDialog

variable, 247-248
Quick Help results, 103

parent classes, 58
parentViewController

property, 338
paste, 167
pause method, 548
Photo Library, 544-547
picker views, 285-287, 299

implementation, 299
interface, 303-304
project setup, 300-301
protocols, 302-303
providing data to, 304-308
response to users, 309-311
UIPickerViewDataSource

protocol, 286
UIPickerViewDelegate

protocol, 287, 311-315

pickers, 284
Date Pickers. See Date

Pickers
Image Picker, 529, 544-547
Media Picker, 548-553
picker views. See picker views
UIDatePicker/UIPicker

class, 99
pickerView:didSelectRow:

inComponent method, 287,
309-310

pickerView:numberOfRowsIn-
Component method, 286,
306-307

pickerView:rowHeightFor-
Component: method, 287, 315

pickerView:titleForRow:for-
Component: method, 307

pickerView:viewForRow:for-
Component:reusingView:
method, 313

pickerView:widthForComponent:
method, 315

pinch gesture recognizer,
500-502

pinchView outlet, 496
placeholder text, 164
plain table views, 380-381
platform, 5

connectivity, 7
display and graphics, 6
feedback mechanisms, 7-8
input mechanisms, 7-8
limitations, 7
NeXTSTEP, 85
OpenStep, 85

play method, 534, 548
playAudio: method, 542
playing alert sounds, 256-258
playlists (Media Picker), 551
playMedia: method, 535
playMediaFinished: method, 537
plist files, universal applications,

582-583
pointers, 68-69
PopoverConfigViewController

classes, 266
popoverControllerDidCancel

method, 547

674

outlets

How can we make this index more useful? Email us at indexes@samspublishing.com

projects

675

popoverControllerDidDismiss-
Popover method, 264, 278, 551

PopoverPlayground – Skeleton
project (Date Pickers), 289

adding, 291-294
implementation, 289
interface, 294-295
project setup, 290-291
view controller logic, 295-299

popovers, 261
action sheets, 287, 316

animated versus
non-animated, 288

changing appearance and
behavior, 321

implementation, 316
interface, 317-319
project setup, 316-317
response to user, 320
UIActionSheetDelegate

protocol, 288
view controller logic, 319

arrow constants, 278
controllers, 264-264
display, 262
MPMediaPickerController, 529
pickers, 284

Date Pickers, 285,
289-299

picker views, 285-287,
299-315

toolbars, 264
additional view controller

classes, 266
application logic, 276-279
implementation

overview, 265
preparing application view,

270-276
preparing content, 267-269
project setup, 265

UIPopoverController class, 99
views, 263

populating
data structures,

305-306, 405
table view cells, 391-394

portrait orientation, 463
portrait upside-down

orientation, 463
portraitView outlet, 482
Position setting (Size

Inspector), 116
Postman (Freeverse), 652
pragma marks, 41-42
preferences, 415

design considerations,
415-417

file system storage
implementation, 436-457

iPad file system sandbox,
433-436

reading and writing, 418-423
Settings application, 424-433

Preferences command (Xcode
menu), 101

PreferencesSpecifiers
property, 428

premature optimization, 622
presentation

modal views, styles and
transitions, 326-328

segmented controls, 220
presentationStyle outlet, 333
presentModalViewController:

animated method, 326
presentPopoverFromBarButton-

Item:permittedArrowDirections:
animated method, 263

pricing applications, 653-654
primitive data types, 67-68
procedural programming, 56
profiles

