BEN WATSON

C#4.0
_HOW-TO

Real Solutions for C# 4.0 Programmers

C# 4.0 How-To
Copyright © 2010 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33063-6
ISBN-10: 0-672-33063-6
Library of Congress Cataloging-in-Publication Data
Watson, Ben, 1980—-

C# 4.0 how-to / Ben Watson.

p. cm.

Includes index.

ISBN 978-0-672-33063-6 (pbk. : alk. paper) 1. C# (Computer program
language) |. Title.

QA76.73.C154W38 2010

005.13’3—dc22

2010002735

Printed in the United States of America

First Printing March 2010

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accu-
rate as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact

International Sales

international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor

Brook Farling

Development Editor

Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Lori Lyons

Copy Editor
Bart Reed

Indexer
Brad Herriman

Proofreader
Sheri Cain

Technical Editor
Mark Strawmyer

Publishing
Coordinator
Cindy Teeters

Designer
Gary Adair

Compositor
Nonie Ratcliff

INTRODUCTION

Overview of C# 4.0 How-To

This book is very different from a typical “bible” approach to a topic. By
structuring the book as a “how-to,” it presents the material by scenario in
steps that are easily followed. Throughout, I have tried to keep the explana-
tory text to the minimum necessary and keep the focus on the code itself.
Often, you will find comments embedded in the code to explain non-
obvious bits.

This book is not strictly a language/library book. Besides covering the
language features themselves, it dives into practical examples of application
patterns, useful algorithms, and handy tips that are applicable in many
situations.

Developers, both beginner and advanced, will find hundreds of useful topics
in this book. Whether it’s a section on lesser-known C# operators, how to
sort strings that contain numbers in them, or how to implement Undo, this
book contains recipes that are useful in a wide variety of situations, regard-
less of skill level.

In short, this is the book I wish I had on my desk when I was first learning
programming and C# as well as now, whenever I need a quick reference or
reminder about how to do something.

How-To Benefit from This Book

We designed this book to be easy to read from cover to cover. The goal is to
gain a full understanding of C# 4.0. The subject matter is divided into four
parts with easy-to-navigate and easy-to-use chapters.

Part I, “C# Fundamentals,” covers the common C# functionality that you
will use in every type of programming. While it may seem basic, there are a
lot of tips to help you get the most of these fundamental topics.

» Chapter 1, “Type Fundamentals”

» Chapter 2, “Creating Versatile Types”
» Chapter 3, “General Coding”

» Chapter 4, “Exceptions”

» Chapter 5, “Numbers”

2 Introduction

Chapter 6, “Enumerations”
Chapter 7, “Strings”

Chapter 8, “Regular Expressions”
Chapter 9, “Generics”

Part II, “Handling Data,” discusses how to store and manipulate data, including
Internet-based data.

Chapter 10, “Collections”

Chapter 11, “Files and Serialization”
Chapter 12, “Networking and the Web”
Chapter 13, “Databases”

Chapter 14, “XML”

Part III “User Interaction,” covers the most popular user interface paradigms in
.Net, whether you work on the desktop, the Web, or both.

Chapter 15, “Delegates, Events, and Anonymous Methods”
Chapter 16, “Windows Forms”

Chapter 17, “Graphics with Windows Forms and GDI+”
Chapter 18, “WPF”

Chapter 19, “ASP.NET”

Chapter 20, “Silverlight”

Part IV, “Advanced C#,” has the advanced stuff to really take your applications to the
next level in terms of performance, design patterns, useful algorithms, and more.

Chapter 21, “LINQ”

Chapter 22, “Memory Management”

Chapter 23, “Threads, Asynchronous, and Parallel Programming”
Chapter 24, “Reflection and Creating Plugins”

Chapter 25, “Application Patterns and Tips”

Chapter 26, “Interacting with the OS and Hardware”

Chapter 27, “Fun Stuff and Loose Ends”

Appendix A, “Essential Tools”

All of the code was developed using prerelease versions of Visual Studio 2010, but
you can use earlier versions in many cases, especially for code that does not require
.NET 4. If you do not have Visual Studio, you can download the Express edition from
www.microsoft.com/express/default.aspx. This version will enable you to build nearly
all the code samples in this book.

www.microsoft.com/express/default.aspx

How-To Continue Expanding Your Knowledge 3

You can access the code samples used in this book by registering on the book’s
website at informit.com/register. Go to this URL, sign in, and enter the ISBN to
register (free site registration required). After you register, look on your Account page,
under Registered Products, for a link to Access Bonus Content.

How-To Continue Expanding Your Knowledge

No book can completely cover C#, the .NET Framework, or probably even hope to
cover a small topic within that world. And if there were, you probably couldn’t lift it,
let alone read it in your lifetime.

Once you’ve mastered the essentials, there are plenty of resources to get your ques-
tions answered and dive deeply into .NET.

Thankfully, the MSDN documentation for .NET (located at http://msdn.microsoft.com/
en-us/library/aal39615.aspx) is top-notch. Most topics have code samples and an
explanation use. An added bonus is the ability at the bottom of every topic for

anyone to add useful content. There are many good tips found here from other .NET
developers.

The .NET Development forums (http://social. msdn.microsoft.com/Forums/en-US/
category/netdevelopment) are an excellent place to get your questions answered by the
experts, who, in many cases, were involved in the development and testing of .NET.

I have also found StackOverflow.com a good place to get questions answered.

The best advice I can give on how to continue expanding your knowledge is to just
write software. Keep at it, think of new projects, use new technologies, go beyond
your abilities. This and other books are very useful, to a point. After that, you just
need to dive in and start coding, using the book as a faithful reference when you don’t
know how to approach a topic.

Happy coding!

http://msdn.microsoft.com/en-us/library/aa139615.aspx
http://msdn.microsoft.com/en-us/library/aa139615.aspx
http://social.msdn.microsoft.com/Forums/en-US/category/netdevelopment
http://social.msdn.microsoft.com/Forums/en-US/category/netdevelopment

CHAPTER 2

Creating Versatile Types

IN THIS CHAPTER

Format a Type with ToString()

Make Types Equatable

Make Types Hashable with GetHashCode ()
Make Types Sortable

Give Types an Index

Notify Clients when Changes Happen
Overload Appropriate Operators

Convert One Type to Another

Prevent Inheritance

vV V. vV vV Vv vV v v v v

Allow Value Type to Be Null

28 CHAPTER 2 Creating Versatile Types

Whenever you create your own classes, you need to consider the circumstances under
which they could be used. For example, will two instances of your Item struct ever be
compared for equality? Will your Person class need to be serializable, or sortable?

m Versatility means being able to do many things well. When you'’re creating
your own types, it means outfitting your objects with enough “extra” stuff that they
can easily be used in a wide variety of situations.

This chapter is all about making your own objects as useful and versatile as possible.
In many cases, this means implementing the standard interfaces that .NET provides or
simply overriding base class methods.

Format a Type with ToString()

Scenario/Problem: You need to provide a string representation of an object for
output and debugging purposes.

Solution: By default, ToString() will display the type’s name. To show your own
values, you must override the method with one of your own. To illustrate this, let’'s
continue our Vertex3d class example from the previous chapter.

Assume the class initially looks like this:

struct Vertex3d

{
private double _x;
private double _y;
private double _z;

public double X

{
get { return _x; }
set { _x = value; }

public double Y

{
get { return _y; }
set { _y = value; }

Format a Type with ToString() 29

public double Z

{
get { return _z; }
set { _z = value; }
}
public Vertex3d(double x, double y, double z)
{
this._x = Xx;
this. y = vy;
this._z = z;
}

Override ToString() for Simple Output

To get a simple string representation of the vertex, override ToString() to return a
string of your choosing.

public override string ToString()

{

return string.Format(" ({0}, {1}, {2})", X, Y, Z);
}
The code

Vertex3d v = new Vertex3d(1.0, 2.0, 3.0);
Trace.WriteLine(v.ToString());

produces the following output:

(1, 2, 3)

Implement Custom Formatting for Fine Control

Scenario/Problem: You need to provide consumers of your class fine-grained
control over how string representations of your class look.

Solution: Although the ToString()implementation gets the job done, and is espe-
cially handy for debugging (Visual Studio will automatically call ToString() on
objects in the debugger windows), it is not very flexible. By implementing
IFormattable on your type, you can create a version of ToString() that is as
flexible as you need.

30 CHAPTER 2 Creating Versatile Types

Let’s create a simple format syntax that allows us to specify which of the three values
to print. To do this, we’ll define the following format string:

"X, Y"

This tells Vertex3d to print out X and Y. The comma and space (and any other char-
acter) will be output as-is.

The struct definition will now be as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace VertexDemo

{

struct Vertex3d : IFormattable
{

public string ToString(string format, IFormatProvider formatProvider)
{

//"G" is .Net's standard for general formatting--all

//types should support it

if (format == null) format = "G";

// is the user providing their own format provider?
if (formatProvider != null)
{
ICustomFormatter formatter =
formatProvider.GetFormat(this.GetType())
as ICustomFormatter;
if (formatter != null)

{
return formatter.Format(format, this, formatProvider);
}
}
//formatting is up to us, so let's do it
if (format == "G")
{

return string.Format(" ({0}, {1}, {2})", X, Y, Z);

StringBuilder sb = new StringBuilder();
int sourcelndex = 0;

Format a Type with ToString() 31

while (sourceIndex < format.Length)

{

switch (format[sourcelndex])
{
case 'X':
sb.Append(X.ToString());
break;
case 'Y':
sb.Append(Y.ToString());
break;
case 'Z':
sb.Append(Z.ToString());
break;
default:
sb.Append(format[sourcelndex]);
break;
}

sourceIlndex++;

}
return sb.ToString();

The formatProvider argument allows you to pass in a formatter that does something
different from the type’s own formatting (say, if you can’t change the implementation
of ToString() on Vertex3d for some reason, or you need to apply different format-
ting in specific situations). You’ll see how to define a custom formatter in the next
section.

