
CHAPTER 59

Testing Code with Unit
Tests, Test-Driven

Development, and Code
Contracts

IN THIS CHAPTER

. Testing Code with Unit Tests

. Introducing Test-Driven
Development

. Understanding Code Contracts

When you purchase new software, you expect that the
software works. I’m pretty sure you don’t like applications
you buy to cause unexpected crashes or errors due to appar-
ently unhandled situations. The same is for users purchas-
ing your software or for colleagues in your company
performing their daily work through your applications, so
you need to pay particular attention to check if and how
your code works. Although implementing error handling
routines is fundamental, another important moment in
application development is testing code. Testing allows
checking for code blocks’ correct behavior under different
situations, and it should be the most deep possible. In big
development teams, testers play an important role, so they
need to have good tools for successfully completing their
work. In this chapter you learn about the Visual Studio
tools for testing code, starting from unit tests until the new
Code Contracts library, passing through the Test-Driven
Development approach. You also see how such tooling can
be successfully used even if you are a single developer.

Testing Code with Unit Tests
Unit tests enable testing code portions outside the applica-
tion context to check if they work correctly so that testing
is basically abstracted from the application. Typically you
create a test project, where there are classes and methods
that encapsulate and isolate the original code so that you
can test it in a kind of isolated sandbox without editing the

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1251

1252 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

source project. Visual Studio 2010 is the ideal environment for performing unit tests, so
this section explains how you can accomplish this important task.

Creating Unit Tests

First, you need some code to test. Imagine you have a Rectangle class that exposes methods
for math calculations on a rectangle’s perimeter and area. Create a new class library, name it
UnitTestDemo; then rename Class1.vb as Rectangle.vb and write the following code:

Class Rectangle

Shared Function CalculatePerimeter(ByVal sideA As Double,

ByVal sideB As Double) As Double

Return (sideA * 2) + (sideB * 2)

End Function

Shared Function CalculateArea(ByVal sideA As Double,

ByVal sideB As Double) As Double

Return sideA * sideB

End Function

End Class

Imagine you want to test both methods to check if they work correctly but inside an
isolated environment, abstracted from the original project. In the code editor select both
methods; then right-click and select Create Unit Tests. This launches the Create Unit
Tests dialog, where you can select objects to add to the test project. Expand the
UnitTestDemo namespace and select both methods, as demonstrated in Figure 59.1.

FIGURE 59.1 Choosing methods to be added to unit tests.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1252

1253Testing Code with Unit Tests

When you click OK, you will be asked to specify a new test project name. For this example
leave unchanged the default selection and go ahead. Visual Studio will also raise a
warning message because in this case we are creating a unit test for a class marked as
Friend, asking if you want to mark the test project with the InternalsVisibleTo attribute.
You can click Yes in order to decorate the project with such an attribute. When Visual
Studio finishes generating the new project, you notice a RectangleTest test class whose
content is reported in Listing 59.1.

LISTING 59.1 The Newly Generated Test Class

Imports Microsoft.VisualStudio.TestTools.UnitTesting

Imports UnitTestingDemo

‘’’<summary>

‘’’This is a test class for RectangleTest and is intended

‘’’to contain all RectangleTest Unit Tests

‘’’</summary>

<TestClass()> _

Public Class RectangleTest

Private testContextInstance As TestContext

‘’’<summary>

‘’’Gets or sets the test context which provides

‘’’information about and functionality for the current test run.

