In Full Color
John Ray

SamsTeach Yourself

iPhone
Application
Development

Second Edition

John Ray

Sams Teach Yourself

iPhone’
Application

Development
TR \“\\\\\“\“\“\“\N“\“N\“““NNNNNNWW“N

Second Edition

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself iPhone Application Development in 24 Hours
Second Edition
Copyright © 2011 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33220-3
ISBN-10: 0-672-33220-5
Library of Congress Cataloging-in-Publication Data:
Ray, John, 1971-

Sams teach yourself iPhone application development in 24 hours / John Ray. — 2nd ed.

p. cm.

ISBN 978-0-672-33220-3

1. iPhone (Smartphone)—Programming. 2. Application software—Development. . Title. II. Title:
Teach yourself iPhone application development in 24 hours. lll. Title: iPhone application develop-
ment in 24 hours.

QA76.8.164R39 2011

005.26—dc22

2010035798

Printed in the United States of America
First Printing October 2010

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Associate
Publisher

Greg Wiegand

Acquisitions Editor
Laura Norman

Development
Editor

Keith Cline

Managing Editor
Sandra Schroeder

Senior Project
Editor

Tonya Simpson

Copy Editor
Keith Cline

Indexer
Brad Herriman

Proofreader
Language Logistics,
LLC

Technical Editor
Matthew David

Publishing
Coordinator

Cindy Teeters

Designer
Gary Adair

Compositor
TnT Design, Inc.

Contents at a Glance

Introduction

HOUR 1 Preparing your System and iPhone for Development
Introduction to Xcode and the iPhone Simulator
Discovering Obijective-C: The Language of Apple Platforms
Inside Cocoa Touch

Exploring Interface Builder

Model-View-Controller Application Design

Working with Text, Keyboards, and Buttons

Handling Images, Animation, and Sliders

© 0 N O 6 A~ WN

Using Advanced Interface Objects and Views
Getting the User’s Attention
Making Multivalue Choices with Pickers

R R R
N B ©

Implementing Multiple Views with Toolbars and Tab Bars

(Y
w

Displaying and Navigating Data Using Table Views

[
Y

Reading and Writing Application Data

(Y
o

Building Rotatable and Resizable User Interfaces

[
»

Using Advanced Touches and Gestures

%Y
~y

Sensing Orientation and Motion
Working with Rich Media
Interacting with Other Applications

N BB
© © ™

Implementing Location Services

N
[

Building Background-aware Applications

N
N

Building Universal Applications

N
W

Application Debugging and Optimization

N
S

Distributing Applications Through the App Store

Index

Table of Contents

Introduction
Who Can Become an iPhone Developer?
Who Should Use This Book?
What Is (and Isn’t) in This Book?

HOUR 1: Preparing Your System and iPhone for Development
Welcome to the iOS Platform
Becoming an iOS Developer
Creating a Development Provisioning Profile
Developer Technology Overview
Summary
Q&A
Workshop

HOUR 2: Introduction to Xcode and the iPhone Simulator
Using Xcode
Using the iPhone Simulator
Further Exploration
Summary
Q&A
Workshop

HOUR 3: Discovering Objective-C: The Language of Apple Platforms
Object-Oriented Programming and Objective-C
Exploring the Obijective-C File Structure
Objective-C Programming Basics
Memory Management
Further Exploration
Summary
Q&A
Workshop

NS S

w

12
23
25
25
26

27
27
45
50
50
51
51

53
53
58
64
74
77
77
78
79

HOUR 4: Inside Cocoa Touch 81

What Is Cocoa Touch? 81
Exploring the iOS Technology Layers 83
Tracing the iPhone Application Life Cycle 88
Cocoa Fundamentals 90
Exploring the iOS Frameworks with Xcode 98
Summary 102
Q&A 102
Workshop 103
HOUR 5: Exploring Interface Builder 105
Understanding Interface Builder 105
Creating User Interfaces 110
Customizing Interface Appearance 115
Connecting to Code 119
Further Exploration 126
Summary 127
Q&A 127
Workshop 128
HOUR 6: Model-View-Controller Application Design 129
Understanding the Model-View-Controller Paradigm 129
How Xcode and Interface Builder Implement MVC 131
Using the View-Based Application Template 135
Further Exploration 148
Summary 149
Q&A 149
Workshop 150
HOUR 7: Working with Text, Keyboards, and Buttons 151
Basic User Input and Output 151
Using Text Fields, Text Views, and Buttons 153
Setting Up the Project 154

Further Exploration 176

vi

Sams Teach Yourself iPhone Application Development in 24 Hours

Summary 177
Q&A 177
Workshop 178
HOUR 8: Handling Images, Animation, and Sliders 179
User Input and Output 179
Creating and Managing Image Animations and Sliders 181
Further Exploration 196
Summary 197
Q&A 197
Workshop 198
HOUR 9: Using Advanced Interface Objects and Views 199
User Input and Output (Continued) 199
Using Switches, Segmented Controls, and Web Views 204
Using Scrolling Views 221
Further Exploration 227
Summary 227
Q&A 228
Workshop 228
HOUR 10: Getting the User'’s Attention 231
Exploring User Alert Methods 231
Generating Alerts 235
Using Action Sheets 245
Using Alert Sounds and Vibrations 249
Further Exploration 253
Summary 254
Q&A 254
Workshop 255
HOUR 11: Making Multivalue Choices with Pickers 257
Understanding Pickers 257

Using Date Pickers 261

vii

Table of Contents

Implementing a Custom Picker View 270
Further Exploration 289
Summary 290
Q&A 290
Workshop 291
HOUR 12: Implementing Multiple Views with Toolbars and Tab Bars 293
Exploring Single Versus Multi-View Applications 293
Creating a Multi-View Toolbar Application 295
Building a Multi-View Tab Bar Application 307
Further Exploration 326
Summary 327
Q&A 327
Workshop 328
HOUR 13: Displaying and Navigating Data Using Table Views 329
Understanding Table Views and Navigation Controllers 329
Building a Simple Table View Application 332
Creating a Navigation-Based Application 344
Further Exploration 359
Summary 359
Q&A 360
Workshop 360
HOUR 14: Reading and Writing Application Data 363
Design Considerations 363
Reading and Writing User Defaults 366
Understanding the iPhone File System Sandbox 381
Implementing File System Storage 384
Further Exploration 404
Summary 405
Q&A 405

Workshop 406

viii

Sams Teach Yourself iPhone Application Development in 24 Hours

HOUR 15: Building Rotatable and Resizable User Interfaces 407
Rotatable and Resizable Interfaces 407
Creating Rotatable and Resizable Interfaces with Interface Builder 411
Reframing Controls on Rotation 416
Swapping Views on Rotation 423
Further Exploration 429
Summary 430
Q&A 430
Workshop 431

HOUR 16: Using Advanced Touches and Gestures 433
Multitouch Gesture Recognition 434
Using Gesture Recognizers 435
Further Exploration 448
Summary 449
Q&A 449
Workshop 449

HOUR 17: Sensing Orientation and Motion 451
Understanding iPhone Motion Hardware 451
Accessing Orientation and Motion Data 454
Sensing Orientation 458
Detecting Tilt and Rotation 462
Further Exploration 471
Summary 472
Workshop 473

HOUR 18: Working with Rich Media 475
Exploring Rich Media 475
Preparing the Media Playground Application 478
Using the Movie Player 482
Creating and Playing Audio Recordings 486

Using the Photo Library and Camera 492

Accessing and Playing the iPod Library
Further Exploration

Summary

Q&A

Workshop

HOUR 19: Interacting with Other Applications

Extending Application Integration

Using Address Book, Email, and Maps... Oh My!
Further Exploration

Summary

Q&A

Workshop

HOUR 20: Implementing Location Services

Understanding Core Location

Creating a Location-Aware Application
Understanding the Magnetic Compass
Further Exploration

Summary

Q&A

Workshop

HOUR 21.: Building Background-Aware Applications

Understanding iOS 4 Backgrounding
Disabling Backgrounding

Handling Background Suspension
Implementing Local Notifications

Using Task-Specific Background Processing
Completing a Long-Running Background Task
Further Exploration

Summary

Q&A

Workshop

ix

Table of Contents

495
501
502
502
503

505
505
509
526
527
527
527

529
529
534
541
549
550
550
551

553
554
558
559
561
564
570
576
577
577
577

HOUR 22: Building Universal Applications

Universal Application Development

Understanding the Universal Window-Based Application Template
Other Universal Application Tools

Further Exploration

Summary

Q&A

Workshop

HOUR 23: Application Debugging and Optimization

Debugging in Xcode
Monitoring with Instruments
Profiling with Shark

Further Exploration
Summary

Q&A

Workshop

HOUR 24: Distributing Applications Through the App Store

Index

Preparing an Application for the App Store
Submitting an Application for Approval
Promoting Your Application

Exploring Other Distribution Methods
Summary

Q&A

Workshop

579
579
581
596
598
599
599
599

601
601
614
620
627
627
627
628

629
630
642
649
655
657
657
657

659

About the Author

John Ray is currently serving as a Senior Business Analyst and Development Team
Manager for the Ohio State University Research Foundation. He has written numerous
books for Macmillan/Sams/Que, including Using TCP/IP: Special Edition, Teach Yourself
Dreamweaver MX in 21 Days, Mac OS X Unleashed, and Teach Yourself iPad Development in 24
Hours. As a Macintosh user since 1984, he strives to ensure that each project presents the
Macintosh with the equality and depth it deserves. Even technical titles such as Using TCP/IP
contain extensive information about the Macintosh and its applications and have garnered
numerous positive reviews for their straightforward approach and accessibility to beginner
and intermediate users.

You can visit his website at http://teachyourselfiphone.com or follow him on Twitter at
#iPhoneln24.

Dedication

This book is dedicated to everyone who makes me smile, even if only on occasion.
Thanks for keeping me stay sane during long nights of typing.

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Sandra Schroeder, Keith Cline,
Matthew David—for providing amazing support during the creation of this book. Your thor-
oughness and attention to detail make the difference between a book that works and one
that bewilders.

Thanks to my friends, family, and pets. Deepest apologies to my fish tank. I swear I'll get
you working right soon.

http://teachyourselfiphone.com

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or email address. I will carefully review your comments and share them with the
author and editors who worked on the book.

E-mail: feedback@quepublishing.com

Mail: Greg Wiegand
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

Over the past four years, Apple has changed the way we think about mobile computing.
The iOS Platform has changed the way that we, the public, think about our mobile comput-
ing devices. With full-featured applications and an interface architecture that demonstrates
that small screens can be effective workspaces, the iPhone has become the smartphone of
choice for users and developers alike.

Part of what makes the iPhone such a success is the combination of an amazing interface
and an effective software distribution method. With Apple, the user experience is key. The
iOS is designed to be controlled with your fingers rather by using a stylus or keypad. The
applications are “natural” and fun to use, instead of looking and behaving like a clumsy
port of a desktop app. Everything from interface to application performance and battery life
has been considered. The same cannot be said for the competition.

Through the App Store, Apple has created the ultimate digital distribution system for devel-
opers. Programmers of any age or affiliation can submit their applications to the App Store
for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-fea-
ture applications have been built for everything from pre-K education to retirement living.
No matter what the content, with a user base as large as the iPhone, an audience exists.

In 2010, Apple introduced the iPad and iPhone 4 platforms—bringing larger, faster, and
higher-resolution capabilities to the iOS. Although these devices will only be a few months
“old” by the time you read this, they will already be in the hands of millions of users,
eagerly awaiting the next great app.

My hope is that this book will bring iOS development to a new generation of developers.
Teach Yourself iPhone Development in 24 Hours provides a clear natural progression of skills
development, from installing developer tools and registering with Apple, to submitting an
application to the App Store. It's everything you need to get started in 24 one-hour lessons.

Who Can Become an iPhone Developer?

If you have an interest in learning, time to invest in exploring and practicing with Apple’s
developer tools, and an Intel Macintosh computer running Snow Leopard, you have every-
thing you need to begin developing for the iPhone.

Developing an application for the iPhone won’t happen overnight, but with dedication and
practice, you can be writing your first applications in a matter of days. The more time you
spend working with the Apple developer tools, the more opportunities you'll discover for
creating new and exciting projects.

2

Sams Teach Yourself iPhone Application Development in 24 Hours

You should approach iPhone application development as creating software that you want to
use, not what you think others want. If you're solely interested in getting rich quick, you're
likely to be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of
room—and competition for top sales is fierce.) However, if you focus on building apps that
are useful and unique, you're much more likely to find an appreciative audience.

Who Should Use This Book?

This book targets individuals who are new to development for the iPhone and have experi-
ence using the Macintosh platform. No previous experience with Objective-C, Cocoa, or the
Apple developer tools is required. Of course, if you do have development experience, some
of the tools and techniques may be easier to master, but the authors do not assume that
you've coded before.

That said, some things are expected of you, the reader. Specifically, you must be willing to
invest in the learning process. If you just read each hour’s lesson without working through the
tutorials, you will likely miss some fundamental concepts. In addition, you need to spend time
reading the Apple developer documentation and researching the topics presented in this book.
There is a vast amount of information on iPhone development available, and only limited
space in this book. This book covers what you need to forge your own path forward.

What Is (and Isn’t) in This Book?

The material in this book specifically targets iOS release 4. Much of what you’ll be learning
is common to all the iOS releases, but this book also covers several important advances in
4, such as Gestures, embedded video playback, multitasking, universal (iPhone/iPad) appli-
cations, and more!

Unfortunately, this is not a complete reference for the iPhone APIs; some topics just require
much more space than this book allows. Thankfully, the Apple developer documentation is
available directly within the free tools you'll be downloading in Hour 1, “Preparing Your
System and iPhone for Development.” In many hours, you'll find a section titled “Further
Exploration.” This will identify additional related topics of interest. Again, a willingness to
explore is an important quality in becoming a successful iPhone developer!

Each coding lesson is accompanied by project files that include everything you need to com-
pile and test an example or, preferably, follow along and build the application yourself. Be
sure to download the project files from the book’s website at http://teachyourselfiphone.com.

In addition to the support website, you can follow along on Twitter! Search for #iPhoneln24
on Twitter to receive official updates and tweets from other readers. Use the hashtag
#iPhoneln24 in your tweets to join the conversation. To send me messages via Twitter, begin
each tweet with @johnemeryray.

http://teachyourselfiphone.com

HOUR 21

Building Background-Aware
Applications

What You’ll Learn in This Hour:

> How iOS 4 supports background tasks

What types of background tasks are supported
How to disable backgrounding

How to suspend applications

How to execute code in the background

“The ability to run multiple applications in the background” mocks the Verizon commer-
cial. “Why can’t a modern operating system run multiple programs at once?” question the
discussion groups. As a developer and a fan of the iPhone, I've found these threads amus-
ing in their naiveté and somewhat confusing. The iPhone has always run multiple appli-
cations simultaneously in the background, but they were limited to Apple’s applications.
This restriction has been to preserve the user experience of the device as a phone. Rather
than an “anything goes” approach, Apple has taken steps to ensure that the phone
remains responsive at all times.

With the release of iOS 4.x, Apple answers the call from the competition by opening up
background processing to third-party applications. Unlike the competitors, however, Apple
has been cautious in how it approached backgrounding—opening it up to a specific set of
tasks that users commonly encounter. In this hour’s lesson, you learn several of the multi-
tasking techniques that you can implement in iOS 4.

554

HOUR 21: Building Background-Aware Applications

Understanding iOS 4 Backgrounding

If you've been working in iOS 4.x or later as you've built the tutorials in this book,
you may have noticed that when you quit the applications on your phone or in the
iPhone Simulator, they still show up in the iOS task manager, and, unless you man-
ually stop them, they tend to pick up right where they left off. The reason for this is
that projects created in iOS 4.x are background-ready as soon as you click the Build
and Run button. That doesn’t mean that they will run in the background, just that
they’re aware of the new iOS 4 background features and will take advantage with a
little bit of help.

Before we examine how to enable backgrounding (also called multitasking) in our
projects, let’s first identify exactly what it means to be a background-aware applica-
tion, starting with the types of backgrounding supported, then the application life
cycle methods.

Types of Backgrounding

We explore four primary types of backgrounding in iOS 4.x: application suspension,
local notifications, task-specific background processing, and task completion.

Suspension

When an application is suspended, it will cease executing code but be preserved
exactly as the user left it. When the user returns to the application, it appears to
have been running the whole time. In reality, all tasks will be stopped, keeping the
app from using up your iPhone’s resources. Any application that you compile
against i0S 4.x will, by default, support background suspension. You should still
handle cleanup in the application if it is about to be suspended (see “The
Background-Aware Application Life Cycle” section, later in this chapter), but beyond
that, it “just works.”

In addition to performing cleanup as an application is being suspended, it will be
your responsibility to recover from a background suspended state and update any-
thing in the application that should have changed while it was suspended
(time/date changes and so on).

Local Notifications

The second type of background processing is the scheduling of local notifications
(UILocalNotification). If you've ever experienced a push notification, local notifi-
cations are the same but are generated by the applications that you write. An appli-
cation, while running, can schedule notifications to appear onscreen at a point in

Understanding iOS 4 Backgrounding

time in the future. For example, the following code initializes a notification
(UILocationNotification) configures it to appear in five minutes, and then uses
the application’s scheduleLocalNotification method to complete the scheduling:

UILocalNotification *futureAlert;

futureAlert = [[[UILocalNotification alloc] init] autorelease];
futureAlert.fireDate = [NSDatedateWithTimeIntervalSinceNow:300];
futureAlert.timeZone = [NSTimeZonedefaultTimeZone];

[[UIApplication sharedApplication] scheduleLocalNotification:futureAlert];

These notifications, when invoked by iOS, can show a message, play a sound, and
even update your application’s notification badge. They cannot, however, execute
arbitrary application code. In fact, it is likely that you will simply allow iOS to sus-
pend your application after registering your local notifications. A user who receives
a notification can click View button in the notification window to return to your
application.

Task-Specific Background Processing

Before Apple decided to implement background processing, they did some research
on how users worked with their handhelds. What they found was that there were spe-
cific types of background processing that people needed. First, they needed audio to
continue playing in the background; this is necessary for applications like Pandora.
Next, location-aware software needed to update itself in the background so that users
continued to receive navigation feedback. Finally, VoIP applications like Skype need-
ed to operate in the background to handle incoming calls.

These three types of tasks are handled uniquely and elegantly in iOS 4.x. By declar-
ing that your application requires one of these types of background processing, you
can, in many cases, enable your application to continue running with little alter-
ation. To declare your application capable of supporting any (or all) of these tasks,
you will add the Required Background Modes (UIBackgroundModes) key to the pro-
ject’s plist file, and then add values of App Plays Audio (Audio), App Registers for
Location Updates (Location), or App Provides Voice over IP Services (VoIP).

