Jesse Liberty

Rogers Cadenhead _A_

FIFTH EDITION
Starter Kit
CD includes
a fully-functional
C++ compiler

SamsTeach Yourself

C++

Jesse Liberty
Rogers Cadenhead

SamsTeach Yourself

C++

N
ours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself C++ in 24 Hours
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33331-6

ISBN-10: 0-672-33331-7

Printed in the United States of America
First Printing April 2011

Library of Congress Cataloging-in-Publication data is on file.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor in Chief
Mark Taub

Acquisitions Editor
Mark Taber
Development
Editor

Songlin Qiu
Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Keith Cline

Indexer
Lisa Stumpf

Proofreader
Leslie Joseph

Technical Editor
Jon Upchurch
Publishing
Coordinator
Vanessa Evans

Media Producer
Dan Scherf

Designer
Gary Adair

Compositor
Mark Shirar

Table of Contents

Introduction

Part I: Beginning C++

HOUR 1: Writing Your First Program
Using C++
Finding a Compiler
Compiling and Linking the Source Code

Creating Your First Program

HOUR 2: Organizing the Parts of a Program
Reasons to Use C++
The Parts of a Program
Comments

Functions

HOUR 3: Creating Variables and Constants
What Is a Variable?
Defining a Variable
Assigning Values to Variables
Using Type Definitions

Constants

HOUR 4: Using Expressions, Statements, and Operators
Statements
Expressions
Operators
If-Else Conditional Statements
Logical Operators

Tricky Expression Values

O O L O

10

15
15
19
22
23

29
29
33
35
36
37

43
43
44
45
53
56
58

iv

Sams Teach Yourself C++ in 24 Hours

HOUR 5: Calling Functions
What Is a Function?
Declaring and Defining Functions
Using Variables with Functions
Function Parameters
Returning Values from Functions
Default Function Parameters

Overloading Functions

HOUR 6: Controlling the Flow of a Program
Looping
while Loops
do-while Loops
for Loops

switch Statements

HOUR 7: Storing Information in Arrays and Strings

What Is an Array?

Writing Past the End of Arrays
Initializing Arrays
Multidimensional Arrays
Character Arrays

Copying Strings

Part II: Classes

HOUR 8: Creating Basic Classes
What Is a Type?
Creating New Types
Classes and Members
Accessing Class Members
Private Versus Public Access
Implementing Member Functions

Creating and Deleting Objects

63
63
64
66
69
70
72
74

81
81
81
85
86
90

97
97
99
100
101
104
106

111
111
112
112
114
115
116
118

v

Table of Contents

HOUR 9: Moving into Advanced Classes 125
const Member Functions 125
Interface Versus Implementation 126
Organizing Class Declarations and Function Definitions 126
Inline Implementation 127
Classes with Other Classes as Member Data 129

Part lll: Memory Management

HOUR 10: Creating Pointers 137
Understanding Pointers and Their Usage 137
The Stack and the Heap 146
HOUR 11: Developing Advanced Pointers 155
Creating Objects on the Heap 155
Deleting Objects 155
Accessing Data Members Using Pointers 157
Member Data on the Heap 158
The this Pointer 160
Stray or Dangling Pointers 161
const Pointers 162
const Pointers and const Member Functions 163
HOUR 12: Creating References 169
What Is a Reference? 169
Creating a Reference 170
Using the Address of Operator on References 171
What Can Be Referenced? 173
Null Pointers and Null References 174
Passing Function Arguments by Reference 174
Understanding Function Headers and Prototypes 179

Returning Multiple Values 179

vi

Sams Teach Yourself C++ in 24 Hours

HOUR 13: Developing Advanced References and Pointers 185
Passing by Reference for Efficiency 185
Passing a const Pointer 188
References as an Alternative to Pointers 191
When to Use References and When to Use Pointers 192
Don'’t Return a Reference to an Object That Isn’t in Scope! 193
Returning a Reference to an Object on the Heap 194
Pointer, Pointer, Who Has the Pointer? 196

Part IV: Advanced C++

HOUR 14: Calling Advanced Functions 201
Overloaded Member Functions 201
Using Default Values 203
Initializing Objects 205
The Copy Constructor 206

HOUR 15: Using Operator Overloading 215
Operator Overloading 215
Conversion Operators 225

Part V: Inheritance and Polymorphism

HOUR 16: Extending Classes with Inheritance 233
What Is Inheritance? 233
Private Versus Protected 236
Constructors and Destructors 238
Passing Arguments to Base Constructors 241
Overriding Functions 245

HOUR 17: Using Polymorphism and Derived Classes 253
Polymorphism Implemented with Virtual Methods 253

How Virtual Member Functions Work 257

vii

Table of Contents

HOUR 18: Making Use of Advanced Polymorphism 269
Problems with Single Inheritance 269
Abstract Data Types 273

HOUR 19: Storing Information in Linked Lists 289
Linked Lists and Other Structures 289
Linked List Case Study 290
Linked Lists as Objects 299

Part VI: Special Topics

HOUR 20: Using Special Classes, Functions, and Pointers 303
Static Member Data 303
Static Member Functions 305
Containment of Classes 307
Friend Classes and Functions 313

HOUR 21: Using New Features of C++0x 331
The Next Version of C++ 331
Null Pointer Constant 332
Compile-Time Constant Expressions 333
Auto-Typed Variables 335
New for Loop 338

HOUR 22: Employing Object-Oriented Analysis and Design 343
The Development Cycle 343
Simulating an Alarm System 344
PostMaster: A Case Study 351

HOUR 23: Creating Templates 373
What Are Templates? 373
Instances of the Template 374
Template Definition 374

Using Template Items 381

viii

Sams Teach Yourself C++ in 24 Hours

HOUR 24: Dealing with Exceptions and Error Handling
Bugs, Errors, Mistakes, and Code Rot
Handling the Unexpected
Exceptions
Using try and catch Blocks
Writing Professional-Quality Code

Part VII: Appendices

APPENDIX A: Binary and Hexadecimal
Other Bases
Around the Bases

Hexadecimal
APPENDIX B: Glossary
APPENDIX C: This Book’s Website

Index

389
389
390
391
395
400

409
410
410
414

419

427

429

About the Authors

Jesse Liberty is the author of numerous books on software development, including best-sell-
ing titles on C++ and .NET. He is the president of Liberty Associates, Inc. (http://www.lib-
ertyassociates.com), where he provides custom programming, consulting, and training.

Rogers Cadenhead is a writer, computer programmer, and web developer who has written
23 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days and Sams
Teach Yourself Java in 24 Hours. He publishes the Drudge Retort and other websites that
receive more than 22 million visits a year. This book’s official website is at
http://cplusplus.cadenhead.org.

Dedications

This book is dedicated to Edythe, who provided life; Stacey, who shares it; and Robin
and Rachel, who give it purpose.

—Jesse Liberty
This book is dedicated to my dad, who'’s currently teaching himself something a lot
harder than computer programming: how to walk again after spinal surgery. Through
the many months of rehab, you’ve been an inspiration. I've never known someone
with as much indefatigable determination to fix the hitch in his giddy-up.

—Rogers Cadenhead

http://www.libertyassociates.com
http://www.libertyassociates.com
http://cplusplus.cadenhead.org

Acknowledgments

With each book, there is a chance to acknowledge and to thank those folks without whose
support and help this book literally would have been impossible. First among them are
Stacey, Robin, and Rachel Liberty.