Formatting with ICustomFormatter and StringBuilder

Scenario/Problem: You need a general-purpose formatter than can apply
custom formats to many types of objects.

Solution: Use ICustomFormatter and StringBuilder. This example prints out
type information, as well as whatever the custom format string specifies for the
given types.

class TypeFormatter : IFormatProvider, ICustomFormatter

{
public object GetFormat(Type formatType)

{

32 CHAPTER 2 Creating Versatile Types

if (formatType == typeof(ICustomFormatter)) return this;
return Thread.CurrentThread.CurrentCulture.GetFormat(formatType);

public string Format(string format, object arg, IFormatProvider
formatProvider)

{
string value;
IFormattable formattable = arg as IFormattable;
if (formattable == null)
{
value = arg.ToString();
}
else
{
value = formattable.ToString(format, formatProvider);
}
return string.Format("Type: {0}, Value: {1}", arg.GetType(),
value);
}

The class can be used like this:

Vertex3d v = new Vertex3d(1.0, 2.0, 3.0);

Vertex3d v2 = new Vertex3d(4.0, 5.0, 6.0);

TypeFormatter formatter = new TypeFormatter();

StringBuilder sb = new StringBuilder();

sb.AppendFormat (formatter, "{0:(X Y)}; {1:[X, Y, Z1}", v, v2);
Console.WriteLine(sb.ToString());

The following output is produced:
Type: ch@2.Vertex3d, Value: (1 2); Type: ch@2.Vertex3d, Value: [4, 5, 6]

Make Types Equatable

Scenario/Problem: You need to determine if two objects are equal.

Solution: You should override Object.Equals() and also implement the
IEquatable<T> interface.

By default, Equals() on a reference type checks to see if the objects refer to the same
location in memory. This may be acceptable in some circumstances, but often, you’ll

Make Types Equatable 33

want to provide your own behavior. With value types, the default behavior is to reflect
over each field and do a bit-by-bit comparison. This can have a very negative impact
on performance, and in nearly every case you should provide your own implementa-
tion of Equals ().

struct Vertex3d : IFormattable, IEquatable<Vertex3d>

{
public override bool Equals(object obj)
{
if (obj == null)
return false;
if (obj.GetType() != this.GetType())
return false;
return Equals((Vertex3d)obj);
}
public bool Equals(Vertex3d other)
{
/* If Vertex3d were a reference type you would also need:
* if ((object)other == null)
* return false;
*
* if (!base.Equals(other))
* return false;
*/
return this._x == other._x
&& this._y == other._y
&& this._z == other._z;
}
I3

m Pay special attention to the note in Equals(Vertex3d other). If Vertex3d
was a reference type and other was null, the type-safe version of the function would
be called, not the Object version. You also need to call all the base classes in the
hierarchy so they have an opportunity to check their own fields.

There’s nothing stopping you from also implementing IEquatable<string> (or any
other type) on your type—you can define it however you want. Use with caution,
however, because this may confuse people who have to use your code.

34 CHAPTER 2 Creating Versatile Types

Make Types Hashable with GetHashCode()

Scenario/Problem: You want to use your class as the key part in a collection
that indexes values by unique keys. To do this, your class must be able to
convert the “essence” of its values into a semi-unique integer ID.

Solution: You almost always want to override GetHashCode (), especially with value
types, for performance reasons. Generating a hash value is generally done by
somehow distilling the data values in your class to an integer representation that is
different for every value your class can have. You should override GetHashCode ()
whenever you override Equals().

public override int GetHashCode()

{
//note: This is just a sample hash algorithm.
//picking a good algorithm can require some
//research and experimentation
return (((int)_x ~ (int)_z) << 16) |
(((int)_y ~ (int)_z) & OX0Q0QOFFFF);
}
m Hash codes are not supposed to be unique for every possible set of values

your type can have. This is actually impossible, as you can deduce from the previous
code sample. For this reason, comparing hash values is not a good way to compute
equality.

Make Types Sortable

Scenario/Problem: Objects of your type will be sorted in a collection or other-
wise compared to each other.

Solution: Because you often don’t know how your type will be used, making the
objects sortable is highly recommended whenever possible.

In the Vector3d class example, in order to make the objects comparable, we’ll add an
_1id field and implement the IComparable<Vertex3d> interface.

The _id field will be what determines the order (it doesn’t make much sense to sort on
coordinates, generally).

Make Types Sortable 35

The sorting function is simple. It takes an object of Vertex3d and returns one of three
values:

<0 this is less than other
0 this is same as other
>0 this is greater than other

Within the CompareTo function, you can do anything you want to arrive at those
values. In our case, we can do the comparison ourself or just call the same function on
the _id field.

struct Vertex3d : IFormattable, IEquatable<Vertex3d>,
IComparable<Vertex3d>

private int _id;

public int Id

{
get
{
return _id;
}
set
{
_id = value;
}
}
public Vertex3d(double x, double y, double z)
{
_X =X
Y=Y
_Z =12
id = 0;
}
public int CompareTo(Vertex3d other)
{
if (_id < other._id)
return -1;
if (_id == other._id)
return 0;
return 1;

/* We could also just do this:
* return _id.CompareTo(other._id);

36 CHAPTER 2 Creating Versatile Types

**/

Give Types an Index

Scenario/Problem: Your type has data values that can be accessed by some
kind of index, either numerical or string based.

Solution: You can index by any type. The most common index types are int and
string.

Implement a Numerical Index

You use the array access brackets to define an index on the this object, like this
sample:

public double this[int index]

{
get
{
switch (index)
{
case 0: return _x;
case 1: return _y;
case 2: return _z;
default: throw new ArgumentOutOfRangeException("index",
"Only indexes 0-2 valid!");
}
}
set
{
switch (index)
{
case 0: _x = value; break;
case 1: _y = value; break;
case 2: _z = value; break;
default: throw new ArgumentOutOfRangeException("index",
"Only indexes 0-2 valid!");
}
}

Give Types an Index 37

Implement a String Index

Unlike regular arrays, however, you are not limited to integer indices. You can use any
type at all, most commonly strings, as in this example:

public double this[string dimension]

{
get
{
switch (dimension)
{
case "x":
case "X": return _x;
case "y":
case "Y": return _y;
case "z":
case "Z": return _z;
default: throw new ArgumentOutOfRangeException("dimension",
"Only dimensions X, Y, and Z are valid!");
}
}
set
{
switch (dimension)
{
case "x":
case "X": _x = value; break;
case "y":
case "Y": _y = value; break;
case "z":
case "Z": _z = value; break;
default: throw new ArgumentOutOfRangeException("dimension",
"Only dimensions X, Y, and Z are valid!");
}
}
}

Sample usage:

Vertex3d v = new Vertex3d(1, 2, 3);
Console.WritelLine(v[0]);
Console.WriteLine(v["Z"]);

Output:

1
3

38 CHAPTER 2 Creating Versatile Types

Notify Clients when Changes Happen

Scenario/Problem: You want users of your class to know when data inside the
class changes.

Solution: Implement the INotifyPropertyChanged interface (located in
System.ComponentModel).

using System.ComponentModel;

class MyDataClass : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

protected void OnPropertyChanged(string propertyName)
{
if (PropertyChanged != null)
{
PropertyChanged(this, new
PropertyChangedEventArgs (propertyName));
}

private int _tag = 0;
public int Tag

{
get
{ return _tag; }
set
{
_tag = value;
OnPropertyChanged("Tag");
}
}

The Windows Presentation Foundation (WPF) makes extensive use of this interface for
data binding, but you can use it for your own purposes as well.

To consume such a class, use code similar to this:

void WatchObject(object obj)

{
INotifyPropertyChanged watchableObj = obj as INotifyPropertyChanged;

Overload Appropriate Operators 39

if (watchableObj != null)

{
watchableObj.PropertyChanged += new
PropertyChangedEventHandler(data_PropertyChanged);

void data_PropertyChanged(object sender, PropertyChangedEventArgs e)
{

//do something when data changes

Overload Appropriate Operators

Scenario/Problem: You want to define what the +, *, ==, and != operators do
when called on your type.

Solution: Operator overloading is like sugar: a little is sweet, but a lot will make
you sick. Ensure that you only use this technique for situations that make sense.

Implement operator +
Notice that the method is public static and takes both operators as arguments.

public static Vertex3d operator +(Vertex3d a, Vertex3d b)

{
return new Vertex3d(a.X + b.X, a.Y + b.Y, a.Z + b.2Z);

The same principal can be applied to the -, *, /, %, &, |, <<, >>, !, ~, ++, and -- opera-
tors as well.

Implement operator == and operator !=
These should always be implemented as a pair. Because we’ve already implemented a
useful Equals () method, just call that instead.

public static bool operator ==(Vertex3d a, Vertex3d b)
{

return a.Equals(b);

public static bool operator !=(Vertex3d a, Vertex3d b)
{

40 CHAPTER 2 Creating Versatile Types

return !(a==b);

What if the type is a reference type? In this case, you have to handle null values for
both a and b, as in this example:

public static bool operator ==(CatalogItem a, CatalogItem b)
{
if ((object)a == null && (object)b == null)
return true;
if ((object)a == null || (object)b == null)
return false;
return a.Equals(b);

public static bool operator !=(CatalogItem a, CatalogItem b)
{

return !(a == b);

Convert One Type to Another

Scenario/Problem: You need to convert one type to another, either automati-
cally or by requiring an explicit cast.

Solution: Implement a conversion operator. There are two types of conversion oper-
ators: implicit and explicit. To understand the difference, we’ll implement a
new struct called Vertex3i that is the same as Vertex3d, except the dimensions
are integers instead of doubles.