‘’’</summary>

Public Property TestContext() As TestContext

Get

Return testContextInstance

End Get

Set(ByVal value As TestContext)

testContextInstance = Value

End Set

End Property

#Region “Additional test attributes”

‘

‘You can use the following additional attributes as you write your tests:

‘

‘Use ClassInitialize to run code before running the first test in the class

‘<ClassInitialize()> _

‘Public Shared Sub MyClassInitialize(ByVal testContext As TestContext)

‘End Sub

‘

‘Use ClassCleanup to run code after all tests in a class have run

5
9

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1253

1254

‘<ClassCleanup()> _

‘Public Shared Sub MyClassCleanup()

‘End Sub

‘

‘Use TestInitialize to run code before running each test

‘<TestInitialize()> _

‘Public Sub MyTestInitialize()

‘End Sub

‘

‘Use TestCleanup to run code after each test has run

‘<TestCleanup()> _

‘Public Sub MyTestCleanup()

‘End Sub

‘

#End Region

‘’’<summary>

‘’’A test for CalculateArea

‘’’</summary>

<TestMethod()> _

Public Sub CalculateAreaTest()

Dim sideA As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim expected As Double ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculateArea(sideA, sideB)

Assert.AreEqual(expected, actual)

Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

‘’’<summary>

‘’’A test for CalculatePerimeter

‘’’</summary>

<TestMethod()> _

Public Sub CalculatePerimeterTest()

Dim sideA As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 0.0! ‘ TODO: Initialize to an appropriate value

Dim expected As Double ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculatePerimeter(sideA, sideB)

Assert.AreEqual(expected, actual)

Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

End Class

CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1254

1255Testing Code with Unit Tests

5
9

For code in Listing 59.1, there are some aspects to consider:

. The TextContext object, known as context, represents the isolated box where unit
tests are executed.

. A test class is decorated with the TestClass attribute while test methods are deco-
rated with the TestMethod attribute.

. By default Visual Studio provides result comparisons via the Assert.AreEqual
method that checks for parameters’ equality, but you are not limited to this particu-
lar operation. You can choose which of the Assert class static methods is the most
appropriate for your needs.

. Test methods cannot be shared while they must be public, accept no parameter, and
return no value. This is the reason why values must be initialized within method
bodies. By default Visual Studio assigns zero or null values that you have to replace
with valid ones.

Also notice that the Assert.Inconclusive statements are placed as a way for communicat-
ing that the method implementation has not been completed yet, and they will be
commented before running tests. The idea of unit testing is comparing the expected result
with the actual result of an action. With that said, first comment the
Assert.Inconclusive statements; then replace the methods’ code as follows:

<TestMethod()> _

Public Sub CalculateAreaTest()

Dim sideA As Double = 10 ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 20 ‘ TODO: Initialize to an appropriate value

Dim expected As Double = 2000 ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculateArea(sideA, sideB)

Assert.AreEqual(expected, actual)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

<TestMethod()> _

Public Sub CalculatePerimeterTest()

Dim sideA As Double = 10 ‘ TODO: Initialize to an appropriate value

Dim sideB As Double = 20 ‘ TODO: Initialize to an appropriate value

Dim expected As Double = 60 ‘ TODO: Initialize to an appropriate value

Dim actual As Double

actual = Rectangle.CalculatePerimeter(sideA, sideB)

Assert.AreEqual(expected, actual)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)

End Sub

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1255

1256

FIGURE 59.2 Viewing unit test results.

Notice that the first method voluntarily causes an error, to demonstrate how unit testing
works. The expected value is in fact greater than it should be. At this point you are ready
to run both unit tests.

Running Unit Tests

When you create unit tests, Visual Studio automatically shows and anchors the Test Tools
toolbar that contains buttons for executing, debugging, and managing unit tests. You can
choose to run a single unit test or multiple ones. For the current example, click the Run
All Tests in Solution button. When all unit tests complete, the Test Results tool window
shows a report about test success or failures. Figure 59.2 shows how such a window looks
for the current example.

CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

Notice how the CalculateAreaTest method failed while CalculatePerimeterTest
succeeded. The Error Message column provides details on the occurred error so that you
can fix it. In this case the equality check failed because the method returned a result
different from the expected one. You can also get detailed failure information, by clicking
the Test Run Failed hyperlink. Figure 59.3 shows the failure summary, where you can get
information on the test name, server, and timestamp.

