Includes

Christopher Peri, Ph.D. Twitter
Development

Contribution by Bess Ho for iPhone
and Android

SamsTeach Yourself

e TWIitter API




Christopher Peri Ph.D.

Sams Teach Yourself

the TWItter API

SAMS 800 East 96th Street, Indianapolis, Indiana 46240 USA



Sams Teach Yourself the Twitter APl in 24 Hours
Copyright © 2011 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33110-7
ISBN-10: 0-672-33110-1
Library of Congress Cataloging-in-Publication Data
Peri, Christopher A., 1964-

Sams teach yourself the Twitter APl in 24 hours / Christopher A. Peri, Bess R Ho.

p. cm.

Includes index.

ISBN-13: 978-0-672-33110-7 (pbk. : alk. paper)

ISBN-10: 0-672-33110-1 (pbk. : alk. paper)

1. Application program interfaces (Computer software) 2. Twitter. |. Ho, Bess P,
1967- II. Title. Ill. Title: Teach yourself the Twitter APl in 24 hours.

QA76.76.A63P47 2011

006.7'54—dc23

2011022576

Printed in the United States of America
First Printing June 2011

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The authors and the publisher shall have neither liability nor responsi-
bility to any person or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Associate Publisher
Mark Taub

Signing Editor

Trina MacDonald
Development Editor
Songlin Qiu
Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Barbara Hacha

Indexer
Erika Millen

Proofreader
Sarah Kearns

Technical Editors
Doug Jones
Ronan Schwartz
Ben Schupak

Publishing Coordinator

Olivia Basegio

Cover Designer
Gary Adair

Composition
Gloria Schurick



Contents at a Glance

HOUR 1
HOUR 2
HOUR 3
HOUR 4
HOUR 5
HOUR 6
HOUR 7
HOUR 8
HOUR 9
HOUR 10
HOUR 11
HOUR 12
HOUR 13
HOUR 14
HOUR 15
HOUR 16
HOUR 17
HOUR 18
HOUR 19
HOUR 20
HOUR 21
HOUR 22
HOUR 23
HOUR 24

Preface

What Is Twitter?

Twitter Out of the Box

Key Issues to Consider When Developing Twitter Applications
Creating a Development Environment

Making Your First API Call

Building a Simple Twitter Reader

Creating a Twitter API Framework

Twitter OAuth

Building a Simple Twitter Client, Part I

Building a Simple Twitter Client, Part II

Expanding Our Client for More API Calls

Direct Messages

Lists

Favorites and User Methods

Search

Trends and GEO

Friendships, Notification, Block, and Account Methods
Twitter Documentation

Streaming API

FailWhale and the Future of the API

Getting Started in Twitter Android Application
Building Android Applications with Twitter

Getting Started with Twitter Using iOS

Building an iPhone and iPod Touch Application with Twitter

Index

xiii

11
21
33
49
59
73
81
95
105
113
125
135
147
161
177
193
205
219
229
241
255
279
293

319



Table of Contents

HOUR 1: What Is Twitter?
What Twitter Offers You
A Brief History of Twitter—or Why 140 Characters?
Summary
Q&A

HOUR 2: Twitter Out of the Box
What Twitter Offers You
Registering Your Application
The Twitter Client
Summary
Q&A

HOUR 3: Key Issues to Consider When Developing Twitter Applications
Types of Twitter Users
Types of Twitter Applications
Platform
Summary

Q&A

HOUR 4: Creating a Development Environment
Background of LAMP Stacks
Setting Up a Local Web Server
Securing Your Web Server
Development Tools
Summary

Q&A

HOUR 5: Making Your First API Call
Making a Simple Twitter API Call
Making a Call in PHP

0 NN~

11
11
15
16
18
18

21
21
25
30
31
31

33
33
34
38
41
45
46

49
49
53



\

Contents

Summary 57
Q&A 58
HOUR 6: Building a Simple Twitter Reader 59
Building Our First Twitter Client 59
Twitter HTTP Response Codes 65
Summary 69
Q&A 71
HOUR 7: Creating a Twitter APl Framework 73
Twitter API Parameters 73
Creating an API Function for Twitter Function Calls 75
Summary 80
Q&A 80
HOUR 8: Twitter OAuth 81
What Is a Class and Why Do We Want to Use It? 81
What Is OAuth? 82
How to Register Your Application 82
Creating the OAuth Twitter Class 83
PHP Library for Working with Twitter’s OAuth API 84
Setting Up the twitterOAuth Class 85
How to Add New Functions to Your Twitter Class Object 90
How Our Class Deals with Twitter Connection Errors 92
Summary 93
Q&A 93
HOUR 9: Building a Simple Twitter Client, Part | 95
Expanding the Index File to Support Tabs 95
Adding Support for Home Timeline 97
Adding Support for Mentions 99
Adding Support for Direct Messages 101
Summary 102

Q&A 102



vi

Teach Yourself the Twitter APl in 24 Hours

HOUR 10: Building a Simple Twitter Client, Part Il 105
Updating and Adding New Files to Support Input Text Field 105
Sending a Message to Twitter 108
API Call for Direct Messages 109
Sanitizing Messages 110
Summary 110
Q&A 111

HOUR 11: Expanding Our Client for More API Calls 113
Types of API Method Calls 113
Adding Tabs to Our Ul 114
New Timeline API Calls: Retweeted 117
New Status API Calls: Retweeted 119
Summary 123
Q&A 123

HOUR 12: Direct Messages 125
Sending a Direct Message 125
Adding Direct Message API Support 127
Adding More Direct Message API Support 131
The Destroy API Method 132
Summary 133
Q&A 133

HOUR 13: Lists 135
What Is a List? 135
Implementing the List API into Our Application 137
Three Types of List Methods 142
Summary 144
Q&A 144

HOUR 14: Favorites and User Methods 147
Favorites API Methods 147
User API Methods 153
Summary 158

Q&A 159



vii

Contents

HOUR 15: Search 161
History of Twitter Search API 161
Twitter’s Stance on Search 161
The Lone Search API 162
A Quick Guide to More Information on Search from the Twitter Docs 170
Summary 173
Q&A 174

HOUR 16: Trends and GEO 177
What Is a Trending Topic? 177
Supporting Trends in Our Application 177
Understanding the GEO Tag 187
Summary 190
Q&A 190

HOUR 17: Friendships, Notification, Block, and Account Methods 193
Friendships Methods 193
Notification Methods 197
Block Methods 198
Account Methods 199
Summary 202
Q&A 202

HOUR 18: Twitter Documentation 205
The Twitter Dev Website 205
Dev.twitter.com/doc 211
Twitter Resource Page Overview 212
Summary 216
Q&A 216

HOUR 19: Streaming API 219
The Three Types of Streaming APIs 219
Streaming Methods 222
Summary 226

Q&A 226



viii

Teach Yourself the Twitter APl in 24 Hours

HOUR 20: FailWhale and the Future of the API
What Is Spotting the FailWhale?
Review of the Application We Just Built
Where Is the Twitter API Going?
Summary
Q&A

HOUR 21: Getting Started in Twitter Android Application
Introducing Android
Creating the Hello Android Project
Summary
Q&A

HOUR 22: Building Android Applications with Twitter
Using Twitter OAuth in Android
Importing Packages
Summary
Q&A

HOUR 23: Getting Started with Twitter Using iOS
Introducing iOS
Creating a Hello World Application
Summary
Q&A

HOUR 24: Building an iPhone and iPod Touch Application with Twitter
Introducing Twitter xAuth
Benefits of Using Twitter xAuth
Selecting Twitter Objective-C Libraries
Loading xAuth Token
Posting Tweet
Adding MGTwitterEngine Delegate Methods
Creating Objects in Interface Builder
Summary
Q&A

INDEX

229
229
231
236
237
238

241
241
243
251
252

255
255
261
276
276

279
279
280
289
290

293
293
294
294
302
304
305
308
315
316

319



About the Author

Dr. Christopher Peri received his Doctorate from the University of California, Berkeley,
in Architecture. His focus was on Collaboration in Virtual Environments delving into
methods that facilitate designers and engineers to improve communication over remote
networks.

He started playing with the Twitter API very early in the API release, creating his own
Twitter client called TwittFilter, which is geared more to the occasional user then some-
one who uses Twitter all the time. As time went on, he added more and more features
and functions for his own personal use, until one day he realized he had a fairly
sophisticated application and opened it up to the general public to use. He learned
quite a bit about the Twitter API the hard way—by simply coding things up and seeing
what happens. Although TwittFilter is still a personal project, he has already created a
number of private Twitter applications, robots, and smaller projects like
NewsSnacker.com, which is open to the public.