Explicit Conversion (Loss of Precision)

Explicit conversion is encouraged when the conversion will result in a loss of preci-
sion. When you’re converting from System.Double to System.Int32, for example,
all of the decimal precision is lost. You don’t (necessarily) want the compiler to allow
this conversion automatically, so you make it explicit. This code goes in the Vertex3d
class:

public static explicit operator Vertex3i(Vertex3d vertex)
{

return new Vertex3i((Int32)vertex._x, (Int32)vertex._y,
- (Int32)vertex._z);

Prevent Inheritance 41

To convert from Vertex3d to Vertex3i then, you would do the following:

Vertex3d vd = new Vertex3d(1.5, 2.5, 3.5);
Vertex3i vi (Vertex31i)vd;

If you tried it without the cast, you would get the following:

//Vertex3i vi = vd;
Error: Cannot implicitly convert type 'Vertex3d' to 'Vertex3i'.
An explicit conversion exists (are you missing a cast?)

Implicit Conversion (No Loss of Precision)

If there will not be any loss in precision, then the conversion can be implicit, meaning
the compiler will allow you to assign the type with no explicit conversion. We can
implement this type of conversion in the Vertex3i class because it can convert up to a
double with no loss of precision.

public static implicit operator Vertex3d(Vertex3i vertex)

{

return new Vertex3d(vertex._ X, vertex._y, vertex._ z);

Now we can assign without casting:

Vertex3i vi = new Vertex3i(1, 2, 3);
Vertex3d vd = vi;

Prevent Inheritance

Scenario/Problem: You want to prevent users of your class from inheriting
from it.

Solution: Mark the class as sealed.

sealed class MyClass
{

Structs are inherently sealed.

42 CHAPTER 2 Creating Versatile Types

Prevent Overriding of a Single Method

Scenario/Problem: You don’t want to ban inheritance on your type, but you do
want to prevent certain methods or properties from being overridden.

Solution: Put sealed as part of the method or property definition.

class ParentClass

{
public virtual void MyFunc() { }
}
class ChildClass : ParentClass
{
//seal base class function into this class
public sealed override void MyFunc() { }
}
class GrandChildClass : ChildClass
{
//yields compile error
public override void MyFunc() { }
}

Allow Value Type to Be Null

Scenario/Problem: You need to assign null to a value type to indicate the lack
of a value. This scenario often occurs when working with databases, which allow
any data type to be null.

Solution: This isn’t technically something you need to implement in your class.
.NET 2.0 introduced the Nullable<T> type, which wraps any value type into some-
thing that can be null. It's useful enough that there is a special C# syntax shortcut
to do this. The following two lines of code are semantically equivalent:

Nullable<int> _id;
int? _id;

Let’s make the _id field in our Vertex3d class Nullable<T> to indicate the lack of a
valid value. The following code snippet demonstrates how it works:

Allow Value Type to Be Null

43

struct Vertex3d : IFormattable, IEquatable<Vertex3d>,
IComparable<Vertex3d>

{
private int? _id;
public int? Id
{
get
{
return _id;
}
set
{
id = value;
}
}
}
Vertex3d vn = new Vertex3d(1, 2, 3);
vn.Id = 3; //0ok
vn.Id = null; //0k
try
{
Console.WriteLine("ID: {@}", vn.Id.Value);//throws
}
catch (InvalidOperationException)
{
Console.WriteLine("Oops--you can't get a null value!");
}

if (vn.Id.HasValue)

{
Console.WriteLine("ID: {@}", vn.Id.Value);

Symbols

= operator, implementing, 39-40
+ operator, implementing, 39
== operator, implementing, 39-40
3D geometry, WPF, rendering, 389-392
3D surfaces
controls,Silverlight, 452-453
WPF
interactive controls, 395-398
video, 392-394
32-bit environments, applications, running
in, 591-592
64-bit environments, applications, running
in, 591-592

A

abstract base classes
instantiation, preventing, 23-24
interfaces, compared, 24-25
access, arrays, accessing, 486-487
“access denied” errors, 190
accessibility modifiers, 8
Add Service Reference dialog box, 226
adding constructors, 11-12
administration privileges, requesting, UAC
(User Access Control), 578-581
advanced text searches, regular
expressions, 132
AJAX (Asynchronous JavaScript and
XML), 423
pages, creating, 423-425
AJAX Demo—Default.aspx listing (19.11),
423-424
AJAX Demo—Default.aspx.cs listing
(19.12), 424
aliases, namespaces, 51-52
allocating unchanged memory, 488-489
AllWidgetsView.xaml listing (25.1),
557-558
angle brackets, generics, 141
animating WPF element properties,
388-389
anonymous methods
delegates, assigning to, 288
event handlers, using as, 288-290
lambda expression syntax, 290
anonymous objects, LINQ, 466
anonymous types, creating, 22-23
anti-aliasing, 348-349
App.xaml listing (27.7), 611

634 App.xaml.cs listing

App.xaml.cs listing (27.8), 612-614

appending newline characters, strings, 120
application configuration values, Windows

Forms, 314-316
application data, saving with restricted
permissions, 198-200
application state, maintaining, ASP.NET,
429-430
ApplicationData folder, 194
applications
32-bit environments, running in,
591-592
64-bit environments, running in,
591-592
asynchronous programming model,
515-516
command functionality, defining,
547-548, 551

command interface, defining, 545-546

custom attributes, adding, 521-522
deploying, ClickOnce, 572-573

events, writing to event logs, 581-583

history buffer, defining, 545-546
localization, 562-563
ASP.NET application, 564-565
Silverlight application, 570-572
Windows Forms application,
563-564
WPF application, 565-569
memory usage, measuring, 474-475
multiple database servers, working
with, 242, 245
nonrectangular windows, creating,
598-601
notification icons, creating, 602-605
OS view, obtaining, 474-475
patterns, 530
Model-View-ViewModel pattern,
552-562
observer pattern, 536-539
plug-in architecture, implementing,
525-528

power state information, retrieving, 595

RSS content, parsing, 216, 219

screen locations, remembering,
543-544

screen savers, creating, 605-614

single instance, limiting, 505-506

sound files, playing, 619-620

splash screens, displaying, 614-619

starting, elevated privileges, 578-581
system configuration changes,
responding to, 593
TextTokenizer, 515-516
undo commands, implementing,
545-552
web browsers
embedding, 214-216
running out of, 453-454
Windows services
creating, 585-588
managing, 584
WinForms applications, WPF, 398-400

architectures, plug-in architectures,

implementing, 525-528

arrays

access, speeding up, 486-487

declaring, 50

jagged arrays, 51

multidimensional arrays, creating,
50-51

objects, creating, 140

rectangular arrays, creating, 50-51

strings, splitting into, 121-122

values, reversing, 166-167

AsOrdered() method, 472
ASP.NET

AJAX pages, creating, 423-425
application state, maintaining, 429-430
controls, binding data to, 256-257
data validation, 425-429
debugging information, viewing,
402-403
GridView, data binding, 412-414
master pages, 409-411
MVC (Model-View-Controller), 436-441
application creation, 436
controller creation, 437
model creation, 436
new records creation, 438-440
record editing, 439, 441
Views creation, 437-438
session state
restoring, 434-436
storing, 433-434
trace information, viewing, 402-403
Ul state, maintaining, 430
Uls, creating, 418-422
user controls, creating, 414-417
user data, maintaining, 431-433

classes 635

user logins, authentication, 406-409
users, redirecting to another page,
405-406
web browser capabilities,
determining, 404
web sites, adding menus, 411-412
ASP.NET applications
localization, 564-565
unhandled exceptions, catching, 75
AsParallel() method, 472
assemblies
plug-in assemblies, creating, 525-526
shared assemblies, creating, 525
types, enumerating, 520-521
Asynchronous Javascript and XML
(AJAX). See AJAX (Asynchronous
JavaScript and XML)
asynchronous programming model,
515-516
Asynchronous Web Downloader listing
(12.3), 211-213
asynchronously calling methods, 496-497
asynchronously downloading web content,
210-213
auto-implemented properties, 10
availability, database connections, 258

banker’s rounding, 93
base class constructors, calling, 15
base classes, 24
abstract base classes
instantiation prevention, 23-24
interfaces, 24-25
constraining, 147
methods, overriding, 16-17
non-virtual methods, overriding, 17-19
non-virtual properties, overriding, 17-19
properties, overriding, 16-17
Base-64 encoding, 122-124
BaseForm.cs listing (16.1), 304-306
bases, numbers, converting, 87-89
BigInteger class, 79-80
binary data, strings, converting to, 122-124
binary files, creating, 179
binding data, controls, 250-257
Bing.cs listing (21.1), 469-470
bitmaps, pixels, accessing directly, 347-348
bits, memory, locking, 348
BookDetail.aspx listing (19.9), 417

BookDetail.aspx.cs listing (19.10), 417-418
BookEntrycontrol.ascx listing (19.7),

414-415
BookEntryControl.ascx.cs listing (19.8),

415-417
BookList.aspx listing (19.6), 412-413
BooksApp—MasterPage.master, 410
BookTransform.xslt listing (14.1), 274-275
bound data, WPF, displaying, 385-386
browser capabilities, determining, 404
browsers, applications, running out of,

453-454
brushes, creating, 339-341
buffers, off-screen buffers, drawing to,

346-347
bytes

numbers, converting to, 89-90
strings
converting to, 110-111
translating to, 111, 114-115

C

C functions, calling, C#, 589-590
caches, garbage collection, creating,
482-485
calling
C functions, C#, 589-590
functions, timers, 313-314
methods, asynchronously, 496-497
multiple methods, delegates, 281-282
native Windows functions, P/Invoke,
588-589
captures, multiscreen captures, taking,
352-354
capturing webcams, Silverlight, 455-457
case, localized strings, changing, 116
catching
exceptions, 64
multiple exceptions, 65
unhandled exceptions, 72-75
circles, points, determining, 355-356
classes. See also types
base class constructors, calling, 15
base classes, 24
constraining, 147
overriding methods, 16-17
overriding properties, 16-17
Biginteger, 79-80
changes, notifications, 38

