

Sams Teach Yourself SQL in One Hour a Day

Copyright © 2009 by Pearson Education Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33025-4
ISBN-10: 0-672-33025-3

Library of Congress Cataloging-in-Publication Data:

Stephens, Ryan K.
Sams teach yourself SQL in one hour a day / Ryan Stephens, Ron Plew,

Arie D. Jones. — 1st ed.
p. cm.

Previously published under title: Sams teach yourself SQL in 24 hours.
Includes indexes.
ISBN 978-0-672-33025-4 (pbk.)

1. SQL (Computer program language) I. Plew, Ronald R. II. Jones, Arie. III. Stephens,
Ryan K. Sams teach yourself SQL in 24 hours. IV. Title.

QA76.73.S67P554 2009
005.13’3—dc22

2009014482

Printed in the United States of America
First Printing: June 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Senior Project Editor
Matthew Purcell

Copy Editor
Seth Kerney

Indexer
Lisa Stumpf

Proofreader
Language Logistics,
LLC

Technical Editor
Clayton Rardin
Steven Romero

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

Introduction

Over the past decade the landscape of information technology has drastically shifted to a
data-centric world. More than ever companies are looking for ways in which they can
leverage their own data networks to make intelligent business decisions. This includes
the ability to gather, store, and report effectively over possibly large sets of data in multi-
ple formats. So the role of database administrators and developers have become strategi-
cally important in the proper implementation and care of these systems.

The cornerstone to any database project is the language that will be used in order to
interact with the system. Fortunately, a consortium of entities has enacted a standard
query language for database environments known as the ANSI SQL standard. This pro-
vides a commonality between all database querying languages by following this known
standard and allows developers to learn the standard and then work on any given number
of database systems with minor adjustments.

This book takes a focused approach on getting the reader the basics of the SQL language
in order to allow them to have a solid foundation for future learning. Often in today’s
business environment, there is very little time to learn new things as our day-to-day func-
tions consume large amounts of our time. By focusing on smaller lesson plans and logi-
cally segmenting the sections in a stepping stone fashion, the book allows readers to
learn the SQL language at their own pace and within their own schedules.

Who Should Read This Book?
This book is for people who want to learn the fundamentals of Structured Query
Language (SQL) quickly. Through the use of countless examples, this book depicts all
the major components of SQL, as well as options that are available with various database
implementations. You should be able to apply what you learn here to relational databases
in a traditional business setting.

How Is This Book Organized?
This book is divided into seven parts, which logically break down the structure of ANSI
SQL into easily learnable sections:

n Part I, comprised of the first seven lessons, discusses the basic concepts behind
SQL and mainly focuses on the SQL query.

n Part II includes topics on the art of database design, such as creating databases and
database objects properly, which is often the foundation of RDBMS application
development.

n Part III focuses on data manipulation and using SQL to perform UPDATEs, INSERTs,
and DELETEs of data within your database. These will be the staple commands that
you will use on a day-to-day basis.

n Part IV is dedicated to database administration, which covers such topics as secu-
rity, management, and performance, enabling you to maintain the integrity and per-
formance of your database instance.

n Part V focuses on more advanced SQL objects such as triggers and stored proce-
dures. Using these objects will allow you to perform more sophisticated data
manipulation techniques that would otherwise be difficult in standard SQL syntax.

n Part VI covers more advanced SQL programming. Advanced SQL programming
will allow you to perform more advanced queries and manipulation of the data
within your database.

n Part VII presents you with SQL in various database implementations. SQL exten-
sions such as PL/SQL allow you to take advantage of unique attributes within a
particular database environment, such as Oracle.

n This book also contains four appendices, which provide you with not only the
answers to the exercises in each lesson but also the code examples to create and
populate the tables used in the book. Two additional appendices are located
at http://www.informit.com/store/products.aspx?isbn=0672330253 under the
extras tab.

After studying this book, you should have an excellent understanding of SQL and should
know how to apply SQL in the real world.

2 Sams Teach Yourself SQL in 1 Hour a Day

If you are familiar with the basics and history of SQL, we suggest
you skim the first lesson and begin in earnest with Lesson 2
“Introducing the Query.”

The syntax of SQL is explained and then brought to life in examples using MySQL,
which is the closest implementation of the ANSI SQL standard syntax, as well as Oracle
Express edition, which demonstrates some of the extensions to ANSI SQL.

NOTE

http://www.informit.com/store/products.aspx?isbn=0672330253

Conventions Used in This Book
This book uses the following typeface conventions:

n Menu names are separated from menu options by a comma. For example, File,
Open means select the Open option from the File menu.

n New terms appear in italic.

n In some listings, we’ve included both the input and output (Input/Output ▼). For
these, all code that you type in (input) appears in boldface monospace. Output
appears in standard monospace. The Combination icon indicates that both input and
output appear in the code.

n The Input ▼ and Output ▼ icons also identify the nature of the code.

n Many code-related terms within the text also appear in monospace.

n Placeholders in code appear in italic monospace.

n When a line of code is too long to fit on one line of this book, it is broken at a con-
venient place and continued to the next line. A code continuation character (➥)
precedes the continuation of a line of code. (You should type a line of code that has
this character as one long line without breaking it.)

n Paragraphs that begin with the Analysis ▼ icon explain the preceding code
example.

n The Syntax ▼ icon identifies syntax statements.

n Special design features enhance the text material:

Introduction 3

Notes explain interesting or important points that can help you
understand SQL concepts and techniques.

NOTE

Tips are little pieces of information that will help you in real-world
situations. Tips often offer shortcuts to make a task easier or
faster.

TIP

Cautions provide information about detrimental performance
issues or dangerous errors. Pay careful attention to Cautions.

CAUTION

Using MySQL for Hands-on Exercises
We have chosen to use MySQL for hands-on exercises in this edition. In previous edi-
tions, we left it up to the reader to obtain access to any SQL implementation. We decided
that it would be better to provide the reader with an open-source SQL database that
allowed all readers to start on the same level with the same software. We chose MySQL
because it is the most popular open-source database available today, and it is easy to
download and use.

Unfortunately, MySQL does have its limitations. There are several features of standard
SQL that are not supported by MySQL. We have attempted to distinguish between the
exercises that support MySQL and those that do not. Those exercises that do not will
mainly focus on using Oracle Enterprise edition, instead. The beauty of SQL is that it is
a standard language, although each implementation does have its differences. After using
MySQL to understand the basic fundamentals of SQL, you should be able to easily apply
the concepts you have learned to any SQL implementation.

About the Book’s Source Code
In the appendices, you will find the source code for creating all of the objects used
throughout the book. This includes all of the tables and data that is used. Additionally,
the source code will be available for download from the publisher’s website. This will
allow you to simply cut and paste entries into your interface instead of spending the
majority of your time typing and enable you to focus more clearly on the material.

4 Sams Teach Yourself SQL in 1 Hour a Day

LESSON 3
Expressions,
Conditions,
and Operators

In Lesson 2, “Introducing the Query,” you used SELECT and FROM to
manipulate data in interesting (and useful) ways. In this lesson, you learn
more about SELECT and FROM. You will expand the basic query with some
new terms, a new clause, and a group of handy items called operators.
By the end of this lesson, you will

n Know what an expression is and how to use it.

n Know what a condition is and how to use it.

n Be familiar with the basic uses of the WHERE clause.

n Be able to use arithmetic, comparison, character, logical, and set
operators.

n Have a working knowledge of some miscellaneous operators.

We used Oracle and MySQL to generate this lesson’s
examples. Other implementations of SQL might differ
slightly in the way in which commands are entered or
output is displayed, but the results are basically the
same for all implementations that conform to the
ANSI standard.

NOTE

This lesson is one of the longest in the book and
also one of the most important as it lays the founda-
tion for most of the other lessons. In this lesson we
provide many examples for you to absorb. Do not try
to remember every specific example but rather learn
the concepts behind them. The lessons to follow will
give you plenty of practice in implementing what you
will learn.

NOTE

Working with Query Expressions
The definition of an expression is simple: An expression returns a value. Expression
types are very broad, covering different data types such as String, Numeric, and Boolean.
In fact, pretty much anything following a clause (SELECT or FROM, for example) is an
expression. In the following example, AMOUNT is an expression that returns the value con-
tained in the AMOUNT column:

Syntax ▼

SELECT AMOUNT FROM CHECKS;

Of course, the following is also considered a numerical expression. Remember that the
key to an expression is that it returns a value.

Syntax ▼

SELECT AMOUNT*10 FROM CHECKS;

In the following statement, NAME, ADDRESS, PHONE, and ADDRESSBOOK are expressions:

Syntax ▼

SELECT NAME, ADDRESS, PHONE
FROM ADDRESSBOOK;

Now, examine the following WHERE clause:

Syntax ▼

WHERE NAME = ‘BROWN’

It contains a condition, NAME = ‘BROWN’, which is an example of a Boolean expression.
NAME = ‘BROWN’ will be either TRUE or FALSE, depending on the condition =.

Placing Conditions on Queries
If you ever want to find a particular item or group of items in your database, you need
one or more conditions. Conditions are contained in the WHERE clause. In the preceding
example, the condition is

Syntax ▼

NAME = ‘BROWN’

40 LESSON 3: Expressions, Conditions, and Operators

To find everyone in your organization who worked more than 100 hours last month, your
condition would be

Syntax ▼

NUMBEROFHOURS > 100

Conditions enable you to make selective queries. In their most common form, conditions
comprise a variable, a constant, and a comparison operator. In the first example, the vari-
able is NAME, the constant is ‘BROWN’, and the comparison operator is =. In the second
example, the variable is NUMBEROFHOURS, the constant is 100, and the comparison operator
is >. You need to know about two more elements before you can write conditional
queries: the WHERE clause and operators.

The syntax of the WHERE clause is

Syntax ▼

WHERE <SEARCH CONDITION>

SELECT, FROM, and WHERE are the three most frequently used clauses in SQL. WHERE sim-
ply causes your queries to be more selective. Without the WHERE clause, the most useful
thing you could do with a query is display all records in the selected table(s)—for exam-
ple,

Input ▼

SQL> SELECT * FROM BIKES;

lists all rows of data in the table BIKES.

Output ▼

NAME FRAMESIZE COMPOSITION MILESRIDDEN TYPE
----------- --------- ------------ ----------- --------
TREK 2300 22.5 CARBON FIBER 3500 RACING
BURLEY 22 STEEL 2000 TANDEM
GIANT 19 STEEL 1500 COMMUTER
FUJI 20 STEEL 500 TOURING
SPECIALIZED 16 STEEL 100 MOUNTAIN
CANNONDALE 22.5 ALUMINUM 3000 RACING
6 rows selected.

Placing Conditions on Queries 41

3

If you wanted a particular bike, you could type

Input ▼

SQL> SELECT *
2 FROM BIKES
3 WHERE NAME = ‘BURLEY’;

which would yield only one record:

Output ▼

NAME FRAMESIZE COMPOSITION MILESRIDDEN TYPE
------------- --------- ----------- ----------- ------
BURLEY 22 STEEL 2000 TANDEM
1 rows selected.

These simple examples show how you can place a condition on the data that you want to
retrieve.

Learning How to Use Operators
Operators are the elements you use inside an expression to articulate how you want spec-
ified conditions to retrieve data. Operators fall into six groups: arithmetic, comparison,
character, logical, set, and miscellaneous. SQL utilizes three types of operators: arith-
metic, comparison, and logical.

Arithmetic Operators
The arithmetic operators are plus (+), minus (–), divide (/), multiply (*), and modulo (%).
The first four are self-explanatory. Modulo returns the integer remainder of a division.
Here are two examples:

5 % 2 = 1
6 % 2 = 0

The modulo operator does not work with data types that have decimals, such as Real or
Number.

If you place several of these arithmetic operators in an expression without any parenthe-
ses, the operators are resolved in this order: multiplication, division, modulo, addition,
and subtraction. For example, the expression

2*6+9/3

42 LESSON 3: Expressions, Conditions, and Operators

equals

12 + 3 = 15

However, the expression

2 * (6 + 9) / 3

equals

2 * 15 / 3 = 10

Watch where you put those parentheses! Sometimes the expression does exactly what
you tell it to do, rather than what you want it to do. The same holds true for SQL.

The following sections examine the arithmetic operators in some detail and give you a
chance to write some queries.

Plus (+)
You can use the plus sign in several ways. Type the following statement to display the
PRICE table:

Input/Output ▼

SQL> SELECT * FROM PRICE;
ITEM WHOLESALE
--------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
6 rows selected.

Now type

Input ▼

SQL> SELECT ITEM, WHOLESALE, WHOLESALE + 0.15
2 FROM PRICE;

Here the + adds 15 cents to each price to produce the following:

Learning How to Use Operators 43

3

Output ▼

ITEM WHOLESALE WHOLESALE+0.15
--------------- --------- ---------------
TOMATOES .34 .49
POTATOES .51 .66
BANANAS .67 .82
TURNIPS .45 .60
CHEESE .89 1.04
APPLES .23 .38
6 rows selected.

Analysis ▼

What is this last column with the unattractive column heading WHOLESALE+0.15? It’s not
in the original table. SQL allows you to create a virtual or derived column by combining
or modifying existing columns.

Retype the original entry:

Input ▼

SQL> SELECT * FROM PRICE;

The following table results:

Output ▼

ITEM WHOLESALE
--------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
6 rows selected.

Analysis ▼

The output confirms that the original data has not been changed and that the column
heading WHOLESALE+0.15 is not a permanent part of it. In fact, the column heading is so
unattractive that you should do something about it.

Type the following:

44 LESSON 3: Expressions, Conditions, and Operators

Input ▼

SQL> SELECT ITEM, WHOLESALE, (WHOLESALE + 0.15) RETAIL
2 FROM PRICE;

Here’s the result:

Output ▼

ITEM WHOLESALE RETAIL
--------------- --------- ------
TOMATOES .34 .49
POTATOES .51 .66
BANANAS .67 .82
TURNIPS .45 .60
CHEESE .89 1.04
APPLES .23 .38
6 rows selected.

Analysis ▼

This is wonderful! Not only can you create new output columns, but you can also rename
them on the fly. You can rename any of the columns using the syntax <column_name>
<alias>. (Note the space between the column_name and alias.)

For example, the query

Input ▼

SQL> SELECT ITEM PRODUCE, WHOLESALE, WHOLESALE + 0.25 RETAIL
2 FROM PRICE;

renames the columns as follows:

Output ▼

PRODUCE WHOLESALE RETAIL
--------------- --------- -------
TOMATOES .34 .59
POTATOES .51 .76
BANANAS .67 .92
TURNIPS .45 .70
CHEESE .89 1.14
APPLES .23 .48
6 rows in set (0.00 sec)

Learning How to Use Operators 45

3

You might be wondering what use aliasing is if you are not using command-line SQL.
Fair enough. Have you ever wondered how report builders work? Some day, when you
are asked to write a report generator, you’ll remember this and not spend weeks reinvent-
ing what Dr. Codd and IBM have wrought.

In some implementations of SQL, the plus sign does double duty as a character operator.
You’ll see that side of the plus sign a little later in this lesson.

Minus (-)
Minus also has two uses. First, it can change the sign of a number. You can use the table
HILOW to demonstrate this function.

Input/Output ▼

SQL> SELECT * FROM HILOW;
STATE LOWS HIGHS
----- ---- -----
CA -50 120
FL 20 110
LA 15 99
ND -70 101
NE -60 100

46 LESSON 3: Expressions, Conditions, and Operators

Some implementations of SQL use the syntax <column name =
alias>. The preceding example would be written as follows:

SQL> SELECT ITEM = PRODUCE,
2 WHOLESALE,
3 WHOLESALE + 0.25 = RETAIL,
4 FROM PRICE;

Alternatively, the SQL standard allows you to use the AS keyword,
which is implemented in many database systems and looks like
the following:

SQL> SELECT ITEM AS PRODUCE,
2 WHOLESALE,
3 WHOLESALE + 0.25 = RETAIL,
4 FROM PRICE;

Check your implementation for the exact syntax.

NOTE

MySQL allows you to present your column alias in mixed case.NOTE

For example, here’s a way to manipulate the data:

Input/Output ▼

SQL> SELECT STATE, - LOWS, - HIGHS
2 FROM HILOW;

STATE LOWS HIGHS
----- ---- -----
CA 50 -120
FL -20 -110
LA -15 -99
ND 70 -101
NE 60 -100

Learning How to Use Operators 47

3

Notice that the minus sign was reversed on the temperatures.NOTE

The second (and obvious) use of the minus sign is to subtract one column from
another—for example,

Input/Output ▼

SQL> SELECT STATE,
2 LOWS,
3 HIGHS,
4 (–HIGHS - LOWS) DIFFERENCE
5 FROM HILOW;

STATE LOWS HIGHS DIFFERENCE
----- ---- ----- ----------
CA -50 120 170
FL 20 110 90
LA 15 99 84
ND -70 101 171
NE -60 100 160

If you accidentally use the minus sign on a character field, you get something like this:

Input/Output ▼

SQL> SELECT -STATE FROM HILOW;

ERROR:
ORA-01722: invalid number
no rows selected

The exact error message varies with implementation. Here is an example using MySQL:

Input/Output ▼

mysql> select -state
-> from hilow;

+--------+
| -state |
+--------+
| 0 |
| 0 |
| 0 |
| 0 |
+--------+
4 rows in set (0.00 sec)

MySQL evaluated the SELECT statement, but as you can see, the results are rather mean-
ingless.

