

WPF 4 Unleashed
Copyright © 2010 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33119-0
ISBN-10: 0-672-33119-5

Library of Congress Cataloging-in-Publication Data

Nathan, Adam.
WPF 4 unleashed / Adam Nathan.

p. cm.
Includes index.
ISBN 978-0-672-33119-0

1. Windows presentation foundation. 2. Application software. 3. Microsoft .NET
Framework. I. Title.

QA76.76.A65N386 2010
006.7’882—dc22

2010017765

Printed in the United States on America

First Printing June 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Kitty Wilson

Indexer
Erika Millen

Proofreader
Kathy Ruiz

Technical Editors
Dwayne Need
Robert Hogue
Joe Castro
Jordan Parker

Publishing Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Bronkella Publishing LLC

Introduction

Thank you for picking up WPF 4 Unleashed! Windows Presentation Foundation (WPF) is
Microsoft’s premier technology for creating Windows graphical user interfaces, whether
they consist of plain forms, document-centric windows, animated cartoons, videos,
immersive 3D environments, or all of the above. WPF is a technology that makes it easier
than ever to create a broad range of applications. It’s also the basis for Silverlight, which
has extended WPF technology onto the Web and into devices such as Windows phones.

Ever since WPF was publicly announced in 2003 (with the code name “Avalon”), it has
gotten considerable attention for the ways in which it revolutionizes the process of creat-
ing software—especially for Windows programmers used to Windows Forms and GDI. It’s
relatively easy to create fun, useful, and shareable WPF samples that demonstrate all kinds
of techniques that are difficult to accomplish in other technologies. WPF 4, released in
April 2010, improves on previous versions of WPF in just about every dimension.

WPF is quite a departure from previous technologies in terms of its programming model,
underlying concepts, and basic terminology. Even viewing the source code for WPF (by
cracking open its components with a tool such as .NET Reflector) is a confusing experi-
ence because the code you’re looking for often doesn’t reside where you’d expect to find
it. When you combine all this with the fact that there are often several ways to accom-
plish any task in WPF, you arrive at a conclusion shared by many: WPF has a very steep
learning curve.

That’s where this book comes in. As WPF was developed, it was obvious that there would
be no shortage of WPF books in the marketplace. But it wasn’t clear to me that the books
would have the right balance to guide people through the technology and its unique
concepts while showing practical ways to exploit it. Therefore, I wrote the first edition of
this book, Windows Presentation Foundation Unleashed, with the following goals in mind:

. To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

. To answer the questions most people have when learning the technology and to
show how commonly desired tasks are accomplished

. To be an authoritative source, thanks to input from members of the WPF team who
designed, implemented, and tested the technology

. To be clear about where the technology falls short rather than selling the technol-
ogy as the answer to all problems

. To be an easily navigated reference that you can constantly come back to

The first edition of this book was far more successful than I ever imagined it would be.
Now, almost four years later, I believe that this second edition accomplishes all the same

goals but with even more depth. In addition to covering new features introduced in WPF
3.5, WPF 3.5 SP1, and WPF 4, it expands the coverage of the existing features from the
first version of WPF. Whether you’re new to WPF or a long-time WPF developer, I hope
you find this book to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating user interfaces for
Windows. Regardless of whether you’re creating line-of-business applications, consumer-
facing applications, or reusable controls, this book contains a lot of content that helps
you get the most out of the platform. It’s designed to be understandable even for folks
who are new to the .NET Framework. And if you are already well versed in WPF, I’m
confident that this book still has information for you. At the very least, it should be an
invaluable reference for your bookshelf.

Because the technology and concepts behind WPF are the same ones behind Silverlight,
reading this book can also make you a better developer for Windows Phone 7 and even a
better web developer.

Although this book’s content is not optimized for graphic designers, reading this book
can be a great way to understand more of the “guts” behind a product like Microsoft
Expression Blend.

To summarize, this book does the following:

. Covers everything you need to know about Extensible Application Markup
Language (XAML), the XML-based language for creating declarative user interfaces
that can be easily restyled

. Examines the WPF feature areas in incredible depth: controls, layout, resources, data
binding, styling, graphics, animation, and more

. Highlights the latest features, such as multi-touch, text rendering improvements,
new controls, XAML language enhancements, the Visual State Manager, easing func-
tions, and much more

. Delves into topics that aren’t covered by most books: 3D, speech, audio/video, docu-
ments, effects, and more

. Shows how to create popular user interface elements, such as galleries, ScreenTips,
custom control layouts, and more

. Demonstrates how to create sophisticated user interface mechanisms, such as Visual
Studio–like collapsible/dockable panes

. Explains how to develop and deploy all types of applications, including navigation-
based applications, applications hosted in a web browser, and applications with
great-looking nonrectangular windows

. Explains how to create first-class custom controls for WPF

WPF 4 Unleashed2

. Demonstrates how to create hybrid WPF software that leverages Windows Forms,
DirectX, ActiveX, or other non-WPF technologies

. Explains how to exploit new Windows 7 features in WPF applications, such as Jump
Lists, and how to go beyond some of the limitations of WPF

This book doesn’t cover every last bit of WPF. (In particular, XML Paper Specification
[XPS] documents are given only a small bit of attention.) WPF’s surface area is so large
that I don’t believe any single book can. But I think you’ll be pleased with the breadth
and depth achieved by this book.

Examples in this book appear in XAML and C#, plus C++/CLI for interoperability discus-
sions. XAML is used heavily for a number of reasons: It’s often the most concise way to
express source code, it can often be pasted into lightweight tools to see instant results
without any compilation, WPF-based tools generate XAML rather than procedural code,
and XAML is applicable no matter what .NET language you use, such as Visual Basic
instead of C#. Whenever the mapping between XAML and a language such as C# is not
obvious, examples are shown in both representations.

Software Requirements
This book targets the final release of version 4.0 of Windows Presentation Foundation, the
corresponding Windows SDK, and Visual Studio 2010.

The following software is required:

. A version of Windows that supports the .NET Framework 4.0. This can be Windows
XP with Service Pack 2 (including Media Center, Tablet PC, and x64 editions),
Windows Server 2003 with Service Pack 1 (including the R2 edition), Windows
Vista, or later versions.

. The .NET Framework 4.0, which is installed by default starting with Windows Vista.
For earlier versions of Windows, you can download the .NET Framework 4.0 for free
from http://msdn.com.

In addition, the following software is recommended:

. The Windows Software Development Kit (SDK), specifically the .NET tools it
includes. This is also a free download from http://msdn.com.

. Visual Studio 2010 or later, which can be a free Express edition downloaded from
http://msdn.com.

If you want additional tool support for WPF-based graphic design, Microsoft Expression
(specifically Expression Blend) can be extremely helpful.

A few examples are specific to Windows Vista, Windows 7, or a computer that supports
multi-touch, but the rest of the book applies equally to all relevant versions of Windows.

Introduction 3

http://msdn.com
http://msdn.com
http://msdn.com

Code Examples
The source code for examples in this book can be downloaded from http://informit.com/
title/9780672331190 or http://adamnathan.net/wpf.

How This Book Is Organized
This book is arranged into six main parts, representing the progression of feature areas
that you typically need to understand to use WPF effectively. But if you’re dying to jump
ahead and learn about a topic such as 3D or animation, the book is set up to allow for
nonlinear journeys as well. The following sections provide a summary of each part.

Part I: Background
This part includes the following chapters:

. Chapter 1: Why WPF, and What About Silverlight?

. Chapter 2: XAML Demystified

. Chapter 3: WPF Fundamentals

Chapter 1 introduces WPF by comparing it to alternative technologies and helping you
make decisions about when WPF is appropriate for your needs. Chapter 2 explores XAML
in great depth, giving you the foundation to understand the XAML you’ll encounter in
the rest of the book and in real life. Chapter 3 highlights the most unique pieces of WPF’s
programming model above and beyond what .NET programmers already understand.

Part II: Building a WPF Application
This part includes the following chapters:

. Chapter 4: Sizing, Positioning, and Transforming Elements

. Chapter 5: Layout with Panels

. Chapter 6: Input Events: Keyboard, Mouse, Stylus, and Multi-Touch

. Chapter 7: Structuring and Deploying an Application

. Chapter 8: Exploiting Windows 7

Part II equips you with the knowledge to assemble and deploy a traditional-looking appli-
cation (although some fancier effects, such as transforms, nonrectangular windows, and
Aero Glass, are also covered). Chapters 4 and 5 discuss arranging controls (and other
elements) in a user interface. Chapter 6 covers input events, including new support for
engaging multi-touch user interfaces. Chapter 7 examines several different ways to
package and deploy WPF-based user interfaces to make complete applications. Chapter 8
ends this part by showing slick ways to exploit features in Windows 7 that can help make
your application look modern.

WPF 4 Unleashed4

http://informit.com/title/9780672331190
http://adamnathan.net/wpf
http://informit.com/title/9780672331190

Part III: Controls
This part includes the following chapters:

. Chapter 9: Content Controls

. Chapter 10: Items Controls

. Chapter 11: Images, Text, and Other Controls

Part III provides a tour of controls built into WPF. There are many that you’d expect to
have available, plus several that you might not expect. Two categories of controls—
content controls (Chapter 9) and items controls (Chapter 10)—are important and deep
enough topics to merit their own chapters. The rest of the controls are examined in
Chapter 11.

Part IV: Features for Professional Developers
This part includes the following chapters:

. Chapter 12: Resources

. Chapter 13: Data Binding

. Chapter 14: Styles, Templates, Skins, and Themes

The features covered in Part IV are not always necessary to use in WPF applications, but
they can greatly enhance the development process. Therefore, they are indispensable for
professional developers who are serious about creating maintainable and robust applica-
tions or components. These topics are less about the results visible to end users than they
are about the best practices for accomplishing these results.

Part V: Rich Media
This part includes the following chapters:

. Chapter 15: 2D Graphics

. Chapter 16: 3D Graphics

. Chapter 17: Animation

. Chapter 18: Audio, Video, and Speech

This part of the book covers the features in WPF that typically get the most attention. The
support for 2D and 3D graphics, animation, video, and more enable you to create a stun-
ning experience. These features—and the way they are exposed—set WPF apart from
previous systems. WPF lowers the barrier to incorporating such content in your software,
so you might try some of these features that you never would have dared to try in the
past!

Introduction 5

Part VI: Advanced Topics
This part includes the following chapters:

. Chapter 19: Interoperability with Non-WPF Technologies

. Chapter 20: User Controls and Custom Controls

. Chapter 21: Layout with Custom Panels

The topics covered in Part VI are relevant for advanced application developers, or devel-
opers of WPF-based controls. The fact that existing WPF controls can be radically restyled
greatly reduces the need for creating custom controls.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occa-
sionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and command
samples, as well as filenames. In code listings, italic monospace type is
used for placeholder text.
Code listings are colorized similar to the way they are colorized in Visual Studio.
Blue monospace type is used for XML elements and C#/C++ keywords, brown
monospace type is used for XML element names and C#/C++ strings, green
monospace type is used for comments, red monospace type is used for XML
attributes, and teal monospace type is used for type names in C# and C++.

Throughout this book, you’ll find a number of sidebar elements:

WPF 4 Unleashed6

What is a FAQ sidebar?

A FAQ sidebar presents a question
readers might have regarding the subject
matter in a particular spot in the book—and
then provides a concise answer.

?
FA Q

Digging Deeper Sidebars

A Digging Deeper sidebar presents advanced or
more detailed information on a subject than is
provided in the surrounding text. Think of Dig-
ging Deeper material as stuff you can look into
if you’re curious but can ignore if you’re not.

D I G G I N G D E E P E R

A tip is a bit of information that can help
you in a real-world situation. Tips often offer
shortcuts or alternative approaches to
produce better results or to make a task
easier or quicker.

T I P

A warning alerts you to an action or a
condition that can lead to an unexpected
or unpredictable result—and then tells you
how to avoid it.

WA R N I N G

CHAPTER 1

Why WPF, and What
About Silverlight?

In movies and on TV, the main characters are typically an
exaggeration of the people you encounter in real life.
They’re more attractive, they react more quickly, and they
somehow always know exactly what to do. The same could
be said about the software they use.

This first struck me back in 1994 when watching the movie
Disclosure, starring Michael Douglas, Demi Moore, and an
email program that looks nothing like Microsoft Outlook!
Throughout the movie, we’re treated to various visual
features of the program: a spinning three-dimensional “e,”
messages that unfold when you open them and crumple
when you delete them, hints of inking support, and slick
animations when you print messages. (The email program
isn’t even the most unrealistic software in the movie. I’ll
just say “virtual reality database” and leave it at that.)

Usability issues aside, Hollywood has been telling us for a
long time that software in the real world isn’t as
compelling as it should be. You can probably think of
several examples on your own of TV shows and movies
with comically unrealistic software. But lately, real-world
software has been catching up to Hollywood’s standards!
You can already see it in traditional operating systems (yes,
even in Windows), on the web, and in software for devices
such as the iPhone, iPad, Zune, TiVo, Wii, Xbox, Windows
phones, and many more. Users have increasing expecta-
tions for the experience of using software, and companies
are spending a great deal of time and money on user inter-
faces that differentiate themselves from the competition.
This isn’t limited to consumer-facing software; even busi-
ness applications and internal tools can greatly benefit
from a polished user interface.

IN THIS CHAPTER

. A Look at the Past

. Enter WPF

. The Evolution of WPF

. What About Silverlight?

With higher demands placed on user interfaces, traditional software development
processes and technologies often fall short. Modern software usually needs to support
rapid iteration and major user interface changes throughout the process—whether such
changes are driven by professional graphic designers, developers with a knack for design-
ing user interfaces, or a boss who wants the product to be more “shiny” and animated.
For this to be successful, you need technology and tools that make it natural to separate
the user interface from the rest of the implementation as much as possible and to decou-
ple visual behavior from the underlying program logic. Developers should be able to
create a fully functional “ugly” application that designers can directly retheme without
requiring developers to translate their artwork. The Win32 style of programming, in
which controls directly contain code to paint and repaint themselves, makes rapid user
interface iteration far too difficult for most projects.

In 2006, Microsoft released a technology to help people create 21st-century software that
meets these high demands: Windows Presentation Foundation (WPF). With the release of
WPF 4 in 2010, the technology is better than ever at delivering amazing results for just
about any kind of software. Almost a decade after Tom Cruise helped popularize the idea
of multi-touch computer input in the movie Minority Report, and after successful multi-
touch implementations in a variety of devices (most notably the iPhone), WPF 4 and
Windows 7 are bringing multi-touch to the masses. Hollywood better start coming up
with some fresh ideas!

A Look at the Past
The primary technologies behind many Windows-based user interfaces—the graphics
device interface (GDI) and USER subsystems—were introduced with Windows 1.0 in 1985.
That’s almost prehistoric in the world of technology! In the early 1990s, OpenGL (created
by Silicon Graphics) became a popular graphics library for doing advanced two-dimen-
sional (2D) and three-dimensional (3D) graphics on both Windows and non-Windows
systems. This was leveraged by people creating computer-aided design (CAD) programs,
scientific visualization programs, and games. DirectX, a Microsoft technology introduced
in 1995, provided a new high-performance alternative for 2D graphics, input, communi-
cation, sound, and eventually 3D (introduced with DirectX 2 in 1996).

Over the years, many enhancements have been made to both GDI and DirectX. GDI+,
introduced in the Windows XP time frame, tried to improve upon GDI by adding support
for features such as alpha blending and gradient brushes. It ended up being slower than
GDI due to its complexity and lack of hardware acceleration. DirectX (which, by the way,
is the technology behind Xbox) continually comes out with new versions that push the
limits of what can be done with computer graphics. With the introduction of .NET and
managed code in 2002, developers were treated to a highly productive model for creating
Windows (and web) applications. In this world, Windows Forms (built on top of GDI+)
became the primary way a C#, Visual Basic, and (to a lesser degree) C++ developer started
to create new user interfaces on Windows. Windows Forms has been a successful and
productive technology, but it still has all the fundamental limitations of GDI+ and USER.

CHAPTER 1 Why WPF, and What About Silverlight?10

Starting with DirectX 9, Microsoft shipped a DirectX framework for managed code (much
like it shipped libraries specifically for Visual Basic in the past), which eventually was
supplanted by the XNA Framework. Although this enables C# developers to use DirectX
without most of the complications of .NET/COM interoperability, these managed frame-
works aren’t significantly easier to use than their unmanaged counterparts unless you’re
writing a game. (The XNA Framework makes writing a game easier because it includes
new libraries specifically for game development and works with compelling tools such as
the XNA Framework Content Pipeline and XNA Game Studio Express.)

So although you could have developed a Windows-based email program with the 3D
effects seen in Disclosure ever since the mid-1990s with non-GDI technologies (actually,
probably mixing DirectX or OpenGL with GDI), such technologies are rarely used in
mainstream Windows applications even more than a decade later. There are several
reasons for this: The hardware required to get a decent experience hasn’t been ubiquitous
until recently, it has been at least an order of magnitude harder to use alternative tech-
nologies, and GDI-based experiences have been considered “good enough.”