About the Contributing
Author

Bess Ho is a Ul Engineer in mobile, tablet, TV, and web with a strong background in
data analytic and consumer behavior. She received her Master Degree from the
University of California, Davis in Food Science and Technology. Her focus was on
Consumer Sensory Science and Engineering. She is the winner of Nokia Open Screen
Project Fund and was elected as Samsung Star in the Samsung Mobile Innovator
worldwide program. She served as technical editor for the book titled Building
OpenSocial Apps: A Field Guide to Working with MySpace Platform (Addison
Wesley, 2009). She has presented mobile technology at Stanford University, O'Reilly
Web20 Expo SF, Where20 Conference, Silicon Valley China Wireless Conference, and
many developer events. Currently, she is Mobile Architect (EIR) for Archimedes
Ventures. She also advises many early-stage startups in UI/UXP design and mobile
development in multiple platforms. She is actively teaching many mobile classes
such as iOS SDK in Silicon Valley and online courses at Udemy.com. You can follow
her at Twitter @Bess or Slideshare at www.slideshare.net/bess.ho. Her developer blog
is at http://www.bess.co.


www.slideshare.net/bess.ho
http://www.bess.co

Acknowledgments

Christopher Peri—We would like to thank all the unknown coders on the interwebs
who have contributed to not only Twitter’s success, but creating mountains of technical
information and code examples that allows a lowly hobby programmer, like myself, to
learn how to work with Twitter API and one day...write a book on it. A number of peo-
ple have helped with this book, but I want to call out three people specifically: @chiah
for creating the foundation of Hour 1, @jon_wu for Hour 8 as well as helping with
debugging and general feedback on technical issues, and @LanceNanek for debugging
and researching Android in Hour 22.



We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom
you're willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of
this book, and that due to the high volume of mail I receive, I might not be able to
reply to every message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or email address. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email:  opensource@samspublishing.com

Mail: Mark Taub
Associate Publisher
Sams Publishing
800 East 96th Street
Indanapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/title/9780672331107
for convenient access to any updates, downloads, or errata that might be available
for this book.


www.informit.com/title/9780672331107

Preface

This book on the Twitter API is geared to the programmer who is just a bit past
beginner—who knows the basics of LAMP, including how to set up a basic server,
PHP, JavaScript, HTML, and CSS. You do not have to be an expert programmer to
use this book, but you should know how to look things up. In writing this book, we
have tried to provide you with everything you need to get a simple Twitter client up
and running. We include an hour on setting up your environment, as well as pro-
viding you with HTML and CSS codes to have something up and running. However,
it’s beyond the scope of this book to explain what is happening with these codes.
Instead, we focus on the code surrounding the API calls, OAuth, and the returns.
That does not mean that you could not use this book if you are a beginner program-
mer. Because we provide you with all the code and build an application up step by
step, you can stop at any time and look up parts of the code you do not understand.
However, if you have never coded anything before, you may find that this book
moves far too fast. It may be better to get an introductory book on basic program-
ming in PHP before reading this book.

In writing this book, we also kept in mind experienced programmers who have been
asked to create a Twitter application or include Twitter support in a current applica-
tion, even if they do not know much about Twitter. We believe it’s important to
understand what Twitter is, how it’s being used, and what makes it different from
other social media services. It’s with this understanding that you will be able to
approach your Twitter project with a more engaged understanding of what your
application is trying to accomplish, which is the best way to not only satisfy product
requirements, but also design future growth.

Sams Teach Yourself Twitter API in 24 Hours is a little different from most techni-
cal books in that the book is geared around creating a functional Twitter client,
including all HTML, CSS, JavaScript, and PHP needed to create your own applica-
tion. We also dedicated the last four hours of this book to getting you started with
making API calls on the iPhone and Android OSes in case you want to make your
own mobile Twitter application.

Unlike most books, this book was written as Twitter and the API set was going

through major changes. As such, the book and the code used in the book have been
edited many, many times. So much so that we expect there will be a technical over-
sight here and there. So be sure to check the book’s website for changes and updates



Xiv

Teach Yourself the Twitter APl in 24 Hours

(http://www.twitterapi24.com/). Also, as much as we tried to keep up with all the
changes happening with Twitter, we fully expect some details about the various
API’s to evolve from the time of the last edit to the time you have this book in your

hands.

We hope you enjoy this book.


http://www.twitterapi24.com/

This page intentionally left blank



HOUR 3

Key Issues to Consider
When Developing Twitter
Applications

What You’ll Learn in This Hour:

» Different types of Twitter users and how they impact code design
» Different types of Twitter applications and program architecture
» Things to consider if you are not building a web-based application

Types of Twitter Users

As one would expect with an API system as open as Twitter, and the explosion of
interesting applications people have developed, we have also seen the development
of different types of Twitter users. Understanding these types of users and knowing
which of them we are trying to reach will inform how we may want to build our
Twitter application framework. As with any large user base, there are a number of
ways to set up categories. In this hour, we will break down and discuss the users in
the following categories or types.

The News Reader

Twitter is a great source of breaking news, whether it’s politics, business, sports, or
following celebrities. Most users use searches to find what they are interested in, or
they follow Twitter feeds that act like RSS readers. For example, BreakingNews is
what you would guess it would be—a Twitter account publishing breaking news.
Most news outlets have such accounts: CBSNews, ABC, BBC, and so on. The screen-
shot of NewsSnacker, an application created by the author (shown in Figure 3.1) is a
good example of a Twitter application that focuses on the news.



22

FIGURE 3.1
Screenshot of
NewsSnacker.

HOUR 3: Key Issues to Consider When Developing Twitter Applications

google
search
police
girl year
percent
latinos
poll
america
bitly
order
a1 steep
B IR cops
B T I catholic
Ve g somer
Ter - el news .
e obama afghan
officials
died main
vanishes
i) iran

Although making search and Twitter account API reads from Twitter does not
require authentication, you can still get dinged going over the API limit because
Twitter will limit calls from an IP address. So, you still need to keep in mind how
often you make calls. In the case of NewsSnacker, we use a white-listed account
because the user could exceed the API calls-per-hour limit since each news service is
a separate call. Suppose that the user has 10 sources and refreshes every 30 minutes.
That is 200 calls in an hour, which is over the current limit of 150 for non logged in
users. This does not include normal calls to check for new mentions or direct mes-
sages from the user’s chosen Twitter client application. An alternative approach is to
create a list of twitter news accounts and then call that list. However since
newsSnacker removes duplicate posts, a large number of returns on the list call
would be required. Both approaches have their merits however; one feature of
newsSnacker is to allow a custom list of sources. This can be done by having the user
log into the application and then select which of their lists they would like to call
thus the second approach is being pursued in the next version of the application.

Chatters

Twitter does allow for people to have conversations; it's called a direct message.
However, many people like to hold their conversations in public and a big attraction
for these people is conversation threading. This is a very complicated proposition, so
much so that new APIs are being created to deal with this situation. We will cover



Types of Twitter Users

retweeting in later hours, but this could cause quite an impact on your code’s struc-
ture because of older reply techniques that use the letters RT for conversations
instead of recent API methods that support replies formally. So, supporting Twitter
conversation is a decision you will want to make early in your product’s design.

Power Users and PR Managers

Although you will have a drag-out fight between the two because one is personal
messaging and the other is more professional, the impact on product design is not
that much different. PR (public relations) managers, power users, and anyone who
consumes or monitors a lot of Twitter information will put special requirements on
you as a product developer. Like the limits to the number of API calls mentioned in
the section discussing the user group news readers, the issues with the power users
and PR managers group will be the same, with the added requirements of being
able to sort and search the stream of messages that come in. They may also need to
send messages on a schedule or from people using the same account. There is usual-
ly no simple way around this issue other than to start thinking of a well laid-out
database up front. You may want to also explore having your server make the API
calls and relay the information to your Twitter application in the form of automatic
processes or bots. Furthermore, set up your architecture to deal with a wide variety
of API calls. We will cover this later in the hour. PR managers will want more than
just searching the Twitter stream; they will want to make sense of it and make sense
of who is on that stream and their influence. The API has just expanded to handle
retweets, but not all Twitter clients will be updated to work with this API. As such,
you still need to pay attention to RT (the current convention for a retweet) and
hashtags. Plan for this up front. Also, plan to keep some of the user information in
your database; you will want to use it for user profile and relationship analysis.
Although the number of power users, compared to typical Twitter users, is quite low,
having a power user using (and advocating) your application is highly desirable,
and although every power user you talk to will have a different list of features and
functions, there are some things you must be able to support—for example, dynam-
ic search. Just providing a call and return to the search API is not good enough any-
more. The current and future power users of Twitter are going to demand just as
much power and feedback as they get using Google search. For example, power
users would want links with the tweets that are returned to be followed and ana-
lyzed in some manner. Perhaps you should show a thumbnail of the site, or display
the title and the first 50 words of the link. Be sensitive to nonstandard protocols,
such as searching stock quotes using the § sign in front of the stock market ID. For
example, §aapl for Apple. Power users are going to demand speed and customiza-
tion and will fully expect that your application understand the nonstandard fea-
tures (social conventions) of Twitter.

