Scott Dorman _A_

STARTER KIT
Foreword by Eric Lippert DVD includes
Senior Developer, Microsoft Visual C# Team Visual C# 2010

Express Edition

SamsTeach Yourself

Visual C#

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

fF 9 B A ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672331015
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672331015
https://plusone.google.com/share?url=http://www.informit.com/title/9780672331015
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672331015
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672331015/Free-Sample-Chapter

Praise for
Sams Teach Yourself Visual C# 2010 in 24 Hours

“The Teach Yourself in 24 Hours series of books from Sams has been a staple of anyone
wanting to quickly come up-to-speed on a new technology. This book is not just a simple
refresh of last year’s book, Scott has written it from the ground up for the Visual Studio 2010
and .NET 4.0 release. From the C# type system, to events and data, from ASP.NET Web to
WPF Windows applications, Sams Teach Yourself Visual C# 2010 in 24 Hours will provide any
developer new to the C# language a great foundation to build upon.”

—Shawn Weisfeld, Microsoft Visual C# MVP

“The key to learning software development is to have a great foundation. Sams Teach Yourself
Visual C# 2010 in 24 Hours is a must-read for anyone who wants to learn C# from the
beginning, or just brush up on its features. Scott Dorman brings a very knowledgeable, yet
casual approach to his book that anyone with the desire to learn to program in .NET can be
inspired by. I found a few gems that will enhance my future programming projects.”

—Chris “Woody” Woodruff, Co-Host of Deep Fried Bytes Podcast

“This book is an excellent resource for anyone who is learning C# for the first time,
migrating from Visual Basic, or catching up on the latest features of C#. It is full of
information and should be on the desks of any developer who is becoming familiar with
C# 2010.”

—]Jeff Julian, Managing Partner, AJI Software, Founder of GeeksWithBlogs.NET

“Scott Dorman has written an excellent reference book that not only covers the basic
fundamentals of .NET 4.0 C# development, but also includes instruction and guidance on
the finer points of advanced C# and development with Visual Studio 2010.

The book is written in a clear and concise manner, with liberal usage of ‘Did You Know,’

‘By the Way,” and ‘Watch Out!’ sidebars that help provide the reader with informative ‘sign
posts’ along their journey for re-enforcing key concepts, best practices, and anti-patterns.
These invaluable sign posts really help to ‘bring-it-home’ to the reader with Scott’s real-world
commentary about why certain topics are critical in the overall understanding and use of
the C# language and associated constructs.

Whether you are a novice, intermediate, or professional developer, this book will certainly
become a very handy, well-thumbed, desk reference for today’s highly productive .NET
4.0 C# developer.”

—]Jeff Barnes, Architect Microsoft Developer & Platform Evangelism, Microsoft Corporation

“This book covers all the bases, from the C# language, through the frameworks you'll use it
with and the tools you need to be productive. The best way to learn is to do, and there is no
shortage of doing here.”

—Chris Burrows, C# Compiler Team, Microsoft Corporation

“Sams Teach Yourself Visual C# 2010 in 24 Hours gives you the jump start you need to be
productive quickly. I found the book extremely clear to follow and laid out logically hour by
hour to flow you through related topics. From novices to C# veterans, this book gives you all
you need to understand all that is new in the 2010 release.”

—Richard Jones, Microsoft MVP

Scott Dorman

Sams Teach Yourself

Visual C#
2010

Complete Starter Kit

N
ours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Visual C#® 2010 in 24 Hours: Complete Starter Kit
Copyright © 2010 by Pearson Education
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).
ISBN-13: 978-0-672-33101-5
ISBN-10: 0-672-33101-2
Library of Congress Cataloging-in-Publication Data
Dorman, Scott, 1973-

Sams teach yourself Visual C# 2010 : in 24 hours / Scott Dorman.

p. cm.

Includes index.

ISBN 978-0-672-33101-5

1. C# (Computer program language) 2. Microsoft Visual C#. |. Millspaugh, A. C. (Anita C.)
II. Title.

QA76.73.C154D57 2010

005.13'3—dc22

2010018992

Printed in the United States on America

First Printing June 2010

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Sams Publishing
800 East 96th Street
Indianapolis, Indiana, 46240 USA

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling
Development
Editor

Mark Renfrow

Managing Editor
Kristy Hart
Senior Project
Editor

Lori Lyons

Copy Editor
Apostrophe Editing
Services

Indexer
Publishing Works,
Inc.

Proofreader
Water Crest
Publishing, Inc.

Technical Editors
Claudio Lasalla
Eric Lippert
Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Jake McFarland
Nonie Ratcliff

http://www.opencontent.org/openpub/

Contents at a Glance

Introduction 1

Part I: C# Fundamentals

HOUR 1 The .NET Framework and C# 7
2 Understanding C# Types 35
3 Understanding Classes and Objects the C# Way 63
4 Inheritance, Interfaces, and Abstract Classes 93
5 Creating Enumerated Types and Structures 113
6 Events and Event Handling 131

Part II: Programming in C#

HOUR 7 Controlling Program Flow 147
8 Using Strings and Regular Expressions 167

9 Working with Arrays and Collections 195

10 Handling Errors Using Exceptions 227

11 Understanding Generics 245

12 Understanding Query Expressions 267

Part lll: Working with Data

HOUR 13 Using Files and Streams 289
14 Working with XML 311
15 Working with Databases 329

Part IV: Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio 347
17 Building a Windows Application 363
18 Using Data Binding and Validation 385

19 Building a Web Application 407

vi

Sams Teach Yourself C# 2010 in 24 Hours

Part V: Diving Deeper

HOUR 20
21
22
23
24

Programming with Attributes

Dynamic Types and Language Interoperability

Memory Organization and Garbage Collection
Understanding Threads, Concurrency, and Parallelism
Next Steps: Silverlight, PowerShell, and Entity Framework

Index

427
439
451
461
479
485

Table of Contents

Introduction
Audience and Organization
Conventions Used in This Book

Closing Thoughts

Part 1 C# Fundamentals

HOUR 1 The .NET Framework and C#
The .NET Framework
The C# Language
Visual Studio 2010
Writing Your First Program
Q&A
Workshop

HOUR 2 Understanding C# Types
Types
Predefined Types
Operators
Default Values
Null and Nullable Types
Casting and Conversion
Q&A
Workshop

HOUR 3 Understanding Classes and Objects the C# Way
Object-Oriented Programming
Component-Oriented Programming
Classes in C#

Scope and Declaration Space

w w N B

17
24
27
31
32

35
36
37
47
53
53
55
59
60

63
64
65
65
66

viii

Sams Teach Yourself C# 2010 in 24 Hours

Nested Classes 85
Partial Classes 86
Static Classes 86
Object Initializers 88
Q&A 89
Workshop 90
HOUR 4 Inheritance, Interfaces, and Abstract Classes 93
Inheritance and Polymorphism 93
Abstract Classes and Members 103
Interfaces 105
Q&A 109
Workshop 111
HOUR 5 Creating Enumerated Types and Structures 113
Enumerated Types 114
Structures 119
Q&A 127
Workshop 127
HOUR 6 Events and Event Handling 131
Understanding Events 132
Subscribing and Unsubscribing 132
Publishing an Event 136
Raising an Event 139
Q&A 141
Workshop 142

Part Il Programming in C#

HOUR 7 Controlling Program Flow 147
Selection Statements 148
Iteration Statements 153

Jump Statements 159

Q&A
Workshop

HOUR 8 Using Strings and Regular Expressions

Strings

Mutable Strings Using StringBuilder
Type Formatting

Regular Expressions

Q&A

Workshop

HOUR 9 Working with Arrays and Collections

Arrays

Indexers

Generic Collections

Collection Initializers

Collection Interfaces

Enumerable Objects and Iterators
Q&A

Workshop

HOUR 10 Handling Errors Using Exceptions

Understanding Exceptions
Throwing Exceptions

Handling Exceptions
Rethrowing Caught Exceptions
Overflow and Integer Arithmetic
Q&A

Workshop

HOUR 11 Understanding Generics
Why You Should Use Generics
Using Generic Methods

Creating Generic Classes

ix

Contents

162
163

167
168
177
178
187
190
191

195
196
200
203
217
219
220
223
224

227
228
231
232
239
241
243
243

245
246
253
254

X

Sams Teach Yourself C# 2010 in 24 Hours

Combining Generics and Arrays 257
Working with Tuples 261
Q&A 263
Workshop 264
HOUR 12 Understanding Query Expressions 267
Introducing LINQ 268
Standard Query Operator Methods 279
Lambdas 280
Deferred Execution 283
Q&A 284
Workshop 285

Part Il Working with Data

HOUR 13 Using Files and Streams 289
Files and Directories 290
Reading and Writing Data 300
Q&A 307
Workshop 308

HOUR 14 Working with XML 311
Understanding the XML DOM 312
Using LINQ to XML 313
Selecting and Querying XML 319
Modifying XML 323
Q&A 326
Workshop 326

HOUR 15 Working with Databases 329
Understanding ADO.NET 330
Understanding LINQ to ADO.NET 333
Q&A 342

Workshop 343

Xi

Contents

Part IV Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio 347
Commenting Your Code 348
Compiler and Runtime Errors 349
Debugging in Visual Studio 350
Visualizing Data 359
Q&A 361
Workshop 361

HOUR 17 Building a Windows Application 363
Understanding WPF 364
Creating a WPF Application 370
Styling the Layout 379
Q&A 382
Workshop 382

HOUR 18 Using Data Binding and Validation 385
Understanding Data Binding 386
Converting Data 390
Binding to Collections 395
Working with Data Templates 399
Validating Data 400
Q&A 404
Workshop 405

HOUR 19 Building a Web Application 407
Understanding Web Application Architecture 408
Working with ASP.NET 408
Creating a Web Application 411
Understanding Data Validation 420
Q&A 423

Workshop 424

Part V Diving Deeper

HOUR 20 Programming with Attributes 427
Understanding Attributes 428
Working with the Common Attributes 430
Using Custom Attributes 433
Accessing Attributes at Runtime 434
Q&A 436
Workshop 436

HOUR 21 Dynamic Types and Language Interoperability 439
Using Dynamic Types 439
Understanding the DLR 444
Interoperating with COM 447
Reflection Interoperability 448
Q&A 449
Workshop 450

HOUR 22 Memory Organization and Garbage Collection 451
Memory Organization 452
Garbage Collection 452
Understanding IDisposable 453
Using the Dispose Pattern 455
Declaring and Using Finalizers 456
Q&A 458
Workshop 459

HOUR 23 Understanding Threads, Concurrency, and Parallelism 461
Understanding Threads and Threading 462
Concurrency and Synchronization 463
Understanding the Task Parallel Library 467
Working with Parallel LINQ (PLINQ) 472
Potential Pitfalls 473
Q&A 475

Workshop 476

Xiii

Foreword

HOUR 24 Next Steps: Silverlight, PowerShell, and Entity Framework 479
Understanding the Entity Framework 479
Introducing PowerShell 482
Silverlight 483

Index 485

This page intentionally left blank

Foreword

Over a decade ago, a small team of designers met in a small conference room on the sec-
ond floor of Building 41 at Microsoft to create a brand-new language, C#. The guiding prin-
ciples of the language emphasized simplicity, familiarity, safety, and practicality. Of course,
all those principles needed to balance against one another; none are absolutes. The design-
ers wanted the language to be simple to understand but not simplistic, familiar to C++ and
Java programmers but not a slavish copy of either, safe by default but not too restrictive,
and practical but never abandoning a disciplined, consistent, and theoretically valid design.

After many, many months of thought, design, development, testing, and documentation,
C# 1.0 was delivered to the public. It was a pretty straightforward object-oriented language.
Many aspects of its design were carefully chosen to ensure that objects could be organized
into independently versionable components, but the fundamental concepts of the language
came from ideas developed in object-oriented and procedural languages going back to the
1970s or earlier.

The design team continued to meet three times a week in that same second-floor conference
room to build upon the solid base established by C# 1.0. By working with colleagues in
Microsoft Research Cambridge and the CLR team across the street, the type system was
extended to support parametric polymorphism on generic types and methods. They also
added “iterator blocks” (sometimes known as “generators” in other languages) to make it
easier to build iterable collections and anonymous methods. Generics and generators had
been pioneered by earlier languages such as CLU and Ada in the 1970s and 1980s; the idea
of embedding anonymous methods in an existing method goes all the way back to the
foundations of modern computer science in the 1950s.

C# 2.0 was a huge step up from its predecessor, but still the design team was not content.
They continued to meet in that same second-floor conference room three times a week. This
time, they were thinking about fundamentals. Traditional “procedural” programming lan-
guages do a good job of basic arithmetic, but the problems faced by modern developers go
beyond adding a column of numbers to find the average. They realized that programmers
manipulate data by combining relatively simple operations in complex ways. Operations
typically include sorting, filtering, grouping, joining, and projecting collections of data. The
concept of a syntactic pattern for “query comprehensions” that concisely describes these
operations was originally developed in functional languages such as Haskell but also works
well in a more imperative language like C#. And thus LINQ—Language Integrated Query—
was born.

Xvi

Sams Teach Yourself C# 2010 in 24 Hours

After ten years of meeting for six hours a week in the same conference room, the need to
teleconference with offsite team members motivated a change of venue to the fifth floor.
The design team looked back on the last ten years to see what real-world problems were not
solved well by the language, where there were “rough edges,” and so on. The increasing
need to interoperate with both modern dynamic languages and legacy object models moti-
vated the design of new language features like the “dynamic” type in C# 4.0.

I figured it might be a good idea to do a quick look at the evolution of the C# language
here, in the Foreword, because this is certainly not the approach taken in this book. And
that is a good thing! Authors of books for novices often choose to order the material in the
order they learned it, which, as often as not, is the order in which the features were added
to the language. What I particularly like about this book is that Scott chooses a sensible
order to develop each concept, moving from the most basic arithmetic computations up to
quite complex interrelated parts. Furthermore, his examples are actually realistic and moti-
vating while still being clear enough and simple enough to be described in just a few para-
graphs.

I've concentrated here on the evolution of the language, but of course the evolution of one
language is far from the whole story. The language is just the tool you use to access the
power of the runtime and the framework libraries; they are large and complex topics in
themselves. Another thing I like about this book is that it does not concentrate narrowly on
the language, but rather builds upon the language concepts taught early on to explain how
to make use of the power afforded by the most frequently used base class library types.

As my brief sketch of the history of the language shows, there’s a lot to learn here, even
looking at just the language itself. I've been a user of C# for ten years, and one of its
designers for five, and I'm still finding out new facts about the language and learning new
programming techniques every day. Hopefully your first 24 hours of C# programming
described in this book will lead to your own decade of practical programming and continu-
al learning. As for the design team, we're still meeting six hours a week, trying to figure out
what comes next. I'm looking forward to finding out.

Eric Lippert
Seattle, Washington
March 2010

Dedication

This book is first and foremost dedicated to Nathan, who I hope follows
in my footsteps and someday writes books of his own.
Thank you for giving me a unique perspective
and showing me the world through the eyes of a child.

About the Author

Scott Dorman has been designated by Microsoft as a C# Most Valued Professional in recog-
nition for his many contributions to the C# community. Scott has been involved with com-
puters in one way or another for as long as he can remember. He has been working with
computers professionally since 1993 and with .NET and C# since 2001. Currently, Scott’s pri-
mary focus is developing commercial software applications using Microsoft .NET technolo-
gies. Scott runs a software architecture-focused user group, speaks extensively (including at
Microsoft TechEd and community-sponsored code camps), and contributes regularly to
online communities such as The Code Project and StackOverflow. Scott also maintains a
.NET Framework and C#-focused technology blog at http://geekswithblogs.com/sdorman.

http://geekswithblogs.com/sdorman

Acknowledgments

When I decided to undertake this project, I wasn’t prepared for just how difficult it is to
actually write a book. As I look back on the amount of time and effort it took, I realize that,
although I was the one responsible for writing the content, I couldn’t have done it without
the help and support of others. First, I need to thank Brook for giving me the idea of writing
this book for Sams Publishing in the first place and taking the chance on a new author. The
rest of the editors at Sams, without whom the book would never have been published, were
also great to work with. I also want to thank Keith Elder, Shawn Weisfeld, Brad Abrams,
and Krzysztof Cwalina for their early input on the table of contents and helping me focus
the content and overall direction of the book. My technical editors, Claudio and Eric, also
deserve a huge amount of thanks; they have both provided an incredible amount of com-
ments and insight. Of course, without the entire C#, .NET Framework, and Visual Studio
product teams, I wouldn’t have anything to write about in the first place.

I wrote this book for the development community, which has given so much to me. Without
its encouragement and support, I wouldn’t have been in a position to write this book at all.
This includes everyone associated with the Microsoft MVP program and the Microsoft field
evangelists, particularly Joe “devfish” Healy, Jeff Barnes, and Russ “ToolShed” Fustino.

Finally, of course, I have to thank my family for being so patient and understanding of the
many long nights and weekends it took to finish this book. Although Nathan is too young
right now to understand why I spent so much time on the computer rather than playing
with him, I hope he will appreciate it as he gets older. The biggest thing it did was introduce
him to computers at a very early age, as at 21 months old, he received his first laptop (an
old IBM ThinkPad 770 that was collecting dust). To my stepson, Patrick, thank you for
understanding all the canceled amusement park plans. Last, but certainly not least, thank
you Erin for your support and patience. I know you are happy that everything is done and I
can start having more family time.

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator.

We value your opinion and want to know what we’re doing right, what we could do better,
what areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name
and contact information. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: neil.rowe@pearson.com

Mail: Neil Rowe
Executive Editor
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

In late December 1998, Microsoft began working on a new development platform
that would result in an entirely new way to create and run next-generation applica-
tions and web services. This new platform was called the .NET Framework and was
publicly announced in June 2000.

The .NET Framework unified the existing Windows interfaces and services under a
single application programming interface (API) and added many of the emerging
industry standards, such as Simple Object Access Protocol (SOAP), and many existing
Microsoft technologies, such as the Microsoft Component Object Model (COM and
COM+) and Active Server Pages (ASP). In addition to providing a consistent develop-
ment experience, the .NET Framework enabled developers to focus on the application
logic rather than more common programming tasks with the inclusion of one of the
largest available class libraries.

Finally, by running applications in a managed runtime environment that automati-
cally handled memory allocation and provided a “sandboxed” (or restricted access)
environment, many common programming errors and tasks were reduced and, in
some cases, eliminated.

Now, nearly 10 years later, the .NET Framework continues to evolve by supporting
new technologies and industry standards, adding support for dynamic languages
and providing even more classes that are built-in. At Microsoft’s Professional Devel-
oper Conference (PDC) in 2008, one of the themes was “make the simple things easy
and the difficult things possible.” The .NET Framework achieved that with its first
release, and each release after that continues to realize that goal.

The C# (pronounced “See Sharp”) programming language was developed with the
.NET Framework by Anders Hejlsberg, Scott Wiltamuth, and Peter Golde and was first
available in July 2000. Having been written specifically for the .NET Framework, it is
considered by many to be the canonical language of the .NET Framework. As a lan-
guage, C# drew inspiration for its syntax and primary features from Delphi 5, C++,
and Java 2. C# is a general-purpose, object-oriented, type-safe programming lan-
guage used for writing applications of any type. Just as the .NET Framework has
continued to evolve, C# has evolved to keep pace with the changes in the .NET
Framework and to introduce new language features that continue to make the
simple things easy and the difficult things possible.

Introduction

Although there are more than 50 different programming languages supported by the
.NET Framework, C# continues to be one of the most popular and modern general-
purpose languages.

Audience and Organization

This book is targeted toward the non-.NET programmer who is venturing into .NET
for the first time or an existing .NET programmer trying to learn C#. If you are first
learning how to program, this book can help you on your way, but it isn’t intended
to be a beginning programming book. The book is designed with the purpose of get-
ting you familiar with how things are done in C# and becoming productive as
quickly as possible. I take a different approach in this book by using a more holistic
view of the language. I chose this approach to give you the most complete under-
standing of the C# language by focusing on how the current language features
enable you to solve problems.

