
CHAPTER 58

Advanced Analysis Tools

IN THIS CHAPTER

. Introducing Analysis Tools

. Performing Code Analysis

. Calculating Code Metrics

. Profiling Applications

. IntelliTrace, the Historical
Debugger

. Generating Dependency GraphsWriting code is just one part of the developer life. There
are so many other aspects to consider in producing high-
quality applications. For example, if you produce reusable
class libraries, you must ensure that your code is compliant
with Common Language Specification, and this requires
deep analysis. Another key aspect is performance. If you
produce a great application with the most desired function-
alities but with poor performance, perhaps your customer
will prefer a faster and less-consuming application even if it
has a minor number of features. Continuing from its prede-
cessors, Visual Studio 2010 offers a number of integrated
tools for analyzing code and performance to improve your
applications’ quality. It is worth mentioning that most of
the previously existing tools have been significatly
enhanced due to the WPF-based architecture of the IDE. In
this chapter you learn how to take advantage of Visual
Studio 2010’s integrated analysis tools for writing better
applications.

VISUAL STUDIO SUPPORTED EDITIONS

Analysis tools are available only in some Visual Studio
2010 editions. To complete tasks explained in this
chapter, you need at least Visual Studio 2010
Premium or the Visual Studio 2010 Ultimate that is
required for IntelliTrace.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1223

1224 CHAPTER 58 Advanced Analysis Tools

Introducing Analysis Tools
Visual Studio 2010 offers the following analysis tools, which can help you produce high-
quality applications:

. Code Analysis, which analyzes code for compliance with Microsoft coding rules

. Code Metrics, which returns statistic results and analyzes code maintainability
according to specific indexes;

. Profiler, which analyzes application performance and suggests solutions for solving
problems

. IntelliTrace, formerly known as Historical Debugger, which allows keeping track of
every single event and exceptions happening during the entire application lifetime

In this chapter you learn to take advantage of the listed tools for improving quality in
your code.

Performing Code Analysis
Earlier in this book you learned about Common Language Specification, learning that it is
a set of common rules and guidelines about writing code that can be shared across differ-
ent .NET languages favoring interoperability and that is considered well designed for the
.NET Framework. In some cases it can be hard ensuring that all your code is CLS-compli-
ant, especially when you have large projects with tons of lines of code. To help you write
better and CLS-compliant code, Microsoft produced a code analysis tool named FxCop
that analyzes compiled assemblies for non-CLS-compliant code and that reports sugges-
tions and solutions for solving errors. Although free, FxCop is an external tool and is
bound to developers using Visual Studio editions such as Express or Professional.

DOWNLOADING FXCOP

If you do not have Visual Studio Ultimate but want to try the code analysis features,
you can check out FxCop, which is available on the MSDN Code Gallery at http://code.
msdn.microsoft.com/codeanalysis. Generally all concepts described in this section are
available in FxCop, too.

Fortunately, the Ultimate edition offers an integrated version of the code analysis tool that
you can invoke on your project or solution directly within the IDE; moreover you can
customize the code analysis process by setting specific rules. Before examining available
rules, it is a good idea to create a simple project for demonstrating how code analysis
works, so create a new class library project in Visual Basic 2010. When the code editor is
ready, rename the Class1 file to HelperClass and write the code shown in Listing 58.1,
which attempts defining a CLS-compliant class but that makes several violations to the
Microsoft rules, for which I give an explanation for solving later in this section.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1224

1225Performing Code Analysis

LISTING 58.1 Writing a Simple non-CLS-Compliant Class Library

<CLSCompliant(True)>

Public Class HelperClass

Private CustomField As String

Public Property customResult As String

‘Just a demo function

Public Function doubleSum(ByVal FirstValue As Double,

ByVal SecondValue As Double) As Double

Return FirstValue + SecondValue * 2

End Function

End Class

For rules, it is worth mentioning that Microsoft divides guidelines in writing code into the
rules summarized in Table 58.1.