23



24

HOUR 3: Key Issues to Consider When Developing Twitter Applications

Microbloggers

Microbloggers will want to take the time to craft each tweet carefully. Pay attention
to the ease of creating a message—that is, allowing them to save as drafts, sending
to multiple Twitter accounts, spell checking (yes, spell checking), and although this
is not easy, a quick look up of the other tweeters or access to a list of tweeters.
Especially for PR users, you may want to have a look at simple web-based CRM
products to give you ideas. A new API to Twitter is the capability to store lists of
tweeters. This is useful to all power users as well as microbloggers.

High-Frequency Users (TwitterHolics)

The current rules of the API system allow only 350 calls per hour if you are logged
in, 150 if not. This may seem like a lot, but based on what features you are provid-
ing to your users, this can go very quickly. It’s not unlikely that you could have five
API calls per user action if you need to make follow-up calls. If they are high-fre-
quency users, they may find themselves approaching the 350-call limit pretty quick-
ly. Although there are calls that do not require credentials, you could still run up
against this limit because Twitter does count the number of calls from an IP. As
such, be sure you monitor the number of calls the user has left and deal with it
accordingly. The good news is that an API call exists for checking how many API
calls the user has left which does not count against your API limit. However, calling
it over and over again too often (every 5 seconds, for example) could trigger other
traffic limit controls.

New Users

This is less an API architecture question than a GUI issue. Although GUI design is
not addressed directly in this book, consider using clear terms and common
metaphors (like an email system, for example) for the layout and functionality of
your application. Do not assume that your users will understand various social con-
ventions in Twitter, so explain it up front and design your functions’ intent clearly
using tool tips for icons for example. If you are making an application that reflects
some aspects of the Twitter.com site, be sure to follow the conventions Twitter uses.

Bots

Bots (programs that perform automated tasks), including creating spam or setting
up phishing attacks, will always be an issue. A sophisticated Twitter application will
be aware of some of these bots and try to protect users. You may, however, need to



Types of Twitter Applications

create your own bots (for good, not evil). For example, you might take a RSS feed
and republish it to Twitter after passing it through a business rules filter which is
something the main Author of this book does. Because a bot is nothing more than
“rules” you have for dealing with reading or creating Twitter messages or lists, you
will find creating automated processes very easy with the Twitter API.

Types of Twitter Applications

Normally, when I'm about to start writing a Twitter application, I already know
what I want it to do. Thus, based on the features and functions I have in mind, I
already know what platform and category of users I'm targeting. Because we cannot
know what you, the reader, have in mind, we will try to set up a basic framework
for thinking about the various things you can do with Twitter as we go through this
book. Part of Twitter’s success is its simplicity and wide-open API. As such, people
have developed powerful, sophisticated applications, mashups, and simple widgets
that run in other apps or on web pages. However, the approach you will take build-
ing a full-on application is different from building a simple mashup or widget.

A mashup is a web page or application that takes two or more data sources and
combines them into a new service. Typically, mashups create a functionality not
envisioned by the creators of the original sources. Twitter is a very popular
mashup source.

Building a feature-rich Twitter application takes some planning. Although we will
walk you through various examples of how to build apps around specific APIs, we
want to bring focus, too. There is an overall approach you should determine before
you write line one.

Widget

Let’s talk about architecture around a simple widget. Suppose our simple widget is
going to display the results of a search or the latest tweets from a user. This is the
easiest to build. All we have to think about is four steps: make an API call to Twitter,
parse the return, format it, and display it. That'’s it. We diagrammed this simple
architecture in Figure 3.2.

25



26

FIGURE 3.2
Example of a
simple Twitter
API diagram.

FIGURE 3.3
Screenshot of a
Twitter widget
on www.perivi-
sion.net/word-
press.

HOUR 3: Key Issues to Consider When Developing Twitter Applications

GUI

Format

Parse

API Call

All API systems work this way, but what'’s great about Twitter is that the results are
already of value. Quite often, blogging sites (mostly personal) have this type of widg-
et. I have a widget like this on my blog (see Figure 3.3).

My Tweets

» Thatis SO COOL! I must learn to make
this. RT @Gennefer Japanese Fusion
Burgers from the Marked5 Truck in Los
Angeles http://sty.im/EqTLkw 1 hr ago

» iphone app from Oracle that looks like its
from a startup. http://bit.ly/izqM2 3 hrs
ago

» What has been searched, cannot be
unsearched, http://bit.ly/19Xcll 4 hrs ago

» More updates...

Because a mashup can be the combination of anything, and that’s kind of the point
of mashups, we are going to think about our architecture a bit differently. Although
technically, a mashup can be just two sources of information or very complex num-
ber and relationship of sources, we are going to stick with the spirit of what is con-
sidered a mashup by just thinking about mixing two data sources. For example, we
can take our Twitter search feed and weather data and display tweets from places
that are raining versus tweets from where it’s sunny. In this case, we need to store
our returns from Twitter somewhere while we get weather data. Then we need to
perform some business logic on those returns.


www.perivision.net/wordpress
www.perivision.net/wordpress
www.perivision.net/wordpress

Types of Twitter Applications

Business logic is a nontechnical term generally used to describe the functional
algorithms that handle information exchange between a database and a user
interface. It is distinguished from input/output data validation and product logic.
From Wikipedia, the free encyclopedia

In this case, we need to hold our returns in an array so that when we get the weath-
er data, we can reorganize our data. Because tweets are small, discrete messages, it
makes sense to create a multidimensional array object that we can easily explore.
So now, we will add one more layer to our diagram. As you can see in Figure 3.4, we
are using arrays to store our parsed return so that we can apply some rules (business
logic) to create a more valuable dataset.

GUI

Business logic
Array Array
Parse Parse
API Call other data source

Twitter Application

I would expect that only a small percentage of readers of this book are intending to
build a full-featured Twitter client, but if you are, you want to approach building
your application like any other application. Think about your calls to Twitter almost
like calls to a database where you provide a set of parameters with your call and get
a filtered response that can then be analyzed or applied to a set of rules. It is also
well worth your time to set up your Twitter calls in a separate class to deal with errors
and changes to the API. You should also set up another class to deal with converting
your Twitter calls into multidimensional arrays and/or storing them in a database.
The reason for this is that Twitter is still changing. Even during the writing of this
book, we had to make adjustments to the book’s index as new methods were intro-
duced and other calls were deprecated. By keeping these two processes in standalone
classes, you're going to save yourself some headaches down the road. If you are

27

FIGURE 3.4
Example of
combining two
data streams.



28

FIGURE 3.5
Example of an
architecture
placing a data-
base between
API calls and
an application’s
business logic.

HOUR 3: Key Issues to Consider When Developing Twitter Applications

planning on building a full-scale Twitter app, we recommend bookmarking the web-
site for this book and the Twitter API site. Really! It changes and grows that much.

Also, somewhat like a database, you can store information in Twitter. For example,
a much-overlooked feature is favorites. This API call allows you to save tweets. This
can be quite useful as a means of understanding which tweeters and types of tweets
a user tends to favor. New to the API list is lists. This is a list of tweeters a user cre-
ates. Again, it’s a powerful bit of information that can be quite useful in under-
standing users’ preferences. What is more interesting, though, is using these two API
calls as storage devices if your user is under your control—a corporate account, for
example. Because the user of that account does not interact with the account per-
sonally, you can use these API calls to store tweets and lists that can have greater
meaning than originally intended. For example, suppose you have a corporate
account for company X. We can store in the favorite list all tweets that match a cer-
tain rule, like any tweet that has an unfavorable term in the tweet. Now you have a
list of tweets that public relations can examine using other than the application you
developed. Also, remember you have access to user bio, location, and other ele-
ments. Again, because of how open Twitter is with its API, you can use these fields
for anything—for example, including the updating of the Twitter background based
on the latest message from the company, or perhaps updating the location field if
you're a mobile food van, or changing the profile image based on the time of day or
your mood. Instant database functionality ... of sorts! Now this does not mean you
should not have a database if you intended on storing anything beyond the simple
examples provided here. Also, it is not recommended to abuse this open access by
placing unrelated data in these fields. Most applications will follow a simple struc-
ture, as illustrated in Figure 3.5.

GUI

Business logic

— NV ;l,

DataBase Business Logic

1

Parse

API Call




Types of Twitter Applications

Pure Chat

This class of Twitter application is concerned with creating tweets, reading incoming
tweets, searching Twitter, retweeting, setting/getting favorites, and displaying simple
user account information. Everything can be done as a standalone command,
meaning you do not need to store information outside of Twitter. Each command
has only one or two API calls. The current Twitter.com main web page is this type of
application. Since we do not need to keep track of a state or store data, we can cre-
ate this application using nothing more than a simple collection of PHP calls. For
this class of application, we want to think about our application as a series of stand-
alone pages. It would be a good idea to use cookies on the user’s computer in case
you need to store last-seen dates or other simple pieces of information.