—TJesse Liberty

A book like this requires the hard work and dedication of numerous people. Most of them
are at Sams Publishing in Indianapolis, and to them I owe considerable thanks—in particu-
lar, to Keith Cline, Mandie Frank, Songlin Qiu, Mark Taber, and Jon Upchurch. Most of all, I
thank my incredible wife, Mary, and sons, Max, Eli, and Sam.

—Rogers Cadenhead

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write directly to let us know what you did or didn'’t like about this book, as
well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and contact information.

Email: feedback@samspublishing.com

Mail: Reader Feedback
Sams Publishing/Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Congratulations! By reading this sentence, you are already 20 seconds closer to
learning C++, one of the most important programming languages in the world.

If you continue for another 23 hours, 59 minutes, and 40 seconds, you will master
the fundamentals of the C++ programming language. Twenty-four 1-hour lessons
cover the fundamentals, such as managing 1/O, creating loops and arrays, using
object-oriented programming with templates, and creating C++ programs.

All of this has been organized into well-structured, easy-to-follow lessons. There are
working projects that you create—complete with output and an analysis of the
code—to illustrate the topics of the hour. Syntax examples are clearly marked for
handy reference.

To help you become more proficient, each hour ends with a set of common questions
and answers.

Who Should Read This Book?

You don'’t need any previous experience in programming to learn C++ with this book.

This book starts with the basics and teaches you both the language and the concepts
involved with programming C++. Whether you are just beginning or already have
some experience programming, you will find that this book makes learning C++ fast
and easy.

Should | Learn C First?

No, you don’t need to learn C first. C++ is a much more powerful and versatile lan-
guage that was created by Bjarne Stroustrup as a successor to C. Learning C first can
lead you into some programming habits that are more error-prone than what you’ll
do in C++. This book does not assume that readers are familiar with C.

Bxﬂg;—

ut!

DG

2

Sams Teach Yourself C++ in 24 Hours

Why Should | Learn C++?

You could be learning a lot of other languages, but C++ is valuable to learn
because it has stood the test of time and continues to be a popular choice for mod-
ern programming.

In spite of being created in 1979, C++ is still being used for professional software
today because of the power and flexibility of the language. There’s even a new ver-
sion of the language coming up, which has the working title C++0x and makes the
language even more useful.

Because other languages such as Java were inspired by C++, learning the language
can provide insight into them, as well. Mastering C++ gives you portable skills that
you can use on just about any platform on the market today, from personal comput-
ers to Linux and UNIX servers to mainframes to mobile devices.

What If | Don’t Want This Book?

I'm sorry you feel that way, but these things happen sometimes. Please reshelve this
book with the front cover facing outward on an endcap with access to a lot of the
store’s foot traffic.

Conventions Used in This Book

This book contains special elements as described here.

These boxes provide additional information to the material you just read.

These boxes focus your attention on problems or side effects that can occur in
specific situations.

These boxes give you tips and highlight information that can make your C++ pro-
gramming more efficient and effective.

3

Introduction

When you see this symbol, you know that what you see next will show the output
from a code listing/example.

This book uses various typefaces:

» To help you distinguish C++ code from regular English, actual C++ code is type-
set in a special monospace font.

> Placeholders—words or characters temporarily used to represent the real words
or characters you would type in code—are typeset in italic monospace.

> New or important terms are typeset in italic.

> In the listings in this book, each real code line is numbered. If you see an
unnumbered line in a listing, you’ll know that the unnumbered line is really a
continuation of the preceding numbered code line (some code lines are too
long for the width of the book). In this case, you should type the two lines as
one; do not divide them.

This page intentionally left blank

Creating Variables and
Constants

What You’ll Learn in This Hour:

» How to create variables and constants

> How to assign values to variables and change those values
» How to display the value of variables

»> How to find out how much memory a variable requires

What Is a Variable?

A variable is a location in computer memory where you can store and retrieve a
value. Your computer’s memory can be thought of as a series of cubbyholes lined up
in a long row. Each cubbyhole is numbered sequentially. The number of each cubby-
hole is its memory address.

Variables have addresses and are given names that describe their purpose. In a game
program, you could create a variable named score to hold the player’s score and a
variable named zombies for the number of zombies the player has defeated. A vari-
able is a label on a cubbyhole so that it can be accessed without knowing the actual
memory address.

Figure 3.1 shows seven cubbyholes with addresses ranging from 101 to 107. In address
104, the zombies variable holds the value 17. The other cubbyholes are empty.

30

FIGURE 3.1

A visual repre-

sentation of
memory.

HOUR 3: Creating Variables and Constants

101 102 103 104 105 106 107

zombies

Storing Variables in Memory

When you create a variable in C++, you must tell the compiler the variable’s name
and what kind of information it will hold, such as an integer, character, or floating-
point number. This is the variable’s type (sometimes called data type). The type tells
the compiler how much room to set aside in memory to hold the variable’s value.

Each cubbyhole in memory can hold 1 byte. If a variable’s type is 2 bytes in size, it
needs 2 bytes of memory. Because computers use bytes to represent values, it is
important that you familiarize yourself with this concept.

A short integer, represented by short in C++, is usually 2 bytes. A long integer (1ong)
is 4 bytes, an integer (int) can be 2 or 4 bytes, and a long long integer is 8 bytes.

Characters of text are represented by the char type in C++, which usually is 1 byte in
size. In Figure 3.1 shown earlier, each cubbyhole holds 1 byte. A single short integer
could be stored in addresses 106 and 107.

True-false values are stored as the bool type. The values true and false are the only
values it can hold.

The size of a short always is smaller than or the same as an int. The size of an int
is always the same or smaller than a long. Floating-point numeric types are different
and are discussed later this hour.

The usual type sizes thus far described do not hold true on all systems. You can check
the size a type holds in C++ using sizeof (), an element of the language called a
function. The parentheses that follow sizeof should be filled with the name of a
type, as in this statement:

std:cout << sizeof(int) << "\n";

What Is a Variable?

This statement displays the number of bytes required to store an integer variable.
The sizeof () function is provided by the compiler and does not require an include
directive. The Sizer program in Listing 3.1 relies on the sizeof () function to report
the sizes of common C++ types on your computer.

LISTING 3.1 The Full Text of Sizer.cpp

1: #include <iostream>

2:

3: int main()

4: {

5: std::cout << "The size of an integer:\t\t";

6: std::cout << sizeof(int) << " bytes\n";

7: std::cout << "The size of a short integer:\t";
8: std::cout << sizeof(short) << " bytes\n";

9: std::cout << "The size of a long integer:\t";
10: std::cout << sizeof(long) << " bytes\n";

11: std::cout << "The size of a character:\t";

12: std::cout << sizeof(char) << " bytes\n";

13: std::cout << "The size of a boolean:\t\t";

14: std::cout << sizeof(bool) << " bytes\n";

15: std::cout << "The size of a float:\t\t";

16: std::cout << sizeof(float) << " bytes\n";

17: std::cout << "The size of a double float:\t";
18: std::cout << sizeof(double) << " bytes\n";

19: std::cout << "The size of a long long int:\t";
20: std::cout << sizeof(long long int) << " bytes\n";
21:

22: return 0;

23: }

This program makes use of a new feature of C++0x, the next version of the language.
The long long int data type holds extremely large integers. If your compiler fails
with an error, it may not support this feature yet. Delete lines 19-20 and try again to
see if that’s the problem.

After being compiled, this program produces the following output when run on a
Linux Ubuntu 9.10 system:

The size of an integer: 4 bytes
The size of a short integer: 2 bytes
The size of a long integer: 4 bytes
The size of a character: 1 bytes
The size of a boolean: 1 bytes
The size of a float: 4 bytes
The size of a double float: 8 bytes
The size of a long long int: 8 bytes

Compare this output to how it runs on your computer. The sizeof () function
reveals the size of an object specified as its argument. For example, on line 16 the
keyword float is passed to sizeof (). As you can see from the output, on the
Ubuntu computer an int is equivalent in size to a long.