Divide (/)
The division operator has only the one obvious meaning. Using the table PRICE, type the
following:

Input/Output ▼

SQL> SELECT * FROM PRICE;
ITEM WHOLESALE
-------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
6 rows selected.

mysql> select * from price;
+----------+-----------+
| item | wholesale |
+----------+-----------+
TOMATOES	0.34
POTATOES	0.51
BANANAS	0.67
TURNIPS	0.45
CHEESE	0.89
APPLES	0.23
+----------+-----------+

6 rows in set (0.26 sec)

48 LESSON 3: Expressions, Conditions, and Operators

You can show the effects of a two-for-one sale by typing the next statement:

Input/Output ▼

SQL> SELECT ITEM, WHOLESALE, (WHOLESALE/2) SALEPRICE
2 FROM PRICE;

ITEM WHOLESALE SALEPRICE
--------------- --------- ---------
TOMATOES .34 .17
POTATOES .51 .255
BANANAS .67 .335
TURNIPS .45 .225
CHEESE .89 .445
APPLES .23 .115
6 rows selected.

The same example in MySQL would be:

Input/Output ▼

mysql> select ITEM, WHOLESALE, (WHOLESALE/2) Saleprice
-> from price;

+----------+-----------+-----------+
| ITEM | WHOLESALE | Saleprice |
+----------+-----------+-----------+
TOMATOES	0.34	0.1700
POTATOES	0.51	0.2550
BANANAS	0.67	0.3350
TURNIPS	0.45	0.2250
CHEESE	0.89	0.4450
APPLES	0.23	0.1150
+----------+-----------+-----------+
6 rows in set (0.26 sec)

The use of division in the preceding SELECT statement is straightforward (except that
coming up with half pennies can be tough).

Multiply (*)
The multiplication operator is also straightforward. Again, using the PRICE table, type the
following:

Input/Output ▼

SQL> SELECT * FROM PRICE;
ITEM WHOLESALE
--------------- ---------
TOMATOES .34
POTATOES .51

Learning How to Use Operators 49

3

BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
6 rows selected.

The output from this query reflects an across-the-board 10% discount. The actual data in
the table has not changed.

Input/Output ▼

SQL> SQL> SELECT ITEM, WHOLESALE, WHOLESALE * 0.9 NEWPRICE
2 FROM PRICE;

ITEM WHOLESALE NEWPRICE
--------------- --------- --------
TOMATOES .34 .306
POTATOES .51 .459
BANANAS .67 .603
TURNIPS .45 .405
CHEESE .89 .801
APPLES .23 .207
6 rows selected.

The same example in MySQL would be:

Input/Output ▼

mysql> select Item,
-> Wholesale, Wholesale * 0.9 “New Price”
-> from price;

+----------+-----------+-----------+
| Item | Wholesale | New Price |
+----------+-----------+-----------+
TOMATOES	0.34	0.31
POTATOES	0.51	0.46
BANANAS	0.67	0.60
TURNIPS	0.45	0.41
CHEESE	0.89	0.80
APPLES	0.23	0.21
+----------+-----------+-----------+
6 rows in set (0.00 sec)

50 LESSON 3: Expressions, Conditions, and Operators

One last thing about aliases: You can give your column a two-word
heading by using quotes to surround your aliases. Sometimes this
will be single quotes and sometimes it will be double quotes.
Please check your specific implementation’s documentation to see
what it allows.

NOTE

These operators enable you to perform powerful calculations in a SELECT statement.

Modulo (%)
The modulo operator returns the integer remainder of the division operation. Using the
table REMAINS, type the following:

Input/Output ▼

SQL> SELECT * FROM REMAINS;
NUMERATOR DENOMINATOR
--------- -----------

10 5
8 3
23 9
40 17

1024 16
85 34

6 rows selected.

The same example in MySQL would be:

Input/Output ▼

mysql> select * from remains;
+-----------+-------------+
| numerator | denominator |
+-----------+-------------+
10	5
8	3
23	9
40	17
1024	16
85	34
+-----------+-------------+
6 rows in set (0.43 sec)

You can also create a new output column, REMAINDER, to hold the values of NUMERATOR %
DENOMINATOR:

Input/Output ▼

SQL> SELECT NUMERATOR,
2 DENOMINATOR,
3 NUMERATOR%DENOMINATOR REMAINDER
4 FROM REMAINS;

NUMERATOR DENOMINATOR REMAINDER

Learning How to Use Operators 51

3

--------- ----------- ---------
10 5 0
8 3 2
23 9 5
40 17 6

1024 16 0
85 34 17

6 rows selected.

The same example in MySQL would be:

Input/Output ▼

mysql> select numerator, denominator, numerator%denominator remainder
-> from remains;

+-----------+-------------+-----------------------+
| numerator | denominator | remainder |
+-----------+-------------+-----------------------+
10	5	0
8	3	2
23	9	5
40	17	6
1024	16	0
85	34	17
+-----------+-------------+-----------------------+
6 rows in set (0.01 sec)

Analysis ▼

Some implementations of SQL implement modulo as a function called MOD (see Lesson
7, “Molding Data with Built-in Functions”). The following statement produces results
that are identical to the results in the preceding statement:

Input/Output ▼

SQL> SELECT NUMERATOR,
2 DENOMINATOR,
3 MOD(NUMERATOR,DENOMINATOR) REMAINDER
4 FROM REMAINS;

NUMERATOR DENOMINATOR REMAINDER
--------- ----------- ---------

10 5 0
8 3 2
23 9 5
40 17 6

1024 16 0
85 34 17

6 rows selected.

52 LESSON 3: Expressions, Conditions, and Operators

The same example in MySQL would be:

Input/Output ▼

mysql> select numerator, denominator,
-> mod(numerator,denominator) remainder
-> from remains;

+-----------+-------------+----------------------------+
| numerator | denominator | remainder |
+-----------+-------------+----------------------------+
10	5	0
8	3	2
23	9	5
40	17	6
1024	16	0
85	34	17
+-----------+-------------+----------------------------+
6 rows in set (0.00 sec)

Precedence
Precedence is the order in which an implementation will evaluate different operators in
the same expression. This section examines the use of precedence in a SELECT statement.
Using the table PRECEDENCE, type the following:

Input/Output ▼

SQL> SELECT * FROM PRECEDENCE;
N1 N2 N3 N4

------- -------- -------- --------
1 2 3 4
13 24 35 46
9 3 23 5
63 2 45 3
7 2 1 4

5 rows selected.

mysql> select * from precedence;
+----+----+----+----+
| n1 | n2 | n3 | n4 |
+----+----+----+----+
1	2	3	4
13	24	35	46
9	3	23	5
63	2	45	3
7	2	1	4
+----+----+----+----+
5 rows in set (0.00 sec)

Learning How to Use Operators 53

3

Use the following code segment to test precedence:

Input/Output ▼

SQL> SELECT
2 N1+N2*N3/N4,
3 (N1+N2)*N3/N4,
4 N1+(N2*N3)/N4
5 FROM PRECEDENCE;

N1+N2*N3/N4 (N1+N2)*N3/N4 N1+(N2*N3)/N4
----------- ------------- -------------

2.5 2.25 2.5
31.26087 28.152174 31.26087

22.8 55.2 22.8
93 975 93
7.5 2.25 7.5

5 rows selected.
mysql> select n1+n2*n3/n4,

-> (n1+n2)*n3/n4,
-> n1+(n2*n3)/n4
-> from precedence;

+-------------+-------------+---------------+
| n1+n2*n3/n4 |(n1+n2)*n3/n4| n1+(n2*n3)/n4 |
+-------------+-------------+---------------+
2.50	9	2.50
31.26	1295	31.26
22.80	276	22.80
93.00	2925	93.00
7.50	9	7.50
+-------------+-------------+---------------+
5 rows in set (0.00 sec)

Notice that the first and last columns are identical. If you added a fourth column
N1+N2*(N3/N4), its values would also be identical to those of the current first and last
columns. The rules for precedence follow the usual algebraic set in that values are nor-
mally executed in the following order moving left to right.

1. Parentheses

2. Multiplication/division

3. Addition/subtraction

Analysis ▼

Quite simply, values inside parentheses are computed first, then multiplication or
division operations are performed, and lastly addition and subtraction operations are

54 LESSON 3: Expressions, Conditions, and Operators

performed. These rules are important to remember as you start to write more complicated
calculations to analyze data.

Comparison Operators
True to their name, comparison operators compare expressions and return one of three
values: TRUE, FALSE, or UNKNOWN. Wait a minute! Unknown? TRUE and FALSE are self-
explanatory, but what is UNKNOWN?

To understand how you could get an UNKNOWN, you need to know a little about the con-
cept of NULL. In database terms, NULL is the absence of data in a field. It does not mean
that a column has a zero or a blank in it. A zero or a blank is a value. NULL means noth-
ing is in that field.

If you make a comparison such as Field = 9 and the only acceptable value for Field is
NULL, the comparison will come back UNKNOWN. Because UNKNOWN is an uncomfortable
condition, most flavors of SQL change UNKNOWN to FALSE and provide a special operator,
IS NULL, to test for a NULL condition.

Here’s an example of NULL: Suppose an entry in the PRICE table does not contain a value
for WHOLESALE. The results of a query might look like this:

Input/Output ▼

SQL> SELECT * FROM PRICE;

ITEM WHOLESALE
--------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
ORANGES

7 rows selected.

Analysis ▼

Notice that no value appears in the WHOLESALE field position for ORANGES. The value of
the field WHOLESALE for ORANGES is NULL. The NULL is noticeable in this case because it is
in a numeric column. However, if the NULL appeared in the ITEM column, it would be
impossible to tell the difference between NULL and a blank.

Learning How to Use Operators 55

3

Try to find the NULL:

Input/Output ▼

SQL> SELECT *
2 FROM PRICE
3 WHERE WHOLESALE IS NULL;

ITEM WHOLESALE
-------- ---------
ORANGES

1 rows selected.

As you can see by the output, ORANGES is the only item whose value for WHOLESALE is
NULL, or does not contain a value. What if you use the equal sign (=) instead?

Input/Output ▼

SQL>SELECT *
2 FROM PRICE
3 WHERE WHOLESALE = NULL;

no rows selected

Analysis ▼

You wouldn’t find anything because the comparison WHOLESALE = NULL returned a
FALSE—the result was unknown. It would be more appropriate to use an IS NULL instead
of =, changing the WHERE statement to WHERE WHOLESALE IS NULL. In this case, you
would get all the rows where a NULL existed.

This example also illustrates both the use of the most common comparison operator (=)
and the playground of all comparison operators, the WHERE clause. You already know
about the WHERE clause, so here’s a brief look at the equal sign.

Equal Sign (=)
Earlier today you saw how some implementations of SQL use the equal sign in the
SELECT clause to assign an alias. In the WHERE clause, the equal sign is the most com-
monly used comparison operator. Used alone, the equal sign is a very convenient way of
selecting one value out of many. Try this:

Input/Output ▼

SQL> SELECT * FROM FRIENDS;
LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- --------
BUNDY AL 100 555-1111 IL 22333

56 LESSON 3: Expressions, Conditions, and Operators

MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
5 rows selected.

Let’s find JD’s row. (On a short list this task appears trivial, but you might have more
friends than we do—or you might have a list with thousands of records.)

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE FIRSTNAME = ‘JD’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- ------ -------- ---- ----
MAST JD 381 555-6767 LA 23456
1 rows selected.
mysql> select * from friends

-> where firstname = ‘JD’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
| MAST | JD | 381 | 555-6767 | LA | 23456 |
+----------+-----------+----------+----------+----+-------+
1 row in set (0.37 sec)

We got the result that we expected. Try this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE FIRSTNAME = ‘AL’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
2 rows selected.

Learning How to Use Operators 57

3

Here you see that = can pull in multiple records. Notice that ZIP
is blank on the second record. ZIP is a character field (you learn
how to create and populate tables in Lesson 9, “Creating and
Maintaining Tables”), and in this particular record, the NULL
demonstrates that a NULL in a character field is impossible to dif-
ferentiate from a blank field.

NOTE

Here’s another very important lesson concerning case sensitivity:

Input/Output ▼

SQL> SELECT FIRSTNAME FROM FRIENDS
2 WHERE FIRSTNAME = ‘BUD’;

FIRSTNAME

BUD
1 row selected.
mysql> select firstname from friends where firstname = ‘BUD’;
+-----------+
| firstname |
+-----------+
| BUD |
+-----------+
1 row in set (0.00 sec)

Now try this:

Input/Output ▼

SQL> select FIRSTNAME from friends
2 where firstname = ‘Bud’;

no rows selected.
mysql> select firstname

-> from friends
-> where firstname = ‘bud’;

+-----------+
| firstname |
+-----------+
| BUD |
+-----------+
1 row in set (0.01 sec)

Analysis ▼

Even though SQL syntax is not case sensitive, data within it is, at least in some imple-
mentations. As you can see in the preceding examples, data stored in an Oracle database
(SQL*Plus) is case sensitive, whereas the MySQL example demonstrates the opposite.

Most companies prefer to store data in uppercase to provide data consistency. I recom-
mend that you always store data either in all uppercase or in all lowercase, regardless of
what type of database you are working in. Mixing case might create difficulties when
you try to retrieve accurate data through comparisons in the WHERE clause.

58 LESSON 3: Expressions, Conditions, and Operators

Greater Than (>) and Greater Than or Equal To (>=)
The greater than operator (>) works like this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE AREACODE > 300;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- ------
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

2 rows selected.

This example found all the area codes greater than (but not including) 300. To include
300, type this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE AREACODE >= 300;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
3 rows selected.

mysql> select * from friends
-> where areacode >= 300;

+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
MERRICK	BUD	300	555-6666	CO	80212
MAST	JD	381	555-6767	LA	23456
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
3 rows in set (0.34 sec)

With this change you get area codes starting at 300 and going up. You could achieve the
same results with the statement AREACODE > 299.

Learning How to Use Operators 59

3

Notice that no quotes surround 300 in either of the two prior SQL
statements. Number-defined fields do not require quotes.

NOTE

Less Than (<) and Less Than or Equal To (<=)
As you might expect, these comparison operators work the same way as > and >= work,
only in reverse:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE ST < ’LA’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MERRICK BUD 300 555-6666 CO 80212
BULHER FERRIS 345 555-3223 IL 23332
3 rows selected.

mysql> select * from friends where st < ’LA’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
BUNDY	AL	100	555-1111	IL	22333
MERRICK	BUD	300	555-6666	CO	80212
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
3 rows in set (0.00 sec)

60 LESSON 3: Expressions, Conditions, and Operators

In an Oracle database, if the column has only two characters, the
column name is shortened to two characters in the returned rows.
If the column name had been COWS, it would come out CO. The
widths of AREACODE and PHONE are wider than their column
names, so they are not truncated.

NOTE

Analysis ▼

Wait a minute. Did you just use < on a character field? Of course you did. You can use
any of these operators on any data type. The result varies by data type. For example, use
lowercase in the following state search:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE STATE < ’la’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK

MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
5 rows selected.

mysql> select * from friends where st < ’la’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
BUNDY	AL	100	555-1111	IL	22333
MERRICK	BUD	300	555-6666	CO	80212
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
3 rows in set (0.00 sec)

Uppercase is usually sorted before lowercase; therefore, the uppercase codes returned are
less than la. Again, to be safe, check your implementation.

Learning How to Use Operators 61

3

To be sure of how these operators will behave, check your lan-
guage tables. Most PC implementations use the ASCII tables.

TIP

To include the state of Louisiana in the original search, type

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE STATE <= ’LA’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
4 rows selected.

mysql> select * from friends where st <= ‘LA’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
BUNDY	AL	100	555-1111	IL	22333
MERRICK	BUD	300	555-6666	CO	80212
MAST	JD	381	555-6767	LA	23456
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
4 rows in set (0.00 sec)

Inequalities (< > or !=)
When you need to find everything except for certain data, use the inequality symbol,
which can be either < > or !=, depending on your SQL implementation. For example, to
find everyone who is not AL, type this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE FIRSTNAME <> ‘AL’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
3 rows selected.

mysql> select * from friends where firstname <> ‘AL’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
MERRICK	BUD	300	555-6666	CO	80212
MAST	JD	381	555-6767	LA	23456
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
4 rows in set (0.00 sec)

To find everyone not living in California, type this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE STATE != ’CA’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
5 rows selected.

mysql> select * from friends where st != ‘CA’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
| BUNDY | AL | 100 | 555-1111 | IL | 22333 |
| MEZA | AL | 200 | 555-2222 | UK| |

62 LESSON 3: Expressions, Conditions, and Operators

MERRICK	BUD	300	555-6666	CO	80212
MAST	JD	381	555-6767	LA	23456
BULHER	FERRIS	345	555-3223	IL	23332
+----------+-----------+----------+----------+----+-------+
5 rows in set (0.00 sec)

Learning How to Use Operators 63

3

Notice that both symbols, <> and !=, can express “not equal” in
the two implementations we have shown you.

NOTE

Character Operators
You can use character operators to manipulate the way character strings are represented,
both in the output of data and in the process of placing conditions on data to be retrieved.
This section describes two character operators: the LIKE operator and the || operator, the
latter of which conveys the concept of character concatenation.

LIKE

What if you wanted to select parts of a database that fit a pattern but weren’t quite exact
matches? You could use the equal sign and run through all the possible cases, but that
process would be boring and time-consuming. Instead, you can use LIKE. Consider the
following:

Input/Output ▼

SQL> SELECT * FROM PARTS;
NAME LOCATION PARTNUMBER
----------- ----------- ----------
APPENDIX MID-STOMACH 1
ADAMS APPLE THROAT 2
HEART CHEST 3
SPINE BACK 4
ANVIL EAR 5
KIDNEY MID-BACK 6
6 rows selected.

How can you find all the parts located in the back? A quick visual inspection of this sim-
ple table shows that it has two parts, but unfortunately the locations have slightly differ-
ent names. Try this:

Input/Output ▼

SQL> SELECT *
2 FROM PARTS
3 WHERE LOCATION LIKE ‘%BACK%’;

NAME LOCATION PARTNUMBER
------- -------- ----------
SPINE BACK 4
KIDNEY MID-BACK 6
2 rows selected.