development provisioning, 13
generation and

installation, 14-23
testing, 24-25

distribution, 14
program execution, GNU

Debugger, 609-612
programming

Objective-C, 26, 55-60
decision-making, 72-76
declaration of variables,

67-69

file structure, 60-66
memory management,

76-78
messaging syntax, 70-72
object allocation and

initialization, 69-70
OOP, 56-57

definition, 56-57
terminology, 57-58

Programming in Objective-C 2.0,
Second Edition, 79

Project menu commands
New Smart Group, 34
Set Active Build

Configuration, Debug, 604
projects

configuration, 639-642
management (Xcode), 31-35
setup

action sheets, 316-317
built-in capabilities,

561-562
ColorTilt application, 518
creating rotatable and

resizable interfaces, 465
custom picker views,

300-301
Date Pickers, 290-291
entering text, 160-161
flash card application,

436-438
flashlight application,

418-419
FlowerWeb application,

217
gesture recognition,

492-494
image views, 190
Media Playground

application, 530-532
modal views, 329-330
multiview applications,

343-345, 355-357
Orientation application, 513
reframing controls on

rotation, 471-477
ReturnMe application,

424-425

scrolling views, 234
Split View-based

Application template,
398-401

swapping views on
rotation, 479-480

table views, 384-388
using popovers with

toolbars, 265
View-Based Application

template. See View-Based
Application template

promotion of applications, 649
iTunes Connect, 650-651
websites and social

networks, 651-653
properties

animationDuration, 196
bounds, 483
contentSize, 233
definition, 58
frame, 464
isAnimating, 197
locating, 37
modalPresentationStyle, 327
modifying, 45-47
parentViewController, 338
PreferencesSpecifiers, 428
Reframe application project,

471-472
scale, 500
startAnimating, 197
stopAnimating, 197
tap gesture recognizer, 498
transform, 483
velocity, 500

Property List Editor, 423, 427
protocols. See also functions;

methods
ABPeoplePickerNavigation-

ControllerDelegate, 564
Alert View Delegate,

multi-option alerts, 250-251
AVAudioPlayerDelegate,

539, 542
CreateCardDelegate,

444, 451
definition, 62

imagePickerController:did-
FinishPickingMediaWithInfo,
544

NSCoding, 454
UIAccelerometerDelegate,

513, 518
UIAccelerometerDelegate-

Protocol, 511
UIActionSheetDelegate,

288, 317
UIPickerViewDataSource,

286, 300-303
UIPickerViewDelegate, 287,

300-303
UIPopverControllerDelegate,

264
UITabBarControllerDelegate,

356
UITableViewDataSource,

389-390
UITableViewDelegate, 389

provisioning profiles, 13
generation and installation,

14-23
testing, 24-25

push buttons, 123

Q–R
Quartz Core framework, 88
Quick Help assistant (Xcode),

102-103
Quick Help command (Help

menu), 102

radio buttons, 212
RAM limitations, 7
reactions, shake gesture

recognizer, 506
reading application preferences,

418-423
recognizers (gestures), 491

implementation, 491
interface, 494-497
pinch recognizer, 500-502
project setup, 492-494
rotation recognizer, 503-505
shake recognizer, 505-506
swipe recognizer, 499-500
tap recognizer, 497-499

record method, 539

recordAudio: method, 540
reframing, 464

controls, 471-477
implementation of reframing

logic, 477-478
registerDefaults method, 432
registration

Apple Developer Program,
11-12

Apple’s website, 9
related API, Quick Help

results, 103
related documents, Quick Help

results, 103
Release build configuration, 604
release

instance variables, 77-78
objects, 183, 206

convenience methods,
69-70

custom picker views, 301
dealloc method, 472, 480
FlowerWeb application,

232, 238
memory management, 76
popover application

view, 271
popovers, 268
release method, 152

rules, 78
remote content, 214-215
removeFromSuperview instance

method, 353
removing breakpoints, 607
repetition, loops, 74-76
Request Promotional Codes

feature (iTunes Connect), 651
requestWithURL method,

214-215
requirements, hardware, 8
resignFirstResponder

method, 180
resizable interfaces, 461-462

design, 464-465
implementation of reframing

logic, 477-478
Interface Builder, 465

flexibility, 466-471
project setup, 465

reframing controls, 471-477

676

projects

How can we make this index more useful? Email us at indexes@samspublishing.com

settings (application preferences)