Structured Display

Very common with Twitter applications are the capabilities to save groups, perform
more advanced searches, display only new information and some threaded conver-
sations, and so on. Although some of these structured displays can be somewhat
complex, the approach you would take as a programmer is not that much different.
Many of these structured displays can be achieved without storing information on
the server but by using API calls and cookies instead. Consider the following exam-
ple: Suppose we want to display a column of unread tweets, tweets from our “top
10” friends, three or four saved searches, and your current favorites lists. All of these
can be achieved by passing variables within the existing API calls. You will actually
work far harder at the Ul than the backend coding. For this class of application, we
want to set up our code as a series of calls that are more or less self-contained. This
will make dealing with the GUI less troublesome as redesign is requested or required.

Twitter Statistics

Collecting statistics from Twitter data provides great promise for research, improved
discover and communications. However, this class of Twitter application is a bit
harder. TwittFilter, another application created by this author is in this class as
shown in Figure 3.6.

This class of Twitter application depends on creating new information through ana-
lyzing the return or returns from past Twitter calls, and storing or modifying this
information on the server, typically in a database. This, however, is where we find
Twitter to be the most interesting; because Twitter has such a large user base, you
can gather enough data to infer information that does not have a direct user corre-
lation. Did someone say mashup? For example, a very popular and now API-sup-
ported feature called “Trends” in Twitter is nothing more than a constant search

29



30

FIGURE 3.6
User Scoring
screen of
TwittFilter.

HOUR 3: Key Issues to Consider When Developing Twitter Applications

across all messages being sent to Twitter, displaying the terms with the highest rate
of occurrence. However, because of the large user base and ease of creating tweets,
Trends tends to be one of the first places that news breaks.

-1

m ﬁ Relative Ranking is §

Friends you both follow

W R

Last 20 messages frem perivision
' Mg L R

Jan 01 O F9 3T <0000 3008
alin

0
al you think

Friands we both folow [5)

Manangas to raests | know
=

Awrd o Hours batwaan pests
4

Fellownrs 1o Friands Ratic
15
Uniqee words (375

Frankinag i Thous); <1m is
good

E | e Followsr growth (>2)

Because we need to store information as well as grab details for analysis, we need to
think about how we structure our program differently. For this class of application,
we want to think of Twitter as more of a database source. Setting up our arrays that
allow for ease of use within formulas, as well as pulling and pushing into databas-
es, will be a great benefit as our analytics become more and more complex.
However, if you are not white listed, you will run into the API call limit quite quick-
ly. It's recommended that if you plan to do statics that require large sample sets or
recursive calls, that you explore the streaming API.

Platform

Now that we know the class of application we want to develop, we need to think
about the delivery platform. If you are going to develop for Ul-hosted apps, such as
native mobile apps or Adobe Air, you may again want to modify how to approach
your coding. Typically, when creating an app for the iPhone or other mobile plat-
form, many of our Ul elements are going to be handled on the device. You also will
want to minimize the amount of traffic going back and forth as much as possible.
Therefore, you should design your application around the output, which could be
XML, JSON, or some custom bitcode. In this case, the organizational structure you
choose will dictate how you structure your backend code. Because we have the luxu-
ry of storing information on our target platform, we can focus on speed and ease of
architecture. Even though our backend code is not responsible for the presentation



Q&A

layer (display), you still need to follow the basic tenants of good programming
design by keeping the business logic separate from the API calls; don't fall into the
trap of making each call from your application as a separate instance, as you may
with the Pure Chat approach. You never know when your application starts to take
on more features than you planned.

Summary

In this hour, you were introduced to various types of Twitter users. Depending on
your product’s target market, you may need to think about how you will approach
the design architecture of your product.

This was not intended to be an exhaustive list, nor an absolute one. One could easily
break this list into smaller pieces or roll it up into more general categories; instead,
it’s to provide a framework to think about the application you intend to build. We
broke this up into two sections because we want to make a distinction between the
type of use and type of application, However, do not think you can explore one with-
out the other. When designing any application, you should always start with the
user. What is the value proposition you are offering users in order for them to use
your application? Once you understand that, you can then move to the type of
application you want to create. So, we started out with an exploration of types of
Twitter users, and then types of Twitter applications. We ended this hour with a short
conversation about platforms. If you are developing for anything other than the
desktop, you are most likely already aware of these points, but we included them for
less-experienced developers as good to know.

Now, hold on to your hats because in the following hours, we are going to start build-
ing code!

Q&A

Q. Should I apply for a white-list account before | start coding?

A. No. White listed accounts are currents not available. However, you will find
that having 350 calls per hour is plenty as you learn how to develop your pro-
gram.

Q. I plan to make a simple Twitter application now, but I may expand it later.
Should I bother setting up a separate twitterAPI class?

A. Yes. If you have any plans, even just thoughts of doing something beyond a
few different types of API calls, set up a separate class for your API calls. In
addition to new APIs, current API calls can change.

31



32

HOUR 3: Key Issues to Consider When Developing Twitter Applications

Workshop

Quiz
1. What is meant by thinking about Twitter as a type of database?

2. I check my Twitter account only a few days a week on my iPhone. What kind
of Twitter user am I?

3. Isitillegal to create bots?

4. What is the easiest type of Twitter application to create?

Quiz Answers

1. This is a two-part answer: 1) Although Twitter exposes everything, you still can
only get detail data on users one at a time although this is changing. Thus,
thinking about accessing user statistics as if you were accessing a database is a
useful way to think about what you can do with Twitter. 2) If you have control
over the Twitter account(s), you can use the fields in Twitter to store informa-
tion instead of on your database.

2. You are a news reader. Even if you are reading only your timeline (people you
follow), you are more of a consumer of information than a creator.

3. No—and not all bots are bad. However, the good folks at Twitter do actively
look for automated procesess that abuse the system.

4. A pure chat widget.

Exercises

1. Describe your typical target user and then determine the class of application
you feel is appropriate for your user.

2. If you plan to create an automated process, write down each step and then
count the number of times you will need to call Twitter to get information.
What happens if the user hits refresh 10 times in 10 minutes? Will you go over
the 150-API call limit if they are not logged in?



This page intentionally left blank



Symbols

# (hashtag), 2, 8

#pragma mark, 301

$ (dollar sign), 23

@ (at symbol), 258

+ (plus symbol), 258

200 OK response code, 242

304 Not Modified response
code, 230

400 Bad Request response
code, 230

401 Unauthorized response
code, 230

403 Forbidden response
code, 230

404 Not Found response
code, 230

406 Not Acceptable response
code, 230

420 Enhance Your Calm response
code, 230, 235

500 Internal Server Error
response code, 230

502 Bad Gateway response
code, 230

Index

503 Service Unavailable response
code, 230

A

accessing other user information,
155

accessTokenReceived: method,
305-308

account methods
account/end_session, 201
account/update_profile, 201

account/update_profile_back
ground_image, 201

account/update_profile_
colors, 201

account/update_profile_
image, 201
adding to applications
header.inc, 199-200
parseTwitter.php, 200
twitteroauth.php, 200
list of, 199



320

account/end_session method

account/end_session method,
201

accounts
private accounts, 2
rate limiting, 11, 18
setting up, 12-15
whitelisting, 11-12, 31
account/update_profile method,
201

account/update_profile_backgrou
nd_image method, 201

account/update_profile_colors
method, 201

account/update_profile_image
method, 201
active SDK, targeting, 285
ADT (Android Development Tools)
plug-in, 242, 252
Android applications, 241-242
ADT (Android Development
Tools) plug-in, 242, 252
Android OAuth application,
255-261
creating, 256

intent filters and
permission, 259-260

layout, 257-259
Twitter Java libraries, 256
XML resources, 261

AVD (Android Virtual Device),
creating, 242

development environments,
252

Hello Android project

AndroidManifest.xml,
248249

AVD (Android Virtual
Device), 250

creating, 243-244

helloandroid.java,
245-246

launching, 246-248
SDK issues, 250-251

supported API levels,
249-250

views, 246
importing packages, 261-275
adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

Oauth-signpost, 251

supported operating systems,
252

Twitter4) library, 251
xAuth, 275-276
Android Development Tools (ADT)
plug-in, 242, 252
Android OAuth application
importing packages
adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

Twitter Java libraries, 256
Android SDK, downloading, 241
Android Virtual Device (AVD),

242,250
android:layout_marginBottom
attribute, 258
android:layout_width attribute,
258

