

IronRuby Unleashed
Copyright © 2010 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-672-33078-0
ISBN-10: 0-672-33078-4

Library of Congress Cataloging-in-Publication Data

Friedman, Shay.
IronRuby unleashed / Shay Friedman.

p. cm.
ISBN 978-0-672-33078-0

1. IronRuby (Computer program language) 2. Microsoft .NET Framework. 3. Ruby
(Computer program language) I. Title.

QA76.73.I586F74 2010
006.7’882—dc22

2009050114

Printed in the United States of America

First Printing: February 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793

international@pearsontechgroup.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Word Wise Publishing
Services

Proofreader
San Dee Phillips

Technical Editor
Justin Etheredge

Publishing
Coordinator
Cindy Teeters

Interior Designer
Gary Adair

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

Introduction

The Ruby language was developed by Yukihiro Matsumoto, who began developing Ruby on
February 24, 1993. His main reason for doing so was his dissatisfaction with the scripting
languages at the time, languages such as Perl and Python. He designed Ruby to be intuitive, to be
natural, and to follow the “principle of least surprise”—making developers enjoy writing code
and focus on the creative part of programming instead of fighting the language to fit their needs.

Ruby 1.0 was released on December 25, 1996, exactly 1 year after the first public release (version
0.9.5) of Ruby. For the first year afterward, Ruby was mainly used inside Japan. Its use expanded
outside of Japan a few years later, but it was still used by a small number of eager early adapters.

In 2006, David Heinemeier Hansson from 37signals released a web development framework
named Ruby on Rails. This innovative MVC web framework made the difference. More and more
developers started using Ruby on Rails to develop their web applications and in the process
became familiar with the Ruby language, too. Following these newcomers, a phrase was coined to
explain how most current Ruby developers have come to use it: I came for the Rails, but I stayed
for the Ruby.

Since then, Ruby has become one of the most popular programming languages in the world and
is being used by thousands of developers every day.

Ruby is a dynamic language. It combines ideas from Perl, Smalltalk, Eiffel, Ada, and Lisp to
provide an intuitive, flexible, and simple-to-use language. Its strengths are in its permissive
syntax and powerful built-in capabilities, especially metaprogramming capabilities. However, it
never appealed to .NET developers because it lacked integration with .NET code. This situation
has changed with the birth of IronRuby.

IronRuby is Microsoft’s implementation of the Ruby language. It runs on top of the Dynamic
Language Runtime (DLR), which is a special dynamic language service provider that is built on
top of the Common Language Runtime (CLR).

IronRuby provides seamless integration with .NET code. It enables you to use .NET objects in
Ruby code just as if they were pure Ruby objects. This opens vast opportunities to the .NET world
and to the Ruby world. Both sides gain the power and strength of the other and provide together
a new and exciting development environment.

2 Introduction

In this book, I take you through all aspects of IronRuby so that you learn how to best
leverage the language for the simplest of tasks to the most advanced ones.

Part I, “Introduction to IronRuby,” is an overview of the different pieces that make
IronRuby possible. You learn about where it all began and the main concepts of the Ruby
language, the .NET Framework, and the DLR. Part I ends with a chapter that introduces you
to IronRuby for the first time. In that chapter, you learn the basics about using IronRuby
and witness the powerful capabilities it brings to your development environment.

Part II, “The Ruby Language,” is devoted to an in-depth tutorial of the Ruby language. The
part starts with the basic syntax, goes on with Ruby object-oriented programming capabili-
ties, and ends with advanced concepts and techniques.

In Part III, “IronRuby Fundamentals,” I add the Iron to Ruby. This part contains all the
information you need about IronRuby .NET integration. I explain how every .NET item
can be used from IronRuby—from variables to implementing .NET interfaces.

Part IV, “IronRuby and the .Net World,” is the practical part. It contains guides for how to
use IronRuby in several different scenarios. Most of the current .NET and Ruby frameworks
are explained, including WPF, ASP.Net MVC, Ruby on Rails, and Silverlight. In addition,
other possible usages are explained, such as testing .NET code using Ruby’s different unit
testing frameworks and running IronRuby code from .NET code.

The last part of the book, Part V, “Advanced IronRuby,” covers IronRuby advanced topics.
If you want to extend IronRuby objects or to create .NET code libraries that fit better to
Ruby code, you will be interested in what this part has to offer.

I believe that IronRuby can enhance your work and enable you to do things you have not
done before. I hope you find this book helpful and informative and that you can exploit
its contents in your own projects and development tasks.

CHAPTER 4

Getting Started with
IronRuby

IN THIS CHAPTER

. Overview

. Installing IronRuby

. Executables and Tools

. Development Environments

. The Power of IronRuby

IronRuby is Microsoft’s implementation of the Ruby
language on top of the DLR. Its main goal is to provide seam-
less interoperability between Ruby and the .NET Framework.

IronRuby combines the powers of both the .NET Framework
and the Ruby language. On the one hand, it contains the
built-in capabilities of Ruby, and on the other hand, it is
capable of using the wide variety of frameworks and
libraries of the .NET Framework. The combination opens a
whole new set of opportunities to both Ruby and .NET
developers.

In this chapter, you get your first taste of IronRuby. You
install it, read an overview of the language and its tools,
and start to discover the power it brings to the .NET family.

Overview
IronRuby is Microsoft’s implementation of the Ruby
programming language. It is built on top of the DLR and
provides seamless integration between Ruby code and .NET
Framework code. It is compatible with Ruby 1.8.6 and runs
on .NET Framework 2.0 Service Pack 1 and above.

IronRuby was first announced on April 30, 2007, at the
MIX conference. Iron, in its name, is actually an acronym
and stands for “implementation running on .NET.”

IronRuby is supported by the Common Language Runtime
(CLR) and Mono, which means that it can be run on
Windows, Linux, UNIX, BSD, Mac, and all other operating
systems that are supported by Mono. Apart from operating

26 CHAPTER 4 Getting Started with IronRuby

systems, IronRuby can also be run from the browser using Silverlight. (See Chapter 16,
“Silverlight,” for more about IronRuby and Silverlight.)

IronRuby is an open source project and is released with full source code under the
Microsoft Public License (MS-PL). The code is hosted on GitHub and can be downloaded
from the CodePlex site, too. Because it is an open source project, the IronRuby team is
looking for contributions both in bug fixing and library implementation. Look at the
contribution page on IronRuby’s GitHub home page to see how you can help (http://wiki.
github.com/ironruby/ironruby/contributing).

Installing IronRuby
IronRuby runs on .NET Framework 2.0 Service Pack 1 and above. Therefore, you need to
have .NET Framework 2.0 SP1 or above installed on your machine before you start. Same
goes for every machine on which you deploy your IronRuby applications.

You can download .NET Framework 2.0 SP1 from http://www.microsoft.com/downloads/
details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5.

When you have the correct framework, we can move on and install IronRuby. The recom-
mended method of installing IronRuby is by using the IronRuby installer. Follow the next
steps to do so:

1. Visit http://www.ironruby.net/download and click the Download IronRuby link.

2. The downloaded file is an MSI file. Double-click it to start the installation.

The first input you will be asked to enter is the installation folder for IronRuby. The
default is your program files directory\IronRuby. The folder you choose will be refer-
enced as the IronRuby installation folder throughout this book.

During the installation, you will be asked to select the features to install. The
features that will be presented are as follows:

. Runtime: The main files of IronRuby. This feature is required.

. Standard Library: Ruby standard libraries. Needed if the standard libraries are
used in IronRuby code.

. Samples: Sample IronRuby applications like WPF and PowerShell samples.

. Silverlight Binaries: Binaries needed for using IronRuby in Silverlight
applications.

. Add IronRuby to %PATH%: Adds IronRuby binaries path to the PATH envi-
ronment variable. This spares the need to provide full path to IronRuby
executables when they are called from the command line.

3. After approving all steps, the installation of IronRuby takes place.

http://www.ironruby.net/download
http://www.microsoft.com/downloads/details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5
http://www.microsoft.com/downloads/details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5
http://wiki.github.com/ironruby/ironruby/contributing
http://wiki.github.com/ironruby/ironruby/contributing

27Installing IronRuby

FIGURE 4.1 My Computer Properties Menu Item.

Another option to install IronRuby is manually. IronRuby can be downloaded as a zip
package. This lets you fully control the installation process but also forces you to execute
the automatic tasks manually (optionally).

Follow the next steps to install IronRuby manually:

1. Visit IronRuby’s CodePlex homepage at http://ironruby.codeplex.com and click on
the Downloads button on the page menu. In the downloads page, choose to down-
load the IronRuby ZIP package.

2. After the download is complete, extract this Zip file to the folder in which you want
to place IronRuby (for example, C:\IronRuby). This folder will be referenced as the
IronRuby installation folder throughout this book.

You’re actually done now and can start using IronRuby. However, if you want IronRuby to
be available from every location on your Windows system, you want to add the <installa-
tion folder>\bin path to the Windows PATH environment variable. Be aware, however,
that this can be done only if you have administrative privileges.

To do that, follow the next steps:

1. Navigate to Start > My Computer and right-click My Computer. On the menu,
choose Properties as presented in Figure 4.1.

2. In the open dialog, click Advanced System Settings as presented in Figure 4.2.

http://ironruby.codeplex.com

28 CHAPTER 4 Getting Started with IronRuby

FIGURE 4.2 The Advanced System Settings Link.

FIGURE 4.3 The Environment Variables button.

3. Click the Environment Variables button as presented in Figure 4.3.

4. Find Path in the System Variables section (the lower part), select it, and click Edit as
presented in Figure 4.4.

5. In the Edit System Variable dialog, place the cursor at the end of the Variable Value
field and add a semicolon (;) and <IronRuby installation folder>\Bin. For example,
if you’ve extracted IronRuby to C:\IronRuby, you add ;C:\IronRuby\Bin to the
Variable Value field as presented in Figure 4.5.