Task Completion for Long-Running Tasks

The fourth type of backgrounding that we’ll be using in iOS 4.x is task completion.
Using task-completion methods, you can “mark” the tasks in your application that
will need to finish before it can be safely suspended (file upload/downloads, massive
calculations, and so on).

For example, to mark the beginning of a long running task, first declare an identifi-
er for the specific task:

UIBackgroundTaskIdentifier myLongTask;

555

556

FIGURE 21.1
The i0S 4.x
application life
cycle.

HOUR 21: Building Background-Aware Applications

Then use the application’s beginBackgroundTaskWithExpirationHandler method
to tell iOS that you're starting a piece of code that can continue to run in the back-
ground:

myLongTask = [[UIApplicationsharedApplication]
beginBackgroundTaskWithExpirationHandler:"{
// If you're worried about exceeding 10 minutes, handle it here
s

And, finally, mark the end of the long-running task with the application
endBackgroundTask method:

[[UIApplication sharedApplication] endBackgroundTask:mylLongTask];

Each task you mark will have roughly 10 minutes (total) to complete its actions,
plenty of time for most common uses. After the time completes, the application is
suspended and treated like any other suspended application.

The Background-Aware Application Life Cycle
Methods

In Hour 4, “Inside Cocoa Touch,” you started learning about the application life
cycle, as shown in Figure 21.1. You learned that, in iOS 4.x, applications should
clean up after themselves in the applicationDidEnterBackground delegate
method. This replaces applicationWillTerminate in earlier versions of the OS, or
as you'll learn shortly, in applications that you’ve specifically marked as not capa-
ble (or necessary) to run in the background.

UIKit Your
[Usortags appicaionicon |

v
[maini) I

Appli {}1 Hai le b application:

[Uldsplicatientiatals]" v | didFinishLaunchingWithOptions:

o < 2 Handla event

Loop. o V'
[9!58"“-!*-.-.-' ion o quit I(: :)[applicationwilResignActive:]
[Appication moves to backgrouna](.“J:lr‘?[appl1cationdidinteriackground: |

Understanding iOS 4 Backgrounding 557

In addition to applicationDidEnterBackground, there are several other methods
that you should implement to be a proper background-aware iOS citizen. For many
small applications, you won’t need to do anything with these, other than leave
them as is in the application delegate. As your projects increase in complexity, how-
ever, you'll want to make sure that your apps move cleanly from the foreground to
background (and vice versa), avoiding potential data corruption and creating a
seamless user experience.

It is important to understand that iOS can terminate your applications, even if
they’re backgrounded, if it decides that the device is running low on resources. ut!
You can expect that your applications will be fine, but plan for a scenario where
they are forced to quit unexpectedly.

The methods that Apple expects to see in your background-aware apps are as fol-
lows:

> application:didFinishLaunchingWithOptions: Called when your applica-
tion first launches. If your application is terminated while suspended, or
purged from memory, needs to restore its previous state manually. (You did
save it your user’s preferences, right?)

> applicationDidBecomeActive: Called when an application launches or
returns to the foreground from the background. This method can be used to
restart processes and update the user interface, if needed.

> applicationWillResignActive: Invoked when the application is requested to
move to the background or to quit. This method should be used to prepare the
application for moving into a background state, if needed.

> applicationDidEnterBackground: Called when the application has become
a background application. This replaces applicationWillTerminate in
iOS 4.x. You should handle all final cleanup work in this method. You may
also use it to start long-running tasks and use task-completion backgrounding
to finish them.

> applicationWillEnterForeground: Called when an application returns to an
active state after being backgrounded.

> applicationWillTerminate: Invoked when an application on a nonmultitask-
ing version of iOS is asked to quit, or when iOS determines that it needs to
shut down an actively running background application.

558

ut!

HOUR 21: Building Background-Aware Applications

Method stubs for all of these exist in your iOS 4.x application delegate implementa-
tion files. If your application needs additional setup or teardown work, just add the
code to the existing methods. As you'll see shortly, many applications, such as the
majority of those in this book, require few changes.

The assumption in this hour’s lesson is that you are using iOS 4.x or later. If you
are not, using background-related methods and properties on earlier versions of
the OS will result in errors. To successfully target both iOS 4.x and earlier devices,
check to see whether backgrounding is available, and then react accordingly in
your apps.

Apple provides the following code snippet in the iPhone Application Programming
Guide for checking to see (regardless of OS version) whether multitasking support
is available:
UIDevice* device = [UIDevice currentDevice];
BOOL backgroundSupported = NO;
if ([device respondsToSelector:@selector(isMultitaskingSupported)])
backgroundSupported = device.multitaskingSupported;

If the resulting backgroundSupported Boolean is YES, you're safe to use back-
ground-specific code.

Now that you have an understanding of the background-related methods and types
of background processing available to you, let’s look at how they can be implement-
ed. To do this, we'll reuse tutorials that we’ve built throughout the book (with one
exception). We won't be covering how these tutorials were built, so be sure to refer to
the earlier hours if you have questions on the core functionality of the applications.

Disabling Backgrounding

We start with the exact opposite of enabling backgrounding: disabling it. If you
think about it, there are many different “diversion” apps that don’t need to support
background suspension or processing. These are apps that you use and then quit.
They don’t need to hang around in your task manager afterward.

For example, consider the HelloNoun application in Hour 6, “Model-View-Controller
Application Design.” There’s no reason that the user experience would be negatively
affected if the application started from scratch each time you ran it. To implement
this change in the project, follow these steps:

1. Open the project in which you want to disable backgrounding (such as
HelloNoun).

2. Open the project’s plist file in the resources group (HelloNoun-Info.plist).

Handling Background Suspension 559

3. Add an additional key to the property list, selecting Application Does Not Run
in Background (UIApplicationExitsOnSuspend) from the Key pop-up menu.

4. Click the check box beside the key, as shown in Figure 21.2.

5. Save the changes to the plist file.

ane | HelloNoun-Infoplist = HelloNoun (=] FIGURE 21.2
Device - 4.0 | Denug | . - [&~ =] ‘ﬁ.) Q Q- String Matching Add the
 Owerview Adien Beeakpoints Buildand Run Tasks Info : Search H i
Groups & Fles e T — Appllcatlpn Does
¥ B4 Hellohoun (1] HelloNeun-Info.alist [Not run in
i e Soates Background
v . .
O Wlutsrencontd (UIApplication-
B e ExitsOnSuspend)
¥ (3 Frameworks key to the proj-
» [Products
» @) Targers ect.
* o4 Executables
¥}, Find Resuis
:‘T{':?,;;wam’ Hellahoun-info.plist 3 [0
W Praject Symbais Ky Valwe |
[l Implementation Files | "+ intarmation Prepery Lise 13 iems
[Interface Builder Files Apgiication Soes not fun in backgr 0]

Localization native development re
Bumdle display rame

Executable file

fcon file

Burdle idertifier

English
S[PROCUCT_NAME]
SEXLCUTABLE_NAME)

cam. yousompany. SIPROBUCT_NAME rfc 10 3didentificr|

Infalctanary version [X]

Bundle name SIPRODUCT NAME]
Bundle B8 Type code AP

Bundle ereator 0% Type code nn

Bundle version 10

Application requires (Phane envirar | o

Main nib ke base name MainWindow

Build and run the application on your iPhone or in the iPhone simulator. When you
exit the application with the Home button, it will not be suspended, nor will not
show in the task manager, and it will restart fresh when you launch it the next time.

Handling Background Suspension

In the second tutorial, we handle background suspension. As previously noted, you

don’t have to do anything to support this other than build your project with the iOS
4.x development tools. That said, we use this example as an opportunity to prompt
users when they return to the application after it was backgrounded.

For this example, we update the ImageHop application from Hour 8, “Handling
Images, Animation, and Sliders.” It is conceivable (work with me here, folks!) that a
user will want to start the bunny hopping, exit the application, and then return to
exactly where it was at some time in the future.

To alert the user when the application returns from suspension, we'll edit the appli-
cation delegate method applicationWillEnterForeground. Recall that this method
is invoked only when an application is returning from a backgrounded state. Open
ImageHopAppDelegate.m and implement the method, as shown in Listing 21.1.

560

FIGURE 21.3

The application
WillEnterFore-
ground method
is used to display
an alert upon
returning from
the background.

HOUR 21: Building Background-Aware Applications

LISTING 21.1

- (void)applicationWillEnterForeground: (UIApplication *)application {
UIAlertView *alertDialog;
alertDialog = [[UIAlertView alloc]
initWithTitle: @"Yawn!"
message:@"Was I asleep?"
delegate: nil
cancelButtonTitle: @"Welcome Back"
otherButtonTitles: nil];
[alertDialog show];
[alertDialog release];

Within the method, we declare, initialize, show, and release an alert view, exactly as
we did in the “Getting Attention” tutorial in Hour 10, “Getting the User’s Attention.”
After updating the code, build and run the application. Start the ImageHop anima-

tion, and then use the Home button to background the app.

After waiting a few seconds (just for good measure), open ImageHop again using
the task manager or its application icon (not Build and Run!). When the application
returns to the foreground, it should pick up exactly where it left off and present you
with the alert shown in Figure 21.3.

Yawn!

Was | asle

N ———y.
Welcome Back

Implementing Local Notifications

Implementing Local Notifications

Earlier in this lesson, you saw a short snippet of the code necessary to generate a
local notification (UILocalNotification). As it turns out, there’s not much more
you'll need beyond those few lines! To demonstrate the use of local notifications,
we'll be updating Hour 10’s “Getting the User’s Attention” doAlert method. Instead
of just displaying an alert, it will also show a notification 5 minutes later and then
schedule local notifications to occur every day thereafter.

Common Notification Properties

You want to configure several properties when creating notifications. A few of the
more interesting of these include the following:

> applicationIconBadgeNumber: An integer that is displayed on the applica-
tion icon when the notification is triggered

> fireDate: An NSDate object that provides a time in the future for the notifica-
tion to be triggered

> timeZone: The time zone to use for scheduling the notification
> repeatInterval: How frequently, if ever, the notification should be repeated

> soundName: A string (NSString) containing the name of a sound resource to
play when the notification is triggered

> alertBody: A string (NSString) containing the message to be displayed to the
user

Creating and Scheduling a Notification

Open the GettingAttention application and edit the doAlert method so that it
resembles Listing 21.2. (Bolded lines are additions to the existing method.) Once the
code is in place, we’ll walk through it together.

LISTING 21.2

: -(IBAction)doAlert: (id)sender {
UIAlertView *alertDialog;
UILocalNotification *scheduledAlert;

initWithTitle: @"Alert Button Selected"
message:@"I need your attention NOW (and in alittle bit)!"
delegate: nil

1
2

3

4:

5: alertDialog = [[UIAlertView alloc]

6:

7

8

9 cancelButtonTitle: @"Ok"

561

562 HOUR 21: Building Background-Aware Applications

LISTING 21.2 continued

10: otherButtonTitles: nil];

11:

12: [alertDialog show];

13: [alertDialog release];

14:

15:

16: [[UIApplication sharedApplication] cancelAllLocalNotifications];

17: scheduledAlert = [[[UILocalNotification alloc] init] autorelease];

18: scheduledAlert.applicationIconBadgeNumber=1;

19: scheduledAlert.fireDate = [NSDate dateWithTimeIntervalSinceNow:300];

20: scheduledAlert.timeZone = [NSTimeZone defaultTimeZone];

21: scheduledAlert.repeatInterval = NSDayCalendarUnit;

22: scheduledAlert.soundName=@"soundeffect.wav";

23: scheduledAlert.alertBody = @"I'd like to get your attention again!";

24:

25: [[UIApplication sharedApplication]
wscheduleLocalNotification:scheduledAlert];

26:

27: }

First, in line 3, we declare scheduledAlert as an object of type
UILocalNotification. This local notification object is what we set up with our
desired message, sound, and so on, and then pass off to the application to display
sometime in the future.

In Line 16, we use [UIApplication sharedApplication] to grab our application
object, and then call the UIApplication method cancelAlllLocalNotifications.
This cancels any previously scheduled notifications that this application may have
made, giving us a clean slate.

Line 17 allocates and initializes the local notification object scheduledAlert.
Because the notification is going to be handled by iOS rather than our
GettingAttention application, we can use autorelease to release it.

In line 18, we configure the notification’s applicationIconBadgeNumber property so
that when the notification is triggered, the application’s badge number is set to 1 to
show that a notification has occurred.

Line 19 uses the fireDate property along with the NSDate class method
dateWithTimeIntervalSinceNow to set the notification to be triggered 300 seconds
in the future.

Line 20 sets the timeZone for the notification. This should almost always be set to
the local time zone, as returned by [NSTimeZone defaultTimeZone].

Line 21 sets the repeatInterval property for the notification. This can be chosen
from a variety of constants, such as NSDayCalendarunit (daily), NSHourCalendarunit

Implementing Local Notifications

(hourly), and NSMinuteCalendarunit (every minute). The full list can be found in the
NSCalendar class reference in the Xcode developer documentation.

In Line 22, we set a sound to be played along with the notification. The soundName
property is configured with a string (NSString) with the name of a sound resource.
Because we already have soundeffect.wav available in the project, we can use that
without any further additions.

Line 23 finishes the notification configuration by setting the alertBody of the notifi-
cation to the message we want the user to see.

When the notification object is fully configured, we schedule it using the
UIApplication method scheduleLocalNotification (line 25). This finishes the
implementation!

Choose Build and Run to compile and start the application on your iPhone or in the
iPhone Simulator. After GettingAttention is up and running, click the Alert Me! but-
ton. After the initial alert is displayed, click the Home button to exit the application.
Go get a drink, and come back in about 4 minutes and 59 seconds. At exactly 5
minutes later, you'll receive a local notification, as shown in Figure 21.4.

GettingAttention

I'd like to get your attention again!

I —

Close

563

FIGURE 21.4
Local notifica-
tions are dis-
played onscreen
even when the
application isn’t
running.

564

HOUR 21: Building Background-Aware Applications

Using Task-Specific Background
Processing

So far, we haven’t actually done any real background processing! We’ve suspended
an application and generated local notifications, but, in each of these cases, the
application hasn’t been doing any processing. Let’s change that! In our final two
examples, we’ll execute real code behind the scenes while the application is in the
background. Although it is well beyond the scope of this book to generate a VoIP
application, we can use our Cupertino application from last hour’s lesson, with
some minor modifications, to show background processing of location and audio!

Preparing the Cupertino Application for Audio

When we finished off the Cupertino application in the last hour, it told us how far
away Cupertino was, and presented straight, left, and right arrows on the screen to
indicate the direction the user should be traveling to reach the Mothership. We can
update the application to audio using SystemSoundServices, just as we did in Hour
10’s GettingAttention application.

The only tricky thing about our changes is that we won’t want to hear a sound
repeated if it was the same as the last sound we heard. To handle this requirement,
we’ll use a constant for each sound: 1 for straight, 2 for right, and 3 for left, and
store this in a variable called lastSound each time a sound is played. We can then
use this as a point of comparison to make sure that what we’re about to play isn’t
the same thing we did just play!

Adding the AudioToolbox Framework

To use System Sound Services, we need to first add the AudioToolbox framework.
Open the Cupertino (with Compass implementation) project in Xcode. Right-click
the Frameworks group and choose Add, Existing Frameworks. Choose
AudioToolbox.framework from the list that appears, and then click Add, as shown
in Figure 21.5.

Adding the Audio Files

Within the Cupertino Audio Compass - Navigation and Audio folder included with
this hour’s lesson, you'll find an Audio folder. Drag the files from the audio folder
(straight.wav, right.wav, and left.wav) to the Resources group within the Xcode project.
Choose to copy the files into the application when prompted, as shown in Figure 21.6.

Using Task-Specific Background Processing 565

FIGURE 21.5
Add the Audio-
Toolbox.frame-
work to the proj-

L]
L}
-
Name
S——— ﬂ « ect.
L}

(]

Ascarate framaworc
Adéresaliook framewerk
AddressfiookLframeworic
AssesLibrary framework

Asssnitframenwark.
AvToundation. framewark
CFNenwori framevwnric
(@ implementasion Fles Carehudia.framewsrk
TRt I CoreData framewsrk s,

Corefoundation frameworik. + ALl rights reserved.

Cornirapinies framework
Corelocation framewar
CoreMedia framewaric
CerrMntion framewark
CoreTelephony framewari ® 1 NSOmject <UlApplicationD
CoreTextframework frutontrallarg

CoreViden tramework.
Evenait frameworic I80utiet UIWindow wwing
Feasil framewerk FBOuLLst Cupcrunauwun\rw

FIGURE 21.6
Add the neces-
e ! E—— sary sound
* [o
S e — ’L resources to the
Ry = .
6 —fimnn Uricoste UTF-8)] P project.
@ i a r H
\irﬂm () Create Folder References far any added foiders -: 2
4 fen Add To Targets. e m ey] =
[Lty N vy Copirtien

[Audis

l_H-Inn o &- 2l =

e

R

304 3 sasecied, L6.69 1 pvadable ——

Updating the CupertinoViewController.h Interface File

Now that the necessary files are added to the project, we need to update the
CupertinoViewController interface file. Add an #import directive to import the
AudioToolbox interface file, and then declare instance variables for three
SystemSoundIDs (soundStraight, soundLeft, and soundRight) and an integer

566 HOUR 21: Building Background-Aware Applications

lastSound to hold the last sound we played. Remember that these aren’t objects, so
there’s no need to declare the variables as pointers to objects, add properties for
them, or release them!

The updated CupertinoViewController.h file should resemble Listing 21.3.

LISTING 21.3

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <AudioToolbox/AudioToolbox.h>

@interface CupertinoViewController : UIViewController
<CLLocationManagerbDelegate> {

CLLocationManager *locMan;

CLLocation *recentLocation;

IBOutlet UILabel *distancelLabel;
IBOutlet UIView *distanceView;
IBOutlet UIView *waitView;

IBOutlet UIImageView *directionArrow;
SystemSoundID soundStraight;
SystemSoundID soundRight;
SystemSoundID soundLeft;

int lastSound;

}
@property (assign, nonatomic) CLLocationManager *1locMan;
@property (retain, nonatomic) CLLocation *recentLocation;
@property (retain, nonatomic) UILabel *distancelLabel;
@property (retain, nonatomic) UIView *distanceView;
@property (retain, nonatomic) UIView *waitView;

@property (retain, nonatomic) UIView *directionArrow;

- (double)headingToLocation: (CLLocationCoordinate2D)desired
current: (CLLocationCoordinate2D)current;

@end

Adding Sound Constants

To help keep track of which sound we last played, we declared the lastSound
instance variable. Our intention is to use this to hold an integer representing each of
our three possible sounds. Rather than remembering that 2 = right, and 3 = left, and
so on, let’s add some constants to the CupertinoViewController.m implementation
file to keep these straight.

Insert these three lines following the existing constants we defined for the project:

#define straight 1
#define right 2
#define left 3

Using Task-Specific Background Processing

With the setup out of the way, we're ready to implement the code to generate the
audio directions for the application.