AndroidManifest.xml, 248-249

@Anywhere and Tweet Button
(dev.twitter.com), 215

Apache, 34
API calls
account methods, 199
block methods, 198
blocks/blocking/ids, 198
blocks/create, 198
blocks/destroy, 198
blocks/exists, 198
blocks/unblocking, 198

catching API requests,
232-233

creating
cURL, 53-55, 58
in PHR 53-57
for Twitter function calls,
75-78
user_timeline API, 55-57
in XML, 49-52
DELETE calls, 136-137
destroy, 132-133

direct message methods,
109-110

favorites APl methods.
See favorites

Friendships methods
explained, 193
supporting in applications,
194-197
geo/search, 187-190
GET calls, 136-137
list calls, 135-136

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144



notification methods, 197
parameters
explained, 73-75
multiple parameters, 80
POST calls, 136-137
retweet methods
id/retweeted_by, 122
retweet, 119-123
retweeted_by_me, 118

retweeted_of_me,
118119

retweeted_to_me,
118119

retweets/id, 122
search. See Search
streaming methods, 222-226
Trends. See trending topics
types of, 113-114
user APl methods

accessing other user
information, 155

adding to applications,
153-154

list of, 153
statuses/followers, 156
statuses/friends, 156

thumbnail viewer, creating,
156-158

users/profile_image, 156
users/search, 155
users/show, 153-154
users/suggestions, 155

users/suggestions/:slug,
155-156

API levels (Android), 249-250
API parameters, 73-75
$api_call variable, 98
$api_url variable, 53
apiwiki.twitter.com, 84, 211

applications, 25
mashups, 25-27
platforms, 30-31
pure chat applications, 29
registering, 15-16, 82-83
structured displays, 29

Twitter clients. See Twitter
clients, creating

Twitter statistics, 29-30

widgets, 25-26
askOAuth() method, 264-266
at symbol (@), 258
attributes, 237

authenticating Android
applications, 264-266

Authentication section
(dev.twitter.com), 213

AVD (Android Virtual Device),
242, 250

base.js, 107-110
direct message support, 128
favorites support, 149, 152

Friendships methods support,
195

list support, 138
Retweet button support, 122
search support, 169-170
Basic Authentication, 255
#blamedrewscancer, 5
block methods, 198
blocks/blocking/ids, 198
blocks/create, 198
blocks/exists, 198
blocks/unblocking, 198

321

call_timeline() function

blocking users, 198
blocks/blocking/ids method, 198
blocks/destroy method, 198
blocks/exists method, 198
blocks/unblocking method, 198
bots, 24-25

BreakingNews, 21

browsers
Chrome, 42
Firefox, 41

Internet Explorer, 42
business logic, 27
buttons

Retweet, 122

base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122

parseTwitter.php, 121

render.php, 121

sendMessages.php, 120

twitteroauth.php, 120
Tweet,

adding with iframe, 210

adding with JavaScript,
210

customizing, 210-211

C

call_ timeline() function, 101
call_direct() function, 101, 140
call_search() function, 167
call_showList() function, 140
call_timeline() function, 97
call_trends() function, 178-179

How can we make this index more useful? Email us at indexes@samspublishing.com



322

call_trends_daily() function

call_trends_daily() function, 183
call_users() function, 157

callback attribute (search),
162,171

callPage() function, 107-108
calls (API). See API calls
callTwitter() function, 63-64, 75
capabilities of Twitter, 1-2
catching API requests, 232-233
character limit for tweets, 8
chatters, 22-23
choosing passwords, 12-13
Chrome, 42
classes
advantages of, 82
class files, storing, 93
explained, 81-82
OAuth
adding functions to, 90-92
creating, 83
twitterOAuth
creating, 85-87

getUserTimeline()
function, 90-92

oauth_index.php, 87-88

Twitter connection errors,
handling, 92-93
twitteroauth.php, 88-92
when to use, 93
clients (Twitter), creating, 16-18,
27-28, 59-60
Android applications,
241-242
ADT (Android Development
Tools) plug-in, 242
Android OAuth application,
255-261
AVD (Android Virtual
Device), 242

development
environments, 252

Hello Android project,
243-251

importing packages,
261-275

supported operating
systems, 252

xAuth, 275-276
API calls. See API calls
application architecture
diagram, 231-232
block methods, 198
blocks, 198

catching API requests,
232-233

direct messages

adding API support for,
101-102, 109-110,
127-130, 131-132

call_direct() function, 101

callPage() function,
107-108

deleting, 132-133
destroy API call, 132-133
direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

renderTweets() function,
128

sanitizing, 110

sendMessage() function,
107-108

testing, 126-127

Ul elements, adding,
125-126

favorites

adding to applications,
148-149

createFavorite() function,
150

creating, 149
definition of, 147

destroyFavorites()
function, 152

destroying, 152
favorite() function, 149

showFavorites() function,
148

Friendships methods
explained, 193

supporting in applications,
194-197
home timeline, 97-99
HTTP response codes, 65-66
index.php, 60-61, 69, 95-96
input text fields
base.js, 107-108, 110
createMessage.php, 106
index.php, 105-106
main.css, 106-107
sendMessage.php, 108
i0S. See i0S
lists
API support for, 135-136
creating, 137-141
definition of, 135

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

main.css, 61-63



main.php, 63, 69-70
mentions

adding support for,
99-101

call_ timeline() function,
101

getMentions() function,
99-101

notifications
disabling, 197
enabling, 197
parseTwitter.php, 66-67
render.php, 67-71

retrying if Twitter is down,
233-236

Retweet button
base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122
parseTwitter.php, 121
render.php, 121
retweets/id API call, 122
sendMessages.php, 120
twitteroauth.php, 120
Search. See Search
streaming, 219
advantages of, 226
limits on, 221

pre-launch checklist,
221-222

site streams, 220
Streaming API, 219

streaming methods,
222-226

user streams, 219-220
when to use, 220

tabs. See tabs
trending topics
call_trends() function,
178-179
definition of, 166-167

recent, daily, and weekly
trends, 180-185

showTrends() function,
178-179

supporting in applications,
177-180

Tweet button, 209
adding with iframe, 210

adding with JavaScript,
210

customizing, 210-211
Twitter clients, creating
ADT (Android Development
Tools) plug-in, 252
getMessagesSent()
function, 132

twitterAPl.php, 64-65, 70
colors (profile), 201-203
commandLine.php

favorites support, 150

Friendships methods support,
195

list support, 138-139
commands, $_GET, 95
config.php, 85
configuring
accounts, 12-15
local web servers, 34-38
connection errors, handling,
92-93

console page (dev.twitter.com),
207

Consumer key, retrieving,
284-285

Consumer secret, retrieving,
284-285

323

development environments

Count parameter, 74

count parameter (getMentions()
function), 99

create_message.php, 168-169
createFavorite() function, 150
createList() function, 139
createListltem() function, 138
createMessage.php, 106

cURL, 53-55, 58

$curl_handle variable, 53, 64
curl_setopt() function, 92
currentTimeMillis() method, 267

customizing Tweet button,
210-211

daily trends, 180-185

call_trends_daily() function,
183

header.inc, 183
parseTwitter.php, 183-184

showTrends_daily() function,
184

twitteroauth.php, 184-185
declaring
properties/methods, 300
variables, 300
DELETE calls, 136-137

deleting direct messages,
132-133

destroy API call, 132-133
destroyFavorites() function, 152
destroying favorites, 152
development environments
for Android, 252
LAMP stacks
explained, 33-34

How can we make this index more useful? Email us at indexes@samspublishing.com



324

development environments

popularity of, 46

XAMPP, 35-38
local web servers,

configuring, 34-38

tools

Chrome, 42

Firebug, 41-42

Firefox, 41

IDEs (integrated
development
environments), 43-44

Internet Explorer, 42
phpMyAdmin, 42
recommended toolbox, 45

revision control systems,
44-45

text editors, 43

web server security, 38-41
MySQL, 40-41
phpMyAdmin, 41
XAMPP pages, 40

XAMPP security console,
39-40

development tools

Chrome, 42
Firebug, 41-42
Firefox, 41

IDEs (integrated development
environments), 43-44

Internet Explorer, 42
phpMyAdmin, 42
recommended toolbox, 45

revision control systems,
44-45
text editors, 43

dev.twitter.com website, 211

@Anywhere and Tweet
Button, 212

Authentication, 212
console page, 207
Ecosystem, 216

Guidelines and Terms, 213
REST APl and General, 214
start page, 206

Streaming APl Documention
and Search API, 215

direct() function, 128
direct messages, 125

adding API support for,
101-102, 109-110

base.js, 128
header.inc, 132

parseTwitter.php, 131-132

render.php, 127-128
sendMessage.php, 129

twitteroauth.php, 129-132

call_direct() function, 101
callPage() function, 107-108
deleting, 132-133

destroy API call, 132-133
direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

getMessagesSent() function,
132

input text fields. See input
text fields

renderTweets() function, 128

sanitizing, 110

sending message to Twitter,
108-109

sendMessage() function,
107-108

testing, 126-127
Ul elements, adding
header.inc, 125-126
index.php, 125
direct messages (DMs), 2
directives
#pragma mark, 301
@interface, 300
disabling notifications, 197