Graphics hardware continues to get better and cheaper and consumer expectations
continue to rise, but until WPF, the difficulty of creating modern user experiences had not
been addressed. Some developers would take matters into their own hands to get cooler-
looking applications and controls on Windows. A simple example of this is using bitmaps
for buttons instead of using the standard button control. These types of customizations
can not only be expensive to develop, but they also often produce a flakier experience.
Such applications often aren’t as accessible as they should be, don’t handle high dots-per-
inch (DPI) settings very well, and have other visual glitches.

Enter WPF
Microsoft recognized that something brand new was needed that escaped the limitations
of GDI+ and USER yet provided the kind of productivity that people enjoy with frame-
works like Windows Forms. And with the continual rise of cross-platform applications
based on HTML and JavaScript, Windows desperately needed a technology that’s as fun
and easy to use as these, yet with the power to exploit the capabilities of the local
computer. Windows Presentation Foundation (WPF) is the answer for software developers
and graphic designers who want to create modern user experiences without having to
master several difficult technologies. Although “Presentation” sounds like a lofty term for
what I would simply call a user interface, it’s probably more appropriate for describing the
higher level of visual polish that’s expected of today’s applications and the wide range of
functionality included in WPF!

The highlights of WPF include the following:

. Broad integration—Prior to WPF, a Windows developer who wanted to use 3D,
video, speech, and rich document viewing in addition to normal 2D graphics and
controls would have to learn several independent technologies with a number of
inconsistencies and attempt to blend them together without much built-in support.
But WPF covers all these areas with a consistent programming model as well as tight
integration when each type of media gets composited and rendered. You can apply

Enter WPF 11
1

the same kind of effects consistently across different media types, and many of the
techniques you learn in one area apply to all the other areas.

. Resolution independence—Imagine a world in which moving to a higher resolu-
tion or DPI setting doesn’t mean that everything gets smaller; instead, graphics and
text simply get crisper! Envision user interfaces that look reasonable on a small
netbook as well as on a 60-inch TV! WPF makes this easy and gives you the power
to shrink or enlarge elements on the screen independently from the screen’s resolu-
tion. A lot of this is possible because of WPF’s emphasis on vector graphics.

. Hardware acceleration—WPF is built on Direct3D, so content in a WPF applica-
tion—whether 2D or 3D, graphics, or text—is converted to 3D triangles, textures,
and other Direct3D objects and then rendered by hardware. This means that WPF
applications get the benefits of hardware acceleration for smoother graphics and all-
around better performance (due to work being offloaded to graphics processing
units [GPUs] instead of central processor units [CPUs]). It also ensures that all WPF
applications (not just high-end games) receive benefits from new hardware and
drivers, whose advances typically focus on 3D capabilities. But WPF doesn’t require
high-end graphics hardware; it has a software rendering pipeline as well. This
enables features not yet supported by hardware, enables high-fidelity printing of
any content on the screen, and is used as a fallback mechanism when encountering
inadequate hardware resources (such as an outdated graphics card or even a high-
end one that has simply run out of GPU resources such as video memory).

. Declarative programming—Declarative programming is not unique to WPF, as
Win16/Win32 programs have used declarative resource scripts to define the layout
of dialog boxes and menus for over 25 years. And .NET programs of all types often
leverage declarative custom attributes plus configuration and resource files based on
Extensible Markup Language (XML). But WPF takes declarative programming to the
next level with Extensible Application Markup Language (XAML; pronounced
“Zammel”). The combination of WPF and XAML is similar to using HTML to define
a user interface—but with an incredible range of expressiveness. This expressiveness
even extends beyond the bounds of user interfaces; WPF uses XAML as a document
format, a representation of 3D models, and more. The result is that graphic design-
ers are empowered to contribute directly to the look and feel of applications, as well
as some behavior for which you’d typically expect to have to write code. The next
chapter examines XAML in depth.

. Rich composition and customization—WPF controls can be composed in ways
never before seen. You can create a ComboBox filled with animated Buttons or a Menu
filled with live video clips! Although these particular customizations might sound
horrible, it’s important that you don’t have to write a bunch of code (or any code!)
to customize controls in ways that the control authors never imagined (unlike
owner-draw in prior technologies). Along the same lines, WPF makes it quite easy to
“skin” applications with radically different looks (covered in Chapter 14, “Styles,
Templates, Skins, and Themes”).

CHAPTER 1 Why WPF, and What About Silverlight?12

In short, WPF aims to combine the best
attributes of systems such as DirectX
(3D and hardware acceleration),
Windows Forms (developer productiv-
ity), Adobe Flash (powerful animation
support), and HTML (declarative
markup). With the help of this book, I
think you’ll find that WPF gives you
more productivity, power, and fun than
any other technology you’ve worked
with in the past!

Enter WPF 13
1

D I G G I N G D E E P E R

GDI and Hardware Acceleration

GDI is actually hardware accelerated on
Windows XP. The video driver model explicitly
supported accelerating common GDI opera-
tions. Windows Vista introduced a new video
driver model that does not hardware acceler-
ate GDI primitives. Instead, it uses a “canon-
ical display device” software implementation
of the legacy video driver for GDI. However,
Windows 7 reintroduced partial hardware
acceleration for GDI primitives.

FA Q

Does WPF enable me to do something that I couldn’t have previously done?

Technically, the answer is “No,” just like C# and the .NET Framework don’t enable you
to do something that you couldn’t do in assembly code. It’s just a question of how much
work you want to do to get the desired results!

If you were to attempt to build a WPF-equivalent application from scratch without WPF, you’d
not only have to worry about the drawing of pixels on the screen and interaction with input
devices, you’d also need to do a ton of additional work to get the accessibility and localiza-
tion support that’s built in to WPF, and so on. WPF also provides the easiest way to take
advantage of Windows 7 features, such as defining Jump List items with a small chunk of
XAML (see Chapter 8, “Exploiting Windows 7”).

So I think most people would agree that the answer is “Yes” when you factor time and
money into the equation!

?

FA Q

When should I use DirectX instead of WPF?

DirectX is more appropriate than WPF for advanced developers writing hard-core “twitch
games” or applications with complex 3D models where you need maximum performance.
That said, it’s easy to write a naive DirectX application that performs far worse than a similar
WPF application.

DirectX is a low-level interface to the graphics hardware that exposes all the quirks of what-
ever GPU a particular computer has. DirectX can be thought of as assembly language in the
world of graphics: You can do anything the GPU supports, but it’s up to you (the application
author) to support all the hardware variations. This is onerous, but such low-level hardware
access enables skilled developers to make their own tradeoffs between fine-grained quality
and speed. In addition, DirectX exposes cutting-edge features of GPUs as they emerge more
quickly than they appear in WPF.

?

The Evolution of WPF
Oddly enough, WPF 4 is the fourth major release of WPF. It’s odd because the first release
had the version number 3.0! The first release in November 2006 was called WPF 3.0
because it shipped as part of the .NET Framework 3.0. The second release—WPF 3.5—
came almost exactly a year later (one day shy, in fact). The third release, once again, came
almost a year later (in August 2008). This release was a part of Service Pack 1 (SP1) for
.NET 3.5, but this was no ordinary service pack as far as WPF was concerned—it
contained many new features and improvements.

In addition to these major releases, Microsoft introduced a “WPF Toolkit” in August 2008
at http://wpf.codeplex.com that, along with miscellaneous tools and samples, gets
updated several times a year. The WPF Toolkit has been used as a way to ship features
more quickly and in an experimental form (often with full source code). Features intro-
duced in the WPF Toolkit often “graduate” to get included in a future release of WPF,
based on customer feedback about their desirability and readiness.

When the first version of WPF was released, tool support was almost nonexistent. The
following months brought primitive WPF extensions for Visual Studio 2005 and the first
public preview release of Expression Blend. Now, Visual Studio 2010 not only has first-
class support for WPF development but has been substantially rewritten to be a WPF
application itself! Expression Blend, an application built 100% with WPF, has also gained
a lot of functionality for designing and prototyping great user interfaces. And in the past
several years, numerous WPF-based applications have been released from companies such
as Autodesk, SAP, Disney, Blockbuster, Roxio, AMD, Hewlett Packard, Lenovo, and many
more. Microsoft itself, of course, has a
long list of software built with WPF
(Visual Studio, Expression, Test and Lab
Manager, Deep Zoom Composer,
Songsmith, Surface, Semblio, Robotics
Studio, LifeCam, Amalga, Games for
Windows LIVE Marketplace, Office

CHAPTER 1 Why WPF, and What About Silverlight?14

Continued

In contrast, WPF provides a high-level abstraction that takes a description of a scene and
figures out the best way to render it, given the hardware resources available. (It’s a retained
mode system rather than an immediate mode system.) 2D is the primary focus of WPF; its
3D support is focused on data visualization scenarios and integration with 2D rather than
supporting the full power of DirectX.

The downside of choosing DirectX over WPF is a potentially astronomical increase in develop-
ment cost. A large part of this cost is the requirement to test an application on each
driver/GPU combination you intend to support. One of the major benefits of building on top of
the WPF is that Microsoft has already done this testing for you! You can instead focus your
testing on low-end hardware for measuring performance. The fact that WPF applications can
even leverage the client GPU in a partial-trust environment is also a compelling differentiator.

Note that you are able to use both DirectX and WPF in the same application. Chapter 19,
“Interoperability with Non-WPF Technologies,” shows how this can be done.

T I P

To inspect the WPF elements used in
any WPF-based application, you can use
the Snoop tool available from
http://snoopwpf.codeplex.com.

http://wpf.codeplex.com
http://snoopwpf.codeplex.com

Communicator Attendant, Active Directory Administrative Center, Dynamics NAV, Pivot,
PowerShell ISE, and many more).

Let’s take a closer look at how WPF has changed over time.

Enhancements in WPF 3.5 and WPF 3.5 SP1
The following notable changes were made to WPF in versions 3.5 and 3.5 SP1:

. Interactive 3D—The worlds of 2D and 3D were woven together even more seam-
lessly with the UIElement3D base class, which gives 3D elements input, focus, and
events; the odd-sounding Viewport2DVisual3D class, which can place any interac-
tive 2D controls inside a 3D scene; and more. See Chapter 16, “3D Graphics.”

. First-class interoperability with DirectX—Previously, WPF applications could
only interoperate with DirectX via the lowest common denominator of Win32.
Now, WPF has functionality for interacting directly with Direct3D surfaces with the
D3DImage class rather than being forced to interact with its host HWND. One benefit
from this is the ability to place WPF content on top of DirectX content and vice
versa. See Chapter 19.

. Better data binding—WPF gained support for XLINQ binding, better validation
and debugging, and output string formatting in XAML that reduces the need for
custom procedural code. See Chapter 13, “Data Binding.”

. Better special effects—The first version of WPF shipped with a handful of
bitmap effects (blur, drop shadow, outer glow, emboss, and bevel) but with a
warning to not use them because their performance was so poor! This has changed,
with a new set of hardware-accelerated effects and a whole new architecture that
allows you to plug in your own custom hardware-accelerated effects via pixel
shaders. See Chapter 15, “2D Graphics.”

. High-performance custom drawing—WPF didn’t previously have a good
answer for custom drawings that involve thousands of points or shapes, as even the
lowest-level drawing primitives have too much overhead to make such things
perform well. The WriteableBitmap class was enhanced so you can now specify
dirty regions when drawing on it rather than getting a whole new bitmap every
frame! Because WriteableBitmap only lets you set pixels, it is a very primitive form
of “drawing,” however.

. Text improvements—There’s now better performance, better international
support (improved input method editor [IME] support and improved Indic script
support), and enhancements to TextBox and RichTextBox. See Chapter 11, “Images,
Text, and Other Controls.”

. Enhancements to partial-trust applications—More functionality became avail-
able in the partial-trust sandbox for .NET applications, such as the ability to use
Windows Communication Foundation (WCF) for web service calls (via
basicHttpBinding) and the ability to read and write HTTP cookies. Also, support for
XAML Browser Applications (XBAPs)—the primary mechanism for running partial-trust

The Evolution of WPF 15
1

WPF applications—was extended to the Firefox web browser instead of just Internet
Explorer (In WPF, however, the add-on that enables this is no longer installed by
default.)

. Improved deployment for applications and the .NET Framework—This
arrived in many forms: a smaller and faster .NET Framework installation process
thanks to the beginnings of a .NET Framework “client profile” that excludes server-
only .NET pieces such as ASP.NET; a new “bootstrapper” component that handles all
.NET Framework dependencies, installations, and upgrades for you as well as
enabling setups with custom branding; and a variety of new ClickOnce features.

. Improved performance—WPF and the underlying common language runtime
implemented several changes that significantly boosted the performance of WPF
applications without any code changes needed. For example, the load time (espe-
cially first-time load) has been dramatically improved, animations (especially slow
ones) are much smoother, data binding is faster in a number of scenarios, and
layered windows (described in Chapter 8) are now hardware accelerated. Other
performance improvements were made that you must opt into due to compatibility
constraints, such as improved virtualization and deferred scrolling in items controls,
described in Chapter 10, “Items Controls.”

Enhancements in WPF 4
WPF 4 brings the following changes, on top of the changes from previous versions:

. Multi-touch support—When running on computers that support multi-touch
and run Windows 7 or later, WPF elements can get a variety of input events, from
low-level data, to easy-to-consume manipulations (such as rotation and scaling), to
high-level—including custom—gestures. The built-in WPF controls have also been
updated to be multi-touch aware. The WPF team leveraged the work previously
done by the Microsoft Surface team (whose software is built on WPF). As a result,
multi-touch in WPF 4 is compatible with version 2 of the Surface SDK, which is
great news for anyone considering developing for both Windows and Surface. See
Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and Multi-Touch.”

. First-class support for other Windows 7 features—Multi-touch is a cool new
feature of Windows 7, but there are plenty of others that don’t require special hard-
ware—so many more users will appreciate their inclusion. WPF provides the best
way to integrate with new taskbar features such as Jump Lists and icon overlays,
integrate with the latest common dialogs, and more. See Chapter 8.

. New controls—WPF 4 includes controls such as DataGrid, Calendar, and
DatePicker, which originally debuted in the WPF Toolkit. See Chapter 11.

. Easing animation functions—Eleven new animation classes such as BounceEase,
ElasticEase, and SineEase enable sophisticated animations with custom rates of
acceleration and deceleration to be performed completely declaratively. These
“easing functions” and their infrastructure were first introduced in Silverlight 3
before being adopted by WPF 4.

CHAPTER 1 Why WPF, and What About Silverlight?16

. Enhanced styling with Visual State Manager—The Visual State Manager,
originally introduced in Silverlight 2, provides a new way to organize visuals and
their interactivity into “visual states” and “state transitions.” This feature makes it
easier for designers to work with controls in tools such as Expression Blend, but
importantly also makes it easier to share templates between WPF and Silverlight.

. Improved layout on pixel boundaries—WPF straddles the line between being
automatically DPI independent (which requires ignoring physical pixel boundaries)
and having visual elements that look crisp (which, especially for small elements,
requires being aligned on pixel boundaries). From the beginning, WPF has
supported a property called SnapsToDevicePixels that forces “pixel snapping” on
elements. But using SnapsToDevicePixels can be complex and doesn’t help in some
scenarios. Silverlight went back to the drawing board and created a property called
UseLayoutRounding that works more naturally. WPF 4 now has this property. Just set
it to true on a root element, and the positions of that element plus all of children
will be rounded up or down to lie on pixel boundaries. The result is user interfaces
that can scale and can easily be crisp!

. Non-blurry text—WPF’s emphasis on DPI independence and a scalable user inter-
face has been an issue for small text—the kind of text that occurs a lot in traditional
user interfaces on 96-DPI screens. This has frustrated numerous users and develop-
ers. In fact, I’ve always claimed that I can spot a user interface created with WPF
simply by looking at the blurriness of its text. WPF 4 has finally addressed this with
an alternative way to render text that can make it look as crisp as GDI-based text yet
with almost all the benefits that WPF brings. Visual Studio 2010, for example, uses
this rendering mode for its text documents. Because there are some limitations to
the new rendering approach, you must opt into it. See Chapter 11.

. More deployment improvements—The .NET Framework client profile can run
side-by-side with the full .NET Framework, and it can be used in just about every
scenario relevant for WPF applications. In fact, .NET 4.0 projects in Visual Studio
2010 target the smaller client profile by default.

. More performance improvements—In order to make vector graphics perform
as well as possible, WPF can cache
rendered results as bitmaps and
reuse them. For advanced scenar-
ios, you can control this behavior
with the new CacheMode property.
See Chapter 15. The heavy usage of
WPF in Visual Studio 2010 drove a
lot of miscellaneous performance
improvements into WPF 4 across
the board, but all WPF applications
get to enjoy these improvements.

The Evolution of WPF 17
1

FA Q

What will be added to WPF after
version 4?

Nothing has been announced at the time of
writing, but I think it’s safe to say that perfor-
mance and increased synergy with Silverlight
will continue to be two major themes of
WPF’s evolution. Plus, the WPF Toolkit
provides some clues to future features that
could be integrated into the core platform,
such as chart controls, a BreadcrumbBar
control, a NumericUpDown control, and more.

?

What About Silverlight?
Silverlight is a small, lightweight version of the .NET Framework targeted at rich web
scenarios (as an alternative to Adobe Flash and Flex, for example). Silverlight chose to
follow WPF’s approach to creating user interfaces rather than creating yet another distinct
technology—and this approach has some great benefits. It was first released in 2007 and,
like WPF, is already in its fourth major version. Silverlight 4 was released in April 2010, a
few days after the release of WPF 4.