31

32

HOUR 3: Creating Variables and Constants

Signed and Unsigned Variables

All the integer types come in two varieties specified using a keyword. They are
declared with unsigned when they only hold positive values and signed when they
hold positive or negative values. Here’s a statement that creates a short int variable
called zombies that does not hold negative numbers:

unsigned short zombies = 0;

The variable is assigned the initial value 0. Both signed and unsigned integers can
equal O.

Integers that do not specify either signed or unsigned are assumed to be signed.

Signed and unsigned integers are stored using the same number of bytes. For this
reason, the largest number that can be stored in an unsigned integer is twice as big
as the largest positive number that a signed integer can hold. An unsigned short
can handle numbers from 0 to 65,535. Half the numbers represented by a signed
short are negative, so a signed short represents numbers from -32,768 to 32,767.
In both cases, the total number of possible values is 65,535.

Variable Types

In addition to integer variables, C++ types cover floating-point values and characters
of text.

Floating-point variables have values that can be expressed as decimal values. Char-
acter variables hold a single byte representing 1 of the 256 characters and symbols in
the standard ASCII character set.

Variable types supported by C++ programs are shown in Table 3.1, which lists the
variable type, the most common memory size, and the possible values that it can
hold. Compare this table to the output of the Sizer program when run on your com-
puter, looking for size differences.

TABLE 3.1 Variable Types

Type Size Values

unsigned short 2 bytes O to 65,535

short 2 bytes -32,768 to 32,767
unsigned long 4 pytes O to 4,294,967,295
long 4 bytes -2,147,483,648 to 2,147,483,647

int 4 bytes -2,147,483,648 to 2,147,483,647

Defining a Variable

TABLE 3.1 Continued

Type Size Values

unsigned int 4 bytes O to 4,294,967,295
long long int 8 bytes -9.2 quintillion to 9.2 quintillion

char 1 byte 256 character values
bool 1 byte true or false

float 4 bytes 1.2e-38 to 3.4e38
double 8 bytes 2.2e-308 to 1.8e308

The short and long variables also are called short int and long int in C++. Both
forms are acceptable in your programs.

As shown in Table 3.1, unsigned short integers can hold a value only up to 65,535,
while signed short integers can hold half that at maximum. Although unsigned
long long int integers can hold more than 18.4 quintillion, that’s still finite. If you
need a larger number, you must use float or double at the cost of some numeric
precision. Floats and doubles can hold extremely large numbers, but only the first 7
or 19 digits are significant on most computers. Additional digits are rounded off.

Although it’s considered poor programming practice, a char variable can be used as
a very small integer. Each character has a numeric value equal to its ASCII code in
that character set. For example, the exclamation point character (!) has the value 33.

Defining a Variable

A variable is defined in C++ by stating its type, the variable name, and a colon to
end the statement, as in this example:

int highScore;

33

34

HOUR 3: Creating Variables and Constants

More than one variable can be defined in the same statement as long as they share
the same type. The names of the variables should be separated by commas, as in
these examples:

unsigned int highScore, playerScore;
long area, width, length;

The highScore and playerScore variables are both unsigned integers. The second
statement creates three long integers: area, width, and length. Because these inte-
gers share the same type, they can be created in one statement.

A variable name can be any combination of uppercase and lowercase letters, num-
bers and underscore characters (_) without any spaces. Legal variable names include
x, drivers, and playerScore. C++ is case sensitive, so the highScore variable differs
from ones named highscore or HIGHSCORE.

Using descriptive variable names makes it easier to understand a program for the
humans reading it. (The compiler doesn’t care one way or the other.) Take a look at
the following two code examples to see which one is easier to figure out.

Example 1

main()

{
unsigned short x;
unsigned short y;
unsigned int z;

zZ =X *yj;

}

Example 2

main ()

{
unsigned short width;
unsigned short length;
unsigned short area;
area = width * length;

}

Programmers differ in the conventions they adopt for variable names. Some prefer
all lowercase letters for variable names with underscores separating words, such as
high_score and player_score. Others prefer lowercase letters except for the first let-
ter of new words, such as highScore and playerScore. (In a bit of programming
lore, the latter convention has been dubbed CamelCase because the middle-of-word
capitalization looks like a camel’s hump.)

Programmers who learned in a UNIX environment tend to use the first convention,
whereas those in the Microsoft world use CamelCase. The compiler does not care.

The code in this book uses CamelCase.

Assigning Values to Variables

With well-chosen variable names and plenty of comments, your C++ code will be
much easier to figure out when you come back to it months or years later.

Some compilers allow you to turn case sensitivity of variable names off. Do not
do this. If you do, your programs won’t work with other compilers, and other C++
programmers will make fun of you.

Some words are reserved by C++ and may not be used as variable names because they
are keywords used by the language. Reserved keywords include if, while, for, and
main. Generally, any reasonable name for a variable is almost certainly not a keyword.

Variables may contain a keyword as part of a name but not the entire name, so vari-
ables mainFlag and forward are permitted but main and for are reserved.

Assigning Values to Variables

A variable is assigned a value using the = operator, which is called the assignment
operator. The following statements show it in action to create an integer named
highScore with the value 13,000:

unsigned int highScore;
highScore = 13000;
A variable can be assigned an initial value when it is created:

unsigned int highScore = 13000;

This is called initializing the variable. Initialization looks like assignment, but when
you work later with constants, you’ll see that some variables must be initialized
because they cannot be assigned a value.

The Rectangle program in Listing 3.2 uses variables and assignments to compute the
area of a rectangle and display the result.

LISTING 3.2 The Full Text of Rectangle.cpp

1: #include <iostream>

2:

3: int main()

4: {

5: // set up width and length

6: unsigned short width = 5, length;

7 length = 10;

8:

9: // create an unsigned short initialized with the
10: // result of multiplying width by length
11: unsigned short area = width * length;
12:

13: std::cout << "Width: " << width << "\n";

14: std::cout << "Length: " << length << "\n";

35

WEt—

36

HOUR 3: Creating Variables and Constants

LISTING 3.2 Continued

15: std::cout << "Area: " << area << "\n'";
16: return 0;
17: }

This program produces the following output when run:

width: 5
Length: 10
Area: 50

Like the other programs you've written so far, Rectangle uses the #include directive
to bring the standard iostream library into the program. This makes it possible to
use std: :cout to display information.

Within the program’s main () block, on line 6 the variables width and length are cre-
ated and width is given the initial value of 5. On line 7, the length variable is given
the value 10 using the = assignment operator.

On line 11, an integer named area is defined. This variable is initialized with the
value of the variable width multiplied by the value of 1ength. The multiplication
operator * multiplies one number by another.

On lines 13-15, the values of all three variables are displayed.

Using Type Definitions

When a C++ program contains a lot of variables, it can be repetitious and error-prone
to keep writing unsigned short int for each one. A shortcut for an existing type
can be created with the keyword typedef, which stands for type definition.

A typedef requires typedef followed by the existing type and its new name. Here’s
an example:

typedef unsigned short USHORT

This statement creates a type definition named USHORT that can be used anywhere in
a program in place of unsigned short. The NewRectangle program in Listing 3.3 is
a rewrite of Rectangle that uses this type definition.