Display Guidelines
(dev.twitter.com), 213
DMs (direct messages), 2
documentation
apiwiki.twitter.com, 211
dev.twitter.com website, 211

@Anywhere and Tweet
Button, 212

Authentication, 212
console page, 207
Ecosystem, 216

Guidelines and Terms,
213

REST API and General,
214

start page, 206

Streaming API
Documention and
Search API, 215

dollar sign ($), 23

Dorsey, Jack, 2-3

downloading
Android SDK, 241
MGTwitterEngine library, 285
MGTwitterEngineDemo, 285
Oauth-signpost, 251
Twitter4) library, 251



Eclipse, 43-44, 241
Ecosystem section
(dev.twitter.com), 216

editing
index.php, 105-106
twitteroauth.php, 90-92
editors (text), 43
Egyption revolution, tweets sent
during, 5-7
enabling notifications, 197
ending sessions, 201
errors, Twitter connection errors,
9293
exceptions
definition of, 92

Twitter connection errors,
handling, 92

F

Facebook, compared to Twitter, 4
FailWhale, 229-230
favorite() function, 149
favorites
adding to applications, 148
base.js, 149
header.inc, 148
parseTwitter.php, 148
twitteroauth.php, 148
createFavorite() function, 150
creating, 149
base.js, 152
commandLine.php, 150
render.php, 149-152

twitteroauth.php,
150, 152

definition of, 147

destroyFavorites() function,
152

destroying, 152
favorite() function, 149
showFavorites() function, 148

fields, input text fields
base.js, 107-110
createMessage.php, 106
index.php, 105-106
main.css, 106-107
sendMessage.php, 108

files. See also specific files
class files, storing, 93
organizing, 72

Firebug, 41-42

Firefox, 41

follow() function, 195

followers, 2

following, 2

friendshipExists() function,
129-130, 141

Friendships methods
explained, 193
supporting in applications
base.js, 195
commandLine.php, 195
parseTwitter.php, 196-197
render.php, 194
twitteroauth.php, 195
functions. See also API calls

adding to twitterOAuth class,
90-92

askOAuth(), 264-266
call_ timeline(), 101

325

functions

call_direct(), 101, 140
call_search(), 167
call_showlList(), 140
call_timeline(), 97
call_trends(), 178
call_trends_daily(), 183
call_users(), 157
callPage(), 107-108
callTwitter(), 63-64, 75
createlList(), 139
createlListltem(), 138
curl_setopt(), 92
currentTimeMillis(), 267
direct(), 128

favorite(), 149

follow(), 195

friendshipExists(), 129-130,
141

getData(), 266
getHomeTimeline(), 89
getMentions(), 233
code listing, 100
parameters, 99-100
getMessages(), 101, 131
getMessagesSent(), 132
getPublicTimeline(), 78-79
getQueryParameter(), 266
getRTByMe(). See also API
calls
getRTOfMe(). See also API
calls
getRTToMe(). See also API
calls
getTwitterData(), 97
getUserRate(), 200
getUserTimeline(), 75-78,
90-92

How can we make this index more useful? Email us at indexes@samspublishing.com



326

functions

htmlentities(), 54

leave(), 195

makeText(), 265, 267
oAuthRequest(), 88
onCreate(), 261
onNewlntent(), 266
parseTwitter(), 70
parseTwitterReply(), 63
parseTwitterReply (), 66
phpinfo(), 40
postMessage(), 304-305
renderLists(), 141
renderTweets(), 63, 67, 128
responsefromServer(), 108
search(), 167-168
sendMessage(), 107-108
sendSearch(), 169
setContentView(), 261
setText(), 267
setVisibility(), 268
showFollowers(), 158
showFriends(), 158
showgeo_search(), 232
showLists(), 141
showTrends(), 178-179
showTrends_current(), 184
showTrends_daily(), 184
showTrends_weekly(), 184
showUser(), 154
SimpleXMLElement(), 97
toLocaleString(), 267
updateStatus(), 108, 267

future of Twitter API, 236-237

Geo Developer Guidelines
(dev.twitter.com), 213

GEO tag, 187-190

geocode attribute (search), 163,
165, 172

geo/search API call, 187-190
GET calls, 136-137
$_GET command, 95

Get xAuth Access Token button,
288

get_public_timeline.php, 53
getData() method, 266
getHomeTimeline() function, 89
getMentions() function, 233
code listing, 100
parameters, 99-100
getMessages() function, 101, 131
getMessagesSent() function, 132
getPublicTimeline() function,
78-79
getQueryParameter() method,
266
getRTByMe() function, 119

getRTOfMe() function. See also
API calls

getRTToMe() function. See also
API calls

getTwitterData() function, 97

getUserRate() function, 200

getUsersTimeline() function,
90-92

getUserTimeline() function, 75-78

getXAuthAccessTokenForUsernam
e:password: method, 304

Git, 44

Global System for Mobile
Communications (GSM), 2-3

Google Chrome, 42

GSM (Global System for Mobile
Communications), 2-3

Guidelines and Terms section
(dev.twitter.com), 213

hashtag, 2, 8
header.inc, 114-115
account methods, 199-200

direct message support,
125-126, 132

favorites support, 148
list support, 139

recent, daily, and weekly
trends, 183

search support, 166

thumbnail viewer, creating,
156-157

trending topics support, 178
user APl methods, 154
Hello Android project

AndroidManifest.xml,
248-249

AVD (Android Virtual Device),
250

creating, 243-244
helloandroid.java, 245-246
launching, 246-248
Oauth-signpost, 251

SDK issues, 250-251

supported API levels,
249-250

Twitter4) library, 251
views, 246



Hello World application (i0S),
280-283

helloandroid.java, 245-246
high-frequency users, 24
history of Twitter, 2-3
home page (Twitter), 16-18
home timeline, creating, 97-99
htmlentities() function, 54
HTTP response codes
catching, 232-236
creating, 65-66
supported codes, 230

Hypertext Coffee Pot Control
Protocol, 230

$i counter, 97
ID parameter, 74

IDEs (integrated development
environments), 43-44

id/retweeted_by API call, 122
id/retweeted_by/ids API call, 123

iframe, adding Tweet button
with, 210

images, profile images, 201
importing
libraries
to header files, 299-300

to implementation files,
301

packages, 261-275
adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

include_entities parameter
(getMentions() function), 100

include_rtf parameter
(getMentions() function), 100

index.php, 95-96, 105-106
creating, 60-61, 69
direct message support, 125

expanding to support
tabs, 117

initializing MGTwitterEngine
library, 302
initWithCoder: method, 302
input text fields
base.js, 107-110
createMessage.php, 106
index.php, 105-106
main.css, 106-107
sendMessage.php, 108
installing XAMPP, 35-38
on Linux, 37-38
on Mac 0S, 37

troubleshooting installation,
38

on Windows, 35-37

integrated development
environments (IDEs), 43-44

intent filters, adding to Android
OAuth application, 259-260

IntentFilter objects, 259-260
Interface Builder

connecting objects in,
309-311

creating objects in, 308-315

defining object attributes in,
309-311

327
i0S

@interface directive, 300
Internet Explorer, 42
i0S, 279

active SDK, targeting, 285

Consumer key and Consumer
secret, retrieving, 284-285

Hello World application,
280-283

memory management,
301-302

MGTwitterEngine library

Delegate methods,
305-308

downloading, 285
initializing, 302
objects, creating in Interface
Builder, 308-315
#pragma mark, 301
tweets, posting, 304-305
ViewController.h, 299

declaring properties and
methods, 300

declaring variable
instances, 300

importing libraries to
header files, 299-300
ViewController.m, 300-301
xAuth
advantages of, 294

creating xAuth application,
294-299

definition of, 293-294
explained, 284

loading xAuth tokens,
302-304

requesting, 284

Twitter application for
xAuth request, 283

verifying, 286-289

How can we make this index more useful? Email us at indexes@samspublishing.com



328

iPhone platform

iPhone platform, 30-31. See also
i0S
iPod Touch platforms. See i0OS

J-K

Java libraries, 256

JavaScript, adding Tweet button
with, 210

JSON, parsing, 166-167
JTwitter library, 256
Krikorian, Raffi, 185

L

LAMP stacks
explained, 33-34
popularity of, 46
XAMPP, 35
installing, 35-38
security console, 39-40

lang attribute (search), 162,
165,171

launching Hello Android project,
246-248

layout of Android OAuth
application, 257-259

leave() function, 195
libraries
cURL, 53-55, 58
importing to implementation
files, 301
MGTwitterEngine, initializing,
302

MGTwitterEngine library

Delegate methods,
305-308

downloading, 285
Oauth-signpost, 251
Twitter Java libraries, 256
Twitter4J, 251
limits on Twitter use, 11, 18
Linux, 33
XAMPP installation, 37-38
XAMPP security console, 40
List Members resources, 143