Analysis ▼

You can see the use of the percent sign (%) in the statement after LIKE. When used inside
a LIKE expression, % is a wildcard. What you asked for was any occurrence of BACK in
the column location. If you queried

Input ▼

SQL> SELECT *
2 FROM PARTS
3 WHERE LOCATION LIKE ‘BACK%’;

you would get any occurrence that started with BACK:

Input/Output ▼

NAME LOCATION PARTNUMBER
----- -------- ----------
SPINE BACK 4

1 rows selected.
mysql> select * from parts where location like ‘BACK%’;
+-------+----------+------------+
| name | location | partnumber |
+-------+----------+------------+
| SPINE | BACK | 4 |
+-------+----------+------------+
1 row in set (0.00 sec)

If you queried

Input ▼

SQL> SELECT *
2 FROM PARTS
3 WHERE NAME LIKE ‘A%’;

you would get any name that starts with A:

64 LESSON 3: Expressions, Conditions, and Operators

Output ▼

NAME LOCATION PARTNUMBER
----------- ----------- ----------
APPENDIX MID-STOMACH 1
ADAMS APPLE THROAT 2
ANVIL EAR 5
3 rows selected.

Is LIKE case sensitive in both Oracle and MySQL? Try the next query to find out.

Input/Output ▼

SQL> SELECT *
2 FROM PARTS
3 WHERE NAME LIKE ‘a%’;

no rows selected

mysql> select * from parts where name like ‘a%’;
+-------------+-------------+------------+
| name | location | partnumber |
+-------------+-------------+------------+
APPENDIX	MID-STOMACH	1
ADAMS APPLE	THROAT	2
ANVIL	EAR	5
+-------------+-------------+------------+
3 rows in set (0.00 sec)

The answer is yes in Oracle and no in MySQL. References to data are dependent upon
the implementation you are working with.

What if you want to find data that matches all but one character in a certain pattern? In
this case you could use a different type of wildcard: the underscore.

Underscore (_)
The underscore is the single-character wildcard. Using a modified version of the table
FRIENDS, type this:

Input/Output ▼

SQL> SELECT * FROM FRIENDS;
LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

Learning How to Use Operators 65

3

BULHER FERRIS 345 555-3223 IL 23332
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633
7 rows selected.

To find all the records where ST starts with C, type the following:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE ST LIKE ‘C_’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633
3 rows selected.

mysql> select * from friends where st like ‘C_’;
+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
MERRICK	BUD	300	555-6666	CO	80212
PERKINS	ALTON	911	555-3116	CA	95633
BOSS	SIR	204	555-2345	CT	95633
+----------+-----------+----------+----------+----+-------+
3 row in set (0.00 sec)

You can use several underscores in a statement:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE PHONE LIKE’555-6_6_’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
2 rows selected.

The previous statement could also be written as follows:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE PHONE LIKE ‘555-6%’;

66 LESSON 3: Expressions, Conditions, and Operators

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
2 rows selected.

Notice that the results are identical. These two wildcards can be combined. The next
example finds all records with L as the second character:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE FIRSTNAME LIKE ‘_L%’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
PERKINS ALTON 911 555-3116 CA 95633
3 rows selected.

Concatenation (||)
The || (double pipe) symbol concatenates two strings. Try this:

Input/Output ▼

SQL> SELECT FIRSTNAME || LASTNAME ENTIRENAME
2 FROM FRIENDS;

ENTIRENAME

AL BUNDY
AL MEZA
BUD MERRICK
JD MAST
FERRIS BULHER
ALTON PERKINS
SIR BOSS
7 rows selected.

Analysis ▼

Notice that || is used instead of +. If you use + to try to concatenate the strings, the SQL
interpreter used for this example (Oracle) returns the following error:

Learning How to Use Operators 67

3

Input/Output ▼

SQL> SELECT FIRSTNAME + LASTNAME ENTIRENAME
2 FROM FRIENDS;

ERROR:
ORA-01722: invalid number

It is looking for two numbers to add and throws the error invalid number when it doesn’t
find any.

68 LESSON 3: Expressions, Conditions, and Operators

Some implementations of SQL, such as Microsoft SQL Server, use
the plus sign to concatenate strings. Check your implementation.

NOTE

Input/Output ▼

mysql> select concat(firstname,” “,lastname)Entirename from friends;
+---------------+
| Entirename |
+---------------+
| AL BUNDY |
| BUD MERRICK |
| JD MAST |
| FERRIS BULHER |
| AL MEZA |
| ALTON PERKINS |
| SIR BOSS |
+---------------+
7 rows in set (0.00 sec)

Here’s a more practical example using concatenation:

MySQL can be set up to allow the || for concatenation; however,
this is not the default when MySQL is installed. concat() is the
default. Any number of variables may be passed to the function
concat(), and it is quite easy to use. Should you desire to
change the parameters in MySQL to allow the use of the || for
concatenation, first please research the subject in the documenta-
tion provided with MySQL.

NOTE

Input/Output ▼

SQL> SELECT LASTNAME || ‘,’ || FIRSTNAME NAME
2 FROM FRIENDS;

NAME
--
BUNDY , AL
MEZA , AL
MERRICK , BUD
MAST , JD
BULHER , FERRIS
PERKINS , ALTON
BOSS , SIR
7 rows selected.

mysql> select concat(lastname,”,”,” “,firstname)Name from friends;
+----------------+
| Name |
+----------------+
| BUNDY, AL |
| MEZA, AL |
| MERRICK, BUD |
| MAST, JD |
| BULHER, FERRIS |
| PERKINS, ALTON |
| BOSS, SIR |

+----------------+
7 rows in set (0.00 sec)

The Oracle statement inserted a comma between the last name and the first name. This
was done because Oracle (and other implementations) accounts for the entire length that
a column may be when it concatenates to the other string. This creates a natural spacing
between the values of the columns/strings. The MySQL statement inserted a comma and
a space between the two columns. MySQL automatically runs the values of the
columns/strings into one; thus, any “natural” spacing between the values is lost.

Learning How to Use Operators 69

3

More on this space issue: Notice the extra spaces between the
first name and the last name in the Oracle examples. These
spaces are actually part of the data. With certain data types,
spaces are right-padded to values less than the total length allo-
cated for a field. See your implementation. Data types will be dis-
cussed in Lesson 9. Additionally, if you try to concatenate a NULL
value to a string, the result will be a NULL value for the entire
expression. In these instances, you would possibly want to use a
built-in function to remove the NULL values. This will be discussed
in Lesson 7.

NOTE

So far you have performed the comparisons one at a time. This method is fine for some
problems, but what if you need to find all the people at work with last names starting
with P who have less than three days of vacation time? Logical operators can help in this
case.

Logical Operators
Logical operators separate two or more conditions in the WHERE clause of a SQL state-
ment.

Vacation time is always a hot topic around the workplace. Say you designed a table
called VACATION for the accounting department:

Input/Output ▼

SQL> SELECT * FROM VACATION;

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
--------------- ----------- ----- ----------
ABLE 101 2 4
BAKER 104 5 23
BLEDSOE 107 8 45
BOLIVAR 233 4 80
BOLD 210 15 100
COSTALES 211 10 78
6 rows selected.

Suppose your company gives each employee 12 days of leave each year. Using what you
have learned and a logical operator, find all the employees whose name starts with B and
who have more than 50 days of leave coming.

Input/Output ▼

SQL> SELECT LASTNAME,
2 YEARS * 12 - LEAVETAKEN REMAINING
3 FROM VACATION
4 WHERE LASTNAME LIKE ‘B%’
5 AND
6 YEARS * 12 - LEAVETAKEN > 50;

LASTNAME REMAINING
-------- ---------
BLEDSOE 51
BOLD 80
2 rows selected.

mysql> select lastname,

70 LESSON 3: Expressions, Conditions, and Operators

-> years*12 - leavetaken remaining
-> from vacation
-> where lastname like ‘B%’
-> and years*12 - leavetaken > 50;

+----------+-----------+
| lastname | remaining |
+----------+-----------+
| BLEDSOE | 51 |
| BOLD | 80 |
+----------+-----------+
2 rows in set (0.00 sec)

Analysis ▼

This query is the most complicated you have done to date. The SELECT clause (lines 1
and 2) uses arithmetic operators to determine how many days of leave each employee has
remaining. The normal precedence computes YEARS * 12 - LEAVETAKEN. (A clearer
approach would be to write (YEARS * 12) - LEAVETAKEN.)

LIKE is used in line 4 with the wildcard % to find all the B names. Line 5 uses the > to
find all occurrences greater than 50.

The new element is on line 5. You used the logical operator AND to ensure that you found
records that met the criteria in lines 4 and 5.

AND

AND requires that both expressions on either side be true to return TRUE. If either expres-
sion is false, AND returns FALSE. For example, to find out which employees have been
with the company for 5 or fewer years and have taken more than 20 days leave, try this:

Input/Output ▼

SQL> SELECT LASTNAME
2 FROM VACATION
3 WHERE YEARS <= 5
4 AND
5 LEAVETAKEN > 20 ;

LASTNAME

BAKER
BOLIVAR
2 rows selected.

mysql> select lastname from vacation
-> where years <= 5
-> and leavetaken > 20;

Learning How to Use Operators 71

3

+----------+
| lastname |
+----------+
| BAKER |
| BOLIVAR |
+----------+
2 rows in set (0.00 sec)

If you want to know which employees have been with the company for 5 years or more
and have taken less than 50 percent of their leave, you could write:

Input/Output ▼

SQL> SELECT LASTNAME WORKAHOLICS
2 FROM VACATION
3 WHERE YEARS >= 5
4 AND
5 ((YEARS *12)-LEAVETAKEN)/(YEARS * 12) < 0.50;

WORKAHOLICS

BOLD
COSTALES

2 rows selected.

mysql> select lastname Workaholics
-> from vacation
-> where years >= 5
-> and ((years * 12) - leavetaken) / (years * 12) < 0.50;

+-------------+
| Workaholics |
+-------------+
| BOLD |
| COSTALES |
+-------------+
2 rows in set (0.00 sec)

Check these people for burnout. Also check out how we used the AND to combine these
two conditions.

OR

You can also use OR to sum up a series of conditions. If any of the comparisons are true,
OR returns TRUE. To illustrate the difference, run the last query with OR instead of with
AND:

72 LESSON 3: Expressions, Conditions, and Operators

Input/Output ▼

SQL> SELECT LASTNAME WORKAHOLICS
2 FROM VACATION
3 WHERE YEARS >= 5
4 OR
5 ((YEARS *12)-LEAVETAKEN)/(YEARS * 12) < 0.50;

WORKAHOLICS

BAKER
BLEDSOE
BOLD
COSTALES

4 rows selected.

mysql> select lastname
-> from vacation
-> where years >= 5
-> OR ((years*12)-leavetaken)/(years*12) < 0.50;

+----------+
| lastname |
+----------+
| BAKER |
| BLEDSOE |
| BOLD |
| COSTALES |
+----------+
4 rows in set (0.00 sec)

The original names are still in the list, but you have three new entries (who would proba-
bly resent being called workaholics). These three new names made the list because they
satisfied one of the conditions. OR requires only that one of the conditions be true for data
to be returned.

NOT

NOT means just that. If the condition it applies to evaluates to TRUE, NOT makes it FALSE.
If the condition after the NOT is FALSE, it becomes TRUE. For example, the following
SELECT returns the only two names not beginning with B in the table:

Input/Output ▼

SQL> SELECT *
2 FROM VACATION
3 WHERE LASTNAME NOT LIKE ‘B%’;

Learning How to Use Operators 73

3

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
-------- ----------- ----- ----------
ABLE 101 2 4
COSTALES 211 10 78
2 rows selected.

mysql> select * from vacation
-> where lastname not like ‘B%’;

+----------+-------------+-------+------------+
| lastname | employeenum | years | leavetaken |
+----------+-------------+-------+------------+
| ABLE | 101 | 2 | 4 |
| COSTALES | 211 | 10 | 78 |
+----------+-------------+-------+------------+
2 rows in set (0.00 sec)

NOT can also be used with the operator IS when applied to NULL. Recall the PRICE table
where we put a NULL value in the WHOLESALE column opposite the item ORANGES.

Input/Output ▼

SQL> SELECT * FROM PRICE;

ITEM WHOLESALE
--------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
ORANGES
7 rows selected.

To find the non-NULL items, type this:

Input/Output ▼

SQL> SELECT *
2 FROM PRICE
3 WHERE WHOLESALE IS NOT NULL;

ITEM WHOLESALE
--------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45

74 LESSON 3: Expressions, Conditions, and Operators

CHEESE .89
APPLES .23
6 rows selected.

Set Operators
In Lesson 1, “Getting Started with SQL,” you learned that SQL is based on the theory of
sets. The following sections examine set operators. Set operators are used to combine
different sets of data returned by different queries into one query, and ultimately, one
data set. There are various set operators available in SQL that allow you to combine dif-
ferent data sets to meet your data processing needs.

UNION and UNION ALL

UNION returns the results of two queries minus the duplicate rows. The following two
tables represent the rosters of teams:

Input/Output ▼

SQL> SELECT * FROM FOOTBALL;

NAME

ABLE
BRAVO
CHARLIE
DECON
EXITOR
FUBAR
GOOBER
7 rows selected.
SQL> SELECT * FROM SOFTBALL;

NAME

ABLE
BAKER
CHARLIE
DEAN
EXITOR
FALCONER
GOOBER
7 rows selected.

How many different people play on one team or another?

Learning How to Use Operators 75

3

Input/Output ▼

SQL> SELECT NAME FROM SOFTBALL
2 UNION
3 SELECT NAME FROM FOOTBALL;

NAME

ABLE
BAKER
BRAVO
CHARLIE
DEAN
DECON
EXITOR
FALCONER
FUBAR
GOOBER
10 rows selected.

UNION returns 10 distinct names from the two lists. How many names are on both lists
(including duplicates)?

Input/Output ▼

SQL> SELECT NAME FROM SOFTBALL
2 UNION ALL
3 SELECT NAME FROM FOOTBALL;

NAME

ABLE
BAKER
CHARLIE
DEAN
EXITOR
FALCONER
GOOBER
ABLE
BRAVO
CHARLIE
DECON
EXITOR
FUBAR
GOOBER
14 rows selected.

Analysis ▼

The combined list—courtesy of the UNION ALL statement—has 14 names. UNION ALL
works just like UNION except that it does not eliminate duplicates. You need to remember

76 LESSON 3: Expressions, Conditions, and Operators

that the UNION and UNION ALL statements will only work if all SELECT statements have
the same columns. Otherwise, an error message will be returned. Now show me a list of
players who are on both teams. You can’t do that with UNION—you need to learn INTER-

SECT.

INTERSECT

INTERSECT returns only the rows found by both queries. The next SELECT statement
shows the list of players who play on both teams:

Input/Output ▼

SQL> SELECT * FROM FOOTBALL
2 INTERSECT
3 SELECT * FROM SOFTBALL;

NAME

ABLE
CHARLIE
EXITOR
GOOBER

4 rows selected.

In this example, INTERSECT finds the short list of players who are on both teams by com-
bining the results of the two SELECT statements. INTERSECT has the same limitations as
the UNION and UNION ALL statement, in as much as the SELECT statements that it is bind-
ing must contain the same columns.

MINUS (Difference)
MINUS returns the rows from the first query that were not present in the second. For
example:

Input/Output ▼

SQL> SELECT * FROM FOOTBALL
2 MINUS
3 SELECT * FROM SOFTBALL;

NAME

BRAVO
DECON
FUBAR

3 rows selected.

Learning How to Use Operators 77

3

The preceding query shows the three football players who are not on the softball team. If
you reverse the order, you get the three softball players who aren’t on the football team:

Input/Output ▼

SQL> SELECT * FROM SOFTBALL
2 MINUS
3 SELECT * FROM FOOTBALL;

NAME

BAKER
DEAN
FALCONER

3 rows selected.

Miscellaneous Operators: IN and BETWEEN

The two operators IN and BETWEEN provide a shorthand for functions you already know
how to do. If you wanted to find friends in Colorado, California, and Louisiana, you
could type the following:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE ST= ‘CA’
4 OR
5 ST =’CO’
6 OR
7 ST = ‘LA’;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKINS ALTON 911 555-3116 CA 95633

3 rows selected.

Or you could type this:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE ST IN(‘CA’,’CO’,’LA’);

78 LESSON 3: Expressions, Conditions, and Operators

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKINS ALTON 911 555-3116 CA 95633
3 rows selected.

mysql> select * from friends
-> where st in (‘CA’,’CO’,’LA’);

+----------+-----------+----------+----------+----+-------+
| lastname | firstname | areacode | phone | st | zip |
+----------+-----------+----------+----------+----+-------+
MERRICK	BUD	300	555-6666	CO	80212
MAST	JD	381	555-6767	LA	23456
PERKINS	ALTON	911	555-3116	CA	95633
+----------+-----------+----------+----------+----+-------+
2 rows in set (0.20 sec)

The second example is shorter and more readable than the first. You never know when
you might have to go back and work on something you wrote months ago. IN also works
with numbers. Consider the following, where the column AREACODE is a number:

Input/Output ▼

SQL> SELECT *
2 FROM FRIENDS
3 WHERE AREACODE IN(100,381,204);

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MAST JD 381 555-6767 LA 23456
BOSS SIR 204 555-2345 CT 95633
3 rows selected.

If you needed a range of data from the PRICE table, you could write the following:

Input/Output ▼

SQL> SELECT *
2 FROM PRICE
3 WHERE WHOLESALE > 0.25
4 AND
5 WHOLESALE < 0.75;

ITEM WHOLESALE
-------- ---------
TOMATOES .34

Learning How to Use Operators 79

3

POTATOES .51
BANANAS .67
TURNIPS .45
4 rows selected.

