Julie C. Meloni
- HTMLS

Coverage

SamsTeach Yourself

HTML, CSS
and JavaScript

Julie C. Meloni

Sams Teach Yourself

HTML, CSS
and -’avascript

ans

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself HTML, CSS, and JavaScript All in One

Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33332-3

ISBN-10: 0-672-33332-5

Library of Congress Cataloging-in-Publication data is on file.
First Printing November 2011

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearson.com

Acquisitions Editor
Mark Taber
Development Editor
Songlin Qiu
Managing Editor
Sandra Schroeder
Project Editor
Seth Kerney

Copy Editor

Mike Henry
Indexer

Ken Johnson
Proofreader

Jovana San Nicolas-
Shirley

Technical Editor
Phil Ballard

Publishing Coordinator

Cindy Teeters

Book Designer
Gary Adair

Compositor
Trina Wurst

Contents at a Glance

PART I: Getting Started on the Web
CHAPTER 1: Publishing Web Content

CHAPTER 2: Understanding HTML and XHTML
Connections

CHAPTER 3: Understanding Cascading Style
Sheets

CHAPTER 4: Understanding JavaScript

PART Il: Building Blocks of Practical
Web Design

CHAPTER 5: Working with Fonts, Text Blocks, and
Lists

CHAPTER 6: Using Tables to Display Information
CHAPTER 7: Using External and Internal Links

CHAPTER 8: Working with Colors, Images, and
Multimedia

PART lil: Advanced Web Page Design
with CSS
CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating

CHAPTER 10: Understanding the CSS Box Model
and Positioning

CHAPTER 11: Using CSS to Do More with Lists,
Text, and Navigation

CHAPTER 12: Creating Fixed or Liquid Layouts

PART IV: Getting Started with Dynamic
Web Sites
CHAPTER 13: Understanding Dynamic Websites

CHAPTER 14: Getting Started with JavaScript
Programming

CHAPTER 15: Working with the Document Object
Model (DOM)

CHAPTER 16: Using JavaScript Variables, Strings,

and Arrays

CHAPTER 17: Using JavaScript Functions and
Objects

CHAPTER 18: Controlling Flow with Conditions
and Loops

CHAPTER 19: Responding to Events
CHAPTER 20: Using Windows and Frames

PART V: Advanced JavaScript
Programming

CHAPTER 21: Using Unobtrusive JavaScript

CHAPTER 22: Using Third-Party Libraries

CHAPTER 23: Greasemonkey: Enhancing the Web
with JavaScript

CHAPTER 24: AJAX: Remote Scripting

PART Vi: Advanced Website
Functionality and Management

CHAPTER 25: Creating Print-Friendly Web Pages

CHAPTER 26: Working with Web-Based Forms

CHAPTER 27: Organizing and Managing a
Website

CHAPTER 28: Helping People Find Your Web
Pages

Index

Table of Contents

CHAPTER 1: Publishing Web Content

A Brief History of HTML and the World
Wide Web

Creating Web Content

Understanding Web Content Delivery
Selecting a Web Hosting Provider

Testing with Multiple Web Browsers
Creating a Sample File

Using FTP to Transfer Files

Distributing Content Without a Web Server
Tips for Testing Web Content

CHAPTER 2: Understanding HTML and
XHTML Connections

Getting Prepared
Getting Started with a Simple Web Page
HTML Tags Every XHTML Web Page Must Have

Organizing a Page with Paragraphs and Line
Breaks

Organizing Your Content with Headings
Validating Your Web Content

© 00O WN K-

10
18
19

25
25
26
29

31
34
36

The Scoop on HTML, XML, XHTML, and HTML5 .. 38

CHAPTER 3: Understanding Cascading Style

Sheets
How CSS Works
A Basic Style Sheet
A CSS Style Primer
Using Style Classes
Using Style IDs
Internal Style Sheets and Inline Styles

CHAPTER 4: Understanding JavaScript
Learning Web Scripting Basics

How JavaScript Fits into a Web Page
Exploring JavaScript’s Capabilities
Displaying Time with JavaScript
Beginning the Script

Adding JavaScript Statements

Creating Output

Adding the Script to a Web Page

Testing the Script

45
46
47
52
57
59
59

65
65
67
70
71
71
72
73
73
74

CHAPTER 5: Working with Fonts, Text Blocks,

and Lists
Boldface, Italics, and Special Text Formatting
Tweaking the Font
Working with Special Characters
Aligning Text on a Page
The Three Types of HTML Lists
Placing Lists Within Lists

CHAPTER 6: Using Tables to Display
Information

Creating a Simple Table

Controlling Table Sizes

Alignment and Spanning Within Tables
Page Layout with Tables

CHAPTER 7: Using External and Internal
Links

Using Web Addresses

Linking Within a Page Using Anchors
Linking Between Your Own Web Content
Linking to External Web Content

Linking to an Email Address

Opening a Link in a New Browser Window
Using CSS to Style Hyperlinks

CHAPTER 8: Working with Colors,
Images, and Multimedia

Best Practices for Choosing Colors
Understanding Web Colors
Using Hexadecimal Values for Colors

Using CSS to Set Background, Text, and
Border Colors

Choosing Graphics Software

The Least You Need to Know About Graphics
Preparing Photographic Images

Creating Banners and Buttons

Reducing the Number of Colors in an Image
Working with Transparent Images

Creating Tiled Backgrounds

Creating Animated Web Graphics

Placing Images on a Web Page

Describing Images with Text

Specifying Image Height and Width
Aligning Images

81
82
85
89
92
95
97

107
107
110
113
116

123
123
126
129
131
132
134
134

141
141
143
145

146
148
149
150
155
157
158
159
160
161
163
165
165

Turning Images into Links 169
Using Background Images 171
Using Imagemaps 173

Integrating Multimedia into Your Website 178

CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating 191

Using Margins 192
Padding Elements 199
Keeping Everything Aligned 203
Understanding the Float Property 204
CHAPTER 10: Understanding the CSS Box
Model and Positioning 209
The CSS Box Model 209
The Whole Scoop on Positioning 213
Controlling the Way Things Stack Up 217
Managing the Flow of Text 220

CHAPTER 11: Using CSS to Do More with
Lists, Text, and Navigation 225

HTML List Refresher 226
How the CSS Box Model Affects Lists 226
Placing List Item Indicators 229
Creating Image Maps with List Items and

CSss 231
How Navigation Lists Differ from Regular

Lists 235
Creating Vertical Navigation with CSS 236

Creating Horizontal Navigation with CSS 245

CHAPTER 12: Creating Fixed or Liquid

Layouts 253
Understanding Fixed Layouts 254
Understanding Liquid Layouts 255
Creating a Fixed/Liquid Hybrid Layout 258
CHAPTER 13: Understanding Dynamic

Websites 273
Understanding the Different Types of Scripting273
Including JavaScript in HTML 274
Displaying Random Content 276

Understanding the Document Object Model . 280
Changing Images Based on User Interaction. 281

CHAPTER 14: Getting Started with JavaScript

Programming 287
Basic Concepts 287
JavaScript Syntax Rules 291
Using Comments 293
Best Practices for JavaScript 293
CHAPTER 15: Working with the Document

Object Model (DOM) 299
Understanding the Document Object
Model (DOM) 299
Using window Objects 300
Working with the document Object 300
Accessing Browser History 303
Working with the location Object 305
More About the DOM Structure 306
Working with DOM Nodes 309
Creating Positionable Elements (Layers) 311
Hiding and Showing Objects 316
Modifying Text Within a Page 317
Adding Text to a Page 319
CHAPTER 16: Using JavaScript Variables,

Strings, and Arrays 325
Using Variables 325
Understanding Expressions and Operators ... 328
Data Types in JavaScript 330
Converting Between Data Types 331
Using String Objects 332
Working with Substrings 335
Using Numeric Arrays 337
Using String Arrays 338
Sorting a Numeric Array 340
CHAPTER 17: Using JavaScript Functions

and Objects 347
Using Functions 347
Introducing Objects 352
Using Objects to Simplify Scripting 354
Extending Built-in Objects 356
Using the Math Object 360
Working with Math Functions 361
Using the with Keyword 363

Working with Dates 364

CHAPTER 18: Controlling Flow with
Conditions and Loops

The if Statement

Using Shorthand Conditional Expressions
Testing Multiple Conditions with if and else
Using Multiple Conditions with switch
Using for Loops

Using while Loops

Using do...while Loops

Working with Loops

Looping Through Object Properties

CHAPTER 19: Responding to Events
Understanding Event Handlers

Using Mouse Events

Using Keyboard Events

Using the onLoad and onUnload Events
Using onclick to Change <div> Appearance

CHAPTER 20: Using Windows and Frames
Controlling Windows with Objects

Moving and Resizing Windows

Using Timeouts

Displaying Dialog Boxes

Working with Frames

Building a Frameset

Linking Between Frames and Windows
Using Inline Frames

CHAPTER 21: Using Unobtrusive
JavaScript

Scripting Best Practices

Reading Browser Information
Cross-Browser Scripting

Supporting Non-JavaScript Browsers

CHAPTER 22: Using Third-Party Libraries
Using Third-Party Libraries
Other Libraries

CHAPTER 23: Greasemonkey: Enhancing
the Web with JavaScript

Introducing Greasemonkey
Working with User Scripts
Creating Your Own User Scripts

369
369
372
373
375
377
379
380
380
382

389
389
394
397
399
400

409
409
413
414
417
418
420
423
426

433
433
440
443
445

453
453
456

463
463
466
468

CHAPTER 24: AJAX: Remote Scripting
Introducing AJAX

Using XMLHttpRequest

Creating a Simple AJAX Library

Creating an AJAX Quiz Using the Library
Debugging AJAX Applications

CHAPTER 25: Creating Print-Friendly
Web Pages

What Makes a Page Print-Friendly?
Applying a Media-Specific Style Sheet
Designing a Style Sheet for Print Pages
Viewing a Web Page in Print Preview

CHAPTER 26: Working with Web-Based
Forms

How HTML Forms Work

Creating a Form

Accepting Text Input

Naming Each Piece of Form Data
Exploring Form Input Controls

Submitting Form Data

Accessing Form Elements with JavaScript
Displaying Data from a Form

Sending Form Results by Email

CHAPTER 27: Organizing and Managing
a Website

When One Page Is Enough
Organizing a Simple Site
Organizing a Larger Site
Writing Maintainable Code
Thinking About Version Control

CHAPTER 28: Helping People Find Your
Web Pages

Publicizing Your Website

Listing Your Pages with the Major
Search Sites

Providing Hints for Search Engines

Additional Tips for Search Engine
Optimization

INDEX

479
479
483
485
487
491

499
500
503
505
508

513
513
514
519
519
521
527
528
528
530

537
538
540
543
546
548

553

553

555
556

562

567

About the Author

Julie C. Meloni is the Lead Technologist and Architect in the Online Library Environment at the
University of Virginia. Before coming to the library, she worked for more than 15 years in web appli-
cation development for various corporations large and small in Silicon Valley. She has written sev-
eral books and articles on Web-based programming languages and database topics, including the
bestselling Sams Teach Yourself PHR, MySQL, and Apache All in One.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we're doing right, what we could do better, what areas you'd like to see
us publish in, and any other words of wisdom you're willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and editors
who worked on the book.

Email: feedback@samspublishing

Mail: Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

CHAPTER 3

Understanding Cascading Style
Sheets

In the previous chapter, you learned the basics of HTML and XHTML,
including how to set up a skeletal HTML template for all your web con-
tent. In this chapter, you will learn how to fine-tune the display of your
web content using Cascading Style Sheets (CSS).

The concept behind style sheets is simple: You create a style sheet docu-
ment that specifies the fonts, colors, spacing, and other characteristics that
establish a unique look for a website. You then link every page that should
have that look to the style sheet, instead of specifying all those styles
repeatedly in each separate document. Therefore, when you decide to

change your official corporate typeface or color scheme, you can modify all

your web pages at once just by changing one or two entries in your style
sheet rather than changing them in all of your static web files. So, a style
sheet is a grouping of formatting instructions that controls the appearance
of several HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics,
including exacting typeface controls, letter and line spacing, and margins
and page borders, just to name a few. Style sheets also enable sizes and
other measurements to be specified in familiar units, such as inches, mil-
limeters, points, and picas. You can also use style sheets to precisely posi-
tion graphics and text anywhere on a web page, either at specific coordi-
nates or relative to other items on the page.

In short, style sheets bring a sophisticated level of display to the Web. And
they do so—you’ll pardon the expression—with style.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

» How to create a basic style
sheet

» How to use style classes
» How to use style IDs

» How to construct internal
style sheets and inline
styles

If you have three or more web
pages that share (or should
share) similar formatting and
fonts, you might want to create
a style sheet for them as you
read this chapter. Even if you
choose not to create a com-
plete style sheet, you'll find it
helpful to apply styles to individ-
ual HTML elements directly
within a web page.

46

You might notice that | use the
term element a fair amount in
this chapter (and | will for the
rest of the book, for that mat-
ter). An element is simply a
piece of information (content) in
a web page, such as an image,
a paragraph, or a link. Tags are
used to code elements, and
you can think of an element as
a tag complete with descriptive
information (attributes, text,
images, and so on) within the
tag.

Understanding Cascading Style Sheets

How CSS Works

The technology behind style sheets is called CSS, which stands for
Cascading Style Sheets. CSS is a language that defines style constructs such
as fonts, colors, and positioning, which are used to describe how informa-
tion on a web page is formatted and displayed. CSS styles can be stored
directly in an HTML web page or in a separate style sheet file. Either way,
style sheets contain style rules that apply styles to elements of a given
type. When used externally, style sheet rules are placed in an external style
sheet document with the file extension .css.

A style rule is a formatting instruction that can be applied to an element on
a web page, such as a paragraph of text or a link. Style rules consist of one
or more style properties and their associated values. An internal style sheet is
placed directly within a web page, whereas an external style sheet exists in a
separate document and is simply linked to a web page via a special tag—
more on this tag in a moment.

The cascading part of the name CSS refers to the manner in which style
sheet rules are applied to elements in an HTML document. More specifical-
ly, styles in a CSS style sheet form a hierarchy in which more specific styles
override more general styles. It is the responsibility of CSS to determine
the precedence of style rules according to this hierarchy, which establishes
a cascading effect. If that sounds a bit confusing, just think of the cascading
mechanism in CSS as being similar to genetic inheritance, in which general
traits are passed from parents to a child, but more specific traits are entire-
ly unique to the child. Base style rules are applied throughout a style sheet
but can be overridden by more specific style rules.

A quick example should clear things up. Take a look at the following code
to see whether you can tell what's going on with the color of the text:
<div style="color:green">
This text is green.
<p style="color:blue">This text is blue.</p>
<p>This text is still green.</p>
</div>

In the previous example, the color green is applied to the <div> tag via the
color style property. Therefore, the text in the <div> tag is colored green.
Because both <p> tags are children of the <div> tag, the green text style

A Basic Style Sheet

cascades down to them. However, the first <p> tag overrides the color style
and changes it to blue. The end result is that the first line (not surrounded
by a paragraph tag) is green, the first official paragraph is blue, and the
second official paragraph retains the cascaded green color.

If you made it through that description on your own, congratulations. If
you understood it after I explained it in the text, congratulations to you as
well. Understanding CSS isn’t like understanding rocket science, although
many people will try to convince you that it is (so that they can charge
high consultation fees, most likely!).

Like many web technologies, CSS has evolved over the years. The original
version of CSS, known as Cascading Style Sheets Level 1 (CSS1) was created
in 1996. The later CSS 2 standard was created in 1998, and CSS 2 is still in
use today. All modern web browsers support CSS 2, and you can safely use
CSS 2 style sheets without too much concern. So when I talk about CSS
throughout the book, I'm referring to CSS 2.

You'll find a complete reference guide to CSS at http:/ /www.w3.org/
Style/CSS/. The rest of this chapter explains how to put CSS to good use.

A Basic Style Sheet

Despite their intimidating power, style sheets can be simple to create.
Consider the web pages shown in Figure 3.1 and Figure 3.2. These pages
share several visual properties that could be put into a common style sheet:

» They use a large, bold Verdana font for the headings and a normal
size and weight Verdana font for the body text.