677

swapping views, 479
interface creation,

481-482
project setup, 479-480
view-swapping logic,

483-485
resources

adding to projects, 35
removal from projects, 35-36

Resources group files, 33
responders

first, 179
UIResponder class, 93

response to gesture recognizers
pinch gesture, 501-502
rotation gesture, 504-505
swipe gesture, 500
tap gesture, 499

results, Shark profiler, 626-629
retain attribute, 64
retaining objects, 77
Return Key (text input trait), 165
return types (methods), 63
return value, Quick Help

results, 103
ReturnMe application, 424
reverse geocoding, 560
Rich Media, 527

AV Foundation framework,
528-529, 539-544

Image Picker, 529, 544-547
Media Picker, 548-553
Media Player framework, 528,

534-538
Media Playground application,

529-534
Robbin, Arnold, GDB Pocket

Reference, 629
root class, NSObject, 92
root view table controllers,

406-408
rotatable interfaces, 461-462

design, 464-465
implementation of reframing

logic, 477-478
Interface Builder, 465

flexibility, 466-471
project setup, 465

orientation constants, 463
reframing controls, 471-477
swapping views, 479-485

rotateView outlet, 496
rotation

gesture recognizer, 503-505
testing with iPhone

Simulator, 50
Rounded Rect button, 172-173
rows (table views), 394-396
rules, releasing, 78
Run command (Run menu), 43

S
sales management, iTunes

Connect, 650-651
sample code, Quick Help

results, 103
sandbox, 433
scale property, 500
Schema Reference (Settings

application), 428
screen rotation, 461-462

designing rotatable
interfaces, 464

auto-rotating, 464
implementation of

reframing logic, 477-478
Interface Builder, 465-471
reframing, 464
reframing controls,

471-477
swapping views, 465,

479-485
orientation constants, 463

scrolling options (text views),
170-171

scrolling views, FlowerWeb
application, 215, 232

adding objects, 235-236
connection to outlets, 237
implementation, 233
implementing scrolling

behavior, 237-238
outlets, 234
project setup, 234

SDK (Software Development
Kit), 8

search results, Xcode
documentation, 101

Secure (text input trait), 165
Security framework, 89
segmented controls, 123, 213

appearance selection, 220
configuration of

segments, 219
connection to actions,

221-222
connection to outlets, 221
FlowerWeb application,

218-222
sizing, 220
UISegmentedControl

class, 98
selectedRowInComponent:

method, 309
selection handles (IB layout

tool), 115
sendEmail method, 561, 575
sender variable, 180
sensing movement, 522-523
Set Active Build Configuration,

Debug command (Project
menu), 604

setBool method, 422
setDelegate method, 543
setFloat method, 422
setFullscreen:animated

method, 534
setLightSourceAlpha action, 418
setLightSourceAlphaValue

method, 420
setQueueWithItemCollection

method, 548
setRegion:animated method, 570
setSpeed method, 191, 200-204
setter methods, 63
setText method, 392
setting

button images, 174-178
text view scrolling options,

170-171
settings (application

preferences), 415

design considerations,
415-417

file system storage
implementation, 436-457

iPad file system sandbox,
433-436

reading and writing, 418-423
Settings application, 416-417

application preferences,
424-433

Schema Reference, 428
Settings Bundle, 416,

427-431
Settings Bundle, 416, 427-431
setTitle:forState instance

method, 204
setToRecipients method, 574
setValuesFromPreferences

method, 432
shake gesture

testing with iPhone
Simulator, 51

recognizer, 505-506
Shark profiler, 622

attaching to an application,
622-625

interpretation of results,
626-629

Shark User Guide, 629
shouldAutorotateToInterface-

Orientation method, 462
showDate: method, 293, 297
showFromRect:inView:animated

method, 321
showInView: method, 319-321
showModal method, 330, 336
showNextCard method, 447
simple alerts, 246-248
SimpleSpin label, 469
Simulate Interface command