Or using BETWEEN, you would write this:

Input/Output ▼

SQL> SELECT *
2 FROM PRICE
3 WHERE WHOLESALE BETWEEN 0.25 AND 0.75;

ITEM WHOLESALE
-------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
4 rows selected.

mysql> select * from price
-> where wholesale between .25 and .75;

+----------+-----------+
| item | wholesale |
+----------+-----------+
TOMATOES	0.34
POTATOES	0.51
BANANAS	0.67
TURNIPS	0.45
+----------+-----------+
4 rows in set (0.08 sec)

Again, the second example is a cleaner, more readable solution than the first.

80 LESSON 3: Expressions, Conditions, and Operators

If a WHOLESALE value of 0.25 existed in the PRICE table, that
record would have been retrieved also. Parameters used with
BETWEEN are inclusive.

NOTE

Summary
At the beginning of this lesson, you knew how to use the basic SELECT and FROM clauses.
Now you know how to use a host of operators that enable you to fine-tune your requests
to the database. You learned how to use arithmetic, comparison, character, logical, and

set operators. This powerful set of tools provides the cornerstone of your SQL knowl-
edge. In Lesson 4, you learn to increase the data-mining power of the SQL query by inte-
grating other clauses such as the WHERE clause into your queries to perform operations
involving grouping and ordering.

Q&A
Q How does all this information apply to me if I am not using SQL from the

command line as depicted in the examples?

A Whether you use SQL in COBOL as Embedded SQL or in Microsoft’s Open
Database Connectivity (ODBC), you use the same basic constructions. You will
use what you learned in these first lessons repeatedly as you work with SQL.

Q Why are you constantly telling me to check my implementation? I thought
there was a standard!

A There is an ANSI standard (the most recent version was released in late 2008);
however, most vendors modify it somewhat to suit their databases. The basics are
similar if not identical, and each instance has extensions that other vendors copy
and improve. We have chosen to use ANSI as a starting point and to point out the
differences as we go along.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the mater-
ial covered, as well as exercises to provide you with experience in using what you have
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix A, “Answers.”

Here are the CREATE TABLE statements and INSERT statements for the FRIENDS and PRICE

tables. Type the following code into MySQL if you have not already done so.

create table friends
(lastname varchar(15) not null,
firstname varchar(15) not null,
areacode numeric(3) null,
phone varchar(9) null,
st char(2) not null,
zip varchar(5) not null);

insert into friends values
(‘BUNDY’, ‘AL’, ‘100’, ‘555-1111’, ‘IL’, ‘22333’);

insert into friends values
(‘MEZA’, ‘AL’, ‘200’, ‘555-2222’, ‘UK’, NULL);

Q&A 81

3

insert into friends values
(‘MERRICK’, ‘BUD’, ‘300’, ‘555-6666’, ‘CO’, ‘80212’);

insert into friends values
(‘MAST’, ‘JD’, ‘381’, ‘555-6767’, ‘LA’, ‘23456’);

insert into friends values
(‘BULHER’, ‘FERRIS’, ‘345’, ‘555-3223’, ‘IL’, ‘23332’);

insert into friends values
(‘PERKINS’, ‘ALTON’, ‘911’, ‘555-3116’, ‘CA’, ‘95633’);

insert into friends values
(‘BOSS’, ‘SIR’, ‘204’, ‘555-2345’, ‘CT’, ‘95633’);

create table price
(item varchar(15) not null,
wholesale decimal(4,2) not null);

insert into price values
(‘TOMATOES’, ‘.34’);

insert into price values
(‘POTATOES’, ‘.51’);

insert into price values
(‘BANANAS’, ‘.67’);

insert into price values
(‘TURNIPS’, ‘.45’);

insert into price values
(‘CHEESE’, ‘.89’);

insert into price values
(‘APPLES’, ‘.23’);

Quiz
Use the FRIENDS table to answer the following questions.

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------- --------- -------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633

82 LESSON 3: Expressions, Conditions, and Operators

1. Write a query that returns everyone in the database whose last name begins with
M.

2. Write a query that returns everyone who lives in Illinois with a first name of AL.

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how
would you find out which part numbers are in both tables? Write the query.

4. What shorthand could you use instead of WHERE a >= 10 AND a <=30?

5. What will this query return?
SELECT FIRSTNAME
FROM FRIENDS
WHERE FIRSTNAME = ‘AL’
AND LASTNAME = ‘BULHER’;

6. What is the main difference in the result set when using UNION versus UNION ALL?

7. What is the primary difference between using INTERSECT and MINUS?

Exercises
1. Using the FRIENDS table, write a query that returns the following:

NAME ST
----- -------
AL FROM IL

2. Using the FRIENDS table, write a query that returns the following:

NAME PHONE
-------------- ------------
MERRICK, BUD 300-555-6666
MAST, JD 381-555-6767
BULHER, FERRIS 345-555-3223

3. Select all columns from the PRICE table where the column WHOLESALE is greater
than .50.

4. What results do you get from the following query?
mysql> select *

-> from price
-> where item like ‘%ATO%’;

Workshop 83

3

5. Does MySQL support set operators such as UNION, UNION ALL, INTERSECT, and
MINUS?

6. What is wrong with the following query?
SELECT FIRSTNAME,LASTNAME FROM FRIENDS_1
UNION
SELECT FIRSTNAME FROM FRIENDS_2;

84 LESSON 3: Expressions, Conditions, and Operators

Symbols

& (ampersand), 614
SQL*Plus variables, 611

* (asterisk)
columns, 180

line numbers, 590

queries, writing, 26-27

@ (at symbol), variables, 668
^ (caret) wildcard operator

(T-SQL), 680
/* */ (comments), 624
– (dash), numeric values,

formatting, 541
{ } (curly brackets), 672
/ (division sign) arithmetic

operator, 48-49
. (dot), table names, 248
–– (double dashes), 546
- - (double hyphens),

comments, 624
|| (double pipe)

concatenation character
operator, 67-70, 338, 509

“ ”(double quotation marks)
aliases, 50

literal strings, 620

= (equal sign), 540
tables, joining, 137

= (equal sign) comparison
operator, 56-58

= (equal sign) relational
operator, subqueries, 159

/ (forward slash)
PL/SQL, 642

SQL*Plus buffer, 590

table names, 248

<or !=> (inequalities)
comparison operator,
62-63

> (greater than sign)
comparison operator, 59

>= (greater than or equal
to sign) comparison
operator, 59

< (less than sign)
comparison operator,
60-61

<= (less than or equal to
sign) comparison operator,
60-61

% (modulo sign) arithmetic
operator, 51-53

* (multiplication sign)
arithmetic operator, 49-51

= operator, values
comparing, 538

() (parentheses), 43
columns, 180

numeric values,
formatting, 541

subqueries, 155

% (percent sign), 64
numeric values,

increasing, 542

% (percent sign) wildcard
operator (T-SQL), 680

+ (plus sign) arithmetic
operator, 43-46

Index

+ (plus sign), joining
tables, 143

(pound sign)
MySQL on UNIX, 687

tables, 468

” (quotation marks), number-
defined fields, 59

; (semicolon)
commands, 691

queries, writing, 28

SQL statements, 516, 690

‘ ’ (single quotation marks)
character data types, 290

NULL values, 290

SQL scripts, 511

_ (underscore) character
operator, 65-67

_ (underscore) wildcard
operator (T-SQL), 679

3GLs (third-generation
languages), 5

4GL (fourth-generation
language), 12

12 rules (Codd’s), relational
databases, 6-10

A

abbreviating SQL*Plus
commands, 589

abbreviations, time zones,
315

ABS function, 195
ACCEPT command, SQL*Plus

variables, 612-614

access, users of Oracle data
dictionary, 443-449

Access, import/export tools,
303-304

Access (Microsoft) relational
database management
system, 414

Accessing databases
from Java, 581

T-SQL, 665

ACCOUNT ID field (BILLS
table), indexes (creating),
373-377

accounts
ISQL (InterBase SQL),

creating, 577

Oracle8, creating, 577

accuracy of data entry, 268
ADD MONTHS/ADD DATE

function, 188-190
adding

lines in code, 591

time to dates, 315-318

administering MySQL, 686
administrators, 401. See

also DBA
database, security, 413-414

advanced reports, creating,
624-626

age (individual’s), computing
from date of birth,
532-533

aggregate functions
ANSI standard, 179

AVG, 182-183

COUNT, 180-181

data, summarizing, 180

MAX, 184

MIN, 185

SELECT statement, 349

STDDEV, 186-187

subqueries, 160-161

SUM, 181-182

VARIANCE, 186

aliases
columns, 133

in MySQL, 46

“ ” (double quotation
marks), 50

queries, 46

tables, 133, 157, 391

ALL keyword, 33
subqueries, embedding,

169-174

ALL TAB PRIVS view, 447
ALL TABLES view, 445-446
ALL_CATALOG view, 444
ALL_USERS view, 441
ALTER ANY CLUSTER system

privilege, 423
ALTER ANY DATABASE

system privilege, 423
ALTER ANY INDEX system

privilege, 423
ALTER ANY PROCEDURE

system privilege, 423
ALTER ANY ROLE system

privilege, 423
ALTER ANY SEQUENCE

system privilege, 423
ALTER ANY SNAPSHOT

system privilege, 423
ALTER ANY TABLE system

privilege, 423
ALTER ANY TRIGGER system

privilege, 423
ALTER ANY TYPE system

privilege, 423
ALTER ANY USER system

privilege, 423
ALTER SESSION command,

356
ALTER SYSTEM command,

356
ALTER TABLE command, 440

constraints (on data),
275-276

CREATE INDEX
statement, 373

ALTER TABLE statement
CHANGE option,

syntax, 259

constraints, 279

primary keys, 273

syntax, 258

table structures, modifying,
257-261

ALTER TYPE statement,
syntax, 493-494

ALTER USER command, 418
American National

Standards Organization.
See ANSI

AMOUNT field (BILLS table),
indexes, creating, 377-378

ampersand (&), 614
SQL*Plus variables, 611

AND logical operator, 71-72
anonymous users

(MySQL), 688
ANSI (American National

Standards Organization), 6
SQL extensions, 662-663

SQL3 standard, 6, 18

standards, 86

ANSI SQL standard, 1
ANSI standard

aggregate functions, 179

CAST operator, data types,
converting, 321

data types, dates and time,
310-311

DATE data type, 310

TIME data type, 310-311

TIMESTAMP data type,
310-311

ANSO SQL3 syntax
ALTER TYPE statement,

493-494

ALTER TYPETYPE
statement, 494

CREATE TYPE statement,
493-494

DROP statement, 493-494

768 access, users of Oracle data dictionary

ANY keyword, embedding
subqueries, 169-174

APIs (Application
Programming
Interfaces), 16

APPEND command, 592
APPEND text command, 588
application programming

ISQL (InterBase SQL),
577-580

Java, 581-583

JDBC, 581

.NET, 583-584

Oracle8, 577-580

SQL, embedding,
17-18, 575

Application Programming
Interfaces (APIs), 16

applications
APIs, 16

banking, 355-356

client/server
development, 13

development tools, 575-576

architectures, ODBC (Open
Database Connectivity), 16

arithmetic operations,
functions, 195

ABS, 195

CEIL, 196

EXP, 196-197

FLOOR, 196

LN, 197-198

LOG, 197-198

MOD, 198

POWER, 199

SIGN, 199-200

SQRT, 200-201

arithmetic operators, 42-43
% (modulo sign), 51-53

* (multiplication sign),
49-51

+ (plus sign), 43-46

- (minus sign), 46-48

/ (division sign), 48-49

precedence, 53-54

arranging query elements,
393-395

arrows, DOWN ARROW key
(cursors), 472

articles, “Relational Model of
Data for Large Shared Data
Banks (A),” 6

Artists Cursor result set,
cursors (scrolling), 474

ARTISTS table, 469
cursors, creating, 473

assigning
constants of DECLARE

section (PL/SQL
blocks), 633

variables of DECLARE
section (PL/SQL blocks),
632-633

asterisk (*)
columns, 180

line numbers, 590

queries, writing, 26-27

attributes
%ROWCOUNT of

DECLARE section
(PL/SQL blocks),
634-635

%ROWTYPE of
DECLARE section
(PL/SQL blocks), 634

%TYPE of DECLARE
section (PL/SQL blocks),
633-634

UDTs (User Defined
Types), 495

%attributes”NOTFOUND,” 639
AUTOCOMMIT option

(SET TRANSACTION
statement), 358

AVG function, 182-183
groups, 608

subqueries, embedding,
160-161

AVG(ANNUALLEAVE) clause,
113-115

AVG(SALARY) clause,
113-115

AVG(SICKLEAVE) clause,
113-115

B

B-tree index, 371
backing up tables, 523
BALANCES table, transaction

control, 355
BANK ACCOUNTS table, data,

254, 334
banking applications

BALANCES table, 355

CUSTOMERS table, 354

data, 355

transaction control,
354-356

transactions

beginning, 356-359

canceling, 361-364

finishing, 359-361

savepoints, 364-366

base tables, 135
BASEBALL database (T-SQL),

665-668
batch loads and OLTP (online

transactional processing),
comparing, 398-400

batch mode, MySQL terminal
monito, 692-693

batch transactions, COMMIT
statement, 401-402

BATTERS table, 666
BCP (bulk copy) tool, 304
BEGIN statement

of PROCEDURE section
(PL/SQL blocks), 635

program flow control, 672

BEGIN TRANSACTION
command, 357

How can we make this index more useful? Email us at indexes@samspublishing.com

BEGIN TRANSACTION command 769

BEGIN TRANSACTION
statement, 480

beginning transactions,
356-359

syntax, 356

benefits of databases,
normalizing, 236-237

BETWEEN operator, 78-80
BILLS table

ACCOUNT ID field,
indexes, creating,
373-377

AMOUNT field, creating
indexes, 377-378

data, 253-254, 333

data breakdown, 247

binary data types
(T-SQL), 664

binary distribution file,
installing MySQL, 686-687

binary strings data type
(T-SQL), 664

bit data types (T-SQL), 665
BLOB data types, 250, 498
block structure (PL/SQL),

630-631
DECLARE section,

631-635

EXCEPTION section,
631, 640

blocks, executing,
642-643

comments,
inserting, 642

exceptions, handling,
641-642

exceptions, raising, 641

output to users,
displaying, 643-644

script files,
executing, 643

PROCEDURE section, 631,
635

BEGIN statement, 635

CLOSE command, 637

conditional statements,
637-640

cursor control
commands, 635-637

DECLARE
command, 636

END statement, 635

FETCH command,
636-637

FOR-LOOP, 640

IF, THEN
statement, 638

LOOP, 639

loops, 638-640

OPEN command, 636

WHILE-LOOP,
639-640

blocks, PL/SQL, 646-652
executing, 642-643

starting, 642

Boar, Bernard H., 12
brackets, curly ({ }), 672
brackets ([]) wildcard

operator (T-SQL), 680
BREAK command, program

flow control, 677
BREAK ON command,

creating report and group
summaries, 607-608

BTITLE command, formatting
reports, 604

buffers, SQL*Plus, 588,
591-593

APPEND command, 592

* (asterisk), 590

CHANGE command,
syntax, 590

CLEAR BUFFER
command, 592

CLEAR command, 592

commands, 588

abbreviating, 589

case sensitivity, 589

contents, clearing, 592

/ (forward slash), 590

INPUT command, 591

line numbers, 589-590

lines, 591

LIST command, 588

SQL statement, 588

building
indexes, rebuilding,

402-404

SQL queries (complex),
546-547

subqueries, 153-160

tables, rebuilding, 402-404

built-in database tuning
tools, 409

built-in functions, 179
bulk copy (BCP) tool, 304
BY password option,

Personal Oracle database
security, 416

BYTES, 449
bytes, converting to kilobytes

and megabytes, 536

C

C functions, Static SQL,
483-484

call-level interfaces, 18
canceling transactions,

361-364
capitalization, queries, 22
caret (^) wildcard operator

(T-SQL), 680
Cartesian product, 567-568

cross joining tables,
123-128

CASCADE option,
Personal Oracle database
security, 419

case, sorting, 61
CASE (computer-aided

software engineering)
tools, 245, 439

case sensitivity
commands, 22

data, storing, 58

keywords, 665

770 BEGIN TRANSACTION statement

LIKE operator, 65

MySQL commands, 691

SQL*Plus commands, 589

CAST operator, datatypes,
converting, 321

CEIL function, 196
CHANGE command,

syntax, 590
CHANGE option (ALTER

TABLE statement),
syntax, 259

CHANGE/old value/new
value command, 588

changing users for Personal
Oracle, 418

@@char convert
variable, 668

char data type (T-SQL), 663
CHAR(size) data type, 249
character data types, ’ ‘

(single quotation
marks), 290

character operators
|| (double pipe)