Implementing the Cupertino Audio Directions

To add sound playback to the Cupertino application, we need to modify two of our
existing CupertinoViewController methods. The viewDidLoad method will give us
a good place to load all three of our sound files and set the soundStraight,
soundRight, soundLeft references appropriately. We’ll also use it to initialize the
lastSound variable to 0, which doesn’t match any of our sound constants. This
ensures that whatever the first sound is, it will play.

Edit CupertinoViewController.m and update viewDidLoad to match Listing 21.4.

LISTING 21.4

- (void)viewDidLoad {
[super viewDidLoad];

NSString *soundFile;

soundFile = [[NSBundle mainBundle]
pathForResource:@"straight" ofType:@"wav"];
AudioServicesCreateSystemSoundID((CFURLRef)
[NSURL fileURLWithPath:soundFile]
,&soundStraight);
[soundFile release];

soundFile = [[NSBundle mainBundle]
pathForResource:@"right" ofType:@"wav"];
AudioServicesCreateSystemSoundID((CFURLRef)
[NSURL fileURLWithPath:soundFile]
,&soundRight);
[soundFile release];

soundFile = [[NSBundle mainBundle]
pathForResource:@"left" ofType:@"wav"];
AudioServicesCreateSystemSoundID((CFURLRef)
[NSURL fileURLWithPath:soundFile]
,&soundLeft);
[soundFile release];
lastSound=0;

locMan = [[CLLocationManager alloc] init];

locMan.delegate = self;

locMan.desiredAccuracy = kCLLocationAccuracyThreeKilometers;

locMan.distanceFilter = 1609; // a mile

[locMan startUpdatingLocation];

if ([CLLocationManager headingAvailable]) {
locMan.headingFilter = 15;
[locMan startUpdatingHeading];

567

568

ow:

HOUR 21: Building Background-Aware Applications

Remember, this is all code we've used before! If you are having difficulties under-
standing the sound playback process, refer back to the Hour 10 tutorial.

The final logic that we need to implement is to play each sound when there is a head-
ing update. The CupertinoViewController.m method that implements this is
locationManager:didUpdateHeading. Each time the arrow graphic is updated in this
method, we'll prepare to play the corresponding sound with the AudioServicesPlay
SystemSound function. Before we do that, however, we’ll check to make sure it isn’t the
same sound as lastSound; this will help prevent a Max Headroom stuttering effect as
one sound file is played repeatedly over top of itself. If lastSound doesn’t match the
current sound, we'll play it and update lastSound with a new value.

Edit the locationManager:didUpdateHeading method as described. Your final
result should look similar to Listing 21.5.

LISTING 21.5

- (void)locationManager: (CLLocationManager *)manager
didUpdateHeading: (CLHeading *)newHeading {

if (self.recentLocation != nil && newHeading.headingAccuracy >= 0) {
CLLocation *cupertino = [[[CLLocation alloc]
initWithLatitude:kCupertinoLatitude
longitude:kCupertinoLongitude] autorelease];
double course = [self headingTolLocation:cupertino.coordinate
current:recentLocation.coordinate];
double delta = newHeading.trueHeading - course;
if (abs(delta) <= 10) {
directionArrow.image = [UIImage imageNamed:@"up_arrow.png"];
if (lastSound!=straight) AudioServicesPlaySystemSound(soundStraight);
lastSound=straight;
} else {
if (delta > 180) {
directionArrow.image = [UIImage imageNamed:@"right_arrow.png"];
if (lastSound!=right) AudioServicesPlaySystemSound(soundRight);
lastSound=right;
} else if (delta > 0) {
directionArrow.image = [UIImage imageNamed:@"left_arrow.png"];
if (lastSound!=left) AudioServicesPlaySystemSound(soundLeft);
lastSound=1left;
} else if (delta > -180) {
directionArrow.image = [UIImage imageNamed:@"right_arrow.png"];
if (lastSound!=right) AudioServicesPlaySystemSound(soundRight);
lastSound=right;
} else {
directionArrow.image = [UIImage imageNamed:@"left_arrow.png"];
if (lastSound!=left) AudioServicesPlaySystemSound(soundLeft);
lastSound=1left;

Using Task-Specific Background Processing

}

directionArrow.hidden = NO;
} else {
directionArrow.hidden = YES;

}

The application is now ready for testing. Use Build and Run to install the updated
Cupertino application on your iPhone, and then try moving around. As you move,
it will speak “Right,” “Left,” and “Straight” to correspond to the onscreen arrows. Try
exiting the applications and see what happens. Surprise! It won’t work! That'’s
because we haven't yet updated the project’s plist file to contain the Required
Background Modes (UIBackgroundModes) key.

If, while you're testing the application, it still seems a bit “chatty” (playing the
sounds too often), you may want to update the locMan.headingFilter to a larg-
er value (like 15 or 20) in the viewDidLoad method. This will help cut down on
the number of heading updates.

Adding the Background Modes Key

Our application performs two tasks that should remain active when in a back-
ground state. First, it tracks our location. Second, it plays audio to give us a general
heading. We need to add both audio and location background mode designations to
the application for it to work properly. Update the Cupertino project plist by follow-
ing these steps:

1. Click to open the project’s plist file in the resources group (Cupertino-
Info.plist).

2. Add an additional key to the property list, selecting Required Background
Modes (UIBackgroundModes) from the Key pop-up menu.

3. Expand the key and add two values within it: App Plays Audio (Audio) and
App Registers for Location Updates (Location), as shown in Figure 21.7. Both
values will be selectable from the pop-up menu in the Value field.

4. Save the changes to the plist file.

569

RIS

570

FIGURE 21.7
Add the back-
ground modes
that are
required by your
application.

HOUR 21: Building Background-Aware Applications

ane _| Cupe rtina-lnfa.plist - Cupertine

Device = 4.0 | Debug | Cupertino | Cup...~ (=) @ O Q- swing

File parme
B [appleong
= apoleddn.peg
| Cupertino-info.plist
5 CupertinetienContates. rits

= right amompng ;
[4 r | Cupertisa-info.plist SRR

=

— StAReReR0 R R e

B Praject Symsals | & Value
| » G mpsemensation Fies | infarmarian Froperry Lt 13 icem
* [terface Builder Files Rrguined background modes.

O]

audhe
nem 1 App registers far lotation updates
Lecafization native develogment re | Engish

Bundle disglay name. HPRODUCT_NAMI}

Execunabie He HIDKECUTABLE_NAMEL
tean Bl

Busdit igeriber

SIPRGOUCT_SANE
Infolietinsary version 69
Buadie name SIPRODUCT_NAME)
Bundie O5 Type code APPL

95 Type code w—

18

aures Mo emviren | B
Mais nib fle base same MairTWi

Busdi o

Busdi

After updating the plist, install the updated application on your iPhone and try
again. This time, when you exit the application, it will continue to run! As you
move around, you'll hear spoken directions as Cupertino continues to track your
position behind the scenes.

By declaring the location and audio background modes, your application is able to
use the full services of Location Manager and the i0OS’s many audio playback
mechanisms when it is in the background.

Completing a Long-Running Background
Task

In our final tutorial of the hour, we need to create a project from scratch. Our book
isn’t about building applications that require a great deal of background processing.
Sure, we could demonstrate how to add code to an existing project and allow a
method to run in the background, but we don’t have any long running methods
that could make use of it.

To demonstrate how we can tell iOS to allow something to run in the background,
we’ll create a new application, SlowCount, that does nothing but count to 1,000—
slowly. We'll use the task-completion method of background to make sure that, even
when the application is in the background, it continues to count until it reaches
1,000—as shown in Figure 21.8.

Completing a Long-Running Background Task 571

FIGURE 21.8
will Carrier & To simulate a
long-running
task, our appli-
cation will
count. Slowly.

Preparing the Project

Create a new view-based iPhone application named SlowCount. We'll move
through development fairly quickly because, as you can imagine, this application is
pretty simple.

The application will have a single outlet, a UILabel named theCount, which we’ll
use to present the counter onscreen. In addition, it will need a an integer to use as a
counter (count), an NSTimer object that will trigger the counting at a steady inter-
val (theTimer), and a UIBackgroundTaskIdentifier variable (not an object!) that
we'll use to reference the task we have running in the background (counterTask).

Every task that you want to enable for background task completion will need its By the
own UIBackgroundTaskIdentifier. This is used along with the UIApplication
method endBackgroundTask to identify which background task has just ended.

Open the SlowCountViewController.h file and implement it as shown in Listing 21.6.

572

B;Lﬁiéey—

HOUR 21: Building Background-Aware Applications

LISTING 21.6

#import <UIKit/UIKit.h>

@interface SlowCountViewController : UIViewController {
int count;
NSTimer *theTimer;
UIBackgroundTaskIdentifier counterTask;
IBOutlet UILabel *theCount;
}

@property (nonatomic,retain) UILabel *theCount;

@end

The UILabel theCount is the only object we’ll be accessing and modifying proper-
ties of in the application; therefore, it is the only thing that needs a @property
declaration.

Next, clean up after the UILabel object in the SlowCountViewController.m dealloc
method. The other instance variables either aren’t objects (count, counterTask) or
will be allocated and released elsewhere in the application (NSTimer):

- (void)dealloc {
[theCount release];
[super dealloc];

Creating the User Interface

It’s a bit of a stretch to claim that this application has a “user interface,” but we still
need to prepare the SlowCountViewController.xib to show the theCount label on the
screen.

Open the XIB file in Interface Builder, and drag a UILabel into the center of the
view. Set the label’s text to read 0. With the label selected, use the Attributes
Inspector (Command+1) to set the label alignment to center and the font size to 36.
Finally, align the right and left sides of the label with the right and left sizing
guides. You've just created a Ul masterpiece, as shown in Figure 21.9.

Finish the view by Control-dragging from the File’s Owner icon in the Document
window to the UILabel in the view. Choose theCount when prompted to make the
connection.

Completing a Long-Running Background Task

Implementing the Counter Logic

To finish our applications core functionality (counting!), we need to do two things.
First, we need to set the counter (count) to 0 and allocate and initialize NSTimer
that will fire at a regular interval. Second, when the timer fires, we will ask it to
invoke a second method, countUp. In the countUp method, we’ll check to see
whether count is 1000. If it is, we’ll turn off the timer and we’re done, if not, we'll
update count and display it in our UILabel theCount.

Initializing the Timer and Counter

Let’s start with initializing the counter and timer. What better place to do this than
in SlowCount.m’s viewDidLoad method. Implement viewDidLoad as shown in
Listing 21.7.

LISTING 21.7

1: - (void)viewDidLoad {

2 [super viewDidLoad];

3 count=0;

4 theTimer=[NSTimer scheduledTimerWithTimeInterval:0.1
5: target:self

6: selector:@selector(countUp)

7: userInfo:nil

8: repeats:YES];

9: }

573

FIGURE 21.9
Add a UILabel
to the view to
hold the current
count.

574

HOUR 21: Building Background-Aware Applications

Line 3 initializes our integer counter, count, to O.

Lines 4-8 initialize and allocate the theTimer NSTimer object with an interval of
0.1 seconds. The selector is set to use the method countUp, which we’ll be writing
next. The timer is set to keep repeating with repeats:YES.

All that remains is to implement countUp so that it increments the counter and dis-
plays the result.

Updating the Counter and Display

Add the countUp method, as shown in Listing 21.8, before the viewDidLoad method
in SlowCountViewController.m. This should be quite straightforward—if the count
equals 1000, we're done and it’s time to clean up—otherwise, we count!

LISTING 21.8

1: - (void)countUp {

2 if (count==1000) {

3 [theTimer invalidate];

4: [theTimer release];

5: } else {

6: count++;

7 NSString *currentCount;

8: currentCount=[[NSString alloc] initWithFormat:@"%sd",count];
9: theCount.text=currentCount;
10: [currentCount release];

11: }

12: }

Lines 2-4 handle the case that we’ve reached the limit of our counting
(count==1000). If it has, we use the timer’s invalidate method to stop it, and then
release it.

Lines 5-11 handle the actual counting and display. Line 5 updates the count vari-
able. Line 7 declares the currentCount string, which is then allocated and populat-
ed in line 8. Line 9 updates our theCount label with the currentCount string. Line
10 releases the string object.

Build and Run the application—it should do exactly what you expect—count slowly
until it reaches 1,000. Unfortunately, if you background the application, it will sus-
pend. The counting will cease until the application returns to the foreground.

Enabling the Background Task Processing

To enable the counter to run in the background, we need to mark it as a back-
ground task. We'll use this code snippet to mark the beginning of the code we want
to execute in the background:

Completing a Long-Running Background Task

counterTask = [[UIApplication sharedApplication]
beginBackgroundTaskWithExpirationHandler:~{
// If you're worried about exceeding 10 minutes, handle it here
5

And we'll use this code snippet to mark the end:

[[UIApplication sharedApplication] endBackgroundTask:counterTask];

If we were worried about the application not finishing the background task before
it was forced to end (roughly 10 minutes), we could implement the optional code
in the beginBackgroundTaskWithExpirationHandler block. You can always
check to see how much time is remaining by checking the UIApplication
property backgroundTimeRemaining.

Let’s update our viewDidLoad and countUp methods to include these code additions.
In viewDidLoad, we'll start the background task right before we initialize the count-
er. In countUp, we end the background task after count==1000 and the timer is
invalidated and released.

Update viewDidLoad as shown in Listing 21.9.

LISTING 21.9

- (void)viewDidLoad {
[super viewDidLoad];

counterTask = [[UIApplication sharedApplication]
beginBackgroundTaskWithExpirationHandler:~{
// If you're worried about exceeding 10 minutes, handle it here
13
count=0;
theTimer=[NSTimer scheduledTimerWithTimeInterval:0.1
target:self
selector:@selector(countUp)
userInfo:nil
repeats:YES];

Then make the corresponding additions to countUp, demonstrated in Listing 21.10.

LISTING 21.10

- (void)countUp {
if (count==1000) {
[theTimer invalidate];
[theTimer release];
[[UIApplication sharedApplication] endBackgroundTask:counterTask];
} else {
count++;

575

Blﬁ%ey—

576

HOUR 21: Building Background-Aware Applications

LISTING 21.10 continued

NSString *currentCount;

currentCount=[[NSString alloc] initWithFormat:@"%sd",count];
theCount.text=currentCount;

[currentCount release];

Save your project files, then Build and Run the application on your iPhone or in the
simulator. After the counter starts counting, pressing the Home button to move the
application to the background. Wait a minute or so, and then re-open the applica-
tion through the task manager or the application icon. The counter will have con-
tinued to run in the background!

Obviously, this isn’t a very compelling project itself, but the implications for what
can be achieved in real-world apps is definitely exciting!

Further Exploration

When I sat down to write this lesson, I was torn. Background tasks/multitasking is
definitely the “must have” feature of iOS 4.0, but it’s a challenge to demonstrate
anything meaningful in the span of a dozen or two pages. What I hope we’ve
achieved is a better understanding of how iOS multitasking works and how you
might implement it in your own applications. Keep in mind that this is not a com-
prehensive guide to background processing—there are many more features avail-
able, and many ways that you can optimize your background-enabled apps to max-
imize iPhone battery life and speed.

As a next step, you should read the following sections in Apple’s iPhone Application
Programming Guide (available through the Xcode documentation): “Executing Code
in the Background,” “Preparing Your Application to Execute in the Background,”
and “Initiating Background Tasks.”

As you review Apple’s documentation, pay close attention to the tasks that your
application should be completing as it enters the background. There are implica-
tions for games and graphic-intensive applications that are well beyond the scope of
what we can discuss here. How well you adhere to these guidelines will determine
whether Apple accepts your application or kicks it back to you for optimization.

Workshop

Summary

Background applications on iOS devices are not the same as background applica-
tions on your Macintosh. There are a well-defined set of rules that iOS background-
enabled applications you must follow to be considered “good citizens” of iOS 4.x. In
this hour’s lesson, you learned about the different types of backgrounding available
in iOS and the methods available to support background tasks. Over the course of
five tutorial applications, you put these techniques to the test, creating everything
from notifications triggered when an application isn’t running to a simple naviga-
tion app that provides background voice prompting.

You should now be well prepared to create your own background-aware apps and
take full advantage of the latest and greatest feature of iOS 4.0.

Q. Why can’t I run any code | want in the background?

A. Someday, I suspect you will, but for now the platform is constrained to the
specific types of background processing we discussed. The security and per-
formance implications of running anything and everything on a device that is
always connected to the Internet is enormous. Remember that the iPhone is a
phone. Apple intends to ensure that when your iPhone needs to be used as a
phone, it functions as one!

Q. What about timeline-based background processing, like IM clients?

A. Timeline-based processing (reacting to events that occur over time) is currently
not allowed in iOS. This is a disappointment but ensures that there aren’t
dozens of apps sitting on your phone, eating up resources, waiting for some-
thing to happen.

Workshop

Quiz
1. Background tasks can be anything you want in iOS 4.0. True or false?

2. Any application you compile for iOS 4.0 will continue to run when the user
exits it. True or false?

3. Only a single long-running background task can be marked background com-
pletion. True or false?

577

578 HOUR 21: Building Background-Aware Applications

Answers
1. False. Apple has a well-defined set of rules for implementing background pro-

cessing in iOS 4.0.

2. False. Applications will suspend in the background by default. To continue
processing, you must implement background tasks as described in this hour’s
lesson.

3. False. You can mark as many long-running tasks as you'd like, but they must
all complete within a set period of time (around 10 minutes).

Activities
1. Return to a project in an earlier hour and properly enable it for background
processing.