5
8

TABLE 58.1 Microsoft Code Analysis Rules

Rule name Description

Microsoft.Design Determines if assemblies contain well-designed objects or if the
assembly definition is CLS-compliant

Microsoft.Globalization Determines if globalization techniques are well implemented

Microsoft.Interoperability Determines if the code makes correct usage of COM interoperability

Microsoft.Maintainability Checks for code maintainability according to Microsoft rules

Microsoft.Mobility Checks for timer and processes correct implementation

Microsoft.Naming Determines if all identifiers match the CLS rules (such as
public/private members, method parameters and so on)

Microsoft.Performance Checks for unused or inappropriate code for compile time and runtime
performances from the CLR perspective

Microsoft.Portability Determines if the code is portable for invoked API functions

Microsoft.Reliability Provides rules for a better interaction with the Garbage Collector

Microsoft.Security Provides security-related rules sending error messages if types and
members are not considered secure

Microsoft.Usage Determines if a code block correctly invokes other code

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1225

1226 CHAPTER 58 Advanced Analysis Tools

Performing code analysis does not require all the mentioned rules to be checked. You can
specify only a subset of preferred rules or specify the complete set. To specify the rules sets
involved in the code analysis, follow these steps:

1. Open My Project and click on the Code Analysis tab. Figure 58.1 shows how the
designer looks

2. Expand the Run This Rule Set combo box. You get a list of available rule sets with an
accurate description for each set. By default, the offered set of rules is Microsoft
Minimum Recommended Rules. Replace it by selecting Microsoft All Rules that
includes all sets listed in Table 58.1 and that is the most accurate. To get detailed
information on each rule set, simply click Open. Figure 58.2 shows how you can
browse rules available in the selected set, getting summary information for each rule,
and specifying how you want to get help on violations (for example, online or offline)

3. Select the Analyze, Run Code Analysis command and wait for a few seconds until
the building and code analysis process is completed. When ready, Visual Studio
shows a report listing all violations to coding rules encountered in the project. The
report is shown in Figure 58.3.

Each violation message includes the violation ID and a description that can help you fix
the error. In most cases violations are interpreted by the IDE as warnings, but in the code

FIGURE 58.1 The Code Analysis designer.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1226

1227Performing Code Analysis

5
8

FIGURE 58.2 Browsing rule sets.

FIGURE 58.3 Report from the code analysis tool.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1227

1228 CHAPTER 58 Advanced Analysis Tools

analysis designer you can modify this behavior by setting what violations must be notified
as breaking errors. Also notice how assembly-level violations do not include the line of
code to be fixed, whereas code-level violations do. In this case you simply double-click the
error message to be immediately redirected to the line of code to be fixed.

GETTING ERROR HELP

There are hundreds of Microsoft rules, so summarizing all of them in this book is not
possible. You can get detailed information on each violation (and on how you solve the
violation for each) by simply right-clicking the error message and selecting Show Error
Help from the pop-up menu.

At this point we can begin fixing violations. It is worth mentioning that there can be situ-
ations in which violations cannot be fixed due to particular scenarios. For example, the
first violation in our example (CA1020) indicates that we should merge the current type
into an existing namespace, because a well-formed namespace contains at least five
members. Due to our demo scenario, we can ignore this violation that is nonbreaking. The
next error message (CA2210) indicates that the assembly must be signed with a strong
name. I described strong names in Chapter 53, “Understanding the Global Assembly
Cache,” so follow those instructions to add a strong name file to the library. I named the
strong name file as TestCode.pfx providing the TestCode password. The next violation
(CA1014) requires the assembly to be marked as CLS-compliant. To accomplish this, click
the Show All Files button in Solution Explorer, expand My Project and add the following
line to the AssemblyInfo.vb file:

<Assembly: CLSCompliant(True)>

The next violation (CA1824) indicates that a neutral-language resource should be supplied
to the assembly. Because you have the AssemblyInfo.vb file already open, write the
following line:

<Assembly: NeutralResourcesLanguageAttribute(“en-US”)>

You could also set this property via the Assembly Information dialog from the Application
tab in My Project. With this step, all assembly level violations were fixed. Now it’s time to
solve code-level violations. The CA1823 violation suggests that there is a field named
CustomField that is never used and that, because of this, should be removed to improve
performance. Now, remove the following line of code:

Private CustomField As String

The next step is to solve three CA1709 violations that are all about members naming. We
need to replace the first letter of the doubleSum method with the uppercase and the first
letter of both arguments with lowercase. This is translated in code as follows:

Public Function DoubleSum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1228

1229Performing Code Analysis

NAMING CONVENTIONS

We discussed naming conventions in Chapter 7, “Class Fundamentals,” with regard to
methods, method arguments, and properties, so refer to that chapter for details.