This book is divided in to five parts, each one focusing on a different aspect of the
language. These parts progress from the simple fundamentals to more advanced
topics, so I recommend reading them in order:

> Part I, “C# Fundamentals,” teaches you about the .NET Framework, the object-
oriented programming features of C#, the fundamentals of C# type system,
and events.

» Part 1], “Programming in C#,” teaches you the fundamentals of programming.
You learn how to perform loops and work with strings, regular expressions, and
collections. Then we move to more advanced topics, such as exception man-
agement and generics. Finally, we finish with anonymous functions (lambdas),
query expressions (LINQ), and how to interact with dynamic languages.

> Part III, “Working with Data,” shows how to interact with the file system and
streams, create and query XML documents, and work with databases.

» Part IV, “Building an Application Using Visual Studio,” starts with an introduc-
tion to Visual Studio 2010 and debugging applications. We then build a Win-
dows client application using data binding and validation. Next, you learn
how to build an application for the web.

> Part V, “Diving Deeper,” introduces the advanced concepts of attribute pro-
gramming, dynamic types, and language interoperability. You learn the fun-
damentals of how the .NET Framework organizes memory, how the garbage
collector works, and how the .NET Framework provides mechanisms for deter-
ministic finalization. Next, you learn how to use multiple threads and parallel
processing. Finally, you look at some of the newer technologies from Microsoft

Closing Thoughts

built on the .NET Framework, such as Silverlight, PowerShell, and the Entity
Framework.

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your programming more
effective.

Watch Out! boxes focus your attention on problems or side effects that can occur
under certain situations.

Throughout the book, I use examples that show real-world problems and how to
solve them using C# and the .NET Framework. In Part IV, we actually build some
complete applications from scratch that draw on the skills you learned in the previ-
ous three parts.

Conventions Used in This Book

This book uses several design elements and conventions to help you prioritize and
reference the information it contains.

New terms appear in bold for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regu-
lar English. Code is presented in a monospace font. Placeholders—words or characters
that represent the real words or characters you would type in code—appear in italic
monospace. When you are asked to type or enter text, that text appears in bold.

Some code statements presented in this book are too long to appear on a single line.
In these cases, a line continuation character is used to indicate that the following
line is a continuation of the current statement.

Closing Thoughts

The Microsoft .NET Framework and C# continue to be one of the most powerful yet
elegant languages I've worked with and provide many exciting opportunities for
developing the next “killer application.” You won't be an expert in C# when you
finish this book, but I hope you feel comfortable about creating applications in .NET
and C#.

Bythe
DigRS—
W —

This page intentionally left blank

This page intentionally left blank

HOUR 3

Understanding Classes and
Objects the C# Way

What You’ll Learn in This Hour:

» Object- and Component-Oriented Programming
Classes in C#

Scope and Accessibility

Methods and Properties

Nested and Partial Classes

Static Classes and Data

vV vy VvVvyywyy

Object Initializers

A class is the fundamental programming concept in C#, defining both representation
and behavior in a single unit. Classes provide the language support required for
object-oriented and component-oriented programming and are the primary mecha-
nism you use to create user-defined types. Traditionally, object-oriented program-
ming languages have used the term “type” to refer to behavior, whereas value-
oriented programming languages have used it to refer to data representation. In C#,
it is used to mean both data representation and behavior. This is the basis of the
common type system and means two types are assignment-compatible if, and only
if, they have compatible representations and behaviors.

In this hour, you learn the basics of both object-oriented and component-oriented
programming. When you understand these concepts, you move on to creating a class
in C# and examining how it fulfills the goals of object-oriented and component-
oriented programming. You learn about the different accessibility models, how to cre-
ate and use properties and methods, and about optional and named parameters.

64 HOUR 3: Understanding Classes and Objects the C# Way

Object-Oriented Programming

Before we start talking about classes in detail, you need to understand the benefits of
object-oriented programming and understand how it relates to C#. Object-oriented
programming helps you think about the problem you want to solve and gives you a
way to represent, or model, that problem in your code. If you do a good job model-
ing the problem, you end up with code that’s easy to maintain, easy to understand,
and easy to extend.

Byﬂm_ Maintainable Code
ay

There is, of course, more to creating code that’s easy to maintain, understand,
and extend than just getting the model correct. The implementation also has to
be correct, readable, and correctly organized.

As previously mentioned, classes are the fundamental programming concept in C#,
defining both representation and behavior in a single unit. Put another way, a class
is a data structure that combines data storage with methods for manipulating that
data. Classes are simply another data type that becomes available to you in much
the same way any of the predefined types are available to you. Classes provide the
primary mechanism you use to create user-defined types.

The four primary concepts of object-oriented programming are encapsulation, abstrac-
tion, inheritance, and polymorphism. In this hour, you learn about encapsulation and
abstraction. In the next hour, you learn about inheritance and polymorphism.

Encapsulation and Abstraction

Encapsulation enables a class to hide the internal implementation details and to
protect itself from unwanted changes that would result in an invalid or inconsistent
internal state. For that reason, encapsulation is also sometimes referred to as data
hiding.

As an example of encapsulation at work, think about your car. You start your car in
the morning by inserting a key and turning it (or simply pushing a button, in some
cases). The details of what happens when you turn the key (or push the button) that
actually causes the engine to start running are hidden from you. You don'’t need to
know about them to start the car. It also means you can’t influence or change the
internal state of the engine except by turning the ignition key.

By hiding the internal details and data, you create a public interface or abstraction
representing the external details of a class. This abstraction describes what actions the

Component-Oriented Programming 65

class can perform and what information the class makes publicly available. As long
as the public interface does not change, the internal details can change in any way
required without having an adverse affect on other classes or code that depends on it.

By keeping the public interface of a class small and by providing a high degree of
fidelity between your class and the real-world object it represents, you help ensure
that your class will be familiar to other programmers who need to use it.

Let’s look at our car example again. By encapsulating the details of what happens
when you start your car and providing an action, StartCar, and information, such
as IsCarStarted, we have defined a public interface, thereby creating an abstraction
(or at least a partial abstraction, because cars do much more than just start) of a car.

Component-Oriented Programming

Component-oriented programming is a technique of developing software applica-
tions by combining pre-existing and new components, much the same way automo-
biles are built from other components. Software components are self-contained, self-
describing packages of functionality containing definitions of types that expose both
behavior and data.

C# supports component-oriented programming through the concepts of properties,
methods, events, and attributes (or metadata), allowing self-contained and self-
describing components of functionality called assemblies.

Classes in C#

Now that you have a basic understanding of object-oriented and component-oriented
programming, it is time to see how C# enables these concepts to become reality by
using classes. You have actually already used classes in the examples and exercises
from the previous two hours.

Classes in C# are reference types that implicitly derive from object. To define a class,
you use the class keyword. Look at the application you built at the end of Hour 1,
“The .NET Framework and C#.” Everything you did was inside a class named
Program.

The body of the class, defined by the opening and closing braces, is where you define
the data and behavior for the class.

66

HOUR 3: Understanding Classes and Objects the C# Way

Scope and Declaration Space

We briefly mentioned scope and declaration space in Hour 1, saying that scope
defines where you can use a name, whereas declaration space focuses on where that
name is unique. Scope and declaration space are closely related, but there are a few
subtle differences.

A more formal definition is that scope is an enclosing context or region that defines
where a name can be used without qualification.

In C#, both scope and declaration space is defined by a statement block enclosed by
braces. That means namespaces, classes, methods, and properties all define both a
scope and a declaration space. As a result, scopes can be nested and overlap each other.

If scope defines the visibility of a name and scopes are allowed to overlap, any name
defined in an outer scope is visible to an inner scope, but not the other way around.

In the code shown in Listing 3.1, the field age is in scope throughout the entire body
of Contact, including within the body of F and G. In F, the use of age refers to the
field named age.

LISTING 3.1 Scope and Declaration Space

class Contact

{
public int age;
public void F()
{
age = 18;
}
public void G()
{
int age;
age = 21;
}
}

However, in G, the scopes overlap because there is also a local variable named age
that is in scope throughout the body of G. Within the scope of G, when you refer to
age, you are actually referring to the locally scoped entity named age and not the
one in the outer scope. When this happens, the name declared in the outer scope is
hidden by the inner scope.

Figure 3.1 shows the same code with the scope boundaries indicated by the dotted
and dashed rectangles.

Scope and Declaration Space

class Contact

{

Declaration space, on the other hand, is an enclosing context or region in which no
two entities are allowed to have the same name. In the Contact class, for example,
you are not allowed to have anything else named age in the body of the class,
excluding the bodies of F and G. Likewise, inside the body of G, when you redeclare
age, you aren’t allowed to have anything else named age inside the declaration
space of G.

You learn about method overloading a bit later this hour, but methods are treated a
little differently when it comes to declaration spaces. If you consider the set of all
overloaded methods with the same name as a single entity, the rule of having a
unique name inside a declaration space is still satisfied.

67

FIGURE 3.1
Nested scopes
and hiding

Try It Yourself

Working with Scope

To explore the differences between scope and declaration space, follow these
steps. Keep Visual Studio open at the end of this exercise because you will use
this application later.

1. Create a new Console application.
2. Add a new class file named Contact.cs that looks like Listing 3.1.

3. In G, add a Console.WriteLine statement at the end of the method that prints
the value of age.

68

FIGURE 3.2
Working with
scope

A

Understanding Classes and Objects the C# Way

4. In the Main method of the Program.cs file, enter the following code to create a
new instance of the Contact class and print the current value of age:

Contact ¢ = new Contact();
Console.WritelLine(c.age);
c.F();
Console.WritelLine(c.age);
c.G();
Console.WritelLine(c.age);

5. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.2.

|\:|!E||u->:$a

2 |

EX C:\Windows\system32\cmd.exe

ress any key to continue . . .

Accessibility

Accessibility enables you to control the visibility, or accessibility, of an entity outside
of its containing scope. C# provides this through access modifiers, which specify con-
straints on how members can be accessed outside the boundary of the class and, in
some cases, even constrain inheritance. A particular class member is accessible when
access to that member has been allowed; conversely, the member is inaccessible
when access has been disallowed.

These access modifiers follow a simple set of contextual rules that determine when
certain types of accessibility are permitted:

» Namespaces are not allowed to have any access modifiers and are always
public.

> Classes default to internal accessibility but are allowed to have either public
or internal declared accessibility. A nested class, which is a class defined
inside of another class, defaults to private accessibility but can have any of
the five kinds of declared accessibility.

» Class members default to private accessibility but can have any of the five
kinds of declared accessibility.

These rules also define the default accessibility, which occurs when a member does
not include any access modifiers.

Scope and Declaration Space

Explicitly Declaring Accessibility

Although C# provides reasonable default access modifiers, you should always
explicitly declare the accessibility of your class members. This prevents unin-
tended ambiguity, indicates that the choice was a conscious decision, and is self-
documenting.

The access modifiers supported by C# are shown in Table 3.1.

TABLE 3.1 Access Modifiers

Modifier Description

public Access is not limited.

protected Access is limited to the containing class or types derived
from the containing class.

internal Access is limited to the containing assembly.

protected internal Access is limited to the containing assembly or types

derived from the containing class.

private Access is limited to the containing class only.

Protected Internal

Be careful when using protected internal accessibility because it is effectively
protected or internal. C# does not provide a concept of protected and
internal.

Fields and Constants

Fields are variables that represent data associated with a class. In other words, a field
is simply a variable defined in the outermost scope of a class. If you recall from Hour
1, a field can be either an instance field or a static field, and for both types of field,
you can specify any of the five access modifiers. Typically, fields are private, which is
the default.

If a field, no matter whether it is an instance or static field, is not given an initial
value when it is declared, it is assigned the default value appropriate for its type.

Similar to fields, constants can be declared with the same access modifiers. Because a
constant must have a value that can be computed at compile time, it must be
assigned a value as part of its declaration. One benefit of requiring a value that can
be computed at compile time is that a constant can depend on other constants.

69

70

HOUR 3: Understanding Classes and Objects the C# Way

A constant is usually a value type or a string literal because the only way to create a
non-null value of a reference type other than string is to use the new operator,
which is not permitted.

Constants Should Be Constant

When creating constants, you should be sure that the value is something that is
logically constant forever. Good constants are things that never change, such as
the value of Pi, the year Elvis was born, or the number of items in a mol.

If you need to create a field that has constant-like behavior but uses a type not
allowed in a constant declaration, you can use a static read-only field instead by
specifying both the static and readonly modifiers. A read-only field can be initial-
ized only as part of its declaration or in a constructor.

Try It Yourself

Working with Fields

By following these steps, you explore how to create a class containing data and
how to provide access to that data. If you closed Visual Studio, repeat the previous
exercise first. Keep Visual Studio open at the end of this exercise because you will
use this application later.

1. Create a new Console application.

2. Add a new class file named Contact.cs. Inside the body of the class, declare
three private fields named firstName, lastName, and dateOfBirth of type
string, string, and DateTime, respectively.

3. Add the following method to the class. You learn more about methods later in
this hour and more about the StringBuilder class in Hour 8, “Using Strings
and Regular Expressions”:

public override string ToString()
{
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.AppendFormat ("Name: {0} {1}\r\n", this.firstName,
wthis.lastName);
stringBuilder.AppendFormat ("Date of Birth: {@}\r\n", this.dateOfBirth);
return stringBuilder.ToString();

}

4. In the Main method of the Program.cs file, enter the following:

Contact ¢ = new Contact();
Console.WriteLine(c.ToString());

Scope and Declaration Space

5. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.3.

B C\Windows\system32\cmd.exe =Spe X

Name :
Date of Birth: 1/

FIGURE 3.3

71

Working with

fields

A

Properties

If fields represent state and data but are typically private, there must be a mechanism
that enables the class to provide that information publicly. Knowing the different
accessibility options allowed it would be tempting to simply declare the class fields to
have public accessibility.

This would allow us to satisfy the rules of abstraction, but this would then violate the
rules of encapsulation because the fields could be directly manipulated. How, then, is
it possible to satisfy both the rules of encapsulation and abstraction? What is needed
is something accessed using the same syntax as a field but that can define different
accessibility than the field itself. Properties enable us to do exactly that. A property
provides a simple way to access a field, called the backing field, which can be pub-
licly available while still allowing the internal details of that field to be hidden. Just
as fields can be static, properties can also be static and are not associated with an
instance of the class.

Although fields declare variables, which require storage in memory, properties do not.
Instead, properties are declared with accessors that enable you to control whether a
value can be read or written and what should occur when doing so. The get accessor
enables the property value to be read, whereas the set accessor enables the value to
be written.

Listing 3.2 shows the simplest way to declare a property. When using this syntax,
known as automatic properties, you omit the backing field declaration and must
always include both the get and set accessor without a declared implementation,
which the compiler provides.

LISTING 3.2 Declaring an Automatic Property

class Contact

{ public string FirstName
{
get;
set;
}

72

Wt —

HOUR 3: Understanding Classes and Objects the C# Way

In fact, the compiler transforms the code shown in Listing 3.2 into code that looks
roughly like that shown in Listing 3.3.

LISTING 3.3 Declaring a Property

class Contact

{
private string firstName;
public string FirstName
{
get
{
return this.firstName;
}
set
{
this.firstName = value;
}
}
}

Automatic Properties

Automatic properties are convenient, especially when you implement a large num-
ber of properties. This convenience does come at a slight cost, however.

Because you don’t provide a body for the accessors, you can’t specify any logic
that executes as part of that accessor, and both accessors must be declared
using the automatic property syntax. As a result, if at some point later you realize
that you need to provide logic for either of the accessors, you need to add a back-
ing field and the appropriate logic to both accessors.

Fortunately, this change doesn’t affect the public interface of your class, so it is
safe to make, although it might be a bit tedious.

The get accessor uses a return statement, which simply instructs the accessor to
return the value indicated. In the set accessor of the code in Listing 3.3, the class
field firstName is set equal to value, but where does value come from? From Table
1.6 in Chapter 1, you know that value is a contextual keyword. When used in a

property set accessor, the value keyword always means “the value that was provided

by the caller” and is always typed to be the same as the property type.

By default, the property accessors inherit the accessibility declared on the property
definition itself. You can, however, declare a more restrictive accessibility for either
the get or the set accessor.

Scope and Declaration Space

You can also create calculated properties that are read-only and do not have a back-
ing field. These calculated properties are excellent ways to provide data derived from
other information.

Listing 3.4 shows a calculated FullName property that combines the firstName and
lastName fields.

LISTING 3.4 Declaring a Calculated Property

class Contact

{
private string firstName;
private string lastName;

public string FullName

{
get
{
return this.firstName + " " + this.lastName;
}
}

Read-Only and Write-Only Properties

For explicitly declared properties, you are allowed to omit either accessor. By
including only the get accessor, you create a read-only property. To create the
equivalent of a read-only property using automatic properties, you would declare
the set accessor to be private.

By including only the set accessor, or declaring the get accessor to be private,
you create a write-only property. In practice, you should avoid write-only properties.

Because properties are accessed as if they were fields, the operations performed in the
accessors should be as simple as possible. If you need to perform more complex oper-
ations or perform an operation that could be time-consuming or expensive (resource
consuming), it might be better to use a method rather than a property.

73

Try It Yourself

Working with Properties

To modify the Contact class to allow access to the private data using properties,
and to use automatic and calculated properties, follow these steps. If you closed
Visual Studio, repeat the previous exercise first. Be sure to keep Visual Studio
open at the end of this exercise because you will use this application later.

74

FIGURE 3.4
Working with
properties

HOUR 3: Understanding Classes and Objects the C# Way

1. Open the Contact.cs file.

2. Add a new public property named DateOfBirth that enables reading and writ-
ing to the dateOfBirth field.

3. Remove the firstName and lastName fields and create a FirstName and
LastName property as automatic properties.

4. Add a calculated property named FullName, which combines the values of the
FirstName and LastName properties. This should be similar to the calculated
property shown in Listing 3.4.

5. Modify the ToString method to make use of the new FullName property
instead of performing the string concatenation directly.

6. In the Main method of the Program.cs file, enter the following code after the
Console.WritelLine statement:

c.FirstName = "Jim";

c.LastName = "Morrison";

c.DateOfBirth = new DateTime (1943, 12, 8);
Console.WriteLine(c.ToString());

7. Run the application using Ctrl+F5, and observe that the output matches what is
shown in Figure 3.4.

Bl C:\Windows\system32\cmd.exe = | B S

ny key to continue . . .

Methods

If fields and properties define and implement data, methods, which are also called
functions, define and implement a behavior or action that can be performed. The
WritelLine action of the Console class you have been using in the examples and
exercises so far is an example of a method.

Listing 3.5 shows how to add a method to the Contact class that verifies an email
address. In this case, the VerifyEmailAddress method specifies void as the return
type, meaning that it does not return a value.

Scope and Declaration Space

LISTING 3.5 Declaring a Method

class Contact

{
public void VerifyEmailAddress(string emailAddress)
{
}

}

Listing 3.6 shows the same method declared to have a bool as the return type.

LISTING 3.6 Declaring a Method That Returns a Value

class Contact

{
public bool VerifyEmailAddress(string emailAddress)
{
return true;
}
}

A method declaration can specify any of the five access modifiers. In addition to the
access modifiers, a method can also include the static modifier. Just as static proper-
ties and fields are not associated with an instance of the class, neither are static meth-
ods. The WriteLine method is actually a static method on the Console class.

Methods can accept zero or more parameters, or input, declared by the formal
parameter list, which consists of one or more comma-separated parameters. Each
parameter must include both its type and an identifier. If a method accepts no
parameters, an empty parameter list must be specified.

Parameters are divided into three categories:

» Value parameters—The most common. When a method is called, a local vari-
able is implicitly created for each value parameter and assigned the value of
the corresponding argument in the argument list.

Parameter Arrays

Parameter arrays, declared with the params keyword, can be thought of as a spe-
cial case of value parameters and declare a single parameter that can contain
zero or more arguments of the given type in the argument list.