» They use an image named logo.gif floating within the content and on
the right side of the page.

» All text is black except for subheadings, which are purple.
» They have margins on the left side and at the top.
» There is vertical space between lines of text.

» The footnotes are centered and in small print.

47

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/

48 CHAPTER 3 Understanding Cascading Style Sheets

FIGURE 3.1
This page uses a style sheet to @ About BAWSI - Mozilla Firefox (= |

fine-tune the appearance and
spacing of the text and images.

File Edit View History Bookmarks Tools Help

v e file:///C:/Users/JM/Documents/sams_htmlc: i html 3> -
EX S - |

About BAWSI

The Bay Area Women's Sports Initiative (BAWSI) is 3 public benefit,
nonprofit corporation with a mission to create programs and
partnerships through which women athletes bring health, hope and
wholeness to our community. Founded in 2005 by Olympic and World
Cup soccer stars Brandi Chastain and Julie Foudy and Marlene
Bjornsrud, former general manager of the San Jose CyberRays
women's professional soccer team, BAWSI provides 3 meaningful
path for women athletes to become a more visible and valued part of
the Bay Area sports culture.

’ o 5
BAY AREA WOMEN'S SF INITIATIVE

WOMEN ATHLETES
The concept of BAWSI was inspired by one of the most spectacular M A K I N G A
achievements in women's sports history and born out of one its D I F F E R E N c E

biggest disappointments...

BAWSI's History

[continue reading]

Copyright ©® 2005-2009 BAWSI (www.bawsi.org). All rights reserved. Used with permission.

Done &

FIG URE 3 2 w About BAWSE: The History, continued - Mozilla Firefox LE‘EIE‘
This page uses the same style

Edit View Higtory Bookmarks Iools Help

sheet as the one shown in Figure 6 - e A | fle/Csers Do htmlcss/04/: el > -
3.1, thus maintaining a consistent
look and feel. About BAWSI: The History, continued

In the summer of 1999, the U.S. Women's National Soccer Team
defeated China to win the Women's World Cup in the Rose Bowl, the
climax of a three-week, 16-team tournament that remains history's
most successful women's sports event, drawing more than 600,000
spectators. It also represented the most visible achievement of the
women's sports movement in the United States since the 1972
enactment of federal Title IX, which required schools and colleges to
provide equal sports opportunities to girls and women. Athletes like
Brandi Chastain and Julie Foudy, who led that team to the World
Cup, spawned the Women's United Soccer Association in 2001, the WONIEN ATHLETES

world's first women's professional soccer league. But in 2003, after

only three seasons, the league folded, and team organizations MAKING A
created by some of the most accomplished athletes and DIFFERENCE

administrators in women's sports were disbanded.

The Bay Area Women's Sports Initiative - BAWSI - arose from the remnants of that effort, created to ensure
that the WUSA would not be the zenith of a short-lived golden age of women's sports but rather another step
toward women's full achievement in the sports world. BAWSI's programs began with a critical look at the unmet
needs in our community and tock shape after imagining a profound change for a better world.

[return to beginning]

Copyright © 2005-2009 BAWSI (www.bawsi.org). All rights reserved. Used with permission.

Dene Fd

Listing 3.1 shows the code for the style sheet specifying these properties.

A Basic Style Sheet 49

LISTING 3.1 A Single External Style Sheet

body {
font-size: 10pt;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
color: black;
line-height: 14pt;
padding-left: 5pt;
padding-right: 5pt;
padding-top: 5pt;

h1 {
font: 14pt Verdana, Geneva, Arial, Helvetica, sans-serif;
font-weight: bold;
line-height: 20pt;

p.subheader {
font-weight: bold;
color: #593d87;

img {
padding: 3pt;
float: right;

a {

text-decoration: none;

a:link, a:visited {
color: #8094d6;

a:hover, a:active {
color: #FF9933;

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

This might initially appear to be a lot of code, but if you look closely, you'll
see that there isn’t a lot of information on each line of code. It's fairly stan-
dard to place individual style rules on their own line to help make style

50

You can specify font sizes as
large as you like with style
sheets, although some display
devices and printers will not
correctly handle fonts larger
than 200 points.

Understanding Cascading Style Sheets

sheets more readable, but that is a personal preference; you could put all
the rules on one line as long as you kept using the semicolon to separate
each rule (more on that in a bit). Speaking of code readability, perhaps the
first thing you noticed about this style sheet code is that it doesn’t look
anything like normal HTML code. CSS uses a language all its own to speci-
fy style sheets.

Of course, the listing includes some familiar HTML tags. As you might
guess, body, h1, p, img, a, and div in the style sheet refer to the correspon-
ding tags in the HTML documents to which the style sheet will be applied.
The curly braces after each tag name contain the specifications for how all
content within that tag should appear.

In this case, the style sheet says that all body text should be rendered at a
size of 10 points, in the Verdana font (if possible), with the color black, and
14 points between lines. If the user does not have the Verdana font
installed, the list of fonts in the style sheet represents the order in which
the browser should search for fonts to use: Geneva, then Arial, and then
Helvetica. If the user has none of those fonts, the browser will use whatev-
er default sans serif font is available. Additionally, the page should have
left, right, and top margins of 5 points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a
size of 14 points. Moving on, any paragraph that uses only the <p> tag will
inherit all the styles indicated by the body element. However, if the <p> tag
uses a special class named subheader, the text will appear bold and in the
color #593d87 (a purple color).

The pt after each measurement in Listing 3.1 means points (there are 72
points in an inch). If you prefer, you can specify any style sheet measure-
ment in inches (in), centimeters (cm), pixels (px), or widths-of-a-letter-m,
which are called ems (em).

You might have noticed that each style rule in the listing ends with a semi-
colon (;). Semicolons are used to separate style rules from each other. It is
therefore customary to end each style rule with a semicolon, so you can
easily add another style rule after it.

To link this style sheet to HTML documents, include a <1ink /> tag in the
<head> section of each document. Listing 3.2 shows the HTML code for the
page shown in Figure 3.1. It contains the following <link /> tag:

<link rel="stylesheet" type="text/css" href="styles.css" />

A Basic Style Sheet

This assumes that the style sheet is stored under the name styles.css in
the same folder as the HTML document. As long as the web browser sup-
ports style sheets—and all modern browsers do support style sheets—the
properties specified in the style sheet will apply to the content in the page
without the need for any special HTML formatting code. This confirms the
ultimate goal of XHTML, which is to provide a separation between the
content in a web page and the specific formatting required to display that
content.

LISTING 3.2 HTML Code for the Page Shown in Figure 3.1

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>About BAWSI</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>
<h1>About BAWSI</h1>
<p>The Bay Area Women's
Sports Initiative (BAWSI) is a public benefit, nonprofit
corporation with a mission to create programs and partnerships
through which women athletes bring health, hope and wholeness to
our community. Founded in 2005 by Olympic and World Cup soccer
stars Brandi Chastain and Julie Foudy and Marlene Bjornsrud,
former general manager of the San Jose CyberRays women's
professional soccer team, BAWSI provides a meaningful path for
women athletes to become a more visible and valued part of the
Bay Area sports culture.</p>
<p class="subheader">BAWSI's History</p>
<p>The concept of BAWSI was inspired by one of the most
spectacular achievements in women's sports history and born out
of one its biggest disappointments... </p>
<p>[continue reading]</p>
<div class="footer">Copyright © 2005-2009 BAWSI
(www.bawsi.org). All rights reserved. Used with permission.</div>
</body>
</html>

The code in Listing 3.2 is interesting because it contains no formatting of
any kind. In other words, there is nothing in the HTML code that dictates
how the text and images are to be displayed—no colors, no fonts, nothing.
Yet the page is carefully formatted and rendered to the screen, thanks to
the link to the external style sheet, styles.css. The real benefit to this

51

In most web browsers, you can
view the style rules in a style
sheet by opening the .css file
and choosing Notepad or anoth-
er text editor as the helper
application to view the file. (To
determine the name of the .css
file, look at the HTML source of
any web page that links to it.)
To edit your own style sheets,
just use a text editor.

Although CSS is widely support-
ed in all modern web browsers,
it hasn’t always enjoyed such
wide support. Additionally, not
every browser’s support of CSS
is flawless. To find out about
how major browsers compare to
each other in terms of CSS sup-
port, take a look at this website:
http://www.quirksmode.org/css/
contents.html.

http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html

52

V¥ TRY IT YOURSELF

Create a Style Sheet
of Your Own

Understanding Cascading Style Sheets

approach is that you can easily create a site with multiple pages that main-
tains a consistent look and feel. And you have the benefit of isolating the
visual style of the page to a single document (the style sheet) so that one
change impacts all pages.

Starting from scratch, create a new text document called mystyles.css and
add some style rules for the following basic HTML tags: <body>, <p>, <h1>,
and <h2>. After your style sheet has been created, make a new HTML file that
contains these basic tags. Play around with different style rules and see for
yourself how simple it is to change entire blocks of text in paragraphs with
one simple change in a style sheet file.

A CSS Style Primer

You now have a basic knowledge of CSS style sheets and how they are
based on style rules that describe the appearance of information in web
pages. The next few sections of this chapter provide a quick overview of
some of the most important style properties and allow you to get started
using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors,
alignment, and margins, to name just a few. The style properties in CSS can
be generally grouped into two major categories:

» Layout properties—Consist of properties that affect the positioning
of elements on a web page, such as margins, padding, alignment,
and so on

» Formatting properties—Consist of properties that affect the visual
display of elements within a website, such as the font type, size,
color, and so on

Layout Properties

CSS layout properties are used to determine how content is placed on a
web page. One of the most important layout properties is the display
property, which describes how an element is displayed with respect to
other elements. There are four possible values for the display property:

A CSS Style Primer

» block—The element is displayed on a new line, as in a new paragraph.

» list-item—The element is displayed on a new line with a list-item
mark (bullet) next to it.

» inline—The element is displayed inline with the current paragraph.

» none—The element is not displayed; it is hidden.

It’s easier to understand the display property if you visualize each ele-
ment on a web page occupying a rectangular area when displayed—the
display property controls the manner in which this rectangular area is dis-
played. For example, the block value results in the element being placed
on a new line by itself, whereas the inline value places the element next
to the content just before it. The display property is one of the few style
properties that can be applied in most style rules. Following is an example
of how to set the display property:

display:block;

You control the size of the rectangular area for an element with the width and
height properties. Like many size-related CSS properties, width and height
property values can be specified in several different units of measurement:

» in—Inches
» cm—Centimeters
» mm—Millimeters
» px—Pixels

» pt—Points

You can mix and match units however you choose within a style sheet, but
it’s generally a good idea to be consistent across a set of similar style prop-
erties. For example, you might want to stick with points for font properties
or pixels for dimensions. Following is an example of setting the width of
an element using pixel units:

width: 200px;

Formatting Properties

CSS formatting properties are used to control the appearance of content on
a web page, as opposed to controlling the physical positioning of the con-
tent. One of the most popular formatting properties is the border property,

53

The display property relies on
a concept known as relative
positioning, which means that
elements are positioned rela-
tive to the location of other ele-
ments on a page. CSS also
supports absolute positioning,
which enables you to place an
element at an exact location on
a page independent of other
elements. You'll learn more
about both of these types of
positioning in Part Ill,
“Advanced Web Page Design
with CSS.”

54

Understanding Cascading Style Sheets

which is used to establish a visible boundary around an element with a

box or partial box. The following border properties provide a means of
describing the borders of an element:

>

>

border-width—The width of the border edge
border-color—The color of the border edge
border-style—The style of the border edge
border-left—The left side of the border
border-right—The right side of the border
border-top—The top of the border
border-bottom—The bottom of the border

border—All the border sides

The border-width property is used to establish the width of the border
edge. It is often expressed in pixels, as the following code demonstrates:

border-width:5px;

Not surprisingly, the border-color and border-style properties are used
to set the border color and style. Following is an example of how these two
properties are set:

border-color:blue;
border-style:dotted;

The border-style property can be set to any of the following values:

>

>

solid—A single-line border

double—A double-line border

dashed—A dashed border

dotted—A dotted border

groove—A border with a groove appearance
ridge—A border with a ridge appearance
inset—A border with an inset appearance
outset—A border with an outset appearance

none—No border

A CSS Style Primer

The default value of the border-style property is none, which is why ele-
ments don’t have a border unless you set the border property to a different
style. The most common border styles are the solid and double styles.

The border-1left, border-right, border-top, and border-bottom proper-
ties enable you to set the border for each side of an element individually. If
you want a border to appear the same on all four sides, you can use the
single border property by itself, which expects the following styles sepa-
rated by a space: border-width, border-style, and border-color.
Following is an example of using the border property to set a border that
consists of two (double) red lines that are a total of 10 pixels in width:

border:10px double red;

Whereas the color of an element’s border is set with the border-color
property, the color of the inner region of an element is set using the color
and background-color properties. The color property sets the color of text
in an element (foreground) and the background-color property sets the
color of the background behind the text. Following is an example of setting
both color properties to predefined colors:

color:black;
background-color:orange;

You can also assign custom colors to these properties by specifying the col-
ors in hexadecimal (covered in more detail in Chapter 8, “Working with
Colors, Images, and Multimedia”) or as RGB (Red, Green, Blue) decimal
values, just as you do in HTML:

background-color:#999999;
color:rgb(0,0,255);

You can also control the alignment and indentation of web page content
without too much trouble. This is accomplished with the text-align and
text-indent properties, as the following code demonstrates:

text-align:center;
text-indent:12px;

After you have an element properly aligned and indented, you might be
interested in setting its font. The following font properties are used to set
the various parameters associated with fonts:

» font-family—The family of the font

» font-size—The size of the font

55

The exception to the default
border-style of none is when
an image is placed within an
<a> tag so that it serves as a
linked image. In that case, a
solid border is automatically set
by default. That's why you often
see linked images with the
style border-style:none,
which turns off the automatic
border.

56

Understanding Cascading Style Sheets

» font-style—The style of the font (normal or italic)

» font-weight—The weight of the font (1ight, medium, bold, and so on)

The font-family property specifies a prioritized list of font family names.
A prioritized list is used instead of a single value to provide alternatives in
case a font isn’t available on a given system. The font-size property spec-
ifies the size of the font using a unit of measurement, usually points.
Finally, the font-style property sets the style of the font and the font-
weight property sets the weight of the font. Following is an example of set-
ting these font properties:

font-family: Arial, sans-serif;

font-size: 36pt;

font-style: italic;

font-weight: medium;

Now that you know a whole lot more about style properties and how they
work, refer back at Listing 3.1 and see whether it makes a bit more sense.
Here's a recap of the style properties used in that style sheet, which you
can use as a guide for understanding how it works:

» font—Lets you set many font properties at once. You can specify a
list of font names separated by commas; if the first is not available,
the next is tried, and so on. You can also include the words bold
and/or italic and a font size. Each of these font properties can be
specified separately with font-family, font-size, font-weight, and
font-style if you prefer.

» line-height—Also known in the publishing world as leading. This
sets the height of each line of text, usually in points.

» color—Sets the text color using the standard color names or hexa-
decimal color codes (see Chapter 8 for more details).

» text-decoration—Useful for turning link underlining off—simply
set it to none. The values of underline, italic, and line-through
are also supported. The application of styles to links is covered in
more detail in Chapter 7, “Using External and Internal Links.”

» text-align—Aligns text to the left, right, or center, along with
justifying the text with a value of justify.

» padding—Adds padding to the left, right, top, and bottom of an ele-
ment; this padding can be in measurement units or a percentage of the
page width. Use padding-left and padding-right if you want to add
padding to the left and right of the element independently. Use

Using Style Classes

padding-top or padding-bottom to add padding to the top or bottom of
the element, as appropriate. You'll learn more about these style proper-
ties in Chapters 9, “Working with Margins, Padding, Alignment, and
Floating,” and 10, “Understanding the CSS Box Model and Positioning.”