There is also another naming convention violation to be fixed on the customResult

property that must be replaced with CustomResult. The last required fix is on perfor-
mance (CA1822 violation). The code analysis tool determines that the DoubleSum method
never invokes the class constructor; therefore, it suggests to mark the method as Shared

or to invoke the constructor. In this particular situation the method can be marked as
Shared like this:

Public Shared Function DoubleSum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

In this particular case we do not need an instance method. For your convenience all edits
are available in Listing 58.2 (except for assembly level edits).

LISTING 58.2 Fixing Errors Reported by the Code Analysis Tool

<CLSCompliant(True)>

Public Class HelperClass

‘Private CustomField As String

Public Property CustomResult As String

Public Shared Function Sum(ByVal firstValue As Double,

ByVal secondValue As Double) As Double

Return firstValue + secondValue

End Function

End Class

If you now run the code analysis tool again, you notice that only the CA1020 design rule
is still reported (the one on merging types into an existing namespace that we decided not
to fix due to our particular scenario). The code analysis tool is a helpful instrument, espe-
cially if you are a libraries developer. Microsoft has a Code Analysis Team with a blog
where you can find interesting information: http://blogs.msdn.com/fxcop. Also remember
that you can easily retrieve detailed information on violation errors and fixes directly from
within Visual Studio.

5
8

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1229

1230 CHAPTER 58 Advanced Analysis Tools

Calculating Code Metrics
Code metrics is an interesting tool that analyzes a project or a solution providing results
about the ease of maintainability according to specific indexes. You can invoke the tool
from the Analyze menu by selecting the Calculate Code Metrics command or by right-
clicking the project name in Solution Explorer and then selecting the same-named
command. The tool calculates code metrics according to the indexes summarized in
Table 58.2.

To understand how it works, in Visual Studio 2010 open the SnippetCompilerVSPackage
sample project described in the previous chapter; then run the Code Metrics tool by select-
ing the Analyze, Calculate Code Metrics for Solution command. After a few seconds you
get the report shown in Figure 58.4.

As you can see from the report, the project has a maintainability index of 88 that is quite
good. Generally values from 80 to 100 are the best range for maintainability; Visual Studio
shows a green symbol if the index is good or a red one if the maintainability index is too
poor. You can expand the SnippetCompilerVsPackage item to see how the global result is
subdivided for each class and also for each class member. The global Cyclomatic
Complexity index is 11, which is a small number for our kind of project. Depth of
Inheritance index is 3, which is a small value, meaning that there is one or more class
inheriting from another class that inherits from another one (the third one is

TABLE 58.2 Code Metrics Analyzed Indexes

Index Description

Maintainability
index

A percentage value indicating ease of maintainability for the selected project
or solution. A higher value indicates that the project is well structured and
easily maintainable.

Cyclomatic
complexity

A percentage value indicating complexity of loops, nested loops, and nested
conditional blocks, such as nested For..Next loops, Do..Loop loops, or
If..End If nested blocks. A higher value indicates that you should consider
refactoring your code to decrease loop complexity because this leads to diffi-
cult maintainability.

Depth of inheri-
tance

Indicates the inheritance level for classes in the project. The result shows
the report for the class with the highest inheritance level. A higher value indi-
cates that it might be difficult finding problems in a complex inheritance hier-
archy.

Class coupling Calculates how many references to classes there are from method parame-
ters and return values, local variables, and other implementations. A higher
value indicates that code is difficult to reuse, and you should consider revisit-
ing your code for better maintainability.

Lines of code Just a statistic value. It returns the number of IL code affected by the analy-
sis.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1230

1231Profiling Applications

5
8

FIGURE 58.4 Calculating code metrics for the specified project.