A method’s formal parameter list can include only a single parameter array; in
which case it must be the last parameter in the list. A parameter array can also
be the only parameter.

75

76

HOUR 3: Understanding Classes and Objects the C# Way

> Reference parameters—Do not create a new storage location but represent the
same storage location as the corresponding argument in the argument list. Ref-
erence parameters are declared using the ref keyword, which must be present
both in the parameter list and the argument list.

» Output parameters—Similar to reference parameters but require the out key-
word to be present in both the parameter and invocation lists. Unlike reference
parameters, they must be given a definite value before the method returns.

For a method to actually perform its desired action on the object, it must be invoked,
or called. If the method requires input parameters, those values must be provided in
an argument list, and if the method provides an output value, that value can also
be stored in a variable.

The argument list is normally a one-to-one relationship with the parameter list,
meaning that for each parameter, you must provide a value of the appropriate type
in the same order when you call the method.

Methods as Input

Methods that return a value and properties can also be used as input to other
methods, as long as the return value type is compatible with the parameter type.
This capability greatly increases the usefulness of both methods and properties,
allowing you to chain method or property calls to form behaviors that are more
complex.

Looking at the VerifyEmailAddress method that has a void return type from the
earlier examples, you would call the method like this:

Contact ¢ = new Contact();
c.VerifyEmailAddress("joe@example.com");

However, for the VerifyEmailAddress method defined to return a bool, you would
call the method like this:

Contact ¢ = new Contact();
bool result = c.VerifyEmailAddress("joe@example.com");

Just as you do with the parameter list, if a method invocation requires no arguments,
you must still specify an empty list.

Method Overloading

Ordinarily, two entities cannot have the same name within a declaration space,
except for overloaded methods. When two or more methods have the same name in a
declaration space but have different method signatures, they are overloaded.

Scope and Declaration Space

The method signature is made up of the method name and the number, types, and
modifiers of the formal parameters and must be different from all other method sig-
natures declared in the same class; the method name must be different from all other
non-methods declared in the class.

Method Signatures

The return type is not part of the method signature, so methods cannot differ only
in return type.

Although the formal parameter list is part of the method signature, methods can-
not differ based on a parameter being a ref or out parameter. For the purposes of
the method signature, the ref or out attribute of the parameter is not considered.

Overloaded methods can vary only by signature. More appropriately, they can vary
only by the number and types of parameters. Consider the Console.WriteLine
method you have already used; there are 19 different overloads from which you can
choose.

Overloading methods is common in the .NET Framework and enables you to give the
users of your class a single method with which they interact and provide different input.
Based on that input, the compiler figures out which method should actually be used.

Overloads with Different Return Types

Because method signatures do not include the return type, it is possible for over-
loaded methods to have different return types. Even though this might be legal C#
code, you should avoid it to minimize the possibility for confusion.

Method overloading is useful when you want to provide several different possibilities
for initiating an action, but method overloading can become unwieldy when there
are many options. An example of method overloading is shown in Listing 3.7.

LISTING 3.7 Method Overloading

public void Search(float latitude, float longitude)

{
Search(latitude, longitude, 10, "en-US");

}

public void Search(float latitude, float longitude, int distance)
{

Search(latitude, longitude, distance, "en-US");
}

public void Search(float latitude, float longitude, int distance, string culture)
{
}

77

Wt —

ut!

78

HOUR 3: Understanding Classes and Objects the C# Way

FIGURE 3.5
Working with
methods

Try It Yourself

Working with Methods

Continuing to expand the Contact class, add the VerifyEmailAddress and
Search methods by following these steps. If you closed Visual Studio, repeat the
previous exercises first. Be sure to keep Visual Studio open at the end of this exer-
cise because you will use this application later.

1. Open the Contact.cs file.

2. Add the VerifyEmailAddress method shown in Listing 3.6 so that it returns
true if the email address entered is “joe@example.com”.

3. Add the overloaded methods shown in Listing 3.7.

4, In the last overloaded Search method, enter a Console.WriteLine call that
prints the values of the parameters.

5. In the Main method of the Program.cs file, enter the following code after the
last Console.WritelLine statement:

c.Search(37.479444f, -122.450278f);
c.Search(37.479444f, -122.450278f, 50);
c.Search(37.479444f, -122.450278f, 50, "en");

Console.WriteLine(c.VerifyEmailAddress("joe@example.com"));
Console.WriteLine(c.VerifyEmailAddress("jim@example.com"));

6. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.5.

BN C:\Windows\system32\cmd.exe 0|). e S

Optional Parameters and Named Arguments

Optional parameters enable you to omit that argument in the invocation list when
calling a method. Only value parameters can be optional, and all optional parame-
ters must appear after required parameters, but before a parameter array.

To declare a parameter as optional, you simply provide a default value for it. The
modified Search method using optional parameters is shown here:

Scope and Declaration Space

public void Search(float latitude, float longitude, int distance = 10,
string culture = "en-US");

The latitude and longitude parameters are required, whereas distance and
culture are both optional. The default values used are the same values provided by
the first overloaded Search method.

Looking at the Search method overloads from the previous section, it should become
clear that the more parameters you have the more overloads you need to provide. In
this case, there are only a few overloads, but that is still more than providing a single
method with optional parameters. Although overloads are the only option in some
cases, particularly those that don't imply a reasonable default for a parameter, often
you can achieve the same result using optional parameters.

Optional and Required Parameters

A parameter with a default argument is an optional parameter, whereas a parame-
ter without a default argument is a required parameter.

Optional parameters are also particularly useful when integrating with unmanaged
programming interfaces, such as the Office automation APIs, which were written
specifically with optional parameters in mind. In these cases, the original API call
might require a large number of arguments (sometimes as many as 30), most of
which have reasonable default values.

A method that contains optional parameters can be invoked without explicitly pass-
ing arguments for those parameters, allowing the default arguments to be used
instead. If, however, the method is invoked and provides an argument for an
optional parameter, that argument is used instead of the default.

Listing 3.8 shows an example of calling the Search method, allowing the default val-
ues to be used.

LISTING 3.8 Using Optional Parameters

Search(27.966667f, 82.533333f, 3);
Search(27.966667f, 82.533333f, 3, "en-GB");
Search(27.966667f, 82.533333f);

The drawback to optional parameters is that you cannot omit arguments between the
commas, meaning you could not call the Search method like this:

Search(27.966667f, 82.533333f, , "en-GB");

To resolve this situation, C# enables any argument to be passed by name,
whereby you are explicitly indicating the relationship between the argument and its

79

80

Dl

HOUR 3: Understanding Classes and Objects the C# Way

corresponding parameter. Using named arguments, the different method calls in
Listing 3.8 and the illegal call just shown could be written as shown in Listing 3.9.

LISTING 3.9 Using Named Arguments

Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3);
Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3, culture: "en-GB");
Search(latitude: 27.966667f, longitude: 82.533333f);

Search(27.966667f, 82.533333f, culture: "en-GB");

Search(latitude: 27.966667f, longitude: 82.533333f, culture: "en-GB");

All these calls are equivalent. The first three calls are the same as the calls in Listing
3.8 except that each parameter is explicitly named. The last two calls show how we
can omit an argument in the middle of the parameter list and are also the same,
although one uses a mixture of named and positional arguments.

Named and Positional Arguments

Arguments that are not passed by name are called positional arguments. Posi-
tional arguments are the most common.

Named arguments are most often used with optional parameters, but they can be
used without them as well. Unlike optional parameters, named arguments can be
used with value, reference, and output parameters. You can also use named argu-
ments with parameter arrays, but you must explicitly declare a new array to contain
the values, as shown here:

Console.WritelLine(String.Concat(values: new string[] { "a", "b", "c" }));

As you can see from the Search method, by enabling you to explicitly indicate the
name of an argument, C# provides an additional (and powerful) way to help write
fully describing and self-documenting code.

Changing the Order of Arguments

Arguments are always evaluated in the order they are specified. Although not gen-
erally needed, named arguments enable you to change the order an argument
appears in the invocation list:

Search(longitude: 82.533333f, latitude: 27.966667f);
Search(latitude: 27.966667f, longitude: 82.533333f);

Scope and Declaration Space

81

Try It Yourself

Working with Optional Parameters and Named Arguments

To modify the Search methods previously defined to use optional parameters rather
than overloads, follow these steps. If you closed Visual Studio, repeat the previous
exercises first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

1. Open the Contact.cs file.
2. Remove the first two Search methods, leaving only the method containing all

four parameters, and modify that method so that distance and culture are
optional, using 10 and "en-US" as the default values.

3. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.6.

B C\Windows\system32\cmd exe = | B fwom

4. In the Main method of the Program.cs file, change the calls to the Search
method to use different combinations of named parameters and observe the
output after each change.

FIGURE 3.6
Working with
optional parame-
ters and named
arguments

Instantiating a Class

Unlike the predefined value types in which you could simply declare a variable and
assign it a value, to use a class in your own programs, you must create an instance
of that class.

Remember, even though you create new objects directly using the new keyword, the
virtual execution system is responsible for actually allocating the memory required,
and the garbage collector is responsible for deallocating that memory.

Instantiating a class is accomplished using the new keyword, like this:

Contact ¢ = new Contact();

82

HOUR 3: Understanding Classes and Objects the C# Way

A newly created object must be given an initial state, which means any fields
declared must be given an initial value either by explicitly providing one or accepting
the default values (see Table 2.13 in Chapter 2).

Sometimes this level of initialization is sufficient, but often it won't be. To provide
additional actions that occur during initialization, C# provides an instance construc-
tor (sometimes just called a constructor), which is a special method executed auto-
matically when you create the instance.

A constructor has the same name of the class but it cannot return a value, which is
different from a method that returns void. If the constructor has no parameters, it is
the default constructor.

Default Constructors

Every class must have a constructor, but you don’t always have to write one. If
you don’t include any constructors, the C# compiler creates a default constructor
for you. This constructor won’t actually do anything, but it will be there.

Because the compiler only generates the default constructor if you don’t provide
any additional constructors, it is easy to break the public interface of your class
by adding an additional constructor that has parameters and forgetting to also
explicitly add the default constructor. As a result, it is a good idea to always pro-
vide a default constructor rather than letting the compiler generate it for you.

The default constructor (or any constructor) can have any of the accessibility mod-
ifiers, so it is entirely possible to create a private default constructor. This is use-
ful if you want to allow your class to be created but want to ensure that certain
information is always provided when the object is instantiated.

Listing 3.10 shows the default constructor for the Contact class.

LISTING 3.10 Declaring a Default Constructor

public class Contact

{
public Contact()
{
}

}

Just as it is possible to overload regular methods, it is also possible to overload con-
structors. The signature for a constructor is the same as it is for a regular method, so
the set of overloaded constructors must also vary by signature.

Some reasons for providing specialized constructors follow:

» There is no reasonable initial state without parameters.

» Providing an initial state is convenient and reasonable for the type.

Scope and Declaration Space 83

> Constructing the object can be expensive, so you want to ensure that the object
has the correct initial state when it is created.

» A non-public constructor restricts who can create objects using it.

Looking at the Contact class you have been using, it would certainly be useful if you
provided values for the firstName, lastName, and dateOfBirth fields when creating
a new instance. To do that, you would declare an overloaded constructor like the one
shown in Listing 3.11.

LISTING 3.11 Declaring a Constructor Overload

public class Contact

{
public Contact(string firstName, string lastName, DateTime dateOfBirth)
{
this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;
}
}

In the constructor overload from Listing 3.11, you assigned the value of the parame-
ter to its corresponding private field.

Typically, although not always, when a class contains multiple constructors, those
constructors are chained together. To chain constructors together, you use a special
syntax that uses the this keyword.

The this Keyword Bxﬂgfy_

The this keyword refers to the current instance of the class. It is similar to the
Me keyword in Visual Basic, a self identifier in F#, the __self _ attribute in
Python, and self in Ruby.

The common uses of this follow:

» To qualify members hidden by similar names

» To pass an object as a parameter to other methods
» To specify which constructor should be called from another constructor overload
» To indicate the extended type in an extension method

Because static members exist at the class level and are not associated with an
instance, you can’t use the this keyword.

In Listing 3.11, the this keyword is used to distinguish between the class field
and the parameter because both have the same name.

84

HOUR 3: Understanding Classes and Objects the C# Way

Listing 3.12 shows the Contact class with both constructors from Listing 3.10 and
Listing 3.11 using constructor chaining.

LISTING 3.12 Constructor Chaining

public class Contact

{
public Contact()
{
}
public Contact(string firstName, string lastName, DateTime dateOfBirth)
1 this()
{
this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;
}
}

One benefit of constructor chaining is that you can chain in any constructor provided
by the class, not just the default constructor. When you use constructor chaining, it is
important to understand the order in which the constructors execute. The constructor
chain is followed until it reaches the last chained constructor, and then constructors
will be executed in order going back out of the chain. Listing 3.13 shows a class, C,
with three constructors, each chained through to the default constructor.

LISTING 3.13 Chained Constructor Order of Execution

public class C

{

string c1;
string c2;
int c3;

public C()
{

Console.WriteLine("Default constructor");

i

public C(int i, string p1) : this(p1)
{

Console.WritelLine(1i);

}

public C(string p1) : this()
{

Console.WriteLine(p1);

}

Figure 3.7 shows the sequence in which each constructor would execute when instan-
tiated using the second constructor (the one that takes an int and a string as
input).

Nested Classes

C c =new C(3, "C2");
(3

C(int, string)

v O

v ©

C()

Static Construction

Instance constructors, like you have just seen, implement the actions required to ini-
tialize instances of the class. In some cases, a class might require specific initializa-
tion actions to occur at most once and before any instance members are accessed.

To accomplish this, C# provides a static constructor, which has the same form as the
default constructor with the addition of the static modifier instead of one of the
access modifiers. Because static constructors initialize the class, you cannot directly
call a static constructor.

A static constructor executes at most once and will be executed the first time an
instance is created or the first time any of the static class members are referenced.

Nested Classes

A nested class is one that is fully enclosed, or nested, inside another class declara-
tion. Nested classes are a convenient way to allow an outer class to create and use
objects without making them accessible outside of that class. Although nested classes
can be convenient, they are also easy to overuse, which can make your class more
difficult to work with.

Nested classes implicitly have at least the same access level as the containing class.
For example, if the nested class is public but the containing class is internal, the
nested class is implicitly internal as well, and only members of that assembly can
access the nested class. However, if the containing class is public, the nested class
follows the same accessibility rules as a non-nested class.

FIGURE 3.7
Constructor
chaining
sequence

85

86

Dl

HOUR 3: Understanding Classes and Objects the C# Way

You should consider implementing a class as a nested class if it has no stand-alone
significance and can be logically contained by another class or members of the class
need to access private data of the containing class. Nested classes should generally
not be public because they are for the internal use of the containing class.

Partial Classes

Partial classes enable you to split the declaration of a class into multiple parts, typi-
cally across multiple files. Partial classes are implemented in exactly the same way as
normal classes but contain the keyword partial just before the class keyword.
When working with partial classes, all the parts must be available during compila-
tion and have the same accessibility to form the complete class.

Code-generation tools, such as the visual designers in Visual Studio, which generate a
class for you representing the visual control being designed, use partial classes exten-
sively. The machine-generated code is added to one part of the partial class, allowing
you to modify the other part of the partial class without concern that your changes
will be lost when the machine-generated portion is regenerated.

Partial classes can also be used in other scenarios that don’t involve machine-gener-
ated code. Large class declarations can benefit from using partial classes; however,
this can sometimes mean that your class is trying to do too much and would be better
split into multiple classes.

Nested Classes with Partial Classes

Even though C# does not require a single class per file, like Java, it is often help-
ful to follow that structure. When using nested classes, this isn’t possible unless
the containing class is a partial class.

Static Classes

So far, you have seen the static modifier applied to constructors, fields, methods,
and properties. You can also apply the static modifier to a class, which defines a
static class. A static class can have only a static constructor, and as a result, it is not
possible to create an instance of a static class. For that reason, static classes most com-
monly contain utility or helper methods that do not require a class instance to work.

Static Classes

Implicit Static Members

Static classes can contain only static members, but those members are not auto-
matically static. You must explicitly include the static modifier; however, you can
declare any static member as public, private, or internal.

Extension Methods

Extension methods are regular static methods, but the first parameter includes the
this modifier and represents the type instance being extended, typically called the
type extension parameter. Extension methods must be declared in a non-nested,
non-generic static class.

When the namespace containing an extension class is in scope through a using
directive, the extension methods appear as if they were native instance methods on
the extended type. This allows them to be called in a natural and intuitive manner.

Because an extension method is nothing more than a specially marked static
method, it does not have any special access to the type being extended and can work
only with the public interface of the extended type. It also enables you to call the
extension method in the more traditional way by referring to its fully qualified name.

Access to Internals

An extension method defined in the same assembly as the type being extended
also has access to internal members of that type.

Although an extension method matching the signature of an actual method on the
type can be defined, it will not be visible. The compiler ensures that during method
resolution, any actual class methods take precedence over extension methods. This
ensures that an extension method cannot change the behavior of a standard class
method, which would cause unpredictable, or at least unexpected, behavior.

87

GOTO

Hour 11,
“Understanding
Generics,” for
more information
on generic
classes.

Try It Yourself

Working with Extension Methods

By following these steps, you add an extension method on the Contact class and
modify the Main method of Program.cs to use this new extension method. If you
closed Visual Studio, repeat the previous exercises first.

1. Create a new file named Extensions.cs.
2. Make the Extensions class static and create a new extension named

GetFullName that extends Contact and uses the same logic as you used for
the FullName property.

88

FIGURE 3.8
Results of work-
ing with exten-
sion methods

HOUR 3: Understanding Classes and Objects the C# Way

3. Remove the FullName property in the Contact class and modify the ToString
method to use this new extension method.

4. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.8.

~
B C\Windowsisystem3Ziemd.exe = ||

Object Initializers

You have seen how to create constructors for your class that provide a convenient
way to set the initial state. However, as with method overloading, the more fields you
require to be set, the more overloaded constructors you might need to provide.
Although constructors support optional parameters, sometimes you want to set prop-
erties when you create the object instance.

Classes provide an object initialization syntax that enables you to assign values to
any publicly accessible fields or properties as part of the constructor call. This allows
a great deal of flexibility and can significantly reduce the number of overloaded con-
structors you need to provide.

Listing 3.14 shows code similar to what you wrote in the “Working with Properties”
section, followed by code using an object initializer. The code generated by the com-
piler in both cases is almost the same.

LISTING 3.14 Object Initializers

Contact c¢1 = new Contact();

c1.FirstName = "Jim";

c1.LastName = "Morrison";

c1.DateOfBirth = new DateTime (1943, 12, 8);
Console.WriteLine(c1.ToString());

Contact c2 = new Contact

{

FirstName = "Jim",

LastName = "Morrison",

DateOfBirth = new DateTime (1943, 12, 8)
}s

Console.WriteLine(c2.ToString());

Q&A

As long as there are no dependencies between fields or properties, object initializers
are an easy and concise way to instantiate and initialize an object at the same time.

Summary

At this point, you should have a good understanding of how classes in C# provide a
language implementation for object-oriented programming. You learned how scope
affects the visibility of members in a class and how you can change accessibility
using the different access modifiers. From there, you built a class and instantiated an
instance of that class. You then learned about methods and properties, including
method overloading, optional, and named parameters. Finally, we talked about
nested and partial classes.

Departing from the simple examples you worked with in the previous hours, the
samples and exercises in this hour focused on building more real-world classes.

Q. What are the four primary principles of object-oriented programming?

A. The four primary principles of object-oriented programming are encapsulation,
abstraction, inheritance, and polymorphism.

Q. Why are encapsulation and abstraction important?

A. By using encapsulation and abstraction, you can change internal implementa-
tion details without affecting already-written code that uses that class.

Q. What is method overloading?

A. Method overloading is creating more than one method of the same name in a
given type. Overloaded methods must have different signatures.

Q. How do properties enable a class to meet the goals of encapsulation?

A. A property provides a simple way to access a field that can be publicly avail-
able while still allowing the internal details of that field to be hidden.