636 classes

collection classes, picking correctly,
156-157
CommonOpenFileDialog, 594
creating, 89, 28
deriving from, 14-15
dynamically instantiated classes,
invoking methods on, 523-524
exception classes, creating, 70-72
formatting
ICustomFormatter, 31-32
StringBuilder, 31-32
ToString() method, 28-31
generic classes, creating, 143
hashable classes, creating, 34
inheritance, preventing, 41-42
instantiating, 523
interface classes, constraining, 147
Math, 94-95
metadata, attaching, 521-522
MFC (Microsoft Foundation
Classes), 296
OpenFileDialog, 594
Parallel, 492-495
proxy classes, 225-226
String, 121
System.Numerics.Complex, 80
Vertex3d, 9
XmIDocument, 268
XmlTextReader, 269
ClickOnce, applications, deploying,
572-573
clients
changes, notifications, 38
dynamic clients, implementing,
235-236
TCP/IP clients, creating, 204-208
Clipboard, Windows Forms, 323-327
Clipboard.SetText() method, 323
closing files, 179
clutures (.NET), 562-563
code
obsolete code, marking, 531
profiling, stopwatch, 530-531
reflection, 520
instantiation, 523
reuse, multiple constructors, 14
code contracts, enforcing, 58-60
code listings
7.1 (EncodeBase64Bad), 123
7.2 (Reverse Words in a String),
124-125
7.3 (Natural Sorting), 126-130

10.1 (PriorityQueue.cs), 169-173
11.1 (CompressFile.cs), 181-183
11.2 (Searching for a File or Directory),
188-190
12.1 (TCP Server), 205-206
14.1 (BookTransform.xslt), 274-275
16.1 (BaseForm.cs), 304-306
16.2 (InheritedForm.cs), 306-308
18.1 (ImagelnfoViewModel.cs),
379-380
18.2 (Window1.xaml.cs), 381-383
19.1 (LoginForm.aspx), 407
19.2 (LoginForm.aspx.cs), 407-408
19.3 (Default.aspx), 409
19.5 (Default.aspx), 411
19.6 (BookList.aspx), 412-413
19.7 (BookEntrycontrol.ascx), 414-415
19.8 (BookEntryControl.ascx.cs),
415417
19.9 (BookDetail.aspx), 417
19.10 (BookDetail.aspx.cs), 417-418
19.11 (AJAX Demo—Default.aspx),
423-424
19.12 (AJAX Demo—Default.aspx.cs),
424
19.13 (Validation Demo—
Default.aspx), 425-427
19.14 (Validation Demo—
Default.aspx.cs), 427-428
19.15 (Session State Demo—
Default.aspx), 431-432
19.16 (Session State Demo—
Default.aspx.cs), 432-433
20.1 (MainPage.xaml), 445-448
20.2 (MainPage.xaml.cs), 446-448
20.3 (PlayDownloadProgress
Control.xaml), 449
20.4 (PlayDownloadProgress
Control.xaml.cs), 449-450
20.5 (MainPage.xaml), 455
20.6 (MainPage.xaml.cs), 456-457
21.1 (Bing.cs), 469-470
21.2 (Program.cs), 471
25.1 (AllwWidgetsView.xaml), 557-558
25.2 (WidgetGraphicView.xaml), 558
25.3 (Mainwindow.xaml), 561-562
(
(
(
(
(

—~ e~~~ o~ —~

26.1 (MyCDIl.h), 589

26.2 (MyCDll.cpp), 589

26.3 (MyCDIl.def), 590

27.1 (Windowl.xaml), 600-601
27.2 (Windowl.xaml.cs), 601

converting 637

27.3 (OptionsWindow.xaml), 606
27.4 (OptionsWindow.xaml.cs),
606-607
27.5 (ScreenSaverWindow.xaml), 607
27.6 (ScreenSaverWindow.xaml.cs),
607-611
27.7 (App.xaml), 611
27.8 (App.xaml.cs), 612-614
27.9 (SplashScreen.xaml), 616-619
collapsing controls, WPF, 375-376
collection classes, picking correctly,
156-157
collection items, concatenating, strings,
119-120
collections
arrays, reversing, 166-167
concurrency-aware collections, 157
custom collections, creating, 159-163
custom iterators, creating, 163-166
data binding, WPF, 385
elements
counting, 168
obtaining, 168
shuffling, 620
filtering, LINQ, 464
generic collections, 156
initializing, 157-158
interfaces, 159
linked lists, reversing, 167
priority queues, implementing, 169
querying, LINQ, 462-463
trie structure, creating, 173-176
color definitions, graphics, 330
color picker, Windows Forms, 330-331
colors, converting, 331-335
COM interop, dynamic typing,
simplifying, 49
Combining streams, 181-183
command functionality, defining,
547-548, 551
command interface, defining, 545-546
command objects, undo commands,
implementing, 545-552
commands (WPF)
custom commands, 371-373
enabling/disabling, 374
standard commands, 370-371
CommonOpenFileDialog class, 594
complex numbers, formatting, 80-82
ComplexCriteria() method, 472
CompressFile.cs listing (11.1), 181-183

compression, files, 181-183
concatenating
collection items into strings, 119-120
StringBuilder, 117-119
concurrency-aware collections, 157
conditional operator, 52-53
configuration, Windows Forms, 314-316
connections, databases, 240-242, 245
availability, 258
console programs, unhandled exceptions,
catching, 73
const fields, 13
constants, enumeration constants,
duplicate values, 101
constraining, generic types, 146-149
constraints, methods, adding, 58-60
construction, properties, initialization, 12
constructors
adding, 11-12
base class constructors, calling, 15
multiple constructors, code reuse, 14
Contracts class, methods, constraints,
58-60
Contravariance, delegates, 291
controls
3D surfaces, Silverlight, 452-453
data, binding to, 250-257
DataGridView, 250-254
interactive controls, 3D surfaces,
395-398
ToolStrip, 297
user controls
creating, 414-417
Windows Forms, 308-313
windows, positioning, 367
WPF
appearance/functionality, 377
binding properties, 379-383
designing, 386-387
expanding/collapsing, 375-376
conversion operators, implementing, 40-41
Convert.ToBase64String (), 122
converting
binary data to strings, 122-124
bytes to strings, 110-111
numbers
bytes, 89-90
number bases, 87-89
strings
flags, 104
to bytes, 110-111

638 converting

to enumerations, 103-104
to numbers, 86-87
types, 40-41
cookies, session state, restoring, 434-436
counting 1 bits, 92
CPUs, information, obtaining, 576-578
cryptographically secure random
numbers, 97
cultures, numbers, formatting for, 82-83
current operating system, version
information, obtaining, 576
cursors
mouse cursor, distance, 354-355
wait cursors, resetting, 327-328
custom attributes, applications, adding,
521-522
custom collections, creating, 159-160, 163
custom commands, WPF, 371-373
custom encoding schemes, strings, 111,
114-115
custom formatting, ToString() method, 29
custom iterators, collections, creating,
163-166
Custom web browser listing (12.4),
215-216
cut and paste operations, Windows Forms,
323-327

data
exchanging, threads, 499-500
multiple threads, protecting, 500-502
protecting, multiple processes,
504-505
storing application-wide, 429-430
data binding
GridView control, 412-414
WPF
collections, 385
value conversions, 383-385
value formatting, 383
data structures, multiple threads, 495
data types, forms, cutting and pasting, 323
database tables
data
deleting, 246-247
inserting, 245-246
stored procedures, running, 247-248
databases
connecting to, 240-242, 245
connections, availability, 258

controls, binding data to, 250-257
creating, Visual Studio, 238-239
data, transforming to, 273-276
multiple tables, joins, 465-466
MySQL databases, connecting to,
241-242
objects, mapping data to, 259-260
tables
deleting data, 246-247
displaying data, 250-257
inserting data, 245-246
transactions, 248-250
updating, DataSet, 252-254
DataGridView control, 250-254
DataSet
controls, binding data to, 250-257
databases, updating, 252-254
dates, validating, 136
dead code, marking, 531
debugging information, viewing, ASP.NET,
402-403
Decimal floating point types, 78
declaring
delegates, 280
enumerations, 100-102
flags as enumerations, 101-102
objects, 50
variables, 46-47
default constructors, types, constraining
to, 148
default parameters, methods, calling,
55-56
Default.aspx listing (19.3), 409
Default.aspx listing (19.5), 411
deferring
evaluations, values, 57-58
type checking, runtime, 47-49
defining
fields, 9-10
methods, 9-10
properties, 9-10
static members, 10-11
degrees, radians, converting to, 93
delegates
anonymous methods, assigning to, 288
contravariance, 291
declaring, 280
generic delegates, 145-146
multiple methods, calling to, 281-282
deleting files, 180

evaluation, values, deferring 639

deploying applications, ClickOnce, 572-573
diagonally drawing text, 344
dialog boxes
Add Service Reference, 226
New Silverlight Application, 445
directories
browsing for, 187
enumerating, 186-187
existence, confirming, 185
searching for, 188-190
directory names, filenames, combining,
190-191
disabling commands, WPF, 374
discoverable hosts, implementing, 233-234
displaying splash screens, 614
Windows Forms, 614-616
WPF, 616-619
Dispose pattern, finalization, 479-482
dispose pattern, managed resources,
cleaning up, 477-482
Dispose pattern, Windows Communication
Framework, 479
DLLs (dynamic link libraries), C functions,
calling, 589-590
DLR (Dynamic Language Runtime), 49
documents
printing, Silverlight, 457
XML documents, validating, 270-271
Double floating point types, 78
download progress bars, video, Silverlight,
449-450
downloading, web content, HTTP, 209-213
drawing shapes, 335-337
drives, enumerating, 185-186
dynamic clients, implementing, 235-236
dynamic keyword, 47-49
Dynamic Language Runtime (DLR), 49
dynamic typing, COM interop,
simplifying, 49
dynamically disabling, menu items,
Windows Forms, 300
dynamically instantiated classes, methods,
invoking on, 523-524
dynamically producing, RSS feeds, IIS
(Internet Information Services), 220-222
dynamically sized array of objects,
creating, 140