System.Object); this is an absolutely acceptable value in this particular scenario. The Class
Coupling index is a little too high. It is determined by the
SnippetCompilerVsPackagePackage class, meaning that this class has a lot of references to
other classes. Particularly, if you expand the class you notice that the problem is the
Initialize method that makes calls to a lot of objects. Obviously, a high index doesn’t
necessarily indicate problems. In this code example a high value is acceptable, because all
invocations are required to make the Visual Studio package work, but in a reusable class
library a high value needs attention and code refactoring.

EXPORTING TO EXCEL

If you need to elaborate the code metrics results, you can export the analysis report to
Microsoft Excel. This can be accomplished with the Open List in Excel button on the
Code Metrics Result tool window.

Profiling Applications
Performance is a fundamental aspect in development. An application with slow perfor-
mance can discourage customers, even if it has the coolest user interface or features.
Visual Studio offers an integrated profiling tool that has been deeply enhanced in the
2010 edition. The new profiler takes advantage of the WPF-based user interface of Visual
Studio also offering better organization for the collected information layout. To under-
stand how the profiler works, we need a test project. Now, create a new console applica-
tion in Visual Basic. The best way for understanding how the profiler can improve your
productivity is considering the simple example of strings concatenation both using String

and StringBuilder objects. In the main module of the console application type this
simple code:

Module Module1

Sub Main()

ConcatenationDemo()

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1231

1232

Console.ReadLine()

End Sub

Sub ConcatenationDemo()

Dim testString As String = String.Empty

For i = 0 To 10000

testString += “I love VB 2010”

Next

End Sub

End Module

The preceding code simply creates a big concatenation of String objects. To analyze
performance, we now need to start the profiler. Select the Analyze, Launch Performance
Wizard command. This launches the step-by-step procedure for setting up the profiler
running against your project. Figure 58.5 shows the first dialog in the wizard, where you
can select the most appropriate profiling technique according to your needs.

CHAPTER 58 Advanced Analysis Tools

There are several available modes, all described in Table 58.3.

FIGURE 58.5 Selecting the profiling technique.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1232

1233Profiling Applications

5
8

Leave unchanged the default CPU-sampling option and click Next. The second dialog
allows selecting the executable to be analyzed. As you can see from Figure 58.6, you can
choose one of the executables resulting from the current solution or an external
executable. Select the current executable (the default option) and continue.

TABLE 58.3 Available Profiling Modes

Mode Description

CPU Sampling Analyzes performances at predetermined intervals for monitoring CPU
usage. This is the recommended mode for applications that use few
resources; it collects less information but it consumes less system
resources.

Instrumentation Collects complete information on the application performance injecting
specific testing code. It is suggested for long-running applications and
processes and consumes more system resources.

.NET Memory
Allocation

Analyzes memory allocation performance.

Concurrency Analyzes how multithreaded application consume resources and their perfor-
mance.

FIGURE 58.6 Selecting the executable to be analyzed.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1233

1234 CHAPTER 58 Advanced Analysis Tools

The last dialog in this wizard is just a summary. Uncheck the one check box available so
that the Profiler will not be launched when you click Finish (see Figure 58.7).

You might want to leave the flag on the checkbox to automatically launch the Profiler if
the default settings are okay for you, but in this particular scenario we need to make a
couple of manual adjustments. When the wizard shuts down, the Performance Explorer
tool window appears in the IDE. Because the sample application does not actually stress
the CPU very intensively, we need to set a smaller value for the CPU Sampling intervals.
To accomplish this, follow these steps:

1. In the Performance Explorer window, right-click the ProfilerDemo_Before item.

2. Select the Properties command from the popup menu.

3. In the ProfilerDemo_Before Property Pages dialog, select the Sampling node on the
left and then replace the default value in the Sampling Interval text box with 50000.
This will let the profiler collect data at smaller intervals of CPU clock cycles (see
Figure 58.8 for details). This small value is appropriate for small pieces of code like
the current example, but you could leave unchanged the default value in real-world
applications.

FIGURE 58.7 Completed set up of the Profiler.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1234

1235Profiling Applications

5
8

4. Click OK to close the dialog and then right-click the ProfilerDemo_Before item in
Performance Explorer, finally click Start Profiling from the popup menu. This will
launch the Profiler.