Q. What are partial classes?

A. A partial class contains the keyword partial on all class declarations and is
typically split across multiple source code files.

89

90 HOUR 3: Understanding Classes and Objects the C# Way

Q. What is the benefit of using extension methods?

Using extension methods enables additional functionality to be added to an
existing type without requiring the use of inheritance. This additional func-
tionality can then be used in a natural and intuitive way.

Workshop

Q

LN S S ol —

¥ ® N o

10.

11.

iz
What are the five access modifiers available in C#?
What is the default accessibility for a class?
What is a constructor?
Can the default constructor of a class have parameters?

Using the code shown in Listing 3.13, what is the output of the following
statement?

C ¢c = new C(3, "C2");

When can a read-only field be assigned?

What is method overloading?

Are there limitations when using automatic properties?

What is a nested class?

Can extension methods access private members of the type being extended?

What happens when the new operator is executed?

Answers

1.

The five access modifiers available in C# are public, protected, internal,
protected internal, and private.

Classes default to internal accessibility but are allowed to have either public
or internal declared accessibility. Nested classes default to private accessibil-
ity but are allowed to have any accessibility.

. A constructor is a special method that is executed automatically when you cre-

ate an object to provide additional initialization actions.

Workshop 91

4. No, the default constructor of a class must always have no parameters.

5. The output of the statement is

Default Constructor
c2
3

6. A read-only field can be initialized only as part of its declaration or in a
constructor.

7. Method overloading is creating more than one method of the same name that
differs only by the number and type of parameters.

8. Automatic properties do not provide a way to access the implicit backing field,
do not enable you to specify additional statements that execute as part of the get
or set accessor, and do not enable a mixture of regular and automatic syntax.

9. A nested class is one that is fully enclosed inside another class declaration.

10. Because extension methods are simply static methods, they do not have any
special access to the type they extend. However, an extension method defined
in the same assembly as the type being extended also has access to internal
members of that type.

11. The two primary actions that occur when the new operator is executed are 1)
Memory is allocated from the heap and 2) the constructor for the class is exe-
cuted to initialize the allocated memory.

Exercise

1. Add a class to the PhotoViewer project that represents a photo. This class
should be named Photo and be in the PhotoViewer namespace. The class
should have the following private fields and a read-only property to retrieve
the value of those fields:

Data Type Field Name
bool Exists
BitmapFrame image

Uri source

92 HOUR 3: Understanding Classes and Objects the C# Way

Add the following constructor:

public Photo(Uri path)
{
if (path.IsFile)
{
this.source = path;
}
}

Symbols

+ (addition operator), 47
= (assignment operator), 47
/* */ (comments), 348-349
// (comments), 348
&& (conditional And operator), 50
|| (conditional OR operator), 50
- - (decrement operator), 48-49
/ (division operator), 48
== (equals operator), 50
\' (escape sequence), 169
\” (escape sequence), 169
\\ (escape sequence), 169
~ (exclusive OR operator), 50
> (greater than operator), 50
(>=) (greater than or equals
operator), 50
++ (increment operator), 48
incrementing a value listing,
48
sample application, 49
=> (lambda operator), 280
< (less than operator), 50
(<=) (less than or equals
operator), 50
& (logical AND operator), 50
| (logical OR operator), 47

Index

% (modulus operator), 48

* (multiplication operator), 48

! (not operator), 51

!= (not equals operator), 50

?? (null-coalescing operator), 54

. regular expression
metacharacter, 188

? regular expression
metacharacter, 188

$ regular expression
metacharacter, 188

* regular expression
metacharacter, 188

() regular expression
metacharacter, 188

[] regular expression
metacharacter, 188

[~] regular expression
metacharacter, 188

~ regular expression
metacharacter, 188

| regular expression
metacharacter, 188

+ regular expression
metacharacter, 188

; (semicolons), 19

- (subtraction operator), 48

/// (XML comments), 348

486

\a escape sequence

applications
ADO.NET, 333
arithmetic operators, 49
array indexing, 197-198
base class members,

overriding, 103

binary files, 302-303
break statements, 160-161

A AddDays method, 42

AddFirst method, 324

AddHours method, 42

addition operator (+), 48
additive operators, 47
AddMinutes method, 42
AddMonths method, 42
AddressChangedEventArgs class,

\a escape sequence, 169

Abs method (BigInteger type), 46

absolute paths, 290

AbsoluteUri method (Uri class), 44

abstract classes, 104-105
interface combinations, 107

listing, 104-105 140-141 classes
sample application, 105 AddYears method, 42 abstract classes, 105
ADO.NET, 330 creating, 71

abstractions, 65

access modifiers connection pooling, 332

data providers, 330

inheritance, 99
Collection<T> class, 206-207

rules, 68)) -
supported, 69 data source connections, 331 collections, deriving, 208
S DataSet class, 330, 331 constructor chaining, 100
accessibility) i
access modifiers queries, 332 continue statements,
rules, 68 read-only database access, 161-162 .
supported, 69 33?]. custom dynamic types,
default, 68 required refe.ren'ces, 331 creatm.g, 446-447
defined, 68 sample application, 333 custom .mde'xers, 201-203
explicit declaration, 69 Aggregate() operator, 473 data va.lldatlon, 403
acoessing AND debugging, 351
conditional operator (&&), 50 breaking on exceptions,

attributes at runtime, 434
multiple attributes, 435
single attributes, 434-435
web applications, 408
AccessViolationException, 229
Add method
collection initializers, 218
Dictionary<TKey, TValue>
class, 209
HashSet<T> class, 212

logical operator (&), 50 351

animation (WPF), 369 compiler errors, 349
anonymous methods (event DataTips, 354-355

handlers), 136 Exception Assistant,
anonymous types (LINQ queries), 351-352

270 expression side effects,
Append method, 177 353-354
AppendAllLines method, 298 runtime errors, 349
AppendAllText method, 298 user-provided divisors,

SortedSet<T> class, 212 AppendFormat method, 177 350

SortedDictionary<TKey, AppendText method variable windows,
TValue> class, 210 File class, 298 352354

SortedList<TKey, FileInfo class, 294 dictionaries, 211-212

Application class, 366
application model (WPF),

Directory class, 300
Directorylnfo class, 295-296

TValue>/class, 210
TimeSpan type, 42

XML elements, 324-325 366-367 o do stat-ements, 155
AddAfterSelf method, 324 browser-hosted applications, dynamic types, 440-441
367 error messages, 441

AddBeforeSelf method, 324
standalone applications, 367

output, 441
runtime exceptions, 441
enumerations, 116-117
events, publishing/raising,
140-141
exception handling, 235-239
console window, 235
Exception assistant, 237
Exception details dialog,
237
JIT Debugger dialog, 237
JIT Debugging support,
236
multiple catch handlers in
wrong order, 239
multiple exceptions, 238
runtime exception, 238
stack trace information,
236
Visual Studio with MSDN
editions, 236
Windows Vista or later
dialog, 235
expression lambdas, 282
File class, 300
FileInfo class, 295-296
flag enumerations, 118-119
foreach statements, 159
generic variant interfaces,
259-260
array contents, printing,
259
compiler errors, 259
results, 260
Hello world
class declaration, 29
default code, 28-29
directives, 28-29
namespace declaration,
29
running, 30
text, displaying, 29

if statements, 150
integer minimum values,
finding
with generics, 249-250
without generics, 247-248
integer stacks, implementing,
216
interfaces, 108
LINQ queries
filtering data, 272
grouping data, 274-275
ordering data, 274-275
selecting data, 270-271
LINQ to SQL, 337-340
Add Connection dialog,
338
Add Item dialog, 337
expanded data
connection, 339
O/R Designer, 337
0O/R Designer displaying
table, 339
results, 340
Server Explorer, 338
List<T> class, 205-206
logical/relational operators,
51
managed, 89
methods, 78
named arguments, 81
nullable types, 55
operator overloading,
123-124
optional parameters, 81
polymorphism, 99
predefined types, 40-41
properties, 74
queues, 217
scope and declaration space
comparison, 68
sets, 214-215

487

applications

standalone, 367
for statements, 157-158
strings
comparisons, 174
modifying, 175
substrings, creating, 172
switches, 152-153
text files, reading and writing,
305
tuples, 262
value type conversions, 58
web. See web applications
web-based photo viewer
application
ASPX editor, 413
CSS, 416-418
data binding, 418-420
default page, 415
HTML, 416
layout, creating, 414-416,
414-415
layout styling, 416-418
New Project dialog, 412
Properties window, 413
selected element outline,
413
Visual Studio, viewing,
412
while statements, 154
WPF, creating, 370
Collection Editor, 373-374
completed layout,
378379
controls, adding, 375
directories, choosing, 377
document outline, 372
event handlers, 375-376
grid row/column
definitions, 374
grid rows/columns,
creating, 373
New Project dialog, 370

How can we make this index more useful? Email us at indexes@samspublishing.com

488

applications

Properties window, 372 arithmetic methods
routed events, 376

selected element outline,

ASP.NET, 408-411
ASPX files, 409
CSS, 416-418

DateTime type, 42
standard mathematical

372 operations, 48 applying, 417-418
ShowDialog extension arithmetic operators, 47-48 applying to elements, 417

method, 375 increment/decrement, 48 child page links, 417
sizing grid rows/columns, incrementing a value listing, classes, 417

374 48 inline styles, compared,
structure, editing, 373 overflow, 241 418
tooltips, displaying, 377 checked/unchecked master page links, 417
Visual Studio, viewing, blocks, 242 data binding, 418-420

371 checked/unchecked embedded code blocks,

XAML bindings, debugging,

377-378

XAML designer, 371

XAML/Design tabs,
371-372

XAML written, 364

layout styling. See WPF,
layout styling

XML

documents, creating,
316, 319

modifications, 325

selecting, 321-322

architecture

sample application, 81
optional parameters, 79
order, 80
positional, 80
validating, 230

expressions, 242
sample application, 49
standard mathematical

operations, 48

Array class, 200
arrays, 196

Array class, 200

C# versus C, 196

five integer values, creating,
196

generic combinations,
257-258

indexing, 197-198

initializers, 198-200

419
expressions, 418, 419
formatting strings, 419
text/navigation URL for
controls, 418-419
data validation
client-side validation,
420-421
server-side validation, 420
validation controls,
420-422
Validator example, 422
event handlers
Global.asax, 411

size, 196

syntax, 196
AsOrdered() operator, 473
AsParallel() operator, 472

DLR, 444 listing, 198-199 Page, 410

web applications, 408 multidimensional arrays, Hello world application,
ArgumentException, 229, 230 199-200 409-410
ArgumentNullException, 230 single-dimensional arrays, code listing, 409
ArgumentOutOfRangeException, 199 code-behind file, 409

230 integers. See integers output, 410

arguments jagged rectangular, 197 Page directive, 409

checking, 231 lists, compared, 203 master pages, 414-415

named, 80 multidimensional, 197 MVC Framework, 408

listing, 80 parameter, 75 web-based photo viewer

application, 411
ASPX editor, 413
default page, 415
HTML, 416
layout, creating, 414-416
layout styling, 416-418

New Project dialog, 412
Properties window, 413
selected element outline,
413
Visual Studio, viewing,
412
ASPX files, 409
assembly identity attributes, 432
assembly manifest, 432
assembly manifest attributes, 433
AsSequential() operator, 472
assignment operators, 47-48
=, 47
compound, 48, 49
incrementing a value listing,
48
sample application, 49
atomization (XML namespaces),
319
Attribute method, 321
attributes, 428
applying, 428
applying multiple, 428
class, 417
Conditional, 431-432
CssClass, 417
custom, 433
applying, 434
creating, 433-434
retrieving at runtime,
434-435
#endif preprocessor symbol,
431-432
Flags, 118
global, 432-433
assembly identity, 432
assembly manifest,
432,433
common, 433
informational, 433
#if preprocessor symbols,
431-432

Name, 376
names, 428
Obsolete, 430-431
parameters, 428
listing, 429
named, 429
positional, 429
runtime access, 434
multiple attributes, 435
single attributes, 434-435
targets
identifying, 430
listing of, 429
x:Class, 365
XML
adding, 324-325
changing values, 323
removing, 324
replacing data, 324
selecting, 321
values, changing, 323
Attributes method
FileInfo class, 294
XML attributes, selecting, 321
automatic memory management.
See garbage collection
automatic properties
declaring, 71
disadvantage, 72
automatic reset events, 466
AutoResetEvent class, 466

\b escape sequence, 169
base class members
hiding, 101
overriding, 101-103
sealing, 103
BCL (Base Class Libraries), 14, 120

489
C#

Biginteger type, 45-46

listing, 46

methods, 46
binary files, reading and writing,

301-303

listing, 302

ReadAllBytes method, 306

sample application, 302-303

WriteAllBytes method, 306
BinarySearch method, 200
BlockingCollection<T> class, 469
bool type, 37, 38
Boolean values, 38
boxing operations, 56
break statements, 152, 160-161

listing, 160

sample application, 160-161
breaking on exceptions, 351
breaking the stack, 240
breakpoints, 355-357

disabling, 356

enabling, 356

reenabling, 357

setting, 356

Visual Studio MSDN edition

features, 356-357

browser-hosted applications, 367
buffered streams, 303-304
BufferedStream class, 303
button Click event, 133-134
byte type, 37

C

C#
creators, 344
evolution, xvi
inspirations, 18
language features, 18

How can we make this index more useful? Email us at indexes@samspublishing.com

490

C++ templates

C++ templates, 249
calculated properties
creating, 73
declaring, 73
Call Stack window, 358-359
calling methods, 76
camel casing, 23
CancelEventArgs class, 138
CanRead method, 301
CanWrite method, 301
Capacity method
lists, 203
SortedDictionary<TKey,
TValue> class, 210
SortedList<TKey,
TValue>/class, 210
Capture class, 189
Cascading Style Sheet. See CSS
case-sensitivity
identifiers, 23
strings, 173
catch handlers, 232-233
declaring, 233
variables, 233
chaining
constructors, 83, 84, 100
LINQ queries, 283
ChangeExtension method, 290
char type, 37
characters
encoding, 316

escape sequences, 168-169

CIL (common intermediate
language), 9
class attribute, 417
class keyword, 65
class library (.NET Framework).
See Framework class library
classes
abstract, 104-105
interface combinations,
107

listing, 104-105
sample application, 105
accessibility
access modifiers, 68, 69
default, 68
defined, 68
explicit declaration, 69
AddressChangedEventArgs,
140-141
Application, 366
Array, 200
AutoResetEvent, 466
BufferedStream, 303
CancelEventArgs, 138
Collection<T>
methods/ properties, 206
sample application,
206-207
virtual methods, 207
CollectionViewSource, 396
concurrent collection,
469-470
Console, 29
constants, 70
Contact
creating, 71
default constructors, 82
dispose pattern, 455
extension methods, 88
LINQ query data,
flattening, 277-278
LINQ query data, joining,
275276
properties application, 74
creating, 71
CSS, 417
DataContext, 341-342
DataSet, 330
database tables, 331
populating, 334
DateTime, 88

declaration space
defined, 67
listing, 66
scope comparison
application, 68
statement blocks, 66
declaring, 29
defining, 64, 65
derived, 99-100
Dictionary<TKey, TValue>,
209
Directory
Directorylnfo class,
compared, 298
listing, 297-298
methods, 297
sample application, 300
Directorylnfo, 292-293
Directory class, compared,
298
listing, 293
methods, 293
sample application,
295-296
downcasting, 97
DynamicObject, 444
encapsulation, 64-65
EventArgs, 137
Exception, 228-229
ExpandObject, 444, 445
ExternalException, 229
fields
constant-like behavior,
creating, 70
default values, 69
defined, 69
sample application, 71
File, 297
listing, 299-300
methods, 298-299
sample application, 300

FileInfo, 292
listing, 295
methods, 294
sample application,
295-296
generic
creating, 254-255
inheritance, 256-257
interface implementation,
257
type parameter
constraints, 252
variant interfaces, 258
HashSet<T>, 212-213
inheritance, 92-103
class hierarchies,
designing, 96
derived classes, 94-95
designing, 103
implementation, 96
interfaces, 106
member hiding, 101
member overriding,
101-103
multiple, 94
sample application, 99
sealing members, 103
trust but verify philosophy,
98
instantiating, 81-82
Interlocked, 466
JournalEntry
LINQ query data,
flattening, 277-278
LINQ query data, joining,
275276
LinkedList<T>, 204
List<T>, 205-206
ManualResetEvent, 466
ManualResetEventSlim, 466

methods
calling, 76
declaring, 74-75
defined, 74
extension, 87-88
as input, 76
overloading, 76-77
sample application, 78
signatures, 77
static, 75
parameters. See
parameters
Monitor, 465
nested, 85-86
object initializers, 88-89
Parallel, 468
ParallelEnumerable, 472
partial, 86
Path, 290-291
Program, 29
properties
automatic, 71, 72
calculated, 73
declaring, 71-72
defined, 71
operations, 73
read-only, 73
sample application, 74
set accessor, 72
write-only, 73
Queue<T>, 216-217
ReaderWriterLockSlim, 467
ReadOnlyCollection<T>,
208-209
regular expressions, 189
scope
declaration space
comparison application,

68
defined, 66
listing, 66

491

classes

nesting and hiding, 66-67
statement blocks, 66
switches, 152
variables, 20
visibility, 66
SortedDictionary<TKey,
TValue>, 210211
SortedList<TKey, TValue>,
210211
SortedSet<T>, 212-213
SpinLock, 466
Stack<T>
methods, 215
sample application, 216
static, 86-87
Stream, 300-301
StreamReader, 304-305
StreamWriter, 304-305
String, 171, 175
StringBuilder, 177
Append/AppendFormat
methods, 177
capacity, 178
listing, 177
structures, compared,
119-120, 125-126
SystemException, 229
Task, 471
tuples, 261
upcasting, 97
Uri, 44-45
methods, 44
properties, 45
UriBuilder, 45
WPFInteropExtensions, 375
XAttribute, 314
XDocument class, 313
XElement, 314
navigation properties, 320
SetAttributeValue method,
315

How can we make this index more useful? Email us at indexes@samspublishing.com

492

classes

SetElementValue method,
315
values, retrieving, 316
XName, 317
XNamespace, 317-319
XNode, 319-320
clauses
group, 273-274
join, 276
orderby, 273
Clear method
Array class, 200
Dictionary<TKey, TValue>
class, 209
HashSet<T> class, 212
Queue<T> class, 216
SortedDictionary<TKey,
Tvalue> class, 210
SortedList<TKey, TValue>
class, 210
SortedSet<T> classes, 212
Stack<T> class, 215
Clearltems method, 207
CLI (common language
infrastructure), 14
Click events, 133-134
client-side validation, 420-421
Close method, 301
CLR (common language runtime),
89
common intermediate
language, 9
CTS (common type system),
9-10
memory management, 12-13
virtual execution system, 9-12
CLS (common language
specification), 11, 38-39
cmdlets, 482
custom, creating, 483
get-process, 482
select, 482

code
comments, 348
benefits, 349
delimited, 348-349
syntax, 348
writing, 349
XML, 348
debugging
breaking on exceptions,
351
compiler errors, 349
DataTips, 354-355
Exception Assistant,
351-352
expression side effects,
353-354
runtime errors, 349
user-provided divisors,
350
variable windows,
352-354
XAML bindings, 377-378
listings. See listings
maintainable, 64
unit tests, 349-350
code-behind, 365-366
coding errors, 231
Collection Editor dialog, 373-374
collection views, 395-396
current item pointers, 398-
399
default, 396
filtering data, 398
grouping, 397
sorting, 396-397
Collection<T> class
methods/properties, 206
sample application, 206-207
virtual methods, 207
collections, 203
binding to collections, 395
collection views, 395-396

current item pointers,
398-399
filtering data, 398
grouping data, 397
INotifyCollectionChanged
interface, 396
INotifyPropertyChanged
interface, 396
photo viewer application
example, 395
sorting data, 396-397
Collection<T> class, 206-207
methods/properties, 206
sample application,
206-207
virtual methods, 207
concurrent collection classes,
469-470
deriving, 208
dictionaries, 209-212
Dictionary<TKey, TValue>
class, 209
sample application,
211-212
sorting elements,
210211
generic, 203
initializers, 217-218
Add method, 218
complex, 218-219
listing, 218
syntax, 218
interfaces, 218-220
specific collection
behaviors, 219
supporting
implementations,
219-220
lists
arrays, compared, 203
capacity, 203
LinkedList<T> class, 204