List Subscribers resources,
143-144

list.php, 137-138
lists
API support for, 135-136

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

creating
base.js, 138
call_direct() function, 140

call_showlList() function,
140

commandLine.php,
138-139

createlList() function, 139

createListltem() function,
138

friendshipExists() function,
141

header.inc, 139

list.php, 137-138
parseTwitter.php, 140-141
renderLists() function, 141

showLists() function, 141

twitteroauth.php, 139,
141

definition of, 135
loading

xAuth tokens, 302-304

XML resources, 261

local web servers, configuring,
34-38

locale attribute (search),
162,171

logic, business logic, 27
Lu, Yiying, 229

Mac OS. See also i0S
XAMPP installation, 37
XAMPP security console, 40

main.css, 106-107
creating, 61-63

Retweet button support, 122

main.php, creating, 63, 69-70
makeText() method, 265, 267
mashups, 25-27

max_id parameter (getMentions()

function), 99

memory management, iOS,
301-302

mentions, adding support for,
99-101

messages
compared to statuses, 58
direct messages, 125

adding API support for,
101-102, 109-110,
127-130, 131-132



call_direct() function, 101

callPage() function,
107-108

deleting, 132-133
destroy API call, 132-133
direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

renderTweets() function,
128

sanitizing, 110

sendMessage() function,
107-108

testing whether messages
can be sent, 126-127

Ul elements, adding,
125-126

getMessagesSent() function,
132

sending message to Twitter,
108-109

metadata mode (Search), 173
methods. See specific methods
MGTwitterEngine library
Delegate methods, 305-308
downloading, 285
initializing, 302
MGTwitterEngineDemo, 285

MGTwitterEngineDemoViewContro
ller.h, 280-283

microbloggers, 24

mobile platforms, 30-31

Mubarek, Muhammed Hosni
Sayed, 5-7

multiple parameters, 80

MySQL, 34, 40-41

NAT (Network Address
Translation), 38

navs.cc, 115-117
Netbeans, 44

Network Address Translation
(NAT), 38

new users, 24
news readers, 21-22
NewsSnacker, 21-22
Notepad++, 43
notification methods, 197
notifications

disabling, 197

enabling, 197
notifications/follow method, 164

notifications/leave method, 197

0o

OAuth, 255-261
adding, 262-264
Android OAuth application
creating, 256

intent filters and
permission, 259-260

layout, 257-259
Twitter Java libraries, 256
XML resources, 261
definition of, 82
flow overview, 84
OAuth class, creating, 83

Twitter connection errors,
handling, 92-93

329

parameters

twitterOAuth class
adding functions to, 90-92
creating, 85-87

getUserTimeline()
function, 90-92

oauth_index.php, 87-88

twitteroauth.php, 88-92
OAuth class, creating, 83
oauth_index.php, 87-88
oAuthRequest() function, 88
Oauth-signpost, 251

objects
creating in Interface Builder,
308-315
definition of, 81-82
Odeo, 2-3

onCreate() function, 261
onNewIntent() method, 266

organizing files, 72

P

packages, importing, 261-275
adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java, 269-275

page attribute (search),
163-165, 171

Page parameter, 74, 100
parameters
explained, 73-75

for getMentions() function,
99-100

How can we make this index more useful? Email us at indexes@samspublishing.com



330

parseTwitter() function

parseTwitter() function, 70
parseTwitter.php, 118
account methods, 200
creating, 66-67
direct message support, 132
favorites support, 148

Friendships methods support,
196-197

list support, 140-141
parsing JSON, 166-167

recent, daily, and weekly
trends, 183-184

Retweet button support, 121
search support, 166-167

thumbnail viewer, creating,
157

trending topics support,
178-179

user APl methods, 154

parseTwitterReply() function,
63, 66

parseTwitterReply.php, 70
parsing JSON, 166-167
passwords, choosing, 12-13
Perl, 33

permissions, adding to Android
OAuth application, 259-260

PHP, 33-34, 53-57

phpinfo() function, 40
phpMyAdmin, 41-42

platforms, 30-31

plus symbol (+), 258

POST calls, 136-137

posting tweets (i0S), 304-305
postMessage() method, 304-305
power users, 23

PR managers, 23

private accounts, 2

$profile_image_url variable, 66
profiles
profile colors, 201-203
profile images, 201
properties, declaring, 300
protocols

Hypertext Coffee Pot Control
Protocol, 230

NAT (Network Address
Translation), 38

SMS (Short Message
System), 2-3
public relations managers, 23
pure chat applications, 27-28
Python, 33

QR

q attribute (search), 171
rate limiting, 11, 18
readers. See clients (Twitter)
recent trends, 180-185
header.inc, 183
parseTwitter.php, 183-184
twitteroauth.php, 184-185
recommended toolbox, 45
refreshing search results, 173
registering applications, 15-16,
82-83
renderLists() function, 141
render.php
creating, 67-68, 70-71

direct message support,
127-128

favorites support, 149-152

Friendship methods support,
194

Retweet button support, 121

renderTweets() function, 63,
67,128

@reply, 2, 8

requestFailed: method, 305-308
requesting Twitter xAuth, 284
requests (Search), 164-165

requestSucceeded: method,
305-308

responding after authentication,
266-269

response codes (HTTP). See HTTP
response codes

responsefromServer() function,
108

REST API and General section
(dev.twitter.com), 214

result_type attribute (search),
163,172

retrieving Consumer key and
Consumer secret, 284-285

retrying if Twitter is down,
233-236

retweet API call, 119-123
Retweet button
base.js, 122
id/retweeted_by API call, 122

id/retweeted_by/ids API call,
123

main.css, 122
parseTwitter.php, 121
render.php, 121
retweets/id API call, 122
sendMessages.php, 120
twitteroauth.php, 120



retweeted_by_me API call, 118

retweeted_of_me API call,
118-119

retweeted_to_me API call,
118-119

retweets, 2

retweets/id API call, 122
revision control systems, 44-45
roid:layout_height attribute, 258

rpp attribute (search), 163,
165,171

RTs (retweets), 2

Rules of the Road
(dev.twitter.com), 213

S

Sagolla, Dom, 2-3
sanitizing messages, 110

SCMs (source code management)
systems, 44-45

Scoble, Robert, 229
Screen_name parameter, 74
$screen_name variable, 66
SDK issues (Android), 250-251
Search, 161
adding to applications
base.js, 169-170
call_search() function, 167

create_message.php,
168-169

header.inc, 166
parseTwitter.php, 166-167

search() function,
167-168

sendSearch() function,
169

twitteroauth.php, 167-168
metadata mode, 173

refreshing search results,
173

search attributes, 162-164,
170-172

search requests, 164-165

Twitter’s stance on, 161-162

usage notes, 172-173
search APl method. See Search
search() function, 167-168
security for web servers, 38-41

MySQL, 40-41

phpMyAdmin, 41

XAMPP pages, 40

XAMPP security console,
39-40

Send Test Tweet button, 288
sending direct messages, 125
API support for, 127-130

testing whether messages
can be sent, 126-127

Ul elements, adding, 125-126
sendMessage() function, 107-108
sendMessage.php, 108, 129
sendMessages.php, 120
sendSearch() function, 169
sendUpdate: method, 304
servers, web. See web servers
sessions, ending, 201
setContentView() function, 261

setOAuthAccessToken()
method, 268

setText() method, 267

331

statuses/filter method

setting up

accounts, 12-15

local web servers, 34-38
setVisibility() method, 268
SFHFKeychainUtils, 303
Short Message System), 2-3
shortcuts, 111

show_user attribute (search),
163, 165, 172

showFavorites() function, 148
showFollowers() function, 158
showFriends() function, 158
showgeo_search() function, 232
showlLists() function, 141
showTrends() function, 180

showTrends_current() function,
184

showTrends_daily() function, 184

showTrends_weekly() function,
184

showUser() function, 154
Signpost, 251
SimpleXMLElement() function, 97

since_id attribute (search), 163,
165,171

Since_ID parameter, 74

since_id parameter
(getMentions() function), 99

site streams, 220

SMS (Short Message System),
2-3

source code management (SCM)
systems, 44-45

spotting the FailWhale, 229-230

statistics (Twitter), 29-30

statuses, compared to
messages, 58

statuses/filter method, 223-224

How can we make this index more useful? Email us at indexes@samspublishing.com



332

statuses/firehose method

statuses/firehose method,
224-225

statuses/followers APl method,
156

statuses/friends APl method, 156
statuses/links method, 225

statusesReceived: method,
305-308

statuses/retweet method, 225

statuses/sample method,
225-226

Stenberg, Daniel, 86

streaming, 219
advantages of, 226
limits on, 221
pre-launch checklist, 221-222
site streams, 220
Streaming API, 219
streaming methods, 222-226

statuses/filter, 223-224

statuses/firehose,
224-225

statuses/links, 225
statuses/retweet, 225

statuses/sample,
225-226

user streams, 219-220
when to use, 220
Streaming API, 219

Streaming APl Documention and
Search API section
(dev.twitter.com), 215

structured displays, 29
Subversion (SVN), 44
SVN (Subversion), 44

T

tabs, supporting, 114-117
header.inc, 114-115
index.php, 95-96, 117
navs.cc, 115-117

targeting active SDK, 285

testing direct messages, 126-127

text editors, 43

text fields. See input text fields

TextMate, 43

thumbnail viewer, creating
header.inc, 156-157
parseTwitter.php, 157
twitteroauth.php, 158

time zone, displaying, 68

toLocaleString() method, 267

trending topics
call_trends() function,

178-179

definition of, 2, 177

recent, daily, and weekly
trends, 180-185

call_trends_daily()
function, 183

header.inc, 183
parseTwitter.php, 183-184

showTrends_current()
function, 184

showTrends_daily()
function, 184

showTrends_weekly()
function, 184

showTrends() function,
178179

supporting in applications
header.inc, 178
parseTwitter.php, 178-179
twitteroauth.php, 180