NOTE ON FIXING ERRORS

In a typical real-life scenario, you will not edit the expected result to make a unit test
work, whereas you will instead fix errors in the code. The example proposed in this
chapter is a demo scenario, and its purpose is explaining how unit test works. This is
the reason why here you are about to fix the expected result, but in real-world applica-
tions the expected result will remain unvaried.

In the CalculateAreaTest method, replace the expected declaration as follows:

Dim expected As Double = 200

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1256

1257

FIGURE 59.3 Viewing the test failure summary.

Testing Code with Unit Tests

5
9

Now run again both unit tests. At this point both tests pass because in both cases expected
value and actual value are equal, as demonstrated in Figure 59.4.

Enabling Code Coverage

Visual Studio enables getting information on the amount of code that was subject to the
actual test. This can be accomplished by enabling a feature known as Code coverage. To
enable it, follow these steps:

1. Select the Test, Edit Test Settings, Local command. This enables editing the current
test configuration;

2. When the Test Settings dialog appears, select Data and Diagnostics; then flag the
Code Coverage option in the bottom-right part, as shown in Figure 59.5;

FIGURE 59.4 Both unit tests passed.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1257

1258 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.5 Enabling code coverage.

FIGURE 59.6 Examining code coverage results.

3. Click Configure. When the Code Coverage Details dialog appears, select the test
assembly, which in this case is TestProject1.dll.

Now rerun all unit tests. When completed, the Code Coverage Results dialog shows infor-
mation on collected results. Figure 59.6 shows the results.

You can expand the results to get information on code coverage percentage for single
members. For example, both test methods have a 100% coverage percentage against a
total 77.78% for the entire project. If you switch to the test code file you notice that
Visual Studio automatically highlights lines of code that were subject to test.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1258

1259Testing Code with Unit Tests

5
9

Unit Tests and IntelliTrace

In Chapter 58, “Advanced Analysis Tools,” you discovered IntelliTrace, and you learned
how the historical debugger can be helpful in debugging code due to its in-depth analysis
features. IntelliTrace can also be used for unit test failures to get even more detailed infor-
mation on occurred exceptions. For this, you first need to enable IntelliTrace in the testing
environment, so select the Test, Edit Test Settings, Local command. When the settings
dialog appears, select IntelliTrace, as shown in Figure 59.7.

Now provide the following bad value in the CalculateAreaTest method so that unit
test will fail:

Dim expected As Double = 2000

Run the unit test again, at this point you get a test failure. Simply double-click the error
message, and you get detailed information on the exception, as shown in Figure 59.8.

Now click on the log file hyperlink shown below the Collected Files item. This launches
the IntelliTrace log analysis tool (as shown in Figure 59.9), where you can analyze
collected information according to what you already learned about this in Chapter 58.

Notice how you can get detailed information on the stack trace related to the failed asser-
tion in the test code.

FIGURE 59.7 Enabling IntelliTrace for unit tests.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1259

1260 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.8 Detailed information provided by IntelliTrace about the failed unit test.

FIGURE 59.9 Analyzing IntelliTrace log for unit test failures.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1260

1261Introducing Test-Driven Development

5
9

Introducing Test-Driven Development
Test-Driven Development (also known as TDD or Test-Driven Design) is a programming
approach in which developers create applications by first writing unit tests and then
writing the actual code after the unit test passes. This particular approach helps writing
better code, because you ensure that it will work via unit tests, but it is also a life philoso-
phy so that you need to have a change of mind when approaching TDD. Basically TDD is
structured into three main moments:

. Red: The developer generates a new unit test from scratch, so that it will typically
fail. This is the reason why it’s called Red.

. Green: The developer focuses on writing code that makes the unit test work and
pass. As you saw in the previous section, passing unit tests return a green result.

. Refactor: This is the moment in which the developer reorganizes code, moving it
from the unit test to the actual code system in the application project, making the
code clearer and fixing it where necessary.