element properties, WPF, animating,
388-389
elements, collections
counting, 168
obtaining, 168
shuffling, 620
ellipse, points, determining, 356-357
email, SMTP (Simple Mail Transport
Protocol), sending via, 208-209
email addresses, matching, 136
embedding, web browsers, applications,
214-216
empty strings, detecting, 117
enabling commands, WPF, 374
EncodeBase64Bad listing (7.1), 123
encoding schemes, strings, 111, 114-115
Encoding.GetString() method, 110
enforcing code contracts, 58-60
Entity Framework
database objects, mapping data to,
259-260
entities
creating, 260
deleting, 260
listing, 259
looking up, 260
querying, LINQ, 467-469
Enum values, metadata, attaching to,
104-106
Enum.GetValues() method, 103
enumerating
directories, 186-187
drives, 185-186
files, 186-187
enumerations, 100, 106
declaring, 100-102
external values, matching, 106
flags, 107
declaring as, 101-102
integers, converting to, 102
naming, 107
None values, defining, 107
strings, converting to, 103-104
validity, determining, 103
values, listing, 103
equality, types, determining, 32-33
Equals() method, objects, equality, 32-33
evaluation, values, deferring, 57-58

640 event brokers

event brokers, 540-543
event handlers, anonymous methods, using
as, 288-290
event logs
events, writing to, 581-583
reading from, 582
events
event brokers, 540-543
event logs, writing to, 581-583
metadata, attaching, 521-522
multiple events, combining into one,
532-536
publishing, 283
signaling, threads, 509, 512
subscribing to, 282-283
WPF, responding to, 376-377
exceptions
catching, 64
multiple exceptions, 65
unhandled exceptions, 72-75
classes, creating, 70-72
handling, 76
information, extracting, 68-70
intercepting, 67
rethrowing, 66-67
throwing, 64
exchanging data, threads, 499-500
existingType.MyNewMethod() method,
types, adding methods to, 54-55
Exists() method, 185
expanding controls, WPF, 375-376
explicit conversions, types, 40-41
explicit values, enumerations,
declaring, 100
expressions, regular expressions, 132
advanced text searches, 132
extracting groups of text, 132-133
improving, 137
replacing text, 133-134
validating user input, 134-136
eXtensible Markup Language (XML). See
XML (eXtensible Markup Language)
extension methods, metadata, attaching to
Enum values, 104-106

F

fields
const, 13
defining, 9-10
metadata, attaching, 521-522
read only, 13

file dialogs, 594
filenames
directory names, combining, 190-191
temporary filenames, creating, 192
files
accessing, 590-591
closing, 179
compressing, 181-183
deleting, 180
enumerating, 186-187
existence, confirming, 185
FTP sites, uploading to, 213-214
memory-mapped files, 590-591
paths, manipulating, 190-191
searching for, 188-190
security information, retrieving,
183-184
sizes, retrieving, 183
text files, creating, 178-179
XML files
reading, 268-270
validating, 270-271
filtering object collections, LINQ, 464
finalization
Dispose pattern, 479-482
unmanaged resources, cleaning up,
475477
flags
enumerations, 107
declaring, 101-102
strings, converting to, 104
floating-point types, choosing, 78
folders
paths, retrieving, 194
users, allowing access, 187
forcing garbage collection, 482
format strings, 84-85
formatting
complex numbers, 80-82
numbers, strings, 82-85
types
ICustomFormatter, 31-32
StringBuilder, 31-32
ToString() method, 28-31
forms
configuration, 314-316
data types, cutting and pasting, 323
horizontal tilt wheel, 319-323
images, cutting and pasting, 323
inheritance, 304-308
menu bars, adding, 297-299

hard drives, enumerating 641

menu items, dynamically
disabling, 300
modal forms, creating, 296
modeless forms, creating, 296
split window interfaces, creating,
302-303
status bars, adding, 300
text, cutting and pasting, 323
timers, 313-314
toolbars, adding, 301-302
user controls, creating, 308-313
user login, authentication, 406-409
user-defined objects, cutting and
pasting, 325-327
wait cursors, resetting, 327-328
FTP sites, files, uploading to, 213-214
functions, calling, timers, 313-314
FXCop, 626-627

garbage collection
caches, creating, 482-485
forcing, 482
GDI (Graphics Device Interface), 330
GDI+, 330
anti-aliasing, 348-349
bitmap pixels, accessing directly,
347-348
brushes, creating, 339-341
color picker, 330-331
colors, converting, 331-335
flicker-free drawing, 349-350
graphics
color definitions, 330
resizing, 350-351
thumbnails, 351-352
images, drawing, 344-345
mouse cursor, distance, 354-355
multiscreen captures, taking, 352-354
off-screen buffers, drawing to, 346-347
pens, creating, 337-339
points
circles, 355-356
ellipse, 356-357
mouse cursor, 354-355
rectangles, 355
rectangles, intersection, 357
shapes, drawing, 335-337
text, drawing, 344

transformations, 341
rotation, 342
scaling, 343
shearing, 343
translations, 342
transparent images, drawing, 345
generating
GUIDs (globally unique IDs), 97-98
random numbers, 96-97
generic classes, creating, 143
generic collections, 156
methods, passing to, 149-150
generics, 140
constraining, 146-149
generic classes, creating, 143
generic collections, 156
passing to methods, 149-150
generic delegates, creating, 145-146
generic interfaces, creating, 142
generic list, creating, 140
generic methods, creating, 141-142
generic types, constraining, 146-149
multiple generic types, creating, 146
GetBytes() method, 110
GetHashCode() method, hashable types,
creating, 34
GetPixel() method, 347
GetTempFileName() method, 192
GetTotalMemory() method, 474
graphics
color definitions, 330
resizing, 350-351
text, drawing, 344
thumbnails, creating, 351-352
transformations, 341
rotation, 342
scaling, 343
shearing, 343
translations, 342
Graphics Device Interface (GDI), 330
GridView control, data, binding to, 412-414
group digits, 84
groups of text, extracting, regular
expressions, 132-133
GUIDs (globally unique IDs), generating,
97-98

handling exceptions, 76
Hanselman, Scott, 631
hard drives, enumerating, 185-186

642 hardware information, obtaining

hardware information, obtaining, 576-578

HasFlag() method, 102

hash codes, 34

hashable types, creating, GetHashCode()
method, 34

hexadecimal numbers, printing in, 83

history buffer, defining, 545-546

horizontal tilt wheel, Windows Forms,
319-323

hosthames, current machines,
obtaining, 202

hosts

availability, detecting, 203
discoverable hosts, implementing,
233-234

HSV color format, RGB color format,
converting between, 331-335

HTML tags, stripping, 214

HTTP, web content, downloading via,
209-213

IComparer, coverting, 150-151
icons, notification icons, creating, 602-605
ICustomFormatter, types, formatting, 31-32
|IEnumerable, 50
converting, 149
1IS (Internet Information Services), RSS
feeds, producing dynamically, 220-222
ImagelnfoViewModel.cs listing (18.1),
379-380
images. See also graphics
drawing, 344-345
forms, cutting and pasting, 323
resizing, 350-351
thumbnails, creating, 351-352
transparent images, drawing, 345
implicit conversions, types, 41
implicit typing, 46-47
indexes, types, 36-37
inference, types, 46-47
information, exceptions, extracting, 68-70
inheritance, forms, 304-308
inheritances, classes, preventing, 41-42
InheritedForm.cs listing (16.2), 306-308
initialization
collections, 157-158
properties at construction, 12
static data, 12
INotifyPropertyChanged interface, 38
installation, NUnit, 625

instantiation, abstract base classes,
preventing, 23-24
integers
determining, 79, 82, 91-93, 96-97
enumerations, converting to, 102
large integers, UInt64, 79-80
interactive controls, 3D surfaces, WPF,
395-398
intercepting exceptions, 67
interface classes, constraining, 147
interfaces, 24
abstract base classes, compared,
24-25
collections, 159
contracts, implementing on, 60
creating, 19
generic interfaces, creating, 142
implementing, 19-21
split window interfaces, creating,
302-303
interlocked methods, locks, compared, 503
Internal accessibility modifier, 8
Internet, communication over, WCF,
231-232
IntersectsWith() method, 357
IP addresses
current machines, obtaining, 202
hostnames, translating to, 202
ISerializable () interface, 196
IsPrime() method, 92
iterators, collections, creating for, 163-166