29Installing IronRuby

FIGURE 4.4 The PATH Environment Variable.

FIGURE 4.5 Setting the PATH Environment Variable.

6. Click OK on all the dialogs you’ve opened during the process to save the new setting.

Congratulations, IronRuby is now installed on your machine.

IronRuby Folders

After you extract IronRuby to the desired installation folder, you notice several folders
there. Table 4.1 lists and describes the folders.

Getting the Sources

If you’d like to go deep into IronRuby and go through its code, you need to download the
source code of IronRuby. The source code is hosted on GitHub and uses Git as its source
control application. You can download the source code in a Zip format from http://github.
com/ironruby/ironruby/zipball/master.

http://github.com/ironruby/ironruby/zipball/master
http://github.com/ironruby/ironruby/zipball/master

30 CHAPTER 4 Getting Started with IronRuby

TABLE 4.2 IronRuby Executables and Tools

File Description

ir.exe
and
ir64.exe

The main IronRuby executable. It is the IronRuby interpreter file. ir64.exe is for
64-bit systems.

iirb.bat The IronRuby REPL (read-evaluate-print loop) console.

igem.bat Used to work install and manage RubyGems. See Chapter 8, “Advanced Ruby.” for
more information about RubyGems.

irackup.bat Runs Rack, which is a Ruby framework that simplifies the way of interacting with
different Ruby web servers.

irake.bat Executes the Rake. See Chapter 8 for more about Rake.

irails.bat Used to create a Ruby on Rails application. See Chapter 14, “Ruby On Rails.” for
more about Ruby on Rails.

irdoc.bat Runs RDoc, which is a Ruby tool to create formatted documentation out of Ruby
code. The output can be plain text or a formatted HTML.

iir.bat Ruby tool to read the textual documentation of Ruby objects. (The documentation is
created by RDoc.)

To download the sources, you do not have to install Git on your machine. You need to do
so only to contribute to the IronRuby code. For more information about how to contribute
and how to use Git, look at the IronRuby wiki at http://wiki.github.com/ironruby/ironruby.

Executables and Tools
IronRuby comes with several different executables and tools. All of them are located under
the Bin folder in the IronRuby installation directory.

Table 4.2 lists and describes the executables and tools in the IronRuby Bin folder, and then
the following subsections take a closer look at them.

TABLE 4.1 IronRuby Folders and Their Roles

Folder Description

Root Contains license files, release notes, and the package readme file

Bin Contains the IronRuby binaries, executables, and tools

Libs Contains the standard libraries, including special IronRuby libraries and the
RubyGems repository

Samples Contains a few IronRuby samples and the IronRuby tutorial application

Silverlight Contains binaries, samples, and tools for embedding IronRuby in Silverlight

http://wiki.github.com/ironruby/ironruby

31Executables and Tools

The IronRuby Interpreter (ir.exe)

The IronRuby interpreter is the heart of IronRuby. Everything goes through it. For
example, all the tools mentioned in Table 4.2 eventually run ir.exe.

The IronRuby interpreter can run Ruby files as well as a REPL console. These are two
different modes, and so I discuss each of them separately.

REPL Console Mode
The REPL console mode opens a console where you can write code and execute it
immediately.

To run IronRuby in the REPL console mode, follow these steps:

1. Click Start > Run.

2. Type cmd and click OK. The command prompt opens.

3. If you haven’t added the IronRuby installation folder to the Path system variable,
navigate to <installation folder>\Bin. If you have updated the Path system variable,
skip this step.

4. Type ir and press Enter.

The IronRuby REPL console opens. You can now write Ruby code there (for example,
“puts ‘hello world’”) or even write whole classes and use them.

The format is simple. Each line where you can write a Ruby statement starts with a triple
right-angle sign (>>>). If the line is not assumed to be continued (like method or class
definitions), when you press Enter its output (if any) is printed to the console and the
next line contains the return value of the statement preceded by an equal or greater than
sign (=>). If the line is assumed to be continued, the next statement line starts with an
ellipsis (...).

THE RETURN VALUE OF METHODS THAT DO NOT RETURN ONE

You notice that after executing methods with no return value, such as puts, the console
still shows a return value: nil. This is really the return value.

Every method in Ruby returns a value. If the method code doesn’t return a value, the
method returns nil to the caller.

Figure 4.6 shows an REPL console session.

The REPL console mode has some specific command-line switches that can be used when
running ir.exe. Table 4.3 lists and describes the switches. Be aware that the switches are
case sensitive.

These are the REPL mode-only switches. All other switches appear on Table 4.4, and some
can be used in this mode, too.

32 CHAPTER 4 Getting Started with IronRuby

File Execution Mode

This mode executes a given file. Its format is as follows:

ir [options] [file path] [file arguments]

All switches and ir.exe command-line arguments should be placed before the file path.
Otherwise, they will be considered arguments of the file and will be passed to it rather
than to the interpreter.

The simplest way to execute an IronRuby file is by passing only its path to the interpreter.
For example, the next command executes the file test.rb, which is located within the
current directory:

ir test.rb

FIGURE 4.6 A screenshot of an IronRuby REPL console session.

TABLE 4.3 ir.exe REPL Mode Command-Line Switches

Switch Description

-
X:ColorfulConsole

Makes the REPL console colorful.
Prompt signs such as >>> and ... appear gray, errors red, and warnings
yellow; messages (like the banner on top) appear cyan, and all other output
uses the default console output color.

33Executables and Tools

Along with this way, IronRuby provides several command-line arguments that affect the
way the code executes. Table 4.4 lists and describes available arguments for the ir.exe file
execution mode.

TABLE 4.4 ir.exe Command-Line Arguments for File Execution Mode

Argument Description

-d
or
-D

Debug mode. Allows using breakpoints in Ruby code with the Visual
Studio debugger.

-e “command” Executes the command and exits. Several -e arguments are allowed.
When used, the file path should not be passed and will be ignored if
it exists.
For example:
ir -e “str = ‘Hello World’” -e “puts str”

-I “directory” Includes the given directory in the $LOAD_PATH variable. This means
that it will be included in the search paths for required libraries.

-r “library” Requires the library before executing the file.
For example:
ir -r “csv” test.rb

-v Prints the IronRuby version on the first line.

-w Turns on warnings in the default level (verbose).

-W[level] Sets the warning level. 0 = silence, 1 = medium, 2 = verbose
(default).
For example:
ir -W1 test.rb

-K[kcode] Specifies KANJI (Japanese) code set. E or e = EUC, S or s = SJIS, U
or u = UTF8.
For example:
ir -KU test.rb

-trace Enables Ruby tracing capabilities.

-profile Enables profiling. When this switch exists, a profile.log file will be
added to the directory of the executed file with profiling information
about the latest execution.

-18
or
-19
Or
-20

Run IronRuby in Ruby 1.8 compatibility mode (default), Ruby 1.9, or
Ruby 2.0 compatibility mode accordingly.
Ruby 2.0 doesn’t currently exist, so this switch is for future release
only.

34 CHAPTER 4 Getting Started with IronRuby

Development Environments
Support for IronRuby in Visual Studio is not available in IronRuby 1.0. Such support is not
in Microsoft’s current plans, and no one can really promise it will be in the near future.

However, the Ruby language already has several IDEs available. This section discusses
some of them so that you can choose the one that best fits your needs.

Ruby in Steel

This commercial add-on to Visual Studio by SapphireSteel makes developing Ruby applica-
tions inside Visual Studio much more natural. It adds new Ruby project types, intellisense,
code snippets, and syntax highlighting.

Figure 4.7 is a screenshot from Visual Studio that shows the syntax highlighting and intel-
lisense capabilities of Ruby in Steel.

TABLE 4.4 ir.exe Command-Line Arguments for File Execution Mode

Argument Description

-X:ExceptionDetail In this mode, every exception is presented with a full call stack.

-
X:NoAdaptiveCompilation

Disables adaptive compilation feature. This affects performance (for
the worse).

-X:PassExceptions In this mode, exceptions are not caught by the interpreter. This means
that in case of an exception with no handling in the script, the appli-
cation crashes.

-X:PrivateBinding Enables binding to private members of CLR objects. Chapter 9, “.Net
Interoperability Fundamentals,” discusses the uses of this switch.

-X:ShowClrExceptions When this mode is on, a CLR exception part is added to every excep-
tion with full exception details (the exception.ToString output).

-X:CompilationThreshold Specifies the number of iterations before the interpreter starts compil-
ing the code.
Should be followed by a number.
Note that this switch can affect performance dramatically. Hence it is
not recommended to use it when not needed.

-h Shows all available command-line arguments with a short description.
When this exists, the file or REPL console does not run.

35Development Environments

Although you cannot run IronRuby with Ruby in Steel out of the box, it is possible to
alter the solution settings to execute ir.exe. Follow these steps to do so:

1. Inside Visual Studio, click Project > Project Settings.

2. In the Settings window, you see a Ruby region with a “Ruby Interpreter” line.
Change the value on this line to the path of ir.exe.

For example, if you installed IronRuby in C:\IronRuby, you must set the value to
“C:\IronRuby\Bin\ir.exe”.

3. Save the project and press Ctrl + F5 to execute the Ruby files.

Ruby in Steel is a commercial product that costs money. It supports Visual Studio 2005,
2008, and also machines without Visual Studio at all (uses the Visual Studio Shell).

To read more about it, try it, or buy it, visit http://www.sapphiresteel.com/Ruby-In-Steel-
Developer-Overview.