The relationship between WPF and Silverlight is a bit complex, and there is some confu-
sion about when to use one technology versus the other. This is further exacerbated by
the fact that WPF applications can run inside a web browser (as XBAPs) and be just as
“web based” as Silverlight applications, and Silverlight applications can run outside a web
browser, even in an offline mode.

Silverlight is mostly a subset of WPF plus the most fundamental classes in the .NET
Framework (core data types, collection classes, and so on). Each new version of Silverlight
includes more and more WPF functionality. Although compatibility with WPF and the
full .NET Framework is a goal for Silverlight, its creators have taken some opportunities to
learn from mistakes made in WPF and the .NET Framework. They have made some
changes and begun to support new features that don’t yet exist in the full .NET
Framework. Some of these changes or additions have been later adopted by WPF and the
full .NET Framework (such as the Visual State Manager and layout rounding), but others
have not (such as video brushes and perspective transforms). There are parts of WPF and
the .NET Framework that Silverlight will probably never support.

The bottom line is that the question to ask yourself isn’t “Should I use WPF or
Silverlight?” but rather, “Should I use the full .NET Framework or the small .NET
Framework?” If you will require functionality that exists only in the full .NET Framework,
then the choice is pretty simple. And WPF is the recommended user interface technology
to use with the full .NET Framework. Similarly, if the ability to run on a Mac or devices

CHAPTER 1 Why WPF, and What About Silverlight?18

FA Q

Are there any differences with WPF, depending on the version of Windows?

WPF exposes APIs that are relevant only for Windows 7 and later, such as multi-touch
functionality and various features described in Chapter 8. Besides that, WPF has a few
behavioral differences when running on Windows XP (the oldest version of Windows that WPF
supports). For example, 3D objects do not get antialiased.

And, of course, WPF controls have different default themes to match their host operating
system (Aero on Windows Vista and Windows 7 versus Luna on Windows XP).

Windows XP also has an older driver model that can negatively impact WPF applications. The
driver model in later versions of Windows virtualizes and schedules GPU resources, making a
system perform better when multiple GPU-intensive programs are running. Running multiple
WPF or DirectX applications might bog down a Windows XP system but shouldn’t cause
performance issues on more recent versions of Windows.

?

other than a standard PC is a requirement, then the choice is also clear. And Silverlight
has only one user interface technology (although it interoperates with HTML nicely).
Otherwise, the best choice depends greatly on the nature of the software and the target
audience.

Ideally, you wouldn’t have to make an up-front choice of which framework you want to
target. Ideally, you could use the same codebase—even the same compiled binaries—and
have an easy way to morph the application to exploit capabilities of the underlying
device, whether your program is running on a mobile device, a full Windows PC, or a
Mac. Maybe one day that will be true, but in the meantime, having a common codebase
that can work for both WPF and Silverlight involves a bit of work. The most common
approach has been to create a Silverlight-compatible codebase with #ifdef blocks for
WPF-specific functionality, so you can compile separately for Silverlight versus WPF with
minimal divergence in code.

It is my expectation (and hope) that the distinction between WPF and Silverlight will fade
over time. While Silverlight is a much cooler name than Windows Presentation
Foundation, the fact that these technologies have different names causes trouble and arti-
ficial distinctions. The way to think of Silverlight and WPF is as two implementations of
the same basic technology. In fact, inside Microsoft, largely the same team works on both.
Microsoft talks a lot about having a “client continuum” to target all platforms and devices
with common skills (what you learn in this book), common tools (Visual Studio,
Expression Blend, and others), and at least common code (a .NET language such as C# or
VB along with XAML, for example) if not common binaries. While it would be overkill to
call this book WPF and Silverlight Unleashed, it should be comforting to know that the
knowledge you gain from this book can help you be an expert in both WPF and
Silverlight.

Summary
As time passes, more software is delivering high-quality—sometimes cinematic—experi-
ences, and software that doesn’t risks looking old-fashioned. However, the effort involved
in creating such user interfaces—especially ones that exploit Windows—has been far too
difficult in the past.

WPF makes it easier than ever before to create all kinds of user interfaces, whether you
want to create a traditional-looking Windows application or an immersive 3D experience
worthy of a role in a summer blockbuster. Such a rich user interface can be evolved fairly
independently from the rest of an application, allowing graphic designers to participate in
the software development process much more effectively. But don’t just take my word for
it; read on to see for yourself how it’s done!

Summary 19
1

Symbols/Numbers
\ (backslash), 34

{ } (curly braces), 33-34, 377

2D graphics

2D and 3D coordinate system
transformation, 541, 590-591

explained, 596

Visual.TransformToAncestor method,
596-600

Visual3D.TransformToAncestor method,
600-605

Visual3D.TransformToDescendant
method, 600-605

Brushes

BitmapCacheBrush class, 535

DrawingBrush class, 520-524

explained, 513

ImageBrush class, 524-525

LinearGradientBrush class, 515-518

as opacity masks, 527-529

RadialGradientBrush class, 519-520

SolidColorBrush class, 514

VisualBrush class, 525-527

drawings

clip art example, 491-492

Drawing class, 476

DrawingBrush class, 477

DrawingContext methods, 494

DrawingImage class, 477-479

DrawingVisual class, 477

GeometryDrawing class, 476-477

GlyphRunDrawing class, 476

ImageDrawing class, 476-478

Pen class, 489-491

VideoDrawing class, 476

Effects, 529-531

explained, 475-476

geometries

aggregate geometries, 483

Bézier curves, 480

CombinedGeometry class, 486-487

defined, 479

EllipseGeometry class, 479

GeometryGroup class, 484-486

LineGeometry class, 479

PathGeometry class, 479-483

RectangleGeometry class, 479

representing as strings, 487-489

StreamGeometry class, 483

house example, 538

Shapes

clip art based on Shapes, 512-513

Ellipse class, 508

explained, 505-506

how they work, 509

Line class, 509-510

overuse of, 507

Path class, 511-512

Polygon class, 511

Polyline class, 510

Rectangle class, 507-508

transforms. See transforms

Visuals

custom rendering, 499

displaying on screen, 496-498

DrawingContext methods, 494

DrawingVisuals, 493-496

explained, 493

visual hit testing, 499-505

WPF 3.5 enhancements, 15

3D graphics

2D and 3D coordinate system
transformation, 541, 590-591

explained, 596

Visual.TransformToAncestor method,
596-600

Visual3D.TransformToAncestor method,
600-605

Visual3D.TransformToDescendant
method, 600-605

3D hit testing, 592-593

Cameras

blind spots, 545

coordinate systems, 542-544

explained, 542

LookDirection property, 544-548

MatrixCamera, 553

OrthographicCamera versus
PerspectiveCamera, 551-553

Position property, 543-544

Transform property, 549

UpDirection property, 548-550

Z-fighting, 545

coordinate systems, 542-544

explained, 537-538

hardware acceleration

explained, 12

GDI and, 13

house example, 538-540

Lights, 542

Materials

AmbientMaterial, 575

combining, 578

DiffuseMaterial, 572-575

EmissiveMaterial, 576-578

explained, 571

2D graphics776

Model3Ds

explained, 563

GeometryModel3D, 571

Lights, 563-570

Model3DGroup class, 584-586

pixel boundaries, 17

resolution independence, 12

texture coordinates, 584

Transform3Ds

combining, 562

explained, 554-555

house drawing example, 555-556

MatrixTransform3D class, 554, 562

RotateTransform3D class, 554, 559-562

ScaleTransform3D class, 554, 557-559

Transform3DGroup class, 554

TranslateTransform3D class, 554-557

Viewport2DVisual3D class, 590-591

Viewport3D class, 593-596

Visual3Ds

explained, 586

ModelVisual3D class, 587-588

UIElement3D class, 588-590

WPF 3.5 enhancements, 15

3D hit testing, 592-593

A
About dialog

attached events, 165-167

with font properties moved to inner
StackPanel, 90

with font properties set on root
window, 85-86

How can we make this index more useful? Email us at indexes@samspublishing.com

Help command, 191-192

initial code listing, 75-76

routed events, 162-164

absolute sizing, 130

accessing

binary resources

embedded in another assembly, 348

from procedural code, 349-350

at site of origin, 348-349

from XAML, 345-348

logical resources, 360

Action property (QueryContinueDragEventArgs
class), 173

ActiveEditingMode property (InkCanvas
class), 317

ActiveX controls, 714-718

ActualHeight property (FrameworkElement
class), 100

ActualWidth property (FrameworkElement
class), 100

AddBackEntry method, 218

AddHandler method, 160-161

advantages of WPF, 13

Aero Glass, 249-253

aggregate geometries, 483

AlternationCount property (ItemsControl
class), 276

AlternationIndex property (ItemsControl
class), 276

AmbientLight, 564, 569-570

AmbientMaterial class, 575

AnchoredBlock class, 326-327

AND relationships (logical), 429-430

Angle property (RotateTransform class), 108

AngleX property (SkewTransform class), 112

AngleY property (SkewTransform class), 112

AngleY property (SkewTransform class) 777

animation

animation classes

AutoReverse property, 618

BeginTime property, 616-617

By property, 616

DoubleAnimation, 611-612

Duration property, 614

EasingFunction property, 620

explained, 609-610

FillBehavior property, 621

From property, 614-616

IsAdditive property, 621

IsCumulative property, 621

lack of generics, 610-611

linear interpolation, 612-613

RepeatBehavior property, 618-619

SpeedRatio property, 617

To property, 614-616

data binding and, 632

easing functions, 16

BackEase, 640

BounceEase, 640

CircleEase, 640

EasingMode property, 637

ElasticEase, 640

ExponentialEase, 640

power easing functions, 637-638

SineEase, 640

writing, 640-642

explained, 89, 607

frame-based animation, 609

keyframe animation

discrete keyframes, 634-636

easing keyframes, 636

explained, 630

linear keyframes, 631-633

spline keyframes, 633-634

path-based animations, 637

reusing animations, 613

timer-based animation, 608-609

and Visual State Manager

Button ControlTemplate with
VisualStates, 643-646

transitions, 647-651

with XAML EventTriggers/Storyboards

explained, 621-622

starting animations from property
triggers, 628-629

Storyboards as Timelines, 629-630

TargetName property, 625-626

TargetProperty property, 622-625

annotations, adding to flow documents,
331-334

AnnotationService class, 331

Application class

creating applications without, 204

events, 202

explained, 199-200

Properties collection, 203

Run method, 200-201

single-instance applications, 204

Windows collection, 202

ApplicationCommands class, 189

ApplicationPath property (JumpTask), 238

applications

associating Jump Lists with, 234

embedding Win32 controls in WPF
applications

explained, 677

keyboard navigation, 687-691

Webcam control, 678-687

embedding Windows Forms controls in
WPF applications

explained, 699-700

PropertyGrid, 700-703

animation778

embedding WPF controls in
Win32 applications

HwndSource class, 692-695

layout, 696-699

embedding WPF controls in Windows
Forms applications

converting between two representatives,
707-708

ElementHost class, 704-706

launching modal dialogs, 708

gadget-style applications, 223-224

loose XAML pages, 231-232

multiple-document interface (MDI), 203

navigation-based Windows applications

explained, 211-212

hyperlinks, 215-216

journal, 216-218

Navigate method, 214-215

navigation containers, 212-214

navigation events, 218-219

Page elements, 212-214

returning data from pages, 221-222

sending data to pages, 220-221

standard Windows applications

Application class, 199-204

application state, 209-210

ClickOnce, 210-211

common dialogs, 206-207

custom dialogs, 207-208

explained, 195-196

multithreaded applications, 205

retrieving command-line arguments
in, 202

single-instance applications, 204

splash screens, 205-206

Window class, 196-198

Windows Installer, 210

How can we make this index more useful? Email us at indexes@samspublishing.com

XAML Browser applications (XBAPs)

ClickOnce caching, 226

deployment, 229

explained, 224-226

full-trust XAML Browser
applications, 228

integrated navigation, 228-229

limitations, 226-227

on-demand download, 230-231

security, 229

Apply method, 245

arbitrary objects, content and, 263

ArcSegment class, 480

Arguments property (JumpTask), 238

ArrangeOverride method, overriding, 754-755

associating Jump Lists with applications, 234

asynchronous data binding, 401

attached events, 165-167

attached properties

About dialog example, 90-91

as extensibility mechanism, 92-93

attached property providers, 92

defined, 89

attached property providers, 92

attenuation, 566

attributes, setting, 25

audio support

embedded resources, 663

explained, 653

MediaElement, 656-658

MediaPlayer, 655-656

MediaTimeline, 656-658

SoundPlayer, 654

SoundPlayerAction class, 654-655

audio support 779

speech recognition

converting spoken words into text,
667-670

specifying grammar with
GrammarBuilder, 671-672

specifying grammar with SRGS, 670-671

speech synthesis

explained, 664

GetInstalledVoices method, 664

PromptBuilder class, 665-667

SelectVoice method, 664

SelectVoiceByHints method, 664

SetOutputToWaveFile method, 665

SpeakAsync method, 664

Speech Synthesis Markup Language
(SSML), 665-667

SpeechSynthesizer, 664

SystemSounds class, 654

“Auto” length, 99

automation

automation IDs, 289

UI Automation, supporting in custom
controls, 749-750

AutoReverse property (animation classes), 618

autosizing, 128-130

AxisAngleRotation3D class, 559-560

AxMsTscAxNotSafeForScripting control, 716-717

B
BackEase function, 640

backslash (\), 34

BAML (Binary Application Markup Language)

decompiling back into XAML, 47-48

defined, 45

Baml2006Reader class, 53

base values of dependency properties,
calculating, 87-88

BaseValueSource enumeration, 88

BeginTime property (animation classes),
616-617

behavior

adding to custom controls

behavior, 737-739

code-behind file, 734

initial implementation, 733-737

resources, 734-735

creating for user controls, 725-727

Bézier curves, 480

BezierSegment class, 480

Binary Application Markup Language (BAML)

decompiling back into XAML, 47-48

defined, 45

binary resources

accessing

embedded in another assembly, 348

from procedural code, 349-350

at site of origin, 348-349

from XAML, 345-348

defining, 344-345

explained, 343

localizing

creating satellite assembly with
LocBaml, 351

explained, 350

marking user interfaces with localization
IDs, 351

preparing projects for multiple
cultures, 350

Binding object. See also data binding

binding

to .NET properties, 367-368

to collections, 370-373

audio support780

to entire objects, 369-370

to UIElement, 370

DoNothing values, 385

ElementName property, 366

IsAsync property, 401

in procedural code, 363-365

RelativeSource property, 367

removing, 365

sharing source with DataContext, 374-375

StringFormat property, 375-376

TargetNullValue property, 366

UpdateSourceExceptionFilter property, 408

UpdateSourceTrigger property, 404

validation rules, 405-409

ValidationRules property, 406

in XAML, 365-367

BindingMode enumeration, 403

BitmapCache class, 533-535

BitmapCacheBrush class, 535

BitmapEffect, 530

bitmaps

nearest-neighbor bitmap scaling, 310

WriteableBitmap class, 15

BitmapScalingMode property
(RenderOptions), 306

BlackoutDates property (Calendar control),
337-338

blind spots (Cameras), 545

Block TextElements

AnchoredBlock class, 326-327

BlockUIContainer, 321

List, 320

Paragraph, 320

sample code listing, 321-324

Section, 320

Table, 320

How can we make this index more useful? Email us at indexes@samspublishing.com

BlockUIContainer Blocks, 321

BlurEffect, 529-530

BooleanToVisibilityConverter, 383-384

Bottom property (Canvas), 116

BounceEase function, 640

BrushConverter type converter, 32

Brushes

applying without logical resources, 352-353

BitmapCacheBrush class, 535

consolidating with logical resources,
353-355

explained, 513

ImageBrush class, 524-525

LinearGradientBrush class, 515-518

as opacity masks, 527-529

RadialGradientBrush class, 519-524

SolidColorBrush class, 514

VisualBrush class, 525-527

bubbling, 161

BuildWindowCore class, 684

built-in commands, 189-192

Button class, 81, 264-265

ButtonAutomationPeer class, 265

ButtonBase class, 263-264

buttons

Button class, 81, 264-265

Button ControlTemplate with VisualStates,
643-646

ButtonBase class, 263-264

CheckBox class, 266

defined, 263

RadioButton class, 266-268

RepeatButton class, 265

styling with built-in animations, 626-628

ToggleButton class, 265-266

By property (animation classes), 616

By property (animation classes) 781

C
C++/CLI, 681-682

cached composition

BitmapCache class, 533-535

BitmapCacheBrush class, 535

Viewport2DVisual3D support for, 591

caching, ClickOnce, 226

Calendar control, 336-338

calendar controls

Calendar, 336-338

DatePicker, 338-339

Cameras

blind spots, 545

coordinate systems, 542-544

explained, 542

LookDirection property, 544-548

MatrixCamera, 553

OrthographicCamera versus
PerspectiveCamera, 551-553

Position property, 543-544

Transform property, 549

UpDirection property, 548-550

Z-fighting, 545

CAML (Compiled Application Markup
Language), 46

CanUserDeleteRows property (DataGrid), 298

cancel buttons, 264

Cancel method, 185

CanExecute method, 189

CanExecuteChanged method, 189

CanUserAddRows property (DataGrid), 298

Canvas, 116-118. See also SimpleCanvas

mimicking with Grid, 136

capturing mouse events, 173-174

cells (DataGrid), selecting, 295

Center property (RadialGradientBrush), 519

CenterX property

RotateTransform class, 108-110

SkewTransform class, 112

CenterY property

RotateTransform class, 108-110

SkewTransform class, 112

change notification (dependency properties),
83-84

CheckBox class, 266

child object elements

content property, 35-36

dictionaries, 37-38

lists, 36-37

processing rules, 40

values type-converted to object
elements, 38

/clr compiler option, 686

CircleEase function, 640

class hierarchy, 73-75

Class keyword, 44

classes. See specific classes

ClearAllBindings method, 365

ClearBinding method, 365

ClearHighlightsCommand, 331

clearing

bindings, 365

local values, 88

ClearValue method, 88

CLI (Common Language Infrastructure), 681

Click event, 263-264

clickable cube example, 588-590

ClickCount property
(MouseButtonEventArgs), 172

ClickMode property (ButtonBase class), 263

ClickOnce, 210-211

ClickOnce caching, 226

with unmanaged code, 211

C++/CLI782

clients, pure-XAML Twitter client, 412-413

clip art example, 491-492

clip art based on Shapes, 512-513

drawing-based implementation, 491-492

DrawingContext-based implementation,
495-496

WindowHostingVisual.cs file, 497

clipboard interaction (DataGrid), 296

ClipboardCopyMode property (DataGrid), 296

clipping, 139-141

ClipToBounds property (panels), 140

clr-namespace directive, 39

code-behind files, 44, 734

CoerceValueCallback delegate, 89

cold start time, 205

Collapsed value (Visibility enumeration), 102

collections

binding to, 370-373

customizing collection views

creating new views, 394-396

explained, 386

filtering, 392

grouping, 388-391

navigating, 392-393

sorting, 386-388

dictionaries, 37-38

ItemsSource, 297

lists, 36-37

Properties, 203

SortDescriptions, 387

Triggers, 85

Windows, 202

CollectionViewSource class, 394

color brushes

applying without logical resources, 352-353

consolidating with logical resources,
353-355

How can we make this index more useful? Email us at indexes@samspublishing.com

LinearGradientBrush class, 515-518

RadialGradientBrush class, 519-520

SolidColorBrush class, 514

color space profiles, 515

Color structure, 514

columns (Grid)