List<T> class application,
205-206
List<T> class methods/
properties, 204
non-generic, 203
queues, 215
Queue<T> class, 216-217
sample application, 217
ReadOnlyCollection<T> class,
208-209
sets, 212
class methods, 213
classes, 212
sample application,
214-215
stacks, 215-216
integer, implementing, 216
Stack<T> class, 215
thread-safe, 469-470
CollectionViewSource class, 396
ColumnDefinitions property, 373
COM interoperability, 447
with dynamic types example,
448
Primary Interop Assemblies,
447
without dynamic types
example, 447-448
Combine method, 290
COMEXxception, 230
command section (Visual Studio
Start page), 26
comments (code), 348
benefits, 349
delimited, 348-349
syntax, 348
writing, 349
XML, 348
common intermediate language
(CIL), 9

common language infrastructure
(CLI), 14
common language runtime.
See CLR
common language specification,
11, 38-39
common type system. See CTS
Compare method
string comparisons, 173
Uri class, 44
CompareOrdinal method, 173
CompareTo method
Guid type, 44
string comparisons, 173
CompareValidator control, 420
compiler errors, 349
complex collection initializers,
218-219
complex iterators, 222
component-oriented
programming, 18, 65
composite formatting (strings),
186-187
listings, 187
syntax, 186-187
compound assignment operator,
48
incrementing a value listing,
48
sample application, 49
concatenation (strings), 176
concurrency
deadlocks, 463
defined, 463
starvation, 463
concurrent collection classes,
469-470
ConcurrentBag<T> class, 469
ConcurrentDictionary<TKey,
TValue> class, 469
ConcurrentQueue<T> class, 469

493

console applications

ConcurrentStack<T> class, 469
Conditional attribute, 431-432
conditional operators, 47, 52
AND, 50
right-associative, 52
short-circuit evaluation, 52
syntax, 52
types, 52
connection pooling, 332
console applications
ADO.NET, 333
arithmetic operators, 49
array indexing, 197-198
base class members,
overriding, 103
class inheritance, 99
classes, creating, 71
custom dynamic types,
creating, 446-447
custom indexers, 201-203
dictionaries, 211-212
DirectoryInfo class, 295-296
dynamic types, 440-441
error messages, 441
output, 441
runtime exceptions, 441
enumerations, 116-117
exception handling, 235-239
console window, 235
Exception assistant, 237
Exception details dialog,
237
JIT Debugger dialog, 237
JIT Debugging support,
236
multiple catch handlers in
wrong order, 239
multiple exceptions, 238
runtime exception, 238
stack trace information,
236

How can we make this index more useful? Email us at indexes@samspublishing.com

494

console applications

Visual Studio with MSDN
editions, 236
Windows Vista or later
dialog, 235
FileInfo class, 295-296
generic variant interfaces,
259-260
array contents, printing,
259
compiler errors, 259
results, 260
Hello world
class declaration, 29
default code, 28-29
directives, 28-29
namespace declaration,
29
running, 30
text, displaying, 29
integer minimum values,
finding
with generics, 249-250
without generics, 247-248
integer stacks, implementing,
216
LINQ to SQL, 337-340
Add Connection dialog,
338
Add Item dialog, 337
expanded data
connection, 339
O/R Designer, 337
O/R Designer displaying
table, 339
results, 340
Server Explorer, 338
List<T> class, 205-206
logical/relational operators,
51
methods, 78
nullable types, 55

operator overloading,
123-124
polymorphism, 99
predefined types, 40-41
properties, 74
queues, 217
scope and declaration space
comparison, 68
sets, 214-215
substrings, 172
tuples, 262
value type conversions, 58
Console class, 29
console window, 29
constants
declaring, 21, 22
defined, 21, 70
magic numbers, 21-22
values, 70
variables, compared, 21
constraints
generic methods, 253
generic type parameters,
250-252
class listing, 252
listing of, 251
method listing, 252
multiple, 251
value equality testing,
251-252
constructors
chaining, 83-84, 100
default, 82
derived classes, 99-100
overloading, 82-83
specialized, 82-83
static, 85
structures, 124-125
Contact class
creating, 71
default constructors, 82

dispose pattern, 455
extension methods, 88
LINQ query data,
flattening, 277-278
joining, 275-276
properties application, 74
Contains method
HashSet<T> class, 212
Queue<T> class, 216
ReadOnlyCollection<T> class,
208-209
SortedSet<T> class, 212
Stack<T> class, 215
string comparisons, 173
ContainsKey method
Dictionary<TKey, TValue>
class, 209
SortedDictionary<TKey,
TValue> class, 210
SortedList<TKey, TValue>
class, 210
ContainsValue method
Dictionary<TKey, TValue>
class, 209
SortedDictionary<TKey,
TValue> class, 210
SortedList<TKey, TValue>
class, 210
contextual keywords, 24
continue statements, 161-162
listing, 161
sample application, 161-162
contravariance
generic interfaces, 258
interfaces, extending,
260-261
control flow statements
iteration statements, 153
do, 154-155
for, 155-158
foreach, 158-159
while, 153-154

jump statements, 159
break, 160-161
continue, 161-162
return, 162

selection statements, 148
if, 148-150
switches, 150-153

controls

adding to WPF applications,

375

validation, 420-422
ASPX page, 422
combining, 421
error messages,

summarizing, 421
listing of, 420-421
properties, 421
ControlToValidate property, 421
conversion operators, 122
conversions
boxing/unboxing operations,
56
dynamic, 442
value types to reference
types, 54
boxing/unboxing
operations, 56
explicit conversions, 57
implicit conversions, 56
sample application, 58
Convert method, 391, 393
ConvertBack method, 393
ConverterParameter property,
393
Copy method, 298
CopyTo method
FileInfo class, 294
Stream class, 301
corrupted state exceptions, 239
Count method
Dictionary<TKey, TValue>
class, 209

HashSet<T> class, 212
Queue<T> class, 216

ReadOnlyCollection<T> class,

208-209
SortedDictionary<TKey,
TValue> class, 210
SortedList<TKey, TValue>
class, 210
SortedSet<T> class, 212
Stack<T> class, 215
covariance, 258, 260, 261
Create method
DirectoryInfo class, 292
File class, 299
FileInfo class, 294
CreateDirectory method, 297
CreateNavigator method, 321
CreateSubdirectory method, 292
CreateText method
File class, 299
FileInfo class, 294
CSS (Cascading Style Sheet),
ASP.NET applications, 416-418
applying, 417-418
applying to elements, 417
child page links, 417
classes, 417
inline styles, compared, 418
master page links, 417
CssClass attribute, 417
CTS (common type system), 9-10
CLS (common language
specification), 11
type safety, 10
culture parameter, 393
current item pointers, 398-399
custom attributes, 433
applying, 434
creating, 433-434

retrieving at runtime, 434-435

custom cmdlets, creating, 483

495
data binding (WPF)

custom dynamic types
creating, 445-446
functionality, 446

custom format strings, 183-186
DateTime instance listing,

183-186

specifiers, 183-186

custom indexers, creating,

201-203
custom validation rules, 401
CustomValidator control, 421

\d regular expression
metacharacter, 188
\D regular expression
metacharacter, 188
data binding (ASP.NET), 418-420
embedded code blocks, 419
expressions, 418419
formatting strings, 419
text/navigation URL for
controls, 418-419
data binding (WPF), 369, 386
binding to collections, 395
collection views, 395-396
current item pointers,
398-399
filtering data, 398
grouping data, 397
INotifyCollectionChanged
interface, 396
INotifyPropertyChanged
interface, 396
photo viewer application
example, 395
sorting data, 396-397
components, 386

How can we make this index more useful? Email us at indexes@samspublishing.com

496
data binding (WPF)

creating, 387
data converters, 390
adding to XAML file, 391
creating, 390-391
culture-aware, 393
multivalue, 392-393
multivalue with Converter
parameter, 394
photo viewer application,
394
event handlers, 389
OneTime, 387
OneWay, 386
OneWayToSource, 387
photo viewer application,
389-390
source object, 388-389
source property, updating,
387
target objects, 386
target properties, 386
TwoWay, 387
validating data, 400-403
AddressBook application,
403
custom validation rules,
401
validation checks, adding,
401
visual feedback, 402
XAML application code, 389
data converters (WPF data
binding), 390
adding to XAML file, 391
creating, 390-391
culture-aware, 393
multivalue, 392-393
multivalue with Converter
parameter, 394
photo viewer application, 394
data hiding, 64-65

data parallelism, 468
ForEach method example,
468
guidelines, 473-474
loop execution, controlling,
468
Parallel class, 468
thread-safe collections,
469-470
Data property, 229
data providers
ADO.NET, 330
EntityClient, 481
data templates, 399-400
associating with controls, 400
defining, 399-400
data validation, 400-403
AddressBook application, 403
custom validation rules, 401
validation checks, adding,
401
visual feedback, 402
web applications, 420
client-side, 420-421
server-side, 420
validation controls,
420-422
Validator example, 422
databases
ADO.NET, 330
connection pooling, 332
data providers, 330
data source connections,
331
DataSet class, 330-331
queries, 332
required references, 331
sample application, 333
LINQ to ADO.NET, 333
LINQ to DataSet, 333-335
LINQ to SQL. See LINQ to
SQL

prerequisites, 329-330
read-only access, 331
records
adding, 340
deleting, 341
updating, 340-341
DataContext class, 341-342
DataSet class, 330
database tables, 331
populating, 334
DataTips, 354-355
floating, 354
pinning, 354
sharing, 355
date and time values
DateTime type, 39-42
arithmetic methods, 42
properties, 41-42
TimeSpan type, 42-43
Date property, 41
dateOfBirth field, 71
DateOfBirth property, 74
DateTime class, 88
DateTime type, 39-42
arithmetic methods, 42
properties, 41-42
Day property, 41
DayOfWeek property, 41
Days enumeration
as flag enumeration, 118-119
implementing, 116-117
Days method, 42
deadlocks, 463
debugging code
errors
compiler, 349
runtime, 349
user-provided divisors,
350
Visual Studio debugger, 350
breaking on exceptions,
351

breakpoints, 355-357
Call Stack window,
358-359
compiler errors, 349
DataTips, 354-355
Exception Assistant,
351-352
expression side effects,
353-354
Immediate window, 355
MSDN edition features,
352
next statements, 359
runtime errors, 349
stepping through code,
357-358
variable windows,
352-354
visualizers, 350-360
XAML bindings, 377-378
decimal type, 37, 38
declaration space
defined, 67
listing, 66
scope comparison
application, 68
statement blocks, 66
declaration statements, 22
declaring
accessibility, 69
arrays, 196
calculated properties, 73
catch handlers, 233
classes, 29
constants, 21-22
default constructors, 82
implicit/explicit conversions,
122
indexers, 201
inheritance, 106
methods, 74-75

namespaces, 29
optional parameters, 78
properties, 71-72
protected regions, 232
structures, 120
variables, 20, 22
XML namespaces, 317
decrement operator (- -), 48, 49
defaults
accessibility, 68
collection views, 396
constructors, 82
values53, 69
deferred execution, 283
delegates, 132
ElapsedEventHandler,
132-133
event publishing, 136
predefined, 283
replacing with lambdas, 280
Delete method
Directory class, 297
Directorylnfo class, 292
File class, 299
FileInfo class, 294
deleting
database records, 341
string characters, 175
XML elements/attributes,
324
delimited comments, 348-349
Dequeue method, 216
derived classes, constructors,
99-100
designing classes
hierarchies, 96
inheritance, 103
dictionaries, 209-212
Dictionary<TKey, TValue>
class, 209
resource, 380

497

Directorylnfo class

sample application, 211-212
sorting elements, 210-211
Dictionary<TKey, TValue> class,
209
directives
Hello world application, 28-29
paths
Path class, 290-291
relative, 290
directories
Directory class
Directorylnfo class,
compared, 298
listing, 297-298
methods, 297
sample application, 300
Directorylnfo class, 292-293
Directory class, compared,
298
listing, 293
methods, 293
sample application,
295-296
paths, 290-291
special, 291-292
finding, 291
SpecialFolder values,
291-292
Directory class
Directorylnfo class,
compared, 298
listing, 297-298
methods, 297
sample application, 300
Directory method, 294
Directorylnfo class, 292-293
Directory class, compared,
298
listing, 293
methods, 293
sample application, 295-296

How can we make this index more useful? Email us at indexes@samspublishing.com

498

DirectoryName method

DirectoryName method, 294
Display property, 421
disposable types, 454
Dispose method
disposable types, 454
dispose pattern, 456
dispose pattern
benefits, 456
Contact class example, 455
Dispose method, 456
implementing, 455
division operator (/), 48
DivRem method, 46
DLR (dynamic language runtime),
8,16, 444
architecture, 444
custom dynamic types, 446
creating, 445-447
functionality, 446
dynamic operations, defining,
445
ExpandObject class, 445
IDynamicMetaObjectProvider,
444
interoperability support, 444
language binders, 444
do statements, 154-155
listing, 155
sample application, 155
syntax, 154
DockPanel, creating, 375
document support (WPF), 369
DOM (Document Object Model),
XML, 312-313
creating XML, 314-315
XPath queries, 321
double type, 37, 38
downcasting, 97
dynamic keyword, 440
dynamic language runtime.
See DLR

dynamic languages, 9
dynamic types, 39, 439
COM interoperability, 447
conversions, 442
custom
application, 446-447
creating, 445-446
functionality, 446
dynamic keyword, 439
methods, invoking, 449
overload resolution, 442-443
runtime, 441-442
sample application, 440-441
variables, 440
DynamicObject class, 444

Ecma International, 14

ElapsedEventHandler delegate,
132-133

embedded ASP.NET code
blocks, 419

Empty method, 44

empty strings, 170-171

testing, 170
whitespace characters,
170171

encapsulation, 64-65

#endif preprocessor symbol,
431-432

EndsWith method, 173

Enqueue method, 216

Enter method, 465

EnterReaderLock method, 467

EnterWriterLock method, 467

Entity Data Model Designer,
480-481

Entity Data Model Wizard, 481

Entity Framework, 479-480
conceptual model queries,
480
data models, creating, 481
Entity Data Model Designer,
480-481
Entity Data Model Wizard,
481
EntityClient data provider, 481
querying, 481-482
EntityClient data provider, 481
enum keyword, 114
EnumerateDirectories method
Directory class, 297
DirectoryInfo class, 292
EnumerateFiles method
Directory class, 297
Directorylnfo class, 292
EnumerateFileSystemEntries
method, 297
EnumerateFileSystemInfos
method, 293
enumerations, 114, 220
Days
as flag enumeration,
118-119
implementing, 116-117
defining, 114
flag, 117-119
Flags attribute, 118
listing, 117-118
sample application,
118-119
values, combining, 118
listing, 114-115
multiple named values, 115
operations, 116
sample application, 116-117
underlying types, 116
values
commas, 114
numeric, 115-116

equality operators, 47
equals operator (==), 47
ErrorMessage property, 421
errors
compiler, 349
runtime, 349
EscapeUriString method, 44
EventArgs class, 137
events
delegates, 132
handlers,
anonymous methods, 136
attaching to events,
132-133
Global.asax, 411
Page, 410
raising events, 139
WPF applications, adding,
375-376
WPF data binding, 389
multithreading, 140
post-events, 138
pre-events, 138
PropertyChanged, 388
publishing, 132, 136-138
custom data, sending,
137
custom EventArgs derived
class, 137
delegate types, 136
field-like syntax, 137
property-like syntax, 138
sample application,
140-141
raising, 139-141
event handlers, 139
method names, 140
property-like syntax, 140
sample application,
140-141
routed, 376

subscribing, 132
anonymous methods, 136
button Click event
example, 133-134

event handlers, attaching,
132-133

method group inference,
133

user interface control
published, 135-136

synchronization, 466

unsubscribing, 136

evolution

C#, xvi

.NET Framework, 344

Exception Assistant, 351-352
Exception class, 228-229
exceptions, 228

arguments
checking, 231
validation, 230

ArgumentException, 230

ArgumentNullException, 230

ArgumentOutOfRange

Exception, 230
breaking on exceptions, 351
corrupted state, 239
Exception class, 228-229
ExternalException class, 229
handling, 232
catch handler variables,
233

catch handlers, 232-233

catch handlers, declaring,
233

cleanup activities, 234

corrupted state
exceptions, 239

critical system exceptions,
avoiding, 239

finally handler, 232

499

explicit conversions

multiple exceptions,
catching, 233-234
nonspecific exceptions,
avoiding, 239
protected regions,
232-233
sample application,
235-239
swallowing exceptions,
234
InvalidOperationException,
230
rethrowing, 239-240
breaking the stack, 240
listings, 240
RuntimeWrappedException,
228
standard, 229-230
swallowing, 234
SystemException class, 229
tasks, handling, 471-472
throwing, 231
no handlers, 231
timing, 231
unexpected error conditions,
232
wrapping, 240-241
ExceptWith method, 212
exclusive locks, 464
exclusive OR operator (*), 50
ExecutionEngineException, 230
Exists method
Array class, 200
Directory class, 297
DirectoryInfo class, 293
File class, 299
FileInfo class, 294
expanded names (XML
namespaces), 319
ExpandObject class, 444-445
explicit conversions, 57, 122

How can we make this index more useful? Email us at indexes@samspublishing.com

500

explicit interface implementation

explicit interface implementation,
109
explicit keyword, 122
Exposure Time converter, 391
expressions
ASPNET data binding, 418-419
defined, 19
lambdas, 281-282
examples, 281
method calls, 282
sample application, 282
regular, 187
classes, 189
compatibility, 187
metacharacters, 188
string validation, 189-190
substring matches, 190
side effects, 353-354
for statements, 156
extending
generic variant interfaces,
260-261
interfaces, 106
Extensible Application Markup
Language. See XAML
Extensible Markup Language. See
XML
extension methods, 87-88, 294
ExternalException class, 229
extracting substrings, 171

F

\f escape sequence, 169
fall through (classes), 152
fields, 20
constant-like behavior,
creating, 70
dateOfBirth field, 71
default values, 53, 69

defined, 69
firstName, 70
lastName, 70
listing, 20-21
public, 126
read-only, 21
sample application, 71
File class, 297
listing, 299-300
methods, 298-299
sample application, 300
Filelnfo class, 292
listing, 295
methods, 294
sample application, 295-296
files, 290
ASPX, 409
binary, reading and writing,
301-303, 306
listing, 302
ReadAllBytes method, 306
sample application, 302-
303
WriteAllBytes method, 306
File class, 297
listing, 299-300
methods, 298-299
sample application, 300
FileInfo class, 292
listing, 295
methods, 294
sample application, 295-
296
paths, 290-291
absolute, 290
Path class, 290-291
relative, 290
text, reading and writing,
304-307
filtering
collection views, 398
LINQ queries, 271-272

finalizers, 456
implementing, 456-457
rules, 457
writing, 458
finally handlers, 232
Find method, 200
FindAll method, 200
finding special directories, 291
FirstAttribute property, 320
firstName field, 70
FirstName property, 74
FirstNode property, 319-320
flag enumerations, 117-119
Flags attribute, 118
listing, 117-118
sample application, 118-119
values, combining, 118
Flags attribute, 118
FlagsAttribute attribute, 428
flattening LINQ query data,
277278
Contact class and
JournalEntry class listing,
277278
enumerable collections, 278
listing, 278
float type, 37
Flush method, 301
for statements, 155-158
expressions, 156
infinite loops, 156
initializer, 156
sample application, 157-158
syntax, 156
while statements, compared,
156-157
ForAll() operator, 473
ForEach method
Array class, 200
data parallelism, 468

foreach statements, 158-159
iteration variables, 158
listing, 158
sample application, 159
syntax, 158

formatting
composite formatting,

186-187
types, 178

Fragment property, 45

Framework class library, 8, 13
available types, 13
Base Class Libraries, 14
functional areas, 14
namespaces, 14-16

common, 15-16
type names, 15

FromDays method, 42

FromHours method, 42

FromMilliseconds method, 43

FromMinutes method, 43

FromSeconds method, 43

FullName method
declaring, 73
Directorylnfo class, 293
FileInfo class, 294

garbage collection, 452
dispose pattern, 455
benefits, 456
Contact class example,
455
Dispose method, 456
implementing, 455
finalizers, 456
implementing, 456-457
rules, 457