Using Style Classes

This is a “teach yourself” book, so you don’t have to go to a single class to
learn how to give your pages great style, although you do need to learn
what a style class is. Whenever you want some of the text on your pages to
look different from the other text, you can create what amounts to a custom-
built HTML tag. Each type of specially formatted text you define is called a
style class. A style class is a custom set of formatting specifications that can be
applied to any element in a web page.

Before showing you a style class, I need to take a quick step back and clarify
some CSS terminology. First off, a CSS style property is a specific style that
can be assigned a value, such as color or font-size. You associate a style
property and its respective value with elements on a web page by using a
selector. A selector is used to identify tags on a page to which you apply
styles. Following is an example of a selector, a property, and a value all
included in a basic style rule:

h1 { font: 36pt Courier; }

In this code, h1 is the selector, font is the style property, and 36pt Courier
is the value. The selector is important because it means that the font setting
will be applied to all h1 elements in the web page. But maybe you want to
differentiate between some of the h1 elements—what then? The answer lies
in style classes.

Suppose you want two different kinds of <h1> headings for use in your doc-
uments. You would create a style class for each one by putting the following
CSS code in a style sheet:

h1.silly { font: 36pt Comic Sans; }
h1.serious { font: 36pt Arial; }

Notice that these selectors include a period (.) after h1, followed by a
descriptive class name. To choose between the two style classes, use the
class attribute, like this:

<h1 class="silly">Marvin's Munchies Inc. </h1>
<p>Text about Marvin's Munchies goes here. </p>

57

58

You might have noticed a change
in the coding style when multiple
properties are included in a style
rule. For style rules with a single
style, you’ll commonly see the
property placed on the same line
as the rule, like this:

div.footer { font-size: 9pt; }

However, when a style rule con-
tains multiple style properties, it's
much easier to read and under-
stand the code if you list the
properties one-per-line, like this:
div.footer {

font-size:9pt;

font-style: italic;

line-height:12pt;

text-align: center;

padding-top: 30pt;

Understanding Cascading Style Sheets

Or you could use this:

<h1 class="serious">MMI Investor Information</hi>
<p>Text for business investors goes here.</p>

When referencing a style class in HTML code, simply specify the class
name in the class attribute of an element. In the previous example, the
words Marvin's Munchies Inc. would appear in a 36-point Comic Sans
font, assuming that you included a <link /> to the style sheet at the top of
the web page and assuming that the user has the Comic Sans font
installed. The words MMI Investor Information would appear in the 36-
point Arial font instead. You can see another example of classes in action in
Listing 3.2; look for the subheader <p> class and the footer <div> class.

What if you want to create a style class that could be applied to any ele-
ment, rather than just headings or some other particular tag? You can asso-
ciate a style class with the <div> tag, as in Listing 3.2, which is used to
enclose any text in a block that is somewhat similar to a paragraph of text;
the <div> tag is another useful container element.

You can essentially create your own custom HTML tag by using the div
selector followed by a period (.) followed by any style class name you
make up and any style specifications you choose. That tag can control any
number of font, spacing, and margin settings all at once. Wherever you
want to apply your custom tag in a page, use a <div> tag with the class
attribute followed by the class name you created.

For example, the style sheet in Listing 3.1 includes the following style class
specification:
div.footer {

font-size: 9pt;

font-style: italic;

line-height: 12pt;

text-align: center;

padding-top: 30pt;

This style class is applied in Listing 3.2 with the following tag:

<div class="footer">

Everything between that tag and the closing </div> tag in Listing 3.2
appears in 9-point, centered, italic text with 12-point vertical line spacing
and 30 points of padding at the top of the element.

What makes style classes so valuable is how they isolate style code from
web pages, effectively allowing you to focus your HTML code on the actual

Internal Style Sheets and Inline Styles

content in a page, not how it is going to appear on the screen. Then you can
focus on how the content is rendered to the screen by fine-tuning the style
sheet. You might be surprised by how a relatively small amount of code in a
style sheet can have significant effects across an entire website. This makes
your pages much easier to maintain and manipulate.

Using Style IDs

When you create custom style classes, you can use those classes as many
times as you would like—they are not unique. However, there will be
some instances when you want to have precise control over unique ele-
ments for layout or formatting purposes (or both). In such instances, look
to IDs instead of classes.

Astyle ID is a custom set of formatting specifications that can be applied
only to one element in a web page. You can use IDs across a set of pages
but only once per time within each page.

For example, suppose you have a title within the body of all your pages.
Each page has only one title, but all the pages themselves include one
instance of that title. Following is an example of a selector with an ID indi-
cated, plus a property and a value:

p#title {font: 24pt Verdana, Geneva, Arial, sans-serif}

Notice that this selector includes a hash mark, or pound sign (#), after p,
followed by a descriptive ID name. When referencing a style ID in HTML
code, simply specify the ID name in the id attribute of an element, like so:

<p id="title">Some Title Goes Here</p>

Everything between the opening and closing <p> tags will appear in 24-
point Verdana text—but only once on any given page. You will often see
style IDs used to define specific parts of a page for layout purposes, such
as a header area, footer area, main body area, and so on. These types of
areas in a page will appear only once per page, so using an ID rather than
a class is the appropriate choice.

Internal Style Sheets and Inline Styles

In some situations, you might want to specify styles that will be used in
only one web page, in which case you can enclose a style sheet between
<style> and </style> tags and include it directly in an HTML document.

59

60

 and are
dummy tags that do nothing in
and of themselves except speci-
fy a range of content to apply
any style attributes that you
add. The only difference
between <div> and is
that <div> is a block element
and therefore forces a line
break, whereas doesn’t.
Therefore, you should use
 to modify the style of
any portion of text that is to
appear in the middle of a sen-
tence or paragraph without any
line break.

Understanding Cascading Style Sheets

Style sheets used in this manner must appear in the <head> of an HTML
document. No <link /> tag is needed, and you cannot refer to that style
sheet from any other page (unless you copy it into the beginning of that
document, too). This kind of style sheet is known as an internal style sheet,
as you learned earlier in the chapter.

Listing 3.3 shows an example of how you might specify an internal style
sheet.

LISTING 3.3 A Web Page with an Internal Style Sheet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtm111/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Some Page</title>

<style type="text/css">
div.footer {
font-size: 9pt;
line-height: 12pt;
text-align: center;
}
</style>
</head>
<body>

<div class="footer">
Copyright 2009 Acme Products, Inc.
</div>
</body>
</html>

In the listing code, the div.footer style class is specified in an internal
style sheet that appears in the head of the page. The style class is now
available for use within the body of this page. And, in fact, it is used in the
body of the page to style the copyright notice.

Internal style sheets are handy if you want to create a style rule that is
used multiple times within a single page. However, in some instances you
might need to apply a unique style to one particular element. This calls for
an inline style rule, which allows you to specify a style for only a small
part of a page, such as an individual element. For example, you can create
and apply a style rule within a <p>, <div>, or tag via the style
attribute. This type of style is known as an inline style because it is speci-
fied right there in the middle of the HTML code.

Internal Style Sheets and Inline Styles

Here’s how a sample style attribute might look:

<p style="color:green">
This text is green, but this text is
red.
Back to green again, but...

</p>

<p>
...now the green is over, and we're back to the default color
for this page.

</p>

This code makes use of the tag to show how to apply the color
style property in an inline style rule. In fact, both the <p> tag and the
 tag in this example use the color property as an inline style.
What's important to understand is that the color:red style property over-
rides the color:green style property for the text appearing between the
 and tags. Then in the second paragraph, neither of the
color styles applies because it is a completely new paragraph that adheres
to the default color of the entire page.

@) W3C CSS Validator results for file://localhost/styles.css (CSS level 2.1) - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ 7/ (& o - hitps//jigsaw.vd.org/ css-validator/validstor

%(“” CSS Validation Service
v

W3C €SS Validator results for file:/flocalhost/styles.css (CSS level 2.1)

w

Jumpto: Validated CSS

W3C CSS Validator results for file://localhost/styles.css (CSS
level 2.1)

Congratulations! No Error Found.

This document validates as CSS level 211

To show your readers that you've taken the care fo create an interoperable Web page, you may
display this icon on any page that validates. Here is the XHTML you could use to add this icon to
your Web page:

-validator/check/referer™>

W3C ou!?

t] e1ght:31px’
.w3.org/cas-validator/images/vess"
>

Done #*

61

Validate Your Style
Sheets

Just as it is important to vali-
date your HTML or XHTML
markup, it is important to vali-
date your style sheet. A specific
validation tool for CSS can be
found at http://jigsaw.w3.org/
css-validator/. Just like the
validation tool discussed in
Chapter 2, “Understanding
HTML and XHTML Connections,”
you can point the tool to a web
address, upload a file, or paste
content into the form field pro-
vided. The ultimate goal is a
result such as that shown in
Figure 3.3: valid!

FIGURE 3.3

The W3C CSS Validator shows
there are no errors in the style
sheet contents of Listing 3.1.

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

62

Understanding Cascading Style Sheets

Summary

In this chapter, you learned that a style sheet can control the appearance of
many HTML pages at once. It can also give you extremely precise control
over the typography, spacing, and positioning of HTML elements. You also
discovered that by adding a style attribute to almost any HTML tag, you
can control the style of any part of an HTML page without referring to a
separate style sheet document.

You learned about three main approaches to including style sheets in your
website: a separate style sheet file with the extension .css that is linked to
in the <head> of your documents, a collection of style rules placed in the
head of the document within the <style> tag, and as rules placed directly
in an HTML tag via the style attribute.

Table 3.1 summarizes the tags discussed in this chapter. Refer to the CSS 2
style sheet standards at http:/ /www.w3c.org for details on what options
can be included after the <style> tag or the style attribute.

TABLE 3.1 HTML Tags and Attributes Covered in Chapter 3

Tag/Attributes Function

<style>...</style> Allows an internal style sheet to be included within a
document. Used between <head> and </head>.

Attribute

type="contenttype" The Internet content type. (Always "text/css" for a
CSS style sheet.)

<link /> Links to an external style sheet (or other document
type). Used in the <head> section of the document.

Attribute

href="url" The address of the style sheet.

type="contenttype" The Internet content type. (Always "text/css" for a
CSS style sheet.)

rel="stylesheet" The link type. (Always "stylesheet" for style
sheets.)
... Does nothing but provide a place to put style or

other attributes. (Similar to <div>...</div> but
does not cause a line break.)

Attribute

style="style" Includes inline style specifications. (Can be used in
, <div>, <body>, and most other HTML tags.)

http://www.w3c.org

Workshop 63

Q&A

Q. Say I link a style sheet to my page that says all text should be blue,
but there’s a tag in the page some-
where. Will that text display as blue or will it display as red?

A. Red. Local inline styles always take precedence over external style
sheets. Any style specifications you put between <style> and
</style> tags at the top of a page will also take precedence over
external style sheets (but not over inline styles later in the same page).
This is the cascading effect of style sheets that | mentioned earlier in
the chapter. You can think of cascading style effects as starting with an
external style sheet, which is overridden by an internal style sheet,
which is overridden by inline styles.

Q. Can I link more than one style sheet to a single page?

A. Sure. For example, you might have a sheet for formatting (text, fonts,
colors, and so on) and another one for layout (margins, padding, align-
ment, and so on)—just include a <link /> for both. Technically speak-
ing, the CSS standard requires web browsers to give the user the
option to choose between style sheets when multiple sheets are pre-
sented via multiple <1ink /> tags. However, in practice, all major web
browsers simply include every style sheet. The preferred technique for
linking in multiple style sheets involves using the special @import com-
mand. Following is an example of importing multiple style sheets with
@import:

@import url(stylesi.css);
@import url(styles2.css);

Similar to the <1ink /> tag, the @import command must be placed in
the head of a web page. You learn more about this handy little com-
mand in Chapter 25, “Creating Print-Friendly Web Pages,” when you
learn how to create a style sheet specifically for printing web pages.

Workshop

The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

64 CHAPTER 3 Understanding Cascading Style Sheets

Quiz

1. What code would you use to create a style sheet to specify 30-point
blue Arial headings and all other text in double-spaced, 10-point blue
Times Roman (or the default browser font)?

2. If you saved the style sheet you made for Question 1 as corporate.css,
how would you apply it to a web page named intro.html?

3. How many different ways are there to ensure style rules can be applied
to your content?

Answers

1. Your style sheet would include the following;:

h1 { font: 30pt blue Arial; }
body { font: 10pt blue; }

2. Put the following tag between the <head> and </head> tags of the
intro.html document:

<link rel="stylesheet" type="text/css" href="corporate.css" />

3. Three: externally, internally, and inline.

Exercises

» Using the style sheet you created earlier in this chapter, add some style
classes to your style sheet. To see the fruits of your labor, apply those
classes to the HTML page you created as well. Use classes with your
<h1> and <p> tags to get the feel for things.

» Develop a standard style sheet for your website and link it into all your
pages. (Use internal style sheets and/or inline styles for pages that
need to deviate from it.) If you work for a corporation, chances are it
has already developed font and style specifications for printed materi-
als. Get a copy of those specifications and follow them for company
web pages, too.

» Be sure to explore the official style sheet specs at http://www.w3.org/
Style/CSS/ and try some of the more esoteric style properties not cov-
ered in this chapter.

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/

Symbols

/ (forward slashes), HTML and, 124

+ (plus signs) in JavaScript state-
ments, 73

+= operator, 327

(;) semicolons, JavaScript statements,
72,287

140 cross-browser color names,
143-144

A

A Small Orange web hosting provider, 7
<a> tags (HTML), 170

anchor locations, linking to,
126-129

naming, 127

web pages, identifying locations
within, 126

absolute addresses, web pages and,
124-125

absolute links, web pages and, 124

absolute positioning, 213 quiz building example

display property (CSS), 53 HTML files, 487-488
positioning property, 214-217 JavaScript files, 489-490
accessibility, JavaScript best testing, 490-491
practices, 439 XML files, 488-489
Adaptive Path, AJAX, 480 requests
addEventListener function, 392 awaiting responses, 484
Adjust Hue/Lightness/Saturation tool back end, 480, 493-494
(GIMP), 154

creating, 483
Adobe Photoshop, 148

. front end, 480, 494-495
AJAX, 71, 479. See also JavaScript . .
) interpreting response data, 484
AJAX Frameworks JavaScript

library, 456 JavaScript client, 480

debugging applications, 491-496 sending, 484

examples of. 481 server-side scripts, 480,
fx P e 493-495
r
I_rsm'“fwo 458‘2 XML and, 481
ibraries,

)] XMLHttpRequest
ajaxRequest function, 486 "

) . awaiting responses to
ajaxResponse function, 486 requests, 484
creating, 485-486 creating requests, 483
quiz building example, 487-491 interpretting request response
using, 486 data, 484

limitations of, 482 opening URLs, 483

live search forms, creating, 496 sending requests, 484
front end, 495 alert() function, event handlers
HTML file example, 493 and, 295
HTML forms., 492 alerts (dialog boxes), 417-418

JavaScript front end, 494-495
PHP back end, 493-494

568 aligning

aligning
align property (CSS), 191, 203-204
images

horizontal alignment, 165-166

vertical alignment, 167-168
text

attributes, 92-93

block-level elements, 93-95

paragraphs, 93-95

tables, 113-115

text-align property (CSS), 56

text-align style rule (CSS),
9395

text-decoration property
(CSS), 56

AllITheWeb, listing websites with, 556
AltaVista, listing websites with, 556
alternate text, 163-164
Amazon.com, 481, 543
analogous color schemes, 143
anchor objects (DOM), 303
anchor tags

naming, 127

web pages, identifying locations
within, 126

web pages,linking to anchor loca-
tions, 126-129

anchors, documents, 303
animated graphics, 160-161
API functions (Greasemonkey), 471
Apple computers
HTML file creation, 27
Safari, 9, 465
arguments (JavaScript functions), 348
Arial font (text), 86
arithmetic mean, 363
arrays (JavaScript)
declaring, 337
elements of, accessing, 338
frames arrays, 426
length of, 338

numeric arrays, 337, 340-342
string arrays, 338
sorting, 340-342
splitting, 339
ASCII text, 26, 34, 82, 397
.asp file extensions, 27
ASP scripting language, 274
attributes, 92-93, 123
auto image loading, web browsers, 20

 tags (HTML), 81-83

back end (AJAX requests), 480,
493-494

Back/Forward buttons, adding to
documents, 304-305

backgrounds

background-position style
property, 172

background-repeat style
property, 172

colors,

background-color property
(CSS), 55

background-color style
property, 171

CSS and 146-148

images, 171-172

tiled backgrounds, 159-160
bad website examples, 144
bandwidth, web hosting providers, 6
banners, creating, 156
Barry’s Clipart Server website, 149
BAWSI.org, website organization, 545

behavior, Javascripting scripting best
practices, 434

Berners-Lee, Sir Tim, 1
<big> tags (HTML), 83
big text, 83

Bing, listing websites with, 556

block value (CSS display property), 53
blogs, publishing to web content, 19
<body> tags, 27, 31-33

boilerplate code, web page creation,
28-30

boldface text, 82-83
Boodman, Aaron, 464

Boolean operators. See logical opera-
tors (JavaScript)