NetBeans

NetBeans is a free, open source IDE that supports several programming languages, along
with the Ruby language. It is Java-based and can run on all operating systems that run
Java applications.

For Ruby, you get code completion, naming convention warnings, a convenient project
tree, and Ruby on Rails support.

Figure 4.8 shows the NetBeans window with Ruby code inside.

FIGURE 4.7 Ruby in Steel syntax highlighting and intellisense.

http://www.sapphiresteel.com/Ruby-In-Steel-Developer-Overview
http://www.sapphiresteel.com/Ruby-In-Steel-Developer-Overview

36 CHAPTER 4 Getting Started with IronRuby

Unfortunately, NetBeans in its current version 6.7 doesn’t support IronRuby. Therefore,
you cannot run or debug IronRuby code directly from NetBeans. You must run the
IronRuby file from the command prompt using ir.exe.

The NetBeans team plans to add IronRuby to its supported Ruby platforms in one of its
next versions.

To learn more about NetBeans and download it, visit http://www.netbeans.org.

RubyMine

RubyMine is a commercial Ruby IDE by JetBrains. This is one of the most advanced Ruby
IDEs available and features project creation wizards, syntax highlighting, code tools (like a
“surround with” function), intellisense, refactoring, and version control system integration.

Figure 4.9 shows the RubyMine interface and its intellisense pop-up.

FIGURE 4.9 RubyMine IDE screenshot with intellisense.

FIGURE 4.8 NetBeans IDE screenshot with Ruby code.

http://www.netbeans.org

37Development Environments

RubyMine doesn’t come with IronRuby as its Ruby interpreter, and you have to add it as
one to execute files with the IronRuby interpreter directly from the interface.

Follow these steps to add IronRuby as a Ruby interpreter in RubyMine:

1. Go to File > Settings.

2. On the left, choose Ruby SDKs and Gems.

3. On the settings on the right, click the Add SDK button, which is located in the
upper-right corner of the dialog.

4. On the file selector dialog that opens, navigate to <IronRuby installation
folder>\Bin\ir.exe. Click OK after you select the file.

5. When you click OK on the settings form, RubyMine makes IronRuby its default
interpreter.

Before you run a file, you need to modify something else. RubyMine uses configuration
settings for each execution. In this configuration, the command-line arguments are sent to
the interpreter. The default ones do not work with IronRuby, and you need to remove
them. Follow these steps to do that:

1. Go to Run > Edit Configurations.

2. Click the Edit Defaults button, which is located in the lower-left corner of the dialog.

3. Choose Ruby on the left panel.

4. On the right, clear the text from the Ruby Arguments field.

5. Click OK on all open dialogs to save the changes.

Now you can work on and run files by using the IronRuby interpreter.

RubyMine is a commercial product that costs money. It works on Windows, Mac OS X,
and Linux. You can read more about it, try it, and buy it at http://www.jetbrains.com/ruby.

Others

Along with these IDEs, a lot of other great IDEs are available. Some are appropriate for
bigger applications, and some for smaller applications and scripts. Most of them offer
simple code completion and syntax highlighting.

Like the others, they still cannot run IronRuby directly from their interface, so you have
to switch to the command prompt and use ir.exe to run the Ruby file you’ve been
working on.

Some of these IDEs are RadRails (http://www.aptana.com/radrails), SciTE (http://www.scin-
tilla.org/SciTE.html), and Notepad++ (http://notepad-plus.sourceforge.net). Search the
Internet for “Ruby IDEs” to find more Ruby IDEs.

http://www.jetbrains.com/ruby
http://www.aptana.com/radrails
http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html
http://notepad-plus.sourceforge.net

38 CHAPTER 4 Getting Started with IronRuby

The Power of IronRuby
As a finale to the IronRuby introduction, I want to leave you wanting more. Instead of
just writing a simple Hello World application, I want you to see how great IronRuby is and
how it can enhance your development work.

Ruby comes with very powerful built-in metaprogramming capabilities. One of its features
is a built-in method called method_missing (read more about it in Chapter 6, “Ruby’s
Code-Containing Structures”). The method_missing method catches all calls to undefined
methods and lets you handle them the way you want.

In Listing 4.1, by using method_missing, I implement a Recorder class that records calls to
methods and plays them back on request. Notice how easy it is to accomplish this with
Ruby. Even though you might not be familiar with all the syntax elements, this code is
pretty simple and straightforward.

LISTING 4.1 A Recorder Class Implementation

class Recorder

def initialize

@calls = []

end

def method_missing(method, *args, &block)

@calls << [method, args, block]

end

def playback(obj)

@calls.each do |method, args, block|

obj.send method, *args, &block

end

end

end

Now that the Recorder class is ready, we can take advantage of it. Unlike regular Ruby
code, we can take advantage of IronRuby capabilities and run the Recorder class with
.NET code. Listing 4.2 takes advantage of the Stack class of the .NET Framework and runs
recorded operations on it using our Recorder class.

LISTING 4.2 Using the Recorder Class on a CLR Object

recorder = Recorder.new

recorder.push 5.6

recorder.pop

recorder.push 1

recorder.push “IronRuby”

Run the recorded calls on the CLR Stack instance

39Summary

stack = System::Collections::Stack.new

recorder.playback(stack)

recorder.playback(stack)

stack.each { |x| puts x }

Prints “IronRuby

1

IronRuby

1”

Summary
After reading this chapter, you are ready to start developing with IronRuby on your
computer. You have installed IronRuby and have been introduced to the tools it comes
with. This chapter also covered a few options for IronRuby development environments. At
the end of the chapter, you saw an IronRuby sample that gave you a taste of the great
power IronRuby holds inside.

We now delve further into the Ruby language and examine the fundamentals of IronRuby,
and then you learn how to use IronRuby with the different frameworks of Ruby and .NET,
all on the road to becoming an IronRuby master.

Index

SYMBOLS
>, >= (greater than/greater than or equal to)

operator, 65
<, <= (less than/less than or equal to) operator, 65 []

(array access) operator, 112, 114
|| (Boolean OR) operator, 65
== (equality) operator, 112
<=> (general comparison) operator, 65
< <= => > (order comparison) operator, 112
() (parentheses), 45
<< (shift-left) operator, 112
>> (shift-right) operator, 112
-@ (unary minus) operator, 112
+@ (unary plus) operator, 112
| (vertical bars), 96
! (no pattern match) operator, 65
!= (not equal to) operator, 65
$LOAD_PATH variable, 210
&& (Boolean AND) operator, 65
; (semicolon), 44
=== (case equality) operator, 65, 112, 113
== (equal to) operator, 65
@ (at sign), 453
[] = (array access setter) operator, 112, 114

A
abbrev library, 132

references, 135
About Your Application’s Environment link, 337
abstract classes, 123, 242

implementation, 247
abstract methods, 246-247
accept_verbs method, 374
accessing. See also security

arrays, 55-56
CAS, 19

data. See data access
file properties, 173-174
hashes, 58
HTML, Silverlight, 414-415
strings, 53-54
variables from outside, 106-107
XAML elements, 412-414

accessors
classes, 107-109
implementation, 180
properties, overriding, 252

ActionController, 341
ActionExecutingContext object, 388

actions
canceling, 388
controllers, return values, 371
customizing, 395-396
filters, 387-390

ActionView, 341
ActiveRecord model, 340-341
Ada, 1, 5
add_EventName method, 253
adding

build configurations, 502-504
code, Silverlight, 411-415
connection strings to classes, 262
functionality, 353-354
IronRubyMvs Dll files, Visual Studio, 365
layouts, 351-352
log entries, 143
references to assemblies, 367
Refresh button, 360-361
stylesheets, 350-351
video, 418
web pages to Silverlight, 406-408
WinForms

controls, 289-293
functionality, 293-295

add_log method, 456
add_one method, 88
Advanced System Settings, 27
AdventureWorksLT, 260
after_action filter, 389
after method, 443
after_result filter, 391
alias_action method, 375
aliasing

methods, 499
namespaces, 214
syntax, 215

alias keyword, methods, 91-92
and, 30
And directive, 448
AND operator, 65
animation

Silverlight, 417-418
WPF, 324-325

app/controllers folder, 333
App folder, 333
app/helpers folder, 334
Application class, 304
Application.run method, 305
applications

ASP.Net MVC, building, 365-367
code-containing structures, 86
controllers, creating, 375-377
C#/VB.Net, 459-461

data access. See data access
execution code, writing, 300
Hello World!, 48
Java, 35
layouts, applying, 360
models, creating, 368-371
NetBeans, 35-36

reflection. See reflection
RoR, creating, 332-337
Ruby in Steel, 34-35
Silverlight, 402-406, 405
structures, WinForms, 282
threads, 161-169
views, creating, 382-385

applying
built-in mixins, 488
CachedDataAccess class, 278-279
designer, Visual Studio, 295-296
extensions

IronRuby, 501
.NET, 509-510

gems, 183-184
layouts, 360
libraries, MVC, 375
methods as block arguments, 94
mixins, 254-255
objects

IronRuby, 470-471
.NET, 214-231

previous layout lists, 358-360
regular expressions, 61
SqlServerAccessor class, 265
standard libraries, 131
symbols, 58

app/models folder, 334
app/view folder, 334
app/view/layouts folder, 334
architecture

DLR, 20-21, 22-23. See also DLR
.NET Framework, 15-16
REST, 339-340

arithmetic operators, 49, 112
around_action filter, 382
around_result filter, 392
Array class methods, 56-57
arrays

accessing, 55-56
defining, 54-55
ranges, converting, 59
Ruby, 54-57

ASP.Net MVC, 363
applications, building, 365-367
classic ASP.Net, 398
environments, preparing, 363-365
features, 398
filters, 387-396
installing, 364
routes, 385-387
validations, 396-398

assemblies, 18
deleting, 366
GAC, 18
loading, 260, 267
.NET

loading, 207-210
WinForms, 296

references, adding, 367
requirements, Chat class, 282

actions512

running, 16
WinForms, loading, 285

assertions, unit testing, 428-431
associating methods with objects, 94-95
at sign (@), 453
attributes