#import directive
implementation files, 63
interface files, 59
#pragma mark directive, 39
%@ string format specifier, 602
%f string format specifier, 602-603
%i string format specifier, 602
148apps.com, 651

@implementation directive, imple-
mentation files, 63
@interface directive, interface files,
59-60
@property directive, 133
interface files, 61-62
@synthesize directive, 133
implementation files, 63

A

ABPeoplePickerNavigation-
ControllerDelegate protocol, 513

ABPersonHasImageData
function, 517
ABRecordCopyVal method, 517
ABRecordCopyValue function, 515
Accelerate framework, Core 0S
layer, 88
accelerometer, 452-453, 472
API, 456
gravity unit, 452

measurable axes, 452
orientation, sensing, 458-461
reading, 456-458
sensing movement, 469
tilt, detecting, 462-471
updates
managing, 467-468
reacting to, 468-469
Accessibility Inspector, 118-119
Accessibility Programming Guide
for iPhone 0S, 127

Accessibility settings (Interface
Builder), 116-117

accessing text fields, alerts,
244-245
action sheets, 245, 255
button presses, responses,
248-249
buttons, 247

changing appearance,
247-248

displaying, 245-247
actions

BestFriend application,
connecting, 512

buttons, connecting, 171

ColorTilt application, adding,
463-464

Index

connecting, 190
GettingAttention
application, 234

date pickers, connecting
to, 265
FieldButtonFun application,
155-156
Flashlight application,
connecting, 368
FlowerWeb application,
preparing, 205-206
GetFlower, 121
ImageHop application
connecting outlets, 190
preparing, 182-184
Internet Builder application,
120121
connections, 123-124

MediaPlayground application,
connecting, 480-482

MultiViews application
adding to, 302-303
connecting to, 303

newBFF, 510

segmented controls,

connecting, 210
sendEmail, 510
switches, connecting to,
211-212

660
actions

TabbedCalculation application
adding, 313-314
connecting, 317

view controllers, 140-141

connection points,
144-146

Active Configuration setting, build-
ing applications, 40

active device, universal applica-
tions, detecting and displaying,
588-590

Activity Monitor instrument, 619

ad hoc deployment, applications,
655-656

Add Contact button, 166
Add Horizontal Guide command
(Layout menu), 112
Add Vertical Guide command
(Layout menu), 112
Address Book framework, 505-506
Core Services layer, 86

Address Book Programming Guide
for iPhone 0S, 526

Address Book Ul framework,
505-506

BestFriend application, access-
ing, 512-518

Cocoa Touch layer, 85
addTextField method, 254
advertising applications, 649-655

iAds, 653-655

pricing, 653

social networks, 650-652

updates, 652-653

websites, 650-652
alertBody notification property, 561
alertDialog variable, 237
alerts, 231-232, 249

action sheets, 245

button press responses,
248-249

changing appearance,
247248

displaying, 245-247
buttons, adding, 238-241

displaying, 236-237
fields, adding, 241-245
generating, 235-245

multi-option alerts, creating,
238-241

notification interfaces, creat-
ing, 233

playing sounds, 250-253

prepping notification files,
232-233

sounds, 254

System Sound Services, 250

vibrations, 253

AlertViewDelegate protocol,
240-241

alignment (IB layout tool),
113-114

Alignment command (Layout
menu), 113
allocation, objects, 67-68
Anderson, Fritz, 627
animation resources, adding, 182
animation speed, setting, 193-195
animationDuration property, 189
animations
image views, 186-187
startAnimating, 188
starting, 187-188
stopping, 187-188
API (application programming
interface), accelerometer, 456
App IDs

choosing, Development
Provisioning Assistant, 14

setting, 636-637
App Store, 629
App IDs, setting, 636-637
applications
distributing, 629, 655-656
preparing for, 630-639, 642
promoting, 649-655

submitting for approval,
642-649

uploading, 647-649

distribution certificates, creat-
ing, 634-636
unique applications, 642
AppAdvice.com, 651
AppCraver.com, 651
appearance

action sheets, changing,
247-248

segmented controls,
choosing, 208

Appearance text input trait, 159

Apple Developer Program, 7-10
costs, 8
registration, 8-9

Apple Developer Suite, 23-24
Interface Builder, 105-106

connecting interfaces to
code, 119-124

Identity Inspector, 125-126
user interfaces, 110-117
XIB files, 107-110

iPhone Simulator, 45
esoteric conditions, 49-50

generating multitouch
events, 48
launching applications,
46-47
rotation simulation, 48
Xcode, 27-28
building applications,
39-42
editing code, 34-39
modifying project proper-
ties, 42, 45
navigating code, 34-39
project management,
28-32
removal of files and
resources, 33-34
Apple IDs, 8
Apple iPhone Dev Center, 8-10
Apple tutorials, 177
Apple website, 8
AppleiPhoneApps.com, 652
application icons, adding, 631-633

application logic, FlashCards appli-
cation, implementing, 394-399

application objects, UlApplication
class, 91

Application Preferences in the
iPhone Application Programming
tutorial, 405

application resource constraints,
iOS platform, 5
application:didFinishLaunching-
WithOptions method, 586, 592
applicationlconBadgeNumber noti-
fication property, 561
applications
App IDs, setting, 636-637
App Store
preparing for, 630-639, 642
submitting for approval,
642-649
art work, creating for, 630-633
attaching Shark profiler,
621-624
background-aware applica-
tions, 553-556, 576-577

background suspension,
559-560

disabling backgrounding,
558-559

implementing local notifica-
tions, 561-563

life cycle methods,
556-558

long-running background
tasks, 570-576

task-specific background
processing, 564-570

BestFriend, 509

Address Book framework,
512518

connecting actions and out-
lets, 512

creating Ul, 511-512
map objects, 518-523
Message Ul, 523-525
setting up, 510-511

built-in capabilities, 505
Core Location
framework, 529
ColorTilt, 462

adding actions and outlets,
463-464
CoreMotion framework, 463
motion events, 466-471
preparing interface,
464-465
setting up, 462-465
Contacts, 381
Cupertino, 534
audio directions, 567-569

background image
resources, 534

background modes key,
569-570

Core Location framework,
534

creating Ul, 536-537
location manager, 538-540
outlets, 535-536
preparing for audio,
564-567
properties, 535-536
protocols, 535-536
task-specific background
processing, 564-570
Cupertino Compass, 541-549
calculating heading, 547
direction image
resources, 543
heading updates, 545-549
location manager head-
ings, 541-542
outlets, 543-544
properties, 543-544
setting up, 543-544
updating Ul, 544-545
data, storage locations,
382-383
DateCalc, 261

adding date pickers,
263-265

661
applications

finishing interface, 266-267

setting up, 262-263

view controller logic,
267-270

DebuggerPractice, 604-606,
612-614

Instruments, 614-620

profiling, 620-626

setting breakpoints,
606-607

setting watchpoints,
611-612

stepping through code,
608-611

variable states, 608
decision making, 70
expressions, 70-71
if-then-else statements, 71
repetition with loops, 72-74
switch statements, 72
design, 363-365
MVC structure, 130-131
device capability requirements,
defining, 634
distributing, 629, 655-656

distribution, configuring for,
638639, 642

distribution certificates,
creating, 634-636
distribution provisioning
profiles, creating, 638
FieldButtonFun
actions, 155-156
adding text fields, 156-161
adding text views, 161-164

creating styled buttons,
164-171

hiding keyboard, 171-174
outlets, 155-156
setting up, 154

file cleanup, 383

FlashCards, 384
application logic, 394-399
archiving flash cards,

402-404

How can we make this index more useful? Email us at indexes@samspublishing.com

applications

class logic, 385-386

CreateCardViewContoller,
391-393

creating interface, 384,
387-391

object archiving, 400-402
preparing interface,
386-387

Flashlight, 366-372

connecting actions and
outlets, 368

creating interface, 367

logic, 369-370

reading preferences,
371-372

setting up, 366-367

storing preferences,
370-371

FlowerColorTable, 332-333

adding outlets, 334
adding table views, 335-337

data source methods,
338-340

populating cells, 340-342
providing data to, 337-342
row touch events, 342-343
setting up, 333-337

FlowerinfoNavigator, 344-345

adding outlets and
properties, 351

adding web view, 352-353

detail view, 350-353

detail view controller logic,
351-352

navigation events, 356-357

providing data to, 346-350

root view table controllers,
353-356

setting up, 345-346

table data source
methods, 354

ul, 357-358

FlowerWeb, 204

finishing interface, 215

preparing actions and out-
lets, 205-206

releasing objects, 220-221

segmented controls,
206-210

setting up, 205
switches, 210-212

view controller logic,
216-220

web views, 212-214

Gestures, 435

connecting outlets, 439
creating interface, 437-439
pinch recognizer, 443-445

rotation recognizer,
445-447

setting up, 436-437
shake recognizer, 447-448
swipe recognizer, 441-443
tap recognizer, 439-443

GettingAttention, 249

action sheets, 245-249
connecting actions, 234
connecting outlets, 234

creating notification
interface, 233

generating alerts, 235-245

local notifications, 561-563

playing sounds, 250-253

prepping notification files,
232-233

System Sound Services, 250

vibrations, 253

ImageHop, 181-182

actions, 182-184

adding animation
resources, 182

adding hop button, 191-192

adding image views,
184-188

adding labels, 191

adding sliders, 188-190

background suspension,
559-560

connecting actions, 190
connecting outlets, 190
finishing interface, 190-192

outlets, 182-184
releasing objects, 195
setting up, 182

view controller logic,
193-195
integration, 505, 526-527
Address Book frameworks,
505-506
Map Kit framework, 508
mapping, 508-509
Message Ul
framework, 507
launch images, adding, 633
life cycle, 88-90
location-aware applications,
creating, 534-540

Mac OS X Installer application,
launching, 11

MatchPicker, 271

adding picker views,
273274

configuring Ul, 284-289

connecting outlets, 275

data structures, 276-278

finishing interface,
274-275

outlets, 272

output labels, 275

protocols, 271

providing data to, 275-281

reacting to choices,
281-284

releasing objects, 272-273
setting up, 271-273

MediaPlayground, 478

adding media files, 483
adding Media Player
framework, 482

connecting actions and
outlets, 480-482

creating audio recordings,
486-490

creating interface, 480
handling cleanup, 485-486
Image Picker, 492-495

Media Picker, 495-501

movie playback, 483-485

movie player, 482-486

music player, 499-501

playing audio recordings,

490-491

receiving notifications, 485

setting up, 478-480
memory usage, 615
multi-view applications,

293-295
benefits, 294

static interface elements,
294-295

MultipleViews, 295

adding actions and outlets,
302-303

adding toolbar controls,
300-302

adding view controllers,
296-297

adding views, 296-297

connecting actions and
outlets, 303

instantiating view
controllers, 298-299

setting up, 296-297

view switch methods,
303-305

multitouch gesture recognition,
434, 448449
Notes, 381
Orientation
determining orientation, 461
orientation changes, 460
preparing interface,
459-460
setting up, 458
preferences, 363, 366-372
setting up, 366-367
profiles, preparing, 643-647
profiling, Shark profiler,
620-626

promoting, 649-655
iAds, 653-655
pricing, 653

social networks, 650-652

updates, 652-653

websites, 650-652
Reframe, 416

adding outlets and proper-
ties, 416-417

connecting outlets,
421-422

creating interface, 417-422
disabling Autosizing, 418
laying out, 418-421
reframing logic, 422-423
releasing objects, 417
setting up, 416-417
ReturnMe, 372
creating interface, 374
setting up, 373-374
settings bundles, 375-381
sales, monitoring, 649-650
sandbox, 381-384
Scroller, 221

adding scroll views,
223-225

preparing outlets, 222-223
releasing objects, 226
scrolling behavior, 225-226
setting up, 222
SimpleSpin, 411-416
Autosizing, 413-416
setting up, 411-412
testing, 412-413
single-view applications,
293-295
SlowCount
counter logic, 573-574
creating Ul, 572

long-running background
tasks, 570-576

Swapper, 423

adding outlets and proper-
ties, 423-424

connecting outlets, 426
creating interface, 425-426
enabling rotation, 424
releasing objects, 424

663
applications

setting up, 423-425

view-swapping logic,
426-429

TabbedCalculation, 307

adding actions and outlets,
313-314

adding tab bar controller,
310-312

adding view controllers,
308-309

area calculation logic,
317-319

area view, 313-319
connecting actions, 317
connecting outlets, 317
setting up, 307-310
summary view, 323-326

volume calculation logic,
325-326

volume view, 319-323
testing

Interface Builder, 117

iPhone Simulator, 45-50

View-Based Application
template, 148

tracing, Instruments tool,
614-619
Universal, 583
active devices, 588-590
device-specific view con-
trollers, 584-588
setting up, 584
universal applications,
579-580, 590, 598-599
converting interfaces, 597
GenericViewController view
controller class, 591-596

upgrading iPhone target,
596-597

Window-based template,
581-590

UniversalToo, 590, 596
GenericViewController,
590-592, 595
instantiating view con-
trollers, 592-593

How can we make this index more useful? Email us at indexes@samspublishing.com

664
applications

setting up, 590
views, 595-596
XIB files, 593-595
updating, 653
uploading, 647-649
Xcode, 27-28
building applications, 39,
41-42
editing code, 34-39
modifying project proper-
ties, 42, 45
navigating code, 34-39
project management,
28-32
removal of files and
resources, 33-34

applicationWillEnterForeground
method, 560

Apprater.com, 652

approvals, applications, submitting
for, 642-649
AppSafari.com, 652
AppShopper.com, 652
AppStoreApps.com, 651
Apptism.com, 652
Archives and Serializations
Programming Guide for
Cocoa, 404

area calculation logic,
TabbedCalculation application,
317-319
area view, multi-view applications,
implementing, 313-319
arrays, 94
artwork, applications, creating for,
630-633
attributes, 116
Accessibility settings, 116-117
buttons, editing, 166-167
date pickers, setting, 264-265
nonatomic, 62
retain, 62
text views, editing, 162
web views, setting, 212-213

Attributes Inspector, 115-116
Autosizing, disabling, 418

button attributes, editing,
166-167

Attributes Inspector command
(Tools menu), 115
audio, Cupertino application
audio directions, 567-569
background modes key,
569-570

preparing for, 564-567
audio formats, Apple, 483
audio recordings
creating, 486-490
playing, 490-491
AudioToolbox framework, adding,
251, 564
Auto-Enable Return Key text input
trait, 159
autocompletion, Xcode editor,
35-37
Automation instrument, 619
autorel method, rel ing
objects, 75
Autosizing (Size Inspector), 115,
413-416
disabling, 418
masks, 597
AV Foundation framework, 477
Media layer, 85
availability, Quick Help results, 102

AVAudioPlayer versus
MPMusicPlayerController, 502

axes, accelerometer, 452

background image resources,
adding, 534

background modes key, Cupertino
application, adding, 569-570

background touch, keyboard, hid-
ing, 173-174

background-aware applications,
553-556, 576-577

background suspension,
559-560

backgrounding, disabling,
558-559

life cycle methods, 556-558
local notifications, implement-
ing, 561-563
long-running background tasks,
completing, 570-576
task-specific background pro-
cessing, 564-570
backgrounding, 554-556, 576-577
disabling, 558-559
local notifications, 554-555
implementing, 561-563
long-running background tasks
completing, 570-576
task completion, 555-556
suspension, 554
handling, 559-560

task-specific background pro-
cessing, 555, 564-570

BestFriend application, 509
actions, connecting, 512

Address Book framework,
512-518

map objects, 518-523
Message Ul, 523-525
outlets, connecting, 512
setting up, 510-511
Ul, creating, 511-512
blocks, 70
handler blocks, 456
Bluetooth, supplementation, 6
bookmarks, 38
breakpoints, 604, 606-607
Build and Run button, 40-41
Build command (Build menu), 40
build configurations (Xcode), 604
Build menu commands, Build, 40
building applications, 39-42
Active Configuration
setting, 40
Build and Run button, 40-41
errors and warnings, 41-42
built-in capabilities, 505
Address Book frameworks,
505-506

Core Location framework, 529
Map Kit framework, 508
Message Ul framework, 507
Bundle ldentifiers, setting, 636-637
button bars, 120
buttons, 96, 152-154
action sheets, 247
actions, connecting, 171
Add Contact, 166
alerts, adding to, 238-241
attributes, editing, 166-167
Build and Run, 40-41
Check for Leaks Now, 618
Custom, 166
Detail Disclosure, 166
Done, 171
hiding keyboard, 172-173
Export Developer Profile, 21
images, setting custom,
167-170
Import Developer Profile, 21
Info Dark, 166
Info Light, 166
outlets, 183
overlap, 430
radio buttons, 200
Rounded Rect, 166

styled buttons, creating,
164-171

toolbars, adding and editing,
301-302

C

CA (certificate authority), 635-636
calculate method, 318, 322
calculating headings, Cupertino
Compass application, 547
camera
controlling, 502
Image Picker, 492-495
cancelButtonTitle parameter
(actionSheet), 247
cancelButtonTitle parameter
(alertDialog), 237

capability requirements, applica-
tions, defining, 634
Capitalize text input trait, 159
cells
images, populating, 354-356
rows, 360
table view controllers,
populating, 340-342
text, populating, 354-356
cellular technology, 529
centerMap method, 519
Certificate Assistant, 16-17
Certificate Assistant (Development
Provisioning Assistant), 16-17
certificate authority (CA), 635-636
Certificate Revocation List
(CRL), 635
certificate signing requests, gener-
ating and uploading, 16-17
CFNetwork framework, Core
Services layer, 86

changes, orientation, reacting
to, 460

check boxes, 200

Check for Leaks Now button, 618

child plane preference type, 376

chooselmage method, 492

ChosenColor outlet, 121

class files, text comments,

adding, 64
class logic, FlashCards application,
385-386
class methods, definition, 56
classes. see also objects
core, 91-93
NSObject, 91
UlApplication, 91
UlControl, 92
UIResponder, 92
UlView, 92
UlViewController, 93
UlWindow, 92
data type, 93-96

NSArray, 94
NSDate, 95

665
Cocoa Touch

NSDecimalNumber, 94-95
NSDictionary, 94
NSMutableArray, 94
NSMutableDictionary, 94
NSMutableString, 93
NSNumber, 94-95
NSString, 93
NSURL, 95-96
definition, 55
files, 31
interface, 96-98
UlIButton, 96
UlDatePicker, 97
UlLabel, 96
UlPicker, 97
UlSegmentedControl, 97
UlSlider, 97
UlSwitch, 96
UlTextField, 97
UlTextView, 97
iPadViewController, 584
iPhoneViewController, 585
NSObject, 56
single, limitations, 130
singletons, 456
UlDevice, 588

View-Based Application tem-
plate, 136, 138

classes subgroup (project
groups), 30
cleanup, handling, 485-486
clearColor, web views, 220
clearView method, 305
CLLocation, 531
Cocoa, Cocoa Touch, compared, 83
Cocoa Touch, 24, 81-82, 90
Cocoa, compared, 83
core classes, 91-93
NSObject, 91
UlApplication, 91
UlControl, 92
UIResponder, 92
UlView, 92
UlViewController, 93
UIWindow, 92

How can we make this index more useful? Email us at indexes@samspublishing.com

666
Cocoa Touch

data type classes, 93-96
NSArray, 94
NSDate, 95

NSDecimalNumber, 94-95

NSDictionary, 94
NSMutableArray, 94
NSMutableDictionary, 94
NSMutableString, 93
NSNumber, 94-95
NSString, 93
NSURL, 95-96

functionality, 82-83

interface classes, 96-98
UlIButton, 96
UlDatePicker, 97
UlLabel, 96
UlPicker, 97
UlSegmentedControl, 97
UlSlider, 97
UlSwitch, 96
UlTextField, 97
UlTextView, 97

origins, 83

Cocoa Touch layer frameworks

Address Book Ul, 85

Game Kit, 85

Map Kit, 84

Message Ul, 85

UlKit, 84

code
adding to projects, 31-32
connection to user
interfaces, 119

actions, 120-124
implementation, 120

launching IB from Xcode,
119120

outlets, 120-123
spaghetti code, 130
stepping through, 608-611

code snapshots, 37-38
codecs, Apple support, 483
ColorChoice outlet, 121

ColorTilt application, 462
actions, adding, 463-464

CoreMotion framework,
adding, 463

interface, preparing, 464-465

motion events, implementing,
466-471

outlets, adding, 463-464
properties, adding, 463-464
setting up, 462-465
commands
Build menu, Build, 40
File menu
Make Snapshot, 37
New Project, 28
Simulate Interface, 117-118
Snapshots, 37
Help menu