LISTING 3.3 The Full Text of NewRectangle.cpp

1: #include <iostream>

int main()
{
// create a type definition
typedef unsigned short USHORT;

// set up width and length
USHORT width = 5;

© 0 ~NOOAWN

Constants

10: USHORT length = 10;

11:

12: // create an unsigned short initialized with the
13: // result of multiplying width by length
14: USHORT area = width * length;

15:

16: std::cout << "Width: " << width << "\n";
17: std::cout << "Length: " << length << "\n";
18: std::cout << "Area: " << area << "\n";

19: return 0;

20: }

This program has the same output as Rectangle: the values of width (5), 1length (10),
and area (50).

On line 6, the USHORT typedef is created as a shortcut for unsigned short. A type def-
inition substitutes the underlying definition unsigned short wherever the shortcut
USHORT is used.

During Hour 8, “Creating Basic Classes,” you learn how to create new types in C++.
This is a different from creating type definitions.

Some compilers will warn that in the Rectangle2 program a “conversion may lose
significant digits.” This occurs because the product of the two USHORTS on line 14
might be larger than an unsigned short integer can hold. For this program, you
can safely ignore the warning.

Constants

A constant, like a variable, is a memory location where a value can be stored. Unlike
variables, constants never change in value. You must initialize a constant when it is
created. C++ has two types of constants: literal and symbolic.

A literal constant is a value typed directly into your program wherever it is needed.
For example, consider the following statement:

long width = 5;

This statement assigns the integer variable width the value 5. The 5 in the statement
is a literal constant. You can’t assign a value to 5, and its value can’t be changed.

The values true and false, which are stored in bool variables, also are literal
constants.

A symbolic constant is a constant represented by a name, just like a variable. The
const keyword precedes the type, name, and initialization. Here’s a statement that
sets the point reward for killing a zombie:

const int KILL_BONUS = 5000;

37

38

HOUR 3: Creating Variables and Constants

Whenever a zombie is dispatched, the player’s score is increased by the reward:

playerScore = playerScore + KILL_BONUS;

If you decide later to increase the reward to 10,000 points, you can change the con-
stant KILL_BONUS, and it will be reflected throughout the program. If you were to use
the literal constant 5000 instead, it would be more difficult to find all the places it is
used and change the value. This reduces the potential for error.

Well-named symbolic constants also make a program more understandable. Con-

stants often are fully capitalized by programmers to make them distinct from vari-
ables. This is not required by C++, but the capitalization of a constant must be con-
sistent because the language is case sensitive.

Defining Constants

There’s another way to define constants that dates back to early versions of the C
language, the precursor of C++. The preprocessor directive #define can create a con-
stant by specifying its name and value, separated by spaces:

#define KILLBONUS 5000

The constant does not have a type such as int or char. The #define directive
enables a simple text substitution that replaces every instance of KILLBONUS in the
code with 5000. The compiler sees only the end result.

Because these constants lack a type, the compiler cannot ensure that the constant
has a proper value.

Enumerated Constants

Enumerated constants create a set of constants with a single statement. They are
defined with the keyword enum followed by a series of comma-separated names sur-
rounded by braces:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement creates a set of enumerated constants named COLOR with five values
named RED, BLUE, GREEN, WHITE and BLACK.

The values of enumerated constants begin with 0 for the first in the set and count
upwards by 1. So RED equals O, BLUE equals 1, GREEN equals 2, WHITE equals 3, and
BLACK equals 4. All the values are integers.

Q&A

Constants also can specify their value using an = assignment operator:

enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

This statement sets RED to 100, GREEN to 500, and BLACK to 700. The members of the
set without assigned values will be 1 higher than the previous member, so BLUE
equals 101 and WHITE equals 501.

The advantage of this technique is that you get to use a symbolic name such as
BLACK or WHITE rather than a possibly meaningless number such as 1 or 700.

Summary

This hour covered how to work with simple kinds of information in C++ such as inte-
gers, floating-point values, and characters. Variables are used to store values that
can change as a program runs. Constants store values that stay the same—in other
words, they are not variable.

The biggest challenge when using variables is choosing the proper type. If you're
working with signed integers that might go higher than 65,000, you should store
them in a long rather than a short. If they might go higher than 2.1 billion, they're
too big for a long. If a numeric value contains decimal values, it must be either
float or double, the two floating-point types in the C++ language.

Another thing to keep in mind when working with variables is the number of bytes
they occupy, which can vary on different systems. The sizeof () function provided
by the compiler returns the number of bytes any variable type requires.

Q. If a short int can run out of room, why not always use long integers?

A. Both short integers and long integers will run out of room, but a long integer
will do so with a much larger number. On most computers, a long integer
takes up twice as much memory, which has become less of a concern because
of the memory available on modern PCs.

Q. What happens if | assign a number with a decimal to an integer rather than
a float or double? Consider the following line of code:

int rating = 5.4;

A. Some compilers issue a warning, but the assignment of a decimal value to an
integer type is permitted in C++. The number is truncated into an integer, so

39

HOUR 3: Creating Variables and Constants

the statement assigns the rating integer the value 5. The more precise infor-
mation is lost in the assignment, so if you tried to assign rating to a float
variable, it would still equal 5.

Q. Why should I bother using symbolic constants?

A. When a constant is used in several places in a program, a symbolic constant
enables all the values to change simply by changing the constant’s initializa-
tion. Symbolic constants also serve an explanatory purpose like comments. If a
statement multiplies a number by 360, it’s less easily understood than multi-
plying it by a constant named degreesInACircle that equals 360.

Q. Why did Jack Klugman have a 40-year feud with Norman Fell?

A. Klugman, the star of the TV shows Quincy M.E. and The Odd Couple, had a well-
publicized long-running spat with Fell, the star of Three’s Company and the
landlord on The Graduate. No one seems to know the cause, but it did not end
until Fell’s death in 1998.

The movie reference site IMDb quotes Fell as saying, “I could have killed as
Oscar. I would have been great as Quincy. I wouldn’t have been so hammy.
Klugman overacted every scene. You want the show to be good, pick me. You
want a chain-smoking jackass who ruins any credibility for your project, I'll
give you Klugman’s number.”

IMDb quotes Klugman as saying after Fell’s funeral, “Best funeral I've ever
been to. I've never laughed so hard in years. I had the time of my life.”

The two actors, born in Philadelphia two years apart, bear some resemblance
to each other and could have competed for the same roles over the decades
they were acting in films and television. In reality, however, they were not ene-
mies. As the blogger Tom Nawrocki found out in 2008, their feud was a shared
joke they played on the media.

Workshop

Now that you've learned about variables and constants, you can answer a few ques-
tions and do a couple of exercises to firm up your knowledge about them.

Workshop

Quiz

1. Why would you use unsigned over signed integers?
A. They hold more numbers.
B. They hold more positive numbers.
C. There’s no reason to prefer one over the other.

2. Are the variables ROSE, rose, and Rose the same?
A. Yes
B. No
C. None of your business

3. What is the difference between a #define constant and const?
A. Only one is handled by the preprocessor.
B. Only one has a type.

C. Bothaandb

Answers

1. B. Unsigned integers hold more positive values and cannot be used to hold
negative values. They hold the same number of values.

2. B. Because C++ is case sensitive, a ROSE is not a rose is not a Rose. Each refer-
ence is treated as a different variable by the compiler.

3. C. The preprocessor directive #define substitutes the specified value into your
code every place it appears in code. It does not have a data type and is invisi-
ble to the compiler. A constant, created with the keyword const, has a data
type and is handled by the compiler.

42

HOUR 3: Creating Variables and Constants

Activities
1. Create a program that uses constants for a touchdown (6 points), field goal (3
points), extra point (1 point), and safety (2 point) and then adds them in the

same order they were scored by the teams in the last Super Bowl. Display the
final score. (For extra credit, make the Indianapolis Colts win.)