(File menu), 120, 471
simulation, user interfaces, 120
Simulator, testing applications,

152-153
single classes, 134
single-view applications, 341-342
singleton classes, 418
Singleton pattern, 418
singletons

definition, 58
UIAccelerometer, 511

Size Inspector, 220, 467
IB layout tool, 116-117
Size setting, 116
Tools menu command, 116

sizing controls, 220
sliders, 188, 197

connection to actions, 200
connection to outlets, 199
range attributes, 198-199
UISlider class, 98

smart groups, 34
snapshots, 39-40
Snapshots command (File

menu), 40
Snow Leopard, launching

Mac OS X Installer, 13
social networks, application

promotion, 651-653
Software Development Kit

(SDK), 8
soundID variable, 257
soundRecorder (audio

recorder), 541
sounds, alerts, 255-258
Split View-based Application

template, 382-383, 396
Detail view controller,

409-410
implementation, 397
navigation events, 408-409
project setup, 398-401
providing data to, 401-405
root view table controller,

406-408
SplitViewController object,

398-399
Stallman, Richard, Debugging

with GDB: The GNU Source-Level
Debugger, 629

standard program (Developer
Program), 9

standardUserDefaults
method, 422

startAnimating method, 197
startAnimating property, 197
starting animation, 197
state changing, 174
State Configuration menu, 174
State pop-up menu, 223

statements
if-then-else, 73
Objective-C, 59
switch, 73

status bar display, modifying
project properties, 46

Step Into icon (debugger), 609
Step Out icon (debugger), 610
Step Over icon (debugger), 609
stop method, 539
stopAnimating property, 197
stopping animation, 197
storage of data, iPad file system

sandbox, 433
file paths, 435-436
implementation, 436-457
storage locations, 434-435

Store Kit framework, 88
stretchableImageWithLeftCap-

Width:topCapHeight instance
method, 177

String Programming Guide for
Cocoa, 602

stringByAppendingPath-
Component method, 435

stringFromDate: method, 296
strings, 94

actionMessage, 310
Date Format, 297
detailURLString, 230
format specifiers, 602
imageURLString, 230
myHTML, 215

structure, MVC (Model-View-
Controller)

application design, 134-135
controllers, 136-138
data models, 138-139
View-Based Application

template. See View-Based
Application template

views, 136
style

modal views, 326-328
table views, 396

Style drop-down menu, 220
subclasses

definition, 58
UIViewController, 343

678

settings (application preferences)

How can we make this index more useful? Email us at indexes@samspublishing.com

tilt, ColorTilt application

679

submitting applications for
approval, 642-643

binary upload, 648-649
profile preparation, 643-648

summary view, multiview
applications, 371-374

superclasses, 58
supported codecs, 535
swapping views, rotatable

/resizable interfaces, 465
interface creation, 481-482
project setup, 479-480
view-swapping logic, 483-485

swipe gesture recognizer,
499-500

swipeView outlet, 496
switch methods, multiview

applications, 350-351
switch objects, 98
switch statements, 73, 391
switches, 212, 222-223
Sympathy Image group

(ReturnMe preferences), 428
System Configuration

framework, 89
System framework, 89
System Sound Services C-style

interface, 255-256
System Sound Services

method, 241
System Usage instrument, 621

T
tab bar controllers, multiview

applications, 357-360
tab bars, multiview applications

implementation, 354-355
project setup, 355-357
tab bar controllers, 357-360

tabBarController outlet, 358
table view controllers, 387-388
table views, 380

appearance, 396
implementation, 384
plain versus grouped,

380-381

project setup, 384-388
providing data to, 389-394
reacting to a row touch event,

394-395
tableView:cellForRowAtIndexPath

method, 391
tableView:heightForRowAtIndex-

Path method, 408
tableView:titleForHeaderInSection

method, 391, 406
tap gesture recognizer, 497-499
tapView outlet, 496
targets, 580
technologies, 25