Boolean values (JavaScript), 330
borders
CSS box model, 210

border property, 54-55
border-bottom property, 54-55
border-color property, 54-55
border-left property, 54-55
border-right property, 54-55
border-style property, 54-55
border-top property, 54-55
border-width property, 54

frame borders, modifying,
424-425

lists, styling, 227-228
tables
CSS and color, 146-148
sizing, 107
spacing, 116
box model (CSS), 209, 212
borders, 210
content, 210
lists and, 226-229
margins, 210
padding, 210
sizing elements, 210-212

 tags, 32-33, 85
break statements (JavaScript), 381
browsers (web)

140 cross-browser color names,
143-144

cross-browser scripting

debugging browsers, 444
feature sensing, 437, 443-444
CSS, support for, 51
debugging, 444
development of, 2
dialog boxes, displaying, 417-418
distributing, 18
Firefox, 9, 464
frames, 418-420
adding individual frames, 423

creating frameset documents,
421-423

frames array, 426
inline frames, 426-429
JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425
nested framesets, 425
Google Chrome, 9, 465
history, accessing, 2, 303-305
HTML development, 2
images, auto image loading, 20
information, reading via JavaScript
dishonest browsers, 442-443

displaying information,
440-441

Internet Explorer, 9
event properties, 393
Trixie, 465-468

links, opening in new browser
windows, 134

lists, displaying in, 97
margins and, 226-229

non-Internet Explorer event proper-
ties, 393-394

non-JavaScript browsers
avoiding errors, 446-449
detecting, 445-446
JavaScript optionality, 446
<noscript> tag, 445-446
<script> tag, 457

non-viewable window areas, 254
Opera, 9, 465

padding and, 226-228

pop-up windows, 134

popularity of, 26

Safari, 9

search engines, 445

sensing. See feature sensing

servers, basic browser server inter-
action, 3-5

text, adjusting font size
settings, 20

websites
comparing, 26
testing, 89, 26
windows
creating, 410-411

linking frames to windows,
423-424

moving, 413-414
opening/closing, 411-412
resizing, 413-414
timeouts, 414-416

built-in objects (JavaScript), 289, 352,
356-359

date object
converting date formats, 366
creating, 364
local time values, 365-366
reading date values, 365
setting date values, 364-365
time zones, 365

definitions, extending, 359

math object, 361

generating random numbers,
360-363

rounding decimal numbers, 360
truncating decimal numbers, 360
buttons, creating, 156
buying domain names, 6

color 569

C

case statements (JavaScript), 376
case-sensitivity, JavaScript syntax, 292
CD-ROM, transferring photos to, 150
cells (tables)
creating, 107
sizing, 111-113
Champeon, Steve, 435
check boxes (forms), 521-523
child objects (JavaScript), 353
child tags. See nested tags (HTML)
children (DOM), 308
Chrome (Google), 9
error messages, displaying, 77
Greasemonkey and, 465
clarity, coding for, 548
Classic FTP FTP client
server connections, 13
website connections, 11-12

clear property (CSS), text flow
and, 220

client-side scripting, 274
clip art, 149
closing tags (HTML), 30

closing/opening browser windows,
411-412

cm value (CSS height/width
properties), 53

color

140 cross-browser color names,
143-144

analogous color schemes, 143
background color

background-color style
property, 171

CSS and, 146-148
best practices, 141-143

border color (tables), CSS and,
146-148

color property (CSS), 56

570 color

Color Scheme Generator
website, 143

color style rule (CSS), fonts and,
86-87

color theory, 142
color wheel, 142

Colorblind Web Page Filter
tool, 148

complementary color
schemes, 143

graphics, adjusting color in, 154

hexadecimal color codes,
144-146

links and, 144
lists, styling, 227-228
monitors and, 144
tables and, 115
text
CSS and, 146-148
formatting in style sheets, 46
triadic color schemes, 143
using, 141-143
W3C color standards, 143
columns, fixed/liquid hybrid layouts
defining, 260-262
height, setting, 264-268
combining
string object values, 332-334
tasks. See functions (JavaScript)
comments
HTML, JavaScript and, 276
JavaScript, 293

websites, maintaining code via,
546-547

complementary color schemes, 143
compression

graphics, 150

JPEG, 155

conditional expressions, 317,
370-373

conditional operators (JavaScript), 370

conditional statements
(JavaScript), 289

conditions (for loops), 377
confirmations (dialog boxes), 417-418
constructor functions (JavaScript), 354
containers, 307
content (web)

creating, 2-3

CSS box model, 210

delivering, 3-5

Javascripting scripting best prac-
tices, 434

publishing
locally, 18-19
to blogs, 19

viewing locally, 5

web hosting providers, selecting,
6-8, 26

continue statements (JavaScript), 382
continuing loops (JavaScript), 382

control panels, selecting web hosting
providers, 7-8

converting

data formats (JavaScript date
objects), 366

data types (JavaScript), 331

string case (JavaScript), 334
copyrights, graphics and, 149
counters (JavaScript), for loops, 377

Creammonkey add-on, Greasemonkey
support in Safari, 465

Creative Commons licenses, 149

cropping images, 151-152

cross-browser scripting
debugging browsers, 444

event handlers, JavaScript
and, 437

feature sensing, 437, 443-444
CSsS
align property, 191, 203-204
box model, 209
borders, 210
content, 210

lists and, 226-229
margins, 210
padding, 210
sizing elements, 210-212
cascading component of, 46
clear property, text flow and, 220
color, specifying via CSS, 146-148
CSS 2, 47
CSS Zen Garden, 191-192, 253
CSSs1, 47
definition of, 45-46
<div> tags, 46
DOCTYPE declarations, 212
float property, 191, 204-207, 220
formatting properties, 53
background-color property, 55
border property, 54-55
border-bottom property, 54-55
border-color property, 54-55
border-left property, 54-55
border-right property, 54-55
border-style property, 54-55
border-top property, 54-55
border-width property, 54
color property, 56
font property, 56
font-family property, 55
font-size property, 55
font-style property, 56
font-weight property, 56
line-height property, 56
padding property, 56
text-align property, 55-56
text-decoration property, 56
text-indent property, 55
image maps, creating, 231-235
inline styles, 60-61
layouts
display property, 52-53
fixed layouts, 254

fixed/liquid hybrid layouts,
258-268

height property, 53
liquid layouts, 253- 257
width property, 53
<link /> tag, 50
links, styling, 134-138
lists
horizontal navigation, 245-248
list-style-image property, 226

list-style-position property,
226, 229-231

list-style-type property, 226

navigation lists, 236-248

vertical navigation, 236-244
margin property, 191-199

media-specific style sheets,
503-504

overflow property, text flow
and, 220

padding property, 191, 199-202
positioning
absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213
relative positioning, 213-215
z-index property, 217-219

print pages, desiging style sheets
for, 505-508

properties, hyphenating, 312

reference guide online resource, 47

selectors, 57

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50
color style rule, 86-87
font weight style rule, 83
font-family style rule, 86
font-size style rule, 86-87

list-style-type style rule,
99-101

multiple style properties in, 58
text-align style rule, 93-95
viewing, 51

style sheets
creating, 47-52
definition of, 45
external style sheets, 46-51
formatting properties, 53-56
formatting text color, 46
inline styles and, 61

internal style sheets, 46,
59-60

italic text, 56
layout properties, 52-53
line-through text, 56
linking to HTML documents, 50
sizing text, 50
strikethrough text, 56
underline text, 56
tags, 50
elements and, 46
selectors, 57
validating, 61
web browsers, CSS support, 51
z-index property, 217-219
current line, text flow and, 220
custom HTML tags, creating, 58
custom objects (JavaScript), 289

customer service, web hosting
providers, 6

Cyberduck FTP client, 11

DailyRazor web hosting provider, 7

dashed value (CSS border-style prop-
erties), 54

displaying 571

data types (JavaScript), 330-331
date object (JavaScript)
creating, 364
date formats, converting, 366
date values, reading, 365
date values, setting, 364-365
local time values, 365-366
time zones, 365

Date objects (JavaScript), time display
example, 72

debugging
AJAX applications, 491-496
browsers, 444
user scripts, 474-476
decimal nhumbers
rounding, 360
truncating, 360
declaring variables (JavaScript), 326

decrementing/incrementing variables
(JavaScript), 327

definition lists, 96, 226

design patterns, JavaScript best prac-
tices, 439

dialog boxes, displaying, 417-418
Digg, 481
directories (web content), 123-124
display property (CSS), 52-53
displaying
document information, 301-302
error messages, 77
time (JavaScript example)

adding scripts to web pages,
73-74

creating output, 73
Date objects, 72

error handling, 76-78
modifying scripts, 74-76
<script> tags, 71-72
statements, 72

testing scripts, 74
variables, 72

572 DisplayKey function, keyboard events

DisplayKey function, keyboard events,
398-399

distributing web browsers, 18

dithering, 158

<div> tags (CSS), 46, 170

do, while loops (JavaScript), 380

DOCTYPE declarations, 212

document objects (DOM), 300
anchor objects, 303

document information, displaying,
301-302

link objects, 303, 306

methods of, 302, 310

properties of, 301

text, writing within documents, 302
document roots, 13-16

document.write statements
(JavaScript), 68, 73

documenting code, 546-547
documents
anchors, 303

Back/Forward buttons, adding,
304-305

information, displaying in,
301-302

links, 303, 306

text, writing within documents, 302
Dojo JavaScript library, 456
DOM, 280-281

children, 308

layers

controlling positioning via
JavaScript, 311-315

creating, 311

moveable layers, 311-315
nodes, 307, 309-310
objects, 352

anchor objects, 303

document objects,
300-303, 306

hiding/showing, 316-317
history objects, 303-305

link objects, 303, 306
location objects, 305-306
methods, 299
naming, 299
parents, 308
properties, 299
referencing, 299
showing/hiding, 316-317
siblings, 308
window objects, 300, 409-418
parents, 308
siblings, 308
structure of, 306-307
text, web pages
adding to, 319-321
modifying in, 317-318
DOM objects (JavaScript), 289
domain names, purchasing, 6

dotted value (CSS border-style
properties), 54

double value (CSS border-style proper-
ties), 54-55

downloading JavaScript libraries, 457
dynamic websites

client-side scripting, 274

DOM, 280-281

images, changing via user interac-
tion, 281-283

server-side scripting, 274
text, printing via JavaScript, 275

web content, displaying random
content via JavaScript, 276-280

editors, blogs, 19
effects (JavaScript), 70
elements, definition of, 46

else keyword (JavaScript), testing mul-
tiple conditions, 372-373

HTML files, 374
JavaScript files, 374-375
 tags (HTML), 83
email
addresses
email address encoders, 133
linking to, 132-133
form data, sending via, 530-531
<embed> tags (XHTML), 183
embedded multimedia files, 180-183
emphasized text. See italic text
empty tags (HTML), 30, 33
error handling, 448
JavaScript scripts, 76-78
non-JavaScript browsers, 446-449
error messages, displaying, 77
escaping loops (JavaScript), 381
ESPN.com, 254, 540-542

European languages, formatting text
for, 89-91

event handlers, 389
creating, 390-391
defining, 390-391
event objects, 392
functions and, 484

JavaScript and, 68-70,
290-291, 435

alert() function, 295
best practices, 294-295
cross-browser scripting, 437
W3C event model, 436-437
keyboard events, 397-399
mouse events
mousestatus function, 396
onClick, 394-397, 400-404
onDblClick, 395
onMouseDown, 395-397
onMouseOut, 394
onMouseOver, 394

onMouseUp, 395-397
rollover images, 394
multiple event handlers, 391-392
naming, 390
onlLoad events, 399
onUnload events, 400
parentheses and, 484
quotation marks and, 390
syntax of, 390
Yahoo! Ul Library, 437
event objects
event handlers and, 392

Internet Explorer event
properties, 393

non-Internet Explorer event
properties, 393-394

events (JavaScript), 69

expressions (JavaScript), 328
extending built-in object definitions, 359
external scripts (JavaScript), 69
external style sheets (CSS), 46-51

F

feature sensing, 437, 443-444
Fetch FTP client, 11
finding
substrings (JavaScript), 336-337
user scripts, 466
Firebug, validating web content, 37
Firefox, 9
error messages, displaying, 77
Greasemonkey, installing, 464
FireFTP FTP client, 10-11
FireZilla FTP client, 11
fixed layouts, 254
fixed/liquid hybrid layouts
columns
defining in, 260-262
setting height, 264-268

minimum width, setting, 262-263
structure of, 258-259
Flickr, 161-163
float property (CSS), 191, 204-207, 220
float style property, 166
flow control (JavaScript), 369
break statements, 381
case statements, 376
continue statements, 382
do, while loops, 380
for loops, 377-378
for, in loops, 382-384
if statements, 369

conditional expressions,
370-373

conditional operators, 370
else keyword, 372-375
logical operators, 371

testing multiple conditions,
373-375

infinite loops, 380-381

loops
break statements, 381
continue statements, 382
escaping, 381

switch statements, using multiple
conditions, 375-376

while loops, 379-380
flowing text, 220
fluid layouts. See liquid layouts
folders (web content), 123-125
 tags (HTML), 81, 86
fonts (text)
Arial font, 86
CSS
color style rule, 86-87
font property, 56
font-family property, 55
font-family style rule, 86
font-size property, 55
font-size style rule, 86-87

formatting 573

font-style property, 56

font-weight property, 56

font weight style rule, 83
foreign languages, 89-91
HTML, customizing in, 85-89
resumes, creating, 87-89
sans-serif font, 86
sizing, style sheets, 50
special characters, 89-91
Times Roman font, 86

typerwriter font. See monospaced
text

web browsers, adjusting font size
settings, 20

for loops (JavaScript), 377-378
for statements (JavaScript), 290
for, in loops (JavaScript), 382-384

foreign languages, formatting text for,
89-91

formatting
CSS, 53

background-color property, 55
border property, 54-55
border-bottom property, 54-55
border-color property, 54-55
border-left property, 54-55
border-right property, 54-55
border-style property, 54-55
border-top property, 54-55
border-width property, 54
color property, 56
font property, 56
font-family property, 55
font-size property, 55
font-style property, 56
font-weight property, 56
line-height property, 56
padding property, 56
text-align property, 55-56
text-decoration property, 56
text-indent property, 55