concatenation, 67-70

LIKE, 63-65

_ (underscore), 65-67

character strings
converting to dates, 326

data types (T-SQL), 663

dates, converting to, 325

characters
concatenation (||), 509

functions, 201

CHR, 201-202

CONCAT, 202-203

INITCAP, 203

INSTR, 214

LENGTH, 215

LOWER, 203-205

LPAD, 205-206

LTRIM, 206-207

REPLACE, 207-209

RPAD, 205-206

RTRIM, 206-207

SUBSTR, 209-213

SUBSTR/MID, 213

TRANSLATE, 213-214

UPPER, 203-205

functions (MySQL), 219

INSTR, 220

LEFT, 221

LENGTH, 219

LOCATE, 219-220

LPAD, 220

LTRIM, 222

RIGHT, 221

RPAD, 220

RTRIM, 222

SUBSTRING, 221

TRIM, 222

table names, limit of, 248

check constraints (on data),
276-277

CHECKS table, 25
child

parent/child relationships,
deleting records, 279

parent/child table
relationships, 275-276

tables, Oracle SQL*Plus
referential integrity
reports, 280-281

CHR function, 201-202
clauses

AVG(ANNUALLEAVE),
113-115

AVG(SALARY), 113-115

AVG(SICKLEAVE),
113-115

DELETE, 299

DISTINCT, views,
creating, 345

FROM keyword, 87

GROUP BY, 98-105,
116-117

SELECT statement, 343

subqueries, correlated,
168-169

HAVING, 105-111,
116-117

subqueries, correlated,
168-169

IDENTIFIED BY, 417

MODIFY, 261

NAME, 113

ORDER BY, 89-98,
114-116

indexes, 377

SELECT statement, 343

PAYEE, 112

in queries, 85

AVG(ANNUAL
LEAVE), 113-115

AVG(SALARY),
113-115

AVG(SICKLEAVE),
113-115

combining, 112

errors, 109

GROUP BY, 98-105,
116-117

HAVING, 105-111,
116-117

NAME, 113

ORDER BY, 89-98,
114-116

PAYEE, 112

REMARKS, 112

SELECT, 100

SELECT statement,
syntax, 85-86

syntax, 86

TEAM, 113-115

WHERE, 87-88,
115-116

REMARKS, 112

SELECT, 100

SELECT keyword, 87

storage in CREATE
TABLE statement,
254-255

TEAM, 113-115

How can we make this index more useful? Email us at indexes@samspublishing.com

clauses 771

WHERE, 87-88, 115-116

DELETE
statement, 300

most restrictive
condition, 393-395

SQL statements,
390, 393

syntax, 41-42

tables, joining, 126

UPDATE
statement, 295

WITH GRANT OPTION,
Personal Oracle security,
433-434

CLEAR BUFFER
command, 592

CLEAR command, 592, 609
SQL*Plus settings,

deleting, 603

@@client csid variable, 668
@@client csname

variable, 668
client/server application

development, 13
client/server computing, 12
client/server database

systems, 11
client/server

development, 11
CLOB data type, 250
CLOSE command of

PROCEDURE section
(PL/SQL blocks), 637

closing
cursors, 475

database cursors, 472

clustered indexes, 373,
384-385

Codd, E.F.
RDBMS, 8

relational databases, 12
rules, 6

code
case, sorting, 61

CREATE INDEX
statement, 372

CREATE TABLE statement
example, 248

lines, 591

mailing list tables, 403-404

ORDERS table, creating,
152-153

PART table, creating,
152-153

SQL statements, output,
26-27

table lists, viewing,
256-257

tables

creating, 731-738

populating, 743-755

COLUMN command, 614
columns, formatting,

605-606

dates, 620

column name = alias
syntax, 46

columns
aliases, 133

“” (double quotation
marks), 50

in MySQL, 46

* (asterisk), 180

changing from NOT NULL
to NULL, syntax, 259

changing from NULL to
NOT NULL, 260-261

composite indexes, 381

finding, 128-129

foreign keys, constraints
(on data), 274

formatting, 605-606

indexes, 378

individual, selecting, 28

invalid column names,
errors, 555-556

lengths, increasing or
decreasing, 258

names, 336

shortening, 60

NOT NULL keywords, 250

null, inserting spaces, 289

NULL values, indexes, 379

numeric values, finding
highest, 542-544

order, changing, 29-32

ordering, 97

() (parentheses), 180

pseudocolumn, SYSDAYE
function, 314

relational databases, 8

renaming, 45, 337-338

selecting and placing, 336

virtual, updating, 345

combining
clauses, 112

SELECT and CREATE
VIEW statements, 341

command-line history,
MySQL terminal
monitor, 692

command-line options,
MySQL terminal monitor,
689-690

command-line SQL, 14
comments, 624

inserting, 642

COMMIT command, 294
PL/SQL transactional

control, 644

transactions, 359-360

COMMIT statement
batch transactions, 401-402

transactions, 359-360

canceling, 363

COMMIT WORK command,
transactions, 360

commits, transactions, 364
COMPANY table, data,

254, 334
comparing

batch loads and OLTP,
398-400

dates and time periods, 320

772 clauses

OLAP and OLTP
databases, 397

OUTER JOINs and INNER
JOINs, 139-143

PL/SQL and Java stored
procedues, 657

values, 538

comparison operators,
55-56, 63

= (equal sign), 56-58

FALSE value, 55

> (greater than sign), 59

>= (greater than or equal to
sign), 59

< or != (inequalities), 62-
63

< (less than sign), 60-61

<= (less than or equal to
sign), 60-61

TRUE value, 55

UNKNOWN value, 55

“comparison
operators”NULL, 55-57

complex queries, 529. See
also queries (complex)

simplifying with views,
347-348

components, T-SQL, 662-663
composite indexes,

379-381, 393
COMPUTE command,

creatingreport and group
summaries, 608-610

computer-aided software
engineering (CASE) tools,
245, 439

computing
client/server, 12

individual’s age from date
of birth, 532-533

CONCAT function, 202-203
concatenation, || (double

pipe) character operator,
67-70

concatenation (||)
character, 509

concepts of queries,
applying, 25-26

conditional statements
FOR-LOOP, 640

IF, THEN, 638

LOOP, 639

loops, 638-640

of PROCEDURE section
(PL/SQL blocks),
637-640

WHILE-LOOP, 639-640

conditions
most restrictive (WHERE

clause), 393-395

queries, 40-41

WHERE clause, syntax,
41-42

conflicts of table
names, 635

CONNECT role, 442
Connect role, creating for

Personal Oracle, 420
connecting to databases

with MySQL terminal
monitor, 689

connections
ODBC (Open Database

Connectivity), 16-17

creating, 580

SQL Server, logging
off, 471

@@connections variable, 669
constants of DECLARE

section (PL/SQL blocks),
assigning, 633

constraints
ALTER TABLE

statement, 279

CREATE TABLE
statement, 279

scripts, maintaining, 279

table, disabling, 516-517

constraints (on data)
ALTER TABLE command,

275-276

check, 276-277

correct order of, 278-279

creating, 279-280

data integrity, 267-268

definition, 267

foreign key, 274-275

managing, 278

NOT NULL, 269-271

Oracle SQL*Plus
referential integrity
reports, 280-283

primary key, 271-273

types of, 269

unique, 273-274

usefulness of, 268

contents, data
dictionary, 439

CONTINUE command,
program flow control,
677-678

control, 354, 672. See also
program flow control;
transaction control

controlling
data integrity, 267

transactions, 353

conventions, 234. See also
naming conventions

conversion functions, 215
TO CHAR, 215-217

TO NUMBER, 217

conversions
DATE, 619-623

dates (T-SQL), 680-681

CONVERT command, 680
converting

bytes to kilobytes and
megabytes, 536

character strings to
dates, 326

data types with CAST
operator, 321

date formats, 321-326

units with views, 346-347

How can we make this index more useful? Email us at indexes@samspublishing.com

converting 773

correlated subqueries,
166-169

COUNT function, 180-181
groups, 608

subqueries, embedding,
160-161

COUNT(*) function, 507
counting table rows,

507-511
@@cpu busy variable, 669
CREATE ANY INDEX system

privilege, 423
CREATE ANY PROCEDURE

system privilege, 423
CREATE ANY TABLE system

privilege, 423
CREATE ANY TRIGGER

system privilege, 423
CREATE ANY VIEW system

privilege, 423
CREATE DATABASE

statement, 242
data dictionaries, creating,

244-245

data, breaking down, 247

database design, 244

key fields, creating,
246-247

options, 243

syntax, 242

CREATE INDEX statement,
369, 373-375

ALTER TABLE command,
373

code, 372

MySQL database, 373

UNIQUE keyword,
381-382

CREATE keyword, 577
CREATE PROCEDURE system

privilege, 423
CREATE PROFILE system

privilege, 423
CREATE PUBLIC SYNONYM

privilege, 517

CREATE ROLE statement,
488-490

CREATE ROLE system
privilege, 423

CREATE SESSION privilege,
441-442

CREATE SESSION system
privilege, 424

CREATE statements,
syntax, 241

CREATE SYNONYM system
privilege, 423

CREATE TABLE command,
255, 335

CREATE TABLE statement,
247-248

code example, 248

constraints, 279

examples, 737

fields

data types, 249-250

names, 249

NULL value, 250-252

unique, 252-254

storage clause, 254-255

tables

creating, 255-257

names, 248-249

sizing, 254-255

storing, 254-255

create table statements,
269, 529-532, 731-738,
740-742

NOT NULL
constraints, 271

CREATE TABLE system
privilege, 423

CREATE TRIGGER statement,
syntax, 491

CREATE TRIGGER system
privilege, 424

CREATE TYPE statement,
492-496

object-orientation, 492

syntax, 493-494

UDTs, creating, 494-495

CREATE USER system
privilege, 424

CREATE VIEW
statement, 332

columns, selecting and
placing, 336

and SELECT statement,
combining, 341

syntax, 332

CREATE VIEW system
privilege, 424

CREATE VIEW:SELECT
statement, 343

cross joining tables
(Cartesian product),
123-128

cross joins, 126
cross-product language

(SQL), 12-13
.CTL file extension, 305
Ctrl+D keyboard

shortcuts, 689
CURDATE function, 225
curly brackets ({ }), 672
current dates for queries,

313-314
cursors, 472

closing, 475

control commands of
PROCEDURE section
(PL/SQL blocks),
635-637

creating

based on ARTISTS
table, 473

with Oracle SQL
syntax, 473

in sessions, 476

in stored
procedures, 476

with T-SQL syntax, 473

in triggers, 476

databases

creating, using,
closing, 472

records, examining, 472

774 correlated subqueries

DEALLOCATE
command, 475

DECLARE cursor_name
CURSOR statement, 473

of DECLARE section
(PL/SQL blocks), 633

DOWN ARROW key, 472

memory, 476

%NOTFOUND
attribute, 639

opening, 473

query results, saving, 472

result sets, creating, 472

scope, 475-476

scrolling

through Artists Cursor
result set, 474

through result sets,
473-474

status, testing, 475

tables, scrolling with
WHILE loop, 678-679

testing status of, 474

CUSTOMERS table,
transaction control, 354

customizing SQL*Plus work
environment, 599-603

D

daemons, mysqld, 687-688
dash (–), formatting numeric

values, 541
dashes, double (––), 546
data

BANK ACCOUNTS table,
254, 334

BILLS table, 253-254, 333

data breakdown, 247

breaking down, 247

COMMIT command, 294

COMPANY table, 254, 334

constraints

ALTER TABLE
command, 275-276

check, 276-277

correct order of,
278-279

creating, 279-280

data integrity, 267-268

definition, 267

foreign key, 274-276

managing, 278

NOT NULL, 269-271

Oracle SQL*Plus
referential integrity
reports, 280-283

parent/child table
relationships, 275-276

primary key, 271-273

types of, 269

unique, 273-274

usefulness of, 268

data-manipulation
statements, 285-286

DELETE statement, 285,
298-302

dictionaries

CASE tools, 245

RDBMS packages, 245

entering

accurately, 268

into tables, 577

exporting from foreign
sources, 303-305

filtering for views, 336

importing from foreign
sources, 303-305

INSERT statements,
285-286

examples, 36, 118

NULL values, inserting,
289-290

records, entering with
INSERT, SELECT
statement, 292-294

records, entering with
INSERT, VALUES
statement, 286-289

unique values, inserting,
291-292

integrity, controlling, 267

loading, disabling table
constraints, 516-517

manipulating, 285

merging, 233

Microsoft Access
import/export tools,
303-304

Microsoft SQL Server
import/export tools, 304

modifying in views,
343-345

MySQL import/export
tools, 305

Personal Oracle
import/export tools, 305

PL/SQL tables, 645

preventing problems
with, 571

querying with views, 337

redundancy, 231

normalization, 229

retrieving

from banking
applications, 355

indexes, 378

into local variables, 671

storing

case sensitivity, 58

using variables, 670

summarizing

aggregate
functions, 180

AVG function, 182-183

COUNT function,
180-181

MAX function, 184

MIN function, 185

STDDEV function,
186-187

How can we make this index more useful? Email us at indexes@samspublishing.com

data 775

SUM function, 181-182

from tables, 349

VARIANCE
function, 186

Sybase SQL Server
import/export tools, 304

UPDATE statement, 285,
295-298

updating from banking
applications, 355

Data Definition Language
(DDL), 437

data definition
statements, 241

data dictionaries, 437-438
contents, 439

creating, 244-245

DBAs, 439

MySQL, 440

Oracle, 439-440

DBA views, 449-450

DBA, dynamic
performance views,
458-461

DBA, growth, 456-457

DBA, objects, 452-456

DBA, security, 451-452

DBA, space allocation,
457-458

DBA, users, 450-451

INFORMATION_
SCHEMA, 461-463

MySQL table
commands, 460-461

sessions, 458-459

user access, 443-449

user privileges, 442-443

user views, 440

users, identifying,
441-442

system engineers, 439

tables, 437-438

users, identifying, 438-439

Data Dictionary Language.
See DDL

data integrity, constraints,
267-268

data loads, indexes,
dropping, 400-401

Data Manipulation
Language. See DML

data manipulation
statements, 241

data retrieval, 23-24
Data Sources (ODBC), 580
data types

ANSI standard, dates and
time, 310-311

BLOB, 250, 498

CHAR(size), 249

CLOB, 250

converting CAST
operator, 321

DATE, 249, 310-312

DATETIME, 309-312

of fields, 249-250

implementing, 312

INTEGER, 250

INTEGER(n), 250

LONG, 250

LONG RAW, 250

LONG RAWBinery, 249

LONG VARCHAR, 250

LONGVARIABLE, 249

MLSLABEL, 250

NCLOB, 250

NUMBER, 249

Personal Oracle
support, 250

Personal Oracle8 support,
249-250

RAW MLSLABEL, 249

RAW(size), 249

ROWID, 250

SMALLDATETIME, 312

SMALLINT, 249

TIME, 310-312

TIMESTAMP, 310-312

VARCHAR, 250

VARCHAR2(size), 250

YEAR, 312

data types (T-SQL), 663-664
database access

(T-SQL), 665
BASEBALL database,

665-668

PRINT command, 671-672

variables, 671

data storage, 670

DECLARE
keyword, 670

global, declaring,
668-669

local, declaring, 668

local, retrieving
data, 671

database administrators.
See DBAs

database management
system. See DBMS

database manipulation
language (DML)
commands, 490

database security, 413, 415
database administrators,

413-414

Microsoft Access relational
database management
system, 414

Microsoft FoxPro database
management system, 414

MySQL server, 415

Oracle relational database
management system, 414

Personal Oracle. See
Personal Oracle

products, 414-415

Sybase SQL Server, 415

776 data

databases
accessing from Java, 581

BASEBALL (T-SQL),
665-668

CASE (computer-aided
software engineering)
tools, 245

client/server database
systems, 11

Codd, E.F. (12 rules), 6-10

connecting to with MySQL
terminal monitor, 689

CREATE DATABASE
statement, 242-247

creating, 577-580

current technologies, 11-12

cursors, 472

dates of birth, storing, 320

DBA, 255

DBMS, 6

deleting, 263

denormalizing, 237-238

design, 244

disk space, 244

DML commands, 490

DROP DATABASE
statement, 262-263

dynamic database
environment, 402-404

dynamic performance
views, Oracle data
dictionary, 458-461

EXPLAIN PLAN tool, 409

fragmentation reports, 537

growth, Oracle data
dictionary, 456-457

history, 6

indexes, 379

defragmenting, 403

mailing list tables, code,
403-404

MUSIC

ARTISTS table, 469

MEDIA table, 470

RECORDINGS
table, 470

MySQL, CREATE INDEX
statement, 373

MySQL table commands,
Oracle data dictionary,
460-461

normalizing, 127, 229, 235,
244, 268

benefits, 236-237

data redundancy, 231

denormalizing, 237-238

drawbacks, 237

end user needs, 230-231

first normal form, 232

foreign keys, 233

logical database
design, 230

naming
conventions, 234

normal forms, 231

primary keys, 233

raw databases, 229-230

referential integrity, 235

second normal
form, 233

third normal form, 234

NULL, 55-57

objects

Oracle data dictionary,
452-456

scripts,
maintaining, 279

ODBC. See ODBC

OLAP, 397-398

OLTP, 397-398

overflow, 298

PAYMENTS, table
structure, 246

performance enhancements,
disks, 405-407

performance obstacles,
identifying, 407-408

physical structure, 230

queries, PL/SQL, 631

RDBMS. See RDBMS

records, examining with
cursors, 472

referential integrity, 302

relational, 6-10

Codd’s 12 rules, 6-10

dates, 309

DEPENDENTS and
EMPLOYEE tables,
retrieving fields, 10

DEPENDENTS table
records, 10

EMPLOYEE table
records, 8-9

JOIN, 9

joins, 9

table columns and
fields, 8

time, 309

UNION, 9

unions, 9

security, Oracle data
dictionary, 451-452

SELECT statements, 504

sessions, Oracle data
dictionary, 458-459

SHOW DATABASES
command, 256

space allocation, Oracle
data dictionary, 457-458

SQL statements,
generating, 504

tables

CREATE TABLE
statement
examples, 737

creating, 577

data, entering, 577

defragmenting, 403

foreign keys, 235-236

INSERT statement
examples, 36, 118

lookup, 292

How can we make this index more useful? Email us at indexes@samspublishing.com

databases 777

primary keys, 235

temporary, 292

tablespaces, dropping into,
523-524

TEMPDB, temporary
tables, creating, 471

TKPROF tool, 409

transaction control, 354

transactions

beginning, 356-359

canceling, 361-364

finishing, 359-361

rollback segments,
401-402

savepoints, 364-366

truncation, 298

tuning, 405-407

tools (built-in), 409

users of Oracle data
dictionary, 450-451

datatypes, date, format,
748, 752

date and time functions,
187-188

ADD MONTHS/ADD
DATE, 188-190

LAST DATE, 190-191

LAST DAY, 190-191

leap years, LAST DAY
function, 191

MONTHS BETWEEN,
191-193

NEXT DAY, 193

SYSDATE, 193-195

DATE conversions, 619-623
date conversions (T-SQL),

680-681
DATE data types, 249,

310-312
T-SQL, 664

DATE FORMAT function,
223-224, 321

DATE HIRE function, 316
date picture, parts of, 620

DATEADD function, 316
DATEADD/DATE_ADD

function, 316
DATEDIFF function, 321
DATENAME function, 321,

325-326
DATEPART function, 321
dates, 309

ANSI standard data types,
310-311

character strings,
converting to dates, 326

COLUMN command, 620

CONVERT command, 680

converting to character
strings, 325

current dates, 313-314

data types,
implementing, 312

date pictures, 322-324

DATETIME elements, 311

format strings, specifiers,
223-224

formats, converting,
321-322

formatting, 538-539

functions

applying to queries, 312

current dates, 313-314

dates and time periods,
comparing, 320

dates, subtracting,
318-320, 713

of MySQL, 321

of SQL Server, 320

time zones, 315

time, adding to dates,
315-318

functions (MySQL),
223-225

storing, 326

subtracting, 318-320, 713

time, adding to dates,
315-318

and time periods,
comparing, 320

time zones, 315

TO CHAR function, 619

TO DATE function, 622

values, storing, 310

dates datatype format,
748, 752

dates of birth, storing, 320
DATETIME data type,

309-312
datetime data type

(T-SQL), 664
DATETIME elements, 311
DATETIME value, 315
DATE_ADD function, 316
DAYNAME function, 321
days, breaking into hours,

minutes, seconds, 533-535
DBA CATALOG view, 453
DBA DATA FILES view, 457
DBA EXTENTS view, 457
DBA INDEXES view, 454
DBA role, creating for