J-K

jagged arrays, 51
joins, multiple tables, LINQ, 465-466

keywords
dynamic, 47-49
object, 49
var, 22-23, 47

L

labels, type parameters, 146

lambda expression syntax, anonymous
methods, 290

Language Integrated Query (LINQ). See
LINQ (Language Integrated Query)

layout method, WPF, choosing, 367

leading zeros, printing, 84

libraries, Windows 7, accessing, 594

locking bits, memory 643

limiting applications, single instance, 19.13 (Validation Demo—
505-506 Default.aspx), 425-427

linked lists, reversing, 167 19.14 (Validation Demo—

LINQ (Language Integrated Query), 462 Default.aspx.cs), 427-428

anonymous objects, 466
Bing, 469-471
Entity Framework, querying, 467-469
multiple tables, joins, 465-466
object collections
filtering, 464
obtaining portions, 465
querying, 462-463
PLINQ (Parallel LINQ), 472
query results, ordering, 463
SQL, compared, 462
web services, querying, 469-471
XML, generating, 467
XML documents, querying, 466-467
LINQPad, 630-631
listing values, enumerations, 103
listings
7.1 (EncodeBase64Bad), 123
7.2 (Reverse Words in a String),
124-125
7.3 (Natural Sorting), 126-130
10.1 (PriorityQueue.cs), 169-173
11.1 (CompressFile.cs), 181-183
11.2 (Searching for a File or Directory),
188-190
12.1 (TCP Server), 205-206
14.1 (BookTransform.xslt), 274-275
16.1 (BaseForm.cs), 304-306
16.2 (InheritedForm.cs), 306-308
18.1 (ImagelnfoViewModel.cs),
379-380
18.2 (Windowl.xaml.cs), 381-383
19.1 (LoginForm.aspx), 407
19.2 (LoginForm.aspx.cs), 407-408
19.3 (Default.aspx), 409
19.5 (Default.aspx), 411
19.6 (BookList.aspx), 412-413
19.7 (BookEntryControl.ascx), 414-415
19.8 (BookEntryControl.ascx.cs),
415417
19.9 (BookDetail.aspx), 417
19.10 (BookDetail.aspx.cs), 417-418
19.11 (AJAX Demo—Default.aspx),
423-424
19.12 (AJAX Demo—Default.aspx.cs),
424

19.15 (Session State Demo—
Default.aspx), 431-432
19.16 (Session State Demo—
Default.aspx.cs), 432-433
20.1 (MainPage.xaml), 445-448
20.2 (MainPage.xaml.cs), 446-448
20.3 (PlayDownloadProgress
Control.xaml), 449
20.4 (PlayDownloadProgress
Control.xaml.cs), 449-450
20.5 (MainPage.xaml), 455
20.6 (MainPage.xaml.cs), 456-457
21.1 (Bing.cs), 469-470
21.2 (Program.cs), 471
25.1 (AllwWidgetsView.xaml), 557-558
25.2 (WidgetGraphicView.xaml), 558
25.3 (Mainwindow.xaml), 561-562
26.1 (MyCDIl.h), 589
26.2 (MyCDll.cpp), 589
26.3 (MyCDIl.def), 590
27.1 (Window1.xaml), 600-601
27.2 (Windowl.xaml.cs), 601
27.3 (OptionsWindow.xaml), 606
27.4 (OptionsWindow.xaml.cs),
606-607
27.5 (ScreenSaverWindow.xaml), 607
27.6 (ScreenSaverWindow.xaml.cs),
607-611
27.7 (App.xaml), 611
27.8 (App.xaml.cs), 612-614
27.9 (SplashScreen.xaml), 616-619
ListView (Wondows Forms), virtual mode,
317-318
loading plugins, 526-528
LocalApplicationData folder, 194
localization, 562-563
ASP.NET application, 564-565
resource files, 568-569
Silverlight application, 570-572
Windows Forms application, 563-564
WPF application, 565-569
XAML localization, 566-568
localized strings
case, changing, 116
comparing, 115-116
locking bits, memory, 348

644 locks

locks, 502

interlocked methods, compared, 503

multiple threads, 502

reader-writer locks, 513-514
LoginForm.aspx listing (19.1), 407
LoginForm.aspx.cs listing (19.2), 407-408

MailMessage class, 209
MainPage.xaml listing (20.1), 445-448
MainPage.xaml listing (20.5), 455
MainPage.xaml.cs listing (20.2), 446-448
MainPage.xaml.cs listing (20.6), 456-457
Mainwindow.xaml listing (25.3), 561-562
managed resources, cleaning up, dispose
pattern, 477-482
mapping data, database objects, 259-260
marking obsolete code, 531
master pages, ASP.NET, 409-411
Math class, numbers, rounding, 94-95
measuring memory usage, 474-475
memory
bits, locking, 348
fixed memory, 488
objects, directly accessing, 485-486
preventing being moved, 487-488
unchanged memory, allocating,
488-489
memory streams, serializing, 198
memory usage, measuring, 474-475
memory-mapped files, 590-591
menu bars
windows, adding to, 367-368
Windows Forms, adding, 297-299
menu items, Windows Forms, disabling
dynamically, 300
menus, websites, adding, 411-412
metadata
Enum values, attaching to, 104-106
method arguments, attaching, 521-522
method arguments, metadata, attaching,
521-522
methods
anonymous methods
as event handlers, 288-290
assigning to delegates, 288
lambda expression syntax, 290
AsOrdered(), 472
AsParallel(), 472

calling
default parameters, 55-56
named parameters, 56
specific intevals, 512
calling asynchronously, 496-497
Clipboard.SetText(), 323
ComplexCriteria(), 472
constraints, adding to, 58-60
defining, 9-10
delegates, calling multiple to, 281-282
dynamically instantiated classes,
invoking on, 523-524
Encoding.GetString(), 110
Enum.GetValues(), 103
Equals(), 32-33
existingType.MyNewMethod(), 54-55
Exists(), 185
extension methods, 104-106
generic collections, passing to,
149-150
generic methods, creating, 141-142
GetBytes(), 110
GetHashCode(), 34
GetPixel(), 347
GetTempFileName(), 192
GetTotalMemory(), 474
HasFlag(), 102
IntersectsWith(), 357
IsPrime(), 92
metadata, attaching, 521-522
Monitor.Enter(), 501
Monitor.Exit(), 501
non-virtual methods, overriding, 17-19
Object.Equals(), 32
OrderBy(), 472
overriding, base classes, 16-17
Parse(), 97
ParseExact(), 97
runtime, choosing, 280-282
SetPixel(), 347
String.Concat(), 119
String.IsNullOrEmpty(), 117
String.IsNullOrWhitespace(), 117
ToString(), 28-31, 79, 82, 104, 385
TryParse(), 97
TryParseExact(), 97
types, adding to, 54-55
MFC (Microsoft Foundation Classes), 296
modal forms, creating, 296

numbers 645

Model-View-ViewModel pattern, WPF,
552-562
defining model, 553-554
defining view, 557-558
defining ViewModel, 555-556
modeless forms, creating, 296
modifiers, accessibility modifiers, 8
Monitor.Enter() method, 501
Monitor.Exit() method, 501
monitoring system changes, 192-194
mouse cursor, distance, 354-355
multidimensional arrays, creating, 50-51
multiple constructors, code reuse, 14
multiple events, single event, combining
into, 532-536
multiple exceptions, catching, 65
multiple generic types, creating, 146
multiple interfaces, implementing, 20-21
multiple processes, data, protecting,
504-505
multiple tables, joins, LINQ, 465-466
multiple threads
data, protecting, 500-502
data structures, 495
locks, 502
multiples, numbers, rounding to, 94-95
multiscreen captures, taking, 352-354
multithreaded timers, 512
mutexes, haming, 505
MVC (Model-View-Controller), 436-441
application creation, 436
controller creation, 437
model creation, 436
new records creation, 438-440
records, editing, 439-441
Views creation, 437-438
My Documents, paths, retrieving, 194
MyCDIl.cpp listing (26.2), 589
MyCDII.def listing (26.3), 590
MyCDIl.h listing (26.1), 589
MySQL databases, connecting to, 241-242

named parameters, methods, calling, 56
namespaces

aliasing, 51-52

System.Text, 110
naming

enumerations, 107

mutexes, 505

native Windows functions, calling,
P/Invoke, 588-589
Natural Sorting listing (7.3), 126-130
naturally sorting, number strings, 125,
128-130
NDepend, 626
.NET
cultures, 562-563
MSDN documentation, 3
objects, storing in binary form,
194-197
printing, 358-363
Win32 API functions, calling, 588-589
network cards, information, obtaining, 204
networks, availability, detecting, 203
New Silverlight Application dialog box, 445
newline characters, strings, appending
to, 120
non-virtual methods and properties,
overriding, 17-19
None values, enumerations, defining, 107
nonrectangular windows, creating,
598-601
notification icons, creating, 602-605
notifications, changes, 38
null values, checking for, 53
null-coalescing operator, 53
nulls, value types, assigning to, 42
number format strings, 85
number strings, sorting naturally, 125,
128-130
numbers
1 bits, counting, 92
bytes, converting to, 89-90
complex numbers, formatting, 80-82
degrees, converting, 93
enumerations, 100, 106
converting to integers, 102
declaring, 100-102
external values, 106
flags, 107
naming, 107
None values, 107
strings, 103-104
validity, 103
values, 103
floating-point types, 78
group digits, 84
GUIDs (globally unique IDs),
generating, 97-98
hexadecimal, printing in, 83

646 numbers

integers strings, 103-104
converting to enumerations, 102 validity, 103
determining, 79, 82, 91-93, 96-97 values, 103
large integers, 79-80 equality, determining, 32-33
leading zeros, printing, 84 memory, directly accessing, 485-486
number bases, converting, 87-89 serializing, 194-197
prime numbers, determining, 92 sortable objects, creating, 34-35
pseudorandom numbers, 96 user-defined objects, forms, 325-327
radians, converting, 93 XML, serialization, 262-266
random numbers, generating, 96-97 observer pattern, implementing, 536-539
rounding, 94-95 obsolete code, marking, 531
strings off-screen buffers, drawing to, 346-347
converting, 86-87 OpenfFileDialog class, 594
formatting in, 82-85 operating systems, current operating
numerical indexes, types, 36 system, version information, 576
NUnit, 623-625 operators
1= operator, implementing, 39-40
O + operator, implementing, 39