This chapter is not intended to be a deep discussion on TDD, whereas it is instead
intended to be a guide to Visual Studio 2010 instrumentation for Test-Driven
Development. Particularly you see how the Generate from Usage new feature discussed in
Chapter 18, “‘Generate from Usage’ Coding Techniques,” is the main help you have in
TDD with Visual Basic 2010. Before going on, it is a good idea to enable test options that
enable double-clicking a test result failure in the Test Results dialog to be redirected to the
code that threw errors. Follow these steps:

1. Go to Tools, Options and select the Test Tools, Test Execution subfolder.

2. Enable the Double Clicking Failed or Inconclusive Unit Test Result Displays the
Point of Failure in Test item. Figure 59.10 shows how to accomplish this.

3. Click OK to close the dialog.

At this point you can create a test project where you can launch your unit tests.

Creating a Test Project

The first step in the Test-Driven Development approach is creating a Test Project related to
the actual application project. Follow these steps:

1. Create a new class library named Rectangle and remove the Class1.vb default file.

2. Add a new test project to the solution. To accomplish this, select File, Add, New
Project, and then in the Test Projects folder, select the Test Documents sub node,
finally select the Test Project template. Figure 59.11 shows how to find and select
the template in the New Project dialog.

3. Add a new class to the test project and name it RectangleTest.vb. This is basically
the place where you write unit tests.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1261

1262 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.10 Setting test execution options.

FIGURE 59.11 Creating a new test project.

The new class is the place where you write and run unit tests. Now imagine you want to
test a Rectangle class exposing Width and Height properties and methods for math calcu-
lations such as the perimeter. The class will be exposed by the actual project at the end of
the TDD approach, at the moment you need to test class and methods in the test project.
To accomplish this, the first thing is marking the test class with the
Microsoft.VisualStudio.TestTools.UnitTesting.TestClass attribute. Fortunately the

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1262

1263Introducing Test-Driven Development

5
9

namespace is automatically imported by Visual Basic when you generate a test project, so
you do not need to write this import manually. This is therefore how the new class looks:

<TestClass()>

Public Class RectangleTest

End Class

Basically the TestClass attribute makes a class recognizable by Visual Studio as a place for
unit tests, which the next subsection covers.

Creating Unit Tests

As you can recap from the “Testing Code with Unit Testing” section, unit tests are
methods allowing tests against small, isolated portions of code. To be recognized as unit
tests, such methods must be decorated with the
Microsoft.VisualStudio.TestTools.UnitTesting.TestMethod attribute. Continuing our
example and having the requirement of implementing a method for calculating the
perimeter for rectangles, this is how the method stub appears:

<TestMethod()>

Sub CalculatePerimeter()

End Sub

Now go into the method body and write the following line:

Dim rect As New Rectangle

The Rectangle type is not defined yet, so Visual Studio underlines the declaration by
throwing an error. Click on the error options pop-up button and click Generate New Type,
as shown in Figure 59.12.

This launches the Generate New Type dialog, where you can select the Rectangle project
in the Location combo box. See Figure 59.13 for details.

WHY GENERATE A TYPE IN THE PRODUCTION PROJECT?

You might ask why the preceding example showed how to add the new type to the actu-
al project instead of the test one. In a demo scenario like this, adding a new type to
the test project would be useful, but in real life you might have dozens of new types to
add and then moving all types from a project to another, including code edits, can be
less productive. The illustrated approach keeps the benefits of TDD offering a way of
implementing types directly in the project that will actually use them.

At this point you will need to replace the following declaration:

Dim rect As New Rectangle

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1263

1264 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.12 Choosing a correction option.

FIGURE 59.13 Generating a new Rectangle type.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1264

1265Introducing Test-Driven Development

5
9

with this one, including the namespace:

Dim rect As New Rectangle.Rectangle

Now type the following line of code:

rect.Width = 150

The Width property is not exposed yet by the Rectangle class, so Visual Studio underlines
it as an error. As for the class generation, click the error correction options and select the
Generate Property Stub for ’Width’ choice, as shown in Figure 59.14.