Trends/available API call,
185-187

twitteroauth.php, 184-185
trends. See trending topics

Trends/available API call,
185-187

trim_user parameter
(getMentions() function), 100

troubleshooting
Twitter HTTP response codes,
65-66
XAMPP installation, 38
Tweet button, 209
adding with iframe, 210
adding with JavaScript, 210
customizing, 210-211
tweets
character limit for, 8
definition of, 2
use case studies
#blamedrewscancer, 5
Egyption revolution, 5-7
Twitter API, future of, 236-237
Twitter clients, creating, 16-18,
59-60, 199
Android applications,
241-242
ADT (Android Development
Tools) plug-in, 242, 252
Android OAuth application,
255-261
AVD (Android Virtual
Device), 242
development
environments, 252
Hello Android project,
243-251
importing packages,
261-275



supported operating
systems, 252

xAuth, 275-276
API calls. See API calls
application architecture
diagram, 231-232
block methods, 198
blocks, 198

catching API requests,
232-233

direct messages

adding API support for,
101-102, 109-110,
127-130, 131-132

call_direct() function, 101

callPage() function,
107-108

deleting, 132-133
destroy API call, 132-133
direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

getMessagesSent()
function, 132

renderTweets() function,
128

sanitizing, 110

sending message to
Twitter, 108-109

sendMessage() function,
107-108

testing, 126-127

Ul elements, adding,
125-126

favorites

adding to applications,
148-149

createFavorite() function,
150

creating, 149-152
definition of, 147

destroyFavorites()
function, 152

destroying, 152
favorite() function, 149

showFavorites() function,
148

Friendships methods
explained, 193

supporting in applications,
194-197

home timeline, 97-99

HTTP response codes, 65-66

index.php, 60-61, 69, 95-96

input text fields, 108
base.js, 107-108, 110
createMessage.php, 106
index.php, 105-106
main.css, 106-107
sendMessage.php, 108

i0S. See iOS

lists
API support for, 135-136
creating, 137-141
definition of, 135

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

main.css, 61-63
main.php, 63, 69-70
mentions

adding support for,
99-101

333

Twitter clients, creating

call_ timeline() function,
101

getMentions() function,
99-101

notifications
disabling, 197
enabling, 197
parseTwitter.php, 66-67
render.php, 67-71

retrying if Twitter is down,
233-236

Retweet button
base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122
parseTwitter.php, 121
render.php, 121
retweets/id API call, 122
sendMessages.php, 120
twitteroauth.php, 120
Search. See Search
streaming, 219
advantages of, 226
limits on, 221

pre-launch checklist,
221-222

site streams, 220
Streaming API, 219

streaming methods,
222-226

user streams, 219-220
when to use, 220
tabs. See tabs

How can we make this index more useful? Email us at indexes@samspublishing.com



334

Twitter clients, creating

trending topics statuses/friends, 156

thumbnail viewer, creating,
156-158

header.inc, 156-157
parseTwitter.php, 157
twitteroauth.php, 158

users/profile_image, 156

list support, 139, 141

recent, daily, and weekly
trends, 184-185

retrying if Twitter is down,
233-236

Retweet button support, 120
search support, 167-168

call_trends() function,
178179

definition of, 166-167

recent, daily, and weekly
trends, 180-185

showTrends() function,

178179 thumbnail viewer, creating, users/search, 155
supporting in applications, 158 users/show, 153-154
177-180

trending topics support, 180
Tweet button, 209 user APl methods, 154

adding with iframe, 210 $twitterResponseData variable,
adding with JavaScript, 64

210
customizing, 210-211
twitterAPl.php, 64-65, 70
Twitter statistics, 29-30

users/suggestions, 155

users/suggestions/:slug,
155-156

user streams, 219-220
User_ID parameter, 74
user_timeline API, 55-57

:user/:list_id/ subscribers /:id

TwittFilter, 29-30
Twurl Web Console, 206

method, 144
Twitter xAuth. See xAuth :user/:list_id/create_all
Twitter4) library, 251, 256 U method, 143
twitterAPl.php, creating, :user/:list_id/members
64-65, 70 UlTextField object, 309 method, 143
TwitterHolics, 24 unblocking users, 198 :user/:list_id/subscribers
twitterOAuth class until attribute (search), 163, 171 method, 144
adding functions to, 90-92 $update variable, 66 :user/:list_id/subscribers/:id
method, 144

creating, 85-87 updateStatus() function, 109, 267

:user/:lists method, 142

getUserTimeline() function,
90-92

oauth_index.php, 87-88

Twitter connection errors,
handling, 92-93

twitteroauth.php, 88-92
TwitterOAuth.java, 269-275
twitteroauth.php, 88-92, 119
account methods, 200

direct message support,
129-132

favorites support, 148, 150,
152

Friendships methods support,
195

$updateTime variable, 66
updating profile images, 201
URL shortening, 215
URLs

Twitter URLs, 12

vanity URLs, 14, 18
user APl methods

accessing other user
information, 155

adding to applications, 154
header.inc, 154
twitteroauth.php, 154

list of, 153

statuses/followers, 156

:user/lists/:id method, 142

:user/lists/:id/statuses
method, 142

:user/lists/memberships
method, 142

:user/lists/subscriptions
method, 142

users, 21
blocking, 198
bots, 24-25
chatters, 22-23
high-frequency users, 24
microbloggers, 24



new users, 24

news readers, 21-22
power users, 23

PR managers, 23
unblocking, 198

users/profile_image API
method, 156

users/search APl method, 155

users/suggestions API
method, 155

users/suggestions/:slug API
method, 155-156

'/

vanity URLs, 14, 18
variables, declaring, 300. See
also specific variables

verifying xAuth, 286-289
ViewController.h, 299

declaring properties and
methods, 300

declaring variable instances,
300

importing libraries to header
files, 299-300

ViewController.m, 300-301
viewDidLoad method, 302-304
views, Hello Android project, 246
Vim, 43

w

web interface, 237
web servers
configuring, 34-38
security, 38-41
MySQL, 40-41
phpMyAdmin, 41
XAMPP pages, 40
XAMPP security console,
39-40
websites, dev.twitter.com, 205
weekly trends, 180-185
header.inc, 183
parseTwitter.php, 183-184

showTrends_weekly() function,
184

twitteroauth.php, 184-185

Where On Earth ID (WOEID),
185-186

whitelisting, 11-12, 31
widgets, 25-26, 237
Williams, Abraham, 83
Windows
XAMPP installation, 35-37
XAMPP security console,
39-40
WOEID (Where On Earth ID),
185-186

X-Y-Z

XAMPP, 35
installing, 35-38
on Linux, 37-38

335
XML

on Mac 0S, 37

troubleshooting
installation, 38

on Windows, 35-37
security console, 39-40
xAuth, 275-276
advantages of, 294

creating xAuth application,
294-299

definition of, 290
explained, 284

loading xAuth tokens,
302-304

requesting Twitter xAuth, 284

Twitter application for xAuth
request, 283

verifying, 286-289
ViewController.h, 299

declaring properties and
methods, 300

declaring variable
instances, 300
importing libraries to
header files, 299-300
ViewController.m, 300-301

xauthViewController.xib,
308-315

xauthViewController.m, 300-301
xauthViewController.xib, 308-315
Xcode, 280-283
XML

API calls, creating, 49-52

XML resources (Android
OAuth application), 261

How can we make this index more useful? Email us at indexes@samspublishing.com



	Table of Contents
	HOUR 3: Key Issues to Consider When Developing Twitter Applications
	Types of Twitter Users
	Types of Twitter Applications
	Platform
	Summary
	Q&A

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z