501

greater than or equals operator

writing, 458
IDisposable interface, 453
.NET Framework, 12-13
using statement, 454
compiler generated code,
454-455
syntax, 454
generics
array combinations, 257-258
C++ templates, compared,
249
classes
creating, 254-255
inheritance, 256-257
interface implementation,
257
collections, 203
integer minimum values,

finding
with generics application,
249-250
with generics code listing,
248-249

objects, 246-247
without generics
application, 247-248
without generics code
listing, 246
interfaces, 255-256, 258-261
Java generics, compared, 249
methods, 253
calling, 253-254
constraints, 253
nongeneric classes, 253
printing array items
example, 257-258
type inference, 254
type parameter hiding,
253
type parameters, 254
structures, 255

type parameters, 250
constraints, 250-252
default values, 252
multiple, 250

type safety, 247

value equality, 251-252

get accessors (indexers), 201
GetAttributes method, 299
GetCurrentDirectory method, 297
GetCustomAttribute method,
434-435
GetDirectoryName method, 290
GetDirectoryRoot method, 297
GetEnumerator method, 220
GetExtension method, 290
GetFileName method, 290
GetFileNameWithoutExtension
method, 290
GetFolderPath method, 291-292
GetLogicalDrives method, 297
GetParent method, 297
GetPathRoot method, 290
get-process cmdlet, 482
GetRandomFileName method,
290
GetTempFileName method, 291
GetTempPath method, 291
global attributes, 432-433

assembly identity, 432

assembly manifest, 432-433

common, 433

informational, 433

Global.asax event handlers, 411

globally unique identifiers
(GUIDs), 43-44

goto statements, 159

graphics (WPF), 369

greater than operator (>), 50

greater than or equals operator
(>=), 50

How can we make this index more useful? Email us at indexes@samspublishing.com

502

GreatestCommonDivisor method

GreatestCommonDivisor method,
46
Group class, 189
group clause (LINQ queries),
273274
group joins (LINQ queries),
276-277
grouping
collection views, 397
LINQ query data, 273
listings, 273-274
sample application,
274275
GUIDs (globally unique
identifiers), 43-44

handlers
events
anonymous methods, 136
attaching to events,
132-133
Global.asax, 411
Page, 410
raising events, 139
routed events, 376
WPF applications, adding,
375-376
WPF data binding, 389
exceptions, 232
catch handler variable,
233
catch handlers, 232-233
catch handlers, declaring,
233
cleanup activities, 234

corrupted state
exceptions, 239
critical system exceptions,
avoiding, 239
finally handler, 232
multiple exceptions,
catching, 233-234
nonspecific exceptions,
avoiding, 239
protected regions,
232-233
sample application,
235-239
swallowing exceptions,
234
tasks, 471-472
HashSet<T> class, 212-213
heap memory, 452
Hello world application
ASP.NET, 409-410
code listing, 409
code-behind file, 409
output, 410
Page directive, 409
class declaration, 29
default code, 28-29
directives, 28-29
namespace declaration, 29
running, 30
text, displaying, 29
HelpLink property, 229
hiding
base class members, 101
scopes, 66-67
Host property, 45
Hour property, 41
Hours method, 43
HTTP (Hypertext Transfer
Protocol), 408

| (logical OR operator), 50
ICollection<T> interface, 219
IComparable<T> interface, 248
IComparer<T> interface, 219
identifiers
case-sensitivity, 23
keywords
common, 23-24
contextual, 24
names, 23
rules, 21
IDictionary<TKey, TValue>
interface, 219
IDisposable interface, 453
IDynamicMetaObjectProvider
interface, 444
IEmergencyVehicle interface, 108
IEnumerable<T> interface, 219
IEnumerator<T> interface, 220
IEqualityComparer<T> interface,
220
#if preprocessor symbol, 431-432
if statements, 148-150
cascading, 149
mismatched else problem,
149
nesting, 148
sample application, 150
syntax, 148
lIS (Internet Information
Services), 410
IList<T> interface, 219
Immediate window (Visual Studio
debugger), 355
implementation inheritance, 96
implicit conversions
conversion operators, 122
dynamic, 442
predefined types, 56

implicit keyword, 122
IMultiValueConverter interface,
392
increment operator (++), 48
incrementing a value listing,
48
sample application, 49
indexers, 200
arrays, 197-198
custom, creating, 201-203
declaring, 201
get/set accessors, 201
modifiers, 201
properties, compared, 201
signatures, 201
IndexOf method
ReadOnlyCollection<T> class,
208-209
substrings, 172
IndexOutOfRangeException, 229
infinite loops, 156
informational attributes, 433
inheritance
classes, 92-103
class hierarchies,
designing, 96
derived classes, 94-95
designing, 103
generic, 256-257
member hiding, 101
member overriding,
101-103
multiple, 94
sample application, 99
sealing members, 103
trust but verify philosophy,
98
collections, 218-219
implementation, 96
interfaces, 106, 108

initializers
arrays, 198-200
listing, 198-199
multidimensional arrays,
199-200
single-dimensional arrays,
199
collections, 217-218
Add method, 218
listing, 218
syntax, 218
structures, 125
InnerException property, 229
INotifyCollectionChanged
interface, 396
INotifyPropertyChanged interface,
388, 396
Insertitem method, 207
InsertOnSubmit method, 340
installing visualizers, 360
instance variables, 20
instantiating classes, 81-82
int type, 37
integers
arithmetic operations,
overflow, 241
checked/unchecked
blocks, 242
checked/unchecked
expressions, 242
Biginteger type, 45-46
dividing, 48
incrementing/decrementing,
48
minimum values, finding
with generics application,
249-250
with generics code listing,
248-249
objects, 246-247

503

internal accessibility

without generics
application, 247-248
without generics code
listing, 246
stacks, implementing, 216
interfaces, 105-109
abstract class combinations,
107
collections, 218-220
specific collection
behaviors, 219
supporting
implementations,
219-220
contracts, compared, 105
declaring, 106
explicit implementation, 109
extending, 106
generic, 255-257
generic variant, 258-261
class implementation, 258
contravariance, 258
covariance, 258
extending, 260-261
listing of, 258-259
sample application,
259-260
IComparable<T>, 248
IDisposable, 453
IDynamicMetaObjectProvider,
444
IMultiValueConverter, 392
inheritance, 106, 108
INotifyCollectionChanged, 396
INotifyPropertyChanged, 388
IValueConverter, 391
sample application, 108
Interlocked class, 466
interlocked operations, 466
internal accessibility, 69

How can we make this index more useful? Email us at indexes@samspublishing.com

504

Internet Information Services (lIS)

Internet Information Services
(11S), 410
interoperability
COM, 447
with dynamic types
example, 448
Primary Interop
Assemblies, 447
without dynamic types
example, 447-448
reflection, 448-449
invoking methods
dynamically, 449
invoking methods in C#,
448
invoking methods
reflectively, 448
IronPython dynamic
objects, 449
IntersectWith method, 212
InvalidOperationException, 229,
230
Invoke method, 470
invoking methods
C#, 448
dynamically, 449
reflectively, 448
IronPython dynamic objects, 449
ISet<T> interface, 219
IsEven method, 46
IsFile method, 44
IsNamespaceDeclaration
property, 317
IsNullOrEmpty method, 170
IsNullOrWhiteSpace method,
170-171
IsOne method, 46
IsProperSubsetOf method, 213
IsProperSupersetOf method, 213
IsReadOnly method, 294
IsSubsetOf method, 213

IsSupersetOf method, 213
IsZero method, 46
iteration statements, 153
do, 154-155
listing, 155
sample application, 155
syntax, 154
for, 155-158
expressions, 156
infinite loops, 156
initializer, 156
sample application,
157-158
syntax, 156
while statements,
compared, 156-157
foreach, 158-159
iteration variables, 158
listing, 158
sample application, 159
syntax, 158
while, 153-154
listing, 154
sample application, 154
for statements, compared,
156-157
syntax, 153
iteration variables, 158
iterators, 220
complex, 222
foreach statement listings,
220
iterators, 215
listing, 221-222
multiple iterations over same
source, 221
ordered sequence of values,
221
IValueConverter interface, 391

J

jagged rectangular arrays, 197
Java generics, 249
JIT (Just-in-Time) compiler, 12
JIT Debugger dialog, 237
join clause (LINQ query data), 276
Join method, 176-177
joining
LINQ query data, 275-277
Contact class and
JournalEntry class
listing, 275-276
equals operator, 277
group joins, 276-277
join clause, 276
ordering, 276-277
strings, 176-177
JournalEntry class (LINQ query
data)
flattening, 277-278
joining, 275-276
jump statements, 159
break, 160-161
listing, 160
sample application, 160
continue, 161-162
listing, 161
sample application,
161-162
return, 162
Just-in-Time compilations, 12

K

Keys method, 209
keywords
class, 65
common, 23-24

contextual, 24
dynamic, 440
enum, 114
explicit, 122
implicit, 122
this, 83

throw, 231, 239
try, 232

L

labels
control styles, 380-381
switch-sections, 151
lambdas, 280
delegate replacement, 280
expression, 281-282
examples, 281
method calls, 282
sample application, 282
operators, 47, 280
statement, 282-283
variables, capturing, 281
language binders (DLR), 444
Language Integrated Query. See
LINQ
LastAttribute property, 320
Last-In, First-Out (LIFO), 452
LastindexOf method, 172
lastName field, 70
LastName property, 74
LastNode property, 319-320
layouts
ASP.NET applications,
414-416
master pages, 414-415
styling, 416-418
photo viewer application
Collection Editor, 373-374
completed, 378-379

controls, adding, 375
directories, choosing, 377
event handlers, 375-376
grid row/column
definitions, 374
grid rows/columns,
creating, 373
ShowDialog extension
method, 375
sizing grid rows/columns,
374
structure, editing, 373
tooltips, displaying, 377
WPF, 367-368
default layout controls,
367-368
DockPanel example, 368
WPF styling, 379
label control styles,
380-381
resource dictionaries, 380
style/data template
resources, 380
lazy evaluation, 283
Length property
FileInfo class, 294
StringBuilder class, 178
strings, 171
less than operator (<), 50
less than or equals operator (<=),
50
lifetime
objects, 453
variables, 20
LIFO (Last-In, First Out), 452
LinkedList<T> class, 204
LINQ (Language Integrated
Query), 268
LINQ queries
chaining, 283
Contact object collection
listing, 268

505
LINQ queries

data selection, 269-271
anonymous types, 270
concatenating data,

269-270
sample application,
270271

deferred execution, 283

filtering data, 271-272

flattening data, 277-278
Contact class and

JournalEntry class
listing, 277-278
enumerable collections,
278
listing, 278

grouping data, 273-274
listings, 273-274
sample application,

274-275

joining data, 275-277

Contact class and
JournalEntry class
listing, 275-276

equals operator, 277

group joins, 276-277

join clause, 276

order, 276-277

lambdas, 280
delegate replacement,

280

expression, 281-282

lambda operator, 280

statement, 282-283

variables, capturing, 281

lazy evaluation, 283

ordering data, 273
listings, 273
sample application,

274275
predefined delegates, 283
query comprehension syntax,
269

How can we make this index more useful? Email us at indexes@samspublishing.com

506
LINQ queries

SQL syntax, compared, 269
standard query operator
methods, 279-280
syntax, 268
XElement class, 320-321
LINQ to ADO.NET, 333
LINQ to DataSet, 333-335
queries, 334
required references, 335
LINQ to SQL, 335-342
adding database records,
340
DataContext class,
341-342
deleting database records,
341
object model, creating,
335-336
projection, 340
queries, 336
required references, 336
sample application,
337-340
updating database
records, 340-341
LINQ to DataSet, 333-335
queries, 334
required references, 335
LINQ to SQL, 335-342
database records
adding, 340
deleting, 341
updating, 340-341
DataContext class, 341-342
object model, creating,
335-336
projection, 340
queries, 336
required references, 336
sample application, 337-340
Add Connection dialog,
338

Add Item dialog, 337
expanded data
connection, 339
O/R Designer, 337, 339
results, 340
Server Explorer, 338
LINQ to XML, 313
character encoding, 316
creating XML, 314
modification application, 325
namespaces
atomization, 319
creating XML, 317-318
declaring, 317
expanded names, 319
prefixes, 318
sample application, 319
selecting XML, 321-322
SetAttributeValue method,
315
SetElementValue method,
315
source XML, transforming,
323
XAttribute class, 314
XDocument class, 313
XElement class, 314, 316
XML documents, creating,
316
XName class, 317
XNamespace class, 317-319
XPath queries, 321
Lippert, Eric, xv-xvi
List<T> class application,
205-206
listings
abstract class, 104-105
Add method, 325
ADO.NET query, 332
array initializers, 198-199
ASP.NET
binding expressions,
adding, 419

child page stylesheet
links, 417
CSS styles, applying,
417-418
Hello world application,
409
master page stylesheet
links, 417
Page_Load method, 418
validation controls, 422
attributes
Conditional, 431-432
FlagsAttribute attribute,
428
multiple attributes, 428
Obsolete, 430-431
parameters, 429
runtime access, 435
target identification, 430
Biginteger type, 46
binary files, reading and
writing, 302, 306
binding to collections, 395
break statements, 160
buffered streams, 303-304
calculated properties,
declaring, 73
classes versus structures,
125-126
code-behind class, 365-366
collection initializers, 218
collection views
current item pointers, 399
filtering, 398
grouping, 397
sorting, 397
COM interoperability
with dynamic types, 448
without dynamic types,
447-448
complex collection initializers,
218219

complex iterators, 222
constructor chaining, 84
continue statements, 161
creating XML, 314-315
custom attributes
applying, 434
creating, 433-434
custom cmdlets, creating,
483
custom dynamic types
creating, 445-446
functionality, 446
data bindings, creating, 387
data parallelism, ForEach
method, 468
data templates
associating with controls,
400
defining, 400
database records
adding, 340
deleting, 341
updating, 340-341
DataContext class, 342
default constructors,
declaring, 82
derived class constructors,
99-100
Directory class, 297-298
Directorylnfo class, 293
dispose pattern, 455
do statements, 155
DockPanel, creating, 375
dynamic types
implicit conversions, 442
overload resolution, 443
empty strings
testing, 170
whitespace characters,
170171
Entity Framework, querying,
481-482

enumerations, 114-116
event publishing
custom EventArgs derived
class, 137
field-like syntax, 137
property-like syntax, 138
events
raising, 139
subscribing, 132-133
exception handling
catch handlers, declaring,
233
multiple exceptions,
catching, 233-234
ExpandObject class, 445
Exposure Time converter, 391
fields, 20-21
File class, 299-300
FileInfo class, 295
finalizers, implementing,
456-457
flag enumerations, 117-118
foreach statements, 158
foreach statement iterator,
220

generic class inheritance, 256

open constructed classes,
257
open constructed classes
with constraints, 257
generic methods
calling, 253-254
type inference, 254
type parameter hiding,
253
generic type parameter
constraints
classes, 252
methods, 252
generic variant interfaces

507

listings

covariant/contravariant,
extending, 260, 261
extending, 260
grid row/column definitions,
374
IDisposable interface, 453
if statements
cascading, 149
nesting, 148
implementation inheritance,
96
incrementing a value, 48
integer arithmetic operations
checked/unchecked
blocks, 242
checked/unchecked
expressions, 242
integer minimum values,
finding
with generics, 248-249
objects, 246-247
without generics code
listing, 246
invoking methods
C#, 448
dynamically, 449
reflectively, 448
iterators, 221-222
label control styles, 380-381
lambdas
expression, 281
statement, 282-283
LINQ queries
against XElement class,
320-321
Contact object collection,
268
data selection, 269-270
enumerable collections,
278
filtering data, 272

How can we make this index more useful? Email us at indexes@samspublishing.com

508

listings

flattening data, 277-278
group joins, 277
grouping data, 273-274
joining data, 275-276
ordering data, 273
standard query operator
methods, 280
LINQ to DataSet query, 334
LINQ to SQL query, 336
lock statement, 464-465
methods
declaring, 74-75
overloading, 77
multiple interface inheritance,
108
multivalue converters
adding to XAML, 393
Converter parameter, 394
size example, 392
named arguments, 80
null-coalescing operator, 54
object initializers, 88-89
optional parameters, 79
overloading constructors, 83
photo viewer application
layout, 378-379
PLINQ query, 473
printing array items with
generic method, 257-258
read-only fields, 21
Remove method, 324
ReplaceWith method, 324
reshaped XML, returning,
322-323
resource dictionaries, 380
rethrowing exceptions, 240
scope and declaration space,
66
SetValue method, 323
source XML, transforming,
323

strings
composite formatting, 187
concatenation, 176
custom format strings,
183-186
joining and splitting,
176-177
literals, 169
standard format, 181
StringBuilder class, 177
ToString method,
overriding, 182
validation, 190
substrings, creating, 171-172
switches, 151-152
tasks
creating, 470-471
exception handling,
471-472
waiting to complete, 471
text files, reading and writing,
304-305, 307
ToString method, overriding,
178-179
trust but verify philosophy, 98
UriBuilder class, 45
using statement, 454
validating data
custom validation rules,
401
validation checks, adding,
401
visual feedback, 402
web-based photo viewer
application, 416
while statements, 154
WPF
application event
handlers, 375-376
data binding, 389
wrapping exceptions, 241

XAML, 365

XML, creating
DOM, 312
LINQ to XML, 314
namespace prefixes, 318
namespaces, 317-318
XML tree node navigation,

320

lists

arrays, compared, 203
capacity, 203
LinkedList<T> class, 204
List<T> class
application, 205-206
methods/properties, 204

literals

strings
character escape
sequences, 168-169
listing, 169
verbatim, 168-169
values, 21-22

local variables, 20
LocalPath method, 44
Locals window, 352-353
lock statement, 464

Enter/TryEnter methods, 465

listing, 464-465

lock expressions to avoid,
464

Monitor class, 465

locks, 463-466

exclusive, 464
lock statement, 464
Enter/TryEnter methods,
465
expressions to avoid, 464
listing, 464-465
Monitor class, 465
SpinLock class, 466
Wait method, 465

logical operators, 50-51
AND (&), 47
listing of, 51
OR (), 47
rules, 51
sample application, 51
XOR, 47

long type, 37

loops
infinite, 156
statements. See iteration

statements

magic numbers, 21-22
Main function, 29
maintainable code, 64
MakeRelativeUri method, 44
managed applications, 8-9
managed code, 8, 17
managed threads, 462
managing memory. See memory
management
manipulating strings, 171
manual reset events, 466
ManualResetEvent class, 466
ManualResetEventSlim class, 466
markup, 364-365
master pages (ASPNET), 414-415
Match class, 189
MatchCollection class, 189
Max method
Biglnteger type, 46
HashSet<T> class, 212
SortedSet<T> class, 212
memory management
automatic, 12-13
dispose pattern, 455

benefits, 456
Contact class example,
455
Dispose method, 456
implementing, 455
finalizers, 456
implementing, 456-457
rules, 457
writing, 458
garbage collection, 453
heap, 452
IDisposable interface, 453
stack, 452
using statement, 454
compiler generated code,
454-455
syntax, 454
Message property, 228
method group inference, 133
methods
Add
collection initializers, 218
XML elements, 324-325
AddAfterSelf, 324
AddBeforeSelf, 324
AddFirst, 324
anonymous, 136
Append, 177
AppendFormat, 177
arithmetic, 42
Array class, 200
Attribute, 321
Attributes, 321
Biginteger type, 46
calling, 76
Collection<T> class, 206-207
Compare, 173
CompareOrdinal, 173
CompareTo, 173
Contains, 173