Apple Developer Suite, 25-26
Interface Builder, 107-130
iPhone Simulator, 47-52
Xcode, 29-47

Cocoa Touch, 26
core classes, 91-94
data type classes, 94-97
functionality, 84-85
interface classes, 97-99
origins, 85

MVC structure, 26, 133
application design,

134-135
controllers, 136-138
data models, 138-139
View-Based Application

template, 139-153
views, 136

Objective-C, 26, 55-60
decision-making, 72-76
declaration of variables,

67-69
file structure, 60-66
memory management,

76-78
messaging syntax, 70-72
object allocation and

initialization, 69-70
technology layers (iPhone OS), 85

Cocoa Touch, 86-87
Core OS, 89
Core Services, 88-89
Media, 87-88

templates, Xcode, 31. See
also View-Based Application
template

testing applications
development provisioning

profile, 24-25
FlowerWeb application,

232, 238
iPhone Simulator, 47-52, 120
rotation, 467
View-Based Application

template, 152-153
text

Greeked, 167
input process, 159

application building,
183-184

buttons, 172-179
hiding keyboard, 179-182
implementation, 159-160
object release, 183
preparation of outlets and

actions, 161-162
project setup, 160-161
text fields, 162-167
text views, 167-172
view controller logic,

182-183
input traits, 165
placeholder, 164

text fields, 158, 162
access, 254-255
attributes, 163-165
connection to outlets,

166-167
instance variables, 252
keyboard customization,

165-166
subviews, 253-254
UITextField/UITextView

class, 98
text views, 167

connection to outlets,
171-172

editing attributes, 168-171
theScroller outlet, 237
tilt, ColorTilt application, 518-520

timeIntervalSinceDate: method,
289, 297

timestamp, UIAcceleration
object, 513

titleForSegmentAtIndex instance
method, 213

tmp directory, 435
toggleAnimation method,

191, 204
toggleFlowerDetail method, 217,

223, 228
toolbars

buttons, 262
controls, multiview

applications, 347-354
popovers, 264

additional view controller
classes, 266

application logic, 276-279
application view, 273
implementation

overview, 265
preparing application view,

270-276
preparing content,

267-269
project setup, 265

tools, 25
Apple Developer Suite, 25-26

Interface Builder, 107-130
iPhone Simulator, 47-52
Xcode, 29-47

Cocoa Touch, 26, 83
core classes, 91-94
data type classes, 94-97
functionality, 84-85
interface classes, 97-99
origins, 85

debugging, 601, 615-621
iPhone OS, 12-13
MVC structure, 26, 133

application design,
134-135

controllers, 136-138
data models, 138-139
View-Based Application

template, 139-153
views, 136

Objective-C, 26, 55-60
decision-making, 72-76

declaration of variables,
67-69

file structure, 60-66
memory management,

76-78
messaging syntax, 70-72
object allocation and

initialization, 69-70
universal applications,

597-598
Tools menu commands

Attributes Inspector,
117, 163

Connections Inspector, 178
Identity Inspector, 129
Library, 112, 162
Size Inspector, 116

tracing applications, 615-621
traits, text input, 165
transform property, 483
transitions, modal views, 326-328
transitionStyle outlet, 333
Tree view, Shark profiler

results, 626
tutorials, user interface

controls, 185

U
UIAcceleration object, 512
UIAccelerometer singleton, 511
UIAccelerometerDelegate

implementation, 515-516,
519-520

UIAccelerometerDelegate
protocol, 511, 513, 518

UIActionSheet class, 287-288
UIActionSheetDelegate protocol,

288, 317
UIAlertView class, generating

alerts, 245
adding fields to alerts,

251-255
multi-option alerts, 248-251
simple alerts, 246-248

UIAlertView method, 241
UIApplication class, 92
UIBarButton object, 347
UIBarButton toolbar button, 262
UIBarButtonItem object, 264