auto-generated columns, 294-295

column types, 293-294

freezing, 297

sharing row/column sizes, 134-136

sizing

absolute sizing, 130

autosizing, 130

GridLength structures, 131-132

interactive sizing with GridSplitter,
132-133

percentage sizing, 131

proportional sizing, 130

CombinedGeometry class, 486-487

combining

Materials, 578

Transform3Ds, 562

transforms, 113-114

ComboBox control

ComboBoxItem objects, 286-287

customizing selection box, 282-285

events, 282

explained, 282

IsEditable property, 282

IsReadOnly property, 282

SelectionChanged event, 285-286

ComboBoxItem objects, 286-287

ComCtl32.dll, 255-256

command-line arguments, retrieving, 202

command-line arguments, retrieving 783

commands. See also specific commands

built-in commands, 189-192

controls with built-in command bindings,
193-194

executing with input gestures, 192-193

explained, 188-189

implementing with custom controls, 745

commas in geometry strings, 489

common dialogs, 206-207

Common Language Infrastructure (CLI), 681

Compiled Application Markup Language
(CAML), 46

compiling XAML, 43-45

Complete method, 185

CompleteQuadraticEase class, 642

ComponentCommands class, 190

CompositeCollection class, 410

CompositionTarget_Rendering event
handler, 713

conflicting triggers, 429

consolidating routed event handlers, 167-168

ConstantAttenuation property (PointLights), 566

containers

Expander class, 273-274

Frame class, 271-272

GroupBox class, 273

Label class, 268

navigation containers, 212-214

ToolTop class, 269-271

ContainerUIElement3D class, 590

Content build action, 344

content controls

and arbitrary objects, 263

buttons

Button class, 264-265

ButtonBase class, 263-264

CheckBox class, 266

defined, 263

RadioButton class, 266-268

RepeatButton class, 265

ToggleButton class, 265-266

containers

Expander class, 273-274

Frame class, 271-272

GroupBox class, 273

Label class, 268

ToolTip class, 269-271

ContentControl class, 262

defined, 262

content overflow, handling

clipping, 139-141

explained, 139

scaling, 143-147

scrolling, 141-143

Content property, 35-36

ContentControl class, 435-437

Frame class, 272

ContentControl class, 262, 435-437

ContentElement class, 74

ContextMenu control, 301-302

ContextMenuService class, 302

Control class, 75

control parts, 744-745

control states, 745-749

control templates

ControlTemplate with triggers, 432-434

editing, 457-458

explained, 430-431

mixing with styles, 456-457

named elements, 434

reusability of, 438-440

simple control template, 431-432

target type, restricting, 434-435

commands784

TargetType property, 434-435

templated parent properties, respecting

Content property (ContentControl class),
435-437

hijacking existing properties for new
purposes, 441

other properties, 438-440

triggers, 432-434

visual states

respecting with triggers, 442-446

respecting with VSM (Visual State
Manager), 447-455

controls

ActiveX controls, 714-718

buttons

Button class, 264-265

ButtonBase class, 263-264

CheckBox class, 266

defined, 263

RadioButton class, 266-268

RepeatButton class, 265

ToggleButton class, 265-266

Calendar, 336-338

ComboBox

ComboBoxItem objects, 286-287

customizing selection box, 282-285

events, 282

explained, 282

IsEditable property, 282

IsReadOnly property, 282

SelectionChanged event, 285-286

containers

Expander class, 273-274

Frame class, 271-272

GroupBox class, 273

Label class, 268

ToolTip class, 269-271

How can we make this index more useful? Email us at indexes@samspublishing.com

ContextMenu, 301-302

control parts, 447-449

control states, 449-455

controls with built-in command bindings,
193-194

custom controls, creating

behavior, 733-739

code-behind file, 734

commands, 745

control parts, 744-745

control states, 745-749

explained, 12, 721-722

generic resources, 741-742

resources, 734-735

UI Automation, 749-750

user controls versus custom
controls, 722

user interfaces, 739-740, 742

DataGrid, 293

auto-generated columns, 294-295

CanUserAddRows property, 298

CanUserDeleteRows property, 298

clipboard interaction, 296

ClipboardCopyMode property, 296

column types, 293-294

displaying row details, 296-297

editing data, 297-298

EnableColumnVirtualization
property, 296

EnableRowVirtualization property, 296

example, 292-293

freezing columns, 297

FrozenColumnCount property, 297

RowDetailsVisibilityMode property, 297

selecting rows/cells, 295

SelectionMode property, 295

controls 785

SelectionUnit property, 295

virtualization, 296

DatePicker, 338-339

explained, 261-263

GridView, 290-291

InkCanvas, 316-318

ItemsControl class, 275-276

AlternationCount property, 276

AlternationIndex property, 276

DisplayMemberPath property, 276-277

HasItems property, 276

IsGrouping property, 276

IsTextSearchCaseSensitive property, 285

IsTextSearchEnabled property, 285

Items property, 275

ItemsPanel property, 276-280

ItemsSource property, 276

scrolling behavior, controlling, 280-281

ListBox

automation IDs, 289

example, 287-288

scrolling, 289

SelectionMode property, 288

sorting items in, 289

support for multiple selections, 288

ListView, 290-291

Menu, 298-301

PasswordBox, 316

ProgressBar, 335

RichTextBox, 316

ScrollViewer, 141-143

Selector class, 281

Slider, 335-336

states, 745-749

StatusBar, 307-308

TabControl, 291-292

TextBlock

explained, 313

explicit versus implicit runs, 314

properties, 313

support for multiple lines of text, 315

whitespace, 314

TextBox, 315

ToolBar, 304-306

TreeView, 302-304

user controls, creating

behavior, 725-727

dependency properties, 728-731

explained, 721-722

protecting controls from accidental
usage, 727-728

routed events, 731-732

user controls versus custom
controls, 722

user interfaces, 723-725

ControlTemplate class. See control templates

Convert method, 382

converting spoken words into text, 667-670

ConvertXmlStringToObjectGraph method, 65

coordinate systems, 542-544

CountToBackgroundConverter class, 382-384

CreateBitmapSourceFromHBitmap method, 708

CreateHighlightCommand, 331

CreateInkStickyNoteCommand, 331

CreateTextStickyNoteCommand, 331

CreateWindow method, 685

Cube example

clickable cube, 588-590

cube and TextBlocks, 600-604

cube button style, 594-595

cube of buttons and small purple cube,
597-599

initial code listing, 585-586

controls786

cultures, preparing projects for multiple
cultures, 350

curly braces ({}), 33-34

CurrentItem property (ICollectionView), 392

curves, Bézier, 480

CustomCategory property (JumpTask), 239-240

customization

advantages/disadvantages, 416

collection views

creating new views, 394-396

explained, 386

filtering, 392

grouping, 388-391

navigating, 392-393

sorting, 386-388

color space profiles, 515

custom controls, creating

behavior, 733-739

commands, 745

control parts, 744-745

control states, 745-749

explained, 721-722

generic resources, 741-742

UI Automation, 749-750

user controls versus custom
controls, 722

user interfaces, 739-742

custom rendering, 499

custom sorting, 388

data display, 385

data flow, 403-405

dialogs, 207-208

JumpTask behavior, 237-240

keyboard navigation, 306

panels

communication between parents and
children, 752-755

explained, 751-752

How can we make this index more useful? Email us at indexes@samspublishing.com

selection boxes (ComboBox control),
282-285

taskbar

explained, 245-246

taskbar item progress bars, 246

taskbar overlays, 247

thumb buttons, 248-249

thumbnail content, 247

D
D3DImage class, 708-714

DashStyle class, 490-491

DashStyle property (Pen class), 490

data binding, 15

animation and, 632

asynchronous data binding, 401

Binding object, 363

binding to .NET properties, 367-368

binding to collections, 370-373

binding to entire objects, 369-370

binding to UIElement, 370

ElementName property, 366

IsAsync property, 401

in procedural code, 363-365

RelativeSource property, 367

removing, 365

sharing source with DataContext,
374-375

StringFormat property, 375-376

TargetNullValue property, 366

UpdateSourceExceptionFilter
property, 408

UpdateSourceTrigger property, 404

validation rules, 405-409

data binding 787

ValidationRules property, 406

in XAML, 365-367

canceling temporarily, 385

CompositeCollection class, 410

controlling rendering

data templates, 378-380

explained, 375

string formatting, 375-377

value converters, 381-386

customizing collection views

creating new views, 394-396

explained, 386

filtering, 392

grouping, 388-391

navigating, 392-393

sorting, 386-388

customizing data flow, 403-405

data providers

explained, 396

ObjectDataProvider class, 401-403

XmlDataProvider class, 397-401

defined, 363

Language Integrated Query (LINQ), 396

to methods, 402-403

MultiBinding class, 410-411

PriorityBinding class, 411

pure-XAML Twitter client, 412-413

troubleshooting, 384

data flow, customizing, 403-405

Data property (DragEventArgs class), 172

data providers

explained, 396

ObjectDataProvider class, 401-403

XmlDataProvider class, 397-401

data templates, 378-380

HierarchicalDataTemplate, 399-400

template selectors, 381

data triggers, 84, 427-428

data types

bridging incompatible data types, 381-384

in XAML 2009, 50

DataContext property, 374-375

DataGrid control

CanUserAddRows property, 298

CanUserDeleteRows property, 298

clipboard interaction, 296

ClipboardCopyMode property, 296

column types, 293-295

displaying row details, 296-297

editing data, 297-298

EnableColumnVirtualization property, 296

EnableRowVirtualization property, 296

example, 292-293

freezing columns, 297

FrozenColumnCount property, 297

RowDetailsVisibilityMode property, 297

selecting rows/cells, 295

SelectionMode property, 295

SelectionUnit property, 295

virtualization, 296

DataGridCheckBoxColumn, 294

DataGridComboBoxColumn, 294

DataGridHyperlinkColumn, 293

DataGridTemplateColumn, 294

DataGridTextColumn, 293

DataTrigger class, 427-428

DatePicker control, 338-339

DateValidationError event, 339

DayOfWeek enumeration, 338

DeadCharProcessedKey property (KeyEventArgs
class), 168

debugger (Visual C++), 695

declaration context, 375

declarative programming, 12

data binding788

decorators, 144

default buttons, 264

default styles, 88

defining

binary resources, 344-345

object elements, 25

properties, 53

delegates

CoerceValueCallback, 89

delegate contravariance, 168

ValidateValueCallback, 89

DeleteStickyNotesCommand, 331

dependency properties, 419-420

adding to user controls, 728-731

attached properties

About dialog example, 90-91

attached property providers, 92

defined, 89

as extensibility mechanism, 92-93

attached property providers, 92

change notification, 83-84

explained, 80-81

hijacking, 441

implementation, 81-83

property triggers, 83-85

property value inheritance, 85-86

support for multiple providers

applying animations, 89

coercion, 89

determining base values, 87-88

evaluating, 89

explained, 87

validation, 89

DependencyObject class, 74, 82

DependencyPropertyHelper class, 88

How can we make this index more useful? Email us at indexes@samspublishing.com

deployment

ClickOnce, 210-211

Windows Installer, 210

WPF 3.5 enhancements, 16

WPF 4 enhancements, 17

XAML Browser applications, 229

DesiredSize property (FrameworkElement
class), 99

DestroyWindowCore class, 684

device-independent pixels, 102

DialogFunction method, 694

dialogs

About dialog

with font properties moved to inner
StackPanel, 90

with font properties set on root
window, 85-86

initial code listing, 75-76

common dialogs, 206-207

custom dialogs, 207-208

dialog results, 208

modal dialogs

launching from Win32 applications, 699

launching from Windows Forms
applications, 708

launching from WPF applications,
692, 703

modeless dialogs, 196

TaskDialogs, 253-256

dictionaries, 37-38, 50

DiffuseMaterial, 572-575

direct routing, 161

Direct3D, 12

Direction property

DirectionalLight, 564

PointLights, 568

DirectionalLight, 564-565

directives. See specific directives

directives 789

DirectX

development of, 10-11

versus WPF, 13-14

when to use, 13-14

WPF interoperability, 15, 708-714

discrete keyframes, 634-636

DispatcherObject class, 74

DispatcherPriority enumeration, 205

DispatcherTimer class, 608-609

DisplayDateEnd property (Calendar
control), 337

DisplayDateStart property (Calendar
control), 337

displaying

flow documents, 329-331

Visuals on screen, 496-498

DisplayMemberPath property, 276-277, 371

Dock property (DockPanel), 122

DockPanel

examples, 122-125

explained, 122

interaction with child layout properties, 125

mimicking with Grid, 136

properties, 122

documents, flow

annotations, 331-334

Blocks

AnchoredBlock class, 326-327

BlockUIContainer, 321

List, 320

Paragraph, 320

sample code listing, 321-324

Section, 320

Table, 320

creating, 318-319

defined, 318

displaying, 329-331

Inlines

AnchoredBlock, 326-327

defined, 324-325

InlineUIContainer, 329

LineBreak, 327

Span, 325-326

DoNothing value (Binding), 385

DoubleAnimation class, 611-612

download groups, 230

DownloadFileGroupAsync method, 231

drag-and-drop events, 172-173

DragEventArgs class, 172

Drawing class, 476

DrawingBrush class, 477, 520-524

DrawingContext class

clip art example, 495-496

methods, 494

DrawingImage class, 477-479

drawings

clip art example, 491-492

Drawing class, 476

DrawingBrush class, 477

DrawingContext methods, 494

DrawingImage class, 477-479

DrawingVisual class, 477

geometries. See geometries

GeometryDrawing class, 476-477

GlyphRunDrawing class, 476

ImageDrawing class, 476-478

Pen class, 489-491

VideoDrawing class, 476

WPF 3.5 enhancements, 15

DrawingVisuals

explained, 477, 493

filling with content, 493-496

DropDownOpened event, 282

DropShadowEffect, 529-530

DirectX790

duration of animations, controlling, 614

Duration property (animation classes), 614

DwmExtendFrameIntoClientArea method,
249-252

dynamic versus static resources, 355-357

DynamicResource markup extension, 356-357

E
Ease method, 640

EaseIn method, 642-643

EaseInOut method, 642-643

easing functions, 16

easing keyframes, 636

EasingFunction property (animation
classes), 620

EasingFunctionBase class, 641

EasingMode property (easing functions), 637

editing

control templates, 457-458

DataGrid data, 297-298

EditingCommands class, 190

EditingMode property (InkCanvas class), 317

EditingModeInverted property (InkCanvas
class), 317

Effects, 529-531

ElasticEase function, 640

element trees. See trees

ElementHost class, 704-706

ElementName property (Binding object), 366

elements. See object elements;
property elements

EllipseGeometry class, 479

embedded resources, 663

EmbeddedResource build action, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