Window, 309-310
WindowStyle, 310-311

audio, 418
AuthorizationContext object, 392-393
authorization filters, 392-393
automatic log rotation, 144
availability

libraries, 11, 133-135
socket services, 149-152

B
Background directive, Cucumber, 452
Base Class Library. See BCL
base64 library, 132

references, 135
BasicSocket class, 155
BCL (Base Class Library), 19
BDD (behavior-driven development), 435
be_an_instance_of RSpec expression matcher, 440
be_an RSpec expression matcher, 440
be_a RSpec expression matcher, 440
be_close RSpec expression matcher, 440
be_false RSpec expression matcher, 440
before_action filter, 388
before method, 443
before_result filter, 390-391
BEGIN class, 77
begin clause, 88
behavior

RSpec, creating, 438
rules, Cucumber, 443-457

behavior-driven development (BDD), 435
Behavior object, 438
be_instance_of RSpec expression matcher, 440
be_kind_of RSpec expression matcher, 440
benchmark library, 132, 136
be_nil RSpec expression matcher, 440
be_[predicate] RSpec expression matcher, 440
best practices, extension development, 481
be_true RSpec expression matcher, 440
BigDecimal library, 132

references, 136
binary marshaling, 181
binders, 24
binding

data
Silverlight, 419-422
WPF, 325-329

dynamic data, 327-328
private binding mode, 213-214
static data, 325-326

How can we make this index more useful? Email us at indexes@samspublishing.com

Bin folder, 30
bitwise operators, 112
block arguments, applying methods as, 94
BlockParam parameter, 492
blocks, 96-97, 496

flow, 100-101
body parts, web pages, 352
Booleans, 60
break keyword, 74
brushes

Silverlight, 415
WPF, 322-324

BuildConfig property, 483, 485
build configurations, adding, 502-504
builder pattern, 196-199
building

applications, ASP.Net MVC, 365-367
chat, WinForms, 285-299
Chat class, 282-285
ChatForm class, 285-286
class structures, 260, 267
connection strings, 261, 267
extensions, 501-510

built-in mixins, 488
buttons

Environment Variables, 28
Refresh, adding, 360-361

C
CachedDataAccess class, 276-279

applying, 278-279
cached_data_access.rb file, 277-278
caches, 22

GAC, 18
calc_numerological_value.feature, 448
calling

accessors, 108
class methods, 111
methods, 45-46, 94
procs, 97

call sites, 23
CallSiteStorage parameter, 492
canceling actions, 388
canvas, formatting, 320-321
Canvas control, 411
CAS (Code Access Security), 19
case statement, 67-69
catching exceptions within methods, 88
CGI (Common Gateway Interface), 132
change RSpec expression matcher, 440
characters, numeric values of, 51
chat, building WinForms, 285-299
Chat class, 282

building, 282-285
Chatform class, 282, 297-299

building, 285-286

Chatform class 513

chat.rb file, 284-285
ChatRunner class, 282
Chiron, initParams parameter, 407
CIL (Common Intermediate Language), 17-18
Class class methods, 232-233
classes

abstract, 123, 247
accessors, 107-109
Application, 304
Array, methods, 56-57
BasicSocket, 155
BCL, 19
BEGIN, 77
CachedDataAccess, 276-279
Chat, 282-285
ChatForm, 282, 285-286
Chatform, 297-299
ChatRunner, 282
Class, methods, 232-233
CLR, 216, 217

inheritance from, 239-243
opening, 254-256

code standards, 47
connection strings, adding, 262
constants, 105-106
defining, 93
duck typing, 124-126
END, 77
errors, customizing, 85-86
Exception, methods, 78
ExceptionContext, 393-394
exceptions, 490-491
extensions, 488-491
File, 170
Form, initializing, 286
generic, 241-242
Hash, methods, 58-59
helper, 349-350
inheritance, 120-124
instances, creating, 102
IPSocket, 156
IronRuby, 235-236
IronRuby::Clr, 236
methods, 109-111

overriding, 122
undefining, 491

module-contained objects, 126
modules, 126
Mutex, 167-168
MySQLAccessor, 272
Numerology.Calculator, 426
Object

methods, 231-232
opening, 255-256

Recorder, implementation, 38-39
regular, 239-242
Ruby, 101-126
RubyClassAttribute properties, 488-489
RubyMethodAttributes, 492, 494-495
ScriptEngine, 23, 463-465
ScriptRuntime, 23, 462-463

ScriptRuntimeSetup, 462
ScriptScope, 23, 465-466
ScriptSource, 23, 466-467
sealed, 243
singleton, 490
SqlServerAccessor, applying, 265
Stack, 38
static, 243
String, 53, 54, 234-235
structures, building, 260, 267
System.String, 254
System.Windows.Forms.Application, 300
TCPServer, 156
TCPSocket, 156, 283
ToDoListModel, 370
UDPSocket, 156
variables, 102-107, 103
visibility control, 118-120

classic ASP.Net, 398
class keyword, 101
clauses

begin, 88
block, 96
ensure, 82-83
rescue statement, 79

CLI (Common Language Infrastructure), 14-18
ClientSize property, 287
closures, blocks, 97. See also blocks
CLR (Common Language Runtime), 1, 15, 17

classes, 216, 217
inheritance from, 239-243
opening, 254-256

constants, 222
delegates, 217-218
fields, 228
interfaces, 216, 243-244
members, hiding, 487
namespaces, converting, 214
naming conventions, 212-213
objects

applying Recorder class on, 38
reflection, 237

properties, 228-229
Ruby, type differences, 211
structs, inheritance from, 243

clr_constructor method, 232
clr_ctor method, 232
clr_member method, 231
clr_members method, 233
clr_new method, 233
CoC (Convention over Configuration), 340
code

compiling, 467
creating, 504-506
dynamically, executing, 180-181
execution, 300-301, 467
file structure, 46-47
Gherkin, 451
hosts, 26
naming, 212

chat.rb file514

.NET
Framework, 16
mapping, 210-214
standards, 211-213

reading, 467
reflection. See reflection

RSpec, injecting, 442-444
Ruby, 2-5. See also Ruby
ScriptEngine class, executing, 464-465
ScriptRuntime class, executing, 463
Silverlight, adding, 411-415

source. See source code
standards, 47
unit testing, 426-427
XAML, 305-307

Code Access Security (CAS), 19
code-containing structures, Ruby, 86
CodePlex, 22, 26
Collatz conjecture, 77
collisions

inheritance, 124
.NET, mapping code, 210-214

command-line
arguments for file execution mode, 33-34
chr tool, 404-406
databases, creating from, 337
sl tool, 402-403
switches, 31

commands
db:migrate, 345-346
icucumber, 457
patterns, 190-192
scaffold, 344, 345
script/destroy, 345
script/generate, 343-345
script/generate controller, 346
script/server, 342

comma-separated value. See CSV
comments

code standards, 47
syntax, 43-44

Common Gateway Interface. See CGI
Common Intermediate Language. See CIL
Common Language Infrastructure. See CLI
Common Language Runtime. See CLR
Common Type System (CTS), 16
comparison operators, 64-65, 112, 114
Compatibility property, 483, 485
compilers, DLR, 24
compiling

code, 467
JIT, 16

complex library, 132
references, 137

components
RoR, 340-342
runtime, 22, 23-24

conditions, 64-74

How can we make this index more useful? Email us at indexes@samspublishing.com

Config folder, 334
configuration method, 235
configuring

applications, RoR, 332-337
behavior, RSpec, 438
build, adding, 502-504
class instances, 102
controllers, 346-349
databases, RoR, 334-337
extensions, .NET, 478-501
form properties, 287-289
keys for SQL Server connections, 261
PATH Environment Variable, 29
RubyMine, 37
ScriptRuntime class, 462-463
values to variables, 44-45
views, 346-349
visibility control, 118-120
web pages, 346-354

connections
MySQL, opening, 268
SQL Server, opening, 262
strings

adding, 262
building, 261, 267
examples of, 261

connectors, MySQL, 260
consoles, 11

keys, 408
modes, REPL, 31

constants
classes, 105-106
CLR, 222
code standards, 47
extensions, 501
mapping, 222
module-contained objects, 127
Ruby, 63-64

const-missing method, 118
constructors

defining, 102
inheritance, 241
methods, 497

contacting
MySQL, 265-272
SQL Server, 260-265

content, WPF, 315-317
contribution pages, 26
ControlBox property, 287
controllers

ActionController, 341
actions, return values, 371
applications, creating, 375-377
ASP.Net MVC validations, 396-397
creating, 343, 346-349
features, 371-372
filters, 394
MVC, 371-372
views, creating, 378

controllers 515

controls
layouts

Silverlight, 410-411
WPF, 317-321

Silverlight, 411
StackPanel, 317-319
structures, Ruby, 64-77
WinForms, adding, 289-293
WrapPanel, 318-319

Convention over Configuration. See CoC
conventions, naming, 212

Ruby, 484
unit testing, 427-428

converting
namespaces, CLR, 214
ranges to arrays, 59

CRUD (Create Read Update Delete), 259, 341
CSV (comma-separated value), 132

references, 137
CTS (Common Type System), 16
Cucumber, 443-457

Background directive, 452
executing, 457
features, 446-447
hooks, 454-455
installing, 445
multilanguage, 456-457
project structures, 445-446
scenarios, 447-452
tags, 453-454
worlds, 456

culture of assemblies, 18
customizing

error classes, 85-86
filters, 395-396
index pages, 356
installation, 26
routes, 386-387