2. Expand the Rectangle program so that it determines the area of a three-
dimensional rectangle that has width, length, and height. To determine the
area, use the multiplication operator * to multiply all three values.

To see solutions to these activities, visit this book’s website at http://cplusplus.

cadenhead.org.

http://cplusplus.cadenhead.org
http://cplusplus.cadenhead.org

Symbols

#, 26

#include preprocessor, 26

%, 46

() parentheses, 51, 59, 157

*/ (star-slash comments),
22, 26

/* (slash-star comments),
22,26

// (double slash comments),
22,26

* (asterisk), 171

* (dereference operator), 142
+ operator, 223

++ (plus-plus), 47

- - (minus-minus), 47

. (dot operator), 114

80/80 rule, PostMaster,
358-359

Index

= (assighment operator), 35

== (equality operator),
52,225

>passing by references, 185

A

abstract data types, 273-276
hierarchies, 280-284
virtual functions, 276-277

implementing, 277-280

abstraction, hierarchies,
280-284

abstracts, types, 284
access in code, 405
accessing
class members, 114
data members with
pointers, 157-158
members of contained
class, 312

430

accessors

accessors, 115
add() function, 25
adding
classes, simulating alarm
systems, 348

variables in C++, 49
addition operator, overload-
ing, 220-222
Addresser.cpp, 138
addresses, 143

of operators on refer-
ences, 171-173

pointers, 144-146

storing in pointers,
140-142

ADT (abstract data types), vir-
tual functions, 276

advanced for loops, 88
Alabama Crimson Tide, 407

alarm systems,
simulating, 344

adding more classes, 348

anaylsis and require-
ments, 345

conceptualization, 345

designing classes,
347-348

event loops, 348-350
high-level and low-level
design, 346
analysis, simulating alarm
systems, 345
AND operator, 56

Animal.cpp, 280-283
APIs (application program-
ming interfaces), 359
PostMaster, 359-361
Area.cpp, 65, 73
AreaCube program, 73
arguments, 23
functions, 24-25

passing to base
constructors, 241-245

ArrayFunction.cpp, 317-319
arrays, 97-99
accessing, 99
character, 104-106
initializing, 100
multidimensional,
101-102
initializing, 102-103
memory, 103

of pointers to functions,
317-319

peaks, 97
writing past the end of, 99

assigning values to variables,
35-36

assignment operator, 35, 229
assignment operators, 46

Assignment.cpp, 172,
224-225

asterisk (*), 171
auto keyword, 337

auto-typed variables, C++,
335-337

average(), 75

avoiding memory leaks,
150-151

bad luck, number 13, 108
Badger program, 85
Badger.cpp, 85
BadTeacher.cpp, 91

base 2, 412

base 10, 410-412

base class method, hiding,
247-249

base constructors, passing
arguments to, 241-245

base methods, calling,
249-250

Big Ten, 387

binary numbers, 409,
413-414

base 2, 412
bits, 413
black boxes, color of, 93
Box.cpp, 102
BoxMaker.cpp, 89
braces, code, 401-402
breaking out of loops, 83-84
BridgeKeeper.cpp, 105

bugs, 389-390

bulletproof programs, 390
Bushnel, R. G., 285

bytes, 413

C

C++, 5-6, 331

auto-typed variables,
335-337

compile-time constant
expressions, 333-335

errors, 333
for loop, 338

null pointer constants,
332-333

reasons for using, 15-16

styles of programming,
16-18

C++-style comment, 22. See
also double slash (//)
comment

C++0X, 331, 338

C-style comments, 22. See
also slash-star (/*) comments

Calculator, 25
Calculator.cpp, 24

calling base methods,
249-250

camel case, 404
capitalization in code, 404

carboxylic acid with
potassium ions, 369

case-sensitivity, variable
names, 35

catch statements, 396
catching exceptions, 395-396
by reference and polymor-
phism, 397-400
caught exceptions, 391
character arrays, 104-106
Circle.cpp, 334-335

class constructors,
writing, 211
class declarations,
organizing, 126
class definitions in code, 406
class keyword, 113

class members,
accessing, 114

class polymorphism, 19
Classe, A., 285
classes, 112, 134

adding simulating alarm
systems, 348

containment of, 307-312

accessing
members, 312

copying by value versus
reference, 313

filtering members,
312-313

declaring, 113

431

code

designing
PostMaster, 353-354

simulating alarm
systems, 347-348
friends, 313-314
objects, defining, 114
with other classes as

member data, 129,
132-133

private versus protected,
236-238

clown collete, 197
code

program text
guidelines, 403

spelling/capitalization,
404

writing professional-quality
code, 400-401

access, 405

braces, 401-402
class definitions, 406
comments, 404-405
const, 406

identifier names,
403-404

include files, 406

long lines, 402

program text, 403

spelling and capitaliza-
tion of names, 404

switch
statements, 402

How can we make this index more useful? Email us at indexes@samspublishing.com

432

code listings

code listings
driver programs, 367
polymorphic
exceptions, 400
Combat.cpp, 336-337
combining operators, 47
comments, 22-23
C++-style, 22
C-style, 22
double slash (//), 22, 26
in code, 404-405
slash-star (/*), 22, 26
star-slash (*/), 22, 26

compile-time constant
expressions, 333-335

compiler and linker, 6

compilers, 16
constructors, 120-122
finding, 6-9

compiling, 16
source code, 9-10

components of linked lists,
291-299

compound if statements,
54-56

compound statements, 44
computer memory, 137

conceptualization, simulating
alarm systems, 345

const
in code, 406

member functions,
125-126

reasons for using, 165

const member functions,
163-164

const pointers, 162-164

passing, 188-190
constant expressions, 334
Constantinople, 251
constants, 37-38

defining, 38

enumerated constants,

38-39

symbolic, 40
constexpr keyword, 335
ConstPasser.cpp, 188-190
ConstPointer.cpp, 163
constructors, 119

copy constructors,
206-210

default constructors, 119

inheritance, 238-240

passing arguments to,
241-245

provided by compilers,
120-122

virtual copy constructors,
261-264

containment of classes,
307-312

accessing members, 312

copying by value versus
reference, 313

filtering members,
312-313

continue statement, 84-85

continuing to the next loop,
84-85

conversion operators,
225-227

int(), 227-228
convert() function, 67-69
copies, shallow copies, 206
copy constructor, 229
copy constructors, 206-210
copying

by value versus reference,

contained class, 313

strings, 106-107
cost of virtual member func-
tions, 264

Coulier, Dave, 230
Counter.cpp, 216
Counter2.cpp, 217
Counter3.cpp, 219-220
Counter4.cpp, 221
Counterb.cpp, 225
Counter6.cpp, 226
Counter7.cpp, 227-228

dangling pointers, 161-162

data, manipulating with point-
ers, 143-144

data members, 113

accessing with pointers,
157-158

data types, 30

abstract, 273-276
DataMember.cpp, 158
decimal math, 409
declaring

classes, 113

functions, 64-65

on the heap, 165
decrement operators, 47
DeepCopy.cpp, 207-209
default constructors, 119

default function parameters,
72-74

default values, 203-204
defining
functions, 65-66
objects, 114

delegation of responsibilities,
linked lists, 291

delete keyword, 148-150

deleting objects, 118-119
from heap, 155-157

dereference operator (*), 142

dereferencing, 317
derivation
inheritance and, 234
syntax of, 235-236
designing
classes
PostMaster, 353-354