This adds a property to the Rectangle class. Now write the following line of code and
repeat the steps previously shown:

rect.Height = 100

Now complete the method body by writing the following lines:

Dim expected = 500

FIGURE 59.14 Generating a property stub.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1265

1266 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.15 Running the new unit test fails due to an exception.

Dim result = rect.CalculatePerimeter

Assert.AreEqual(expected, result)

Basically you have an expected result (notice I’m using type inference) and an actual result
returned by the CalculatePerimeter method. This method does not exist yet, so use the
Generate from Usage Feature to add a new method stub to the Rectangle class. Now run
the unit test and it will fail as expected, being in the Red moment of TDD, as demon-
strated in Figure 59.15.

Basically the unit test fails because the current method definition for CalculatePerimeter
is the following:

Function CalculatePerimeter() As Object

Throw New NotImplementedException

End Function

So edit the method as follows, to make it return a more appropriate type and perform the
required calculation:

Function CalculatePerimeter() As Integer

Return (Width * 2) + (Height * 2)

End Function

Now run again the unit test and it will pass. You have thus successfully completed the
Green phase of TDD, and now you can now move to the final Refactor step.

Refactoring Code

When your unit tests all pass, it is time to reorganize code. For example, if you take a look
at the Rectangle class, you notice that the Generate from Usage Feature generated
objects of type Integer, and this is also the reason why the CalculatePerimeter method
has been forced to return Integer. Although correct, the most appropriate type for math
calculations is Double. Moreover, you might want to consider writing a more readable
code in the method body. After these considerations, the Rectangle class could be reorga-
nized as follows:

Public Class Rectangle

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1266

1267Understanding Code Contracts

5
9

Public Property Width As Double

Public Property Height As Double

Public Function CalculatePerimeter() As Double

Dim sumOfWidth As Double = Me.Width * 2

Dim sumOfHeight As Double = Me.Height * 2

Dim perimeter As Double = sumOfHeight + sumOfWidth

Return perimeter

End Function

End Class

In this way you have working code that uses more appropriate types and that is more
readable.

Understanding Code Contracts
Code Contracts is a new library in the .NET Framework 4.0 offered by the
System.Diagnostics.Contract namespace and enables checking, both at runtime and
compile time, if the code is respecting specified requirements. This is something that you
will often hear about as Contracts by design. The idea is that code needs to respect speci-
fied contracts to be considered valid. There are different kinds of contracts, known as
preconditions (what the application expects), post-conditions (what the application needs
to guarantee), and object invariants (what the application needs to maintain). We cover
all of them in next subsections. At the moment it is important to understand some other
concepts. Code contracts are a useful way for testing code behavior and this can be
accomplished both at runtime (runtime checking) and compile time (static checking).
Runtime checking needs the code to be executed and is useful when you cannot predict
some code values; for example the application needs the user to enter some values that
will be then validated; at this point you can take advantage of contracts for implementing
validation rules. Static checking can be useful if you have hard-coded variable values and
you need to check if they are contract-compliant. Both checking methods can be used
together and can be set in the Visual Studio IDE as explained in the next sections.

Setting Up the Environment

The Code Contracts library is part of the .NET Framework 4.0, so you do not need to install
anything more to use it in code; there are some components that you need to install sepa-
rately to access contracts settings in the Visual Studio IDE. So, before going on reading this
chapter, go to the following address: http://msdn.microsoft.com/en-us/devlabs/dd491992.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1267

1268 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

FIGURE 59.16 Accessing code contracts settings.

aspx. From the DevLab site download the Code Contracts tools in the most appropriate
version for you. (For example the VSTS Edition is intended to work with Visual Studio
2010 Ultimate.) When installed, you can access design-time settings for code contracts.

Setting Contracts Properties

You set code contracts properties by first opening My Project and then clicking the Code
Contracts tab, as shown in Figure 59.16.

Notice how you can enable general settings, such as runtime checking and static checking,
and specific settings for both profiles. Particularly, for runtime checking you should leave
the default Full selection if you have both preconditions and post-conditions. If you want
to enable static checking, too, for compile time contracts checking, by default the Check
in Background option is also selected. This enables the background compiler to check for
contracts violations and send error messages to the Errors tool window. If this option is
unselected, eventual error messages will be listed at the end of the build process.