574 formatting

style sheets, 46, 50
text, 82
aligning text, 92-95
big text, 83
boldface text, 82-83
color, style sheets, 46

customizing fonts in HTML,
85-89

definition lists, 96, 226
foreign languages, 89-91
italic text, 82-83
monospaced text, 84-85
multitiered lists, 100-101
nested lists, 97-100, 226
older HTML tags, 81
ordered lists, 95-96, 226
outlines, 98-100
resumes, creating, 87-89
sizing, style sheets, 50
small text, 83
special characters, 89-91
subscript text, 83
superscript text, 83
unordered lists, 95-96, 226
web page creation, 33-35
forms, 513

check boxes, 521-523

creating, 514-519

data

displaying in pop-up windows,
528-530

naming, 519-520
sending via email, 530-531
submitting, 527

elements, accessing via
JavaScript, 528

hidden data, 520

JavaScript events, 527-528
pull-down pick lists, 524-525
radio buttons, 523-524
scrolling lists, 524-525

selection lists, 524-525

text areas, 526

text fields, 526

text input, accepting, 519

user input, accepting, 519

validating, 70, 531-532
forward slashes (/), HTML and, 124

Forward/Back buttons, adding to doc-
uments, 304-305

frames, 418-420
animated graphics, 161
borders, modifying, 424-425
frames array, 426

frameset documents, creating,
421-423

individual frames, adding, 423
inline frames, 426-429
JavaScript objects and, 425
nested framesets, 425

windows, linking to frames,
423-424

front end (AJAX requests), 480,
494-495

FTP (File Transfer Protocol), 10, 29
Classic FTP client
server connections, 13
website connections, 11-12
Cyberduck, 11
Fetch, 11
FireFTR 10-11
FirezZilla, 11
FTP clients
selecting, 10-11
using, 11-13
Fuchs, Thomas, 455
functions
API functions (Greasemonkey), 471
JavaScript functions, 68, 288, 347
alert() function, 265
arguments, 348
calling, 349-350

constructor functions, 354
defining, 347-349

function call statements, 288
math functions, 361-363
naming, 292

parameters, 288, 348
returning values, 351-352

Garrett, Jesse James, 480
get methods (JavaScript objects), 365
Gickr, animated graphics, 161
GlIFs, 157-158
animated graphics, 160-161
tiled backgrounds, 159-160
transparent images, 159
GIMP, 149

Adjust Hue/Lightness/Saturation
tool, 154

banners, creating, 156
buttons, creating, 156
images
adjusting color, 154
cropping, 151-152
JPEG compression, 155
resizing, 153
Red Eye Removal, 154
Git website version control, 550
global variables (JavaScript), 326

GMT (Greenwich Mean Time),
JavaScript time displaying
example, 71

Google
Chrome, 9
displaying error messages, 77
Greasemonkey, 465
Gmail, 446, 481
Images, 161
listing websites with, 555

Picasa, 149
searches, 4

graceful degradation, web design
and, 434

graphics
Adobe Photoshop, 148
aligning
horizontal alighment, 165-166
vertical alignment, 167-168
animated graphics, 160-161
backgrounds

background-image style
property, 172

graphics, 171-172

tiled backgrounds, 159-160
banners, creating, 156
buttons, creating, 156

CD-ROM, transferring graphics
to, 150

clip art, 149
color, adjusting, 154
compression, 150
copyrights and, 149
Creative Commons licenses, 149
cropping, 151-152
dithering, 158
file sizes, 150
Flickr, 161-163
GlIFs, 157-158
animated graphics, 160-161
tiled backgrounds, 159-160
transparent images, 159
GIMR 149
adjusting image color, 154
banners, 156
buttons, 156
cropping images, 151-152
JPEG compression, 155
resizing images, 153
Google Images, 161
Google Picasa, 149

height/width, specifying, 165
image maps, 173-178
JPEGs

compression, 155

tiled backgrounds, 159-160

links, turning graphics into,
169-171

Picnik, 149
PNGs, 158-159
Red Eye Removal, 154
republishing, 163
resizing, 153
resolution, 150
rollover images, 394
software, choosing, 149
text descriptions, 163-164
transparent graphics, 158
uses of, 150
web pages

grabbing graphics from, 149

placing graphics on web
pages, 161-163

Greasemonkey, 463

API functions, 471
browser support, 465
installing, 464
metadata, 470
turning on/off, 468
user scripts

creating, 468, 475

debugging user scripts,
474-476

describing, 469-470
finding, 466

installing, 466
managing, 466-467
metadata and, 469-470

site-specific user scripts,
472-473

testing, 468-471

text area macro user scripts,

475-476

HTML 575

groove value (CSS border-style
properties), 54

grouping statements (JavaScript). See
loops

<head> tags, 27, 31-33, 68
heading tags (HTML), 34-36
headings (tables), creating, 108
height

CSS box model, adjusting height
in, 210-212

fixed/liquid hybrid layouts, setting
column height in, 264-268

height property (CSS), 53

images, specifying height in, 165
Hello World HTML file, creating, 9-10
help

CSS, reference guide online
resource, 47

web hosting providers, selecting, 6
helper applications, 180
hexadecimal color codes, 144-146
hidden form data, 520

hiding/showing DOM objects,
316-317

history objects (DOM), 303-305
horizontal image alignment, 165-166
horizontal navigation, 245-248
horizontal rule tags (HTML), 33
<hr /> tags, 33
HTML
AJAX
live search forms, 492
quiz building example, 487-488
attributes, 92-93, 123
comments, JavaScript and, 276
containers, 307

HTML

CSS

CSS box model, 209-212
external style sheets, 51

linking style sheets to HTML
documents, 50

development of, 1-2, 38
event handlers

JavaScript, 435-437
Yahoo! Ul Library, 437

file creation

boilerplate code, 28-30

comparing web page HTML
codes, 37

formatting text, 33-35
html file extensions, 27
HTML tags, 27-33

HTML-compatible word
processors, 27

indenting text, 35
line breaks, 32-33

naming files with HTML
tags, 27

Notepad, 26

organizing content via
headings, 34-36

overview of, 29

paragraphs, 32-33

saving files with HTML tags, 27
templates, 31

TextEdit, 27

Word, 27

WYSIWYG editors, 27

files

creating, 9-10
index pages, 16-18
managing, 14-16
organizing, 14-16

check boxes, 521-523
creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528
naming form data, 519-520
pull-down pick lists, 524-525
radio buttons, 523-524
scrolling lists, 524-525
selection lists, 524-525

sending data via email,
530-531

submitting form data, 527
text areas, 526

text fields, 526

text input, 519

user input, 519
validating, 531-532

forward slashes (/), 124
frames, 418-420

adding individual frames, 423

creating frameset documents,
421-423

frames array, 426
JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425
nested framesets, 425

FTP

selecting FTP clients, 10-11
using FTP clients, 11-13

future of, 28

graphics, image maps, 176-178
<head> tags, functions and, 68
Hello World sample file, creating,

HTML4, empty tags, 33
HTML5, 28, 40

images, placing on web pages,
162-163

JavaScript and, 274

adding libraries to HTML
documents, 457

adding scripts to HTML
documents, 73-74

changing images via user
interaction, 281-283

displaying random web content
via, 276-280

DOM, 280-281

HTML comments, 276

printing text via, 275
JavaScript’s advantages over, 299
Jjs files, linking to, 69
layouts

fixed layouts, 254

fixed/liquid hybrid layouts,
258-268

liquid layouts, 253- 257
links

absolute links, 124

anchor tags, 126-129

images as, 134

linking between web content,
129-131

linking to email addresses,
132-133

linking to external web con-
tent, 131-132

opening links in new browser
windows, 134

relative-root links, 124
styling via CSS, 134-138
lists

transfering, 10-13, 29 910 definition lists, 96, 226
viewing, 29 history of, 1-2 multitiered lists, 100-101
forms, 513 html file extensions, 27 nested lists, 97-100, 226

accessing elements via ordered lists, 95-96, 226

JavaScript, 528

HTML-compatible word proces-
sors, creating HTML files, 27

outlines, creating via lists,
98-100

unordered lists, 95-96, 226
“marked up” text, 2
multiple conditions, testing, 374
Notepad, creating HTML files, 26
outlines, creating, 98-100
pseudoclasses, 134-138
tables

aligning within, 113-115

cells, creating, 107

cells, sizing, 111-113

color in, 115

creating, 107-110

headings, creating, 108

images in, 116

page layout via, 116-117

rows, creating, 107

sizing, 110-113

sizing borders, 107

spacing borders, 116

spanning within, 115

uses for, 107
tags, 5, 28

<a> tags, 126-129, 170

attributes, 92-93, 123

 tags, 81-83

<big> tags, 83

<body> tag, 27, 31-33

 tag, 32-33, 85

 tags, 81-83

closing tags, 30

creating custom tags, 58

<div> tags, 170

 tags, 83

empty tags, 30, 33

 tags, 83

event handlers, 68, 291

 tags, 81, 86

formatting and older HTML
tags, 81

<head> tag, 27, 31-33
heading tags, 34-36
horizontal rule tag, 33
<hr /> tag, 33
<html> tag, 27, 31-33
<i> tags, 81-83
 tags, 162-163
line breaks, 32-33
naming files with, 27
nested tags, 97
opening tags, 30
<p> tag, 31-33
paragraphs, 32-33
<pre> tags, 84-85
pseudoclasses, 134-138
saving files with, 27
<small> tags, 83
<strike> tags, 84
 tags, 83
<sub> tags, 83
<sup> tags, 83
<table> tags, 107
<td> tags, 107
<th> tags, 108
<title> tags, 27, 31-33, 36
<tr> tags, 107
<tt> tags, 84-85
<u> tags, 84
xml : lang attribute, 31
xmlins attribute, 31

text, formatting
aligning text, 92-95
big text, 83
boldface text, 82-83
customizing fonts, 85-89
definition lists, 96, 226
foreign languages, 89-91
italic text, 82-83
monospaced text, 84-85
multitiered lists, 100-101
nested lists, 97-100, 226

HTML 577

older HTML tags, 81
ordered lists, 95-96, 226
outlines, 98-100

resumes, creating, 87-89
small text, 83

special characters, 89-91
subscript text, 83
superscript text, 83
unordered lists, 95-96, 226
whitespace, 32

TextEdit, creating HTML files, 27
validating, 36-37
web content

absolute addresses, 124-125
absolute links, 124

anchor tags, 126-129
creating, 2-3

delivering, 3-5

directories, 123-124

folders, 123-125

images as links, 134

linking between, 129-131

linking to email addresses,
132-133

linking to external web con-
tent, 131-132

opening links in new browser
windows, 134

organizing, 123-124
publishing locally, 18-19
publishing to blogs, 19
relative addresses, 124-125
relative-root addresses, 124
relative-root links, 124

selecting web hosting
providers, 6-8, 26

styling links via CSS, 134-138

website architectures,
creating, 125

whitespace, 32
Word, creating HTML files, 27

578 HTML

WYSIWYG editors, creating HTML
files, 27

XHTML, development of, 40
XML, development of, 39-40
HTML Validator, 37
hyperlinks. See links
hyphenating CSS properties, 312

<i> tags (HTML), 81-83
if statements (JavaScript), 369

conditional expressions, 317,
370-373

conditional operators, 370
else keyword, 372-375
logical operators, 371
multiple conditions, testing, 373
HTML files, 374
JavaScript files, 374-375
<iframe>. See inline frames
image maps, creating
creating, web resources, 231
CSS, 231-235
tutorials, 231
images
aligning
horizontal alignment, 165-166
vertical alignment, 167-168
animated images, 160-161

auto image loading, web
browsers, 20

background images, 171-172
backgrounds
background images, 171-172
tiled backgrounds, 159-160
banners, creating, 156
buttons, creating, 156

CD-ROM, transferring images
to, 150

clip art, 149

color, adjusting, 154
compression, 150

copyrights and, 149

Creative Commons licenses, 149
cropping, 151-152

dithering, 158

dynamic websites, changing
images via user interaction,
281-283

file sizes, 150
Flickr, 161-163
GlIFs, 157-158
animated images, 160-161
tiled backgrounds, 159-160
transparent images, 159
Google Images, 161
Google Picasa, 149
height/width, specifying, 165
image maps, 173-178
JPEGs
compression, 155
tiled backgrounds, 159-160
links, images as, 134, 169-171
Picnik, 149
PNGs, 158-159
Red Eye Removal, 154
republishing, 163
resizing, 153
resolution, 150
rollover images, 394
tables and, 116
text descriptions, 163-164
transparent images, 158
uses of, 150
web pages
grabbing images from, 149

placing images on web pages,
161-163

Images (Google), 161

 tags (HTML), 162-163

in value (CSS height/width
properties), 53

increment expressions (for loops), 377

incrementing/decrementing variables
(JavaScript), 327

indenting
code, 548
text, web page creation, 35

index pages, HTML file management,
16-18

indexes (JavaScript), for loops, 377
infinite loops (JavaScript), 380-381
initial expressions (for loops), 377
inline frames, 426-429

inline styles (CSS), 60-61

inline value (CSS display property), 53

inset value (CSS border-style
properties), 54

installing
Greasemonkey, 464
user scripts, 466
internal style sheets (CSS), 46, 59-61
Internet, ISP selection, 25-26
Internet Explorer, 9
DOCTYPE declarations, 212
error messages, displaying, 77
event properties, 393

Internet Explorer 6.0, JavaScript
testing, 74

Trixie, 465
installing user scripts, 466
managing user scripts, 467
turning on/off, 468
interpreted languages, 66

ISP (Internet service providers),
selecting, 25-26

italic text, 56, 82-83

JavaScript, 274. See also AJAX

accessibility, 439
AJAX, 71

live search forms, creating,
494-496

quiz building example, 489-490
requests, 480, 494-495
arrays
accessing elements of, 338
declaring, 337
length of, 338
numeric arrays, 337, 340-342
string arrays, 338-340
best practices, 293-295, 433
accessibility, 439
behavior, 434
comments, 438
content, 434
design patterns, 439
documenting code, 438
event handlers, 435-437
presentation, 434
“progressive enhancement”, 435
usability, 438-439

web standards and browser
specificity, 437-438

break statements, 381

browser specificity, web standards,
437-438

browsers, reading information on,
440-443

capabilities of, 66, 70
case statements, 376
comments, 293, 438
conditional expressions, 370-373
conditional operators, 370
continue statements, 382
cross-browser scripting
debugging browsers, 444
feature sensing, 437, 443-444

data types, 330-331

Date objects, time display exam-
ple, 72

design patterns, 439
development of, 66

do, while loops, 380
document.write statements, 68, 73
documenting code, 438

DOM, 280-281

adding text to web pages,
319-321

anchor objects, 303

children, 308

document objects, 300-303, 306
hiding/showing objects, 316-317
history objects, 303-305

layers, 311-315

link objects, 303, 306

location objects, 305-306

modifying text in web pages,
317-318

naming objects, 299
nodes, 307-310

object methods, 299
object properties, 299
objects, 352

parents, 308
referencing objects, 299

showing/hiding objects,
316-317

siblings, 308

structure of, 306-307

window objects, 300, 409-418
else keyword, 372-375
error handling, 76-78, 446-449

event handlers, 68-70, 290-291,
389, 435

alert() function, 295

best practices, 294-295
creating, 390-391
cross-browser scripting, 437
defining, 390-391

JavaScript 579

event objects, 392
keyboard events, 397-399

mouse events, 394-397,
400-404

multiple event handlers,
391-392

naming, 390
onlLoad events, 399
onUnload events, 400
quotation marks and, 390
syntax of, 390
W3C event model, 436-437
events, 69
expressions, 328
external scripts, 69
flow control
break statements, 381
case statements, 376
continue statements, 382
continuing loops, 382
do, while loops, 380
escaping loops, 381
for loops, 377-378
for, in loops, 382-384
if statements, 369-375
infinite loops, 380-381
switch statements, 375-376
while loops, 379-380
for loops, 377-378
for, in loops, 382-384
form elements, accessing, 528
form events, 527-528
forms, validating, 70
function call statements, 288
functions, 68, 288
alert() function, 295
arguments, 348
calling, 349-350
constructor functions, 354
defining, 347-349
math functions, 361-363