UIButton class, 97, 226
UIControl class, 93
UIDatePicker object, 99, 285

adding Date Pickers, 291-294
implementation, 289
project setup, 290-291

UIDevice class, 588
UIEvent class, 490
UIImage, 195
UIImagePickerController object,

529, 544
UIImageView object, 188,

190-192, 363
UIKit framework, 86
UILabel class, 97, 200
UIModalTransitionStyleCover-

Vertical transition, 328
UIModalTransitionStyleCross-

Dissolve transition, 328
UIModalTransitionStyleFlip-

Horizontal transition, 328
UIModalTransitionStylePartialCurl

transition, 328
UINavigationBar object, 398
UINavigationController object, 398
UINavigationItem object, 399
UIPanGestureRecognizer

class, 490
UIPicker class, 99
UIPickerView object, 285

implementation, 299
project setup, 300-301
UIPickerViewDataSource

protocol, 286, 300-303
UIPickerViewDelegate

protocol, 287, 300-303,
311-315

UIPickerViewDataSource protocol,
286, 300-303

UIPickerViewDelegate protocol,
287, 300-303, 311-315

UIPinchGestureRecognizer
class, 490

UIPopoverController class, 99,
262-264, 531

UIPopverControllerDelegate
protocol, 264

UIPrerenderedIcon key, 634
UIPressGestureRecognizer

class, 490

680

timeIntervalSinceDate: method

How can we make this index more useful? Email us at indexes@samspublishing.com

view controllers

681

UIResponder class, 93
UIRotationGestureRecognizer

class, 490
UIScrollView, 215, 233
UISegmentedControl class,

98, 213
UISlider class, 98, 188, 197
UISwipeGestureRecognizer

class, 490
UISwitch class, 98, 212, 222, 264
UITabBar object, 354
UITabBarController object,

354, 357
UITabBarControllerDelegate

protocol, 356
UITable object, 380, 383

implementation, 384
project setup, 384-388

UITableViewController object, 380
UITableViewDataSource protocol,

389-390
UITableViewDelegate

protocol, 389
UITapGestureRecognizer

class, 490
UITextField class, 98
UITextView class, 98, 167
UIToolbar object, 264, 273, 347
UIView class, 92, 213
UIViewController class, 94, 263,

342-343
UIWebView, 214, 224
unarchiveObjectWithFile

method, 456
unique device identifiers, 14
universal applications, 579-580

GenericViewController view
controller class, 590-596

tools, 597-598
Window-based template,

581-590
updateRightWrongCounters

method, 449
updates, applications, 653
updateTotal method, 371
upgrading iPhone target,

597-598
URLs, 96-97

user defaults. See preferences
user input/output, 187

buttons, 158, 226-227
image views, 188, 192

animation, 195-197
animation resources, 190
default image, 193
implementation, 189-190
making copies, 194
outlets and actions,

190-195
project setup, 190

labels, 159
scrolling views, 215, 232-238
segmented controls,

213, 218
appearance selection, 220
configuration of

segments, 219
connection to actions,

221-222
connection to outlets, 221
sizing controls, 220

sliders, 188, 197-200
switches, 212, 222-223
text, 159

application building,
183-184

buttons, 172-179
hiding keyboard, 179-182
implementation, 159-160
object release, 183
preparation of outlets and

actions, 161-162
project setup, 160-161
text fields, 162-167
text views, 167-172
view controller logic,