Personal Oracle, 421
DBA ROLE PRIVS view, 451
DBA roles, security for

Personal Oracle, 433
DBA SEGMENTS view,

456-457
DBA SYS PRIVS view, 452
DBA TABLES view, 453
DBA TABLESPACES view, 455
DBAs (database

administrators), 255,
401, 439

batch transactions,
COMMIT statement,
401-402

data dictionary, 439

of Oracle data dictionary

dynamic performance
views, 458-461

growth, 456-457

778 databases

INFOMRATION_SCH
EMA, 461-463

MySQL table
commands, 460-461

objects, 452-456

security, 451-452

sessions, 458-459

space allocation,
457-458

users, 450-451

views, 449-450

DBA_ROLES view, 451
DBA_ROLE_PRIVS view, 451
DBA_SYS_PRIVS view, 451
DBA_USERS view, 451
DBMS (database

management system), 6,
241, 413

MODIFY clause, 261

DBMS OUTPUT package, 643
DDL (Data Dictionary

Language), 631
commands, PL/SQL, 631

DEALLOCATE command, 475
DEALLOCATE statement,

syntax, 475
decimal values,

deleting, 533
DECLARE command, of

PROCEDURE section
(PL/SQL blocks), 636

DECLARE cursor_name
CURSOR statement, 473

DECLARE keyword,
variables, 670

DECLARE section (PL/SQL
blocks), 631-632

constant assignment, 633

cursor definitions, 633

%ROWCOUNT attribute,
634-635

%ROWTYPE
attribute, 634

%TYPE attribute, 633-634

variable assignment,
632-633

declaring
global variables, 668-669

local variables, 668

variables, table name
conflicts, 635

DECODE function, 616-619
default storage parameters,

large tables, 569
DEFINE command, SQL*Plus

variables, 611-612
DEL command, 588
DELETE, INSERT, VALUES

statement, 298
DELETE ANY TABLE system

privilege, 424
DELETE clause, 299
DELETE command, 332,

418, 440
views, 343

DELETE event, 490
DELETE operation, tables

(triggers), 479
DELETE statement, 285

data, deleting, 298-302

table views, 345

WHERE clause, 300

deleting. See also removing
databases, 263

decimal values, 533

information, 298-302

lines in code, 591

object privileges, 425

records, parent/child
relationships, 279

roles, 420

SQL*Plus settings, 603

stored procedures, 478-479

tables, 262

users from Personal
Oracle, 419

delimited text files,
exporting, 303

denormalizing databases,
237-238

DEPENDENTS table, 10
DESC command, table

structure, viewing, 593
DESC operator, sorting

indexes, 378
DESCRIBE command

table structure, 645

table structure, viewing,
593-594

UDTs (User Defined
Types), attributes, 495

designing
databases, 230-231

triggers, 479

designs, databases, 244
Destination dialog box, 303
development tools for

applications, 575
Java, 576

.NET, 577

ODBC, 576

Personal Oracle, 576

diagnostic tools, SQL
Server, 681

diagrams, syntax, 86
dictionaries. See also data

dictionary
data

CASE tools, 245

creating, 244-245

RDBMS packages, 245

MySQL data
dictionary, 440

Oracle data dictionary. See
Oracle, data dictionary

Direct Access Method, 370
direct invocation, 17
directories, installing

MySQL, 687

How can we make this index more useful? Email us at indexes@samspublishing.com

directories, installing MySQL 779

disabling table constraints,
516-517

disconnecting from terminal
monitor (MySQL), 689

disk space for
databases, 244

disks, enhancing database
performance, 405-407

displaying
output to users, 643-644

session settings, 594-595

DISTINCT, selecting multiple
columns, 566

DISTINCT clause, views,
creating, 345

DISTINCT function, 453
DISTINCT keyword, 33
distributions, installing

MySQL binary distribution
file, 686-687

division sign (/) arithmetic
operator, 48-49

DLL (Data Definition
Language), 437

DML (Data Manipulation
Language), 537

commands, 490

PL/SQL, 631

subqueries, 537

dot (.), table names, 248
double dashes (––), 546
double hyphens (- -),

comments, 624
double pipe (||)

concatenation character
operator, 67-70

double pipe (||)
operator, 338

double quotation marks (“ ”),
literal strings, 620

double quotation marks (“ ”),
aliases, 50

DOWN ARROW key
(cursors), 472

downloading
MySQL, 14, 686

MySQL 3.23, 686

Personal Oracle8, 15

Dr. Codd’s 12 rules for
relational databases, 6-10

drawbacks to normalizing
databases, 237

driving tables, 135
DROP ANY INDEX system

privilege, 424
DROP ANY PROCEDURE

system privilege, 424
DROP ANY ROLE system

privilege, 424
DROP ANY SYNONYM

system privilege, 424
DROP ANY TABLE system

privilege, 424
DROP ANY TRIGGER system

privilege, 424
DROP ANY VIEW system

privilege, 424
DROP command, stored

procedures, 478
DROP DATABASE statement,

262-263
DROP INDEX statement,

375-376
DROP statement, syntax,

493-494
DROP TABLE, 567
DROP TABLE command, 262
DROP TABLE statement,

261-263
DROP TRIGGER statement,

syntax, 491
DROP USER command, 419
DROP USER system

privilege, 424
DROP VIEW command, 350
DROP VIEW statement,

removing views, 350

dropping
indexes, 375-376

from data loads,
400-401

MAX HITS table, 261

roles, 421

synonyms, syntax, 432

tables, 377

tablespaces into databases,
523-524

views, 350

dropping unqualified tables,
566-567

DUAL table, 314, 615-616
dynamic database

environment
definition, 402

indexes, rebuilding,
402-404

tables, rebuilding, 402-404

dynamic performance views,
DBA of Oracle data
dictionary, 458-461

dynamic SQL (Structured
Query Language), 482-483

dynamic SQL, call-level
interfaces, 18

E

echos
SET ECHO OFF

command, 505, 509

SET ECHO ON
command, 505

ED FILENAME command,
507-509

EDIT command
files, editing, 595-596

script files, creating, 623

EDIT PROD.LST command,
query output, spooling, 599

editing output files, 509

780 disabling table constraints

elements
DATETIME, 311

of queries, arranging,
393-395

embedded SQL, 17, 481
Dynamic SQL, 482-483

Static SQL, 482-484

embedding SQL, 17-18
in application

programming, 575

embedding subqueries,
151-153

EMPLOYEE table
and DEPENDENTS table,

retrieving fields, 10

records, 8-9

SELECT statement, 13

END statement
of PROCEDURE section

(PL/SQL blocks), 635

program flow control, 672

end users, database design,
230-231

ending. See finishing
engineers, system (data

dictionaries), 439
entering

data, INSERT
statement, 286

MySQL terminal monitor
commands, 690-692

records

INSERT, SELECT
statement, 292-294

INSERT, VALUES
statement, 286-289

entering data, accuracy
of, 268

environments, dynamic
database, 402

equal sign (=), 540
tables, joining, 137

equal sign (=) comparison
operator, 56-58

equal sign (=) relational
operator, subqueries, 159

equality
equit joins, joining tables,

129-137

non-equi-joins (non-
equality) of tables,
137-139

equi-joins (tables), 129-137
@@error variable, 669
errors

common logical mistakes

allowing large tables to
take default storage
parameters, 569

Cartesian product,
567-568

dropping unqualified
tables, 566-567

failure to budget system
resources, 570

failure to compress
large backup files, 570

failure to enforce file
system structure
conventions, 568

failure to enforce input
standards, 568

placing objects in the
system tablespace,
569-570

use of DISTINCT when
selecting multiple
columns, 566

use of public synonyms
in multischema
databases, 567

using reserved words in
your SQL statement,
564-566

common SQL errors

cannot create operating
system files, 564

columns ambiguously
defined, 558-559

commands not properly
ended, 559

escape character in your
statement—invalid
character, 564

FROM keyword not
specified, 553-554

group function not
allowed, 554-555

inserted value too large
for columns, 562-563

insufficient privileges
during grants,
563-564

integrity constraints
violated—parent key
not found, 561

invalid column names,
555-556

invalid usernames or
passwords, 553

missing commas, 558

missing expressions,
559-560

missing keywords, 556

missing left parenthesis,
556-557

missing right
parenthesis, 557-558

not enough arguments
for functions, 560

not enough values,
560-561

Oracle not
available, 562

table or view that does
not exist, 552

TNS: Listener could
not resolve SID
given in connect
descriptor, 563

exceptions, definition, 640

query clauses, 109

undoing with ROLLBACK
command, 292, 298

escape characters, 564
events, 490

How can we make this index more useful? Email us at indexes@samspublishing.com

events 781

EXCEPTION section (PL/SQL
blocks), 631, 640

blocks, executing, 642-643

comments, inserting, 642

exceptions, 641-642

output to users, displaying,
643-644

EXCEPTION section (PL/SQL
script files), executing
script files, 643

exceptions
definition, 640

handling, 641-642

raising, 641

ZERO DIVIDE, 643

EXECUTE ANY PROCEDURE
system privilege, 424

EXECUTE command, creating
stored procedures, 477

EXECUTE statement, Print
Artists Name procedure,
executing, 477

executing
PL/SQL blocks, 642-643

PL/SQL script files, 643

EXISTS keyword
program flow control, 675

subqueries, embedding,
169-174

EXP function, 196-197
EXPLAIN PLAN tool, 409
exploring views, 335-337
exporting

data from foreign sources,
303-305

delimited text files, 303

expressions
queries, 40

regular expressions,
497-498

extensions, ANSI SQL,
662-663

extensions of files
.CTL, 305

.FMT, 304

.sql, 597

EXTERNALLY option,
Personal Oracle database
security, 416

F

failure to budget system
resources, 570

failure to enforce file system
structure conventions, 568

failure to enforce input
standards, 568

FALSE value, comparison
operators, 55

feedback
SET FEEDBACK OFF

command, 506, 509

SET FEEDBACK ON
command, 506

FEEDBACK commands,
SQL*Plus work
environment,
customizing, 600

FETCH command
cursors, scrolling, 473-474

of PROCEDURE section
(PL/SQL blocks),
636-637

fields
ACCOUNT ID (BILLS

table), creating indexes,
373-377

AMOUNT (BILLS table),
creating indexes, 377-378

data types, 249-250

foreign key, 246

NULL values, 252

indexing on, 379-381

key, creating, 246-247

names, 249

NULL value, 250-252

number-defined, ”
(quotation marks), 59

primary key, 246

NULL values, 252

relational databases, 8

retrieving from
DEPENDENTS and
EMPLOYEE tables, 10

ROWID, 252

SALARY (SALARIES
table), updating, 427

unique, 252-254

File menu commands,
Open, 303

filenames
ED FILENAME command,

507, 509

SPOOL FILENAME
command, 506

START FILENAME
command, 506

files
CTL [edit, period before]

extention, 305

delimited text,
exporting, 303

EDIT command, 595-596

EDIT PROD.LST
command, 599

.FMT extention, 304

GET command, 595-596

manipulating with file
commands, 595

MySQL binary distribution,
installing, 686-687

output, editing, 509

PL/SQL script, 646-652

executing, 643

query output, spooling,
598-599

RUN command, 598

SAVE command, 595-596

script

creating with EDIT
command, 623

tables, creating and
entering data, 577-578

SPOOL command, 598

SPOOL OFF
command, 599

782 EXCEPTION section (PL/SQL blocks)

SQL (Structured Query
Language), running,
623-624

.sql extension, 597

START command, 598

starting, 596-598

TAR command, 687

filtering data for views, 336
finding columns, 128-129
finishing transactions,

359-361
First Federal Financial Bank.