580 JavaScript

naming, 292

parameters, 288, 348

returning values, 351-352
Gmail and, 446
Greasemonkey, 463

API functions, 471

browser support, 465

creating user scripts, 468, 475

debugging user scripts,
474-476

describing user scripts,
469-470

finding user scripts, 466
installing, 464

installing user scripts, 466
managing user scripts, 466-467

metadata and user scripts,
469-470

site-specific user scripts,
472473

testing user scripts, 468-471

text area macro user scripts,
475476

turning on/off, 468
history of, 66
HTML, 274
comments, 276

JavaScript’'s advantages
over, 299

if statements, 369

conditional expressions,
370-373

conditional operators, 370-371
else keyword, 372-375

testing multiple conditions,
373-375

images, changing via user interac-
tion, 281-283

infinite loops, 380-381
Jjs files, 69
JSON, 481

layers, controlling positioning of,
311-315

libraries
adding effects via, 457

adding to HTML documents,
457

AJAX Frameworks, 456
building scripts, 458-459
Dojo, 456
downloading, 457
jQuery, 454-455
Mochikit, 456
MooTools, 456
Prototype, 453-454
Script.aculo.us, 455-459
using effects via, 457
Yahoo! Ul Library, 456
logical operators, 371
loops
break statements, 381
continue statements, 382
escaping, 381
modifying scripts, 74-76
modulo operators, 362

multiple conditions, testing,
374-375

non-JavaScript browsers
avoiding errors, 446-449
detecting, 445-446
JavaScript optionality, 446
<noscript> tag, 445-446
<script> tag, 457

objects, 288

built-in objects, 289, 352, 356-
361, 364-366

child objects, 353
creating, 353

creating instances of, 356
custom objects, 289

date object, 364-366
defining, 354-355

defining methods, 355-356

DOM objects, 289, 352
frames and, 425

math object, 360-363
methods, 289, 353, 365
naming, 292

properties, 288, 353
prototypes, 357-358

simplifying scripting via,
354-356

operators, 328-330

order of script operation, deter-
mining, 291

output, creating, 73
parseFloat() function, 331
parselnt() function, 331

programming language versus
scripting language, 66

“progressive enhancement”
strategies, 294

random web content, displaying
via, 276-280

remote scripting, 71
<script> tags, 67-72, 457

scripting language versus pro-
gramming language, 66

special effects, 70

statements
conditional statements, 289
for statements, 290
function calls, 288
loops, 290
objects, 288-289, 292
plus signs (+) in, 73
semicolons, 72
time display example, 72
variables, 288, 292

strings
calculating length of, 334
converting case, 334
string arrays, 338-340
string objects, 332-334, 357
substrings, 335-337

switch statements
syntax of, 376

using multiple conditions,
375-376

syntax, 332
case-sensitivity, 292
functions, 292
objects, 292
reserved words, 292
spacing (whitespace), 292
variables, 292

testing scripts, Internet Explorer
6.0, 74

text
printing via, 275
text editors, 74
time display example

adding scripts to web pages,
7374

creating output, 73
Date objects, 72
error handling, 76-78
modifying scripts, 74-76
<script> tags, 71-72
statements, 72
testing scripts, 74
variables, 72
toLowerCase() method, 334
toUpperCase() method, 334
Trixie, 465
installing user scripts, 466
managing user scripts, 467
turning on/off, 468
.Ixt file extension, 74

“unobtrusive scripting”, 433,
447-449

usability and, 438-439
using, 68
variables, 288

assigning values to variables,
327-328

declaring, 326

global variables, 326
incrementing/decrementing, 327
local variables, 326

localtime variable, 72

naming, 292, 325-326

scope of, 326

time display example, 72

UTC variable, 72

web pages, adding JavaScript to,
67-68, 73-74

websites, navigating, 70
while loops, 379-380
with keyword, 363-364
join() method, 342
JPEG
compression, 155
tiled backgrounds, 159-160
jQuery JavaScript library, 454-455
.js files, 69
JSON, 481
.jsp file extension, 27
JSP scripting language, 274

K-L

keyboard events, 397-399
Koch, Peter-Paul, 444

languages (foreign), formatting text
for, 89-91

layers (DOM)
creating, 311
moveable layers, 311-315

positioning, controlling via
JavaScript, 311-315

layouts
CSS layout properties, 52-53
fixed layouts, 254

link objects (DOM) 581

fixed/liquid hybrid layouts, 258
defining columns in, 260-262

setting column height,
264-268

setting minimum width,
262-263

structure of, 258-259
liquid layouts, 255-257
web resources, 253

leading (text), line-height property
(CSS), 56

libraries (AJAX), 482
ajaxRequest function, 486
ajaxResponse function, 486
creating, 485-486
quiz building example

HTML files, 487-488

JavaScript files, 489-490

testing, 490-491

XML files, 488-489
using, 486

libraries (JavaScript)

AJAX Frameworks, 456
Dojo, 456
downloading, 457
effects, using via, 457

HTML documents, adding libraries
to, 457

jQuery, 454-455
Mochikit, 456
MooTools, 456
Prototype, 453-454
Script.aculo.us, 455-459
scripts, building, 458-459
Yahoo! Ul Library, 456
line breaks, web page creation, 32-33
line-height property (CSS), 56
line-through text, style sheets, 56
<link /> tags (CSS), 50
link objects (DOM), 303, 306

582 links

links
absolute links, 124
anchor tags

identifying locations within web
pages via, 126

linking to anchor locations,
126-129

naming, 127
color and, 144
documents, 303, 306
email addresses, 132-133
images, 134, 169-171
Jjs files, 69

multimedia/website integration,
179-180

opening in new browser
windows, 134

relative-root links, 124
styling via CSS, 134-138
web content

linking between, 129-131

linking to external web
content, 131-132

liquid layouts, 253-257

list-item value (CSS display
property), 53

lists
borders, styling, 227-228
color, styling, 227-228
CSS box model and, 226-229
definition lists, 96, 226

list item indicators, placing,
229-231

list-style-image property
(CSS), 226

list-style-position property (CSS),
226, 229231

list-style-type property (CSS), 226

list-style-type style rule (CSS),
99-101

multitiered lists, 100-101
navigation lists
horizontal navigation, 245-248
primary navigation, 236

regular lists versus, 235

secondary navigation, 236

vertical navigation, 236-244
nested lists, 97-100, 226
ordered lists, 95-96, 226

outlines, creating via lists, 98-100

unordered lists, 95-96, 226
live search forms
AJAX, creating via, 496
HTML forms, 492
JavaScript front end, 494-495
PHP back end, 493-494
example, requirements for, 496

LiveScript, JavaScript development, 66

loading web content, timing, 20

local time values, date object
(JavaScript) and, 365-366

local variables (JavaScript), 326
localtime variable (JavaScript), 72
location objects (DOM), 305-306
logical operators (JavaScript), 371
loops (JavaScript), 290

break statements, 381

continue statements, 382

continuing, 382

do, while loops, 380

escaping, 381

for loops, 377-378

for, in loops, 382-384

infinite loops, 380-381

while loops, 379-380
LunarPages web hosting provider, 7

Macintosh computers, HTML file
creation, 27

managing
domain names, 6
HTML files, 14

document roots, 15-16
index pages, 16-18
user scripts, 466-467
web pages, headings, 34-36
websites
coding clarity, 548
comments, 546-547
documenting code, 546-547
indenting code, 548
maintainable code, 546-548
version control, 548-550
margin property (CSS), 191-199
margins
browsers and, 226-229
CSS box model, 210
marked up text in HTML, 2

Mashable.com, publicizing websites
via, 554

math object (JavaScript)
decimal numbers
rounding, 360
truncating, 360
math functions, 361-363

random numbers, generating,
360-363

media-specific style sheets, 503-504
metadata, user scripts, 469-470
methods
DOM objects, 299
document objects, 302, 310
history objects, 303
location objects, 306
JavaScript objects, 289, 353
adding to string objects, 357
defining, 355-356
get methods, 365
prototypes, 357-358
MIME types, 182

mm value (CSS height/width
properties), 53

Mochikit JavaScript library, 456

modifying

frame borders, 424-425

JavaScript scripts, 74-76

text in web pages, 317-318
modulo operators (JavaScript), 362
monitors and color, 144
monospaced text, 84-85
MooTools JavaScript library, 456
mouse events

mousestatus function, 396

onClick event handler, 394-397,
400-404

onDbIClick event handler, 395

onMouseDown event handler,
395-397

onMouseOut event handler, 394
onMouseOver event handler, 394

onMouseUp event handler,
395-397

rollover images, 394

mousestatus function, mouse events
and, 396

moveable layers (DOM), 311-315
moving browser windows, 413-414
Mozilla Firefox web browser, 9
multimedia

QuickTime, 180

website integration with, 178-179

embedded multimedia files,
180-183

links, 179-180

streaming multimedia, 181

tips for using, 184-185
multiple event handlers, 391-392
multitiered lists, 100-101

naming
anchor tags, 127
DOM objects, 299

event handlers, 390

files with HTML tags, 27

form data, 519-520

JavaScript functions, 292

JavaScript objects, 292

JavaScript variables, 292, 325-326
NaN (not a number), 331
navigating websites, JavaScript, 70
navigation lists

horizontal navigation, 245-248

primary navigation, 236

regular lists versus, 235

secondary navigation, 236

vertical navigation, 236-238

multilevel vertical navigation,
240-244

single-level vertical navigation,
239-241

nested framesets, 425
nested lists, 97-100, 226
nested tags (HTML), 97
nodes (DOM), 307
methods of, 310
properties, 309

non-viewable window areas
(browsers), 254

none value (CSS)
border-style properties, 54
display property, 53

<noscript> tag (JavaScript), detecting
non-JavaScript browsers, 445-446

Notepad, creating HTML files, 26
null values (JavaScript), 330
numbers
arithmetic mean, 363
decimal numbers
rounding, 360
truncating, 360

random numbers, generating,
360-363

numeric arrays (JavaScript), 337,
340-342

numeric data types (JavaScript), 330

objects (DOM) 583

0

<object> tags (XHTML), 180-183

objects (built-in), extending
definitions, 359

objects (DOM), 352
anchor objects, 303
document objects, 300

anchor objects, 303

displaying document informa-
tion, 301-302

link objects, 303, 306
methods of, 302
properties of, 301

writing text within
documents, 302

hiding/showing, 316-317
history objects, 303-305
link objects, 303, 306
location objects, 305-306
methods, 299
document objects, 302
history objects, 303
location objects, 306
naming, 299
parents, 308
properties, 299
document objects, 301
history objects, 303
location objects, 305-306
referencing, 299
showing/hiding, 316-317
siblings, 308
window objects, 300

creating browser windows,
410-411

displaying dialog boxes,
417-418

moving browser windows,
413414

opening/closing browser
windows, 411-412

584

objects (DOM)

properties of, 409-410

resizing browser windows,
413-414

timeouts, 414-416

objects (JavaScript), 288

built-in objects, 289, 352, 356-359
date object, 364-366
math object, 360-361

child objects, 353

creating, 353

custom objects, 289

date object
converting date formats, 366
creating, 364
local time values, 365-366
reading date values, 365
setting date values, 364-365
time zones, 365

defining, 354-355

DOM objects, 289, 352

instances, creating, 356

math object

generating random numbers,
360-363

math functions, 361-363
rounding decimal numbers, 360
truncating decimal numbers, 360
methods, 289, 353
adding to string objects, 357
get methods, 365
prototypes, 357-358
methods, defining, 355-356
naming, 292
properties, 288
prototypes, 357-358
values, 353
prototypes, 357-358
scripting, simplifying
creating object instances, 356

defining object methods,
355-356

defining objects, 354-355

string objects
adding methods to, 357
assigning values, 332-334
combining values, 332-334
creating, 332

Office Online Clip Art and Media web-
site (Microsoft), 149

onClick event handler, 394-397,
400-404

onDbIClick event handler, 395

online resources, CSS reference
guide, 47

onLoad events, 399

onMouseDown event handler, 395-397
onMouseOut event handler, 394
onMouseOver event handler, 394
onMouseUp event handler, 395-397
onUnload events, 400

opening tags (HTML), 30

opening/closing, browser windows,
411-412

Opera, 9, 465
operators (JavaScript), 328-330
ordered lists, 95-96, 226
organizing
HTML files, 14
document roots, 15-16
index pages, 16-18
web content, 123-124
web pages, headings, 34-36
websites, 538
Amazon.com, 543
BAWSI.org, 545
ESPN.com, 540-542
larger websites, 543-546
simple websites, 540-542
single-page websites, 538-539
Starbucks.com, 544
outlines, creating via lists, 98-100

outset value (CSS border-style

properties), 54

overflow property (CSS), text flow
and, 220

overlapping elements, 213, 217-219

P

<p> tags, 31-33

padding
browsers and, 226-228
CSS box model, 210

padding property (CSS), 56, 191,
199-202

paragraphs
aligning, 93-95
web page creation, 32-33

parameters (JavaScript functions),
288, 348

parent folders, 125
parents (DOM), 308
parseFloat() function (JavaScript), 331
parselnt() function (JavaScript), 331
periods (.), JavaScript objects, 289
Perl scripting language, 274
photos
aligning
horizontal alignment, 165-166
vertical alignment, 167-168
background photos, 171-172

background-image style
property, 172

CD-ROM, transferring photos to, 150
cropping, 151-152

Flickr, 161-163

Google Images, 161

height/width, specifying, 165
image maps, 173-178

links, turning images into, 169-171
Red Eye Removal, 154
republishing, 163

resizing, 153

text descriptions, 163-164

web pages, placing photos on,
161-163

Photoshop (Adobe), 148
PHP, 274, 514

AJAX live search forms, creating,
493-494

.php file extensions, 27
Picasa (Google), 149
Picnik, 149
“plain” text, 26, 34, 82
plug-ins, 180
plus signs (+), JavaScript statements, 73
PNGs, 158-159
pop-up windows, 134, 528-530
positionable elements. See layers
positioning

absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213
relative positioning, 213-215

presentation, JavaScript scripting best
practices, 434

<pre> tags (HTML), 84-85
pricing, web hosting providers, 6
primary navigation, 236
printing
Print Preview, viewing web pages
in, 508-509
print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

text via JavaScript, 275

<script> tag (JavaScript) 585

programming languages, strings, 72
“progressive enhancement”
strategies for, 294
web design and, 435
prompts (dialog boxes), 417-418
properties
DOM objects, 299
document objects, 301
history objects, 303
location objects, 305-306
relationship properties, 309
JavaScript objects, 288
prototypes, 357-358
values, 353
Prototype JavaScript library, 453-454

prototypes (JavaScript objects),
357-358

pseudoclasses, 134-138

pt value (CSS height/width proper-
ties), 53

publicizing websites, 553-555
publishing web content

blog publication, 19

local publication, 18-19
pull-down pick lists (forms), 524-525
purchasing domain names, 6

px value (CSS height/width
properties), 53

Python scripting language, 274

Q-R

QuickTime, 180

QuirksMode, debugging code, 444

quiz building example (AJAX)
HTML files, 487-488
JavaScript files, 489-490
testing, 490-491
XML files, 488-489

radio buttons (forms), 523-524
random numbers, generating, 360-363
Red Eye Removal, 154

relationship properties (DOM
nodes), 309

relative addresses and web pages,
124-125

relative positioning, 213-215
display property (CSS), 53
positioning property, 214

relative-root addresses and web
pages, 124

relative-root links and web pages, 124
reliability, web hosting providers, 6
remote scripting, 71. See also AJAX
republishing images, 163
reserved words, JavaScript syntax, 292
resizing
browser windows, 413-414
images, 153
resolution (graphics), 150

ridge value (CSS border-style
properties), 54

rollover images, 394

rounding decimal numbers, 360
rows (tables), creating, 107
Ruby scripting language, 274

S

Safari, 9, 465
sans-serif font (text), 86
saving files
files with HTML tags, 27
.Jjs files, 69
scaling images, 153
<script> tag (JavaScript), 67-69

detecting non-JavaScript
browsers, 457

time display example, 71-72

586 Script.aculo.us JavaScript library

Script.aculo.us JavaScript library, site-specific user scripts, displaying random web content

455-459 472-473 via, 276-280
scripting testing user scripts, 468-471 do, while loops, 380
AJAX, 479 text area macro user scripts, document.write statements,