simulating alarm sys-
tems, 347-348

interfaces, PostMaster,
356-358

PostMaster, ongoing
design considerations,
361-362

PostMasterMessage
class, 359

destructors, 119
inheritance, 238-240
virtual destructors, 261

development cycle, 343-344

Diogenes, 301

Disney World, 183

dividing up projects,

PostMaster, 352-353

do-while loops, 85-86

dot operator (.), 114

double slash (//) comments,
22,26

doubly linked lists, 290
drawShape() function, 202

driver programs, PostMaster,
362-368

433

exceptions

Driver.cpp, 362-368
Dusky Seaside Sparrow, 183

editing Path, G++, 8
elements, arrays, 97
else keyword, 53-54
Employee.cpp, 310-312
encapsulation, 112, 347

object-oriented

programming, 18

enumerated constants, 38-39
equality operator (==), 225
errors, 390

arrays, 99

C++, 333

event loops, simulating alarm
systems, 348-350

exception handling, 390-391
Exception.cpp, 392-395
exceptions, 148, 390-391
how they are used,
391-395
polymorphic, 400
try blocks, 395
catching exceptions,
395-396
catching exceptions by
reference and poly-
morphism, 397-400

How can we make this index more useful? Email us at indexes@samspublishing.com

434

Expression.cpp

Expression.cpp, 45
expressions, 44-45
values, 58

F

factor(), 180

Favre, Henri, 369
Fell, Norman, 40
fence post error, 99
Fifteens program, 84
Fifteens.cpp, 84

filtering members of con-
tained class, 312-313

findArea() function, 65-66, 74
finding compilers, 6-9
for loops, 86-88

advanced, 88

C++, 338
Fourteens program, 83
Fourteens.cpp, 83
friend classes, 313-314
friend functions, 314

arrays of pointers,
317-319

arrays of pointers to mem-
ber functions, 325-326

passing pointers to,
319-322

pointers to, 314-317

pointers to member func-
tions, 322-325

typedef with pointers to
functions, 322

function arguments, 26

passing by reference,
174-176

function definitions,
organizing, 126
function headers, 179
function names, 24
function overloading, 74-75
inline functions, 75-76
function parameters, 26
function pointers, 314-317
function polymorphism, 74
function prototypes, 179
functional polymorphism, 19
FunctionOne(), 188
FunctionPasser.cpp, 319-322
FunctionPointer.cpp, 315-317
functions, 21-24, 63
add(), 25
arguments, 24-25
average(), 75
convert(), 67-69
declaring, 64-65
defining, 65-66
drawShape(), 202
factor(), 180
findArea(), 65-66, 74

friends, 314

arrays of pointers,
317-319

arrays of pointers to
member functions,
325-326

passing pointers to
functions, 319-322

pointers, 314-317

pointers to member
functions, 322-325

typedef with pointers to

functions, 322
FunctionOne(), 188
FunctionTwo(), 188
getSpeed(), 125, 134
inline, 75-76
isLeapYear(), 72
main(), 25, 63
operator++(), 219

overriding inheritance,
245-247

parameters, 69-70
default, 72-74

returning values from,

70-72

setSpeed(), 125

signature, 245

sizeof(), 30

someFunc()265

store(), 74

stubbing out, 235

swap(), 70, 176-177
TheFunction(), 194
variables
global variables, 68-69
local variables, 66-68
virtual functions, 276-277
implementing, 277-280
virtual member functions,
how they work, 257-258

FunctionTwo(), 188

G++,7
editing Path, 8
getSpeed() definition, 127
getSpeed() function, 125, 134
gigabytes, 413
global variables, 76
functions, 68-69
Global.cpp, 68
gnomes, 123
gnoming, 123
gold, panning for in U.S., 387
Grader.cpp, 53
Granholm, Jackson W., 27
grasshopper ice cream, 134
Griebel, Phillip, 123

handling the unexpected,
390-391

Hayes, Woody, 327
head nodes, 289
heap, 146-148, 152

avoiding memory leaks,
150-151

declarations on, 165
delete keyword, 148-150
member data, 158-159
new keyword, 148
objects
creating, 155
deleting, 155-157

returning references to
objects, 194-196

Heap.cpp, 149
HeapAccessor.cpp, 157
HeapCreator.cpp, 156

hexadecimal numbers, 409,
414-417

hiding base class method,
247-249

hierarchies

abstract data types,
280-284
rooted versus nonrooted,
354-356
high-level design, simulating
alarm systems, 346
horseradish hot, 211

435

infinite loops

IDE (integrated development
environments), 12

identifier names, code,
403-404

identifiers, naming
guidelines, 403

if statements, compound,
54-56

If-Else conditional
statements, 53

compound if statements,
54-56
else clause, 53-54
implementation
inline, 127-129

member functions,
116-118

polymorphism with virtual
methods, 253-257

swap() with references,
177-178

virtual functions, abstract
data types, 277-280

include files, 20, 406

increment methods, writing
for operator overloading,
217-218

increment operators, 47
indirection operators, 142
infinite loops, 82

How can we make this index more useful? Email us at indexes@samspublishing.com

436

inheritance

inheritance, 233

animals and, 234

constructors, 238-240

derivation and, 234-236

destructors, 238-240

object-oriented program-
ming, 18

overriding functions,
245-247

potential problems, 270

single inheritance, prob-
lems with, 269-273

initializing
arrays, 100

multidimensional arrays,
102-103

objects, 205
initializing variables, 35
inline functions, 75-76

inline implementation,
127-129

inline keyword, 127
instance variables, 113
instances, templates, 374
instantiation, objects, 374
int() operator, 227-228
integrated development envi-
ronments (IDE), 12
interfaces, designing for
PostMaster, 356-358

International Code of

Zooilogical Nomenclature, 59

interpreters, 16

isLeapYear() function, 72

Istanbul, 251
iteration, 81

J

jostream files, 20

K

KB, 413

keywords
auto, 337
class, 113
constexpr, 335
delete, 148-150
inline, 127
new, 148

kings, 152

kludge, 26

Klugman, Jack, 40

L

late binding, 257

lawn gnomes, 123
Leak.cpp, 194

LeapYear program, 70-71
LeapYear.cpp, 70

limitations on operator over-
loading, 222

linked lists, 289
allocating, 296
as objects, 299-300
components, 291-299
delegation of
responsibilities, 291
infinite loops, 296
singly linked, 290
LinkedList.cpp, 291-295
linking source code, 9-10
listings
Animal.cpp, 280-283
Area.cpp, 65, 73

ArrayFunction.cpp,
317-319

Assignment.cpp, 172,
224-225

Badger.cpp, 85
BadTeacher.cpp, 91
Box.cpp, 102
BoxMaker.cpp, 89
BridgeKeeper.cpp, 105

Calculator.cpp, 24
Circle.cpp, 334-335
Combat.cpp, 336-337
ConstPasser.cpp, 188-190
ConstPointer.cpp, 163
Counter.cpp, 216
Counter2.cpp, 217
Counter3.cpp, 219-220
Counter4.cpp, 221
Counterb.cpp, 225
Counter6.cpp, 226
Counter7.cpp, 227-228
DeepCopy.cpp, 207-209
Driver.cpp, 362-368
Employee.cpp, 310-312
Exception.cpp, 392-395
Expression.cpp, 45
Fifteens.cpp, 84
Fourteens.cpp, 83

FunctionPasser.cpp,
319-322

FunctionPointer.cpp,
315-317

Global.cpp, 68
Grader.cpp, 53
Heap.cpp, 149
HeapAccessor.cpp, 157
HeapCreator.cpp, 156
Leak.cpp, 194
LeapYear.cpp, 70