C#/VB.Net, 458-459
applications, 459-461
external libraries, 472-473
IronRuby, executing from, 468-473
ScriptEngine class, 463-465
ScriptRuntime class, 462-463
ScriptScope class, 465-466
ScriptSource class, 466-467

D
-D, 33
-d, 33
data access, 256

environments, preparing, 260-259
overview, 259
SQL Server, contacting, 260-265

databases. See also MySQL; SQL Server
MySQL, preparing, 266
queries, 263-264, 268
RoR configuration, 334-337
web pages, formatting, 354-361

data binding
Silverlight, 419-422
WPF, 325-329

data templates, Silverlight, 422
dates

and times, Ruby, 62-63
libraries, 132

DayError, 86
Db folder, 334
db:migrate command, 345-346
debug key, 408
Debug library, 132
DebugMode property, 462
declaring

floats, 49
integers, 49
types, 48

default parameter values, 92
DefineIn property, 483, 486
defining

arrays, 54-55
blocks, 96
classes, 93
class methods, 110
constants, 105
constructors, 102
exception types, 139
hashes, 57
Lambdas, 99
methods, 88-89, 95-96
operator behavior, 111
proc objects, 97
regular expressions, 60-61
strings, 50
types, 44

def keyword, 88
Delegate library, 132
delegates, CLR, 217-218
deleting

assemblies, 366
method definitions, 95-96
records, MySQL, 269
resources, 345

delimiters, strings, 50
describe method, 438
design

MySQL, 272-276
patterns, 186-202

builder, 196-199
command, 190-192
iterator, 188-190
observer, 194-196
singleton, 192-194
strategy, 186-188

SQL Server, 272-276
designer, Visual Studio, 295-296
development

environments, 34-37
integrated development environments. See IDEs
dialog boxes

Edit System Variable, 28
New Project, 366

controls516

differences between Lambdas and Procs, 99
digest library, 132

references, 138
directives

And, 448
Background, Cucumber, 452

directories
listing, 174-175
structures, 333-334
templates, sl tool, 403

Distributed Ruby. See Drb
dividing integers, 50
DLR (Dynamic Language Runtime), 1

architecture, 22-23
features, 23-24
overview of, 20-21

Doc folder, 334
documents. See also text

here, 51
words, modifying, 357
XAML, 305-307
XML

generating, 153
reading, 154

domain-specific languages. See DSLs
Don’t Repeat Yourself. See DRY
DoubleAnimation element, 324
double-quoted strings, 44-50
downloading

code, 26
IronRubyMvs Dll files, 364-365
.NET Framework, 26
standard libraries, 159

Drb (Distributed Ruby), 132
DRY (Don’t Repeat Yourself), 340
DSLs (domain-specific languages), 199-202
duck typing, 8-9

classes, 124-126
dynamic data

binding to, 327-328
Silverlight, 420-421

Dynamic Language Runtime. See DLR
dynamic languages, 6-7, 20-21

implementation, 24
dynamic messages, 139

E
each method, 59, 116
-e “command,” 33
Edit System Variable dialog box, 28
Eiffel, 1, 5
elements

DoubleAnimation, 324
MediaElement, 418
Silverlight, retrieving, 412-414
Storyboard, 418

How can we make this index more useful? Email us at indexes@samspublishing.com

TextBlock, 304
WPF, retrieving, 308

else statements, 81-82
e2mmap library, 132, 139
empty namespaces, 214
END class, 77
end keyword, 88
English library, 132

references, 140-141
ensure clause, 82-83
entries, adding log, 143
enumerable objects, 72-73
enums, 221-222
environments

ASP.Net MVC, preparing, 363-365
data access, preparing, 260-259
development, 34-37

integrated development environments. See IDEs
reflection. See reflection

RoR
navigating, 342-346
preparing, 331-332

Silverlight, preparing, 402
target, .NET extensions, 482

Environment Variables button, 28
env.rb file, 446
Eql RSpec expression matcher, 440
Equal RSpec expression matcher, 441
Erb library, 132

references, 141-143
Eregexp library, 132
error.js file, 408
errors

classes, customizing, 85-86
DayError, 86
IOError, 80
StandardError, 85
SyntaxError, 80

events
handling, Silverlight, 414
layout, suppressing, 286
.NET, 218-221
overriding, 253-254
startup, 305
subscribing, 219-220
TextBlock.Loaded, 418
unsubscribing, 220
WPF, handling, 308-309

examples, tables, 451-452
Exception class methods, 78
ExceptionContext class, 393-394
exceptionDetail key, 408
exceptions

catching within methods, 88
classes, 490-491
filters, 393-394
handling, 78-86
raising, 83-85

exceptions 517

threads, 163
types, defining, 139

executables, 30-34
executing

code, 467
dynamically, 180-181
RSpec, 443
ScriptEngine class, 464-465
ScriptRuntime class, 463

Cucumber, 457
IronRuby from C#/VB.Net, 468-473
virtual methods, 246

execution code, writing, 300-301
expectation methods

RSpec, 439-442
expressions

interpolation, 52
matchers, RSpec, 441-442
regular, 60-62
trees, 23, 24

extending IronRuby, 473-478
Extends property, 484, 486
eXtensible Application Markup Language. See XAML
extensions

classes, 488-491
constants, 501
infrastructure, 478-481
IronRuby

applying, 501
building, 501-510

methods, 491-500
.NET

applying, 509-510
creating, 478-501
modules, 482-488

projects, 481
Visual Studio, creating projects, 502

external libraries, C#/VB.Net, 472-473

F
features

ASP.Net MVC, 398
controllers, 371-372
Cucumber, 446-447
DLR, 23-24
installation, 26
.NET Framework, 16-20
Ruby, 6-11
tagging, 453

fields, CLR, 228
File class, 170
filenames, loading .NET assemblies, 208
File.open method, 170
files, 169-175

cached_data_access.rb, 277-278
chat.rb, 284-285
code structure, 46-47
env.rb, 446
error.js, 408

initial project, creating, 333
IronRuby, executing, 468
IronRubyMvs Dll, adding to Visual Studio, 365
mysql.rb, 270-272
operations, 175
properties, accessing, 173-174
reading, 158, 170-172
sql.rb, 264-265
writing, 158, 172-173
ZIP, 27

FileUtils library, 132
references, 143

filters
actions, 387-390
ASP.Net MVC, 387-396
authorization, 392-393
controllers, 394
customizing, 395-396
exceptions, 393-394
results, 390-392

finding
gems, 185
living objects, 176-177
standard libraries, 159

Find library, 133
find_name method, 308
flags, regular expressions, 61
floats, declaring, 49
flow

filters, 387
keywords, 100-101
loops, modifying, 74

folders, 29-30
Lib, 209
RoR, 333-334
structures, sl tool, 403

for loops, 71
formatting

applications
controllers, 375-377
RoR, 332-337
views, 382-385

behavior, RSpec, 438
canvas, 320-321
class instances, 102
code, 504-506
controllers, 346-349
databases, web pages, 354-361
extensions, .NET, 478-501
form properties, 287-289
MVC views, 378-385
views, 346-349
visibility control, 118-120
web pages, 346-354

FormBorderStyle property, 287
Form class, initializing, 286
forms

data, posting, 145
properties, formatting, 287-289
WinForms, 280. See also WinForms

Forwardable library, 133

exceptions518

frameworks
Cucumber, 443-457
.NET

Framework, 20
overview of, 11-13

RoR. See RoR
RSpec, 435-444

WPF. See WPF
full paths, loading .NET assemblies, 208
functionality

adding, 353-354
WinForms, adding, 293-295

G
GAC (Global Assembly Cache), 18
Garbage Collector, 176
gems

applying, 183-184
finding, 185
installing, 183
RoR, installing, 332

generating
ASP.Net MVC initial projects, 365-367
helper classes, 344
resources, web pages, 354-355
XML documents, 153

Generator library, 133
generic classes, 229-231, 241-242
GetOptLong library, 133
get_products method, 276
Gherkin code, 451
GitHub, 26
Given step, 447
Global Assembly Cache. See GAC
global hooks, 454
globals method, 235
graphics

Silverlight, 415-417
WPF, 321-325

Grid control, 410
grids, 319-320
GServer library, 133
guidelines, RoR, 339-311
GUI (graphical user interface) tools, installing, 260

H
-h, 34
Hailstone Sequence, 77
handled property, 309
handling

events
Silverlight, 414
WPF, 308-309

exceptions, 78-86
files, 169-175

How can we make this index more useful? Email us at indexes@samspublishing.com

Hansson, David Heinemeier, 1
Hash class methods, 58-59
hashes, 57-59

accessing, 58
defining, 57

have_at_least RSpec expression matcher, 441
have_at_most RSpec expression matcher, 441
Have RSpec expression matcher, 441
head parts, web pages, 352
Hello World!, 48
helper classes, 349-350

generating, 344
helper methods

HTML, 378-379
views, 380

here documents, 51
HideClrMembers property, 484
hiding

CLR members, 487
methods, 500

highlighting syntax, 35
history

of .NET Framework, 13-14
of Ruby, 5-6

hooks, Cucumber, 454-455
HostArguments property, 462
hosts

code, 26
models, 22, 23

HostType property, 463
HTML (Hypertext Markup Language)

helper methods, 378-379
Silverlight, accessing, 414-415

I
-I “command,” 33
icucumber command, 457
identifiers, tags, 453
IDEs (integrated development environments), 35
if, 65-67
if-else statements, 69
igem.bat, 30
iir.bat, 30
iirb.bat, 30
implementation, 24-25

abstract classes, 247
accessors, 180
dynamic languages, 24
invoking superclass method, 123
Recorder class, 38-39
regular methods, 247-248
Ruby, 6
sealed methods, 250-251
static methods, 248-249
steps, 449-451
threads, 162
virtual methods, 245-246

implementation 519

include method, 215
include RSpec expression matcher, 441
indexer methods, 224-225
index pages, customizing, 356
infrastructure extensions, 478-481
inheritance

classes, 120-124
CLR classes, 239-243
CLR interfaces, 243-244
CLR structs, 243
collisions, 124
constructors, 241
numeric types, 49