embedding

ActiveX controls in WPF applications,
714-718

Win32 controls in WPF applications

explained, 677

keyboard navigation, 687-691

Webcam control, 678-687

Windows Forms controls in
WPF applications

explained, 699-700

PropertyGrid, 700-703

WPF controls in Win32 applications

HwndSource class, 692-695

layout, 696-699

WPF controls in Windows
Forms applications

converting between two representatives,
707-708

ElementHost class, 704-706

launching modal dialogs, 708

EmissiveMaterial class, 576-578

EnableClearType property (BitmapCache
class), 534

EnableColumnVirtualization property
(DataGrid), 296

EnableRowVirtualization property
(DataGrid), 296

EnableVisualStyles method, 703

EndLineCap property (Pen class), 489

EndMember value (NodeType property), 57

EndObject value (NodeType property), 57

EndPoint property (LinearGradientBrush), 516

enumerations

BaseValueSource, 88

BindingMode, 403

DayOfWeek, 338

DispatcherPriority, 205

GeometryCombineMode, 486

enumerations 791

GradientSpreadMethod, 517

JumpItemRejectionReason, 244

Key, 168-169

MouseButtonState, 171

PixelFormats, 311

RoutingStrategy, 161

ShutdownMode, 202

Stretch, 144

StretchDirection, 144

TileMode, 523

UpdateSourceTrigger, 404-405

Visibility, 102-103

error handling, 407-409

Error ProgressState, 246

EscapePressed property
(QueryContinueDragEventArgs class), 173

Euler angles, 560

EvenOdd fill (FillRule property), 482

event handlers, 52

event wrappers, 160

events

attributes, 25

Click, 263-264

DateValidationError, 339

DropDownOpened, 282

event wrappers, 160

JumpItemsRejected, 244

JumpItemsRemovedByUser, 244

keyboard events, 168-170

mouse events

capturing, 173-174

drag-and-drop events, 172-173

explained, 170-171

MouseButtonEventArgs, 171

MouseEventArgs, 171-172

MouseWheelEventArgs, 171

transparent and null regions, 171

multi-touch events

basic touch events, 177-180

explained, 176

manipulation events, 180-188

navigation events, 218-219

order of processing, 26

Rendering, 609

routed events

About dialog example, 162-164

adding to user controls, 731-732

attached events, 165-167

consolidating routed event handlers,
167-168

defined, 159

explained, 159-160

implementation, 160-161

RoutedEventArgs class, 162

routing strategies, 161-162

stopping, 165

SelectedDatesChanged, 339

SelectionChanged, 281, 285-286

stylus events, 174-176

EventTriggers, 84, 621-622

ExceptionValidationRule object, 407

Execute method, 189

executing commands with input gestures,
192-193

Expander class, 273-274

Expansion property (ManipulationDelta
class), 181

explicit sizes, avoiding, 99

explicit versus implicit runs, 314

ExponentialEase function, 640

Expression Blend, 14

expressions, 89

enumerations792

ExtendGlassFrame method, 252

extensibility mechanisms, attached properties
as, 92-93

extensibility of XAML, 39

Extensible Application Markup Language.
See XAML

F
factoring XAML, 357

FanCanvas, 768-772

FileInputBox control

behavior, 725-727

dependency properties, 728-731

protecting from accidental usage, 727-728

routed events, 731-732

user interface, 723-725

files. See also specific files

code-behind files, 44

MainWindow.xaml.cs, 178-179, 186-187

raw project files, opening in Visual
Studio, 350

VisualStudioLikePanes.xaml, 151-153

VisualStudioLikePanes.xaml.cs, 153-157

FillBehavior property (animation classes), 621

FillRule property (PathGeometry
class), 482-483

Filter property (ICollectionView), 392

filtering, 392

finding type converters, 32

FindResource method, 359

FirstDayOfWeek property (Calendar
control), 338

Flat line cap (Pen), 490

How can we make this index more useful? Email us at indexes@samspublishing.com

flow documents

annotations, 331-334

Blocks

AnchoredBlock class, 326-327

BlockUIContainer, 321

List, 320

Paragraph, 320

sample code listing, 321-324

Section, 320

Table, 320

creating, 318-319

defined, 318

displaying, 329-331

Inlines

AnchoredBlock, 326-327

defined, 324-325

InlineUIContainer, 329

LineBreak, 327

Span, 325-326

FlowDirection property (FrameworkElement
class), 105-106

FlowDocument element, 318

FlowDocumentPageViewer control, 329

FlowDocumentReader control, 329-333

FlowDocumentScrollViewer control, 329

FontSizeConverter type converter, 32

Form1.cs file, 704, 707

FormatConvertedBitmap class, 310

formatting strings, 375-377

Frame class, 212-214, 271-272

frame-based animation, 609

FrameworkContentElement class, 75, 80, 318

FrameworkElement class

ActualHeight property, 100

ActualWidth property, 100

FrameworkElement class 793

DesiredSize property, 99

explained, 75, 80

FlowDirection property, 105-106

Height property, 98-100

HorizontalAlignment property, 103-104

HorizontalContentAlignment property,
104-106

LayoutTransform property, 106

Margin property, 100-102

Padding property, 100-102

RenderSize property, 99

RenderTransform property, 106

Triggers property, 85

VerticalAlignment property, 103-105

Visibility property, 102-103

Width property, 98-100

FrameworkPropertyMetadata, 731

Freezable class, 74

freezing columns, 297

From property (animation classes), 614-616

FromArgb method, 707

FrozenColumnCount property (DataGrid), 297

full-trust XAML Browser applications, 228

functions. See specific functions

G
gadget-style applications, 223-224

GDI (graphics device interface), 10

GDI+, 10

hardware acceleration and, 13

generated source code, 46

generic dictionaries, 467, 741-742

generics support (XAML2009), 49

geometries

aggregate geometries, 483

Bézier curves, 480

CombinedGeometry class, 486-487

defined, 479

EllipseGeometry class, 479

Geometry3D class, 578

GeometryGroup class, 484-486

LineGeometry class, 479

MeshGeometry3D class, 578-579

Normals property, 581-583

Positions property, 579

TextureCoordinates property, 583

TriangleIndices property, 580-581

PathGeometry class

ArcSegment, 480

BezierSegment, 480

example, 480-482

explained, 479

FillRule property, 482-483

LineSegment, 480

PolyBezierSegment, 480

PolyLineSegment, 480

PolyQuadraticBezierSegment, 480

QuadraticBezierSegment, 480

RectangleGeometry class, 479

representing as strings, 487-489

StreamGeometry class, 483

Geometry3D class, 578

GeometryCombineMode enumeration, 486

GeometryDrawing class, 476-477

GeometryGroup class, 484-486

GeometryModel3D

defined, 563

explained, 571

Geometry3D class, 578

FrameworkElement class794

Materials

AmbientMaterial, 575

combining, 578

DiffuseMaterial, 572-575

EmissiveMaterial, 576-578

explained, 571

MeshGeometry3D class, 578-579

Normals property, 581-583

Positions property, 579

TextureCoordinates property, 583

TriangleIndices property, 580-581

GetCommandLineArgs method, 202

GetExceptionForHR method, 51

GetGeometry method, 479

GetHbitmap function, 708

GetInstalledVoices method, 664

GetIntermediateTouchPoints method, 177

GetObject value (NodeType property), 57

GetPosition method, 171-175

GetTouchPoint method, 177

GetValueSource method, 88

GetVisualChild method, 497-498

GlyphRunDrawing class, 476

GradientOrigin property
(RadialGradientBrush), 519

gradients

GradientSpreadMethod enumeration, 517

GradientStop objects, 515

LinearGradientBrush class, 515-518

RadialGradientBrush class, 519-520

transparent colors, 520

GradientSpreadMethod enumeration, 517

GradientStop objects, 515

GrammarBuilder class, 671-672

How can we make this index more useful? Email us at indexes@samspublishing.com

grammars

GrammarBuilder class, 671-672

Speech Recognition Grammar Specification
(SRGS), 670-671

graphics device interface (GDI), 10

graphics hardware, advances in, 11

graphics. See 2D graphics; 3D graphics

Grid

cell properties, 128

compared to other panels, 136

explained, 125

interaction with child layout properties, 137

interactive sizing with GridSplitter, 132-133

mimicking Canvas with, 136

mimicking DockPanel with, 136

mimicking StackPanel with, 136

sharing row/column sizes, 134-136

ShowGridLines property, 129

sizing rows/columns

absolute sizing, 130

autosizing, 130

GridLength structures, 131-132

percentage sizing, 131

proportional sizing, 130

start page with Grid, 126-129

GridLength structures, 131-132

GridLengthConverter, 131

GridSplitter class, 132-133

GridView control, 290-291

GridViewColumn object, 290

GroupBox control, 273

GroupDescriptions property
(ICollectionView), 388

grouping, 388-391

GroupName property (RadioButton class), 267

GroupName property (RadioButton class) 795

H
Handled property (RoutedEventArgs class), 162

HandleRef, 684

hardware acceleration, 12-13

HasContent property (ContentControl
class), 262

HasItems property (ItemsControl class), 276

Header property (ToolBar), 306

headered items controls, 299

HeaderedItemsControl class, 299

headers, containers with headers

Expander class, 273-274

GroupBox class, 273

Height property (FrameworkElement class),
98-100

Help command, 191-192

Hidden value (Visibility enumeration), 102

HierarchicalDataTemplate class, 380, 399-400

hijacking dependency properties, 441

Hillberg, Mike, 384

hit testing

3D hit testing, 592-593

input hit testing

explained, 499

InputHitTest method, 513

visual hit testing

callback methods, 505

explained, 499

with multiple Visuals, 500-503

with overlapping Visuals, 503-505

simple hit testing, 499-500

HitTest method, 502-505

HitTestCore method, 505

HitTestFilterCallback delegate, 504

HitTestResultCallback delegates, 503

HorizontalAlignment property
(FrameworkElement class), 103-104

HorizontalContentAlignment property
(FrameworkElement class), 104-105

HostingWin32.cpp file, 685

HostingWPF.cpp file, 693-697

house drawing, 538-539

2D drawing, 538

3D drawing, 539-540

Transform3Ds, 555-556

HwndHost class, 685

HwndSource class, 692-695

HwndSource variable, 697-698

hyperlinks, 215-216

I
ICC (International Color Consortium), 515

ICommand interface, 189

Icon property (MenuItem class), 299

IconResourceIndex property (JumpTask), 238

IconResourcePath property (JumpTask), 238

ICustomTypeDescriptor interface, 368

IEasingFunction interface, 640

IList interface, 36

Image control, 309-311

ImageBrush class, 524-525

ImageDrawing class, 476, 478

images. See 2D graphics; 3D graphics

ImageSource class, 310

ImageSourceConverter type converter, 309

ImeProcessedKey property (KeyEventArgs
class), 168

immediate-mode graphics systems, 14, 475

implicit .NET namespaces, 27

implicit styles, creating, 421-422

implicit versus explicit runs, 314

InAir property (StylusDevice class), 174

Handled property (RoutedEventArgs class)796

Indeterminate ProgressState, 246

inertia, enabling, 183-188

Ingebretsen, Robby, 23

inheritance

class hierarchy, 73-75

property value inheritance, 85-86

styles, 418

InitializeComponent method, 46-48, 198

InitialShowDelay property (ToolTip class), 270

InkCanvas class, 316-318

Inline elements

AnchoredBlock, 326-327

defined, 324-325

InlineUIContainer, 329

LineBreak, 327

Span, 325-326

Inlines property (TextBlock control), 314

InlineUIContainer class, 329

InnerConeAngle property (PointLights), 568

input gestures, executing commands with,
192-193

input hit testing

explained, 499

InputHitTest method, 513

InputGestureText property (MenuItem
class), 300

InputHitTest method, 513

inspecting WPF elements, 14

instantiating objects

with factory methods, 51-52

with non-default constructors, 51

integration of WPF, 11

IntelliSense, 71

intensity of lights, 565

interfaces. See specific interfaces

International Color Consortium (ICC), 515

How can we make this index more useful? Email us at indexes@samspublishing.com

interoperability (WPF)