See banking applications
first normal form,

normalizing
databases, 232

float data type (T-SQL), 664
FLOOR function, 196, 536
flow control (programs),

T-SQL, 672
BEGIN statement, 672

BREAK command, 677

CONTINUE command,
677-678

END statement, 672

EXISTS keyword, 675

FOR loop, 676

IF, ELSE statement,
673-675

query results, testing,
675-676

WHILE loop, 676-679

.FMT file extension, 304
FOR loop, program flow

control, 676
FOR-LOOP, conditional

statements, 640
foreign key fields, NULL

values, 252
foreign keys, 246

constraints (on data),
274-275

parent/child table
relationships, 275-276

databases, normalizing, 233

field, 246

tables, 235-236

foreign sources, importing
and exporting data,
303-305

FORMAT command,
formatting columns,
605-606

format strings, specifiers,
223-224

formats
date datatype, 748, 752

of dates. See dates

formatting
columns, 605-606

dates, 538-539

reports, 604

SQL*Plus output, 603

forms, normal
database

normalization, 231

first, 232

second, 233

third, 234

forward slash (/)
PL/SQL, 642

SQL*Plus buffer, 590

table names, 248

fourth-generation language
(4GL), 12

fragmentation reports for
databases, 537

FROM keyword, 23-24, 87
errors, 553-554

full-table scans, 371
avoiding, 391-392

functions
ABS, 195

ADD MONTHS/ADD
DATE, 188-190

aggregate

ANSI standard, 179

AVG, 182-183

COUNT, 180-181

data, summarizing, 180

MAX, 184

MIN, 185

SELECT statement, 349

STDDEV, 186-187

subqueries, embedding,
160-161

SUM, 181-182

VARIANCE, 186

arithmetic operations, 195

ABS, 195

CEIL, 196

EXP, 196-197

FLOOR, 196

LN, 197-198

LOG, 197-198

MOD, 198

POWER, 199

SIGN, 199-200

SQRT, 200-201

AVG, 182-183

groups, 608

subqueries, embedding,
160-161

built-in, 179

C, Static SQL, 483-484

CEIL, 196

character, 201

CHR, 201-202

CONCAT, 202-203

INITCAP, 203

INSTR, 214

LENGTH, 215

LOWER, 203-205

LPAD, 205-206

LTRIM, 206-207

REPLACE, 207-209

RPAD, 205-206

RTRIM, 206-207

SUBSTR, 209-213

SUBSTR/MID, 213

TRANSLATE, 213-214

UPPER, 203-205

How can we make this index more useful? Email us at indexes@samspublishing.com

functions 783

character (MySQL),
219-222

CHR, 201-202

CONCAT, 202-203

conversion, 215-217

COUNT, 180-181

groups, 608

subqueries, embedding,
160-161

COUNT(*), 507

CURDATE, 225

date

applying to queries, 312

current dates, 313-314

dates and time periods,
comparing, 320

dates, subtracting, 318-
320, 713

of MySQL, 321

of SQL Server, 320

time zones, 315

time, adding to dates,
315-318

date and time, 187-188

ADD MONTHS/ADD
DATE, 188-190

LAST DAY, 190-191

MONTHS BETWEEN,
191-193

NEXT DAY, 193

SYSDATE, 193-195

DATE FORMAT,
223-224, 321

DATE HIRE, 316

DATEADD, 316

DATEADD/DATE_ADD,
316

DATEDIFF, 321

DATENAME, 321, 325

DATEPART, 321

dates (MySQL), 223-224

DATE_ADD, 316

DAYNAME, 321

DECODE, 616-619

DISTINCT, 453

EXP, 196-197

FLOOR, 196, 536

GETDATE(), 313, 321

GREATEST, 217-218

INITCAP, 203

INSTR, 214, 220

LAST DAY, 190-191

LEAST, 217-218

LEFT, 221

LENGTH, 215, 219

LN, 197-198

LOCATE, 219-220

LOG, 197-198

LOWER, 203-205

LPAD, 205-206, 220

LTRIM, 206-207, 222

MAX, 184, 539, 676

subqueries, embedding,
160-161

MIN, 185

subqueries, embedding,
160-161

miscellaneous, 217-219

MOD, 52, 198, 536

MONTHS BETWEEN,
191-193, 321

NEXT DAY, 193, 321

PERIOD DIFF, 321

POWER, 199

QUARTER, 321

REPLACE, 207-209

RIGHT, 221

RPAD, 205-206, 220, 538

RTRIM, 206-207, 222

SIGN, 199-200

SQRT, 200-201

STDDEV, 186-187

SUBSTR, 209-213

SUBSTR/MID, 213

SUBSTRING, 221

SUM, 181-182, 341

groups, 608

subqueries, embedding,
160-161

SYSDATE, 193-195, 314

pseudocolumn, 314

SYSDATE (in an Oracle
database), 193

TIME FORMAT, 224

TO CHAR, 215-217, 544

dates, 619

TO DATE, 326, 622

TO NUMBER, 217

TRANSLATE, 213-214

TRIM, 222

TRUNC, 319

UPDATE, views, 345

UPPER, 203-205

USER, 218-219

VARIANCE, 186

G

generating shell scripts,
523-524

GET command, 614
files, getting, 595-596

GET filename
command, 588

GETDATE() function,
313, 321

global variables
declaring, 668-669

@@rowcount global,
cursors, testing
status, 475

@@sqlstatus global,
cursors, testing
status, 475

go command, 666
GRANT ANY PRIVILEGE

system privilege, 424

784 functions

GRANT ANY ROLE system
privilege, 424

GRANT statements, 512-513
syntax, 433

tables, 514

WITH GRANT OPTION
clause, 433-434

Graphical User Interface
(GUI) tool, 440

greater than or equal to
sign (>=) comparison
operator, 59

greater than sign (>)
comparison operator, 59

GREATEST function, 217-218
GROUP BY clause, 98-105,

116-117
SELECT statement, 343

subqueries, corrleated,
168-169

group functions. See
aggregate functions

groups
AVG function, 608

COUNT function, 608

set-oriented, 6

SUM function, 608

summaries

BREAK ON command,
607-608

COMPUTE command,
608-610

creating, 606-610

growth, DBA of Oracle data
dictionary, 456-457

GUI (Graphical User
Interface) tool, 440

H

handling exceptions,
641-642

HAVING clause, 105-111,
116-117

subqueries, corrleated,
168-169

HEADING command,
formatting columns,
605-606

headings
SET HEADING OFF

command, 506, 509

SET HEADING ON
command, 506

histories
command-line, MySQL

terminal monitor, 692

databases, 6

SQL, 5-6

hours, breaking days into,
533-535

hyphens, - - (double)
(comments), 624

I

IBM, RDBMS (relational
database management
system), 5

IBM DB2, 16
IDENTIFIED BY clause, 417
identifying

database performance
obstacles, 407-408

users

for data dictionary,
438-439

of Oracle data
dictionary, 441-442

@@identity variable, 669
@@idle variable, 669
IF, ELSE statement, program

flow control, 673-675
IF, THEN statement, 638
IL (intermediary

language), 583
implementations, SQL, 14
Implementing Client/Server

Computing, 12
Import/Export Setup dialog

box, 303-304

import/export tools,
303-305

importing data from foreign
sources, 303-305

IN keyword, embedding
subqueries, 173

IN operator, 78-80
values, comparing, 538

indexes, 370-371
adding to tables, 393

B-tree, 371

clustered, 373, 384-385

column data, 378

columns

composite indexes, 381

NULL values, 379

composite, 379-381, 393

CREATE INDEX
statement, 369

code, 372

MySQL database, 373

UNIQUE keyword,
381-382

creating, 369, 373-377

on ACCOUNT ID
field (BILLS table),
373-377

on AMOUNT field
(BILLS table),
377-378

on views, 379

SQL syntax, 371

data retrieval, 378

database space, 379

defragmenting, 403

Direct Access Method, 370

dropping, 375-376

from data loads,
400-401

fields, indexing on, 379

full-table scans, 371

joins, 382-384

performance
improvement, 378

How can we make this index more useful? Email us at indexes@samspublishing.com

indexes 785

pointers, 370

primary keys, 382

purpose, 370

queries, 378

timing, 383

rebuilding, 402-404

scripts, maintaining, 279

Sequential Access
Method, 370

sorting DESC operator, 378

storing, 379

trees, 370-371

indexing on fields, 379-381
individual columns,

selecting, 28
individual’s age, computing

from date of birth,
532-533

individuals, storing dates of
birth, 320

inequalities (< or !=)
comparison operator,
62-63

information, deleting,
298-302

INFORMATION_SCHEMA,
461-462

user privileges, 462-463

INITCAP function, 203
initial access privileges,

MySQL on UNIX-based
systems, 688

INITIAL SIZE (tables), 255
INNER JOINs and OUTER

JOINs, comparing, 139-143
INPUT command, 591, 612
INSERT ANY TABLE system

privilege, 424
INSERT command, 332,

335, 440
views, 343

INSERT event, 490
INSERT keyword, 577
INSERT operation, tables

(triggers), 479

INSERT statements, 285
data, entering, 286

date datatype format,
748, 752

examples, 36, 118

NULL values, inserting,
289-290

records

entering with INSERT,
SELECT statement,
292-294

entering with INSERT,
VALUES statement,
286-289

tables, populating, 333,
743-755, 760-761

unique values, inserting,
291-292

views, 345

INSERT, SELECT statement,
292-294

INSERT, VALUES statement
DELETE, 298

records, entering, 286-289

syntax, 286

inserting
comments, 642

NULL values, 289-290

unique values, 291-292

installing
Linux, 764-765

MySQL binary distribution
file, 686-687

MySQL directories, 687

MySQL on UNIX-based
systems, 686-687

Windows, 763-764

INSTR function, 214, 220
int data type (T-SQL), 663
INTEGER data type, 250
INTEGER(n) data type, 250
integrity

Oracle SQL*Plus
referential integrity
reports, 280-283

referential

databases,
normalizing, 235

of databases, 302

triggers, 479-480

integrity constraints
violated—parent key not
found, 561

integrity of data,
controlling, 267

interfaces
APIs, 16

call-level, 18

GUI tool, 440

intermediary language
(IL), 583

International Standards
Organization (ISO), 6

INTERSECT set operator, 77
invalid characters,

troubleshooting, 564
invalid column names,

errors, 555-556
@@io busy variable, 669
isamchk utility, MySQL on

UNIX-based systems, 694
ISO (International Standards

Organization), 6
@@isolation variable, 669
ISQL, 577-580

J

Java
application programming,

581-583

applications,
developing, 576

databases, accessing, 581

JDBC, 581

and PL/SQL stored
procedures,
comparing, 657

JDBC, 581
JOIN, relational databases, 9

786 indexes

JOIN ON syntax, 140
join operations, 233
JOIN statement, 121
join views, handling

records, 345
joining tables, 121

columns, finding, 128-129

cross joining (Cartesian
product), 123-128

equi-joins (equality),
129-137

non-equi-joins (non-
equality), 137-139

OUTER JOINs and INNER
JOINs, comparing,
139-143

in SELECT statements,
121-123

self joins, 143-146

WHERE clause, 126

joins
cross, 126

indexes, 382-384

OUTER JOINs and INNER
JOINs, comparing,
139-143

relational databases, 9

self joins (tables), 143-146

K

key fields
creating, 246-247

foreign, 246

primary, 246

keyboard shortcuts,
Ctrl+D, 689

keys
DOWN ARROW

(cursors), 472

foreign, 246

constraints (on data),
274-276

databases,
normalizing, 233

parent/child
relationships, 275-276

tables, 235-236

foreign key fields, NULL
values, 252

primary, 246

ALTER TABLE
statement, 273

constraints (on data),
271-273

databases,
normalizing, 233

indexes, 382

NULL values, 252

records, 271

tables, 232-235

keywords
ALL, 33

subqueries, embedding,
169-174

ANY, embedding
subqueries, 169-174

case sensitivity, 665

CREATE, 577

DECLARE, variables, 670

DISTINCT, 33

EXISTS

program flow
control, 675

subqueries, embedding,
169-174

FROM, 23-24, 87

FROM:errors, 553-554

IN, embedding
subqueries, 173

INSERT, 577

missing keywords,
errors, 556

NOT NULL, 250

PUBLIC, granting
privileges, 422

queries, 23

SELECT, 23-24, 87

SOME, embedding
subqueries, 172

UNIQUE, CREATE
INDEX statement,
381-382

kilobytes, converting bytes
to, 536

L

@@language variable, 669
languages. See also DDL;

PL/SQL; SQL
3GLs (third-generation

languages), 5

4GL (fourth-generation
language), 12

cross-product (SQL), 12-13

DLL, 437

DML, 631

subqueries, 537

non procedural. See SQL

@@languid variable, 669
LANs (Local Area

Networks), 11
LAST DAY function, 190-191
leap years, LAST DAY

function, 191
LEAST function, 217-218
LEFT function, 221
LENGTH function, 215, 219
less than or equal to sign

(<=) comparison operator,
60-61

less than sign (<)
comparison operator,
60-61

licensing MySQL, 685
LIKE character operator,

63-65
line numbers

* (asterisk), 590

SQL*Plus buffer, 589

lines in code, 591
LINESIZE option (SQL*Plus),

601-602
Linux, installing, 764-765

How can we make this index more useful? Email us at indexes@samspublishing.com

Linux, installing 787

LIST command, SQL*Plus
buffer, 588

LIST line number
command, 588

lists, viewing tables, 256-257
tables, viewing, 256-257

literal strings, “ ” (double
quotation marks), 620

LN function, 197-198
loading data, disabling table

constraints, 516-517
loads

batch and OLTP,
comparing, 398-400

data, dropping indexes,
400-401

local area network (LAN), 11
local variables

data, retrieving, 671

declaring, 668

LOCATE function, 219-220
LOCK ANY TABLE system

privilege, 424
LOCK TABLE command, 356
LOG function, 197-198
logging off SQL Server

connections, 471
logical data types, bit

(T-SQL), 665
logical database design,

230-231
logical model, 230
logical operators, 70-71, 693

AND, 71-72

NOT, 73-75

OR, 72-73

avoiding in queries,
396-397

logs, transactional, 398
LONG data type, 250
LONG RAW data type, 250
LONG RAWBinery data

type, 249

LONG VARCHAR data
type, 250

LONGVARIABLE data
type, 249

lookup tables, 292
LOOP, conditional

statements, 639
loops

FOR, program flow
control, 676

FOR-LOOP, 640

LOOP, 639

of PROCEDURE section
(PL/SQL blocks),
638-640

WHILE

program flow
control, 676

tables, scrolling,
678-679

WHILE-LOOP, 639-640

LOWER function, 203-205
LPAD function, 205-206, 220
LTRIM function,

206-207, 222

M

mailing list tables, code,
403-404

maintaining tables, 241
management information

systems. See MIS
managing

constraints (on data),
278-283

security with roles, 488-489

manipulating data, 285
MAX BYTES, 449
@@max connections

variable, 669
MAX function, 184, 539, 676

subqueries, embedding,
160-161

@@maxcharlen variable, 669
MAXEXTENTS (tables), 255
maximum values,

subqueries, 539-540
MAX_HITS table,

dropping, 261
MEDIA table, 470
megabytes, converting

bytes to, 536
memory, cursors, 476
merging data, 233
Microsoft

Access, import/export
tools, 303-304

SQL Server, import/export
tools, 304

Microsoft Access relational
database management
system, 414

Microsoft FoxPro database
management system, 414

MIN function, 185
subqueries, embedding,

160-161

MINEXTENTS (tables), 255
MINUS (difference) set

operator, 77-78
minus sign (-) arithmetic

operator, 46-48
minutes, breaking days into,

533-535
MIS (management

information systems), 11
miscellaneous

functions, 217
misisng keywords,

errors, 556
missing left parenthesis,

errors, 556-557
missing right parenthesis,

errors, 557-558
mistakes. See errors
MLSLABEL data type, 250
MOD function, 52, 198, 536
modes, batch (MySQL

terminal monitor), 692-693

788 LIST command, SQL*Plus buffer

MODIFY clause, 261
module language, 17
modulo sign (%) arithmetic

operator, 51-53
money data type

(T-SQL), 664
money data types

(T-SQL), 664
monitors, 688. See also

terminal monitor
MONTHS BETWEEN function,

191-193, 321
most restrictive condition

(WHERE clause), 393-395
multiplication sign (*)

arithmetic operator, 49-51
multischema databases,

public synonyms, 567
MUSIC database

ARTISTS table, 469

cursors, creating, 473

MEDIA table, 470

RECORDINGS table, 470

MySQL, 4, 14
3.23 (current vesion),

downloading, 686

anonymous users, 688

binary distribution file,
installing, 686-687

character functions,
219-222

CHECKS table, 25

columns, aliases, 46

commands, 691

data dictionary, 440

data functions, 321

database, CREATE INDEX
statement, 373

DATE data type, 312

date datatype format,
748, 752

date functions, 223-225

date pictures, 323

DATETIME data type, 312

directories, installing, 687

downloading, 14, 686

import/export tools, 305

INSERT statements, date
datatype format, 748, 752

licensing, 685

MYSQLADMIN
EXTENDED-STATUS
command, 694

MYSQLADMIN
PROCESSLIST
command, 694

MYSQLADMIN
VARIABLES
command, 694

MYSQLSHOW -K DB
NAME TBLE NAME
command, 694

MYSQLSHOW
command, 694

MYSQLSHOW DB NAME
TBLE NAME command,
694

passwords, changing, 688

PROMPTs, writing
queries, 24

queries, 39

root, passwords, 688

SHOW COLUMNS
command, 694

SHOW DATABASES
command, 694

SHOW FIELDS
command, 694

SHOW INDEX
command, 694

SHOW MYSQLSHOW —
STATUS DB NAME
command, 694

SHOW MYSQLSHOW DB
NAME
command, 694

SHOW PROCESSLIST
command, 694

SHOW STATUS
command, 694

SHOW TABLE STATUS
command, 694

SHOW TABLES
command, 694

SHOW VARIABLES
command, 694

SQL statements, ;
(semicolon), 690

SQLSTATISTICS
command, 694

table commands, Oracle
data dictionary, 460-461

tables (code examples)

creating, 731-738

populating, 743-751

TIME data type, 312

TIMESTAMP data
type, 312

UDTs (User Defined
Types), 493

on UNIX-based
systems, 685

administration, 686

initial access
privileges, 688

installing, 686-687

isamchk utility, 694

mysqlaccess utility, 694

mysqladmin utility, 694

mysqldump utility, 694

mysqlimport utility, 694

mysqlshow utility, 694

(pound sign), 687

starting, 687-688

stopping, 687-688

terminal monitor, 688

terminal monitor, batch
mode, 692-693

terminal monitor,
command-line
history, 692

terminal monitor,
command-line
options, 689-690

terminal monitor,
connecting to
databases, 689

How can we make this index more useful? Email us at indexes@samspublishing.com

MySQL 789

terminal monitor,
disconnecting
from, 689

terminal monitor,
entering commands,
690-692

terminal monitor,
prompts
changing, 692

terminal monitor,
SHOW commands,
693-694

utilities, 694

use database command,
tables, populating, 743

user root, 688

YEAR data type, 312

MySQL server, database
security, 415

mysqlaccess utility,
MySQL on UNIX-based
systems, 694

MYSQLADMIN EXTENDED-
STATUS command, 694

MYSQLADMIN PROCESSLIST
command, 694

mysqladmin utility,
MySQL on UNIX-based
systems, 694

MYSQLADMIN VARIABLES
command, 694

mysqld daemon,
starting, 687

mysqld daemon,
stopping, 688

mysqldump utility, MySQL on
UNIX-based systems, 694

mysqlimport utility,
MySQL on UNIX-based
systems, 694

MYSQLSHOW -K DB NAME
TBLE NAME command, 694

MYSQLSHOW command, 694
MYSQLSHOW DB NAME TBLE

NAME command, 694
mysqlshow utility, MySQL on

UNIX-based systems, 694

N

NAME clause, 113
names

of columns, 336

shortening, 60

of fields, 249

spaces between, 69

of tables, 248-249

conflicts, 635

naming columns, 337-338
naming conventions,

normalizing
databases, 234

@@ncharsize variable, 669
NCLOB data type, 250
@@nestlevel variable, 669
nested transactions,

357-358
nesting

subqueries, 162-165

triggers, 481

.NET
application programming,

583-584

applications,
developing, 577

networks, LANs (Local Area
Networks), 11

NEW VALUE command,
SQL*Plus variables,
614-615

NEXT DAY function, 193, 321
NEXT SIZE (tables), 255
non procedural language.