If it is the first time you have run the Profiler, Visual Studio requires your permission for
upgrading driver credentials to let the Profiler access system resources for monitoring
purposes (see Figure 58.9).

Visual Studio now runs your application with an instance of the Profiler attached. During
all the application lifetime Visual Studio will look like Figure 58.10, showing a work-in-
progress message.

FIGURE 58.8 Setting CPU Sampling interval.

FIGURE 58.9 Upgrading driver profiler credentials.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1235

1236 CHAPTER 58 Advanced Analysis Tools

The application will be analyzed unless you terminate it. The profiler monitors perfor-
mances at specific intervals to collect detailed information. When ready, simply close the
application. This also detaches the profiler instance. At this point the profiler generates a
report about the analysis. Figure 58.11 shows how the report appears.

If you are familiar with the profiler in Visual Studio 2008, you notice some differences but
also some improvements in the new reporting system. On the top of the report there is a
graph showing the CPU usage at monitored intervals. In the center of the screen there is
the Hot Path summary, which shows the most resources consuming function calls and
their hierarchy. The analyzed executable has a global impact of 100%, which is a high
value and that can be negative for performances. Notice how the ConcatenationDemo
method makes invocations to String.Concat. This is the function doing most individual
work, as evidenced in the Hot Path view and in the Functions Doing Most Individual
Work graph. It has a 98.65% impact meaning that there is some work to do to improve
performance. By default, the profiler report shows results for your code but not for code
invoked at a lower level by and within the CLR. Fortunately you can also analyze deeper
function calls by clicking the Show All Code link in the upper right. Figure 58.12 shows
how behind the scenes the sample code invokes the System.String.wstrcpy system func-
tion that also has a high impact.

FIGURE 58.10 The profiler is currently running.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1236

1237Profiling Applications

5
8

FIGURE 58.11 The analysis report produced by the profiler.

FIGURE 58.12 Showing all code function calls.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1237

1238 CHAPTER 58 Advanced Analysis Tools

The report is saved as a .vsp file that can be useful for later comparisons. You can also
export the report to Microsoft Excel or as Xml data (Export Report Data command).
There is other good news. If you check out the Error List window, you notice a warning
message saying that the invocation to String.Concat has an impact of 100 and that you
should consider using a StringBuilder for string concatenations. This means that in most
cases Visual Studio can detect the problem and provide the appropriate suggestions to fix
it. Following this suggestion, replace the application code as follows:

Module Module1

Sub Main()

ConcatenationDemo()

Console.ReadLine()

End Sub

FIGURE 58.13 Checking intervals and CPU usage.

The Current View combo box enables viewing lots of other useful information, such as
processes involved in profiling, function details, lines of code most consuming, and
marks. For marks, you can check out intervals and related CPU usage percentage, as
shown in Figure 58.13.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1238

1239Profiling Applications

5
8

Sub ConcatenationDemo()

Dim testString As New Text.StringBuilder

For i = 0 To 10000

testString.Append(“I love VB 2010”)

Next

End Sub

End Module

Now follow the same steps described before about setting the value for the CPU Sampling
clock cycles to 50000 for the current project. Then run the Profiler again via the Analyze,
Profiler, Start Profiling command. After a few seconds, Visual Studio 2010 generates a
new report, represented in Figure 58.14.

FIGURE 58.14 The new report after code improvements.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1239

1240 CHAPTER 58 Advanced Analysis Tools

FIGURE 58.15 Comparing two performance reports.

Notice how the invocations to strings concatenations method completely disappeared
from the performance negative impacts. Also notice how the CPU usage is better than
before. This means that our edits improved the application performance, as also demon-
strated by the Error List window that is now empty. The most resource-consuming func-
tion is now Console.ReadLine, which just waits for you to press a key and therefore can
be completely ignored. To get a better idea of what actually happened you can compare
the two generated reports. Right-click one of the available reports in the Performance
Explorer tool window and select Compare Performance Report. In the dialog browse for
the second report and click OK. Figure 58.15 shows the result of the comparison.