TIP

If you remove the flag on Assert on Contract Failure, instead of an error dialog showing
details about the violation, the control will be returned to the Visual Studio code editor
that will break at the line of code that violated the contract.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1268

1269Understanding Code Contracts

5
9

The next examples show both preconditions and post-conditions, so leave unchanged the
default settings. Before getting hands on the code, you should read a little about tools that
enable Visual Studio to integrate and work with contracts.

Tools for Code Contracts

When you use code contracts, the first requirement is the System.Diagnostics.Contracts
namespace, exposed by the Mscorlib.dll assembly. By the way, this is not enough to make
your code take advantage of contracts. Although you never see this, Visual Studio invokes
behind the scenes some command-line tools. This subsection provides basic information
on these tools and on their purpose.

The Binary Rewriter
As you know, when you compile a .NET executable, the file is made of metadata and
Intermediate Language. When you use contracts, especially for runtime checking, the
Intermediate Language within an executable needs to be modified to recognize contracts.
The edits are performed by the CCrewrite.exe tool that injects the appropriate code for
contracts in the appropriate place into your assembly.

The Static Checker
The static checker is represented by the CCCheck.exe tool and provides Visual Studio the
capability of performing static analyses and checks for contracts violations without the
need of executing code; a typical scenario is the compilation process.

Now that you have basic knowledge of the code contracts system, it is time to write code
and understand how contracts work.

Preconditions

You add preconditions contracts to tell the compiler that the code can be executed only if
it respects the specified contract. Generally preconditions are useful replacements for
custom parameters validation rules. For example, consider the following simple method
that multiplies two numbers:

Function Multiply(ByVal first As Double,

ByVal second As Double) As Double

If first < 0 Or second < 0 Then

Throw New ArgumentNullException

Else

Return first * second

End If

End Function

Inside the method body, the code checks for valid parameters; otherwise, it throws an
exception. This is common, but code contracts provide a good way, too. The preceding
method could be rewritten with code contracts as follows:

Function Multiply(ByVal first As Double,

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1269

1270 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

ByVal second As Double) As Double

Contract.Requires(first > 0)

Contract.Requires(second > 0)

Return first * second

End Function

So you just invoke the Contract.Requires method for evaluating a Boolean condition that
will be accepted only when evaluated as True. Now consider the following Rectangle class:

Class Rectangle

Property Width As Double

Property Height As Double

Function CalculatePerimeter() As Double

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

Sub New(ByVal width As Double, ByVal height As Double)

Me.Width = width

Me.Height = height

End Sub

End Class

The CalculatePerimeter instance method takes no arguments and performs calculations
on instance properties but does not check for valid values. With regard to this you can
take advantage of the Contract.Requires method that specifies a condition allowing the
code to be considered valid if the condition is evaluated as True. For example, consider
the following reimplementation of the method:

Function CalculatePerimeter() As Double

Contract.Requires(Me.Height > 0)

Contract.Requires(Of ArgumentOutOfRangeException) _

(Me.Width > 0)

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

In this case the contract requires that the Height property is greater than zero; otherwise a
runtime error is thrown. You instead use Contract.Requires(Of T) when you want to
throw a specific exception when the contract is violated. The above example throws an

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1270

1271Understanding Code Contracts

5
9

FIGURE 59.17 The exception thrown when the code violates a precondition.

ArgumentOutOfRangeException if the Width property is less than zero. For example
consider the following code that creates an instance of Rectangle but violates the contract:

Dim r As New Rectangle(0, 80)

Console.WriteLine(r.CalculatePerimeter)

When you run this code, the runtime throws an ArgumentOutOfRageException, as shown
in Figure 59.17, due to an invalid Width value.

Preconditions are thus useful when you want to validate code elements before they are
invoked or executed. The next section discusses post-conditions instead.