ActiveX content, 714-718

C++/CLI, 681

DirectX content, 15, 708-714

explained, 675-677

overlapping content, 677

Win32 controls

explained, 677

HwndSource class, 692-695

keyboard navigation, 687-691

launching modal dialogs, 692, 699

layout, 696-699

Webcam control, 678-687

Windows Forms controls

converting between two representatives,
707-708

ElementHost class, 704-706

explained, 699-700

launching modal dialogs, 703, 708

PropertyGrid, 700-703

InvalidItem value (JumpItemRejectionReason
enumeration), 244

Inverted property (StylusDevice class), 174

IsAdditive property (animation classes), 621

IsAsync property (Binding object), 401

IsCheckable property (MenuItem class), 299

IsChecked property (ToggleButton class), 265

IsCumulative property (animation classes), 621

IsDefault property (Button class), 81, 264

IsDefaulted property (Button class), 264

IsDown property (KeyEventArgs class), 168

IsEditable property (ComboBox), 282

IsFrontBufferAvailableChanged event
handler, 712

IsGrouping property (ItemsControl class), 276

IsIndeterminate property (ProgressBar
control), 335

IsIndeterminate property (ProgressBar control) 797

IsKeyboardFocused property (UIElement
class), 170

IsKeyDown method, 169

IsMouseDirectlyOver property (UIElement class),
171

IsNetworkDeployed method, 231

isolated storage, 209-210

IsolatedStorage namespace, 210

IsolatedStorageFile class, 210

IsolatedStorageFileStream class, 210

IsPressed property (ButtonBase class), 263

IsReadOnly property (ComboBox), 282

IsRepeat property (KeyEventArgs class), 168

IsSelected property (Selector class), 281

IsSelectionActive property (Selector class), 281

IsSynchronizedWithCurrentItem method, 373

IsSynchronizedWithCurrentItem property
(Selector), 373

IsTextSearchCaseSensitive property
(ItemsControl class), 285

IsTextSearchEnabled property (ItemsControl
class), 285

IsThreeState property (ToggleButton class), 265

IsToggled property (KeyEventArgs class), 168

IsUp property (KeyEventArgs class), 168

ItemHeight property (WrapPanel), 120

items controls

ComboBox

ComboBoxItem objects, 286-287

customizing selection box, 282-285

events, 282

explained, 282

IsEditable property, 282

IsReadOnly property, 282

SelectionChanged event, 285-286

ContextMenu, 301-302

DataGrid

auto-generated columns, 294-295

CanUserAddRows property, 298

CanUserDeleteRows property, 298

clipboard interaction, 296

ClipboardCopyMode property, 296

column types, 293-294

displaying row details, 296-297

editing data, 297-298

EnableColumnVirtualization
property, 296

EnableRowVirtualization property, 296

example, 292-293

freezing columns, 297

FrozenColumnCount property, 297

RowDetailsVisibilityMode property, 297

selecting rows/cells, 295

SelectionMode property, 295

SelectionUnit property, 295

virtualization, 296

GridView, 290-291

ItemsControl class

AlternationCount property, 276

AlternationIndex property, 276

DisplayMemberPath property, 276-277

HasItems property, 276

IsGrouping property, 276

IsTextSearchCaseSensitive property, 285

IsTextSearchEnabled property, 285

Items property, 275

ItemsPanel property, 276-280

ItemsSource property, 276

ListBox

automation IDs, 289

example, 287-288

scrolling, 289

IsKeyboardFocused property (UIElement class)798

SelectionMode property, 288

sorting items in, 289

support for multiple selections, 288

ListView, 290-291

Menu, 298-301

scrolling behavior, controlling, 280-281

Selector class, 281

StatusBar, 307-308

TabControl, 291-292

ToolBar, 304-306

TreeView, 302-304

items panels, 278

Items property (ItemsControl class), 275, 373

ItemsCollection object, 289

ItemsControl class

AlternationCount property, 276

AlternationIndex property, 276

DisplayMemberPath property, 276-277

HasItems property, 276

IsGrouping property, 276

IsTextSearchCaseSensitive property, 285

IsTextSearchEnabled property, 285

Items property, 275

ItemsPanel property, 276-280

ItemsSource property, 276

scrolling behavior, controlling, 280-281

ItemsPanel property (ItemsControl class),
276-280

ItemsSource collection, 297

ItemsSource property (ItemsControl class),
276, 373

ItemWidth property (WrapPanel), 120

IValueConverter interface, 382-383

IXamlLineInfo interface, 58

How can we make this index more useful? Email us at indexes@samspublishing.com

J
journal, 216-218

JournalOwnership property (Frame class),
216-217

Jump Lists

associating with applications, 234

explained, 233-234

JumpPaths

adding, 242-243

explained, 241

recent and frequent JumpPaths,
243-244

responding to rejected or removed
items, 244

JumpTasks

customizing behavior of, 237-240

example, 235

explained, 234

and Visual Studio debugger, 236

JumpItemRejectionReason enumeration, 244

JumpItemsRejected event, 244

JumpItemsRemovedByUser event, 244

JumpPaths

adding, 242-243

explained, 241

recent and frequent JumpPaths, 243-244

responding to rejected or removed
items, 244

JumpTasks

customizing behavior of, 237-240

example, 235

explained, 234

JumpTasks 799

K
Kaxaml, 22-23

Key enumeration, 168-169

Key property (KeyEventArgs class), 168

keyboard events, 168-170

keyboard navigation

customizing, 306

supporting in Win32 controls, 687-688

access keys, 691

tabbing into Win32 content, 688-689

tabbing out of Win32 content, 689-690

KeyboardDevice property (KeyEventArgs
class), 168

KeyboardNavigation class, 306

KeyDown event, 168

KeyEventArgs class, 168

keyframe animation

discrete keyframes, 634-636

easing keyframes, 636

explained, 630

linear keyframes, 631-633

spline keyframes, 633-634

keyless resources, 422-423

KeyStates property

KeyEventArgs class, 168

QueryContinueDragEventArgs class, 173

KeyUp event, 168

keywords. See specific keywords

L
Label class, 268

Language Integrated Query (LINQ), 396

LastChildFill property (DockPanel), 122

launching modal dialogs

from Win32 applications, 699

from Windows Forms applications, 708

from WPF applications, 692, 703

layout

content overflow, handling

clipping, 139-141

explained, 139

scaling, 143-147

scrolling, 141-143

custom panels

communication between parents and
children, 752-755

explained, 751-752

FanCanvas, 768-772

OverlapPanel, 763-768

SimpleCanvas, 755-760

SimpleStackPanel, 760-763

explained, 97-98

panels

Canvas, 116-118

DockPanel, 122-125

explained, 115-116

Grid. See Grid

SelectiveScrollingGrid, 138-139

StackPanel, 118-119

TabPanel, 137

ToolBarOverflowPanel, 138

ToolBarPanel, 138

ToolBarTray, 138

UniformGrid, 138

WrapPanel, 120-122

positioning elements

content alignment, 104-105

explained, 103

flow direction, 105-106

Kaxaml800

horizontal and vertical alignment,
103-104

stretch alignment, 104

sizing elements

explained, 98

explicit sizes, avoiding, 99

height and width, 98-100

margin and padding, 100-102

visibility, 102-103

transforms

applying, 106-107

combining, 113-114

explained, 106

MatrixTransform, 112-113

RotateTransform, 108-109

ScaleTransform, 109-111

SkewTransform, 112

support for, 114

TranslateTransform, 112

Visual Studio-like panes, creating

sequential states of user interface,
147-151

VisualStudioLikePanes.xaml, 151-153

VisualStudioLikePanes.xaml.cs, 153-157

LayoutTransform property (FrameworkElement
class), 106

Left property (Canvas), 116

LengthConverter type converter, 102

Light and Fluffy skin example, 463-464

Light objects

AmbientLight, 564, 569-570

defined, 563

DirectionalLight, 564-565

explained, 542, 563

intensity of, 565

PointLight, 564-566

SpotLight, 564, 566-568

Line class, 509-510

How can we make this index more useful? Email us at indexes@samspublishing.com

linear interpolation, 612-613

linear keyframes, 631-633

LinearAttenuation property (PointLights), 566

LinearGradientBrush class, 515-518

LineBreak class, 327

LineGeometry class, 479

LineJoin property (Pen class), 490

LineSegment class, 480

LINQ (Language Integrated Query), 396

ListBox control

arranging items horizontally, 279

automation IDs, 289

example, 287-288

placing PlayingCards custom control
into, 742

scrolling, 289

SelectionMode property, 288

sorting items in, 289

support for multiple selections, 288

lists, 36-37

Jump Lists

associating with applications, 234

explained, 233-234

JumpPaths, 241-244

JumpTasks, 234-240

and Visual Studio debugger, 236

ListBox control

arranging items horizontally, 279

automation IDs, 289

example, 287-288

placing PlayingCards custom control
into, 742

scrolling, 289

SelectionMode property, 288

sorting items in, 289

support for multiple selections, 288

ListView control, 290-291

lists 801

ListView control, 290-291

live objects, writing to, 61-63

Load method, 40-41, 64

LoadAsync method, 41

LoadComponent method, 47

loading XAML at runtime, 40-42

Lobo, Lester, 23

local values, clearing, 88

localization IDs, marking user interfaces
with, 351

localizing binary resources

creating satellite assembly with
LocBaml, 351

explained, 350

marking user interfaces with localization
IDs, 351

preparing projects for multiple cultures, 350

LocBaml, creating satellite assembly with, 351

locking D3DImage, 713

logical AND relationships, 429-430

logical OR relationships, 429

logical resources

accessing directly, 360

consolidating color brushes with, 353-355

defining and applying in procedural code,
359-360

explained, 351-352

interaction with system resources, 360-361

resource lookup, 355

resources without sharing, 358

static versus dynamic resources, 355-357

logical trees, 75-80

LogicalChildren property, 80

LogicalTreeHelper class, 77

LookDirection property (Cameras), 544-548

lookup, resource lookup, 355

loose XAML pages, 231-232

M
mage.exe command-line tool, 210

mageUI.exe graphical tool, 210

Main method, 199-201

MainWindow class, 197-198

MainWindow.xaml file, 710

MainWindow.xaml.cs file, 178-179,
186-187, 710-712

malicious skins, preventing, 464-465

managed code, mixing with unmanaged
code, 682

manipulation events

adding inertia with, 183-188

enabling panning/rotating/zooming with,
182-183

explained, 180-181

ManipulationCompleted, 181

ManipulationDelta, 181

ManipulationStarted, 181

ManipulationStarting, 181

ManipulationBoundaryFeedback event, 185

ManipulationCompleted event, 181

ManipulationDelta event, 181-183

ManipulationDeltaEventArgs instance, 181

ManipulationInertiaStarting event, 183, 187

ManipulationStarted event, 181

ManipulationStarting event, 181

Margin property (FrameworkElement
class), 100-102

marking user interfaces with localization
IDs, 351

markup compatibility, 61

markup extensions

explained, 32-35

parameters, 33

in procedural code, 35

ListView control802

Materials

AmbientMaterial, 575

combining, 578

DiffuseMaterial, 572-575

EmissiveMaterial, 576-578

explained, 571

MatrixCamera class, 553

MatrixTransform, 112-113

MatrixTransform3D class, 562

MDI (multiple-document interface), 203

MeasureOverride method, overriding, 752-754

MediaCommands class, 190

MediaElement class

playing audio, 656-658

playing video, 658-660

MediaPlayer class, 655-656

MediaTimeline class

playing audio, 656-658

playing video, 661-662

Menu control, 298-301

MenuItem class, 299

menus

ContextMenu control, 301-302

Menu control, 298-301

MenuItem class, 299

MergedDictionaries property
(ResourceDictionary class), 357

MeshGeometry3D class, 578-579

Normals property, 581-583

Positions property, 579

TextureCoordinates property, 583

TriangleIndices property, 580-581

methods, binding to, 402-403. See also
specific methods

Microsoft Anna, 664

missing styles, troubleshooting, 461

mnemonics, 691

How can we make this index more useful? Email us at indexes@samspublishing.com

modal dialogs, launching

from Win32 applications, 699

from Windows Forms applications, 708

from WPF applications, 692, 703

Model3DGroup class, 563, 584-586

Model3Ds

explained, 563

GeometryModel3D

defined, 563

explained, 571

Geometry3D class, 578

Materials, 571-578

MeshGeometry3D class, 578-583

Lights

AmbientLight, 564, 569-570

DirectionalLight, 564-565

explained, 563

intensity of, 565

PointLight, 564-566

SpotLight, 564-568

Model3DGroup class, 563, 584-586

modeless dialogs, 196

ModelUIElement3D class, 588-590

ModelVisual3D class, 587-588

Modifiers property (KeyboardDevice), 169

Mouse class, 173

mouse events

capturing, 173-174

drag-and-drop events, 172-173

explained, 170-171

MouseButtonEventArgs, 171

MouseEventArgs, 171-172

MouseWheelEventArgs, 171

transparent and null regions, 171

MouseButtonEventArgs class, 171

MouseButtonState enumeration, 171

MouseButtonState enumeration 803

MouseEventArgs class, 171-172

MouseWheelEventArgs class, 171

multi-touch events

basic touch events, 177-180

explained, 176

manipulation events

adding inertia with, 183-188

enabling panning/rotating/zooming
with, 182-183

explained, 180-181

ManipulationCompleted, 181

ManipulationDelta, 181

ManipulationStarted, 181

ManipulationStarting, 181

multi-touch support, 16

MultiBinding class, 410-411

multiple providers, support for

applying animations, 89

coercion, 89

determining base values, 87-88

evaluating, 89

explained, 87

validation, 89

multiple Visuals, hit testing with, 500-503

multiple-document interface (MDI), 203

MultiPoint Mouse SDK, 176

multithreaded applications, 205

MyHwndHost class, 684-686

N
Name keyword, 42

named elements, 434

named styles, 421-422

NamespaceDeclaration value (NodeType
property), 57

namespaces

explained, 26-28

implicit .NET namespaces, 27

mapping, 26

naming elements, 42-43

Navigate method, 214-215

navigation

keyboard navigation, supporting in Win32
controls, 687-691

views, 392-393

XAML Browser applications, 228-229

navigation-based Windows applications

explained, 211-212

hyperlinks, 215-216

journal, 216-218

Navigate method, 214-215

navigation containers, 212-214

navigation events, 218-219

Page elements, 212-214

returning data from pages, 221-222

sending data to pages, 220-221

NavigationCommands class, 190

NavigationProgress event, 219

NavigationStopped event, 219

NavigationWindow class, 212-214

nearest-neighbor bitmap scaling, 310

.NET properties, binding to, 367-368

NodeType property (XAML), 57-58

None ProgressState, 246

None value (NodeType property), 58

nonprinciple axis, scaling about, 559

NonZero fill (FillRule property), 482

NoRegisteredHandler value
(JumpItemRejectionReason
enumeration), 244

Normal ProgressState, 246

normals, 581

MouseEventsArgs class804

Normals property (MeshGeometry3D class),
581-583

null regions, 171

O
Object class, 73

object elements

attributes, 25

content property, 35-36

declaring, 25

dictionaries, 37-38

explained, 24-26

lists, 36-37

naming, 42-43

positioning

content alignment, 104-105

explained, 103

flow direction, 105-106

horizontal and vertical alignment,
103-104

stretch alignment, 104

processing child elements, 40

sizing

explained, 98

explicit sizes, avoiding, 99

height and width, 98-100

margin and padding, 100-102

visibility, 102-103

transforms

applying, 106-107

combining, 113-114

explained, 106

MatrixTransform, 112-113

RotateTransform, 108-109

How can we make this index more useful? Email us at indexes@samspublishing.com

ScaleTransform, 109-111

SkewTransform, 112

support for, 114

TranslateTransform, 112

values type-converted to object
elements, 38

ObjectDataProvider class, 401-403

objects

binding to, 369-370

instantiating via factory methods, 51-52

instantiating with non-default
constructors, 51

live objects, writing to, 61-63

logical trees, 75-76

Object class, 73

visual trees, 76-80

on-demand download (XAML Browser
applications), 230-231

OneTime binding, 403

OneWay binding, 403

OneWayToSource binding, 403-404

OnMnemonic method, 691

OnNoMoreTabStops method, 690

opacity masks, brushes as, 527-529

Opacity property (brushes), 527

OpacityMask property (brushes), 527-529

OpenGL, 10

opening project files in Visual Studio, 350

OR relationships (logical), 429

order of property and event processing, 26

Orientation property

ProgressBar control, 335

StackPanel, 118

WrapPanel, 120

OriginalSource property (RoutedEventArgs
class), 162

OriginalSource property (RoutedEventArgs class) 805

OrthographicCamera class

blind spots, 545

compared to PerspectiveCamera class,
551-553

LookDirection property, 544-548

Position property, 543-544

UpDirection property, 548-550

Z-fighting, 545

OuterConeAngle property (PointLights), 568

OverlapPanel, 763-768

overlapping content, 677

overlapping Visuals, hit testing with, 503-505

Overlay property (TaskbarItemInfo), 247

overlays, adding to taskbar items, 247

overriding

ArrangeOverride method, 754-755

MeasureOverride method, 752-754

P
packageURI, 349

Padding property (FrameworkElement class),
100-102

Page elements, 212-214

PageFunction class, 221-222

pages

loose XAML pages, 231-232

Page elements, 212-214

refreshing, 217

returning data from, 221-222

sending data to, 220-221

stopping loading, 217

panels

Canvas, 116-118, 136

content overflow, handling

clipping, 139-141

explained, 139

scaling, 143-147

scrolling, 141-143

custom panels

communication between parents and
children, 752-755

explained, 751-752

FanCanvas, 768-772

OverlapPanel, 763-768

SimpleCanvas, 755-760

SimpleStackPanel, 760-763

DockPanel

examples, 122-125

explained, 122

interaction with child layout
properties, 125

mimicking with Grid, 136

properties, 122

explained, 115-116

Grid

cell properties, 128

compared to other panels, 136

explained, 125

interaction with child layout
properties, 137

interactive sizing with GridSplitter,
132-133

mimicking Canvas with, 136

mimicking DockPanel with, 136

mimicking StackPanel with, 136

sharing row/column sizes, 134-136

ShowGridLines property, 129

sizing rows/columns, 130-132

start page with Grid, 126-129

SelectiveScrollingGrid, 138-139

OrthographicCamera class806

StackPanel

explained, 118

interaction with child layout
properties, 119

mimicking with Grid, 136

TabPanel, 137

ToolBarOverflowPanel, 138

ToolBarPanel, 138

ToolBarTray, 138

UniformGrid, 138

Visual Studio-like panes, creating

sequential states of user interface,
147-151

VisualStudioLikePanes.xaml, 151-153

VisualStudioLikePanes.xaml.cs, 153-157

WrapPanel

examples, 121

explained, 120

interaction with child layout properties,
121-122

properties, 120

and right-to-left environments, 121

panning

enabling with multi-touch events, 182-183

with inertia, 184-185

Paragraph Blocks, 320

Parse method, 64

parsing XAML at runtime, 40-42

partial keyword, 44

partial-trust applications, 15

parts (control), 447-449

PasswordBox control, 316

path-based animations, 637

Path class, 511-512

PathGeometry class

ArcSegment, 480

BezierSegment, 480

How can we make this index more useful? Email us at indexes@samspublishing.com

example, 480-482

explained, 479

FillRule property, 482-483

LineSegment, 480

PolyBezierSegment, 480

PolyLineSegment, 480

PolyQuadraticBezierSegment, 480

QuadraticBezierSegment, 480

Paused ProgressState, 246

Pen class, 489-491

percentage sizing, 131

performance

cached composition

BitmapCache class, 533-535

BitmapCacheBrush class, 535

Viewport2DVisual3D support for, 591

improving rendering performance

BitmapCache class, 533-535

BitmapCacheBrush class, 535

RenderTargetBitmap class, 532-533

XAML, 71

WPF 3.5 enhancements, 16

WPF 4 enhancements, 17

persisting application state, 209-210

PerspectiveCamera class

blind spots, 545

compared to OrthographicCamera class,
551-553

LookDirection property, 544-548

Position property, 544

UpDirection property, 548-550

Z-fighting, 545

Petzold, Charles, 23

PInvoke, 251

PixelFormats enumeration, 311

PixelFormats enumeration 807

pixels

device-independent pixels, 102

pixel boundaries, 17

pixel shaders, 531

Play method, 654

PlayingCard control

behavior

code-behind file, 734

final implementation, 737-739

initial implementation, 733-737

resources, 734-735

generic resources, 741-742

placing into ListBox, 742

user interface, 739-742

PointLight, 564-566

PolyBezierSegment class, 480

Polygon class, 511

Polyline class, 510

PolyLineSegment class, 480

PolyQuadraticBezierSegment class, 480

Position property (Cameras), 543-544

positioning elements

content alignment, 104-105

explained, 103

flow direction, 105-106

horizontal and vertical alignment, 103-104

stretch alignment, 104

Positions property (MeshGeometry3D
class), 579

power easing functions, 637-638

PressureFactor property (StylusPoint
object), 175

PreviewKeyDown event, 168

PreviewKeyUp event, 168

printing logical/visual trees, 78-79

PrintLogicalTree method, 79

PrintVisualTree method, 78

PriorityBinding class, 411

procedural code

accessing binary resources from, 349-350

animation classes

AutoReverse property, 618

BeginTime property, 616-617

DoubleAnimation, 611-612

Duration property, 614

EasingFunction property, 620

explained, 608-610

FillBehavior property, 621

From property, 614-616

IsAdditive property, 621

IsCumulative property, 621

lack of generics, 610-611

linear interpolation, 612-613

RepeatBehavior property, 618-619

reusing animations, 613

SpeedRatio property, 617

To property, 614-616

Binding object in, 363-365

compared to XAML, 24

defining and applying resources in, 359-360

embedding PropertyGrid with, 700-702

frame-based animation, 609

markup extensions in, 35

mixing XAML with

BAML (Binary Application Markup
Language), 45-48

CAML (Compiled Application Markup
Language), 46

compiling XAML, 43-45

generated source code, 46

loading and parsing XAML at runtime,
40-42

naming XAML elements, 42-43

procedural code inside XAML, 47

pixels808

skins, 462

timer-based animation, 608

type converters in, 31

inside XAML, 47

procedural code timer-based animation, 609

ProgressBar, 335

adding to taskbars, 246

pie chart control template, 442-444,
453-455

ProgressState property (TaskbarItemInfo), 246

ProgressValue property (TaskbarItemInfo), 246

project files, opening in Visual Studio, 350

PromptBuilder class, 665-667

properties. See also specific properties

dependency properties

attached properties, 89-93

attached property providers, 92

change notification, 83-84

explained, 80-81

implementation, 81-83

property value inheritance, 85-86

support for multiple providers, 87-89

.NET properties, binding to, 367-368

order of processing, 26

Properties collection, 203

Properties collection, 203

property attributes, 25

property elements, 29-30

property paths, 277

property triggers, 83-85, 424-427, 628-629

property value inheritance, 85-86

property wrappers, 82

PropertyGrid

embedding with procedural code, 700-702

embedding with XAML, 702-703

PropertyGroupDescription class, 390

How can we make this index more useful? Email us at indexes@samspublishing.com

proportional sizing, 130

protecting controls from accidental usage,
727-728

pure-XAML Twitter client, 412-413

Q
QuadraticAttenuation property

(PointLights), 566

QuadraticBezierSegment class, 480

QuaternionRotation3D class, 559

QueryContinueDragEventArgs class, 173

R
RadialGradientBrush class, 519-520

RadioButton class, 266-268

RadiusX property

RadialGradientBrush, 519

Rectangle class, 507

RadiusY property

RadialGradientBrush, 519

Rectangle class, 507

range controls

explained, 334

ProgressBar, 335

Slider, 335-336

Range property (PointLights), 566

raw project files, opening in Visual Studio, 350

readers (XAML)