Inherits parameter, 489-490
Initialize method, 102, 498-499
initializers, libraries, 508-509
initializing

Form class, 286
ScriptRuntime class, 462-463
visibility, 102

initial project files, creating, 333
initiating Chat class, 282-283
initParams parameter, 407
injecting code, RSpec, 442-444
inserting records, MySQL, 269
installing, 26-30

ASP.Net MVC, 364
Cucumber, 445
features, 26
gems, 183, 332
GUI tools, 260
RSpec, 436
SQL Server, 332

instances
classes, creating, 102
methods, 222
variables, 103-104, 453

integers
declaring, 49
dividing, 50

integrated development environment. See IDEs
integration, 1
intellisense, 35
interfaces

CGI, 132
CLR, 216, 243-244
programming, 506-508

WinForms. See WinForms
interoperability

.NET, 203
interpolation

expressions, 52
interpreters, 31. See also ir.exe

RubyMine, 37
inverted until loops, 71
inverted while loops, 70
investigating objects, 177-178
invoking

methods, 178-180
superclass method implementation, 123

IOError, 80

IPAddr library, 133
IPSocket class, 156
irackup.bat, 30
irails.bat, 30
irake.bat, 30
irake tool, 337
irdoc.bat, 30
ir.exe, 30

command-line arguments for file execution mode,
33-34

ir64.exe, 30
IronRuby, 6. See also Ruby

classes, 235-236
C#/VB.Net, 468-473
extending, 473-478
extensions

applying, 501
building, 501-510

objects, applying, 470-471
IronRuby::Clr class, 236
IronRubyMvs Dll files

adding, 365
downloading, 364-365

iterator pattern, 188-190

J
Java applications, 35
Java Virtual Machine. See JVM
JCode library, 133
JIT (just-in-time) compiling, 16
join method, 162
JRuby, 6
just-in-time. See JIT
JVM (Java Virtual Machine), 14

K
Kconv library, 133
keys, initParams Chiron-related, 408
keywords, flow, 100-101
-K[kcode], 33

L
lambdas, 99-100, 496

flow, 100-101
Language-Integrated Query. See LINQ
languages, 1

context, 24
DSLs, 199-202
dynamic, 6-7, 20-21
object-oriented, 7
programming, 13

Ruby. See Ruby
LanguageSetups property, 463
layout

controls, WPF, 317-321
events, suppressing, 286

include method520

layouts. See also formatting
adding, 351-352
applications, applying, 360
previous layout lists, applying, 358-360
Silverlight, 410-411

Lib folder, 209, 334
libraries

available, 11
BCL, 19
code without IronRuby extension methods, 505
DLR, 22. See also DLR
external, C#/VB.Net, 472-473
initializers, 508-509
MVC, 375
RSpec requirements, 436-437
standard, 130-131. See also standard libraries

Libs folder, 30
licenses, MS-PL, 22
limitations of RubyGems, 185
LINQ (Language-Integrated Query), 279-280
Linux operating system, 14
Lisp, 5
listen method, 283
listing directories, 174-175
lists, applying previous, 358-360
living objects, finding, 176-177
load_assembly method, 209, 501
load_component method, 412
loaded_assemblies method, 235
loaded_scripts method, 236
loading assemblies, 260, 267

.NET, 207-210
WinForms, 285

load method, 210, 236
load_root_visual method, 412
local variables, 105
log entries, adding, 143
Log folder, 334
logger library, 133

references, 143
loops, 70-72

flow, modifying, 74
for, 71
inverted until, 71
inverted while, 70
loop loops, 72
numbers, 73-74
ranges, 74
until, 70
while, 70

M
MacRuby, 6
MailRead library, 133
managing memory, .NET Framework, 19
manual installation, 27. See also installation

How can we make this index more useful? Email us at indexes@samspublishing.com

mapping
constants, 222
namespaces, 256
.NET code, 210-214
objects, 211
ORM, 341

marshaling, 181-182
binary, 181
textual, 182

matchers, expressions, 441-442
Match RSpec expression matcher, 441
MathN library, 133
Matrix library, 133
Matsumoto, Yukihiro, 1
Matz’s Ruby Interpreter. See MRI
MaximizeBox property, 287
media. See also animation; graphics

Silverlight, 417-418
MediaElement element, 418
members, hiding CLR, 487
memory management, .NET Framework, 19
messages

dynamic, 139
receiving, 283
sending, 283

metadata, 16
metaprogramming, 9-10
method_missing method, 38, 117
methods, 222-227

abstract, 246-247
accept_verbs, 374
add_EventName, 253
add_log, 456
add_one, 88
after, 443
alias_action, 375
aliasing, 499
alias keyword, 91-92
Application.run, 305
Array class, 56-57
assert, unit testing, 428-431
before, 443
calling, 45-46
Class class, 232-233
classes, 109-111

overriding, 122
undefining, 491

clr_constructor, 232
clr_ctor, 232
clr_member, 231
clr_members, 233
clr_new, 233
code standards, 47
configuration, 235
const-missing, 118
constructors, 497
defining, 88-89, 95-96
describe, 438

methods 521

each, 59, 116
Exception class, 78
expectation, RSpec, 439-442
extensions, 491-500
File.open, 170
find_name, 308
get_products, 276
globals, 235
Hash class, 58-59
helper. See helper methods
hiding, 500
include, 215
indexers, 224-225
Initialize, 498-499
initialize, 102
instances, 222
invoking, 178-180
IronRuby class, 235-236
join, 162
listen, 283
load, 236
load_assembly, 501
load_component, 412
loaded_assemblies, 235
loaded_scripts, 236
load_root_visual, 412
method-missing, 117
method_missing, 38
Module, 108
module-contained objects, 127
multiple overloads, 249-250
multiply, 254
naming, 90
NavigationWindow, 314-315
new, 161
non_action, 374
Object class, 231-232
objects,associating, 94-95
open, 171
overload, 234
overloaded, 223
overriding, 121-122, 245-251
overview of, 87-88
parameters, 495
parse, 307
-print, 48
printf, 52-53
private, 223

overriding, 122
testing, 428

public, 222
regular, 247-248
remove_EventName, 253
require, 131, 207, 236
run, 169, 300
sealed, 250-251
selectors, 374
setter, 117
setup, unit testing, 432-433
singleton, 96

special, 115-118
special IronRuby, 231-236
special .NET, 225
special parameters, 493
start, 161
static, 223, 248-249
String class, 54, 234-235
String.new, 51
succ, 116
teardown, unit testing, 432-433
the_next_big_thing, 92
to_clr_type, 231
undef, 96
values, returning from, 90-91
virtual, 245-246
visibility control, 118-120

Microsoft Intermediate Language (MSIL). See CIL
Microsoft Public License (MS-PL), 22
Microsoft SQL Server. See SQL Server
MinimizeBox property, 287
mixins

applying, 254-255
built-in, 488
definitions, 487-488
modules, 128-129

models
ActiveRecord, 340-341
ASP.Net MVC validations, 396
creating, 343
hosts, 22, 23
MVC, 368-371

model-view-controller. See MVC
modes

consoles, REPL, 31
private binding, 213-214

modifier statements, 80
modifying

databases, 335
loop flow, 74
print separators, 172
visibility control, 118-120
words, 357

Module method, 108
ModuleRestrictions enum values, 486-487
modules, 126-129

classes, 126
code standards, 47
mixins, 128-129
module-contained objects, 126-127
namespaces, 127-128, 256
.NET extensions, 482-488

monitor library, 133
references, 144

monitors, 168-169
Mono, 17
MRI (Matz’s Ruby Interpreter), 6
MSIL (Microsoft Intermediate Language). See CIL
MS-PL (Microsoft Public License), 22
multilanguage, Cucumber, 456-457
multiline comments, 43

methods522

multiple overloads, methods with, 249-250
multiple-parameter replacement, 89
multiple statements, writing, 44
multiply method, 254
Mutex class, 167-168
Mutex_m library, 133
MVC (model-view-controller), 339, 368-385
ASP.Net MVC. See ASP.Net MVC

controllers, 371-372
models, 368-371
views, 378-385

My Computer, 27
MySQL, 260

connections, opening, 268
connectors, 260
contacting, 265-272
databases, preparing, 266
design, 272-276
records

deleting, 269
inserting, 269

MySQLAccessor class, 272
mysql.rb files, 270-272

N
Name property, 483, 484
namespaces

aliasing, 214
mapping, 256
modules, 127-128
.NET objects, 214-215
opening, 256
XAML, 306

naming
assemblies, 18
code, 212
conventions

Ruby, 484
unit testing, 427-428

methods, 90
navigating environments, RoR, 342-346
NavigationWindow, 314-315
nested test suites, 434
.NET, 1

assemblies
loading, 207-210
WinForms, 296

code
mapping, 210-214
standards, 211-213

events, 218-221
extensions

applying, 509-510
creating, 478-501
modules, 482-488

How can we make this index more useful? Email us at indexes@samspublishing.com

Framework
downloading, 26
features, 16-20
frameworks, 20
history of, 13-14
memory management, 19
overview of, 11-13, 15-16
security, 19
versions, 14