Post-Conditions

A post-condition is a contract that is checked after code is executed and is basically used
to check the result of some code execution. Continuing with the previous example, you
might want to check that the CalculatePerimeter method produces a value greater than

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1271

1272 CH 59 Testing Code with Unit Tests, Test-Driven Development, and Code Contracts

zero before returning the result. This kind of post-condition is accomplished via the
Contracts.Ensures method, as demonstrated in the following snippet:

Function CalculatePerimeter() As Double

Contract.Ensures(Contract.Result(Of Double)() > 0)

Dim result = (Width * 2) + (Height * 2)

Return result

End Function

Also notice how Ensures invokes Contract.Result(Of T). This is basically the representa-
tion of the code result, and T is nothing but the expected type, which in this case is
Double. This line of code must be placed before the code is executed and the compiler can
link the actual result with the contract evaluation.

EXCEPTIONAL POST-CONDITIONS

The Contract class also provides an EnsuresOnThrow(Of TException) method that
checks for the condition only when the specified exception is thrown. Generally this
approach is discouraged, and you should use it only when you have complete under-
standing of what kind of exceptions your method could encounter.

Old Values
You can refer to values as they existed at the beginning of a method by using the
Contract.OldValue(Of T) method. For example, the following code ensures that a hypo-
thetical value variable has been updated:

Contract.Ensures(value) = Contract.OldValue(value) + 1)

Invariants

Invariants are special contracts that ensure an object is considered valid during all its life-
time. Invariant contracts are provided inside one method decorated with the
ContractInvariantMethod attribute that affects all members in the enclosing class. Only
one invariant method can be declared inside a class, and typically it should be marked as
Protected to avoid risk of calls from clients. The method is by convention named
ObjectInvariant (although not mandatory) and is used instead of preconditions and post-
conditions. The following code snippet provides an example:

<ContractInvariantMethod()>

Protected Sub ObjectInvariant()

Contract.Invariant(Me.Width > 0)

Contract.Invariant(Me.Height > 0)

End Sub

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1272

1273Summary

5
9

Simply this code establishes that during the entire lifetime of the Rectangle object, both
Width and Height properties must be greater than zero so that they can be considered in a
valid state.

Assertions and Assumptions

The Contract class provides an Assert method that is used for verifying a condition at a
particular point in the program execution. Typically you use it as follows:

Contract.Assert(Width > 0)

There is also another method named Assume, which works exactly like Assert but is used
when static verification is not sufficient to prove the condition you are attempting to check.

Contract Events

The Contract class exposes a ContractFailed event that is raised when a condition is
violated and that you can handle to get detailed information. The following sample event
handler shows how to collect violation information:

Private Sub Contract_ContractFailed(ByVal sender As Object,

ByVal e As ContractFailedEventArgs)

Console.WriteLine(“The following contract failed: {0}, {1}”,

e.Condition, e.FailureKind.ToString)

End Sub

The ContractFailedEventArgs.Condition property is a string storing the condition while
the ContractFailedEventArgs.FailureKind is an enumeration offering the failure kind
(for example, Precondition, Invariant, and so on).

Summary
This chapter illustrated the Visual Studio instrumentation and libraries about testing appli-
cations. The first discussion was about unit testing, a technique used for checking if code
blocks work outside the application context, inside a sandbox. For this you saw how test
projects work and how to enable code coverage. The last topic in the unit test discussion
was about IntelliTrace, useful for unit tests debugging. The second discussion of the
chapter was about Test-Driven Development, a programming approach in which develop-
ers write their software by starting by writing unit tests. Particularly you saw Visual Studio
2010’s support for TDD, with special regard of the Generate from Usage feature. The final
part of this chapter was dedicated to Code Contracts, a new library in the .NET Framework
4 that enables writing code in the contract-by-design fashion and that is supported by the
System.Diagnostics.Contracts namespace and the Contract class.

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1273

59_0672331004_ch59.qxp 5/3/10 4:12 PM Page 1274

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