Developer
Documentation, 98

Quick Help, 100
Layout menu
Add Horizontal Guide, 112
Add Vertical Guide, 112
Alignment, 113
project menu, New Smart
Group, 31

Project menu, Set Active Build
Configuration, Debug, 604
Run menu, Run, 40
Tools menu
Attributes Inspector, 115
Identity Inspector, 126
Library, 110
Size Inspector, 114
Xcode menu, Preferences, 100
comments, class files, adding to, 64
component numbers, constants, 282
componentsSeparatedByString
method, 521
condition-based loops, 73
configuration

BestFriend application,
510-511

ColorTilt application, 462-465

Cupertino Compass applica-
tion, 543-544

DateCalc application, 262-263

distribution, 638-639, 642

FieldButtonFun, 154

Flashlight application, 366-367

FlowerColorTable application,
333-337

FlowerInfoNavigator applica-
tion, 345-346

FlowerWeb application, 205

Gestures application, 436-437

ImageHop, 182

MatchPicker application,
271273

MediaPlayground application,
478-480

MultipleViews application,
296-297

Orientation application, 458
Reframe application, 416-417

ReturnMe application,
373-374

Scroller application, 222

segmented controls, 207-208

SimpleSpin application,
411-412

Swapper application, 423-425

TabbedCalculation application,
307-310

Universal application, 584
UniversalToo application, 590
view controller classes, 312

connections

actions, 190

BestFriend application, 512

buttons, 171

date pickers, 265

Flashlight application, 368

GettingAttention applica-
tion, 234

MediaPlayground applica-
tion, 480-482

switches, 211-212

outlets, 190
BestFriend application, 512
Flashlight application, 368
Gestures application, 439
GettingAttention applica-
tion, 234
MatchPicker application, 275
MediaPlayground applica-
tion, 480-482
Reframe application,
421-422
Swapper application, 426
text views, outlets, 164, 214
Connections Inspector, 123, 265
connectivity, iOS platform, 6
constants, component numbers, 282

contacts, Address Book frame-
works, 513

Contacts application, 381

content types, web views, 202

Continue icon (debugger), control-
ling program execution, 609

Continue to Here option (gutter
context menu), 610

controlHardware method, 467
controllers
multiple views, 149
MVC structure, 131-132
IBAction directive, 133-134
IBOutlet directive, 132
view, UlControl class, 93
controls

rotatable applications,
reframing, 416-423

segmented, 201, 258

FlowerWeb application,
204-210

UlSegmentedControl
class, 97

segmented controls
choosing appearance, 208
configuring, 207-208
connecting to actions, 210
connecting to outlets, 209
sizing, 208

toolbars, adding to, 300-307
UlControl class, 92
convenience methods, 67-68
converting interfaces, universal
applications, 597

copy and paste, text entry
areas, 161

Core Animation instrument, 620
Core Audio framework, Media
layer, 85
core classes, 91-93
NSObject, 91
UlApplication, 91
UlControl, 92
UIResponder, 92
UlView, 92
UlViewController, 93
UlWindow, 92
Core Data framework, 404-406
Core Services layer, 87
Core Data instrument, 619

Core Data Tutorial for i0S
tutorial, 405

Core Foundation framework, Core
Services layer, 87
Core Graphics framework, Media
layer, 85
Core Location, 529, 550
Cupertino application, adding
framework, 534
location manager, 530
Compass, 541-542
delegate protocol, 530-533

handling location errors,
532-533

location accuracy, 533-534
update filter, 533
location-aware applications,
creating, 534-540
Core Location framework, Core
Services layer, 87

Core Motion framework
accelerometer, reading,
456-458
ColorTilt application, frame-
work, 463

667
Cupertino application

Core Services layer, 87

gyroscope, reading, 456-458

motion manager, initializing,
466-467

Core Motion Framework
Reference, 471

Core OS layer, frameworks, 88

Core Services layer, frameworks,
86-88

Core Text framework, Media
layer, 86

CoreGraphics framework, 84

Correction text input trait, 159

costs, Apple Developer Program, 8

count-based loops, 72

counter logic, SlowCount applica-
tion, implementing, 573-574

countUp method, 574-575

CPU Sampler instrument, 619

Create iPhone/iPod Touch Version
(Interface Builder), 597

CreateCardDelegate protocol, 398
CreateCardViewContoller,
FlashCards application, adding
to, 391-393
CRL (Certificate Revocation
List), 635
Cupertino application, 534
audio
directions, 567-569
preparing for, 564-567
background image resources,
adding, 534

background modes key,
569-570

Core Location framework,
adding, 534

location manager delegate,
implementing, 538-540

outlets, adding, 535-536

properties, adding, 535-536

protocols, adding, 535-536

task-specific background pro-
cessing, 564-570

Ul, creating, 536-537

How can we make this index more useful? Email us at indexes@samspublishing.com

668

Cupertino Compass application

Cupertino Compass application,
541-549

calculating heading, 547
direction image resources, 543
heading updates, 545-549

location manager headings,
541-542

outlets, adding, 543-544

properties, adding, 543-544

setting up, 543-544

Ul, updating, 544-545
currentDevice method, 588
Custom button, 166

custom images, buttons, setting,
167-170

customization, user interfaces, 115
Accessibility settings, 116-117
Attributes Inspector, 115-116

data detectors, 164
data models, MVC structure, 134
data source methods

pickers, 278-279

table view controllers, 338-340

data source protocol, picker
views, 260

data structures, MatchPicker
application, 276-278
data type classes, 93-96
NSArray, 94
NSDate, 95
NSDecimalNumber, 94-95
NSDictionary, 94
NSMutableArray, 94
NSMutableDictionary, 94
NSMutableString, 93
NSNumber, 94-95
NSString, 93
NSURL, 95-96
data type objects, C language, 93
data types, 93
primitive data types, 78
datatip, variable examination, 608

date formats, strings, 268

date pickers, 258-263, 266-270
actions, connecting to, 265
adding, 263-265
attributes, setting, 264-265

calculating difference between
two dates, 268
displaying date and time,
267-268
getting date, 267
DateCalc application, 261
adding date pickers, 263-265
interface, finishing, 266-267
setting up, 262-263
view controller logic, 267-270
dates, 95

dealloc method, 76, 147,
417, 424

Debug build configuration, 604
Debugger Console, 602

Debugger view (GNU Debugger),
612-614

DebuggerPractice application,
604-606, 612-614

breakpoints, setting, 606-607

Instruments, monitoring with,
614-620

profiling, Shark profiler,
620-626

stepping through code,
608-611

variable states, 608
watchpoints, setting, 611-612
debugging, 627
Xcode, 601
GNU Debugger, 603-614
Instruments tool, 614-619
NSLog function, 602-603
Shark profiler, 620-626
debugging tools, 601
Debugging with GDB: The GNU
Source-Level Debugger, 627
DebugPractice application, 615
decision making, 70
expressions, 70-71
if-then-else statements, 71

repetition with loops, 72-74
switch statements, 72
declaration
Quick Help results, 101
variables, 65
object data types, 66
primitive data types, 65-66
declination, 551
default state, switches, setting, 211
degrees, radians and rotation, 445

delegate parameter
(actionSheet), 246
delegate parameter
(alertDialog), 237
delegate protocol
location manager, 530-533
picker views, 260-261
describelnteger method, 605, 609
design
applications, 363-365
interfaces, 410-411
MVC structure, 130-131

destructiveButtonTitle parameter
(actionSheet), 247

Detail Disclosure button, 166

detail view controller logic,
FlowerInfoNavigator application,
350-353

detecting tilt, 462-471
Dev Center, 13

Developer Documentation com-
mand (Help menu), 98

Developer Program (Apple), 7-10
costs, 8
registration, 89

Developer Suite, 23-24
Interface Builder, 105-106

connecting interfaces to
code, 119-124

Identity Inspector, 125-126
user interfaces, 110-117
XIB files, 107-110
iPhone Simulator, 45
esoteric conditions, 49-50
generating multitouch
events, 48

launching applications,
46-47
rotation simulation, 48
Xcode, 27-28
building applications, 39,
41-42
editing code, 34-39
modifying project proper-
ties, 42, 45
navigating code, 34-39
project management,
28-32
removal of files and
resources, 33-34
developer tools, installing, 10-11
Developer/Applications folder, 11
developers, 7
Apple Developer Program, 7-10
costs, 8
registration, 8-9
development provisioning
profiles, 12
iOS developer tools, installing,
10-11
paid developer programs,
joining, 10
technologies, 23-24
development devices, assighing,
14-15
development paradigms
imperative development, 54
OOP (object-oriented program-
ming), 54-55
terminology, 55-57

Development Provisioning
Assistant, 12-21

App ID, choosing, 14
Certificate Assistant, 16-17
certificate signing requests
generating, 16
uploading, 17
development devices, assign-
ing, 14-15
installing provisioning profile, 20
launching, 13

multiple devices, 21
provisioning profiles
downloading, 1819
installing, 20-21
naming and generating, 17
unique device identifiers,
12-13
development provisioning profiles
generation and installation,
12-21
testing, 21-22
device capability requirements,
applications, defining, 634
Device feature (iPhone
Simulator), 49
device identifiers, 12-13
device IDs, 14-15
device-specific view controllers,
Universal application, adding,
584-588

deviceType outlet, 589
dictionaries, 94
dimensions, launch images, 583
direction image resources,
Cupertino Compass application,
adding, 543
directives, 59
#import
implementation files, 63
interface files, 59

@implementation, implementa-
tion files, 63

@interface, interface files, 59
@property, 133
interface files, 61-62
@synthesize, 133
implementation files, 63
IBAction, 133-134

IBOutlet, 132
display, iOS platform, 4-5
displaying

action sheets, 245-247
alerts, 236-237
images, 493-494

669
email, built-in capabilities

distribution, applications, 655-656
configuring for, 638-639, 642

distribution certificates, creating,
634-636

distribution profiles, 12
distribution provisioning profiles,

creating, 638
doAccelerometer method, 469
doActionSheet method, 246
doAlert method, 561

Document icons (XIB files),
109-110

document sets, 100

Document window (XIB file),
107-109

documentation system
Cocoa Touch, 81, 90
core classes, 91-93
data type classes, 93-96
functionality, 82-83
interface classes, 96-98
origins, 83
Xcode, 45
documentation window, 98-99
doMultiButtonAlert method, 239
Done button, 171
hiding keyboard, 172-173
doRotation method, 470
doSound method, 251
double primitive data type, 65

downloading provisioning profiles,
18-19

E
editing
button attributes, 166-167
code, 34-39
text views, attributes, 162
toolbar buttons, 301-302
editor, Xcode, autocompletion,
35-37
electromagnetic compass, 529
email, built-in capabilities,
523-525
Message Ul framework, 507

How can we make this index more useful? Email us at indexes@samspublishing.com

670
ending

ending
implementation files, 64
interface files, 62
Energy Diagnostics instrument, 620
enterprise program (Apple
Developer Program), 8
Enterprise provisioning, 656
errors
building applications, 41-42
definition, 41
Event Handling Guide for iPhone
0S, 471
Event Kit framework, Core
Services layer, 87
events, motion events, implement-
ing, 466-471
existing resources, adding to pro-
jects, 32
Export Developer Profile button, 21
expressions, 70-71

External Accessory framework,
Core OS layer, 88

F

Facebook, applications,
promoting, 651
feedback
iOS platform, 6
Xcode, errors and warnings,
41-42
fees, Apple Developer Program, 8
FieldButtonFun, 154
actions, 155-156
keyboard, hiding, 171-174
objects, releasing, 175
outlets, 155-156
setting up, 154

styled buttons, creating,
164-171

text fields, adding, 156-161
text views, adding, 161-164
view controller logic, imple-
menting, 174-175
fields, alerts, adding to, 241-245
File Activity instrument, 620

File menu commands
Make Snapshot, 37
New Project, 28
Simulate Interface, 117-118
Snapshots, 37

file paths, 383-384

file structure, Objective-C, 58

file system
file paths, 383-384
sandbox, 381-384
storage, 384-399

archiving flash cards,
402-404

object archiving, 400-402
File’s Owner icon (XIB files), 107
files
adding to projects, 32
header, 31
#import directive, 59
@interface directive, 59-60
@property directive, 61-62
ending, 62
method declaration, 60-61
implementation, 31, 62
#import directive, 63

@implementation
directive, 63
@synthesize directive, 63
ending, 64
method implementation, 64
locating methods and proper-
ties, 35
project management, 28

adding existing resources
to files, 32

adding new code files,
31-32

editing/navigating code,
34-39

identifying project type,
28-29

project groups, 30-31

removal of files from pro-
ject, 33-34

removal from projects, 34

XIB (Interface Builder), 107
Document icons, 109-110

Document window,
107-109

View-Based Application
template, 138-139
fireDate notification property, 561
first responder icon (XIB files), 108
FlashCards application, 384, 405
application logic, implement-
ing, 394-399
class logic, implementing,
385-386

CreateCardViewContoller,
adding, 391-393

flash cards, archiving,
402-404

interface, creating, 384-391
object archiving, implementing,
400-402

Flashlight application, 366-372
actions, connecting, 368
creating interface, 367
logic, 369-370
outlets, connecting, 368
preferences, 370-372
setting up, 366-367

float primitive data type, 65

floatValue method, 318

flow of program execution, GNU
Debugger, 608-611

FlowerColorTable application,
332-333

adding outlets, 334

data source methods,
338-340

populating cells, 340-342
providing data to, 337-342
row touch events, 342-343
setting up, 333-337

table views, adding, 335-337

FlowerInfoNavigator application,
344-345

adding outlets, 351
adding properties, 351

671
GettingAttention application

adding web view, 352-353 Foundation, 84 gesture recognizers, 434-439
detail view, 350-353 Media layer, 85 pinch recognizer, 443-445
detail view controller logic, UlKit, 84 rotation recognizer, 445-447
351-352 Xcode documentation, 98-100 shake recognizer, 447-448
navigation events, 356-357 Quick Help, 100-101 swipe recognizer, 441-443
providing data to, 346-350 frameworks subgroup (project tap recognizer, 439-443
root view table controllers, groups), 31 gestures, 434
353-356 functionality, Cocoa Touch, 82-83 gesture recognizers, 435-439
setting up, 345-346 functions. see also methods pinch recognizer, 443-445
table data source ABPersonHaslmageData, 517 rotation recognizer,
methods, 354 ABRecordCopyValue, 515 445447
Ul, 357-358 NSLog, 603, 627 shake recognizer, 447-448
FlowerView outlet, 121 swipe recognizer, 441-443
FlowerWeb application, 204 G tap recognizer, 439-443
actions, preparing, 205-206 multitouch gesture recognition,
adding segmented controls, g (gravity) unit, accelerometer, 452 434, 448-449
206-210 Game Kit framework, Cocoa Touch

Gestures application, 435

adding switches, 210-212 layer, 85 interface, creating, 437-439
adding web views, 212-214 games, preferences, 405 outlets, connecting, 439
finishing interface, 215 gdb (GNU Debugger), 603-604 pinch recognizer, implement-
outlets, preparing, 205-206 breakpoints, 604-607 ing, 443-445
releasing objects, 220-221 Debugger view, 612-614 rotation recognizer, implement-
setting up, 205 flow of program execution, ing, 445-447
view controller logic, 216-220 608-611 setting up, 436-437
format specifiers (strings), 602 variable states, datatip, 608 shake recognizer, implement-
Foundation framework, 84 watchpoints, 611-612 ing, 447-448
Core Services layer, 87 GDB Pocket Reference, 627 swipe recognizer, implement-
foundPinch method, 444 generating provisioning profiles, ing, 441-443
foundRotation method, 446 12-21 tap recognizer, implementing,
f GenericViewController view con- 439-443
rameworks troller class
rollel i
Address Book Ul, 505-506 , _ . GetFlower action, 121
AudioToolbox. 251 creating universal applications, getter methods, 61
] ’ 591-596 GettingAttention application, 249
adding, 564 dding devi if
: adding device-specific action sheets, 245
AV Foundation, 477 views, 591
. ! button press responses,
Core Location, 518-523, 529 adding to application dele- 248249
Map Kit, 508, 518-523 gates, 591-592)
))) changing appearance,
Media Player, 476-477 implementation, 595 247248
adding, 482 instantiating view con- displaying, 245-247
Message Ul, 507, 523-525 troller, 592-593 alerts
technology layers 'nggegéd iPad views, generating, 235-245
Cocoa Touch layer, 84-85 b flow. 593, 505 playing sounds, 250-253
iles, ,
Core OS layer, 88 ' o System Sound
Core Services layer, 86-88 UniversalToo application, Services. 250
CoreGraphics, 84 adding to, 590-592 ’

vibrations, 253

How can we make this index more useful? Email us at indexes@samspublishing.com

672
GettingAttention application

connecting actions, 234

connecting outlets, 234

local notifications, implement-
ing, 561-563

notification files, prepping,
232-233

notification interfaces, creat-
ing, 233

GNU Debugger (gdb), 603-604
breakpoints, 604-607
Debugger view, 612-614

flow of program execution,
608-611

variable states, datatip, 608
watchpoints, 611-612
Google Analytics, 652
Google Maps/Google Earth API,
Map Kit map tiles, 508
GPS technology, 529
graphics, iOS platform, 4-5
gravity (g) unit, accelerometer, 452
group preference type, 376
grouped tables, 330-331
groups (projects), Xcode, 30-31
guides (IB layout tool), 112
gutter (Xcode), 604
gyroscope, 453-454, 472
reading, 456-458
updates
managing, 467-468
reacting to, 470-471

handler blocks, 70, 456
handling

background suspension,
559-560

location errors, location man-
ager, 532-533
navigation events, 356-357
hardware

motion hardware, 451
accelerometer, 452-453
gyroscope, 453-458

requirements, 7

header files, 31, 58
#import directive, 59
@interface directive, 59-60
@property directive, 61-62
ending, 62
method declaration, 60-61

heading updates, Cupertino
Compass application, 545-549
headings, Cupertino Compass
application
calculating, 547
location manager, 541-542
updates, 545
Heavy view, Shark profiler
results, 624
HelloNoun
object release, 147-148
setting up, 136
classes, 136-138
XIB files, 138-139
testing, 148
view controller

outlets and actions,
140-141

implementing, 146-147

Help menu commands

Developer Documentation, 98

Quick Help, 100
hideKeyboard method, 172-174
hiding keyboard, 171-174
hop button, ImageHop applica-

tions, adding, 191-192

iAD framework, 653
applications, 654-655
Cocoa Touch layer, 85

IBAction directive, 133-134

IBAction method, 513

IBOutlet directive, 132

icon files, universal applications,

582-583
Icon Files property, adding multi-
ple items to, 44

icons, application icons, adding,
631-633
id return type (methods), 61

IDE (integrated development envi-
ronment). See Xcode

Identity Inspector, 125-126
Identity Inspector command (Tools
menu), 126
if-then-else statement, 71, 78
iLounge.com, 651
Image 1/0 framework, Media
layer, 86
Image Picker, 477, 492-495
image views
animating, 186-187
sliders, 180
ImageHop application, 181-182
actions, 182-184
connecting, 190
animation resources,
adding, 182
background suspension, han-
dling, 559-560
hop button, adding, 191-192
image views, adding, 184-188
labels, adding, 191
outlets, 182-184
connecting, 190
releasing objects, 195
setting up, 182
sliders, adding, 188-190
user interface, finishing,
190-192
view controller logic, 193-195
images
buttons, setting, 167-170
cells, populating, 354-356
displaying, 493-494
imageWithData method, 515
imperative development, 54
implementation