LinkedList.cpp, 291-295
Mammalil.cpp, 235
Mammal2.cpp, 237-238
Mammal3.cpp, 239-240
Mammal4.cpp, 241-243
Mammal5.cpp, 246
Mammal6.cpp, 247
Mammal7.cpp, 249-250
Mammal8.cpp, 254-255
Mammal9.cpp, 255-257
Mammal10.cpp, 259-260
Mammalll.cpp, 261-263
Mammall2.cpp, 269-270
Mammall13.cpp, 271-272

MemberPointer.cpp,
322-325

Motto.cpp, 10, 19
MPFunction.cpp, 325-326
MultTable.cpp, 87
NewGrader.cpp, 54
NewRectangle.cpp, 36
NewTricycle.cpp, 120
ObjectRef.cpp, 186-187
ParamList.cpp, 375-381
Pointer.cpp, 143
PointerCheck.cpp, 144
PointerSwap.cpp, 176
PolyException.cpp,
397-400
PostMasterMessage.cpp,
360-361

437

listings

Rectangle.cpp, 35, 130,
201-202

Rectangle.hpp, 129
Rectangle2.cpp, 203-204
Reference.cpp, 170
Reference2.cpp, 171
ReferenceSwap.cpp, 177
RefPasser.cpp, 191-192
ReturnPointer.cpp, 179
ReturnRef.cpp, 193-194
ReturnReference.cpp, 181
Shape.cpp, 273-275
Shape2.cpp, 277-280
SimpleEvent.cpp, 348-350
Sizer.cpp, 31
StaticCat.cpp, 304

StaticFunction.cpp,
305-306

String.hpp, 307-310
StringCopier.cpp, 106
Swapper.cpp, 332-333
Temperature.cpp, 66
TemplateList.cpp, 381-386
Thirteens.cpp, 82
This.cpp, 160

Tricycle.cpp, 116-117, 128
Tricycle.hpp, 127
ValuePasser.cpp, 175
WeightGoals.cpp, 98
Years.cpp, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

438

local variables, functions

local variables, functions,
66-68

logical operators

Mammal5.cpp, 246
Mammal6.cpp, 247
Mammal7.cpp, 249-250

delete keyword,
148-150

new keyword, 148

AND, 56 Mammal8.cpp, 254-255 heap. See heap

NOT, 56-57 Mammal9.cpp, 255-257 multidimensional

OR, 56-57 Mammal10.cpp, 259-260 arrays, 103

relational precedence, Mammal11.cpp, 261-263 stack, 146-148

57-58 Mammal12.cpp, 269-270 avoiding memory leaks,
long lines of code, 402 Mammal13.cpp, 271-272 150-151
looping, 81 . . . - delete keyword,
manipulating data with point: 148150

loops ers, 143-144
breaking out of, 83-84

continuing to the next,
84-85

do-while loops, 85-86

for loops, 86-88
advanced, 88
C++, 338

nested loops, 89-90

while loops, 81-83

low-level design, simulating
alarm systems, 346

k rd, 148
mathematical operators, 46 new keyword,

member data storing variables in, 30-31
classes as, 129, 132-133
heap, 158-159

member functions

memory leaks, avoiding,
150-151

message format,
PostMaster, 353

arrays of pointers to, methods

325-326
const, 125-126, 163-164
implementing, 116-118
overloaded, 201-203
pointers to, 322-325
member variables, 113-114

private versus public
M access, 115

MemberPointer.cpp, 322-325
members, 112

base class method,
hiding, 247-249

base method, calling,
249-250

virtual methods, imple-
menting polymorphism,
253-257
MinGW, 7
mistakes, 390
modulus operator, 46
Morissette, Alanis, 229
Motto.cpp, 10, 19
source code, 21-22
MPFunction.cpp, 325-326

machine language, 15
main() function, 23-25, 63
Mammaldl.cpp, 235
Mammal2.cpp, 237-238
Mammal3.cpp, 239-240
Mammal4.cpp, 241-243

memory, 137
heap, 146-148

avoiding memory leaks,
150-151

multidimensional arrays,
101-102

initializing, 102-103

memory, 103
MultTable program, 87
MultTable.cpp, 87

naming animals, 59
Nawrocki, Tom, 40
negative nhumbers, 59
nested loops, 89-90
new keyword, 148
NewGrader program, 55
NewGrader.cpp, 54
NewRectangle.cpp, 36
NewTricycle.cpp, 120
No. 1 pencils, 77
nodes, 289

inserting, 297
non-pointers, 141

non-rooted hierarchies versus
rooted hierarchies, 354-356

NOT operator, 56-57
NULL, 159

null pointer constants,
332-333

null pointers, 148, 174
null references, 174

numbers

base 10, 410-412

base 2, 412

binary numbers, 412-414

base 2, 412

bits, 413

bytes, 413

gigabytes, 413

hexadecimal numbers,
414-417

KB, 413
nybbles, 413
nybbles, 413

o

object code, 16

object-oriented programming
(O0P), 18, 122

encapsulation, 18

inheritance and reuse, 18

polymorphism, 19
ObjectRef.cpp, 186-187
objects

creating, 118-119

creating on heap, 155

defining, 114

deleting, 118-119

deleting from heap,
155-157

439

operators

initializing, 205
linked lists as, 299-300

on the heap, returning
references to, 194-196

references, 174

returning references to,
193-194

Ohio College of Clowning
Arts, 197

OOP (object-oriented pro-
gramming), 18, 122

encapsulation, 18
inheritance and reuse, 18
polymorphism, 19
operator overloading,
215-217

addition operator,
220-222

limitations, 222
operator=(), 223-225
postfix operator, 219-220

writing increment
methods, 217-218

operator++() member
function, 219

operator=(), 223-225
operators, 45

addition operator, over-
loading, 220-222

assignment operators, 46
combining, 47

How can we make this index more useful? Email us at indexes@samspublishing.com

440

operators

conversion operators,
225-227

int(), 227-228
decrement, 47
dynamic cast, 273
equality (==), 225
increment, 47
indirection operator, 142
indirection (*), 142
logical operators
AND, 56
NOT, 56-57
OR, 56-57
relational precedence,
57-58
mathematical
operators, 46

pointers, 142
postfix, 48-49
overloading, 219-220
precedence, 49-51
prefix, 48-49
relational, 51-52
OR operator, 56-57
organizing class
declarations and function
definitions, 126
overloaded member
functions, 201-203

default values, 210

overloading
functions, 74-75
inline functions, 75-76

operators. See operator
overloading

versus overriding, 247
overriding

functions, inheritance,
245-247

versus overloading, 247

P-Q

parameterized List objects,
declaring (templates),
374, 381

parameters, functions, 69-70
default, 72-74
ParamlList.cpp, 375-381
parentheses (), 51, 59, 157
passing
arguments to base con-
structors, 241-245

const pointers, 188-190
function arguments by ref-
erence, 174-176
passing by references,
185-188
passing pointers to functions,
319-322