The Delta column indicates the difference between the old value and the new one. The
Baseline column indicates the value in the old analysis, whereas Comparison indicates the
value in the new analysis. Referring to this specific example, it means that the
String.Concat function passed from a bad state to a good one. The profiler is a good
friend in your developer life, and the suggestion is to profile applications every time you
can. The Visual Studio 2010 profiler also offers improvements for profiling multithreaded
applications, which is useful against parallel programming techniques.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1240

1241Profiling Applications

5
8

FIGURE 58.16 Selecting a standalone executable.

Profiling External Executables

The Visual Studio profiler is not limited to solutions opened in the IDE, but it can be
successfully used for profiling standalone executables. Basically you are allowed profiling
also Win32 executables over managed ones. To demonstrate how this works, close the
solution opened in Visual Studio (if any) ensuring that nothing is available in Solution
Explorer. Now start the Performance Wizard following the steps shown in the previous
section until you get the result shown in Figure 58.5. The next step is selecting the An
Executable (.EXE file) option. When selected this, you need to specify an executable to
analyze. Just for demo purposes, select the executable generated in the previous example.
Figure 58.16 shows how to accomplish this.

After completing this wizard, Visual Studio launches the specified executable with an
instance of the profiler attached. When completed, Visual Studio also generates a report,
as shown in the previous section. In this particular case you get nothing but the same
profiling results, being substantially the same application. In all other cases you get
specific analysis results for the selected executable. The Error List continues to show
warning or error messages related to the application performance providing the appropri-
ate suggestions when available. Of course, improving performance requires having the
source code for the executable analyzed.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1241

1242 CHAPTER 58 Advanced Analysis Tools

IntelliTrace, the Historical Debugger
EDITION NOTE

The IntelliTrace debugger is available only with the Visual Studio 2010 Ultimate edition.

One of the most important new tools in Visual Studio 2010 is IntelliTrace, formerly known
as the historical debugger. This tool can improve your debugging experience because it can
record and navigate every event occurring during the application lifetime, such as events
and failures including information on specific threads. IntelliTrace is fully integrated with
the code editor and with the rest of the IDE functionalities, such as Call Stack and Locals
tool windows so that it can provide a complete debugging environment. The tool is
capable of recording (to a file, too) and debugging the following happenings:

. Application events, such as user interface events or application exceptions

. Playback debugging, which allows deep debugging over specific events occurred
before and after a particular code block

. Unit test failures

. Load test failures and build acceptances test

. Manual tests

In this section you learn how to use IntelliTrace to debug application events, exceptions,
and unit test failures. Before showing IntelliTrace in action, it is a good idea to set its
options in Visual Studio.

IntelliTrace Options

There are a lot of available options for customizing IntelliTrace’s behavior. You set its
options via the usual Tools, Options command and then selecting the IntelliTrace item.
Figure 58.17 demonstrates this.

IntelliTrace is enabled by default. The default behavior is that IntelliTrace will collect
events only, but for this discussion select IntelliTrace Events and Call Information to get
complete information on the code calls, too. This kind of monitoring is the most expen-
sive in terms of system resources and should be used only when necessary but it offers a
high-level view of what happens during the application lifetime. You have deep control
over application events that IntelliTrace can keep track of. Select the IntelliTrace Events
item. You see a list of .NET elements, such as ADO.NET, Data Binding, and Threading; for
each of them you can specify particular events you want to be traced. For example the
Gesture events collection enables specifying user interface events such as button clicks, as
demonstrated in Figure 58.18.

58_0672331004_ch58.qxp 5/3/10 4:10 PM Page 1242

1243IntelliTrace, the Historical Debugger

5
8

FIGURE 58.17 Setting general options for IntelliTrace.

The Advanced and Modules items enable respectively specifying locations and size for logs
and which .NET modules must be tracked other than the current application. For this
demonstration leave the default settings unchanged. At this point we need a sample appli-
cation to see IntelliTrace in action.

Creating a Sample Application

The goal of this section is to illustrate how IntelliTrace can save your time by tracking
events and exceptions with detailed information that can help you to understand what
the problem is. According to this, creating a client WPF application can be a good
example. To demonstrate both application events and exceptions, we can place a button

FIGURE 58.18 Selecting events to be tracked by IntelliTrace.

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1243

1244 CHAPTER 58 Advanced Analysis Tools

that invokes a method attempting to open a file that does not exist. After creating a new
WPF project named (IntelliTraceDemoApp) with Visual Basic, in the XAML code editor,
write the code shown in Listing 58.3.