interoperability, 203
objects, applying, 214-231
special methods, 225

NetBeans, 35-36
Net/ftp library, 133
Net/ftptls library, 133
Net/http library, 133

references, 144
Net/imap library, 133
Net/pop library, 133
Net/smtp library, 133
Net/telnet library, 133
Net/telnets library, 133
new method, 161
New Project dialog box, 366
Next Generation Windows Services. See NGWS
next keyword, 75
NGWS (Next Generation Windows Services), 14
non_action method, 374
Notepad++, 37
Novell, 14
numbers

loops, 73-74
Ruby, 48-50

Numerology.Calculator class, 426

O
Object class

methods, 231-232
opening, 255-256

object-oriented languages, 7
Object Rational Mapping. See ORM
objects

ActionExecutingContext, 388
AuthorizationContext, 392-393
Behavior, 438
CLR

applying Recorder class on, 38
reflection, 237

enumerable, 72-73
investigating, 177-178
IronRuby, applying, 470-471
living, finding, 176-177
mapping, 211
methods, associating, 94-95
module-contained, 126-127

objects 523

.NET, applying, 214-231
procs, defining, 97
receiving exception, 79
Ruby, 237

ObjectSpace module, 176
Observer library, 133

references, 145
observer patterns, 194-196
onerror parameter, 407
opening

CLR classes, 254-256
connections

MySQL, 268
SQL Server, 262

namespaces, 256
Object class, 255-256

Open3 library, 134
open method, 171
open source projects, 6
OpenSSL library, 134
open-uri library references, 145
operating systems, 14
operations, files, 175
operators, 16

AND, 65
arithmetic, 49, 112
array access ([]), 112, 114
array access setter ([] =), 112, 114
bitwise, 112
Boolean AND (&&), 65
Boolean OR (||), 65
case equality (===), 65, 112, 113
comparison, 64-65, 112, 114
equality (==), 112
equal to (==), 65
general comparison (<=>), 65
greater than/greater than or equal to (>, >=), 65
less than/less than or equal to (<, <=), 65
no pattern match (!), 65
not equal to (!=), 65
OR, 65
order comparison (< <= => >), 112
overloading, 111-115
pattern match, 65, 112
precedence, 64
shifting, 113
shift-left (<<), 112
shift-right (>>), 112
ternary, 69
unary, 113
unary minus (-@), 112
unary plus (+@), 112

options, installation, 26
Options property, 463
Optparse library, 134
ORM (Object Rational Mapping), 341
OR operator, 65
or property, 287
OStruct library, 134
outline scenarios, 451-452
out parameter, 226

overloading
methods, 223
operators, 111-115

overload method, 234
override keyword, 245
overriding

class methods, 122
events, 253-254
methods, 121-122, 245-251
private methods, 122
properties, 251-253

P
pages. See web pages
panels, websites, 321
parameters

default values, 92
Inherits, 489-490
initParams, 407
load_assembly method, 209
methods, 495
multiple-parameter replacement, 89
onerror, 407
out, 226
params, 227
ref, 226-227
scope, 466
source, 407
special methods, 493
special types, 93-94

params parameter, 227
parentheses (), 45
ParseDate library, 134
parse method, 307
Parse_Tree library, 134
Pascal casing in .NET code, 212
passing

data between windows, 312-314
data in and out of threads, 164
filenames, 208
variables to and from IronRuby, 469-470

pass method, 165
PATH Environment Variable, configuring, 29
PathName library, 134
paths

full, loading .NET assemblies, 208
searching, 464

PATH variable, 332
pattern match operator, 65, 112
patterns, design, 186-202

builder, 196-199
command, 190-192
iterator, 188-190
observer, 194-196
singleton, 192-194
strategy, 186-188

Perl, 1, 5

objects524

ping library, 134
references, 147

positioning
arguments with default values, 92
block arguments, 94

posting form data, 145
PP library, 134
precedence, operators, 64
preparing

environments
ASP.Net MVC, 363-365
for data access, 260-259
RoR, 331-332
Silverlight, 402

MySQL databases, 266
PrettyPrint library, 134
previous layout lists, applying, 358-360
printf method, 52-53
-print method, 48
print method, modifying separators, 172
priority, threads, 164-165
private binding mode, 213-214
PrivateBinding property, 463
private methods, 223

overriding, 122
testing, 428

procs, 97-99, 496
flow, 100-101

-profile, 33
programming

interfaces, Ruby, 506-508
languages, 13. See also languages
metaprogramming, 9-10

programs, Hello World!, 48
progress_proc, 146
project files, creating, 333
projects

extensions, 481
structures, Cucumber, 445-446
Visual Studio, creating extensions, 502

properties
CLR, 228-229
files, accessing, 173-174
forms, formatting, 287-289
NavigationWindow, 314-315
overriding, 251-253
redefining, 252
RubyClassAttribute class, 488-489
RubyMethodAttribute class, 492
RubyModuleAttribute, 483-484
ScriptRuntimeSetup class, 463

proxies, 146
PStore library, 134
Public folder, 334
public/images folder, 334
public/javascripts folder, 334
public key tokens, assemblies, 18
public methods, 222
public/stylesheets folder, 334

How can we make this index more useful? Email us at indexes@samspublishing.com

Q
queries

databases, 263-264, 268
LINQ, 279-280

queues, 168

R
Racc/parser library, 134
RadRails, 37
raise_error RSpec expression matcher, 441
raising exceptions, 83-85
Rake, 184-185
rakefiles, 184-185
ranges

arrays, converting, 59
loops, 74
Ruby, 59-60

rational library, 134
references, 152

Readbytes library, 134
read-evaluate-print loop. See REPL
reading

code, 467
files, 158, 170-172
XML documents, 154

receiving
exception objects, 79
messages, 283

Recorder class, implementation, 38-39
records, MySQL

deleting, 269
inserting, 269

redefining properties, 252
redirect results, 373-374
redo keyword, 75
references

assemblies, adding, 367
standard libraries, 135-158

reflection, 176
CLR objects, 237
living objects, finding, 176-177
methods, invoking, 178-180
objects, investigating, 177-178
variables, configuring dynamically, 178-180

ref parameter, 226-227
Refresh button, adding, 360-361
regular classes, 239-242
regular expressions, 60-62
regular methods, 247-248
remove_EventName method, 253
removing assemblies, 366
replacing

multiple-parameters, 89
Silverlight content, 412

replacing 525

REPL (read-evaluate-print-loop), 10-11
console mode, 31
WPF, 329-330

reportErrors key, 408
Representational State Transfer. See REST
requirements

assemblies, Chat class, 282
libraries, RSpec, 436-437
.NET Framework assemblies, 208

require method, 131, 207, 236
rescue statement, 78-80
ResizeMode values, 311-312
resources

deleting, 345
panels, 321
standard libraries, 159
web pages, generating, 354-355

respond_to RSpec expression matcher, 442
REST (Representational State Transfer), 339-340
Restrictions property, 484, 486
results

filters, 390-392
redirects, 373-374
views, 372-373

retrieving
pages, 144
Silverlight elements, 412-414
WPF elements, 308

retry keyword, 81
return keyword, 90, 99
return values

controller actions, 371
methods, 90-91
threads, 162

Rexml library, 134
references, 153

-r “library,” 33
Root folder, 30
root-visual property, 412
RoR (Ruby on Rails), 330-331

applications, creating, 332-337
components, 340-342
database configuration, 334-337
environments

navigating, 342-346
preparing, 331-332

folders, 333-334
guidelines, 339-311
servers, running, 337
web pages

creating, 346-354
formatting database-driven pages, 354-361

rotating automatic logs, 144
routes

ASP.Net MVC, 385-387
customizing, 386-387
RoR, 341
URLs, 371

RSpec, 435-444
behavior, creating, 438
code, injecting, 442-444

examples, 439
expectation methods, 439-442
expression matchers, 441-442
installing, 436
library requirements, 436-437
running, 437

RSS library, 134
Rubinius, 6
Ruby

accessors, 107-109
arrays, 54-57
blocks, 96-97
classes, 101-126
code, naming, 212
code-containing structures, 86
constants, 63-64
control structures, 64-77
dates and times, 62-63
features, 6-11
Hello World!, 48
history of, 5-6
implementation, 6
Lambdas, 99-100
naming conventions, 484
.NET, loading assemblies, 207-210
numbers, 48-50
objects, 237
overview of, 2-5, 25-26
process, 97-99
programming interfaces, 506-508
ranges, 59-60
regular expressions, 60-62
symbols, 58
syntax, 43-47
text, 50-54
threads, 161-169
type differences, CLR and, 211
variables, 48-64

RubyClassAttribute class properties, 488-489
RubyClass parameter, 492
RubyContext parameter, 492
RubyGems, 183

gems
applying, 183-184
finding, 185
installing, 183

installing, 183
limitations, 185

Ruby in Steel, 34-35
RubyMethodAttribute class properties, 492
RubyMethodAttributes class, 494-495
RubyMine, 36-37
RubyModuleAttribute properties, 483-484
Ruby on Rails. See RoR
Ruby Spec, 6
rules

behavior, Cucumber, 443-457
runtime components, 24

run method, 300
synchronization, 169

REPL (read-evaluate-print-loop)526

running
assemblies, 16
REPL console mode, 31
RSpec tests, 437
servers, RoR, 337
Silverlight applications, 405
tagged features and scenarios, 454
unit testing, 434-435
XAML, 307, 411-412

runtime
components, 22, 23-24

DLR. See DLR
ScriptRuntime class, 462-463

S
Samples folder, 30
satisfy RSpec expression matcher, 442
scaffold command, 344, 345
Scanf library, 134
scenarios

Cucumber, 447-452
hooks, 454-455
outlines, 451-452
tagging, 453

SciTE, 37
scope parameter, 466
script/destroy command, 345
ScriptEngine class, 23