GenericViewController
class, 595

methods

convenience methods,
67-68

declaration of variables,
65-66

expressions and decision
making, 70-74

messaging syntax, 68-70

object allocation and initial-
ization, 67

view controller logic, 146-147

View-Based Application tem-
plate, 135
implementation files, 31, 62
#import directive, 63
@implementation directive, 63
@synthesize directive, 63
ending, 64
method implementation, 64
implicit preferences, creating,
366-372
Import Developer Profile button, 21
Info Dark button, 166
Info Light button, 166
Info property list resource, 42
inheritance, OOP and, 55
initialization, objects, 67-68
initWithContentsOfURL:encoding:
error method, 521

initWithQuestion:answer
method, 385

initWithTitle parameter
(actionSheet), 246

initWithTitle parameter
(alertDialog), 237

input, 151, 179, 199-200
buttons, 152-154
iOS platform, 6-7
keyboard, hiding, 171-174
labels, 152-153
scrolling views, 203
segmented controls, 201
FlowerWeb application, 204
sliders, 180
adding, 188-190
image views, 180
styled buttons, creating,
164-171

switches, 200
FlowerWeb application, 204
text fields, 152-156
text views, 153-154, 161-164
views, 152
web views, 202-204
installation
development provisioning
profile, 12-21
iOS developer tools, 10-11
provisioning profile, 20
provisioning profiles, 20-21
instance methods, definition, 56
instance variables, 59-60
declaration, 65
object data types, 66
primitive data types, 65-66
definition, 56
releasing, 76
text fields, alerts, 242-243
instances
definition, 56
MKMapView, 508
navigationController, 357
instantiation
definition, 56, 107
view controllers, 298-299
GenericViewController
class, 592-593

universal applications,
586-588

Instruments Library, 619
Instruments tool, 614
available instruments, 619
leak detector, 614-618
int primitive data type, 65
integers, 73
integrated development environ-
ment (IDE). See Xcode
integration, 505, 526-527
Address Book frameworks,
505-506
BestFriend application, 509

Address Book framework,
512-518

673
interface classes

connecting actions and out-
lets, 512
creating Ul, 511-512
map objects, 518-523
Message Ul, 523-525
setting up, 510-511
Core Location framework, 529
Map Kit framework, 508
mapping, 508-509
Message Ul framework, 507
Interface Builder, 23, 51, 105-106
connecting interfaces to
code, 119
actions, 120-124
implementation, 120

launching IB from Xcode,
119-120

outlets, 120-123

Create iPhone/iPod Touch
Version, 597

Identity Inspector, 125-126

rotatable interfaces
Autosizing, 413-416
creating, 411-416

reframing controls,
416-423

setting up, 411-412
swapping views, 423-429
testing, 412-413
scrolling views, 228
user interfaces, 110
customization, 115-117
layout tools, 112-115
Objects Library, 110-111
simulation, 117
Xcode 4, 106
XIB files, 107-110
Interface Builder User Guide, 126
interface classes, 96-98
UIButton, 96
UlDatePicker, 97
UlLabel, 96
UlPicker, 97
UlSegmentedControl, 97
UlSlider, 97

How can we make this index more useful? Email us at indexes@samspublishing.com

674
interface classes

UISwitch, 96
UlTextField, 97
UlTextView, 97
interface files, 58
#import directive, 59
@interface directive, 59-60
@property directive, 61-62
ending, 62
method declaration, 60-61
interfaces
BestFriend application, creat-
ing, 511-512
ColorTilt application, preparing,
464-465
connection to code, 119
actions, 120-124
implementation, 120

launching IB from Xcode,
119-120

outlets, 120-123

converting (universal applica-
tions), 597
creating with Interface
Builder, 110
layout tools, 112-115
Objects Library, 110-111
Cupertino application, creat-
ing, 536-537
Cupertino Compass applica-
tion, updating, 544-545
customization, 115
Accessibility settings,
116-117
Attributes Inspector,
115116

DateCalc application, finishing,
266-267

FlashCards application
creating, 384, 387-391
preparing, 386-387

Flashlight application,

creating, 367

FlowerInfoNavigator applica-

tion, finishing, 357-358
FlowerWeb application, finish-
ing, 215

Gestures application, creating,
437-439
MatchPicker application, finish-
ing, 274-275, 284-289
MediaPlayground application,
creating, 480
notification interfaces, creat-
ing, 233
Orientation application, prepar-
ing, 459-460
Reframe application
creating, 417-422
reframing logic, 422-423
resizable, 407-408, 429-430
Autosizing, 413-416
creating, 411-416
designing, 410-411
setting up, 411-412
ReturnMe application,
creating, 374
rotatable, 407-408, 429-430
Autosizing, 413-416
creating, 411-416
designing, 410-411
enabling, 408-409
reframing controls, 416-423
setting up, 411-412
swapping views, 423-429
testing, 412-413
simulation, 117
SlowCount application,
creating, 572
static interface elements,
294-295

Swapper application, creating,
425-426

10S developer tools

installing, 10-11

iOS platform, 3

application resource con-
straints, 5

backgrounding, 554-556
connectivity, 6

display and graphics, 4-5
feedback, 6

frameworks, Xcode documen-
tation, 98-102

input, 6-7
“retain” count, 76
i0S SDK (Software Development
Kit), 7
iPad Human Interface
Guidelines, 127
iPad view, GenericViewController
class, 595-596
iPadViewController class, 584

iPhone Application Programming
Guide, 449, 558, 576

iPhone Dev Center, 8, 10, 13

iPhone distribution certificates,
creating, 634-636

iPhone OS

frameworks, Xcode documen-
tation, 100

technology layers, 83
Cocoa Touch, 84-85
Core 0OS, 88
Core Services, 86-88
Media, 85
iPhone Provisioning Portal link, 13
iPhone Simulator, 23, 51, 433
Accessibility Inspector, 118
running applications in, 382
testing applications, 45, 148
esoteric conditions, 49-50

generating multitouch
events, 48
Interface Builder, 117
launching applications,
46-47
rotation simulation, 48
iPhone target, upgrading, 596-597

iPhone view, GenericViewController
class, 595-596

iPhoneApplicationList.com, 652
iPhoneApps.co.uk, 652
iPhoneViewController class, 585
iPod library, Media Picker, 495-501
iTunes. see also App Store
artwork, adding to applica-
tions, 630-631
iTunes Connect, sales, monitoring,
649-650

K

keyboard, hiding, 171-174
keyboard displays, customizing,
text input traits, 159
Keyboard text input trait, 159
Keychain Access Certificate
Assistant (Development
Provisioning Assistant), 16-17
Keychain Access utility, 635
keychains, 14
keys, Launch image (iPad), 583

L

labels, 96, 152-153
ImageHop applications,
adding, 191
lastAction, 272
matchResult, 272
landscape orientation, 408
lastAction label, 272
Launch image (iPad) key, 583
modifying project properties,
44-45
launch images
adding, 633
dimensions, 583
universal applications, 583
launching

applications in iPhone
Simulator, 46-47

Development Provisioning
Assistant, 13

Mac OS X Installer
application, 11

layers, iPhone 0S, 83

Cocoa Touch, 84-85

Core 0S, 88

Core Services, 86-88

Media, 85

laying out Reframe application,
418-421

Layout menu commands
Add Horizontal Guide, 112
Add Vertical Guide, 112
Alignment, 113

layout tools, Interface Builder, 112
alignment, 113-114
guides, 112
selection handles, 112
Size Inspector, 114-115

leak detector (Instruments tool),
614-618

Leaks instrument, 619

“Learning Objective-C: A Primer”
document, 77

Library command (Tools menu), 110

life cycle (applications), 88-90

life cycle methods, background-
aware applications, 556-558

limitations, i0S platform, 5

loadFirstView method, 305-306

loading remote content, NSURL
and requestWithURL, 202-203

loadView methods, 304

local notification, creating, 561-563

local notifications
backgrounding, 554-555
implementing, 561-563
scheduling, 561-563

location accuracy, location manag-
er, 533-534

location errors, location manager,
handling, 532-533
location manager (Core
Location), 530
Cupertino application, imple-
menting, 538-540
delegate protocol, 530-533
headings, Compass, 541-542
location accuracy, 533-534

location errors, handling,
532-533

update filter, 533
location services
Core Location framework,
518523, 529
Map Kit framework, 508,
518-523
location-aware applications, creat-
ing, 534-540

675
masks, autosizing

locationManager:didUpdate-
Heading method, 568

locationManager:didUpdateTo-
Location:fromLocation
method, 531

Lock feature (iPhone
Simulator), 49
logic
Flashlight application, 369-370
view controllers, 146-147
implementing, 174-175
long pressing (gesture), 434
long-running background tasks,
completing, 555-556, 570-576
loops, 72-74

Mac 0S templates, 51

Mac 0S X Advanced Development
Techniques, 77

Mac OS X Installer application,
launching, 11
magnetic compass, 541-549
location manager headings,
541-542
Make Snapshot command (File
menu), 37

Making Your Application Location-
Aware, 549

map display, 518, 522
Map Kit framework, 508, 518-523
Cocoa Touch layer, 84

Google Maps/Google Earth
API, 508

map objects, BestFriend applica-
tion, accessing, 518-523
map views, configuring, 512
mapping, 508-509
marketing applications, 649-655
iAds, 653-655
pricing, 653
social networks, 650-652
updates, 652-653
websites, 650-652
masks, autosizing, 597

How can we make this index more useful? Email us at indexes@samspublishing.com

676
MatchPicker application

MatchPicker application, 271

connecting outlets, 275
data structures, 276-278
finishing interface, 274-275
outlets, adding, 272
output labels, 275
picker views

adding, 273-274

providing data to, 275-281

reacting to choices,
281-284

protocols, conforming to, 271

releasing objects, 272-273

setting up, 271-273

Ul, configuring, 284-289
matchResult label, 272

measurable axes,
accelerometer, 452
media, rich media, 475-476,
501-502
AV Foundation framework, 477
Image Picker, 477
Media Player framework,
476-477

MediaPlayground application,
478-482

media files, MediaPlayground
application, adding to, 483
Media layer frameworks, 85-86
Media Picker, 495-501
music player, 499-501
Media Player
framework, 476-477
adding, 482
movie player, 482-486
Media Player framework, Media
layer, 86
MediaPlayground application, 478
actions, connecting, 480-482
audio recordings
creating, 486-490
playing, 490-491
cleanup, handling, 485-486
Image Picker, 492-495
interface, creating, 480

media files, adding, 483
Media Picker, 495-501
Media Player framework,
adding, 482
movie playback, implementing,
483-485
movie player, 482-486
music player, 499-501
notifications, receiving, 485
outlets, connecting, 480-482
setting up, 478-480
memory, object release, 147-148
memory management
releasing instance variables, 76
releasing objects, 74-75
releasing rules, 76-77
retaining objects, 75-76
memory usage, applications, 615
menus, Overview drop-down, 604

message parameter
(alertDialog), 237
Message Ul framework, 507
BestFriend application,
accessing, 523-525
Cocoa Touch layer, 85
messages, 56
messaging syntax, objects, 68-70
methods. see also functions
ABRecordCopyVal, 517
addTextField, 254
application:didFinishLaunching-
WithOptions, 586, 592
applicationWillEnter-
Foreground, 560
autorelease, 75
calculate, 318, 322
centerMap, 519
chooselmage, 492
clearView, 305

componentsSeparatedBy-
String, 521

controlHardware, 467
countUp, 574-575
currentDevice, 588

data source methods, pickers,
278279

dealloc, 76, 147, 417, 424
declaration in interface files,
60-61
definition, 35
describelnteger, 605, 609
doAccelerometer, 469
doActionSheet, 246
doAlert, 561
doMultiButtonAlert, 239
doRotation, 470
doSound, 251
floatValue, 318
foundPinch, 444
foundRotation, 446
getters, 61
hideKeyboard, 172-174
IBAction, 513
imageWithData, 515
implementation
convenience methods,
67-68
declaration of variables,
65-66
expressions and decision
making, 70-74
messaging syntax, 68-70
object allocation and
initialization, 67
implementation files, 64
initWithContentsOfURL:encod-
ing:error, 521
initWithQuestion:answer, 385
loadFirstView, 305-306
loadView, 304
locating, 35

locationManager:didUpdate-
Heading, 568

locationManager:didUpdateTo-
Location:fromLocation, 531

motionEnded:withEvent, 448

orientationChanged, 461

pickerView:didSelectRow:
inComponent, 282

pickerView:numberOfRowsIn-
Component, 279

pickerView:titleForRow:forCom-
ponent, 280

presentModalViewController:
animated, 398
recordAudio:, 487

release, object release,
147-148

return types

id, 61

void, 61
sendEmail, 524
setlLightSourceAlphaValue, 370
setRegion:animated, 519
setters, 61
setToRecipients, 524
showDate, 265, 269
showNextCard, 396
startUpdatingLocation, 538
stopUpdatinglLocation, 532

tableView:cellForRowAtIndex-
Path, 341

tableView:didSelectRowAt-
IndexPath method, 356

tableView:titleForHeaderIn-
Section, 339

timelntervalSinceDate:, 269

toggleFlowerDetail, 205, 218

updateRightWrong-
Counters, 396

viewDidLoad, 168-169, 186,
396, 440, 460, 488, 545,
567, 573-575, 605, 611,
617, 621

missing 20 points, orientation, 428
MKMapView instance, 508, 527
Mobile Safari, 651
Model-View-Controller (MVC), 24
models, MVC structure, 131
data models, 134
modifying project properties
launch image, 44-45
setting application icon, 43
status bar display, 45
motion data, accessing, 454-458

motion events, ColorTilt applica-
tion, 466-471

motion hardware, 451
accelerometer, 452-453
gravity unit, 452
measurable axes, 452
reading, 456-458
gyroscope, 453-454
reading, 456-458

motion manager, Core Motion, ini-

tializing, 466-467
motion updates, receiving, 456
motionEnded:withEvent
method, 448
movement, sensing, 469
movie playback, implementing,
483-485
movie player, 482-486
MPMusicPlayerController versus
AVAudioPlayer, 502
multi-option alerts, creating,
238-241
multi-view applications
benefits, 294

static interface elements,
294-295

tab bars, 307
adding to, 310-312
adding view controllers,
308-309
area view, 313-319
setting up, 307-310
summary view, 323-326
volume view, 319-323
toolbars, 295-307

versus single-view applica-
tions, 293-295

multiple views, view
controllers, 149

MultipleViews application, 295
actions, adding, 302-303
actions, connecting, 303

adding view controllers,
296-297

adding views, 296-297
outlets, adding, 302-303
outlets, connecting, 303
setting up, 296-297

677

navigation events, FlowerInfoNavigator application, handling

toolbar controls, adding,
300-307

view controllers, instantiating,
298-299
view switch methods, 303-305
multitouch events, iPhone
Simulator, 48

multitouch gesture recognition,
434, 448-449

gesture recognizers
pinch recognizer, 443-445

rotation recognizer,
445-447

shake recognizer, 447-448

swipe recognizer, 441-443

tap recognizer, 439-443
multivalue options, pickers, 257
multivalue preference type, 376

MVC (Model-View-Controller), 24,
129-131

application design, 130-131
controllers, 131-132

data models, 134

models, 131

View-Based Application tem-
plate, 135

creating views, 141-146
implementation, 135

implementation of view
controller logic, 146-147

object release, 147-148

project setup, 136-139

testing application, 148

view controller outlets and
actions, 140-141

views, 131-132

naming provisioning profiles, 17

NativeiPhoneApps.com, 652

navigating code, 34-39

navigation controllers,
329-331, 360

navigation events,
FlowerinfoNavigator application,
handling, 356-357

How can we make this index more useful? Email us at indexes@samspublishing.com

678

navigation-based applications

navigation-based applications,
344-345. see also
FlowerinfoNavigator application

navigationController instance, 357

nested messaging, 69

New project command (File
menu), 28

New Smart Group command
(Project menu), 31

newBFF action, 510
NeXTSTEP platform, 83
nil value, 69
nonatomic attribute, 62
Notes application, 381

notification files, prepping,
232-233

notification interfaces, creating, 233
notification properties, 561
notifications, 231-232
alerts, 249
action sheets, 245-248

button press responses,
248-249

generating, 235-245
playing sounds, 250-253
System Sound Services, 250
vibrations, 253
creating, 561-563
local notifications
backgrounding, 554-555
implementing, 561-563
notification interfaces,
creating, 233
prepping notification files,
232-233
receiving, 485
scheduling, 561-563
NSArray class, 94
NSDate class, 95
NSDecimalNumber class, 94-95
NSDictionary class, 94

NSLog function (debugging tool),
602-603, 627

NSMutableArray class, 94
NSMutableDictionary class, 94

NSMutableString class, 93
NSNumber class, 94-95
NSObject class, 56, 91
NSString class, 93
NSUinteger properties, 385
NSURL class, 95-96

remote content, loading,
202-203

NSUserDefaults API, 371
numbers, 94-95

o

Object Allocations instrument, 619

object archiving, implementing,
400-402

object data types, declaration of
variables, 66

“Object-Oriented Programming
with Objective-C” document, 77
object-oriented programming
(OOP). See OOP (object-oriented
programming)
Objective-C, 24, 53, 57-58, 64, 78
decision-making
expressions, 70-71
if-then-else statements, 71
repetition with loops,
7274
switch statements, 72
file structure, 58
header files, 58-62
implementation files,
62-64
integers, 73
memory management

releasing instance vari-
ables, 76

releasing objects, 74-75

releasing rules, 76-77

retaining objects, 75-76
messaging syntax, 68-69

blocks, 70

nested messaging, 69
method implementation, decla-

ration of variables, 65-66

object allocation and initializa-
tion, convenience methods,
67-68
statements, 57
“Objective-C 2.0 Programming
Language” document, 77
objects. see also classes
adding to views, 141-144
allocation and initialization,
67-68
application, UlApplication
class, 91
definition, 56
instantiation, 107
messaging syntax, 68-70
Reframe application,
releasing, 417
releasing, 67, 78, 147-148
convenience methods,
67-68
FieldButtonFun, 175