LISTING 58.3 Setting Up the User Interface for the Sample Application

<Window x:Class=”MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”MainWindow” Height=”350” Width=”525”>

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Button Name=”OpenFileButton” Width=”100” Height=”50”

Content=”Open file” Grid.Row=”0”/>

<TextBox IsReadOnly=”True” Name=”FileTextBox”

Grid.Row=”1”/>

</Grid>

</Window>

On the Visual Basic code-behind side, write the code shown in Listing 58.4, which simply
handles the Button.Click event and tries to open a text file.

LISTING 58.4 Writing the Failing Visual Basic Code Before Running IntelliTrace

Class MainWindow

Private Sub OpenFileButton_Click(ByVal sender As System.Object,

ByVal e As System.Windows.RoutedEventArgs) _

Handles OpenFileButton.Click

Me.FileTextBox.Text = OpenFile()

End Sub

‘Just for demo purposes

‘Consider dialogs implementation in real life apps

Private Function OpenFile() As String

‘Attempting to open a fake file

Return My.Computer.FileSystem.

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1244

1245IntelliTrace, the Historical Debugger

5
8

ReadAllText(“C:\Alessandro.txt”)

End Function

End Class

Now that we have a sample project, which will voluntarily fail at runtime, it is time to see
how to catch problems via IntelliTrace.

Tracking Application Events and Exceptions with IntelliTrace

Run the demo application and click the button to cause an exception. The application
breaks because the specified file is not found. At this point the IntelliTrace tool window
appears inside Visual Studio 2010, showing a list of events that you can see in Figure 58.19.

FIGURE 58.19 IntelliTrace in action, showing occurred events.

FILTERING RESULTS

You can filter information by category and by thread. Use the upper combo box to
respectively select which kind of events category you want to check out (for example,
Console, ASP.NET, ADO.NET, and so on) and which specific thread you want to get track-
ing information for.

As you can see, IntelliTrace is not just a debugger showing errors or places where errors
occurred. It is a powerful tool capable of tracking every single event occurring during the
entire application lifetime—meaning that you could even use IntelliTrace to just keep
track of events without errors. In the current example notice how the first tracked event is
the application startup. There are other events tracked: Click the Gesture event to get
information on such a happening. IntelliTrace informs you that the user clicked the

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1245

1246 CHAPTER 58 Advanced Analysis Tools

FIGURE 58.20 Showing functions call tree with IntelliTrace.

OpenFileButton control, which is of type System.Windows.Controls.Button and whose
content is Open File, also showing the thread description and ID. This is a predictable
event, but as you can imagine you can keep track of all events, for example when data-
binding is performed on a data-bound control or when the user selects an item from a
ListBox or when the application attempts to make a particular action. This can produce a
huge amount of information that you can analyze later. To get information on the excep-
tion thrown, simply click the exception item. Visual Studio shows the full error message
and the line of code that caused the exception; when you click such an item, the line of
code will be automatically highlighted in the code editor for your convenience.
IntelliTrace also offers the ability of checking the entire tree of function calls (just in case
you enable call information). In a few words, this feature keeps track of every single func-
tion call made by the runtime during the application lifetime. To show this, click the
Show Calls View button in the IntelliTrace toolbar. Figure 58.20 shows an example,
pointing to the place where the user clicked the button.

The sample figure shows the first function call that is a call for starting the main thread.
The next functions are calls that the CLR makes to run the application and initialize it;
the list is complete, also showing calls made during the rest of the application lifetime
until it broke because of the exception. You can easily browse calls using the vertical scroll
bar on the right.

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1246

1247IntelliTrace, the Historical Debugger

5
8

FIGURE 58.21 Analyzing IntelliTrace logs.

Analyzing IntelliTrace Logs

When the application is running with the debugger attached, IntelliTrace records every-
thing happening. (This is the reason why you might notice a small performance decrease
when you select the events and call recording option.) Such recordings are saved to log
files available in the C:\ProgramData\Microsoft Visual Studio\10.0\TraceDebugging
folder and can be analyzed directly from within Visual Studio. To accomplish this, follow
these steps:

1. In Windows Explorer, open the C:\ProgramData\Microsoft Visual
Studio\10.0\TraceDebugging folder.

2. Double-click the last log file related to your application. Notice that log file names
all begin with the application name but you can open the most recent according to
the date modified value.