== operator, implementing, 39-40

conditional operators, 52-53

conversion operators, implementing,
40-41

null-coalescing operator, 53

overloading, 39-40

object collections
filtering, LINQ, 464
querying, LINQ, 462-463
object keyword, 49
Object.Equals() method, 32

obj:cnt’zys OptionsWindow.xaml listing (27.3), 606
OptionsWindow.xaml.cs listing (27.4),
declaring, 50 ptionsWindow.xaml.cs listing (27.4)

606-607
OrderBy() method, 472
ordering query results, LINQ, 463
overloading operators, 39-40

jagged arrays, 51

multidimensional arrays, 50-51

rectangular arrays, 50-51
collections

lecti 157 overriding
concu.rrency—aware coflections, non-virtual methods, base classes,
counting elements, 168 1719

custom collection creation, non-virtual properties, 17-19

159-160, 163 .
custom iterator creation, 163-166 ToString() method, 29
initializing, 157-158 P
interfaces, 159
obtaining elements, 168 P/Invoke, native Windows functions,
picking correctly, 156-157 calling, 588-589
priority queues, 169 Parallel class
reversing arrays, 166-167 data, processing in, 492-494
reversing linked lists, 167 tasks, running in, 494-495
trie structure, 173-176 parameters
databases, mapping data to, 259-260 default values, specifying, 55-56
enumerations, 100, 106 named parameters, called methods, 56
converting to integers, 102 types, labels, 146
declaring, 100-102 Parse (), 86
external values, 106 parse hexadecimal number strings,
flags, 107 converting, 87
naming, 107 Parse() method, 97

None values, 107 ParseExact() method, 97

references, weak references 647

paths
files, manipulating, 190-191
user folders, retrieving, 194
patterns (applications), 530
Model-View-ViewModel pattern,
552-562
defining model, 553-554
defining view, 557-558
defining ViewModel, 555-556
observer pattern, implementing,
536-539
pens, creating, 337-339
phone numbers, validating, 135
pinging machines, 203
playback progress bars, video, Silverlight,
449-450
PlayDownloadProgressControl.xaml
listing (20.3), 449
PlayDownloadProgressControl.xaml.cs
listing (20.4), 449-450
playing sound files, 619-620
PLINQ (Parallel LINQ), 472
plugin architecture, implementing,
525-528
plugin assemblies, creating, 525-526
plugins, loading and searching for,
526-528
pointers, using, 485-486
points
circles, determining, 355-356
ellipse, determining, 356-357
mouse cursor, distance, 354-355
rectangles, determining, 355
power state information, retrieving, 595
prefix trees, 173-176
prime numbers, determining, 91-92
Print Preview, 363
printing
.NET, 358-363
documents, Silverlight, 457
numbers
hexidecimals, 83
leading zeros, 84
priority queues, collections,
implementing, 169
PriorityQueue.cs listing (10.1), 169-173
Private accessibility modifier, 8
Process Explorer, 628-629
Process Monitor, 628-629
processes, communicating between,
222-229
processing data in Parallel class, 492-494

processors, tasks, splitting among,
492-495
profiling code, stopwatch, 530-531
Program.cs listing (21.2), 471
progress bars, video, Silverlight, 449-450
projects (Silverlight), creating, 444-445
properties
auto-implemented properties, 10
defining, 9-10
initialization at construction, 12
metadata, attaching, 521-522
non-virtual properties, overriding, 17-19
overriding base classes, 16-17
Protected accessibility modifier, 8
Protected internal accessibility modifier, 8
protecting data, multiple threads, 500-502
proxy classes, generating, Visual Studio,
225-226
pseudorandom numbers, 96
Public accessibility modifier, 8
publishing events, 283

Q

query results, ordering, LINQ, 463
querying
Entity Framework, LINQ, 467-469
object collections, LINQ, 462-463
web services, LINQ, 469-471
XML documents
LINQ, 466-467
XPath, 271-272

radians, degrees, converting to, 93
random numbers

cryptographically secure random

numbers, 97

generating, 96-97
reader-writer locks, 513-514
reading

binary files, 179

files, XML files, 268-270

text files, 178-179
readonly fields, 13
rectangles

intersection, determining, 357

points, determining, 355
rectangular arrays, creating, 50-51
reference types, constraining, 147
references, weak references, 484

648 reflection

reflection, 520
code, instantiating, 523
types, discovering, 520-521
Reflector, 622
RegexBuddy, 630
registry
accessing, 583-584
XML configuration files, compared, 584
regular expressions, 132
advanced text searches, 132
improving, 137
text
extracting groups, 132-133
replacing, 133-134
user input, validating, 134-136
rendering 3D geometry, WPF, 389-392
replacing text, regular expressions,
133-134
resetting wait cursor, Windows Forms,
327-328
resizing graphics, 350-351
resource files, localization, 568-569
resources, thread access, limiting, 506-508
restoring session state, cookies, 434-436
restricted permissions, application data,
saving, 198-200
rethrowing exceptions, 66-67
retrieving power state information, 595
reuse, code, multiple constructors, 14
Reverse Words in a String listing (7.2),
124-125
reversing
linked lists, 167
values, arrays, 166-167
words, strings, 124-125
RGB color format, HSV color format,
converting between, 331-335
rotation, graphics, 342
rounding numbers, 93-95
RoutedEvents, WPF, 377
RSS feeds
consuming, 216, 219
producing dynamically in 1IS, 220-222
running
stored procedures, databases,
247-248
tasks in Parallel, 494-495
running code, timing, 530-531
runtime
methods, choosing, 280-282
type checking, deferring, 47-49

S

saving application data, restricted
permissions, 198-200
scaling graphics, 343
screen locations, applications,
remembering, 543-544
screen savers, WPF, creating in, 605-614
ScreenSaverWindow.xaml
listing (27.5), 607
ScreenSaverWindow.xaml.cs
listing (27.6), 607-611
searches
directories and files, 188-190
plugins, 526-528
Searching for a File or Directory
listing (11.2), 188-190
security information, files, retrieving,
183-184
SerializableAttribute (), 195-196
Serialization, objects, XML, 262-266
serializing
memory streams, 198
objects, 194-197
servers
data validation, ASP.NET, 425-429
SQL Server, connecting to, 240-241
TCP/IP servers, creating, 204-208
services, discovering, during runtime,
233-236
session state, ASP.NET, storing and
restoring, 433-436
Session State Demo—Default.aspx
listing (19.15), 431-432
Session State Demo—Default.aspx.cs
listing (19.16), 432-433
SetPixel() method, 347
shapes
circles, points, 355-356
drawing, 335, 337
ellipse, points, 356-357
rectangles
intersection, 357
points, 355
shared assembilies, creating, 525
shared integer primitives,
manipulating, 503
shearing graphics, 343
shuffling elements, collections, 620
signaling events, threads, 509-512

System.Text namespace 649

Silverlight, 444
3D surfaces, controls, 452-453
browsers, running applications out of,
453-454
documents, printing, 457
projects, creating, 444-445
Ul threads, timer events, 451-452
versions, 444
videos
playing over web, 445-448
progress bar, 449-450
webcams, capturing, 455-457
Silverlight applications, localization,
570-572
single event, multiple events, combining
into, 532-536
single instance, applications, limiting,
505-506
sizes, files, retrieving, 183
Smart Tags, Visual Studio, 20
SMTP (Simple Mail Transport Protocol),
email, sending via, 208-209
social security numbers, validating, 134
sortable types, creating, 34-35
sorting number strings naturally, 125,
128-130
sound files, playing, 619-620
splash screens, displaying, 614
Windows Forms, 614-616
WPF, 616-619
SplashScreen.xaml listing (27.9), 616-619
Split (), 121
split window interfaces, Windows Forms,
creating for, 302-303
splitting strings, 121-122
SQL, LINQ, compared, 462
SQL objects, external resources,
wrapping, 246
SQL Server, connecting to, 240-241
SqlCommand object, 246
StackOverflow.com, 3
standard commands, WPF, 370-371
statements, values, choosing, 52-53
static constructors, adding, 12
static members, defining, 10-11
status bars
windows, adding to, 369
Windows Forms, adding to, 300
stopwatch, code, profiling, 530-531

stored procedures, databases, running,
247-248
streams, combining, 181-183
String class, 121
string indexes, types, 37
String.Concat() method, 119
String.IsNullOrEmpty() method, 117
String.IsNullOrWhitespace() method, 117
StringBuilder, types, formatting, 31-32
StringBuilder (), strings, concatenating,
117-119
strings, 110
binary data, converting to, 122-124
bytes
converting to, 110-111
translating to, 111, 114-115
case, changing, 116
comparing, 115-116
concatenating
collection items, 119-120
StringBuilder, 117-119
custom encoding scheme, 111,
114-115
empty strings, detecting, 117
enumerations, converting to, 103-104
flags, converting to, 104
format strings, 84-85
newline characters, appending to, 120
number format strings, 85
number strings, sorting naturally, 125,
128-130
numbers
converting, 86-87
formatting in, 82-85
splitting, 121-122
tokens, reversing, 124-125
Unicode, 111
words, reversing, 124-125
stripping HTML of tags, 214
structs, 8
creating, 21-22
styles, WPF, triggers, 378
subscriber pattern, implementing, 536-539
subscriptions, events, 282-283
system changes, monitoring, 192-194
system configuration changes, responding
to, 593
System.Numerics.Complex class, 80
System.Text namespace, 110