FlowerWeb application,
220-221

ImageHop application, 195

MatchPicker application,
272-273

memory management,
74-75
retaining, 75-76
Scroller application,
releasing, 226

scrolling views, adding,
223-224

Swapper application,
releasing, 424
switch, UISwitch class, 96
window, UIWindow class, 92
Objects Library (Interface Builder),
110-111
Online Certificate Status Protocol
(OSCP), 635
onscreen controls, UlControl
class, 92
00 programs, 130

OOP (object-oriented program-
ming), 53-55, 130
Objective-C, 24, 53, 57-58, 64

blocks, 70

decision-making, 70-74

declaration of variables,
65-66

file structure, 58-64

memory management,
7477

messaging syntax, 68-69

object allocation and initial-

ization, 67-68
terminology, 55-57
Open GL ES instrument, 620
OpenGL ES framework, Media
layer, 86
OpenStep platform, 83
orientation
accessing data, 454-458
changes, reacting to, 460
determining, 461
sensing, 458-461
tilt, detecting, 462-471
Orientation application
changes, reacting to, 460
interface, preparing, 459-460
orientation, determining, 461
setting up, 458
orientation notifications, request-
ing, UlDevice, 455
orientationChanged method, 461
orientations (screens), 408
origins, Cocoa Touch, 83
OSCP (Online Certificate Status
Protocol), 635
other sources subgroup (project
groups), 30
otherButtonTitles parameter
(actionSheet), 247
otherButtonTitles parameter
(alertDialog), 237

outlets, 121
BestFriend, connecting, 512
buttons, 183

ChosenColor, 121
ColorTilt, adding, 463-464
connecting, 190
GettingAttention applica-
tion, 234
MatchPicker
application, 275
Cupertino, adding, 535-536
Cupertino Compass, adding,
543-544
deviceType, 589
FieldButtonFun, 155-156
Flashlight, connecting, 368
FlowerColorTable, adding to, 334
FlowerInfoNavigator, adding, 351
FlowerView, 121
FlowerWeb, preparing, 205-206
Gestures, connecting, 439
ImageHop
adding hop button,
191-192
adding image views,
184-188
adding labels, 191
adding sliders, 188-190
connecting outlets, 190
finishing interface, 190-192
preparing, 182-184
Internet Builder, 120-121
connections, 122-123
MatchPicker, adding to, 272
MediaPlayground, connecting,
480, 482
MultiViews, adding to, 302-303
padViewController, 585
Reframe application
adding, 416-417
adding properties, 416-417
connecting, 421-422
laying out, 418-421
Scroller, preparing, 222-223

segmented controls,
connecting, 209

Swapper application
adding, 423-424
connecting, 426

679
parent classes

switches, 205

TabbedCalculation application
adding, 313-314
connecting, 317

text views, connecting, 164

view controllers, 140-141

connection points,
144-146

web views, connecting to, 214
output, 151, 179, 199-200

buttons, 152-154

image views, adding, 184-188

keyboard, hiding, 171-174

labels, 152-153

scrolling views, 203

segmented controls, 201
FlowerWeb application, 204

styled buttons, creating,
164-171

switches, 200
FlowerWeb application, 204
text fields, 152-154
actions, 155-156
adding, 156-161
outlets, 155-156
text views, 153-154
adding, 161-164
views, 152
web views, 202-203
FlowerWeb application, 204
output labels, 120
MatchPicker application, 275
overlap, buttons, 430
Overview drop-down menu, 604

P

padViewController outlet, 585
paid developer programs,
joining, 10

panning (gesture), 434
parameters

definition, 56

Quick Help results, 101
parent classes, 56

How can we make this index more useful? Email us at indexes@samspublishing.com

680
patterns

patterns, 366
photo library, Image Picker,
492-495
photographs, displaying, 493-494
picker views, 259, 270-275,
284-289
adding, 273-274
choices, reactions, 281-284
outlets, 272
output labels, 275
protocols, 259-260, 271
data source protocol, 260
delegate protocol, 260-261
providing data to, 275-281
pickers, 257-258, 289-290
data source methods,
278279
date pickers, 258-259,
261-263, 266-270
adding, 263-265

calculating difference
between two dates, 268

connecting to actions, 265

displaying date and time,
267-268

getting date, 267

setting attributes, 264-265

multivalue options, 257

picker views, 259, 270-275,
284-289

adding, 273-274
outlets, 272
output labels, 275
protocols, 259-261, 271
providing data to, 275-281
reacting to choices,
281-284
UlDatePicker/UlIPicker
class, 97
pickerView:didSelectRow:inCompo-
nent method, 282
pickerView:numberOfRowsInCompo-
nent method, 279
pickerView:titleForRow:forCompo-
nent method, 280

pin annotation view, creating, 522
pinch gesture recognizer, imple-
menting, 443-445
pinching (gesture), 434
placeholder text, 158
plain tables, 330
playback, movie, implementing,
483-485
playing alerts, 250-253
sounds with vibrations, 253
system sounds, 251-252
plist files, 371
universal applications, 581
icon files, 582-583
launch images, 583
pointers, 66

populating data structures,
277-278

portrait orientation, 408

portrait upside-down orientation,
408

Position setting (Size Inspector), 114
pragma marks, adding, 39
preferences, 363

applications, 366-372

games, 405

implicit preferences, creating,
366-372

reading, 371-372

storing, 370-371

system settings, 372-374
settings bundles, 375-381

Preferences command (Xcode
menu), 100

premature optimization, 621

presentModalViewController:ani-
mated method, 398

pressing (gesture), 434

pricing applications, 653

primitive data types, 78
declaration of variables, 65-66

procedural programming, 54

products subgroup (project
groups), 31

profiles
applications, preparing,
643-647
development provisioning
generation and installation,
12-21
testing, 21-22
development provisioning pro-
files, 12
“distribution” profiles, 12
profiling applications, Shark
profiler, 620-626

program execution, GNU Debugger,
608-611

Programming in Objective-C 2.0,
Second Edition, 77
programs. See applications
project groups, subgroups, 30
project management, Xcode, 28
adding existing resources, 32
adding new code files, 31-32
creating a new project, 28-29
project groups, 30-31
Project menu commands, New
Smart Group, 31
projects. see also applications
BestFriend application, 509

Address Book framework,
512-518

connecting actions and out-
lets, 512
creating Ul, 511-512
map objects, 518-523
Message Ul, 523-525
setting up, 510-511
ColorTilt, 462

adding actions and outlets,
463-464

CoreMotion framework, 463

motion events, 466-471

preparing interface,
464-465

setting up, 462-465

Cupertino, 534
audio directions, 567-569

background image
resources, 534

background modes key,
569-570

Core Location
framework, 534

creating Ul, 536-537

location manager, 538-540

outlets, 535-536

preparing for audio,
564-567

properties, 535-536

protocols, 535-536

task-specific background
processing, 564-570
Cupertino Compass
calculating heading, 547
direction image
resources, 543
heading updates, 545-549
outlets, 543-544
properties, 543-544
setting up, 543-544
updating Ul, 544-545
DateCalc, 261

adding date pickers,
263-265

finishing interface,
266-267

setting up, 262-263

view controller logic,
267-270

Debugger Practice, 604-606,
612-614

Instruments, 614-620

profiling, 620-626

setting breakpoints,
606-607

setting watchpoints,
611-612

stepping through code,
608611

variable states, 608

distribution, configuring for,
638-639, 642
FieldButtonFun
actions, 155-156
adding text fields, 156-161
adding text views, 161-164

creating styled buttons,
164-171

hiding keyboard, 171-174
outlets, 155-156
releasing objects, 175
setting up, 154

view controller logic,
174-175

FlashCards, 384
application logic, 394-399
archiving flash cards,
402-404
class logic, 385-386

CreateCardViewContoller,
391-393

creating interface, 384,
387-391

object archiving, 400-402
preparing interface,
386-387
Flashlight, 366-372

connecting actions and out-
lets, 368

creating interface, 367

logic, 369-370

reading preferences,
371-372

setting up, 366-367

storing preferences,
370-371

FlowerColorTable, 332-333
adding outlets, 334

adding table views,
335-337

data source methods,
338-340

populating cells, 340-342
providing data to, 337-342
row touch events, 342-343
setting up, 333-337

681
projects

FlowerinfoNavigator, 344-345

adding outlets and
properties, 351

adding web view, 352-353

detail view, 350-353

detail view controller logic,
351-352

navigation events, 356-357

providing data to, 346-350

root view table controllers,
353-356

setting up, 345-346

table data source meth-
ods, 354

Ul, 357-358
FlowerWeb, 204
finishing interface, 215

preparing actions outlets,
205-206

releasing objects, 220-221

segmented controls,
206-210

setting up, 205

switches, 210-212

view controller logic,
216-220

web views, 212-214

Gestures, 435

connecting outlets, 439

creating interface, 437-439

pinch recognizer, 443-445

rotation recognizer,
445-447

setting up, 436-437

shake recognizer, 447-448

swipe recognizer, 441-443

tap recognizer, 439-443

GettingAttention, 249

action sheets, 245-249

connecting actions and
outlets, 234

creating notification inter-
face, 233

generating alerts, 235-245

local notifications, 561-563

How can we make this index more useful? Email us at indexes@samspublishing.com

682

projects

playing sounds, 250-253
prepping notification files,
232-233

System Sound
Services, 250

vibrations, 253
HelloNoun

creating views, 141-146

object release, 147-148

setting up, 136-139

testing, 148

view controller logic,

146-147

view controller outlets and
actions, 140-141
ImageHop, 181-182
actions, 182-184
adding animation
resources, 182

adding hop button,
191-192

adding image views,
184-188

adding labels, 191

adding sliders, 188-190

background suspension,
559-560

connecting actions, 190
connecting outlets, 190

finishing interface,
190-192

outlets, 182-184
releasing objects, 195
setting up, 182

view controller logic,
193-195

MatchPicker, 271

adding picker views,
273274

configuring Ul, 284-289
connecting outlets, 275
data structures, 276-278
finishing interface, 274-275
outlets, 272

output labels, 275

protocols, 271
providing data to, 275-281

reacting to choices,
281-284

releasing objects, 272-273

setting up, 271-273
MediaPlayground, 478

adding media files, 483

adding Media Player
framework, 482

connecting actions and out-
lets, 480-482

creating audio recordings,
486-490

creating interface, 480
handling cleanup, 485-486
Image Picker, 492-495
Media Picker, 495-501
movie playback, 483-485
movie player, 482-486
music player, 499-501
playing audio recordings,
490-491
receiving notifications, 485
setting up, 478-480
MultipleViews, 295

adding actions and outlets,
302-303

adding toolbar controls,
300-307

adding view controllers,
296-297

adding views, 296-297

connecting actions, 303

connecting outlets, 303

instantiating view con-
trollers, 298-299

setting up, 296-297

view switch methods,
303-305

Orientation

determining orientation, 461

orientation changes, 460

preparing interface,
459-460

setting up, 458

Reframe, 416

adding outlets and proper-
ties, 416-417

connecting outlets,
421-422

creating interface, 417-422
disabling Autosizing, 418
laying out, 418-421
reframing logic, 422-423
releasing objects, 417
setting up, 416-417
ReturnMe, 372
creating interface, 374
setting up, 373-374
settings bundles, 375-381
Scroller, 221

adding scroll views,
223-225

preparing outlets, 222-223

releasing objects, 226

scrolling behavior, 225-226

setting up, 222
SimpleSpin, 411-416

setting up, 411-412

testing, 412-413
SlowCount

counter logic, 573-574

creating Ul, 572

long-running background
tasks, 570-576

Swapper, 423
adding outlets and proper-
ties, 423-424
connecting outlets, 426
creating interface, 425-426
enabling rotation, 424
releasing objects, 424
setting up, 423-425
view-swapping logic,
426-429
TabbedCalculation, 307
adding actions and outlets,
313-314
adding tab bar controller,
310-312
adding view controllers,
308-309

area calculation logic,
317-319
area view, 313-319
connecting actions, 317
connecting outlets, 317
setting up, 307-310
summary view, 323-326
volume calculation logic,
325-326
volume view, 319-323
Universal application, 583
active devices, 588-590
device-specific view con-
trollers, 584-588
setting up, 584
UniversalToo application,
590, 596
GenericViewController,
590-592, 595

setting up, 590
view controllers, 592-593
views, 595-596
XIB files, 593-595
View-Based Application tem-
plate, 135
promoting applications, 649-655
iAds, 653-655
pricing, 653
social networks, 650-652
updates, 652-653
websites, 650-652
properties
animationDuration, 189

ColorTilt application, adding,
463-464

Cupertino application, adding,
535-536

Cupertino Compass applica-
tion, adding, 543-544

definition, 56

FlowerInfoNavigator applica-
tion, adding, 351

locating, 35

modifying, 42, 45

launch image, 44-45

setting application icon, 43
status bar display, 45
NSUlInteger, 385

Swapper application, adding,
423-424

Property List Editor, 371
protocols

ABPeoplePickerNavigation-
ControllerDelegate, 513

CreateCardDelegate, 398
Cupertino application, adding,
535-536
definition, 60
MatchPicker application, con-
forming to, 271
picker views, 259-261
UIPickerView, 290
Provisioning Portal link, 13
provisioning profiles, 12
Development Provisioning
Assistant
downloading, 1819
installing, 20-21
naming and generating, 17
generation and installation,
12-21
testing, 21-22
push buttons, 120

Q

Quartz Core framework, Media
layer, 86

Quick Help (Xcode), 100-101

Quick Look framework, Core
Services layer, 87

radians, degrees, 445

radio buttons, 200

reactions, orientation changes, 460

reading
accelerometer, 456-458
gyroscope, 456-458
preferences, 371-372

683
releasing objects

recordAudio: method, 487
recordings (audio)
creating, 486-490
playing, 490-491
Reframe application, 416
Autosizing, disabling, 418
Interface, creating, 417-422
laying out, 418-421
objects, releasing, 417
outlets
adding, 416-417
connecting, 421-422
properties, adding, 416-417
reframing logic, 422-423
setting up, 416-417
reframing
controls, rotatable applica-
tions, 416-423
interfaces, 410
reframing logic, implementing,
422-423
registration, Apple Developer
Program, 89
related API, Quick Help results, 102
related documents, Quick Help
results, 102
Release build configuration, 604
release method, object release,
147-148
release of objects, 67
convenience methods, 67-68
memory management, 74-75
releasing objects, 78
FieldButtonFun application, 175
ImageHop application, 195
instance variables, memory
management, 76

MatchPicker application,
272-273

objects, FlowerWeb applica-
tion, 220-221

Reframe application, 417

rules, 76-77

Scroller application, 226

Swapper application, 424

How can we make this index more useful? Email us at indexes@samspublishing.com

684

remote content, loading, NSURL and requestWithURL

remote content, loading, NSURL
and requestWithURL, 202-203

removing breakpoints, 606

repeatinterval notification
property, 561

repetition, loops, 72-74

requesting orientation notifica-
tions, UlDevice, 455

requestWithURL, remote content,
loading, 202-203
requirements, hardware, 7
resources
adding to projects, 32
removal from projects, 33-34
Resources subgroup (project
groups), 31
responders, UIResponder class, 92

responses, action sheets, button
presses, 248-249

results, Shark profiler, 624-626

retain attribute, 62

“retain” count, 76

retaining objects, memory man-
agement, 75-76

Return Key text input trait, 159

return types (methods), 61

return value, Quick Help
results, 102

ReturnMe application, 372, 405
interface, creating, 374
setting up, 373-374

settings bundles, creating,
375-381

reverse geocoding, 508
rich media, 475-476, 501-502
AV Foundation, framework, 477
Image Picker, 477
Media Player, framework,
476-477
MediaPlayground
application, 478
adding media files, 483
adding Media Player
framework, 482
cleanup, 485-486
connecting outlets,
480, 482

creating audio recordings,
486-490

creating interface, 480
Image Picker, 492-495
Media Picker, 495-501
movie playback, 483-485
movie player, 482-486
music player, 499-501
playing audio recordings,
490-491
receiving notifications, 485
setting up, 478-480
Robbin, Arnold, 627
root class, NSObject, 91

root view table controllers,
FlowerinfoNavigator application,
implementing, 353-356

rotatable interfaces, 407-408,
429-430

Autosizing, 413-416
controls, reframing, 416-423
creating, 411-416
designing, 410-411
enabling, 408-409
setting up, 411-412
swapping views, 423-429
testing, 412-413
rotating (gesture), 434
rotation
degrees, 445

testing with iPhone
Simulator, 48

rotation gesture recognizer, imple-
menting, 445-447

Rounded Rect buttons, 166

row touch events, FlowerColorTable
application, 342-343

rows, cells, 360

rules, releasing, 76-77

Run command (Run menu), 40

S

sales, monitoring, iTunes Connect,
649-650

sample code, Quick Help
results, 102

sandbox (Apple), 381-384
scaling factors, 4
scaling web pages, 214
scheduling notifications, 561-563
screen orientations, 408
Scrolling application, 221
adding scroll views, 223-225
preparing outlets, 222-223
releasing objects, 226
scrolling behavior, implement-
ing, 225-226
setting up, 222
scrolling behavior, Scroller applica-
tion, 225-226
scrolling options, text views, set-
ting up, 163-164
scrolling views, 203, 221
Interface Builder, 228
objects, adding, 223-224
Scroller application, 221
adding, 223-225
preparing outlets, 222-223
setting up, 222
width, 226
SDK (Software Development Kit), 7

search results, Xcode
documentation, 100

Secure text input trait, 159
Security framework, Core 0S
layer, 88

segmented controls, 120, 201, 258
choosing appearance, 208
configuring, 207-208
connecting to actions, 210
connecting to outlet, 209
FlowerWeb application, 204

adding, 206-210

sizing, 208
UlSegmentedControl class, 97

selection handles (IB layout
tool), 112

self.view, 304
sendEmail action, 510
sendEmail method, 524
sender variable, 172
sensing movement, 469

Set Active Build Configuration,
Debug command (Project
menu), 604

setLightSourceAlphaValue
method, 370

setRegion:animated method, 519
setter methods, 61
setting
animation speed, 193-195
default state, switches, 211
images, buttons, 167-170
web view attributes, 212-213
Setting Application Schema
References in the iPhone
Reference Library tutorial, 405
settings bundles, creating,
375-381
setToRecipients method, 524

Shake Gesture feature (iPhone
Simulator), 49

shake gesture recognizer, imple-
menting, 447-448

shaking (gesture), 434
Shark profiler, 620

attaching to an application,
621-624

interpretation of results,
624-626

showDate action method, 265
showDate method, 269
showNextCard controller, 395
showNextCard method, 396
SimpleSpin application, 411-416