Visual Studio opens the log file showing a result similar to what you see in Figure 58.21.

Logs contain lots of information. For example, you can select a particular thread in the
upper graph and check for the related threads list below. This is useful for understanding
at what time a specific thread was tracked. Moreover information on exceptions will also
be shown. You can also check about system information and modules involved in the
tracking process (such information is placed at the bottom of the page).

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1247

1248

Using IntelliTrace for Unit Tests

IntelliTrace is not limited to tracking the application lifetime but can also be used for unit
tests for understanding what is behind failures. This particular scenario is discussed in
Chapter 59, “Testing Code with Unit Tests, Test-Driven Development, and Code
Contracts,” which provides an overview of unit testing and test-driven development.

Generating Dependency Graphs
Another interesting addition, new to VS 2010, is the Dependency Graph generation.
Basically this feature enables generating a WPF-based, graphical, browsable view of depen-
dencies between objects in your projects. Dependency graphs can be generated at assem-
bly level (including all types), namespace level (including only types from a given
namespace), or at class level. To demonstrate this feature, create a new console project and
add the following items:

. An Entity Data Model mapping the Customers, Orders and Order_Details tables
from the Northwind database (see Chapter 27, “Introducing the ADO.NET Entity
Framework,” for a recap).

. A new class named Helper, whose purpose is just offering a simple method returning
a collection of order details based on the order identifier. The code for this class is
shown in Listing 58.5.

LISTING 58.5 Demo Class to Be Mapped into the Graph

Imports System.Data.Objects

Public Class Helper

Public Shared Function GetOrderDetails(ByRef context As NorthwindEntities,

ByVal orderID As Integer) As _

ObjectQuery(Of Order_Detail)

Dim result = From det In context.Order_Details

Where det.Order.OrderID = orderID

Select det

Return CType(result, Global.System.Data.Objects.

ObjectQuery(Of Global.DependencyGraphDemo.Order_Detail))

End Function

End Class

CHAPTER 58 Advanced Analysis Tools

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1248

1249

FIGURE 58.22 The newly generated assembly-level dependency graph.

Generating Dependency Graphs

5
8

Now select the Architecture, Generate Dependency Graph, By Assembly command.
After a few seconds the new graph will be available inside Visual Studio 2010. You can
then expand items and check for their dependencies with other objects, as represented in
Figure 58.22.

To understand items mapping you can check out the legend. To show complete dependen-
cies information, right-click the graph and select the Show Advanced Selection command.
This launches the Selection tool window where you can select one or more objects to be
investigated and additional objects to be analyzed such as public or private properties.
Figure 58.21 shows public properties dependencies from all classes in the project. For
example, the NorthwindEntities class has dependencies with the
Helper.GetOrderDetails method because this one receives an argument of type
NorthwindEntities. The dependency graphs are flexible and can be exported to XPS docu-
ments or to images (right-click the graph for additional options).

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1249

Summary
This chapter covered some important analysis tools available in Visual Studio 2010
Premium and Ultimate that are necessary for improving applications’ quality. You discov-
ered how to analyze code for compliance with Microsoft coding rules, required especially
when you produce reusable class libraries. Then you saw how to check for code maintain-
ability using the Code Metrics tool. In the second part of the chapter you got information
on the integrated Profiler that simplifies checking for performance issues through IDE
suggestions; you also saw different usages of the Profiler, including standalone executables.
The chapter also focused on the most interesting addition in Visual Studio 2010, the
IntelliTrace debugger. Explanations provided information on using this tool for under-
standing how to keep track of all application events and exceptions during the entire
application lifetime, showing also how to analyze summary logs within Visual Studio.
Finally, you got an overview of another new addition, the Dependency Graph generation
that provides a graphical view of dependencies at assembly, namespace, and class levels.

1250 CHAPTER 58 Advanced Analysis Tools

58_0672331004_ch58.qxp 5/3/10 4:11 PM Page 1250

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