650 tables (databases), data

T

tables (databases), data
deleting, 246-247
displaying, 250-257
inserting, 245-246
tags, HTML, stripping, 214
tasks
processors, splitting among, 492-495
running in Parallel class, 494-495
TCP Server listing (12.1), 205-206
TCP/IP clients and servers, creating,
204-208
templates, controls, designing, 386-387
temporary filenames, creating, 192
text
drawing, 344
extracting groups, regular expressions,
132-133
forms, cutting and pasting, 323
replacing, regular expressions,
133-134
text files, creating, 178-179
text searches, regular expressions, 132
TextTokenizer application, 515-516
thread pools, 497-499
threads, 492
creating, 498-499
culture settings, 562-563
data, exchanging, 499-500
multiple threads
data protection, 500-502
data structures, 495
resource access, limiting number,
506-508
signaling events, 509, 512
throwing exceptions, 64
rethrowing, 66-67
thumbnail graphics, creating, 351-352
timer events, Ul threads, Silverlight,
451-452
timers
functions, calling, 313-314
multithreaded timers, 512
timing code, 530-531
tokens, strings, reversing, 124-125
toolbars
windows, adding to, 369-370
Windows Forms, adding to, 301-302
tools
finding, 631
FXCop, 626-627

LINQPad, 630-631
NDepend, 626
NUnit, 623-625
Process Explorer, 628-629
Process Monitor, 628-629
Reflector, 622
RegexBuddy, 630
Virtual PC, 627-628
ToolStrip controls, 297
ToolStripltem, 297
ToolStripMenultem, 299
ToString() method, 79, 82, 104, 385
overriding, 29
types, formatting, 28-31
trace information, viewing, ASP.NET,
402-403
transactions, databases, 248-250
transformations (graphics), 341
rotation, 342
scaling, 343
shearing, 343
translations, 342
translating hostnames to
IP addresses, 202
translations, graphics, 342
transparent images, drawing, 345
trie structures, creating, 173-176
triggers, WPF, style changes, 378
TryParse() method, 86, 97
TryParseExact() method, 97
tuples, creating, 151
type checking, 524
deferring to runtime, 47-49
types. See also classes
anonymous types, creating, 22-23
coverting, 40-41
creating, 28
discovering, 520-521
dynamically sized array of objects,
creating, 140
enumerating, assemblies, 520-521
equality, determining, 32-33
floating-point types, choosing, 78
formatting
ICustomFormatter, 31-32
StringBuilder, 31-32
ToString() method, 28-31
generic types, constraining, 146-149
hashable types, creating, 34
implicit typing, 46-47
indexes, 36-37
inference, 46-47

WCF (Windows Communication Foundation) 651

methods, adding, 54-55
multiple generic types, creating, 146
operators, overloading, 39-40
parameters, labels, 146
reference types, constraining, 147
sortable types, creating, 34-35
value types

constraining, 147

nulls, 42

UAC (User Access Control), administration
privileges, requesting, 578-581
Ul state, maintaining, ASP.NET, 430
Ul threads
timer events, Silverlight, 451-452
updates, ensuring, 285-287
Uls, websites, creating, 418-422
Ultimate Developer and Power Users Tool
List for Windows, 631
unchanged memory, allocating, 488-489
undo commands, implementing, command
objects, 545-552
unhandled exceptions, catching, 72-75
Unicode strings, 111
unmanaged resources, cleaning up,
finalization, 475-477
unrecoverable errors, indicating, 64
updates, Ul threads, ensuring, 285-287
updating, databases, DataSet, 252-254
uploading files, FTP sites, 213-214
user configuration values, Windows Forms,
314-316
user controls
ASPNET, creating, 414-417
Windows Forms, creating, 308-313
user date, maintaining, ASP.NET, 431-433
user folders, paths, retrieving, 194
user input
data validation, ASP.NET, 425-429
validating, regular expressions,
134-136
user logins, authentication, 406-409
user-defined objects, forms, cutting and
pasting, 325-327
users
session state, storing, 433-434
web pages, redirecting to, 405-406

'/

validation
user input
ASPNET, 425-429
regular expressions, 134-136
XML documents, 270-271
Validation Demo—Default.aspx
listing (19.13), 425-427
Validation Demo—Default.aspx.cs
listing (19.14), 427-428
validity, enumerations, determining, 103
value types
constraining, 147
nulls, assigning to, 42
values
arrays, reversing, 166-167
enumerations, listing, 103
evaluation, deferring, 57-58
explicit values, enumerations, 100
statements, choosing, 52-53
var keyword, 22-23, 47
variables, declaring, 46-47
versatility, 28
Vertex3d class, 9
formatting
ICustomFormatter, 31-32
StringBuilder, 31-32
ToString() method, 28-31
video
3D surfaces, WPF, 392-394
playing over web, Silverlight, 445-448
progress bars, Silverlight, 449-450
virtual mode, Windows Forms ListView,
317-318
Virtual PC, 627-628
Vista file dialogs, 594
Visual Studio
databases, creating, 238-239
proxy classes, generating, 226
Smart Tags, 20

w

wait cursor, Windows Forms, resetting,
327-328
WCF (Windows Communication
Foundation), 208
Internet, communication over, 231-232
multiple machines, communication,
229-230

652 WCF (Windows Communication Foundation)

processes, communicating between,
222-229
service interface, defining, 223-224
services, discovering, 233-236
weak references, 484
web browser capabilities, determining, 404
web browsers, applications
embedding, 214-216
running out of, 453-454
web pages
AJAX pages, creating, 423-425
master pages, ASPNET, 409-411
users, redirecting to, 405-406
web services, querying, LINQ, 469-471
websites
menus, adding, 411-412
Uls, creating, 418-422
webcams, capturing, Silverlight, 455-457
WidgetGraphicView.xaml listing (25.2), 558
Win32 API functions, calling, .NET,
588-589
Window1.xaml listing (27.1), 600-601
Window1.xaml.cs listing (18.2), 381-383
Window1.xaml.cs listing (27.2), 601
windows
nonrectangular windows, creating,
598-601
WPF (Windows Presentation
Foundation)
displaying, 366-367
menu bars, 367-368
positioning controls, 367
status bars, 369
toolbars, 369-370
Windows 7
file dialogs, 594
functionality, accessing, 593-594
libraries, accessing, 594
Windows Forms, 296, 330
anti-aliasing, 348-349
bitmap pixels, accessing directly,
347-348
brushes, creating, 339-341
clipboard, 323-327
color picker, 330-331
colors, converting, 331-335
configuration values, 314-316
controls, binding data, 250-252
flicker-free drawing, 349-350
forms, inheritance, 304-308

graphics
color definitions, 330
resizing, 350-351
thumbnails, 351-352
horizontal tilt wheel, 319-323
images, drawing, 344-345
ListView, virtual mode, 317-318
menu bars, adding, 297-299
menu items, disabling dynamically, 300
modal forms, creating, 296
modeless forms, creating, 296
mouse cursor, distance, 354-355
multiscreen captures, taking, 352-354
nonrectangular windows, creating,
598-600
off-screen buffers, drawing to, 346-347
pens, creating, 337, 339
points
circles, 355-356
ellipse, 356-357
mouse cursor, 354-355
rectangles, 355
rectangles, intersection, 357
shapes, drawing, 335-337
splash screens, displaying, 614-616
split window interface, creating,
302-303
status bars, adding, 300
text, drawing, 344
timers, 313-314
toolbars, adding, 301-302
transformations, 341
rotation, 342
scaling, 343
shearing, 343
translations, 342
transparent images, drawing, 345
unhandled exceptions, catching, 73
user controls, creating, 308-313
wait cursor, resetting, 327-328
Windows Forms applications, localization,
563-564
Windows Internals, 475
Windows Presentation Foundation (WPF).
See WPF (Windows Presentation
Foundation)
Windows services
creating, 585-588
managing, 584

zip codes, validating 653

WinForms
Ul threads, updates, 286
WPF applications, 400
WinForms applications, WPF, 398-399
words, strings, reversing, 124-125
WPF (Windows Presentation
Foundation), 366
3D geometry, rendering, 389-392
3D surfaces
interactive controls, 395-398
video, 392-394
bound data, displaying, 385-386
commands, enabling/disabling, 374
controls
appearance/functionality, 377
binding data to, 254-256
binding properties, 379-383
designing, 386-387
expanding/collapsing, 375-376
custom commands, 371-373
data binding
collections, 385
value conversions, 383-385
value formatting, 383
element properties, animating,
388-389
events, responding to, 376-377
layout method, choosing, 367
Model-View-ViewModel pattern,
552-562
defining model, 553-554
defining view, 557-558
defining ViewModel, 555-556
nonrectangular windows, creating,
600-601
RoutedEvents, 377
screen savers, creating, 605-614
splash screens, displaying, 616-619
standard commands, 370-371
triggers, style changes, 378
Ul threads, updates, 286
windows
displaying, 366-367
menu bars, 367-368
positioning controls, 367
status bars, 369
toolbars, 369-370
WinForms, applications in, 398-400
WPF applications
localization, 565-569
unhandled exceptions, catching, 74

writing
binary files, 179
events, event logs, 581-583
text files, 178-179
XML, 266-267

X-Z

XAML, localization, 566-568
XML (eXtensible Markup Language), 262
database data, transforming to,
273-276
generating, LINQ, 467
objects, serialization, 262-266
querying, XPath, 271-272
writing, 266-267
XML documents, validating, 270-271
XML files, reading, 268-270
XML configuration files, registry,
compared, 584
XML documents
querying, LINQ, 466-467
validating, 270-271
XML files, reading, 268-270
XmIDocument class
XML, writing, 266-267
XML files, reading, 268
XmiTextReader class, XML files, reading,
269-270
XmlWriter, XML, writing, 267
XPath, XML, querying, 271-272

zip codes, validating, 135

	Introduction
	Overview of C# 4.0 How-To
	How-To Benefit from This Book
	How-To Continue Expanding Your Knowledge

	2 Creating Versatile Types
	Format a Type with ToString()
	Make Types Equatable
	Make Types Hashable with GetHashCode()
	Make Types Sortable
	Give Types an Index
	Notify Clients when Changes Happen
	Overload Appropriate Operators
	Convert One Type to Another
	Prevent Inheritance
	Allow Value Type to Be Null

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