509

methods

Convert, 391, 393
ConvertBack, 393
declaring, 74-75
defined, 74
Dictionary<TKey, TValue>
class, 209
Directory class, 297
Directorylnfo class, 293
Dispose
disposable types, 454
dispose pattern, 456
EndsWith, 173
Enter, 465
EnterReaderLock, 467
EnterWriterLock, 467
event raiser, 140
extension, 87-88
File class, 298-299
FileInfo class, 294
finalizers, 456
implementing, 456-457
rules, 457
writing, 458
ForEach
Array class, 200
data parallelism, 468
generic, 253
calling, 253-254
constraints, 253
nongeneric classes, 253
printing array items
example, 257-258
type inference, 254
type parameters, 254
type parameters,
constraints, 252
type parameters, hiding,
253
GetCustomAttribute, 434-435
GetEnumerator, 220

How can we make this index more useful? Email us at indexes@samspublishing.com

510

methods

GetFolderPath, 291-292
Guid type, 40-44
HashSet<T> class, 213
IndexOf, 172
as input, 76
InsertOnSubmit, 340
Invoke, 470
invoking
C#, 448
dynamically, 449
reflectively, 448
IsNullOrEmpty, 170
IsNullOrWhiteSpace, 170-171
Join, 176-177
LastindexOf, 172
List<T> class, 204
onPropertyChanged, 388
overloading, 76-77
example listing, 77
return types, 77
signatures, 77
PadLeft, 175
PadRight, 175
Page_Load, 418
parameters, 75-76
output, 76
reference, 76
value, 75
optional. See optional
parameters
Path class, 290-291
Queue<T> class, 216-217
ReadOnlyCollection<T> class,
208-209
Remove
string characters, 175
XML elements/attributes,
324
RemoveAttributes, 324
RemoveNodes, 324
Replace, 175
ReplaceAll, 324

ReplaceAttributes, 324
ReplaceNodes, 324
ReplaceWith, 316-324
sample application, 78
Search, 78-79
SetAttributeValue, 315
SetElementValue, 315
SetValue, 323
ShowDialog, 375
signatures, 77
SortedDictionary<TKey,
TValue> class, 210-211
SortedList<TKey, TValue>
class, 210-211
SortedSet<T> class, 213
Stack<T> class, 215
standard query operator,
279-280
StartNew, 471
StartsWith, 173
static, 75
Stream class, 301
string comparisons, 173-174
structures, 120
TimeSpan type, 43
ToLowerlnvariant, 174
ToString, 170
overriding, 178-179, 182
type formatting, 178-179
ToUpperlinvariant, 174
Trim, 175
TrimEnd, 175
TrimStart, 175
TryEnter, 465
Uri class, 44
VerifyfEmailAddress
calling, 76
declaring, 74-75
Wait, 465
Task class, 471
thread signals, 466

WaitAll, 471

WaitAny, 471

XPath namespace, 321. See

also properties

Milliseconds method, 43
Min method

Biglnteger type, 46

HashSet<T> class, 212

SortedSet<T> class, 212
MinusOne method, 46
Minute property, 41
Minutes method, 43
mismatched else problem, 149
modifying

indexers, 201

strings, 174-175

XML, 323

adding elements, 324-325

changing data, 323
removing
elements/attributes,
324
replacing data, 324
sample application, 325
modulus operator (%), 48
Monitor class, 465
Month property, 41
Move method
Directory class, 297
File class, 299
MoveTo method
DirectoryInfo class, 293
FileInfo class, 294
multidimensional arrays, 197
multiple exceptions, catching,
233-234
multiple inheritance, 94, 108
multiple threads, 462
multiplication operator (*), 48
multiplicative operators, 47
multithreading events, 140

multivalue converters, 392-393
adding to XAML, 393
Converter parameter, 394
size example, 392

mutable strings
appending data, 177
characters, replacing, 178
data, adding/deleting, 178
StringBuilder class, 177

capacity, 178
listing, 177
mutex (thread synchronization),
467

\n escape sequence, 169
{n} regular expression
metacharacter, 188
{n, } regular expression
metacharacter, 188
Name attribute, 376
Name method
DirectoryInfo class, 293
FileInfo class, 294
?<name> regular expression
metacharacter, 188
?‘name’ regular expression
metacharacter, 188
named arguments, 80
listing, 80
sample application, 81
named parameters, 429
names
attributes, 428
expanded, 319
identifiers, 23
XML, 317

namespaces

declaring, 29
Framework class library, 14-16
common, 15-16
type names, 15
System, 15
System.Collections.Generic, 15
System.Data, 15
System.Diagnostics, 15
System.Globalization, 15
System.Linqg, 16
System.Net, 16
System.ServiceModel, 16
System.Text, 16
System.Web, 16
System.Windows, 16
System.Windows.Controls, 16
System.Windows.Forms, 16
System.Xml, 16
XML, 317
atomization, 319
creating XML, 317-318
declaring, 317
expanded names, 319
prefixes, 318
sample application, 319
XPath, 321

navigating XML tree nodes

LINQ queries against
XElement class, 320-321
properties
XElement, 320
XNode, 319-320

nesting

classes, 85-86
if statements, 148
scopes, 66-67

.NET Framework

class library, 8, 13
available types, 13
Base Class Libraries, 14

511
nodes (XML tree, navigating)

functional areas, 14
namespaces, 14-16
CLR (common language
runtime)
common intermediate
language, 9
CTS (common type
system), 9-10
memory management,
12-13
virtual execution system,
9-12
CLS (common language
specification), 11, 38-39
components, 8
CTS (common type system),
9-10
CLS (common language
specification), 11
type safety, 10
dynamic language runtime.
See DLR
evolution, 344
functions, 484
JIT (Just-in-Time) compiler, 12
LINQ (Language Integrated
Query), 268
managed applications, 89
managed code/unmanaged
code, 8
parallel computing platform,
8,16-17
Silverlight version, 203
New Project dialog box, 27-28
NewGuid method, 44
next statements, 359
NextAttribute property, 320
NextNode property, 319-320
nodes (XML tree, navigating)
LINQ queries against
XElement class, 320-321

How can we make this index more useful? Email us at indexes@samspublishing.com

512

nodes (XML tree, navigating)

properties
XElement, 320
XNode, 319-320
non-generic collections, 203
not equals operator (!=), 50
not operator (!), 51
Now property, 41
{n,m} regular expression
metacharacter, 188
null types, 53
nullable types
defined, 54
null-coalescing operators, 54
sample application, 55
syntax, 54
values, 54
null-coalescing operator (??), 54
null-coalescing operators, 47
NullReferenceException, 229
?'number’ regular expression
metacharacter, 188
?<number> regular expression
metacharacter, 188

o

\o escape sequence, 169
object initializers, 88-89
object type, 38-39
object-oriented programming, 18
benefits, 64
encapsulation, 64-65
polymorphism, 95
object lifetime, 453
Obsolete attribute, 430-431
OnApplicationStartup event
handler, 389
One method, 46
OneTime data binding, 387
OneWay data binding, 386

OneWayToSource data binding,
387
onPropertyChanged method, 388
Open method, 294
OpenRead method
File class, 299, 301
FileInfo class, 294
OpenText method
File class, 299
FileInfo class, 294
OpenWrite method
File class, 299, 301
FileInfo class, 294
operators
additive, 47
arithmetic, 47-48
increment/decrement, 48
incrementing a value
listing, 48
sample application, 49
standard mathematical
operations, 48
assignment, 47-48
=, 47
compound, 48
incrementing a value
listing, 48
sample application, 49
conditional, 47, 52
right-associative, 52
short-circuit evaluation, 52
syntax, 52
types, 52
conditional
AND (&&), 50
OR (I}, 50
conversion, 122
defined, 47
enumerations, 116
equality, 47
exclusive OR operator (7), 50

increment/decrement, 48
incrementing a value listing,
48
integer arithmetic operations,
overflow, 241-242
lambda, 47, 280
logical, 50-51
AND (&), 50
listing of, 51
OR (), 47
rules, 51
sample application, 51
XOR, 47
multiplicative, 47
not (!), 51
null-coalescing, 47
overloading, 120-122
language support, 121
listing of, 121
sample application,
123-124
symmetrical groups,
121-122
PLINQ, 473
precedence, 47
primary, 47
relational, 47, 49, 51
shift, 47
type testing, 47
unary, 47
optional parameters, 78-79, 81
arguments, 79
declaring, 78
disadvantage, 79
listing, 79
required, compared, 79
unmanaged programming
interfaces, 79
OR
conditional operator (||), 50
exclusive operator (*), 50
logical operator (|), 47

OrderablePartioner<TSource>
class, 470
orderby clause, 273
ordering
arguments, 80
LINQ joins, 276-277
LINQ query data, 273
listings, 273
sample application,
274-275
OutOfMemoryException, 230
output parameters, 76
overflowing integer arithmetic
operations, 241
checked/unchecked blocks,
242
checked/unchecked
expressions, 242
Overlaps method, 213
overloading
constructors, 82-83
dynamic types, 442-443
methods, 76-77
example listing, 77
return types, 77
signatures, 77
operators, 120-122
language support, 121
listing of, 121
sample application,
123-124
symmetrical groups,
121-122
overriding
base class members,
101-103
ToString method, 178-179,
182

P

padding strings, 175
PadLeft method, 175
PadRight method, 175
Page event handlers, 410
Page_Load method, 418
Parallel class, 468
parallel computing platform (.NET
Framework), 8, 16-17
Parallel LINQ. See PLINQ
ParallelEnumerable class, 472
parallelism. See data parallelism
data, 468
ForEach method example,
468
guidelines, 473-474
loop execution, controlling,
468
Parallel class, 468
thread-safe collections,
469-470
tasks, 469-472
exception handling,
471-472
guidelines, 473-474
Invoke method, 470
task creation, 470-471
waiting on tasks, 471
parameters, 75-76
arguments
order, 80
positional, 80
named. See named
arguments
arrays, 75
attributes, 428
listing, 429
named, 429
positional, 429
culture, 393

513

photo viewer application

generic type, 250
constraints, 250-252
default values, 252
multiple, 250

optional, 78-79, 81
arguments, 79
declaring, 78
disadvantage, 79
listing, 79
required, compared, 79
unmanaged programming

interfaces, 79

output, 76

reference, 76

required, 79

value, 75

Parent method
DirectoryInfo class, 293
XNode class, 319-320

Parse method, 44

partial classes, 86

Partitioner class, 470

Partitioner<TSource> class, 470

Pascal casing, 23

Password property, 45

Path class, 290-291

Path property, 45

paths, 290-291

absolute, 290

Path class, 290-291

relative, 290

Peek method
Queue<T> class, 217
Stack<T> class, 215

photo viewer application

data binding, adding, 389-390

data converters, 394

document outline, 372

label control styles, 380-381

layout
Collection Editor, 373-374
completed, 378-379

How can we make this index more useful? Email us at indexes@samspublishing.com

514

photo viewer application

controls, adding, 375
directories, choosing, 377
event handlers, 375-376
grid row/column
definitions, 374
grid rows/columns,
creating, 373
ShowDialog extension
method, 375
sizing grid rows/columns,
374
structure, editing, 373
tooltips, displaying, 377
New Project dialog, 370
Properties window, 372
resource dictionaries, 380
selected element outline, 372
Visual Studio, viewing, 371
web-based, 411
ASPX editor, 413
CSS, 416-418
data binding, 418-420
default page, 415
HTML, 416
layout, creating, 414-416
layout styling, 416-418
New Project dialog, 412
Properties window, 413
selected element outline,
413
Visual Studio, viewing,
412
XAML designer, 371-372
PhotoSizeConverter, 393
PIAs (Primary Interop
Assemblies), 447
PLINQ (Parallel LINQ), 472
defined, 472
operators, 473
queries, creating, 473
pointer types, 36

polymorphism, 95, 99
Pop method, 215
Port property, 45
positional arguments, 80
positional parameters, 429
post-events, 138
PowerShell, 482
cmdlets, 482
custom, creating, 483
get-process, 482
select, 482
running processes script, 482
precedence (operators), 47
predefined delegates, 283
predefined types, 37-38
bool, 37
byte, 37
char, 37
CLS-compliance, 38-39
decimal, 37
double, 37
float, 37
implicit conversions, 56
int, 37
long, 37
object, 38-39
sample applications, 40-41
sbyte, 37
short, 37
string, 38
uint, 37
ulong, 38
preemptive multitasking, 462
pre-events, 138
PreviousAttribute property, 320
PreviousNode property, 319-320
Primary Interop Assemblies
(PlAs), 447
primary operators, 47
private accessibility, 69
Program class, 29

projects, 26
creating, 27-28
New Project commands,

27
New Project dialog box,
27-28
saving, 30
viewing, 26
properties
automatic
declaring, 71
disadvantage, 72
calculated
creating, 73
declaring, 73

Capacity, 203
Collection<T> class, 206
ColumnDefinitions, 373
ConverterParameter, 393
DateOfBirth, 74
DateTime type, 41-42
declaring, 71-72
defined, 71
Exception class, 228-229
FirstAttribute, 320
FirstName, 74
FirstNode, 319-320
FullName,
indexers, compared, 201
IsNamespaceDeclaration,
317
LastAttribute, 320
LastName, 74
LastNode, 319-320
Length, 171, 178
List<T> class, 204
NextAttribute, 320
NextNode, 319-320
operations, 73
Parent, 319-320
PreviousAttribute, 320

PreviousNode, 319-320
read-only, 73
Relations, 331
sample application, 74
set accessor, 72
structures, 126
Tables, 331
TimeSpan type, 43
UpdateSourceTrigger
ValidationRules collection,
402
WPF data binding, 387
Uri class, 45
UriBuilder class, 45
ValidatesOnDatakErrors, 401
ValidatesOnExceptions, 401
validation controls, 421
ValidationRules, 401
write-only, 73. See also
methods
PropertyChanged event, 388
protected accessibility, 69
protected regions (exception
handling)
declaring, 232
patterns, 233
public accessibility, 69
public field structures, 126
publishing events, 132, 136-138
custom data, sending, 137
custom EventArgs derived
class, 137
delegate types, 136
field-like syntax, 137
property-like syntax, 138
sample application, 140-141
Push method, 215

Q

queries
ADO.NET, 332
Entity Framework, 481-482
Entity Framework conceptual
model, 480
LINQ to DataSet, 334
LINQ to SQL, 336
PLINQ, 473
XPath, 321
queries (LINQ)
chaining, 283
Contact object collection
listing, 268
data selection, 269-271
anonymous types, 270
concatenating data,
269-270
sample application,
270271
deferred execution, 283
filtering data, 271-272
flattening data, 277-278
Contact class and
JournalEntry class
listing, 277-278
enumerable collections,
278
listing, 278
grouping data, 273-274
listings, 273-274
sample, 274-275
joining data, 275-277
Contact class and
JournalEntry class
listing, 275-276
equals operator, 277
group joins, 276-277
join clause, 276
order, 276-277

515

RangeValidator control

lambdas, 280
delegate replacement,
280
expression, 281-282
lambda operator, 280
statement, 282-283
variables, capturing, 281
lazy evaluation, 283
ordering data, 273
listings, 273
sample application,
274-275
predefined delegates, 283
query comprehension syntax,
269
SQL syntax, compared, 269
standard query operator
methods, 279-280
syntax, 268
XElement class, 320-321
XML
LINQ queries, 320-321
reshaped XML, returning,
322-323
XPath queries, 321
Queue<T> class, 216-217
queues, 215
Queue<T> class, 216-217
sample application, 217

\r escape sequence, 169
raising events, 139-141
event handlers, 139
method names, 140
property-like syntax, 140
sample application, 140-141
RangeValidator control, 420

How can we make this index more useful? Email us at indexes@samspublishing.com

516
Read method

Read method
binary files, 301
Stream class, 301
StreamReader class, 304-305
ReadAlIBytes method
binary files, 306
File class, 299
ReadAllLines method
File class, 299
text files, 306
ReadAllText method
File class, 299
text files, 306
ReaderWriterLockSlim class, 467
reading
binary files, 301-303
listing, 302
ReadAllBytes method, 306
sample application,
302-303
buffered streams, 303-304
read-only database access,
331
text files, 306-307
ReadLines method
File class, 299
text files, 307
read-only fields, 21
read-only properties, 73
ReadOnlyCollection<T> class,
208-209
Recent Projects list (Visual Studio
Start page), 26
records (databases)
adding, 340
deleting, 341
updating, 340-341
reference parameters, 76
reference types, 19, 36
categories, 36

value type conversions, 54
boxing/unboxing
operations, 56
explicit conversions, 57
implicit conversions, 56
sample application, 58
value types, compared, 19
reflection interoperability,
448-449
invoking methods
C#, 448
dynamically, 449
reflectively, 448
IronPython dynamic objects,
449
Refresh method
DirectoryInfo class, 293
FileInfo class, 294
Regex class, 189
regular expressions, 187
classes, 189
compatibility, 187
metacharacters, 188
string validation, 189-190
substring matches, 190
RegularExpressionValidator
control, 420
relational operators, 47, 49, 51
Relations property, 331
relative paths, 290
Remainder method, 46
Remove method
Dictionary<TKey, TValue>
class, 209
HashSet<T>/SortedSet<T>
classes, 213
SortedDictionary<TKey,
TValue> class, 210
SortedList<TKey, TValue>
class, 210

string characters, 175
XML elements/attributes,
324
RemoveAttributes method, 324
Removeltem method, 207
RemoveNodes method, 324
RemoveWhere method, 213
Replace method
File class, 299
FileInfo class, 294
string characters, 175
ReplaceAll method, 324
ReplaceAttributes method, 324
ReplaceNodes method, 324
ReplaceWith method, 324
required parameters, 79
RequiredFieldValidator control,
420
reshaped XML, returning,
322-323
Resize method, 200
resource cleanup
dispose pattern
benefits, 456
Contact class example,
455
Dispose method, 456
implementing, 455
finalizers, 456
implementing, 456-457
rules, 457
writing, 458
resource dictionaries, 380
rethrowing exceptions, 239-240
breaking the stack, 240
listing, 240
return statements, 162
return types, 77
Reverse method, 213
Root method, 293

routed events, 376
rules
access modifiers, 68
custom validation rules, 401
finalizers, 457
identifiers, 21
logical operators, 51
string comparisons, 173
runtime environments
common language runtime
common intermediate
language, 9
CTS (common type
system), 9-10
memory management,
12-13
virtual execution system,
9-12
dynamic language runtime, 8,
16
runtime errors, 349

S

\s regular expression
metacharacter, 188
\S regular expression
metacharacter, 188
safety
threads, 463
types, 247
saving
projects, 30
solutions, 30
sbyte type, 37
Scheme property, 45
scope
declaration space comparison
application, 68
defined, 66

listing, 66
nesting and hiding, 66-67
statement blocks, 66
switches, 152
variables, 20
visibility, 66
Search method, 78-79
Seconds method, 43
SEHException, 230
select cmdlet, 482
selecting
LINQ query data, 269-271
anonymous types, 270
concatenating data,
269-270
sample application,
270271
XML
attributes, 321
LINQ to XML, 321-322
selection statements, 148
if, 148-150
cascading, 149
mismatched else problem,
149
nesting, 148
sample application, 150
syntax, 148
switches, 150-153
expression values, 151
fall through, 152
listing, 151
sample application,
152-153
scope, 152
sections, 151
syntax, 150-151
semaphores, 467
semicolons (;), 19
server-side validation, 420