C#/VB.Net, 463-465
Script folder, 334
script/generate command, 343-345
script/generate controller command, 346
ScriptRuntime class, 23

C#/VB.Net, 462-463
ScriptRuntimeSetup class, 462
ScriptScope class, 23

C#/VB.Net, 465-466
script/server command, 342
ScriptSource class, 23
sealed classes, 243
sealed methods, 250-251
searching

gems, 185
living objects, 176-177
paths, 464
standard libraries, 159

security
CAS, 19
.NET Framework, 19

selectors, methods, 374
self keyword, 118
semicolon (;), 44
sending messages, 283
servers, running RoR, 337
services, sockets, 149-152

How can we make this index more useful? Email us at indexes@samspublishing.com

Set library, 134
setter methods, 117
settings. See configuration; formatting
setup method, unit testing, 432-433
shapes, WPF, 322-323
sharing views, 380-382
Shell library, 134
shifting operators, 113
short names, assemblies, 18
Silverlight, 22, 401

animation, 417-418
applications, 402-406
chr tool, 404-406
code, adding, 411-415
controls, 411
data binding, 419-422
dynamic data, 420-421
elements, retrieving, 412-414
environments, preparing, 402
event handling, 414
folders, 30
graphics, 415-417
HTML, accessing, 414-415
layouts, 410-411
sl tool, 402-403
static data, 419-420
templates, 422
web pages, adding, 406-408
XAML, 409

single line comments, 43
single-quoted strings, 51
singleton

classes, 490
library, 154
methods, 96
patterns, 192-194

Size property, 287
sl tool, 402-403
Smalltalk, 1, 5
socket library, 154
sockets, services, 149-152
source code, 29
source parameter, 407
special argument types, 225
special IronRuby methods, 231-236
special methods, 115-118
special .NET methods, 225
special parameters

methods, 493
types, 93-94

sql.rb files, 264-265
SQL Server, 260

connections, opening, 262
data access, contacting, 260-265
design, 272-276
installing, 332

SQL Server 527

SqlServerAccessor class, applying, 265
Stack class, 38
StackPanel control, 317-319, 410
StandardError, 85
standard libraries, 131

applying, 131
available libraries, 132-135
MVC, 375
references, 135-158
searching, 159

standards
code, 47
.NET code, 211-213
REST, 339-340

starting, 24-25
threads, 161

start key, 408
start method, 161
StartPosition property, 288
startup events, 305
statements

case, 67-69
else, 81-82
if-else, 69
modifiers, 80
rescue, 78-80
writing, 44
yield, 76-77

states, threads, 165-167
static classes, 243
static data

binding to, 325-326
Silverlight, 419-420

static methods, 223, 248-249
steps

hooks, 454-455
implementation, 449-451

Storyboard element, 418
strategy pattern, 186-188
String class, 53

methods, 54, 234-235
String.new method, 51
strings

accessing, 53-54
connections

adding, 262
building, 261, 267
examples of, 261

defining, 50
delimiters, 50
double-quoted, 44-50
IronRuby code, executing from, 468-469
single-quoted, 51
time, helper classes, 349

strong names, loading .NET assemblies, 208-209
structs, inheritance from CLR, 243
structures

applications, WinForms, 282
classes, building, 260, 267

code file, 46-47
directories, 333-334
folders, sl tool, 403
projects, Cucumber, 445-446
Ruby

code-containing, 86
control, 64-77

str variable, 466
styles

Silverlight, 419-420
WPF, 326-327

stylesheets, adding, 350-351
subscribing events, 219-220
substrings, 53. See also strings
succ method, 116
suites, test, 433-434
superclass method implementation, invoking, 123
super keyword, 246
suppressing layout events, 286
switches

chr tool command-line, 405
command-line, 31

symbols, Ruby, 58
synchronization, threads, 167-169
syntax

aliasing, 215
comments, 43-44
LINQ, 279-280
Ruby, 43-47
Ruby in Steel, 35

SyntaxError, 80
System.String class, 254
System.Windows.Forms.Application class, 300

T
tables, examples, 451-452
tags

Cucumber, 453-454
scenarios, hooks, 455

target environments, .NET environments, 482
target machines, executing code on, 16
TCPServer class, 156
TCPSocket class, 156, 283
teardown method, unit testing, 432-433
templates

directories, sl tool, 403
IronRubyMvs Dll files, adding, 365
Silverlight, 422
WPF, 328-329

ternary operators, 69
Test folder, 334
testing

Cucumber, 443-457
private methods, 428
RSpec, 435-444

unit testing. See unit testing
Test::Unit, 427-433

SqlServerAccessor class528

text
Ruby, 50-54
words, modifying, 357

TextBlock element, 304
TextBlock.Loaded event, 418
Text property, 288
textual marshaling, 182
the_next_big_thing method, 92
Then step, 448
third-party libraries, MVC, 375

references, 157
threads, 161-169

exceptions within, 163
priority, 164-165
states, 165-167
synchronization, 167-169

throw_symbol RSpec expression matcher, 442
time

Ruby, 62-63
strings, helper classes, 349

Tmp folder, 334
to_clr_type method, 231
ToDoListModel class, 370
tools, 30-34

chr, 404-406
GUI, installing, 260
irake, 337
Rake, 184-185
sl, 402-403

-trace, 33
trees

expressions, 23, 24
inheritance, 49

types, 16
accessors, 107
declaring, 48
defining, 44
differences, CLR and Ruby, 211
exceptions

defining, 139
handling, 80

special argument, 225
special parameter, 93-94

U
UDPSocket class, 156
unary operators, 113
undefining class methods, 491
undef methods, 96
uniform resource locators. See URLs
unit testing, 424-425

assertions, 428-431
code, 426-427
running, 434-435
setup method, 432-433

How can we make this index more useful? Email us at indexes@samspublishing.com

teardown method, 432-433
test suites, 433-434
Test::Unit, 427-433

unless, 67
unsubscribing events, 220
until loops, 70
URLs (uniform resource locators), 371
UTC difference values, modifying, 358-359

V
-v, 33
validations, ASP.Net MVC, 396-398
values

compatibility available, 485
CSV, 132
default parameter, 92
methods, returning from, 90-91
numeric, 48-50
priority threads, 164-165
ResizeMode, 311-312
return, threads, 162
variables, configuring, 44-45

variables
$LOAD_PATH, 210
accessing from outside, 106-107
classes, 103
code standards, 47
configuring dynamically, 178-180
constants, 63. See also constants
inside classes, 102-107
instances, 103-104, 453
local, 105
PATH, 332
Ruby, 48-64
str, 466
to and from IronRuby, passing, 469-470
values, configuring, 44-45

VB.Net. See C#/VB.Net
Vendor folder, 334
versions

assemblies, 18
.NET Framework, 13, 14
Ruby, release dates of, 6

vertical bars (|), 96
VES (Virtual Execution System), 17
video, adding, 418
viewing

data templates, 423
generated index pages, 356-357
windows, 312

views
ActionView, 341
applications, creating, 382-385
ASP.Net MVC validations, 397-398
creating, 346-349

views 529

helper methods, 380
MVC, 339, 378-385
results, 372-373
sharing, 380-382

Virtual Execution System. See VES
virtual methods, 245-246
visibility

control, 118-120
initializing, 102

Visual Studio, 35
designer, applying, 295-296
extensions, creating projects, 502
IronRubyMvs Dll files, adding, 365

W
-w, 33
web pages

creating, 346-354
database-driven pages, formatting, 354-361
resources, generating, 354-355
Silverlight, adding, 406-408
references, 157

websites
panels, 321
standard libraries, 159

When step, 448
while loops, 70
whitespaces, 45
Window attribute, 309-310
windows

content, 315-317
NavigationWindow, 314-315
passing data between, 312-314
viewing, 312
WPF, 309-310

Windows Forms. See WinForms
Windows operating system, 14
Windows Presentation Foundation. See WPF
WindowStyle attribute, 310-311
WinForms, 281

assemblies, loading, 285
chat, building, 285-299
Chat class, building, 282-285
controls, adding, 289-293
execution code, writing, 300-301
functionality, adding, 293-295
overview of, 281-282

-W[level], 33
words, modifying, 357
worlds, Cucumber, 456
WPF (Windows Presentation Foundation), 301

animation, 324-325
brushes, 322-324
content, 315-317
data binding, 325-329
elements, retrieving, 308

events, handling, 308-309
graphics, 321-325
IronRuby fundamentals, 307-309
layout controls, 317-321
overview of, 303-305
REPL, 329-330
shapes, 322-323
styles, 326-327
templates, 328-329
windows, 309-310
XAML, 305-307

WrapPanel control, 318-319
writing

code, 504-506
execution code, 300-301
files, 158, 172-173
Hello World!, 48
statements, 44
tests, 427

X
XAML (eXtensible Application Markup Language),

305-307
animation, 417-418
elements, accessing, 412-414
graphics, 415-417
running, 307, 411-412
Silverlight, 409

-X:ColorfulConsole, 32
-X:CompilationThreshold, 34
-X:ExceptionDetail, 34
XML (eXtensible Markup Language) documents

generating, 153
reading, 154

-X:NoAdaptiveCompilation, 34
-X:PassExceptions, 34
-X:PrivateBinding, 34
XRuby, 6
-X:ShowClrExceptions, 34

Y–Z
YAML library, 135

references, 157
textual marshaling, 182

yield keyword, 94
yield statement, 76-77

ZIP files, 27
Zlib library, 135, 158

views530

	Introduction
	4 Getting Started with IronRuby
	Overview
	Installing IronRuby
	Executables and Tools
	Development Environments
	The Power of IronRuby

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