475476 68,73
turning on/off, 468 documenting code, 438
interpreted languages, 66 DOM, 280-281, 299-321,
JavaScript, 274 409-418
accessibility, 439 else keyword, 372-375
adding scripts to web pages, error handling, 76-78
7374 escaping loops, 381

adding to web pages, 67-68 event handlers, 68-70, 290-291, 294-
advantages over HTML, 299 295, 389-392, 394-404, 435-437

ajaxRequest function, 486
ajaxResponse function, 486
back end, 480, 493-494
debugging applications, 491-496
examples of, 481

frameworks, 482

front end, 480, 494-495
JavaScript client, 480

libraries, 482, 485-491

limitations of, 482
live search forms, 492-496
quiz building example, 487-491

requests, 480, 483-484,
493-495

server-side scripts, 480,
493-495

XML and, 481
XMLHttpRequest, 483-484
ASR 274
client-side scripting, 274
comments, adding, 293
cross-browser scripting, 443
debugging browsers, 444

event handlers and
JavaScript, 437

feature sensing, 437, 443-444
Greasemonkey, 463-464

API functions, 471

browser support, 465

creating user scripts, 468, 475

debugging user scripts, 474-476

describing user scripts, 469-470

finding user scripts, 466

installing, 464

installing user scripts, 466

managing user scripts, 466-467

metadata and user scripts,
469-470

AJAX. 71 window objects (DOM), 409

AJAX live search forms, 494-496

AJAX quiz building example,
489-490

AJAX requests, 480, 494-495
arrays, 337-342

best practices, 293-295,
433-439

break statements, 381
capabilities of, 66, 70
case statements, 376

changing images via user
interaction, 281-283

comments, 293, 438

conditional expressions,
370-373

conditional operators, 370
continue statements, 382
continuing loops, 382
creating .js files, 69
creating output, 73

cross-browser scripting, 437,
443-444

data types, 330-331
Date objects, 72
design patterns, 439

determining order of script
operation, 291

development of, 66

events, 69
expressions, 328
external scripts, 69
flow control, 369-384
for loops, 377-378
for, in loops, 382-384
form events, 527-528

frames and JavaScript
objects, 425

functions, 68, 288, 292,
347, 352-354, 361-363

Gmail and, 446
Greasemonkey, 463-476
history of, 66

HTML and, 274-276

if statements, 369-375
infinite loops, 380-381
.js file extension, 69
JSON, 481

libraries (third-party), 453-459
linking to .js files, 69
logical operators, 371
modifying scripts, 74-76
navigating websites, 70

non-JavaScript browsers,
445-449

objects, 288-289, 292,
352-361, 364-366

operators, 328-330
parseFloat() function, 331
parselnt() function, 331

plus signs (+) in statements, 73
printing text via, 275

programming language versus
scripting language, 66

“progressive enhancement”
strategies, 294

reading browser information,
440-443

remote scripting, 71
saving .js files, 69
<script> tags, 67-72

scripting language versus
programming language, 66

simplifying, 354-356
special effects, 70
statements, 72, 287

statements, conditional state-
ments, 289

statements, for statements, 290
statements, function calls, 288
statements, loops, 290

statements, objects,
288-289, 292

statements, variables, 288, 292
strings, 332-340, 357

switch statements, 375-376
syntax, case-sensitivity, 292
syntax, functions, 292

syntax, objects, 292

syntax, reserved words, 292

syntax, spacing
(whitespace), 292

syntax, variables, 292
testing scripts, 74

time display example, 71-78
toLowerCase() method, 334
toUpperCase() method, 334
Trixie, 465-468

“unobtrusive scripting”, 433,
447-449

usability, 438-439
using, 68
validating forms, 70

variables, 72, 288, 292,
325-328

web standards and browser
specificity, 437-438

while loops, 379-380
with keyword, 363-364
JSON, 481
JSR 274
languages, 65
Perl, 274
PHR 274, 514
Python, 274
remote scripting. See AJAX
Ruby, 274

server-side scripts, 274, 480,
493-495

text editors, 74

Trixie, 465
installing user scripts, 466
managing user scripts, 467
turning on/off, 468

.txt file extension, 74

“unobtrusive scripting”, 433,
447-449

user scripts
creating, 468, 475
debugging, 474-476
describing, 469-470
finding, 466
Greasemonkey, 463-476
installing, 466
managing, 466-467
metadata and, 469-470
scripting, 465
site-specific scripts, 472-473
testing, 468-471

text area macro user scripts,
475-476

Trixie, 465-467
VBScript, 274

sizing 587

scrolling lists (forms), 524-525
search engines, 445
heading tags (HTML), 36
SEO, 553, 562-563
spamming, 557

websites, listing with search
engines, 555-562

searches
Google searches, 4

live search forms, creating via
AJAX, 496

HTML forms, 492
JavaScript front end, 494-495
PHP back end, 493-494
secondary navigation, 236
security, user scripts, 465
selection lists (forms), 524-525
selectors (CSS), 57

semicolons (;), JavaScript statements,
72,287

server-side scripting, 274, 480, 493-495
servers

browsers, basic server
interaction, 3-5

document roots, 13-16

FTP client connections, 13

space, 6

“uptime”, 6

web hosting providers, selecting, 6

shorthand conditional expressions
(JavaScript), 372-373

siblings (DOM), 308
single-page websites, 538-539
site-specific user scripts, 472-473
sizing
borders (tables), 107
browser windows, 413-414
cells (tables), 111-113

elements (CSS box model),
210-212

images, 153
tables, 110-113

588 sizing

text
font-size style rule (CSS), 86-87
style sheets, 50
skeleton pages. See templates
<small> tags (HTML), 83
small text, 83

solid value (CSS border-style proper-
ties), 54-55

sorting arrays (JavaScript)
numeric arrays, 340-342
string arrays, 340

source editors, blogs and, 19

spacing (whitespace), JavaScript
syntax, 292

spamming search engines, 557
spanning with tables, 115

special effects (JavaScript), 70
splitting string arrays (JavaScript), 339

Starbucks.com, website
organization, 544

statements (JavaScript), 287
conditional statements, 289
for statements, 290
function calls, 288
loops, 290
objects, 288

built-in objects, 289
custom objects, 289
DOM objects, 289
naming, 292
plus signs (+) in, 73
semicolons, 72
time display example, 72
variables, 288, 292

Stephenson, Sam, 453

streaming multimedia, 181

<strike> tags (HTML), 84

strikethrough text, style sheets, 56

string arrays, sorting, 340

strings, 72

strings (JavaScript), 330
case, converting, 334
length of, calculating, 334
string arrays, 338
sorting, 340
splitting, 339
string objects
adding methods to, 357
assigning values, 332-334
combining values, 332-334
creating, 332
substrings
finding, 336-337
getting single characters, 336
using parts of strings, 335-336
 tags (HTML), 83
strong text. See boldface text
style classes (CSS), 57-58
style IDs (CSS), 59
style properties (CSS), 57
style rules (CSS), 46, 50
color style rule, fonts and, 86-87
font weight style rule, 83
font-family style rule, 86
font-size style rule, 86-87
list-style-type style rule, 99-101
multiple style properties in, 58
text-align style rule, 93-95
viewing, 51
style sheets
align property, 191, 203-204
box model, 209, 212
borders, 210
content, 210
lists and, 226-229
lists and, 226
margins, 210
padding, 210
sizing elements, 210-212
clear property, text flow and, 220

color, specifying via style sheets,
146-148

creating, 47, 49-52

CSS tags, 50

CSS Zen Garden, 191-192

definition of, 45

DOCTYPE declarations, 212

external style sheets, 46-51

float property, 191, 204-207, 220

formatting properties, 53
background-color property, 55
border property, 54-55
border-bottom property, 54-55
border-color property, 54-55
border-left property, 54-55
border-right property, 54-55
border-style property, 54-55
border-top property, 54-55
border-width property, 54
color property, 56
font property, 56
font-family property, 55
font-size property, 55
font-style property, 56
font-weight property, 56
line-height property, 56
padding property, 56
text-align property, 55-56
text-decoration property, 56
text-indent property, 55

HTML documents, linking to, 50

image maps, creating, 231-235

inline styles, 60-61

internal style sheets, 46, 59-61

italic text, 56

layouts
display property, 52-53
fixed layouts, 254

fixed/liquid hybrid layouts,
258-268

height property, 53

liquid layouts, 253- 257
width property, 53
line-through text, 56
links, styling, 134-138
list-style-image property, 226

list-style-position property, 226,
229-231

list-style-type property, 226
lists
horizontal navigation, 245-248
navigation lists, 236-248
vertical navigation, 236-244
margin property, 191-199
media-specific style sheets, 503-504
overflow property, text flow and, 220
padding property, 191, 199-202
positioning
absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213
relative positioning, 213-215
z-index property, 217-219

print pages, designing style sheets
for, 505-508

properties, hyphenating, 312

selectors, 57

strikethrough text, 56

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50
color style rule, 86-87
font weight style rule, 83
font-family style rule, 86
font-size style rule, 86-87
list-style-type style rule, 99-101
multiple style properties in, 58
text-align style rule, 93-95
viewing, 51

text
formatting color, 46
sizing, 50
underline text, 56
validating, 61
web browsers, CSS support, 51
z-index property, 217-219
<sub> tags (HTML), 83
subscript text, 83
substrings
finding, 336-337
parts of strings, using, 335-336
single characters, getting, 336
Subversion website version control, 550
<sup> tags (HTML), 83
superscript text, 83
support
CSS, web browser support for, 51
web hosting providers, selecting, 6
switch statements (JavaScript)

multiple conditions, using,
375-376

syntax of, 376
syntax, JavaScript, 332

T

<table> tags (HTML), 107
tables
aligning within, 113-115
borders
sizing, 107
spacing, 116

specifying color via CSS,
146-148

cells
creating, 107
sizing, 111-113
color in, 115

tags (HTML) 589

creating, 107-110
headings, creating, 108
images in, 116
page layout via, 116-117
rows, creating, 107
sizing, 110-113
spanning within, 115
uses for, 107

tags (CSS), 50
elements and, 46
<link /> tag, 50
selectors, 57

tags (HTML), 5, 28
<a> tags, 170

identifying locations within web
pages, 126

linking to anchor locations,
126-129

naming, 127
attributes, 92-93, 123
 tags, 81-83
<big> tags, 83
<body> tag, 27, 31-33

 tags, 32-33, 85
closing tags, 30
containers, 307
custom tags, creating, 58
<div> tags, 170
 tags, 83
empty tags, 30, 33
event handlers, 68
 tags, 81, 86
<head> tags, 27, 31-33, 68
heading tags, 34-36
horizontal rule tag, 33
<hr /> tag, 33
<html> tag, 27, 31-33
<i> tags, 81-83
 tags, 162-163
line breaks, 32-33
naming files with, 27

590 tags (HTML)

nested tags, 97
older HTML tags, formatting and, 81
opening tags, 30
<p> tag, 31-33
paragraphs, 32-33
<pre> tags, 84-85
pseudoclasses, 134-138
saving files with, 27
<script> tags, 67-72
<small> tags, 83
<strike> tags, 84
 tags, 83
<sub> tags, 83
<sup> tags, 83
<table> tags, 107
<td> tags, 107
<th> tags, 108
<title> tags, 27, 31-33, 36
<tr> tags, 107
<tt> tags, 84-85
<u> tags, 84
xml : lang attribute, 31
xmins attribute, 31

tags (XHTML)
<embed> tags, 183
<object> tags, 180-183

tasks, combining. See functions
(JavaScript)

<td> tags (HTML), 107
templates, web page creation, 31
testing

AJAX quiz building example, 490-491

JavaScript scripts, Internet Explorer
6.0, 74

user scripts, 468, 470-471
web content, 19-20

websites, multiple web browsers,
89, 26

text
aligning
attributes, 92-93
block-level elements, 93-95

paragraphs, 93-95
tables, 113-115

text-align style rule (CSS),
93-95

alternate text, 163-164

ASCII text, 26, 34, 82

color, CSS and, 56, 146-148

documents, writing text within, 302

flowing text, 220

fonts
Arial font, 86
color style rule (CSS), 86-87
font property (CSS), 56
font weight style rule (CSS), 83
font-family property (CSS), 55
font-family style rule (CSS), 86
font-size property (CSS), 55
font-size style rule (CSS), 86-87
font-style property (CSS), 56
font-weight property (CSS), 56
sans-serif font, 86
Times Roman font, 86

typewriter font. See mono-
spaced text

formatting
aligning text, 92-95
big text, 83
boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226
foreign languages, 89-91
italic text, 82-83
monospaced text, 84-85
multitiered lists, 100-101
nested lists, 97-100, 226
ordered lists, 95-96, 226
outlines, 98-100
resumes, creating, 87-89
small text, 83

special characters, 89-91

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

web page creation, 33-35
forms, accepting text input in, 519
graphics and, 163-164
HTML, whitespace, 32
indenting, web page creation, 35
italic text, style sheets, 56

leading, line height property
(CSS), 56

line breaks, web page creation,
32-33

line-through text, style sheets, 56

paragraphs, web page creation,
32-33

“plain” text, 26, 34, 82
printing, JavaScript and, 275

sizing, font-size style rule (CSS),
86-87

strikethrough text, style sheets, 56
style sheets, 56

formatting color, 46

sizing, 50
text-align property (CSS), 55-56
text-align style rule (CSS), 93-95

text area macro user scripts,
475476

text areas (forms), 526
text-decoration property (CSS), 56
text editors, 74

text fields (forms), 526
text-indent property (CSS), 55
underline text, style sheets, 56

web browsers, adjusting font size
settings, 20

web pages
adding to web pages, 319-321
modifying text in, 317-318

TextEdit, creating HTML files, 27
<th> tags (HTML), 108

third-party JavaScript libraries
AJAX Frameworks, 456
Dojo, 456
downloading, 457
effects, adding via, 457-459
effects, using, 457

HTML documents, adding libraries
to, 457

jQuery, 454-455

Mochikit, 456

MooTools, 456

Prototype, 453-454

Script.aculo.us, 455-459

scripts, building, 458-459

Yahoo! Ul Library, 456
tiled backgrounds, 159-160

time, displaying (JavaScript
example), 71

Date objects, 72

error handling, 76-78

output, creating, 73

scripts
adding to web pages, 73-74
modifying, 74-76
<script> tags, 71-72
testing, 74

statements, 72

variables, 72

time zones, date object (JavaScript)
and, 365

timeouts (browser windows), 414-416
Times Roman font (text), 86

timing loading of web content, 20
<title> tags, 27, 31-33, 36
toLowerCase() method (JavaScript), 334
tool tips, 164

toUpperCase() method (JavaScript), 334
<tr> tags (HTML), 107

transferring HTML files, FTP clients,
10-13, 29

transparent images, 158
triadic color schemes, 143

Trixie, 465
turning on/off, 468
user scripts
installing, 466
managing, 467
truncating decimal numbers, 360
<tt> tags (HTML), 84-85
turning on/off
Greasemonkey, 468
Trixie, 468
.txt file extension, 74
typewriter font. See monospaced text

U

<u> tags (HTML), 84

underline text, style sheets, 56
“unobtrusive scripting”, 433, 447-449
unordered lists, 95-96, 226

“uptime,” servers and, 6

URLs, opening, 483

usability, JavaScript best practices,
438-439

USB drivers, 18
user input, accepting in forms, 519
user scripts
creating, 468, 475
debugging, 474-476
describing, 469-470
finding, 466
Greasemonkey, 463
API functions, 471
browser support, 465
creating user scripts, 468, 475
debugging user scripts, 474-476
describing user scripts, 469-470
finding user scripts, 466
installing, 464
installing user scripts, 466

variables (JavaScript)

591

managing user scripts, 466-467

metadata and user scripts,
469-470

site-specific user scripts,
472-473

testing user scripts, 468-471

text area macro user scripts,
475476

installing, 466

managing, 466-467
metadata and, 469-470
security, 465

site-specific scripts, 472-473
testing, 468-471

text area macro user scripts,
475476

Trixie, 465
installing user scripts, 466
managing user scripts, 467
UTC (Universal Time [Coordinated]), 71
UTC variable (JavaScript), 72