517

special directories

set accessors
indexers, 201
properties, 72
SetAttributes method, 299
SetAttributeValue method, 315
SetElementValue method, 315
SetEquals method, 213
Setltem method, 207
sets, 212
class methods, 213
classes, 212
sample application, 214-215
SetValue method, 323
sharing DataTips, 355
shift operators, 47
short type, 37
short-circuit evaluation, 52
ShowDialog method, 375
Sign method, 46
signals, 466
signatures
indexers, 201
methods, 77
Silverlight, 203, 483-484
size
arrays, 196
WPF application grid
rows/columns, 374
Solution Explorer, 26
solutions, 26
saving, 30
viewing, 26
SortDescription structure, 397
SortedDictionary<TKey, TValue>
class, 210-211
SortedList<TKey, TValue> class,
210-211
SortedSet<T> class, 212-213
sorting collection views, 396-397
special directories, 291-292
finding, 291
SpecialFolder values, 291-292

How can we make this index more useful? Email us at indexes@samspublishing.com

518

specialized constructors

specialized constructors, 82-83
SpinLock class, 466
splitting strings, 176-177
Stack<T> class
methods, 215
sample application, 216
stack memory, 452
StackOverflowException, 230
stacks, 215-216
breaking, 240
integer, implementing, 216
Stack<T> class, 215
StackTrace property, 228
standalone applications, 367
standard exceptions, 229-230
standard format strings, 179-182
Days enumeration value
listing, 181
specifiers
defining, 181-182
listing of, 179-181
ToString method, overriding,
182
standard query operator
methods, 279-280
star sizing, 374
starting
Solution Explorer, 26
Visual Studio, 25-26
command section, 26
Recent Projects list, 26
tabbed content area, 26
StartNew method, 471
StartsWith method, 173
starvation, 463
statements
blocks, 19, 66
control flow. See control flow
statements
declaration, 22
defined, 19

goto, 159
iteration, 153
do, 154-155
for, 155-158
foreach, 158-159
while, 153-154
jump, 159
break, 160-161
continue, 161-162
return, 162
lambdas, 282-283
lock, 464
Enter/TryEnter methods,
465
listing, 464-465
lock expressions to avoid,
464
Monitor class, 465
next, 359
selection, 148
if, 148-150
switches, 150-153
styles, 19
using, 454
compiler generated code,
454-455
syntax, 454
whitespace, 19
static classes, 86-87
static constructors, 85
static methods, 75
static variables, 20
Stream class, 300-301
StreamReader class, 304-305
streams
buffered, 303-304
disposing, 295
Stream class, 300-301
StreamWriter class, 304-305
String class, 171-175
StringBuilder class, 177

Append/AppendFormat
methods, 177
capacity, 178
listing, 177
strings, 38, 168
case, 173-174
characters, deleting, 175
comparisons, 173-174
Compare method, 173
CompareOrdinal method,
173
CompareTo method, 173
Contains method, 173
EndsWith method, 173
rules, 173
sample application, 174
StartsWith method, 173
composite formatting,
186-187
listing, 187
syntax, 186-187
concatenation, 176
custom format, 183-186
DateTime instance listing,
183-186
specifiers, 183-186
empty, 170-171
testing, 170
whitespace characters,
170171
interning, 168
joining, 176-177
literals
character escape
sequences, 168-169
listing, 169
verbatim, 168-169
modifying, 174-175
mutable
appending data, 177
characters, replacing, 178
data, adding/deleting, 178

StringBuilder class,
177-178
StringBuilder class listing,
177
number of characters, 171
padding, 175
regular expressions, 187
classes, 189
compatibility, 187
metacharacters, 188
string validation, 189-190
substring matches, 190
splitting, 176-177
standard format, 179-182
Days enumeration value
listing, 181
specifiers, 179-182
ToString method,
overriding, 182
String class, 171
ToString method, 170
type formatting, 178
validation, 189-190
zero-based counting, 172
structures
classes, compared, 119-120,
125-126
common, 120
constructors, 124-125
conversion operators, 122
custom default constructors,
125
declaring, 120
defined, 119
generic, 255
initializing, 125
methods, 120
operator overloading,
120-122
language support, 121
listing of, 121

sample application,
123-124
symmetrical groups,
121-122
properties, 126
public fields, 126
SortDescription, 397
subscribing, events, 132
anonymous methods, 136
button Click event example,
133-134
event handlers, attaching,
132-133
method group inference, 133
user interface control
published, 135-136
substrings, 171-172
creating, 171-172
extracting, 171
IndexOf/LastindexOf
methods, 172
regular expression matches,
190
Subtract method, 43
subtraction operator (-), 48
swallowing exceptions, 234
switches, 150-153
expression values, 151
fall through, 152
listing, 151
sample application, 152-153
scope, 152
sections, 151
syntax, 150-151
symmetric operator overload
groups, 121-122
SymmetricExceptWith method,
213
synchronizing threads, 463
interlocked operations, 466
locks, 463-466

519
targets (attributes)

mutex, 467
reader-writer locks, 467
semaphores, 467
signals, 466
System namespace, 15
System.Collections.Generic
namespace, 15
System.Data namespace, 15
System.Diagnostics namespace,
15
System.Environment.FailFast
namespace, 231
SystemException class, 229
System.Globalization namespace,
15
System.l0 namespace, 15
System.Linq namespace, 16
System.Net namespace, 16
System.Security namespace, 16
System.ServiceModel
namespace, 16
System.Text namespace, 16
System.Web namespace, 16
System.Windows nhamespace, 16
System.Windows.Controls
namespace, 16
System.Windows.Forms
namespace, 16
System.Xml namespace, 16

T

\t escape sequence, 169
tabbed content area (Visual
Studio Start page), 26
Tables property, 331
targets (attributes)
identifying, 430
listing of, 429

How can we make this index more useful? Email us at indexes@samspublishing.com

520

Task class

Task class, 471
Task Parallel Library. See TPL
tasks
creating
explicitly, 470
StartNew method, 471
parallelism, 469-472
exception handling,
471-472
guidelines, 473-474
Invoke method, 470
task creation, 470-471
waiting on tasks, 471
waiting to complete, 471
templates, 399-400
associating with controls, 400
defining, 399-400
ternary operators. See conditional
operators
testing
empty strings, 170
unit tests, 349-350
value equality with generics,
251-252
text
console window, displaying,
29
WPF, 369
text files, reading and writing,
306-307
ReadAllLines method, 306
ReadAllText method, 306
ReadLines method, 307
ReadLine method, 304-305
sample application, 305
WriteAllLines method, 306-307
WriteAllText method, 306-307
WriteLine method, 304-305
Text property, 421
this keyword, 83

threads, 462
concurrency problems, 463
data parallelism, 468
ForEach method example,
468
loop execution, controlling,
468
Parallel class, 468
thread-safe collections,
469-470
disadvantages, 463
managed, 462
multiple, 462
preemptive multitasking, 462
safety, 463
synchronizing, 463
interlocked operations,
466
locks, 463-466
mutex, 467
reader-writer locks, 467
semaphores, 467
signals, 466
task parallelism, 469-472
exception handling,
471-472
Invoke method, 470
task creation, 470-471
waiting on tasks, 471
TPL. See TPL
throw keyword, 231, 239
throwing exceptions, 231
no handlers, 231
rethrowing, 239-240
breaking the stack, 240
listing, 240
timing, 231
wrapped, 240-241
TimeOfDay property, 41
TimeSpan type, 42-43

Today property, 41
ToLowerlnvariant method, 174
tooltips, displaying, 377
ToString method, 170
overriding, 178-179, 182
type formatting, 178-179
TotalDays method, 43
TotalHours method, 43
TotalMilliseconds method, 43
TotalMinutes method, 43
TotalSeconds method, 43
ToUpperinvariant method, 174
TPL (Task Parallel Library), 467
data parallelism, 468
ForEach method example,
468
loop execution, controlling,
468
Parallel class, 468
thread-safe collections,
469-470
parallelization guidelines,
473474
PLINQ
defined, 472
operators, 473
queries, creating, 473
task parallelism, 469-472
exception handling,
471-472
Invoke method, 470
task creation, 470-471
waiting on tasks, 471
tracepoints, 356-357
Trim method, 175
TrimEnd method, 175
TrimExcess method
HashSet<T> class, 213
Queue<T> class, 217
SortedDictionary<TKey,
TValue> class, 211

SortedList<TKey, TValue>
class, 211
SortedSet<T> class, 213
Stack<T> class, 215
TrimStart method, 175
trust but verify philosophy, 98
try keyword, 232
TryCreate method, 44
TryEnter method, 465
TryGetValue method, 211
TryParse method, 44
tuples, 261
classes, 261
sample application, 262
TwoWay data binding, 387
type parameters (generics), 250
constraints, 250-252
default values, 252
multiple, 250
types
anonymous, 270
Biginteger, 45-46
listing, 46
methods, 46
categories, 36-37
comparison, 19
DateTime, 39-42
arithmetic methods, 42
properties, 41-42
default values, 53
defined, 19
disposable, 454
dynamic, 39, 440
COM interoperability, 448
conversions, 442
custom, creating, 445-447
dynamic keyword,
439-440
methods, invoking, 449
overload resolution,
442-443

runtime, 441-442
sample application,
440-441
variables, 440
enumerations, 114
Days, 116-117
defining, 114
flag enumerations,
117-119
listing, 114-115
multiple named values,
115
numeric values, 115-116
operations, 116
sample application,
116-117
underlying types, 116
values, 114
formatting, 178
Guid, 43-44
inference, 254
null, 53
nullable
defined, 54
null-coalescing operator,
54
sample application, 55
syntax, 54
values, 54
pointers, 36
predefined, 36-38
bool, 37-38
byte, 37
char, 37
CLS-compliance, 38-39
decimal, 37-38
double, 37-38
float, 37
implicit conversions, 56
int, 37
long, 37

521

unsubscribing, events

object, 38-39
sample applications,
40-41
sbyte, 37
short, 37
string, 38
uint, 37
ulong, 38
ushort, 38
reference, 19, 36
categories, 36
value type conversions, 54
safety, 247
testing operators, 47
TimeSpan, 42-43
unified type system, 37
URIs
Uri class, 44-45
UriBuilder class, 45
value, 19, 36, 58
var, 39
variant, 39
void, 39

U

uint type, 37

ulong type, 38

unary operators, 47

unboxing operations, 56

underlying types, 116

unexpected error conditions, 232

unified type system, 37

uniform resource identifiers. See
URIs

UnionWith method, 213

unit tests, 349-350

unmanaged code, 8

unsubscribing, events, 136

How can we make this index more useful? Email us at indexes@samspublishing.com

522

upcasting

upcasting, 97
UpdateSourceTrigger property
ValidationRules collection,
402
WPF data binding, 387
updating database records,
340-341
Uri class, 44-45
methods, 44
properties, 45
Uri property, 45
UriBuilder class
listing, 45
properties, 45
URIs (uniform resource
identifiers), 44-45
UserName property, 45
using statement, 454
compiler generated code,
454-455
syntax, 454
UtcNow property, 42
\uxxxx escape sequence, 169

\UXXXXXXXX escape sequence, 169

'/

\v escape sequence, 169

ValidatesOnDataErrors property,
401

ValidatesOnExceptions property,
401

validation, 400-403

AddressBook application, 403

arguments, 230

controls, 420-422
ASPX page, 422
combining, 421

error messages,
summarizing, 421
listing of, 420-421
properties, 421
custom validation rules, 401
strings, 189-190
validation checks, adding,
401
visual feedback, 402
web applications, 420
client-side, 420-421
server-side, 420
validation controls,
420-422
Validator example, 422

ValidationRules property, 401
ValidationSummary control, 421
value parameters, 75

value types, 19, 36

bool, 37-38

byte, 37

char, 37

converting to reference types,

54
boxing/unboxing
operations, 56

explicit conversions, 57
implicit conversions, 56
sample application, 58

decimal, 37-38

double, 37-38

float, 37

int, 37

long, 37

null, 53

nullable
defined, 54
null-coalescing operator,

54

sample application, 55
syntax, 54
values, 54

reference types, compared,
19
sbyte, 37
short, 37
switch expressions, 151
uint, 37
ulong, 38
values
constants, 70
date and time values. See
date and time values
default, 53
enumerations
commas, 114
multiple named values,
115
numeric, 115-116
flag enumerations, 118
generic types, 252
GUIDs, 40-44
incrementing/decrementing,
48
integer minimum, finding
with generics code listing,
248-249
objects, 246-247
with generics application,
249-250
without generics
application, 247-248
without generics code
listing, 246
integers, 45-46
literal, 21-22
nullable types, 54
URIs
Uri class, 44-45
UriBuilder class, 45
XML elements/attributes,
323

Values method, 209
var type, 39
variable windows (Visual Studio
debugger), 352-354
Locals window, 352-353
Watch window, 352-353
variables
capturing, 281
catch handlers, 233
constants, compared, 21
declaring, 20, 22
default values, 53
defined, 20
dynamic types, 440
fields. See fields
instance, 20
iteration, 158
lifetime, 20
local, 20
scope, 20
space, 20
static, 20
variance (generic interfaces), 258-
261
class implementation, 258
contravariance, 258
covariance, 258
extending, 260-261
listing of, 258-259
sample application, 259-260
variant type, 39
verbatim string literals, 168-169
VerifyEmailAddress method
calling, 76
declaring, 74-75
VES (virtual execution system),
9-12
virtual methods, 207
Visual Studio
benefits, 24
debugger, 350

breaking on exceptions,
351
breakpoints, 355-357
Call Stack window,
358-359
compiler errors, 349
DataTips, 354-355
Exception Assistant,
351-352
expression side effects,
353-354
Immediate window, 355
MSDN edition features,
352
next statements, 359
runtime errors, 349
user-provided divisors,
350
stepping through code,
357-358
variable windows,
352-354
visualizers, 350-360
editions, 25
features, 24
overview, 24
projects, 26, 30
Solution Explorer, 26
solutions, 26, 30
Start page, 25-26
command section, 26
Recent Projects list, 26
tabbed content area, 26
visualizers, 350-360
void type, 39

w

\Ww regular expression
metacharacter, 188

523

web applications

\W regular expression
metacharacter, 188
Wait method, 465
Task class, 471
thread signals, 466
WaitAll method, 471
WaitAny method, 471
waiting on tasks, 471
Watch window, 352-353
web applications
accessing, 408
architecture, 408
ASP.NET, 408411
ASPX files, 409
client-side validation,
420-421
CSS, 416-418
data binding, 418-420
embedded code blocks,
419
Global.asax event
handlers, 411
Hello world application,
409
master pages, 414-415
MVC Framework, 408
Page event handlers, 410
server-side validation, 420
validation controls,
420-422
web-based photo viewer
application. See web-
based photo viewer
data validation, 420
client-side, 420-421
server-side, 420
validation controls,
420-422
Validator example, 422
HTTR 408
IIS, 410

How can we make this index more useful? Email us at indexes@samspublishing.com

524

web applications

performance, 408
Visual C# Express edition,
407
web-based photo viewer

application, 411
ASPX editor, 413
CSS, 416-418
data binding, 418-420
default page, 415
HTML, 416
layout, creating, 414-416
layout styling, 416-418
New Project dialog, 412
Properties window, 413

selected element outline, 413

Visual Studio, viewing, 412
while statements, 153-154
listing, 154
sample application, 154
for statements, compared,
156-157
syntax, 153
whitespace
empty strings, 170-171
statements, 19
windows
Call Stack, 358-359
console, 29
Immediate, 355
variable, 352-354
Locals window, 352-353
Watch window, 352-353
WPF (Windows Presentation
Foundation), 364
animation, 369
application model, 366-367
browser-hosted
applications, 367
standalone applications,
367

applications, creating, 370
Collection Editor, 373-374
completed layout, 378-
379

controls, adding, 375

directories, choosing, 377

document outline, 372

event handlers, 375-376

grid row/column
definitions, 374

grid rows/columns,
creating, 373

New Project dialog, 370

Properties window, 372

routed events, 376

selected element outline,
372

ShowDialog extension
method, 375

sizing grid rows/columns,
374

structure, editing, 373

tooltips, displaying, 377

Visual Studio, viewing,
371

XAML bindings, debugging,
377-378

XAML designer, 371-372

binding to collections, 395
collection views, 395-396
current item pointers,

398-399
filtering data, 398
grouping data, 397
INotifyCollectionChanged
interface, 396
INotifyPropertyChanged
interface, 396
photo viewer application
example, 395
sorting data, 396-397

code-behind, 365-366
data binding, 369, 386
components, 386
creating, 387-389
event handler, 389
OneTime, 387
OneWay, 386
OneWayToSource, 387
photo viewer application,
389-390
source object, 388-389
source property, updating,
387
target objects, 386
target properties, 386
TwoWay, 387
XAML application code,
389
data converters, 390
adding to XAML file, 391
creating, 390-391
culture-aware, 393
multivalue, 392-393
multivalue with Converter
parameter, 394
photo viewer application,
394
data templates, 399-400
associating with controls,
400
defining, 399-400
document support, 369
elements, nesting, 368
graphics, 369
layouts, 367-368
default layout controls,
367-368
DockPanel example, 368
label control styles,
380-381
resource dictionaries, 380

style/data template
resources, 380
markup, 364-365
text, 369
validating data, 400-403
AddressBook application,
403
custom validation rules,
401
validation checks, adding,
401
visual feedback, 402
WPFInteropExtensions class, 375
wrapping exceptions, 240-241
Write method
binary files, 301
Stream class, 301
WriteAllBytes method
binary files, 306
File class, 299
WriteAllLines method
File class, 299
text files, 306-307
WriteAllText method
File class, 299
text files, 306-307
WriteLine method, 304-305
write-only properties, 73
writing
binary files, 301-303
listing, 302
sample application,
302-303
WriteAllBytes method, 306
buffered streams, 303-304
code comments, 349
finalizers, 458
text files, 306-307
WriteAllLines method,
306-307

525

XML (Extensible Markup Language)

WriteAllText method,
306-307
WriteLine method,
304-305
unit tests, 349-350

X

XAML (Extensible Application
Markup Language), 364-365
bindings, debugging, 377-378
CollectionViewSource class,
396
data converters, adding, 391
designer, 371
Name attribute, 376
photo viewer application
layout, 378-379
XAttribute class, 314
XBAPs (XAML browser
applications), 367
x:Class attribute, 365
XDocument class, 313
XElement class, 314
navigation properties, 320
SetElementValue/SetAttribute
Value methods, 315
values, retrieving, 316
XML (Extensible Markup
Language), 309
attributes, selecting, 321
comments, 348
DOM, 312-313
creating XML, 314-315
XPath queries, 321
elements/attributes
adding, 324-325
removing, 324

replacing data, 324
values, changing, 323
LINQ to XML, 313
character encoding, 316
creating XML, 314
modification application,
325
selecting XML, 321-322
SetElementValue/SetAttrib
uteValue methods, 315
source XML, transforming,
323
XAttribute class, 314
XDocument class, 313
XElement class, 314
XElement values,
retrieving, 316
XML documents, creating,
316
XName class, 317
XNamespace class,
317-319
XPath queries, 321
namespaces. See LINQ to
XML, namespaces
modifying, 323
names, 317
namespaces, 317
atomization, 319
creating XML, 317-318
declaring, 317
expanded names, 319
prefixes, 318
sample application, 319
reshaped, returning, 322-323
selecting with LINQ to XML,
321-322
tree nodes, navigating
LINQ queries against
XElement class,
320-321

How can we make this index more useful? Email us at indexes@samspublishing.com

526
XML (Extensible Markup Language)

XElement properties, 320
XNode class properties,
319-320
XName class, 317
XNamespace class, 317-319
XNode class, 319-320
XOR logical operator, 47
XPath namespace, 321
XPath queries, 321
XPathEvaluate method, 321
XPathSelectElements method,
321

Y

Year property, 42

y 4

Zero method, 46

	Table of Contents
	Introduction
	Audience and Organization
	Conventions Used in This Book
	Closing Thoughts

	HOUR 3 Understanding Classes and Objects the C# Way
	Object-Oriented Programming
	Component-Oriented Programming
	Classes in C#
	Scope and Declaration Space
	Nested Classes
	Partial Classes
	Static Classes
	Object Initializers
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