Path, editing, 8

peaks array, 97

pencils, No. 1, 77
photography, red eyes, 165
Pointer.cpp, 143
PointerCheck.cpp, 144
pointers, 137-140, 143

accessing data members,
157-158

addresses, 144-146
const, 162-164
passing, 188-190

dangling pointers,
161-162

to functions, 314-317
arrays, 317-319
indirection operators, 142

manipulating data,
143-144

to member functions,
322-325

arrays, 325-326
null, 148, 174
owner of, 196

passing to functions,
319-322

reasons for using, 146

references as alternatives,
191-192

storing addresses,
140-142

storing memory
addresses, 161

stray, 161-162
swap(), 176-177
this, 160-161

typedef with pointers to
functions, 322

when to use, 192
wild, 141
PointerSwap.cpp, 176
PolyException.cpp, 397-400
polymorphism
catching exceptions,
397-400

implementing with virtual
methods, 253-257

object-oriented
programming, 19

virtual methods, 257
postfix operators, 48-49

overloading, 219-220
PostMaster, 351

80/80 rule, 358-359

APIs, 359-361

design considerations,
361-362

designing
interfaces, 356-358
PostMasterMessage
class, 359
dividing projects up,
352-353

driver programs, 362-368

initial class design,
353-354

message format, 353

programming in large
groups, 361

prototypes, building, 358

rooted hierarchies versus
non-rooted, 354-356

PostMaster Professional, 351

PostMasterMessage class,
designing, 359

PostMasterMessage.cpp,
360-361

precedence, operators, 49-51
prefix operators, 48-49
preprocessor directives, 20-21

private versus protected,
236-238

private access versus public
access, 115-116

problem space, 346

problems with single inheri-
tance, 269-273

professional-quality code,
writing
access, 405
braces, 401-402
class definitions, 406
comments, 404-405
const, 406

441

red eyes in photographs

identifier names, 403-404
include files, 406

long lines, 402

program text, 403

spelling and capitalization
of names, 404
switch statements, 402
program text, code, 403
programming large groups,
PostMaster, 361
programming languages,
machine language, 15
programming styles, 16-18
programs
build/buy question, 356
creating, 10-11
high-level, 346

protected versus private,
236-238

prototypes, building for
PostMaster, 358

public access versus private
access, 115-116

Rectangle.cpp, 35, 130,
201-202

Rectangle.hpp, 129
Rectangle2.cpp, 203-204
red eyes in photographs, 165

How can we make this index more useful? Email us at indexes@samspublishing.com

442

Reference.cpp

Reference.cpp, 170
Reference2.cpp, 171
references, 169

address of operators,
171-173

as alternatives to
pointers, 191-192

catching exceptions,
397-400

creating, 170-171

determining what can be
referenced, 173-174

implementing swap(),
177-178

null references, 174

passing by, 185-188

passing function argu-
ments, 174-176

returning multiple values,
179-181

returning to objects,
193-194

returning to objects on the

heap, 194-196
returning values, 181-182
when to use, 192

ReferenceSwap.cpp, 177
RefPasser.cpp, 191-192
relational operators, 51-52
relational precedence, 57-58

requirements, simulating
alarm systems, 345

responsibilities, delegation of
(linked lists), 291

return statements, 24
returning

references to objects,
193-194

references to objects on
the heap, 194-196

values by reference,
181-182

returning values from func-
tions, 70-72

ReturnPointer program, 181

ReturnPointer.cpp, 179

ReturnRef.cpp, 193-194

ReturnReference.cpp, 181

returnType, 217

reuse, object-oriented pro-
gramming, 18

rooted hierarchies versus non-

rooted hierarchies, 354-356

Rudolph the Red-Nosed
Reindeer, 265

runtime binding, 257

S

semicolon, 44
setSpeed() function, 125
shallow copies, 206
Shape.cpp, 273-275

Shape2.cpp, 277-280
signatures, 24

functions, 245
signed short integers, 33
signed variables, 32
Silbo Gomero, 285
SimpleEvent.cpp, 348-350
simulations, 344

simulating alarm
systems, 344

adding more classes, 348

analysis and
requirements, 345

conceptualization, 345

designing classes,
347-348

event loops, 348-350

high-level and low-level
design, 346

single inheritance, problems
with, 269-273

singly linked lists, 290
sizeof(), 30
Sizer.cpp, 31

slash-star (/*) comments,
22,26

slicing virtual member func-
tions, 259-261

solution space, 346
someFunc(), 265

source code
compiling and linking,
9-10
Motto.cpp, 21-22
spelling in code, 404
stack, 146-148

avoiding memory leaks,
150-151

delete keyword, 148-150
new keyword, 148

star-slash (*/) comments,
22,26
statements, 43
compound statements, 44
continue, 84-85
if-else, 53
compound if state-
ments, 54-56

else clause, 53-54
switch, 90-92
whitespace, 43-44
static member data, 303-305

static member functions,
305-307

StaticCat.cpp, 304
StaticFunction.cpp, 305-306
store() function, 74
storing
addresses in pointers,
140-142

variables in memory,
30-31

stray pointers, 161-162
strcpy(), 106

String.hpp, 307-310
StringCopier.cpp, 106
strings, copying, 106-107
strncpy(), 106

Stroustrop, Bjarne, 5, 338
Strupper, Everett, 407
stubbing out, 235

styles of programming, 16-18
swap() function, 70

implementing with refer-
ences, 177-178

swap() pointers, 176-177
Swapper.cpp, 332-333
switch statements,

90-92, 402
switch-case conditional, 93
symbolic constants, 40

T

tail nodes, 289

Temperature.cpp, 66

template items, 381-386

TemplateList.cpp, 381-386

templates, 373-374
defined, 374-381
instances, 374
passing, 386

443

use cases

text editors, 12

TheFunction(), 194

Thirteens program, 82

Thirteens.cpp, 82

this pointer, 160-161
creating, 161

This.cpp, 160

thrown exceptions, 391

Tricycle.cpp, 116-117, 128

Tricycle.hpp, 127

try blocks, 392, 395

catching exceptions,
395-396

by reference and poly-
morphism, 397-400

throwing, 391
type definitions, 36-37
typedef, 36-37

pointers to functions, 322
types, 111

creating new, 112

U

UML (Unified Modeling
Language), 345

unsigned short integers, 33
unsigned variables, 32
use cases, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

444

v-pointers

'/

v-pointers, 258
ValuePasser.cpp, 175
values

assigning to variables,
35-36

default values, 203-204
expressions, 58

returning by reference,
181-182

returning from functions,
70-72
returning multiple values,
references, 179-181
variable types, 32-33
variables, 29, 143
adding to C++, 49
assigning values to, 35-36

auto-typed variables,
335-337

classes, 113

defining, 33-35

global, 76
functions, 68-69

local variables, functions,
66-68

signed, 32

storing in memory, 30-31
unsigned, 32

variable types, 32-33

virtual copy constructors,
virtual member functions,
261-264

virtual destructors, virtual
member functions, 261

virtual functions, 276-277

implementing, 277-280
virtual member
functions, 258

cost of, 264

how they work, 257-258

slicing, 259-261

virtual copy constructors,

261-264

virtual destructors, 261

virtual methods, implement-
ing polymorphism, 253-257

virtual table pointers, 258

vptr (virtual table
pointers), 258

W-X

warning messages, 12
Washington, George, 152
waterfall technique, 343
WeightGoals.cpp, 98
while loops, 81-83
whitespace, 43-44, 59
wild pointers, 140, 332
word processors, 12

writing
class constructors, 211

increment methods, opera-
tor overloading, 217-218

past the end of arrays, 99

professional-quality code,
400-401

access, 405

braces, 401-402
class definitions, 406
comments, 404-405
const, 406

identifier names,
403-404

include files, 406
long lines, 402
program text, 403
spelling and capitaliza-
tion, 404
switch
statements, 402

Y-Z

Years.cpp, 48
“You Oughta Know,” 229

	Table of Contents
	Introduction
	HOUR 3: Creating Variables and Constants
	What Is a Variable?
	Defining a Variable
	Assigning Values to Variables
	Using Type Definitions
	Constants

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W-X
	Y-Z