Autosizing, 413-416

setting up, 411-412

testing, 412-413

Simulate Hardware Keyboard fea-
ture (iPhone Simulator), 49

Simulate Interface command (File
menu), 117-118

Simulate Memory Warning feature
(iPhone Simulator), 49

simulation, user interfaces, 117

Simulator, testing applications, 148

simulators, 46, 148

single classes, limitations, 130

685

summary view, multi-view applications, implementing

single-view applications versus
multi-view applications, 293-295

singletons, 56, 366, 456

sizable interfaces, 407-408,
429-430
Autosizing, 413-416
creating, 411-416
designing, 410-411
setting up, 411-412
Size Inspector (IB layout tool),
114-115
Autosizing, 413-416
Size Inspector command (Tools
menu), 114
Size setting (Size Inspector), 114
sizing segmented controls, 208
slider preference type, 376
sliders, 180
image views, 180
UlSlider class, 97
vertical, 197
SlowCount application

counter logic, implementing,
573-574
long-running background tasks,
completing, 570-576
Ul, creating, 572
smart groups, 31
snapshots, 37-38
Snapshots command (File
menu), 37

social networks, applications, pro-
moting, 650-652

Software Development Kit (SDK), 7

sound constants, Cupertino appli-
cation, adding, 566-567
soundName notification
property, 561
sounds
alerts, playing, 250-253
system sounds, creating and
playing, 251-252
vibrations, playing with, 253
spaghetti code, 130
speed, animations, setting,
193-195

Stallman, Richard, 627
standard program (Developer
Program), 8
startAnimating method, 188
starting animations, 187-188
startUpdatingLocation method, 538
statements
if-then-else, 71, 78
Objective-C, 57
switch, 72, 339
static interface elements, 294-295
status bar, 428
status bar display, modifying pro-
ject properties, 45
Step Into icon (debugger), control-
ling program execution, 609
Step Out icon (debugger), control-
ling program execution, 609
Step Over icon (debugger), control-
ling program execution, 609
stepping through code, 608-611
stopping animations, 187-188
stopUpdatingLocation method, 532
storage
application data, 382-383
file system, 384-399
flash cards, 402-404
object archiving, 400-402
preferences, 370-371
Store Kit framework, Core Services
layer, 88
String Programming Guide for
Cocoa, 602
strings, 93
date formats, 268
format specifiers, 602
structure, MVC, 130-131
styled buttons, creating, 164-171
subclasses, 55
subgroups, project groups, 30
submissions, applications,
642-649
subviews, text fields, alerts,
243-244

summary view, multi-view applica-
tions, implementing, 323-326

How can we make this index more useful? Email us at indexes@samspublishing.com

686
superclasses

superclasses, 56
supplementation, WiFi, 6

supported content types, web
views, 202
suspension backgrounding, 554
Swapper application, 423
interface, creating, 425-426
objects, releasing, 424
outlets
adding, 423-424
connecting, 426
properties, adding, 423-424
rotation, enabling, 424
setting up, 423-425
view-swapping logic, imple-
menting, 426-429
swapping views, 410
rotatable applications, 423-429
Swapper application, 426-429
swipe gesture recognizer, imple-
menting, 441-443
swiping (gesture), 434
switch objects, UISwitch class, 96
switch statements, 72, 339
switches, 200
actions, connecting to, 211-212
default state, setting, 211
FlowerWeb application, 204
adding, 210-212
outlets, 205
syntax, expressions, 71

System Configuration framework,
Core Services layer, 88
System framework, Core 0S
layer, 88
system settings, 372-374
settings bundles, creating,
375-381
System Sound Services, 250
system sounds, creating and play-
ing, 251-252
System Usage instrument, 620

T

tab bars, 295, 326-327
multi-view applications, 307
adding to, 310-312
adding view controllers,
308-309
area view, 313-319
setting up, 307-310
summary view, 323-326
volume view, 319-323
versus toolbars, 328
TabbedCalculation application, 307
actions
adding, 313-314
connecting, 317
area calculation logic, 317-319
area view, 313-319
outlets
adding, 313-314
connecting, 317
setting up, 307-310
summary view, 323-326

tab bar controllers, adding,
310-312

view controllers, adding,
308-309

volume calculation logic,
325-326

volume view, 319-323
table data source methods,
FlowerInfoNavigator
application, 354
table views, 329-330

FlowerColorTable application,
332-333

adding outlets, 334

adding table views,
335-337

adding to, 335-337

data source methods,
338-340

populating cells, 340-342

providing data to, 337-342

row touch events, 342-343

setting up, 333-337

tables, 330
grouped, 330-331
plain, 330
providing data to, 360
rows, cells, 360
tableView:cellForRowAtindexPath
method, 341
tableView:didSelectRowAtindex-
Path method, 356

tableView:titleForHeaderInSection
method, 339

tap gesture recognizer,
implementing, 439-443

tapping (gesture), 434

targets, 580

task completion, long-running
tasks, 555-556

task-specific background
processing, 555, 564-570

technologies

Apple Developer Suite, 23-24
Interface Builder, 105-126
iPhone Simulator, 45-50
Xcode, 27-42, 45

Cocoa Touch, 81, 90
core classes, 91-93
data type classes, 93-96
functionality, 82-83
interface classes, 96-98
origins, 83

developers, 23-24

MVC structure, 129-131
application design,

130-131

controllers, 132-134
data models, 134

View-Based Application
template, 135-148

views, 132

Objective-C, 53, 57-58, 64

blocks, 70

decision-making, 70-74

declaration of variables,
65-66

file structure, 58-64

memory management,
7477
messaging syntax, 68-69
object allocation and initial-
ization, 67-68
technology layers, iPhone 0OS, 83
Cocoa Touch, 84-85
Core 0S, 88
Core Services, 86, 88
Media, 85
templates
Mac 0S, 51

View-Based Application tem-
plate, 135

creating views, 141-146
implementation, 135
implementation of view
controller logic, 146-147
object release, 147-148
project setup, 136-139
testing application, 148
view controller outlets and
actions, 140-141
Xcode, 28
testing
development provisioning pro-
file, 21-22
SimpleSpin application,
412-413
testing applications
iPhone Simulator, 45
esoteric conditions, 49-50

generating multitouch
events, 48
interface simulation, 117
launching applications,
46-47
rotation simulation, 48
View-Based Application tem-
plate, 148
text, cells, populating, 354-356
text comments, class files,
adding to, 64
text entry areas, copy and
paste, 161

text field preference type, 376
text fields, 152-154
alerts
accessing, 244-245

instance variables,
242-243

subviews, 243-244
FieldButtonFun application

actions, 155-156

adding, 156-161

outlets, 155-156

setting up, 154
UlTextField/UlTextView

class, 97

text input traits, keyboard displays,
customizing, 159

text views, 152-154, 177
attributes, editing, 162

FieldButtonFun, adding,
161-164
outlets, connecting, 164
scrolling options, setting up,
163-164
tilt, detecting, 462-471
Time Profiler instrument, 619

timelntervalSinceDate:
method, 269
timer mode, UlDatePicker, 290
timeZone notification property, 561
title preference type, 376
Toggle In-Call Status Bar feature
(iPhone Simulator), 49
toggle switch preference type, 376
toggleFlowerDetail, 205

toggleFlowerDetail method,
205, 218

toolbars, 294, 326-327

buttons, adding and editing,
301-302

multi-view applications,
295-307

MultipleViews application
adding actions, 302-303
adding controls, 300-307
adding outlets, 302-303

687
Tools menu commands

connecting actions, 303
connecting outlets, 303

view switch methods,
303-305

versus tab bars, 328
tools

Apple Developer Suite, 23-24
Interface Builder, 105-126
iPhone Simulator, 45-50
Xcode, 27-42, 45

Cocoa Touch, 24, 81, 90
core classes, 91-93
data type classes, 93-96
functionality, 82-83
interface classes, 96-98
origins, 83

debugging, 601
Instruments, 614-619

MVC (Model-View-Controller),
24, 129131

application design,
130-131
controllers, 132-134
data models, 134
View-Based Application
template, 135-148
views, 132
Objective-C, 24, 53, 57-58, 64
blocks, 70
decision-making, 70-74
declaration of variables,
65-66
file structure, 58-64
memory management,
7477
messaging syntax, 68-69
object allocation and initial-
ization, 67-68
universal applications,
596-597
Tools menu commands
Attributes Inspector, 115
Identity Inspector, 126
Library, 110
Size Inspector, 114

How can we make this index more useful? Email us at indexes@samspublishing.com

688

tracing applications, Instruments tool

tracing applications, Instruments
tool, 614-619
Tree view, Shark profiler results, 624
tutorials (Apple), 177
TV Out feature (iPhone
Simulator), 49
Twitter, applications, promoting, 651

U

UlAlertView class, 237
UlApplication class, 91
UlButton class, 96, 152-154
UlCatalog class, 177, 197
UlControl class, 92
UlDatePicker class, 97
timer mode, 290
UlDevice class, 588
orientation notifications,
requesting, 455
Ullmage class, 197
UllimageView class, 197, 290
UIKit framework, 84
UlLabel class, 96, 152, 156, 177
UIPicker class, 97
UlPickerView class, protocols, 290
UIResponder class, 92
Uls (user interfaces). see also
interfaces
Address Book framework,
512-518
BestFriend application, creat-
ing, 511-512
ColorTilt application, preparing,
464-465
Cupertino application, creat-
ing, 536-537
Cupertino Compass applica-
tion, updating, 544-545
FlashCards application
creating, 384, 387-391
preparing, 386-387
Flashlight application,
creating, 367

FlowerInfoNavigator applica-
tion, 357-358

FlowerWeb application,
finishing, 215
Gestures application, creating,
437-439
ImageHop applications, finish-
ing, 190-192
MediaPlayground application,
creating, 480
Message Ul, BestFriend appli-
cation, 523-525
Orientation application,
preparing, 459-460
Reframe application
creating, 417-422
reframing logic, 422-423
resizable, 407-408, 429-430
Autosizing, 413-416
creating, 411-416
designing, 410-411
setting up, 411-412
ReturnMe application,
creating, 374
rotatable, 407-408, 429-430
Autosizing, 413-416
creating, 411-416
designing, 410-411
enabling, 408-409
reframing controls,
416-423
setting up, 411-412
swapping views, 423-429
testing, 412-413
sliders, 180
SlowCount application, creat-
ing, 572
Swapper application, creating,
425-426

UlSegmentedControl class, 97
UlSlider class, 97, 197

UlSwitch class, 96

UlTextField class, 97, 152-153, 156

UlTextView class, 97, 152-154,
161, 177

UlView class, 92
UlViewController class, 93

UlWebView class, 228
UlWindow class, 92
unique device identifiers, 12-13
Universal application, 583
active devices, detecting and
displaying, 588-590
device-specific view con-
trollers, adding, 584-588
setting up, 584
universal applications, 579-580,
590, 598-599

GenericViewController view
controller class, 591-596
adding device-specific
views, 591
adding to application dele-
gates, 591-592
implementation, 595

instantiating view con-
troller, 592-593

iPhone and iPad views,
595-596
XIB files, 593, 595
tools
converting interfaces, 597
upgrading iPhone target,
596-597

Window-based template,
581, 583

adding view controllers to
application delegates,
585-586

detecting and displaying
active device, 588-590

device-specific view con-
trollers and views, 584

instantiating view con-
trollers, 586, 588

plist files, 581-583
project preparation, 584
UniversalToo application, 590, 596
GenericViewController
adding, 590-592
implementing, 595
setting up, 590

view controllers, instantiating,
592-593

views, 595-596
XIB files, setting up, 593-595
update filter, location manager, 533

updateRightWrongCounters
method, 396

updates
accelerometer
managing, 467-468
reacting to, 468-469
gyroscope
managing, 467-468
reacting to, 470-471
headings, Cupertino Compass
application, 545-549
motion updates, receiving, 456
updating
applications, 652-653

Ul, Cupertino Compass appli-
cation, 544-545

upgrading iPhone target, 596-597
uploading

applications, 647-649

Certificate Assistant, 17
upside-down portrait mode, 430
URLs (uniform resource locators),

95-96

user alerts, 231-232, 249

action sheets, 245

button press responses,
248-249

changing appearance,
247-248

displaying, 245-247
buttons, adding, 238-241
displaying, 236-237
fields, adding, 241-245
generating, 235-245

multi-option alerts, creating,
238-241

notification interfaces,
creating, 233

playing sounds, 250-253

prepping notification files,
232-233
System Sound Services, 250
vibrations, 253
user defaults, 366-372
games, 405

implicit preferences, creating,
366-372

reading, 371-372
setting up, 366-367
storing, 370-371
system settings, 372-374
settings bundles, 375-381
user input, 179, 199-200
scrolling views, 203
segmented controls, 201
FlowerWeb application, 204
sliders, 180
adding, 188-190
image views, 180
switches, 200
FlowerWeb application, 204
web views, 202-203
FlowerWeb application, 204
user interfaces
connection to code, 119
actions, 120-121, 123-124
implementation, 120

launching IB from Xcode,
119120

outlets, 120-123

creating with Interface
Builder, 110
layout tools, 112-115
Objects Library, 110-111
customization, 115
Accessibility settings,
116-117
Attributes Inspector,
115116

simulation, 117
user output, 179, 199-200
scrolling views, 203
segmented controls, 201
FlowerWeb application, 204

689
view controllers

switches, 200
FlowerWeb application, 204
web views, 202-203
FlowerWeb application, 204

'/

variables
alertDialog, 237
declaration, 65
object data types, 66
primitive data types, 65-66
definition, 56
GNU Debugger, datatip, 608
instance variables, 59-60
sender, 172

versions, testing with iPhone
Simulator, 49
vibrations, alerts, 253
view controller logic
DateCalc application, imple-
menting, 267-270

FlowerWeb application, imple-
menting, 216-220
ImageHop application,
193-195
view controllers
configuring, 312

creating universal applications
with Window-based template,
585-586

FieldButtonFun
actions, 155-156
adding text fields, 156-161
adding text views, 161-164
outlets, 155-156
setting up, 154
instantiating, 592-593

logic implementation,
146-147,174-175
multiple views, 149
MultipleViews application
adding, 296-297
instantiating, 298-299

How can we make this index more useful? Email us at indexes@samspublishing.com

690
view controllers

MVC structure, 132
IBAction directive, 133-134
IBOutlet directive, 132
outlets and actions, 140-141

TabbedCalculation application,
adding, 308-309

UlViewController class, 93

Universal application, adding,
584-588
universal applications,
GenericViewController,
591-596
view icon (XIB files), 108
view switch methods, MultiViews
application, implementing,
303-305
View-Based Application
template, 135
creating views, 141

addition of objects,
141-144

outlet and action
connection, 144-146
FieldButtonFun
actions, 155-156
adding text fields, 156-161
adding text views, 161-164

creating styled buttons,
164-171

hiding keyboard, 171-174

outlets, 155-156

releasing objects, 175

setting up, 154

view controller logic,
174-175

FlowerWeb, 204
finishing interface, 215
preparing actions, 205-206
preparing outlets, 205-206
releasing objects, 220-221
segmented controls,

206-210

setting up, 205
switches, 210-212

view controller logic,
216-220

web views, 212-214
implementation, 135

implementation of view
controller logic, 146-147
object release, 147-148
project setup, 136
classes, 136-138
XIB files, 138-139
Scroller, 221
adding scroll views,
223-225
preparing outlets, 222-223
releasing objects, 226
scrolling behavior, 225-226
setting up, 222
testing application, 148
view controllers, outlets and
actions, 140-141
viewDidLoad method, 168-169, 186,
396, 440, 460, 488, 545, 567,
573-575, 605, 611, 617, 621
views, 109. see also table views

Debugger (GNU Debugger),
612-614

map, configuring, 512

MultipleViews application,
adding views, 296-297

MVC structure, 131-132

picker views, 259, 270-275,
284-289

adding, 273-274

outlets, 272

output labels, 275
protocols, 259-261, 271
providing data to, 275-281

reacting to choices,
281-284
pin annotation view,
creating, 522
scrolling, 203, 221
Scroller, 221-222

Scroller application,
223-226

width, 226

swapping, 410
rotatable applications,
423-429

Swapper application,
426-429

table views, 329-330
text views, 152-154
UlView class, 92

UniversalToo application,
595-596

view controllers, multiple
controllers, 149

View-Based Application
template

creating views, 141-146
implementation of view
controller logic, 146-147

object release, 147-148
web views, 202-203
FlowerWeb application, 204
void return type (methods), 61

volume view, multi-view applica-
tions, implementing, 319-323

w

warnings, building applications,
41-42

watchpoints, GNU Debugger,
611-612

web pages, scaling, 214
web views, 120, 202-203
attributes, setting, 212-213
clearColor, 220
FlowerInfoNavigator applica-
tion, adding, 352-353
FlowerWeb application, 204,
212-214
outlets, connecting to, 214
supported content types, 202
websites
Apple, 8
applications, promoting,
650-652
width, scroll views, 226

WiFi technology, 529
supplementation, 6
wildcard IDs, 637

window objects, UIWindow
class, 92
Window-based templates, univer-
sal applications, 581-583
adding view controllers to
application delegates,
585-586
detecting and displaying active
device, 588-590
device-specific view controllers
and views, 584

instantiating view controllers,
586-588

plist files, 581-583
project preparation, 584

X

Xcode, 23, 27-28, 50
build configurations, 604
building applications, 39-42
Active Configuration set-
ting, 40
Build and Run button,
40-41
errors and warnings, 41-42
debugging, 601
GNU Debugger, 603-614
Instruments tool, 614-619
NSLog function, 602-603
Shark profiler, 620-626
documentation system, 45
Cocoa Touch, 81-83, 90-98

exploration of frameworks,
98-101

editing, 34-39

editor, autocompletion, 35-37
gutter, 604

launching IB from, 119-120

691
XIB (Interface Builder) files

modifying project properties,
42,45
launch image, 44-45
setting application icon, 43
status bar display, 45
navigating, 34-39
project management, 28
adding existing
resources, 32
adding new code files,
31-32
creating a new project,
28-29
project groups, 30-31
removal of files and resources,
33-34
Xcode editor, 51
Xcode 3 Unleashed, 77, 627
Xcode 4
Interface Builder, 106
preview, 24

Xcode Debugging Guide, Shark
User Guide, 627

Xcode editor, 51

Xcode menu commands,
Preferences, 100

Xcode Workspace Guide, 50
XIB (Interface Builder) files, 107
Document icons, 109-110
Document window, 107-109
universal applications,
593-595
UniversalToo application,
setting up, 593-595
View-Based Application
template, 138-139

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Introduction
	Who Can Become an iPhone Developer?
	Who Should Use This Book?
	What Is (and Isn't) in This Book?

	HOUR 21: Building Background-Aware Applications
	Understanding iOS 4 Backgrounding
	Disabling Backgrounding
	Handling Background Suspension
	Implementing Local Notifications
	Using Task-Specific Background Processing
	Completing a Long-Running Background Task
	Further Exploration
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