Vv

validating
forms, 70, 531-532
style sheets, 61
web content, 36-37
variables (JavaScript), 288
declaring, 326
global variables, 326
incrementing/decrementing, 327
local variables, 326
localtime variable, 72
naming, 292, 325-326
scope of, 326
time display example, 72
UTC variable, 72

values, assigning to variables,
327-328

592 VBScript scripting language

VBScript scripting language, 274
version control, websites and, 548-550
vertical image alignment, 167-168
vertical navigation, 236-238

multilevel vertical navigation,
240-244

single-level vertical navigation,
239-241

vertical-align style property, 167
video, embedding, 182

viewing
CSS style rules, 51
HTML files, 29

web pages, 29
visual editors, blogs, 19

w

W3C color standards, 143
W3C CSS Validator, 61

W3C event model, 436-437
W3C Validation Service, 37-38
web browsers

140 cross-browser color names,
143-144

cross-browser scripting
debugging browsers, 444
feature sensing, 437, 443-444

CSS, support for, 51

debugging, 444

development of, 2

dialog boxes, displaying, 417-418

distributing, 18

Firefox, 9, 464

frames, 418-420
adding individual frames, 423

creating frameset documents,
421-423

frames array, 426
inline frames, 426-429

JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425
nested framesets, 425
Google Chrome, 9, 465
history, accessing, 2, 303-305
HTML development, 2
images, auto image loading, 20
information, reading via JavaScript
dishonest browsers, 442-443
displaying information, 440-441
Internet Explorer, 9
event properties, 393
Trixie, 465-468

links, opening in new browser win-
dows, 134

lists, displaying in, 97
margins and, 226-229

non-Internet Explorer event proper-
ties, 393-394

non-JavaScript browsers
avoiding errors, 446-449
detecting, 445-446
JavaScript optionality, 446
<noscript> tag, 445-446
<script> tag, 457

non-viewable window areas, 254

Opera, 9, 465

padding and, 226-228

pop-up windows, 134

popularity of, 26

Safari, 9

search engines, 445

sensing. See feature sensing

servers, basic browser server
interaction, 3-5

text, adjusting font size settings, 20
websites

comparing, 26

testing, 89, 26

windows
creating, 410-411

linking frames to windows,
423-424

moving, 413-414
opening/closing, 411-412
resizing, 413-414
timeouts, 414-416
web content
absolute addresses, 124-125

aligning via align property (CSS),
191, 203-204

clear property (CSS), text flow
and, 220

color

140 cross-browser color
names, 143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143
W3C color standards, 143
comparing, 26
creating, 2-3
ASCII text, 26, 34
boilerplate code, 28-30

comparing web content HTML
codes, 37

formatting text, 33-35
HTML tags, 27-33
indenting text, 35
line breaks, 32-33

organizing content via head-
ings, 34-36

overview of, 29
paragraphs, 32-33
“plain” text, 26, 34
templates, 31

CSS box model, 209
borders, 210
content, 210

lists and, 226-229
margins, 210

padding, 210

sizing elements, 210-212
delivering, 3-5

directories, 123-124

float property (CSS), 191,
204-207, 220

folders, 123-125
forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523

creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email, 530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532

“graceful degradation”, 434

graphics

adjusting color, 154

Adobe Photoshop, 148

aligning graphics, 165-168

compression, 150

copyrights and, 149

Creative Commons licenses, 149
cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161, 163

GlFs, 157-161

GIMR 149

GIMR adjusting image color, 154
GIMR banners, 156

GIMR buttons, 156

GIMR cropping images, 151-152
GIMR JPEG compression, 155
GIMR resizing images, 153
Google Images, 161

Google Picasa, 149

grabbing from web pages, 149
image maps, 173-178

JPEGs, 155, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154
republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165
text descriptions, 163-164
tiled backgrounds, 159-160
transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

web content 593

images as, 134
linking between, 129-131

linking to external web
content, 131-132

opening in new browser
windows, 134

relative-root links, 124
styling via CSS, 134-138
lists
borders, 227-228
color, 227-228
CSS box model and, 226-229
horizontal navigation, 245-248
navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244
loading, timing, 20
managing
coding clarity, 548
comments, 546-547
documenting code, 546-547
indenting code, 548
maintainable code, 546-548
version control, 548-550
margins
browsers and, 226-229
margin property (CSS), 191-199
multimedia, integrating with, 178

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185
organizing, 123-124, 538

larger websites, 543-546

simple websites, 540-542

animated graphics, 160-161 images, changing images via user
background graphics, 171-172 interaction, 281-283

banners, 156 links

buttons, 156 absolute links, 124
choosing software, 149 anchor tags, 126-129

clip art, 149 email addresses, 132-133

single-page websites, 538-539

overflow property (CSS), text flow
and, 220

padding
browsers and, 226-228

padding property (CSS), 191,
199-202

594 web content

Print Preview, viewing web content
in, 508-509

print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

“progressive enhancement”, 435
publishing

locally, 18-19

to blogs, 19

random web content, displaying
via JavaScript, 276-280

relative addresses, 124-125
relative-root addresses, 124

search engines, listing web
content with, 555-562

style sheets
creating, 47-52
definition of, 45
external style sheets, 46-51
formatting properties, 53-56
formatting text color, 46
inline styles, 60-61
internal style sheets, 46, 59-61
layout properties, 52-53
linking to HTML documents, 50
selectors, 57
sizing text, 50
style classes, 57-58
style IDs, 59
style properties, 57
style rules, 46, 50-51, 58
validating, 61
web browser support, 51
tables
aligning within, 113-115
cells, creating, 107

cells, sizing, 111-113
color in, 115
creating, 107-110
headings, creating, 108
images in, 116
page layout via, 116-117
rows, creating, 107
sizing, 110-113
sizing borders, 107
spacing borders, 116
spanning within, 115
uses for, 107

testing, 19-20

text, formatting, 82
adding to web pages, 319-321
aligning text, 92-95
big text, 83
boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226
flowing text, 220
foreign languages, 89-91
italic text, 82-83
modifying, 317-318
monospaced text, 84-85
multitiered lists, 100-101
nested lists, 97-100, 226
older HTML tags, 81
ordered lists, 95-96, 226
outlines, 98-100
resumes, creating, 87-89
small text, 83
special characters, 89-91
subscript text, 83
superscript text, 83
unordered lists, 95-96, 226

transferring, FPT, 29

validating, 36-37

viewing, 5, 29

web hosting providers, selecting,
6-8, 26

website architectures, creating, 125
YouTube and, 184

web design

“graceful degradation”, 434
“progressive enhancement”, 435

web hosting provider DailyRazor, 7
web hosting providers

A Small Orange, 7

bandwidth, 6

control panels, 7-8

customer service, 6

domain names, purchasing, 6
LunarPages, 7

pricing, 6

reliability, 6

selecting, 6-8, 26

server space, 6

web pages

absolute addresses, 124-125

aligning via align property (CSS),
191, 203-204

clear property (CSS), text flow
and, 220

color

140 cross-browser color names,
143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143

W3C color standards, 143
creating

ASCII text, 26, 34

boilerplate code, 28-30

comparing web page HTML
codes, 37

formatting text, 33-35
HTML tags, 27-33

indenting text, 35
line breaks, 32-33

organizing content via head-
ings, 34-36

overview of, 29
paragraphs, 32-33
“plain” text, 26, 34
templates, 31
CSS box model, 209
borders, 210
content, 210
lists and, 226-229
margins, 210
padding, 210
sizing elements, 210-212
directories, 123-124

float property (CSS), 191,
204-207, 220

folders, 123-125
forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523
creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520
JavaScript events, 527-528
naming form data, 519-520
pull-down pick lists, 524-525
radio buttons, 523-524
scrolling lists, 524-525
selection lists, 524-525
sending data via email, 530-531
submitting form data, 527
text areas, 526
text fields, 526
text input, 519
user input, 519
validating, 531-532

“graceful degradation”, 434

graphics

adjusting color, 154

Adobe Photoshop, 148
aligning graphics, 165-168
animated graphics, 160-161
background graphics, 171-172
banners, 156

buttons, 156

choosing software, 149

clip art, 149

compression, 150

copyrights and, 149

Creative Commons licenses, 149
cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161-163

GIFs, 157-161

GIMP 149

GIMP adjusting image color, 154
GIMR banners, 156

GIMR buttons, 156

GIMR cropping images, 151-152
GIMR JPEG compression, 155
GIMR resizing images, 153
Google Images, 161

Google Picasa, 149

grabbing from web pages, 149
image maps, 173-178

JPEG compression, 155
JPEGSs, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154
republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165
text descriptions, 163-164

web pages 595

tiled backgrounds, 159-160
transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

images, changing images via user

interaction, 281-283

JavaScript, adding to web pages,

67-68

links

absolute links, 124
anchor tags, 126-129
email addresses, 132-133
images as, 134

linking between web pages,
129-131

linking to external web pages,
131-132

opening in new browser
windows, 134

relative-root links, 124
styling via CSS, 134-138

lists

borders, 227-228

color, 227-228

CSS box model and, 226-229
horizontal navigation, 245-248
navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244

loading, timing, 20
managing

coding clarity, 548
comments, 546-547
documenting code, 546-547
indenting code, 548
maintainable code, 546-548
version control, 548-550

margins

browsers and, 226-229
margin property (CSS), 191-199

596 web pages

multimedia, integrating with, 178

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185
organizing, 123-124, 538

larger websites, 543-546

simple websites, 540, 542

single-page websites, 538-539

overflow property (CSS), text flow
and, 220

padding
browsers and, 226-228

padding property (CSS), 191,
199-202

Print Preview, viewing web pages
in, 508-509

print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

“progressive enhancement”, 435
relative addresses, 124-125
relative-root addresses, 124

scripts, adding to web pages
(JavaScript), 73-74

search engines, listing web pages
with, 555-562

style sheets
creating, 47-52
definition of, 45
external style sheets, 46-51
formatting properties, 53-56
formatting text color, 46
inline styles, 60-61
internal style sheets, 46, 59-61
layout properties, 52-53
linking to HTML documents, 50

selectors, 57
sizing text, 50
style classes, 57-58
style IDs, 59
style properties, 57
style rules, 46, 50-51, 58
validating, 61
web browser support, 51

tables
aligning within, 113-115
cells, creating, 107
cells, sizing, 111-113
color in, 115
creating, 107-110
headings, creating, 108
images in, 116
page layout via, 116-117
rows, creating, 107
sizing, 110-113
sizing borders, 107
spacing borders, 116
spanning within, 115
uses for, 107

text, formatting
adding to web pages, 319-321
aligning text, 92-95
big text, 83
boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226
flowing text, 220

foreign languages, 89-91
italic text, 82-83
modifying, 317-318
monospaced text, 84-85
multitiered lists, 100-101
nested lists, 97-100, 226
older HTML tags, 81
ordered lists, 95-96, 226
outlines, 98-100
resumes, creating, 87-89
small text, 83

special characters, 89-91
subscript text, 83
superscript text, 83
unordered lists, 95-96, 226

transferring FTR 29

validating, 36-37

viewing, 29

web content, displaying random
content via JavaScript, 276-280

website architectures, creating, 125
YouTube and, 184

websites

aligning via align property (CSS),
191, 203-204

architectures, creating, 125
bad website examples, 144

clear property (CSS), text flow
and, 220

color

140 cross-browser color names,
143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143

W3C color standards, 143
comparing, 26
connecting to, Classic FTP client, 12
CSS box model, 209

borders, 210

content, 210

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212
dynamic websites

changing images via user inter-
action, 281-283

client-side scripting, 274

displaying random web content
via JavaScript, 276-280

DOM, 280-281

printing text via JavaScript, 275
server-side scripting, 274

float property (CSS), 191,
204-207, 220

forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523
creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email, 530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532
“graceful degradation”, 434
graphics

adjusting color, 154

Adobe Photoshop, 148

aligning graphics, 165-168

animated graphics, 160-161

background graphics, 171-172

banners, 156

buttons, 156

choosing software, 149

clip art, 149

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161-163

GlIFs, 157-161

GIMR 149

GIMR adjusting image color, 154
GIMR banners, 156

GIMR buttons, 156

GIMR cropping images, 151-152
GIMR JPEG compression, 155
GIMR resizing images, 153
Google Images, 161

Google Picasa, 149

grabbing from web pages, 149
image maps, 173-178

JPEGS, 155, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154
republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165
text descriptions, 163-164
tiled backgrounds, 159-160
transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

links
absolute links, 124
anchor tags, 126-129
email addresses, 132-133
images as, 134

linking between web pages,
129-131

linking to external web pages,
131-132

opening in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138
lists

borders, 227-228

color, 227-228

websites 597

CSS box model and, 226-229
horizontal navigation, 245-248
navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244
managing

coding clarity, 548

comments, 546-547

documenting code, 546-547

indenting code, 548

maintainable code, 546-548

version control, 548-550
margins

browsers and, 226-229

margin property (CSS), 191-199

multimedia, integrating with,
178-179

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185
navigating JavaScript, 70
organizing

Amazon.com, 543

BAWSIl.org, 545

ESPN.com, 540-542

larger websites, 543-546

simple websites, 540-542

single-page websites, 538-539

Starbucks.com, 544

overflow property (CSS), text flow
and, 220

padding
browsers and, 226-228

padding property (CSS), 191,
199-202

“progressive enhancement”, 435
publicizing, 553-555

search engines, listing websites
with, 555-562

SEO, 553, 562-563
single-page websites, 538-539

598 websites

style sheets
creating, 47-52
definition of, 45
external style sheets, 46-51
formatting properties, 53-56
formatting text color, 46
inline styles, 60-61
internal style sheets, 46, 59-61
layout properties, 52-53
linking to HTML documents, 50
selectors, 57
sizing text, 50
style classes, 57-58
style IDs, 59
style properties, 57
style rules, 46, 50-51, 58
validating, 61
web browser support, 51
testing, 89, 26
text
adding to web pages, 319-321
flowing text, 220
modifying, 317-318
web content
absolute addresses, 124-125
directories, 123-124
folders, 123-125
organizing, 123-124
relative addresses, 124-125
relative-root addresses, 124
web pages

print-friendly web pages,
499-509

viewing in Print Preview,
508-509

YouTube and, 184
while loops (JavaScript), 379-380
whitespace (spacing)

HTML, 32

JavaScript syntax, 292
width

CSS box model, adjusting in,
210212

fixed/liquid hybrid layouts, setting
minimum width in, 262-263

images, specifying width in, 165
width property (CSS), 53
window objects (DOM), 300
browser windows
creating, 410-411
moving, 413-414
opening/closing, 411-412
resizing, 413-414
timeouts, 414-416
dialog boxes, displaying, 417-418
properties of, 409-410
windows (browser)
closing, 412
creating, 410-411
frames, linking to windows, 423-424
moving, 413-414
non-viewable window areas, 254
opening/closing, 411-412

pop-up windows, displaying form
data in, 528-530

resizing, 413-414

timeouts, 414-416
with keyword (JavaScript), 363-364
WMV video clips, embedding, 182
Word, creating HTML files, 27

WordPress Theme Gallery, layouts
and, 253

writing text within documents, 302

WWW (World Wide Web), HTML devel-
opment, 2

WYSIWYG (what-you-see-is-what-you-
get) editors, 27

X

XHTML
boilerplate code, 30
check boxes (forms), 522
defining, 3

development of, 40
function of, 51
goal of, 51
image maps, 231
inline frames, 426-429
tags
<embed> tags, 183
<object> tags, 180-183
xml : lang attribute (HTML tags), 31
xmlins attribute (HTML tags), 31
XML
AJAX and, 481, 488-489
boilerplate code, 30
development of, 39-40
xml : lang attribute (HTML tags), 31
XMLHttpRequest, 483
requests
awaiting responses, 484
creating, 483

interpreting response
data, 484

sending, 484
URLs, opening, 483
xmins attribute (HTML tags), 31

Y-2Z

Yahoo! Developer Network, JavaScript
design patterns, 439

Yahoo! Search, listing websites
with, 556

Yahoo! Ul Library, 437, 456
YouTube, website integration, 184

z-index property (CSS), 217-219
Zen Garden (CSS), 191-192, 253

	Table of Contents
	CHAPTER 3: Understanding Cascading Style Sheets
	How CSS Works
	A Basic Style Sheet
	A CSS Style Primer
	Using Style Classes
	Using Style IDs
	Internal Style Sheets and Inline Styles

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