explained, 53-54

markup compatibility, 61

node loops, 56-57

NodeType property, 57-58

readers (XAML) 809

sample XAML content, 58-59

XAML node stream, 59-61

XamlServices class, 64-67

recent and frequent JumpPaths, 243-244

Rectangle class, 507-508

RectangleGeometry class, 479

Refresh method, 217

refreshing pages, 217

Register method, 82

rejected items, reponding to, 244

RelativeSource property (Binding object), 367

releases of WPF

future releases, 17

WPF 3.0, 14

WPF 3.5, 14-16

WPF 3.5 SP1, 15-16

WPF 4, 14, 16-17

WPF Toolkit, 14

removed items, reponding to, 244

RemovedByUser value
(JumpItemRejectionReason
enumeration), 244

RemoveHandler method, 160-161

removing Binding objects, 365

RenderAtScale property (BitmapCache
class), 533

rendering

custom rendering, 499

improving rendering performance

BitmapCache class, 533-535

BitmapCacheBrush class, 535

RenderTargetBitmap class, 532-533

text, 17

TextOptions class, 312

WPF 4 enhancements, 311-312

Rendering event, 609

rendering, controlling

data templates, 378-380

explained, 375

string formatting, 375-377

value converters

Binding.DoNothing values, 385

bridging incompatible data types,
381-384

customizing data display, 385

explained, 381

RenderSize property (FrameworkElement
class), 99

RenderTargetBitmap class, 532-533

RenderTransform property (FrameworkElement
class), 106

RenderTransformOrigin property (UIElement
class), 107

RepeatBehavior property (animation classes),
618-619

RepeatButton class, 265

ResizeBehavior property (GridSplitter), 133

ResizeDirection property (GridSplitter), 133

resolution independence, 12

Resource build action, 344-345

ResourceDictionary class, 357

ResourceDictionaryLocation parameter, 467

resources

binary resources

accessing, 345-350

defining, 344-345

explained, 343

localizing, 350-351

defined, 343

keyless resources, 422-423

logical resources

accessing directly, 360

consolidating color brushes with,
353-355

readers (XAML)810

defining and applying in procedural code,
359-360

explained, 351-352

interaction with system resources,
360-361

resource lookup, 355

resources without sharing, 358

static versus dynamic resources,
355-357

for PlayingCard custom control, 734-735

responding to rejected or removed items, 244

restoring application state, 209-210

restricting style usage, 420-421

results, dialog results, 208

retained-mode graphics systems, 14, 475-476

returning data from pages, 221-222

reusing animations, 613

RichTextBox control, 316

Right property (Canvas), 116

right-hand rule, 543, 580

right-handed coordinate systems, 543-544

RotateTransform, 108-109

RotateTransform3D class, 559-562

rotation

enabling with multi-touch events, 182-183

with inertia, 184-185

RotateTransform3D class, 559-562

Rotation property (ManipulationDelta
class), 181

routed events

About dialog example, 162-164

adding to user controls, 731-732

attached events, 165-167

consolidating routed event handlers,
167-168

defined, 159

explained, 159-160

How can we make this index more useful? Email us at indexes@samspublishing.com

implementation, 160-161

RoutedEventArgs class, 162

routing strategies, 161-162

stopping, 165

RoutedEvent property (RoutedEventArgs
class), 162

RoutedEventArgs class, 162

RoutedUICommand objects, 190

routing strategies, 161-162

RoutingStrategy enumeration, 161

RowDetailsVisibilityMode property
(DataGrid), 297

rows (Grid)