182-183
text fields, 158
view controller logic

implementation, 228-232
views, 158
web views, 213-215, 224-225

user interfaces
connection to code, 122-129
creating with Interface

Builder, 112-117

customization, 117-120
simulation, 120

user notifications, 241
alert methods, 241

connecting to outlets and
actions, 243-245

creating notification
project interface, 243

prepping project files,
242-243

alert sounds
playing sounds, 256-258
System Sound Services

C-style interface,
255-256

generating alerts, 245
multi-option alerts,

248-255
simple alerts, 246-248

movie playback, 537
user preferences. See preferences
userOutput outlet, 242

V
valueForProperty: method, 552
variables

alertDialog, 246-247
declaration, 67-69
definition, 58
GNU Debugger, 608-609
sender, 180
soundID, 257

velocity property, 500
versions, testing with iPhone

Simulator, 51
view controller logic

action sheets, 319
Date Pickers, 295-299
FlowerWeb application,

228-232
implementation, 203-206
multiview applications, 360
text entry, 182-183
using popovers with

toolbars, 266
view controllers

card, 444-445

682

view controllers

ContentViewController, 333
logic implementation,

151-152
modalContent, 337
multiview applications,

343-347
MVC structure, 136-138
outlets and actions, 144-145
popovers, 270-276
UIViewController class, 94
universal applications,

585-596
view icon (XIB files), 110
view switching, multiview

applications, 350-351
View-Based Application

template, 139
creating views, 145-150
implementation, 139-140
object release, 152
project setup, 140-144
testing application, 152-153
view controllers

logic, 151-152
outlets and actions,

144-145
view-rotation logic, 483-484
view-swapping logic, 483-485
viewDidLoad method, 176, 195,

268, 305, 423, 605
views, 158

connection to outlets,
171-172

Debugger (GNU Debugger),
613-615

definition, 111
editing attributes, 168-169
image views, 188
modal. See modal views
multiview applications. See

multiview applications
MVC structure, 135-136
pickers. See picker views
popovers, 261-262, 268
scrolling, 170-171, 232-238
Split View-based Application

template. See Split View-
based Application template

swapping, rotatable/resizable
interfaces, 465, 479-485

table views. See table views
UIView class, 92
View-Based Application

template, 145-152
web views. See web views

viewWillDisappear method, 422
virtual keys, 160
void return type (methods), 63
volume calculation logic, 370-374
volume view (multiview

applications)
creating the view, 368-370
outlets and actions, 367-370
volume calculation logic,

370-371

W
warnings, 44-45
watchpoints, GNU Debugger,

612-613
web views, 123, 213

FlowerWeb application,
224-225

loading remote content,
214-215

supported content types, 214
websites

Apple, 9
application promotion,

651-653
WiFi supplementation, 7
WiFi technology, 560
Window menu commands,

Document, 192
window objects, UIWindow

class, 92
Window-based templates

(universal applications), 581
adding view controllers to

application delegates,
585-586

detecting and displaying
active device, 588-590

device-specific view con-
trollers and views, 584

instantiating view controllers,
586-588

plist files, 582-583
project preparation, 584

windows, 93
writing application preferences,

418-423

X–Y–Z
Xcode, 29

build configurations, 604
building applications, 42-45
debugging

GNU Debugger, 603-615
Instruments tool, 615-621
NSLog function, 602-603
Shark profiler, 622-629

documentation system
Cocoa Touch, 83-85,

91-99
exploration of frameworks,

100-103
editing, 36-42
editor, 38-39
gutter, 605
launching IB from, 122
modifying project properties,

45-47
navigating, 36-42
project management

adding existing
resources, 35

adding new code files, 34
creating a new project,

31-32
project groups, 32-34

removal of files and
resources, 35-36

Xcode 3 Unleashed, 79, 629
Xcode Debugging Guide, 629
Xcode menu commands,

Preferences, 101
XIB files (Interface Builder), 108

Document icons, 111-112
Document window, 109-111
universal applications,

594-595
View-Based Application

template, 142-144

	Table of Contents
	Introduction
	HOUR 11: Presenting Options with Popovers and Toolbars
	Understanding Popovers and Toolbars
	Using Popovers with Toolbars
	Further Exploration
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