displaying row details, 296-297

selecting, 295

sharing row/column sizes, 134-136

sizing

absolute sizing, 130

autosizing, 130

GridLength structures, 131-132

interactive sizing with GridSplitter,
132-133

percentage sizing, 131

proportional sizing, 130

rules, 405-409

Run method, 200-201

running XAML examples, 22

runtime, loading and parsing XAML at, 40-42

S
satellite assemblies, creating with

LocBaml, 351

Save method, 64

Scale property (ManipulationDelta class), 181

ScaleTransform, 109-111, 144

ScaleTransform 811

ScaleTransform3D class, 557-559

ScaleX property (RotateTransform class), 109

ScaleY property (RotateTransform class), 109

scaling, 143-147

nearest-neighbor bitmap scaling, 310

about nonprinciple axis, 559

ScaleTransform3D class, 557-559

scope of typed styles, 421

scRGB color space, 514

ScrollBars, 142-143

scrolling behavior, 141-143

controlling in items controls, 280-281

ListBox control, 289

ScrollViewer control, 141-143

Section Blocks, 320

security, XAML Browser applications, 229

SelectedDatesChanged event, 339

SelectedIndex property (Selector class), 281

SelectedItem property (Selector class), 281

SelectedValue property (Selector class), 281

selecting rows/cells, 295

selection boxes (ComboBox control),
customizing, 282-285

SelectionChanged event, 281, 285-286

SelectionMode property

Calendar control, 337

DataGrid, 295

ListBox, 288

SelectionUnit property (DataGrid), 295

SelectiveScrollingGrid, 138-139

Selector class, 281

selectors, data template selectors, 381

SelectVoice method, 664

SelectVoiceByHints method, 664

sending data to pages, 220-221

Separator control, 299

SetBinding method, 365

SetCurrentValue method, 89

SetOutputToDefaultAudioDevice method, 665

SetOutputToWaveFile method, 665

SetResourceReference method, 359

Setters, 419-420

Settings class, 210

ShaderEffect, 530-531

Shapes

clip art based on Shapes, 512-513

Ellipse class, 508

explained, 505-506

how they work, 509

Line class, 509-510

overuse of, 507

Path class, 511-512

Polygon class, 511

Polyline class, 510

Rectangle class, 507-508

sharing

data source with DataContext, 374-375

Grid row/column sizes, 134-136

resources without sharing, 358

styles, 418-420

ShowDialog method, 208-209

ShowDuration property (ToolTip class), 270

ShowFrequentCategory property (JumpList
class), 243

ShowGridLines property (Grid), 129

ShowOnDisabled property

ContextMenuService class, 302

ToolTipService class, 271

ShowRecentCategory property (JumpList
class), 243

ShutdownMode enumeration, 202

Silicon Graphics OpenGL, 10

Silverlight, 18-19, 180

Silverlight XAML Vocabulary Specification 2008
(MS-SLXV), 24

ScaleTransform3D class812

SimpleCanvas, 755-760

SimpleQuadraticEase class, 641

SimpleStackPanel, 760-763

SineEase function, 640

single-instance applications, 204

single-threaded apartment (STA), 199

sizing

Grid rows/columns

absolute sizing, 130

autosizing, 130

GridLength structures, 131-132

interactive sizing with GridSplitter,
132-133

percentage sizing, 131

proportional sizing, 130

sharing row/column sizes, 134-136

elements

explained, 98

explicit sizes, avoiding, 99

height and width, 98-100

margin and padding, 100-102

visibility, 102-103

SkewTransform, 112

skins

defined, 415

examples, 459-461

explained, 458-459, 462

Light and Fluffy skin example, 463-464

malicious skins, preventing, 464-465

missing styles, troubleshooting, 461

procedural code, 462

Skip method, 63

Slider control, 335-336

snapshots of individual video frames,
taking, 660

SnapsToDevicePixels property, 17, 534

Snoop, 14

How can we make this index more useful? Email us at indexes@samspublishing.com

SolidColorBrush class, 514

SortDescription class, 395

SortDescriptions collection, 387

SortDescriptions property

ICollectionView class, 386

ItemsCollection object, 289

sorting, 289, 386-388

SoundPlayer class, 654

SoundPlayerAction class, 654-655

Source property

MediaElement class, 656

RoutedEventArgs class, 162

SourceName property (Trigger class), 433

spaces in geometry strings, 489

spans, 325-326

SpeakAsync method, 664

SpeakAsyncCancelAll method, 664

speech recognition

converting spoken words into text, 667-670

specifying grammar with GrammarBuilder,
671-672

specifying grammar with SRGS, 670-671

Speech Recognition Grammar Specification
(SRGS), 670-671

speech synthesis

explained, 664

GetInstalledVoices method, 664

PromptBuilder class, 665-667

SelectVoice method, 664

SelectVoiceByHints method, 664

SetOutputToWaveFile method, 665

SpeakAsync method, 664

Speech Synthesis Markup Language
(SSML), 665-667

SpeechSynthesizer, 664

Speech Synthesis Markup Language (SSML),
665-667

Speech Synthesis Markup Language (SSML) 813

SpeechRecognitionEngine class, 669-670

SpeechSynthesizer, 664

SpeedRatio property (animation classes), 617

spell checking, 315

Spinning Prize Wheel, 186-187

splash screens, 205-206

spline keyframes, 633-634

SpotLight, 564-568

SpreadMethod property
(LinearGradientBrush), 517

Square line cap (Pen), 490

sRGB color space, 514

SRGS (Speech Recognition Grammar
Specification), 670-671

SSML (Speech Synthesis Markup Language),
665-667

STA (single-threaded apartment), 199

StackPanel. See also SimpleStackPanel

explained, 118

interaction with child layout properties, 119

mimicking with Grid, 136

setting font properties on, 90-91

with Menu control, 300

standard Windows applications

Application class

creating applications without, 204

events, 202

explained, 199-200

Properties collection, 203

Run method, 200-201

Windows collection, 202

application state, 209-210

ClickOnce, 210-211

common dialogs, 206-207

custom dialogs, 207-208

explained, 195-196

multiple-document interface (MDI), 203

multithreaded applications, 205

retrieving command-line arguments in, 202

single-instance applications, 204

splash screens, 205-206

Window class, 196-198

Windows Installer, 210

start pages, building with Grid, 126-129

starting animations from property triggers,
628-629

StartLineCap property (Pen class), 489

StartMember value (NodeType property), 57

StartObject value (NodeType property), 57

StartPoint property (LinearGradientBrush), 516

StartupUri property (Application class), 200-201

states

control states, 449-455, 745-749

persisting and restoring, 209-210

visual states

respecting with triggers, 442-446

respecting with VSM (Visual State
Manager), 447-455

STAThreadAttribute, 695

static versus dynamic resources, 355-357

StaticResource markup extension, 355-357

StatusBar control, 307-308

StopLoading method, 217

stopping

page loading, 217

routed events, 165

Storyboards

EventTriggers containing Storyboards,
621-622

Storyboards as Timelines, 629-630

TargetName property, 625-626

TargetProperty property, 622-625

StreamGeometry class, 483

Stretch alignment, 104

SpeechRecognitionEngine class814

Stretch enumeration, 144

Stretch property

DrawingBrush class, 521

MediaElement class, 658

StretchDirection enumeration, 144

StretchDirection property (MediaElement
class), 658

StringFormat property (Binding object), 375-376

strings

formatting, 375-377

representing geometries as, 487-489

Stroke objects, 317

structures, ValueSource, 88

styles

consolidating property assignments in, 417

default styles, 88

defined, 415

explained, 416-418

implicit styles, creating, 421-422

inheritance, 418

keyless resources, 422-423

missing styles, troubleshooting, 461

mixing with control templates, 456-457

named styles, 421-422

per-theme styles and templates, 466-469

restricting usage of, 420-421

Setter behavior, 419-420

sharing, 418-420

theme styles, 88

triggers

conflicting triggers, 429

data triggers, 427-428

explained, 423-424

expressing logic with, 428-430

property triggers, 424-427

respecting visual states with, 442-446

typed styles, 421-422

How can we make this index more useful? Email us at indexes@samspublishing.com

stylus events, 174-176

StylusButtonEventArgs instance, 176

StylusButtons property (StylusDevice class), 175

StylusDevice class, 174-175

StylusDownEventArgs instance, 176

StylusEventArgs class, 176

StylusPoint objects, 175

StylusSystemGestureEventArgs instance, 176

Surface Toolkit for Windows Touch, 188

system resources, interaction with logical
resources, 360-361

SystemKey property (KeyEventArgs class), 168

SystemSounds class, 654

T
TabControl control, 291-292

TabInto method, 688

Table Blocks, 320

TabletDevice property (StylusDevice class), 175

TabPanel, 137

TargetName property (Storyboards), 625-626

TargetNullValue property (Binding object), 366

TargetProperty property (Storyboards), 622-625

TargetType property

ControlTemplate class, 434-435

Style class, 420-421

taskbar, customizing

explained, 245-246

taskbar item overlays, 247

taskbar item progress bars, 246

thumb buttons, 248-249

thumbnail content, 247

TaskDialogs, 253-256

TaskDialogs 815

tasks, JumpTasks

customizing behavior of, 237-240

example, 235

explained, 234

TemplateBindingExtension class, 435-437

templated parent properties, respecting,
435-439

Content property (ContentControl class),
435-437

hijacking existing properties for new
purposes, 441

other properties, 440

templates

control templates

editing, 457-458

mixing with styles, 456-457

named elements, 434

resuability of, 438-440

simple control template, 431-432

target type, restricting, 434-435

templated parent properties, respecting,
435-441

other properties, 438-439

triggers, 432-434

visual states, respecting with triggers,
442-446

visual states, respecting with VSM
(Visual State Manager), 447-455

DataTemplates, 378-380

defined, 415

explained, 430-431

HierarchicalDataTemplate, 399-400

per-theme styles and templates, 466-469

template selectors, 381

Windows themes, 470

temporarily canceling data binding, 385

testing

3D hit testing, 592-593

input hit testing

explained, 499

InputHitTest method, 513

visual hit testing

callback methods, 505

explained, 499

simple hit testing, 499-500

with multiple Visuals, 500-503

with overlapping Visuals, 503-505

text

converting spoken words into, 667-670

InkCanvas class, 316-318

PasswordBox control, 316

rendering, 17, 311-312

RichTextBox control, 316

text-to-speech

explained, 664

GetInstalledVoices method, 664

PromptBuilder class, 665-667

SelectVoice method, 664

SelectVoiceByHints method, 664

SetOutputToWaveFile method, 665

SpeakAsync method, 664

Speech Synthesis Markup Language
(SSML), 665-667

SpeechSynthesizer, 664

TextBlock control

explained, 313-314

explicit versus implicit runs, 314

properties, 313

support for multiple lines of text, 315

whitespace, 314

TextBox control, 315

TextOptions class, 312

tasks, JumpTasks816

text-to-speech

explained, 664

GetInstalledVoices method, 664

PromptBuilder class, 665-667

SelectVoice method, 664

SelectVoiceByHints method, 664

SetOutputToWaveFile method, 665

SpeakAsync method, 664

Speech Synthesis Markup Language
(SSML), 665-667

SpeechSynthesizer, 664

TextBlock control

explained, 313-314

explicit versus implicit runs, 314

properties, 313

support for multiple lines of text, 315

whitespace, 314

TextBox control, 315

TextElement class, 319-320

Blocks

AnchoredBlock class, 326-327

BlockUIContainer, 321

List, 320

Paragraph, 320

sample code listing, 321-324

Section, 320

Table, 320

Inlines

AnchoredBlock, 326-327

defined, 324-325

InlineUIContainer, 329

LineBreak, 327

Span, 325-326

TextFormattingMode property (TextOptions), 312

TextHintingMode property (TextOptions), 312

TextOptions class, 312

How can we make this index more useful? Email us at indexes@samspublishing.com

TextRenderingMode property (TextOptions), 312

texture coordinates, 584

TextureCoordinates property (MeshGeometry3D
class), 583

theme dictionaries, 466

theme styles, 88

ThemeDictionaryExtension, 468

ThemeInfoAttribute, 467-468

themes

defined, 415, 465

generic dictionaries, 467

per-theme styles and templates, 466-469

system colors, fonts, and parameters,
465-466

theme dictionaries, 466

Thickness class, 100-102

ThicknessConverter type converter, 102

thumb buttons (taskbar), adding, 248-249

ThumbButtonInfo property (TaskbarItemInfo),
248-249

thumbnail content (taskbar), customizing, 247

ThumbnailClipMargin property
(TaskbarItemInfo), 247

tile brushes

DrawingBrush class, 520-524

ImageBrush class, 524-525

VisualBrush class, 525-527

TileMode enumeration, 523

TileMode property (DrawingBrush class),
521-523

Timelines, 629-630

timer-based animation, 608-609

To property (animation classes), 614-616

ToggleButton class, 265-266

ToolBar control, 304-306

ToolBarOverflowPanel, 138

ToolBarPanel, 138

ToolBarTray class, 138, 305

ToolBarTray class 817

ToolTip class, 269-271

ToolTipService class, 271

Top property (Canvas), 116

touch events, 177-180

TouchDevice property (TouchEventArgs
class), 177

TouchDown event, 178-180

TouchEventArgs class, 177

TouchMove event, 178-180

TouchUp event, 178-180

TraceSource object, 384

Transform method, 65

Transform property (Cameras), 549

Transform3Ds

combining, 562

explained, 554-555

house drawing example, 555-556

MatrixTransform3D class, 554, 562

RotateTransform3D class, 554, 559-562

ScaleTransform3D class, 554, 557-559

Transform3DGroup class, 554

TranslateTransform3D class, 554-557

TransformConverter type converter, 113

transforms

applying, 106-107

clipping and, 141

combining, 113-114

explained, 106

MatrixTransform, 112-113

RotateTransform, 108-109

ScaleTransform, 109-111

SkewTransform, 112

support for, 114

Transform3Ds

combining, 562

explained, 554-555

house drawing example, 555-556

MatrixTransform3D class, 554, 562

RotateTransform3D class, 554, 559-562

ScaleTransform3D class, 554, 557-559

Transform3DGroup class, 554

TranslateTransform3D class, 554-557

TranslateTransform, 112

TransformToAncestor method, 596-605

TransformToDescendant method, 600-605

transitions (animation), 647-651

Transitions property (VisualStateGroup
class), 455

TranslateAccelerator method, 689-691

TranslateTransform, 112

TranslateTransform3D class, 556-557

Translation property (ManipulationDelta
class), 181

transparent colors, 520

transparent regions and mouse events, 171

trees

logical trees, 75-76

visual trees, 76-80

TreeView control, 302-304

TreeViewItem class, 303-304

TriangleIndices property (MeshGeometry3D
class), 580-581

Trigger class. See triggers

TriggerBase class, 85

triggers

conflicting triggers, 429

data triggers, 84, 427-428

event triggers, 84

explained, 423-427

expressing logic with, 428

logical AND, 429-430

logical OR, 429

in control templates, 432-434

ToolTip class818

property triggers, 83-85, 424-427

respecting visual states with, 442-446

Triggers collection, 85

Triggers property (FrameworkElement class), 85

troubleshooting

data binding, 384

missing styles, 461

TryFindResource method, 359

tunneling, 161

turning off type conversion, 50

Twitter, pure-XAML Twitter client, 412-413

TwoWay binding, 403

type converters

BrushConverter, 32

explained, 30-31

finding, 32

FontSizeConverter, 32

GridLengthConverter, 131

ImageSourceConverter, 309

LengthConverter, 102

in procedural code, 31

ThicknessConverter, 102

TransformConverter, 113

turning off type conversion, 50

values type-converted to object
elements, 38

typed styles, 421-422

U
UI Automation, supporting in custom controls,

749-750

UICulture element, 350

Uid directive, 351

How can we make this index more useful? Email us at indexes@samspublishing.com

UIElement class

binding to, 370

explained, 74

IsKeyboardFocused property, 170

IsMouseDirectlyOver property, 171

RenderTransformOrigin property, 107

UIElement3D class, 15, 588

ContainerUIElement3D, 590

explained, 74

ModelUIElement3D, 588-590

uniform scale, 557

UniformGrid, 138

unmanaged code, mixing with managed
code, 682

UpdateLayout method, 100

UpdateSourceExceptionFilter property (Binding
object), 408

UpdateSourceTrigger enumeration, 404-405

UpdateSourceTrigger property (Binding
object), 404

UpDirection property (Cameras), 548-550

URIs

packageURI, 349

URIs for accessing binary resources,
346-347

usage context, 375

UseLayoutRounding property, 17

user controls, creating

behavior, 725-727

dependency properties, 728-731

explained, 721-722

protecting controls from accidental usage,
727-728

routed events, 731-732

user controls versus custom controls, 722

user interfaces, 723-725

user controls, creating 819

user interfaces

creating for PlayingCard custom control,
739-742

creating for user controls, 723-725

marking with localization IDs, 351

USER subsystems, 10

V
ValidateValueCallback delegate, 89

validation rules, 405-409

ValidationRules property (Binding object), 406

value converters

Binding.DoNothing values, 385

bridging incompatible data types, 381-384

customizing data display, 385

explained, 381

temporarily canceling data binding, 385

ValueMinMaxToIsLargeArcConverter,
445-446

ValueMinMaxToPointConverter, 445-446

Value value (NodeType property), 57

ValueMinMaxToIsLargeArcConverter, 445-446

ValueMinMaxToPointConverter, 445-446

ValueSource structure, 88

variables, HwndSource, 697-698

verbosity of XAML, 71

versions of WPF

future releases, 17

WPF 3.0, 14

WPF 3.5, 14-16

WPF 3.5 SP1, 15-16

WPF 4, 14, 16-17

WPF Toolkit, 14

VerticalAlignment property (FrameworkElement
class), 103-105

video support

controlling underlying media, 661-662

embedded resources, 663

explained, 658

MediaElement, 658-660

taking snapshots of individual video
frames, 660

Windows Media Player, 658

VideoDrawing class, 476

Viewbox class, 144-147

Viewbox property (DrawingBrush class),
523-524

Viewport2DVisual3D class, 15, 590-591

Viewport3D class, 593-596

Viewport3DVisual class, 596

views

customizing collection views

creating new views, 394-396

explained, 386

filtering, 392

grouping, 388-391

navigating, 392-393

sorting, 386-388

TreeView control, 302-304

viewSource_Filter method, 395

virtualization, 289, 296

VirtualizingPanel class, 120

VirtualizingStackPanel, 120, 279

Visibility property (FrameworkElement class),
102-103

Visible value (Visibility enumeration), 102

Visual C++, 681, 695

Visual class, 80

explained, 74

TransformToAncestor method, 596-600

visual effects, 529-531

visual hit testing

callback methods, 505

explained, 499

simple hit testing, 499-500

with multiple Visuals, 500-503

with overlapping Visuals, 503-505

user interfaces820

Visual State Manager (VSM), 17

animations and

Button ControlTemplate with
VisualStates, 643-646

transitions, 647-651

respecting visual states with

control parts, 447-449

control states, 449-455

visual states

respecting with triggers, 442-446

respecting with VSM (Visual State Manager)

control parts, 447-449

control states, 449-455

Visual Studio debugger, 236

Visual Studio-like panes, creating

sequential states of user interface,
147-151

VisualStudioLikePanes.xaml, 151-153

VisualStudioLikePanes.xaml.cs, 153-157

Visual3Ds

explained, 74, 586

ModelVisual3D class, 587-588

TransformToAncestor method, 600-605

TransformToDescendant method, 600-605

UIElement3D class, 588

ContainerUIElement3D, 590

ModelUIElement3D, 588-590

VisualBrush class, 525-527

VisualChildrenCount method, 497-498

Visuals

custom rendering, 499

displaying on screen, 496-498

DrawingContext methods, 494

DrawingVisuals

explained, 493

filling with content, 493-496

explained, 493

How can we make this index more useful? Email us at indexes@samspublishing.com

visual hit testing

callback methods, 505

explained, 499

simple hit testing, 499-500

with multiple Visuals, 500-503

with overlapping Visuals, 503-505

VisualStateGroup class, 455

VisualStateManager. See Visual State Manager

VisualStudioLikePanes.xaml file, 151-153

VisualStudioLikePanes.xaml.cs file, 153-157

VisualTransition objects, 647-651

VisualTreeHelper class, 77

vshost32.exe, 236

VSM (Visual State Manager), 17

animations and

Button ControlTemplate with
VisualStates, 643-646

transitions, 647-651

respecting visual states with

control parts, 447-449

control states, 449-455

W
Webcam control (Win32)

HostingWin32.cpp file, 685-687

Webcam.cpp file, 678-681

Webcam.h file, 678

Window1.h file, 683-684

Webcam.cpp file, 679-681

Webcam.h file, 678

whitespace, TextBlock control, 314

Width property (FrameworkElement class),
98-100

Win32 controls, WPF interoperability

explained, 677

HwndSource class, 692-695

Win32 controls, WPF interoperability 821

keyboard navigation, 687-691

launching modal dialogs, 692, 699

layout, 696-699

Webcam control, 678-687

winding order (mesh), 579-580

Window class, 196-198

Window1.h file, 683

Window1.xaml file, 717

Window1.xaml.cs file, 716

WindowHostingVisual.cs file, 495-497

WindowInteropHelper class, 708

Windows 7 user interface features

Aero Glass, 249-253

Jump Lists

and Visual Studio debugger, 236

associating with applications, 234

explained, 233-234

JumpPaths, 241-244

JumpTasks, 234-240

taskbar item customizations

explained, 245-246

taskbar item overlays, 247

taskbar item progress bars, 246

thumb buttons, 248-249

thumbnail content, 247

TaskDialogs, 253-256

WPF 4 support for, 16

Windows applications

multiple-document interface (MDI), 203

navigation-based Windows applications

explained, 211-212

hyperlinks, 215-216

journal, 216-218

Navigate method, 214-215

navigation containers, 212-214

navigation events, 218-219

Page elements, 212-214

returning data from pages, 221-222

sending data to pages, 220-221

single-instance applications, 204

standard Windows applications

Application class, 199-204

application state, 209-210

ClickOnce, 210-211

common dialogs, 206-207

custom dialogs, 207-208

explained, 195-196

multithreaded applications, 205

retrieving command-line arguments in,
202

splash screens, 205-206

Window class, 196-198

Windows Installer, 210

Windows collection, 202

Windows Forms controls, WPF
interoperability, 10

converting between two representatives,
707-708

ElementHost class, 704-706

explained, 699-700

launching modal dialogs, 703, 708

PropertyGrid, 700-703

Windows Installer, 210

Windows Media Player, 658

Windows themes, 470

Windows XP, WPF differences on, 18

WindowsFormsHost class, 702

WorkingDirectory property (JumpTask), 238

WPF 3.0, 14

WPF 3.5, 14-16

WPF 3.5 SP1, 15-16

WPF 4, 14, 16-17

WPF Toolkit, 14

WPF XAML Vocabulary Specification 2006 (MS-
WPFXV), 24

WrapPanel

examples, 121

explained, 120

Win32 controls, WPF interoperability822

interaction with child layout properties,
121-122

properties, 120

and right-to-left environments, 121

WriteableBitmap class, 15

writers (XAML)

explained, 53-54

node loops, 56-57

writing to live objects, 61-63

writing to XML, 63-64

XamlServices class, 64-67

writing

easing functions, 640-642

validation rules, 406-407

X
X property

StylusPoint object, 175

TranslateTransform class, 112

x:Arguments keyword, 51, 67

x:Array keyword, 70

x:AsyncRecords keyword, 67

x:Boolean keyword, 67

x:Byte keyword, 67

x:Char keyword, 67

x:Class keyword, 45, 67

x:ClassAttributes keyword, 68

x:ClassModifier keyword, 68

x:Code keyword, 68

x:ConnectionId keyword, 68

x:Decimal keyword, 68

x:Double keyword, 68

x:FactoryMethod keyword, 51-52, 68

x:FieldModifier keyword, 68

x:Int16 keyword, 68

How can we make this index more useful? Email us at indexes@samspublishing.com

x:Int32 keyword, 68

x:Int64 keyword, 68

x:Key keyword, 68

x:Members keyword, 53, 68

x:Name keyword, 42, 68, 434

x:Null keyword, 70

x:Object keyword, 68

x:Property keyword, 53, 68

x:Reference keyword, 70, 703

x:Shared keyword, 69, 358

x:Single keyword, 69

x:Static keyword, 70

x:String keyword, 69

x:Subclass keyword, 69

x:SynchronousMode keyword, 69

x:TimeSpan keyword, 69

x:Type keyword, 70

x:TypeArguments keyword, 69

x:Uid keyword, 69

x:Uri keyword, 69

x:XData keyword, 69

XAML (Extensible Application Markup
Language)

{ } escape sequence, 377

accessing binary resources from, 345-348

advantages of, 22-24

animation with EventTriggers/Storyboards

explained, 621-622

starting animations from property
triggers, 628-629

Storyboards as Timelines, 629-630

TargetName property, 625-626

TargetProperty property, 622-625

BAML (Binary Application Markup Language)

decompiling back into XAML, 47-48

defined, 45

Binding object in, 365-367

XAML (Extensible Application Markup Language) 823

CAML (Compiled Application Markup
Language), 46

common complaints about, 70-71

compiling, 43-45

defined, 23-24

embedding PropertyGrid with, 702-703

explained, 12, 21-22

extensibility, 39

factoring, 357

generated source code, 46

keywords, 67-70

loading and parsing at runtime, 40-42

loose XAML pages, 231-232

markup extensions

explained, 32-35

in procedural code, 35

parameters, 33

namespaces

explained, 26-28

implicit .NET namespaces, 27

mapping, 26

object elements

attributes, 25

content property, 35-36

declaring, 25

dictionaries, 37-38

explained, 24-26

lists, 36-37

naming, 42-43

processing child elements, 40

values type-converted to object
elements, 38

order of property and event processing, 26

procedural code inside, 47

property elements, 29-30

pure-XAML Twitter client, 412-413

readers

explained, 53-54

markup compatibility, 61

node loops, 56-57

NodeType property, 57-58

sample XAML content, 58-59

XAML node stream, 59-61

XamlServices class, 64-67

running XAML examples, 22

specifications, 24

type converters

BrushConverter, 32

explained, 30-31

finding, 32

FontSizeConverter, 32

in procedural code, 31

values type-converted to object
elements, 38

writers

explained, 53-54

node loops, 56-57

writing to live objects, 61-63

writing to XML, 63-64

XamlServices class, 64-67

XAML Browser Applications (XBAPs), 15

ClickOnce caching, 226

deployment, 229

explained, 224-226

full-trust XAML Browser
applications, 228

integrated navigation, 228-229

limitations, 226-227

on-demand download, 230-231

security, 229

XAML2009

built-in data types, 50

dictionary keys, 50

event handler flexibility, 52

explained, 48-49

full generics support, 49

object instantiation via factory
methods, 51-52

XAML (Extensible Application Markup Language)824

object instantiation with non-default
constructors, 51

properties, defining, 53

XAML Browser Applications (XBAPs)

ClickOnce caching, 226

deployment, 229

explained, 224-226

full-trust XAML Browser applications, 228

integrated navigation, 228-229

limitations, 226-227

on-demand download, 230-231

security, 229

XAML Cruncher, 23

XAML Object Mapping Specification 2006
(MS-XAML), 24

XAML2009

built-in data types, 50

dictionary keys, 50

event handler flexibility, 52

explained, 48-49

full generics support, 49

object instantiation via factory methods,
51-52

object instantiation with non-default
constructors, 51

properties, defining, 53

XamlBackgroundReader class, 53

XamlMember class, 58

XamlObjectReader class, 53

XamlObjectWriter class, 54

XamlObjectWriterSettings.
PreferUnconvertedDictionaryKeys property, 50

XamlPad, 23

XAMLPAD2009, 22-23

XamlPadX, 23, 77

XamlReader class

explained, 53-54

Load method, 40-41

LoadAsync method, 41

How can we make this index more useful? Email us at indexes@samspublishing.com

zooming 825

XamlServices class, 64-67

XamlType class, 58

XamlWriter class, 48, 53-54

XamlXmlReader class, 53-56

markup compatibility, 61

sample XAML content, 58-59

XAML node stream, 59-61

XamlXmlWriter class, 54

XBAPs. See XAML Browser Applications

XML, writing to, 63-64

XML Paper Specification (XPS), 319

XML Path Language (XPath), 397

xml:lang attibute, 67

xml:space attribute, 67

XmlDataProvider class, 397-401

XNA Framework, 11

XPath (XML Path Language), 397

XPS (XML Paper Specification), 319

Y-Z
Y property

StylusPoint object, 175

TranslateTransform class, 112

Z order, 117-118

Z-fighting, 545

zooming

enabling with multi-touch events, 182-183

with inertia, 184-185

	Introduction
	Who Should Read This Book?
	Software Requirements
	Code Examples
	How This Book Is Organized
	Part I: Background
	Part II: Building a WPF Application
	Part III: Controls
	Part IV: Features for Professional Developers
	Part V: Rich Media
	Part VI: Advanced Topics

	Conventions Used in This Book

	1 Why WPF, and What About Silverlight?
	A Look at the Past
	Enter WPF
	The Evolution of WPF
	What About Silverlight?
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