See SQL
non-equi-joins (tables),

137-139
nonprocedural, 5
normal forms, 231-234
normalization

data redundancy, 229

databases, 244

normalizing databases, 127,
229, 235, 268

benefits, 236-237

data redundancy, 231

denormalizing, 237-238

drawbacks, 237

end user needs, 230-231

first normal form, 232

foreign keys, 233

logical database
design, 230

naming conventions, 234

normal forms, 231

primary keys, 233

raw databases, 229-230

referential integrity, 235

second normal form, 233

third normal form, 234

NOT logical operator, 73-75
NOT NULL constraints (on

data), 269-271
NOT NULL keywords, 250
NOT NULL to NULL, syntax to

change, 259
NOTFOUND [edit, % in front]

cursor attribute, 639
NULL, 55

databases, 55-57

null columns, inserting
spaces, 289

NULL to NOT NULL,
changing, 260-261

NULL values, 7
‘ ’ (single quotation marks),

290

of fields, 250-252

indexes, 379

inserting, 289-290

SQL queries (complex),
544-546

subqueries, 541

NUMBER data type, 249
number-defined fields, ”

(quotation marks), 59

790 MySQL

numbers. See also
arithmetic operators

line, 589-590

numeric data types (T-SQL),
663-664

numeric values, 541-544

O

object privileges, 424-425
object-orientation, 492
objects

of databases, scripts,
maintaining, 279

DBA of Oracle data
dictionary, 452-456

placing in system
tablespaces, 569-570

obstacles of database
performance, identifying,
407-408

ODBC (Open Database
Connectivity), 16-17, 576

APIs, 16

Applications,
developing, 576

architecture, 16

connections, creating, 580

Data Sources, 580

OLAP (online analytical
processing), 397

OLAP (online analytical
processing) databases,
397-398

OleDB, 577
OLLBACK command, 401
OLTP (online transactional

processing), 397
and batch loads,

comparing, 398-400

OLTP databases
and OLAP databases,

comparing, 397

tuning, 397-398

OMMIT command, 401
online analytical processing

(OLAP), 397-398
OPEN command of

PROCEDURE section
(PL/SQL blocks), 636

Open command (File
menu), 303

Open Database Connectivity.
See ODBC

opening cursors, 473
operations

arithmetic

ABS function, 195

CEIL function, 196

EXP function, 196-197

FLOOR function, 196

functions, 195

LN function, 197-198

LOG function, 197-198

MOD function, 198

POWER function, 199

SIGN function, 199-200

SQRT function,
200-201

DELETE, tables, 479

INSERT, tables, 479

join, 233

UPDATE, tables, 479

operators
arithmetic, 42-43

/ (division sign), 48-49

= (equal sign), 538

- (minus sign), 46-48

% (modulo sign), 51-53

* (multiplication sign),
49-51

+ (plus sign), 43-46

precedence, 53-54

BETWEEN, 78-80

CAST, converting data
types, 321

character

|| (double pipe)
concatenatation, 67-70

LIKE, 63-65

_ (underscore), 65-67

comparison, 55-56, 63

= (equal sign), 56-58

> (greater than sign), 59

>= (greater than or
equal to sign), 59

< or != (inequalities),
62-63

< (less than sign), 60-61

<= (less than or equal to
sign), 60-61

FALSE value, 55

NULL, 55-57

TRUE value, 55

UNKNOWN value, 55

DESC, sorting indexes, 378

|| (double pipe), 338

IN, 78-80

values, comparing, 538

logical, 70-71, 693

AND, 71-72

NOT, 73-75

OR, 72-73

OR logical, avoiding in
queries, 396-397

queries, 42

relational, = (equal
sign), 159

set, 75

INTERSECT, 77

MINUS (difference),
77-78

UNION, 75-77

UNION ALL, 75-77

UNION, SELECT
statement, 343

wildcards (T-SQL),
679-680

OR logical operator, 72-73
avoiding in queries,

396-397

How can we make this index more useful? Email us at indexes@samspublishing.com

OR logical operator 791

Oracle
CHECKS table, 25

data dictionary, 439-440

DBA views, 449-450

DBA, dynamic
performance views,
458-461

DBA, growth, 456-457

DBA, objects, 452-456

DBA, security, 451-452

DBA, space allocation,
457-458

DBA, users, 450-451

INFORMATION_SCH
EMA, 461-463

MySQL table
commands, 460-461

sessions, 458-459

user access, 443-449

user privileges, 442-443

user views, 440

users, identifying,
441-442

DATE data type, 312

date pictures, 323-324

Personal

applications,
developing, 576

import/export tools, 305

object privileges, 424

transactions, beginning
(syntax), 356

Personal Oracle8,
queries, 39

PROMPTs, writing
queries, 24

ROLLBACK statement
(syntax), 361

savepoints, creating
(syntax), 364

SQL*Plus, 577

SQL*Plus commands, 505

syntax, creating tables, 255

tables (code examples)

creating, 731-738

populating, 743-751,
753-755, 757-758,
760-761

TO CHAR function, 325

TO DATE function, 326

transactions, finishing
(syntax), 359

ZERO_DIVIDE
exception, 643

Oracle (Personal) database
security, 416

By password option, 416

CASCADE option, 419

Connect role, creating, 420

DBA roles, 433

creating, 421

EXTERNALLY
option, 416

Resource role,
creating, 421

roles, creating, 419-420

synonyms replacing views,
430-432

tables

creating, 425-426

qualifying, 427-429

solution to qualifying,
429-430

users

access to views,
422-429

changing, 418

creating, 416-419, 426

deleting, 419

passwords, 417

privileges, 421-422

views, 429-432

solution to qualifying,
429-430

WITH ADMIN OPTION
option, 420, 422

WITH GRANT OPTION
clause, 433-434

Oracle Corporation
SQL*Plus, 15

Web site, downloading
Personal Oracle8, 15

Oracle PL/SQL. See PL/SQL
Oracle relational database

management system, 414
Oracle SQL

cursors,

creating, 473

scrolling, 474

triggers, creating, 479

Oracle SQL*Plus, referential
integrity reports
(constraints on data),
280-283

Oracle, 587. See also
SQL*Plus

Oracle8
accounts, creating, 577

databases, creating,
577-580

Oracle8 (Personal), 14-15
ORDER BY clause, 89-98,

114-116
indexes, 377

SELECT statement, 343

order of columns, changing,
29-32

order of constraints (on
data), 278-279

ordering columns, 97
ORDERS table, creating,

152-153
OUTER JOINs and INNER

JOINs, comparing, 139-143
output

queries, 598-599

SQL statements, 26-27

output files, editing, 509
output of SQL*Plus,

formatting, 603

792 Oracle

output to users, displaying,
643-644

overflow (databases), 298

P

@@pack received
variable, 669

@@pack sent variable, 669
packages

DBMS OUTPUT, 643

definition, 652

PL/SQL, 652-654

@@packet errors
variable, 669

PAGESIZE option
(SQL*Plus), 602

parent key not found, 561
parent tables, Oracle

SQL*Plus referential
integrity reports, 281-283

parent/child relationships,
records, deleting, 279

parent/child table
relationships, 275-276

parentheses (), 43
numeric values,

formatting, 541

subqueries, 155

parentheses (()),
columns, 180

PART table, creating,
152-153

passwords
invalid passwords, 553

MySQL, changing, 688

root, 688

users of Personal
Oracle, 417

PAY STATUS TABLE, 645,
647-648

truncating, 647

PAY TABLE, 648-652

PAYEE clause, 112
PAYMENT TABLE, 645, 648
PAYMENTS database, table

structure, 246
PCT INCREASE view, 448
PCTINCREASE (tables), 255
percent sign (%), 64

numeric values,
increasing, 542

percent sign (%) wildcard
operator (T-SQL), 680

performance
of databases, disks to

enhance, 405-407

indexes, 378

obstacles of databases,
identifying, 407-408

PERIOD DIFF function, 321
Personal Oracle

applications,
developing, 576

data types, 250

import/export tools, 305

object privileges, 424

transactions, beginning
(syntax), 356

Personal Oracle database
security, 416

BY password option, 416

CASCADE option, 419

Connect role, creating, 420

DBA roles, 433

creating, 421

EXTERNALLY
option, 416

Resource role,
creating, 421

roles, creating, 419-420

synonyms replacing views,
430-432

tables

creating, 425-426

qualifying, 427-429

solution to qualifying,
429-430

users

access to views,
422-429

changing, 418

creating, 416-419, 426

deleting, 419

passwords, 417

privileges, 421-422

views, 429-432

solution to qualifying,
429-430

WITH ADMIN OPTION
option, 420, 422

WITH GRANT OPTION
clause, 433-434

Personal Oracle8, 14-15
data types, 249-250

downloading, 15

queries, 39

physical structures,
databases, 230

pictures, dates, 322-324
pipes, || (double pipe)

operator, 338
concatenation

character, 509

PITCHERS table, 666-667
PL/SQL (Oracle), 629, 644

/ (forward slash), 642

and Java stored procedures,
comparing, 657

block structures. See block
structures (PL/SQL)

blocks, 646-652

executing, 642-643

starting, 642

database queries, 631

DBMS OUTPUT
package, 643

DDL commands, 631

DML commands, 631

How can we make this index more useful? Email us at indexes@samspublishing.com

PL/SQL (Oracle) 793

packages, 652, 654

procedural language, 630

programmers, 630

script files, 646-652

script files, executing, 643

SQL statements, 629-630

stored procedures, 652-654

tables, data, 645

transactional control, 644

triggers, 652, 655-656

placing columns, 336
plus sign (+), joining

tables, 143
plus sign (+) arithmetic

operator, 43-46
pointers, indexes, 370
populating tables, 333

code examples, 743-755,
757-758, 760-761

use database command, 743

with INSERT
statement, 333

pound sign (#)
MySQL on UNIX, 687

tables, 468

POWER function, 199
precedence, arithmetic

operators, 53-54
preventing problems with

data, 571
primary key fields, NULL

values, 252
primary keys, 246

ALTER TABLE
statement, 273

constraints (on data),
271-273

databases, normalizing, 233

field, 246

indexes, 382

records, 271

tables, 232-233, 235

Print Artists Name
procedure, executing, 477

PRINT command, T-SQL
(Transact-SQL), 671-672

private synonyms, 430
privileges

CREATE PUBLIC
SYNONYM, 517

CREATE SESSION,
441-442

initial access, MySQL on
UNIX-based systems, 688

object

deleting, 425

dropping, 421

Personal Oracle, 424

PUBLIC keyword, 422

roles, 488

SELECT_ANY_TABLE,
449-450

system, 423-424

granting, 512-513

tables, granting, 514-516

user

of Oracle data
dictionary, 442-443

for Personal Oracle,
421-422

privileges,
INFORMATION_SC
HEMA, 462-463

problems, modifying data in
views, 345

procedural languages. See
PL/SQL

PROCEDURE section
(PL/SQL blocks), 631, 635

BEGIN statement, 635

CLOSE command, 637

conditional statements,
637-640

cursor control commands,
635-637

DECLARE command, 636

END statement, 635

FETCH command, 636-637

FOR-LOOP, 640

IF, THEN statement, 638

LOOP, 639

loops, 638-640

OPEN command, 636

WHILE-LOOP, 639-640

procedures. See also stored
procedures

definition, 652

non procedural language.
See SQL

queries, 395-396

processing SQL views,
338-342

@@procid variable, 669
products. See also Cartesian

product
cross-product language

(SQL), 12-13

database security, 414-415

programmers, PL/SQL, 630
programming applications

.NET, 583-584

ISQL (InterBase SQL),
577-580

Java, 581-583

JDBC, 581

Oracle8, 577-580

SQL, embedding,
17-18, 575

programs, flow control
(T-SQL), 672

BEGIN statement, 672

BREAK command, 677

CONTINUE command,
677-678

END statement, 672

EXISTS keyword, 675

FOR loop, 676

IF, ELSE statement,
673-675

query results, testing,
675-676

WHILE loop, 676, 678-679

794 PL/SQL (Oracle)

prompts, MySQL terminal
monitor, 692

PROMPTs, writing
queries, 24

pseudocolumn, SYSDAYE
function, 314

PUBLIC keyword, 422
public synonyms, 430

CREATE PUBLIC
SYNONYM
privilege, 517

in multischema
databases, 567

Q

QA (quality assurance), 568
qualifying tables, 519

for Personal Oracle,
427-429

quality assurance (QA), 568
QUARTER function, 321
queries. See also SQL

queries
aliases, 46

ALL keyword, 33

arithmetic operators, 42-43

/ (division sign), 48-49

% (modulo sign), 51-53

* (multiplication sign),
49-51

- (minus sign), 46-48

+ (plus sign), 43-46

precedence, 53-54

BETWEEN operator, 78-80

[] (brackets) wildcard
operator (T-SQL), 680

^ (caret) wildcard operator
(T-SQL), 680

character operators

LIKE, 63-65

|| (double pipe)
concatenation, 67-70

_ (underscore), 65-67

CHECKS table, 25

clauses, 85

AVG(ANNUALLEAVE
), 113-115

AVG(SALARY),
113-115

AVG(SICKLEAVE),
113-115

combining, 112

errors, 109

GROUP BY, 98-105,
116-117

HAVING, 105-111,
116-117

NAME, 113

ORDER BY, 89-98,
114-116

PAYEE, 112

REMARKS, 112

SELECT, 100

SELECT statement,
syntax, 85-86

syntax, 86

TEAM, 113-115

WHERE, 87-88,
115-116

<column name = alias>
syntax, 46

columns

individual, selecting, 28

order, changing, 29-32

commands, case
sensitivity, 22

comparison operators,
55-56, 63

= (equal sign), 56-58

> (greater than sign), 59

>= (greater than or
equal to sign), 59

< or != (inequalities),
62-63

< (less than sign), 60-61

<= (less than or equal to
sign), 60-61

NULL, 55-57

complex, simplifying with
views, 347-348

concepts, applying, 25-26

conditions, 40-41

database, PL/SQL, 631

date functions

applying, 312

current dates, 313-314

dates and time periods,
comparing, 320

dates, subtracting,
318-320, 713

time, 315-318

dates

current, 313-314

subtracting,
318-320, 713

and time periods,
comparing, 320

DISTINCT keyword, 33

elements, arranging,
393-395

expressions, 40

FROM keyword, 23-24

full-table scans, 371

IN operator, 78-80

indexes, 378

logical operators,
70-71, 693

AND, 71-72

NOT, 73-75

OR, 72-73

MySQL, 39

NULL, 55-57

operators, 42

OR logical operator,
avoiding, 396-397

output, 598-599

% (percent sign) wildcard
operator (T-SQL), 680

Personal Oracle8, 39

procedures, 395-396

PROMPTs, 24

How can we make this index more useful? Email us at indexes@samspublishing.com

queries 795

results

saving with cursors, 472

testing for program flow
control, 675-676

SELECT keyword, 23-24

set operators, 75-78

SQL (Structured Query
Language), 21-22

SQL statements, 26-28

subqueries

aggregate functions,
160-161

ALL keyword, 169-174

ANY keyword, 169-174

building, 153-160

correlated, referencing
outside, 166-169

embedding, 151-153

EXISTS keyword,
169-174

IN keyword, 173

nesting, 162-165

SOME keyword, 172

syntax, 22-23

tables, selecting, 31

time, 315-318

timing, 383

_ (underscore) wildcard
operator (T-SQL), 679

values, selecting, 32-34

writing, 26-28

querying data with
views, 337

quotation marks
double (“ ”), literal

strings, 620

number-defined fields, 59

single (‘ ’), 290

SQL scripts, 511

R

raising exceptions, 641
raw databases, 229-230
RAW MLSLABEL data

type, 249
RAW(size) data type, 249
RDBMS (relational database

management system), 5
Codd, E.F., 8

data dictionaries, 245

DEPENDENTS and
EMPLOYEE tables,
retrieving fields, 10

SQL3, 487

transaction control,
354-356

transactions

beginning, 356-359

canceling, 361-364

finishing, 359-361

savepoints, 364-366

READ ONLY option (SET
TRANSACTION
statement), 356

readability, SQL statements,
390-391

real data type (T-SQL), 664
rebuilding indexes and

tables, 402-404
RECORDINGS table, 470

triggers, transactions, 480

records
DEPENDENTS table, 10

EMPLOYEE table, 8-9

entering

with INSERT, SELECT
statement, 292-294

with INSERT, VALUES
statement, 286-289

= (equal sign) comparison
operator, 57

examining with
cursors, 472

join views, 345

parent/child relationships,
deleting, 279

primary keys, 271

redundancies, data, 231
normalization, 229

referencing with correlated
subqueries, 166-169

referential integrity, 280
databases, normalizing, 235

of databases, 302

triggers, 479-480

REGEXP, 497
regular expressions, 497-498
relational database

management system. See
RDBMS

relational databases
Codd’s 12 rules, 6-10

dates, 309

DEPENDENTS and
EMPLOYEE tables,
retrieving fields, 10

DEPENDENTS table,
records, 10

EMPLOYEE table, records,
8-9

JOIN, 9

Microsoft Access relational
database management
system, 414

Oracle relational database
management system, 414

tables, 8

time, 309

UNION, 9

“Relational Model of Data
for Large Shared Data
Banks (A) “, 6

relational operators, = (equal
sign), 159

REMARK, comments, 624
REMARKS clause, 112

796 queries

removing views with DROP
VIEW statement, 350. See
also deleting

renaming columns, 337-338
REPLACE function, 207-209
reports. See also SQL*Plus

creating, 624-626

database
fragmentation, 537

formatting, 604

Oracle SQL*Plus,
referential integrity
(constraints on data,
280-283

summaries

BREAK ON command,
607-608

COMPUTE command,
608-610

creating, 606-610

reserved words, using in
SQL statements (errors),
564-566

Resource role, creating for
Personal Oracle, 421

resources
Implementing Client/Server

Computing, 12

“Relational Model of Data
for Large Shared Data
Banks (A)”, 6

restrictions
most restrictive condition

(WHERE clause),
393-395

SELECT statement, 343

restrictions on triggers, 481
result sets, 472-474
retrieving

data

from banking
applications, 355

FROM keyword, 23-24

indexes, 378

into local variables, 671

SELECT keyword,
23-24

fields from DEPENDENTS
and EMPLOYEE
tables, 10

REVOKE command
object privileges,

deleting, 425

roles, deleting, 420-421

RIGHT function, 221
RLIKE, 497
roles

CONNECT, 442

Connect, creating for
Personal Oracle, 420

CREATE ROLE statement,
488-490

creating for Personal
Oracle, 419-420

DBA

creating for Personal
Oracle, 421

Personal Oracle
security, 433

defined, 488

deleting, 420

dropping, 421

privileges, granting, 488

Resource, creating for
Personal Oracle, 421

Security, managing,
488-489

ROLLBACK command
errors, undoing, 292, 298

PL/SQL transactional
control, 644

rollback segments, 401-402
ROLLBACK statement

syntax, 361

transactions, canceling,
361-364

rollbacks, transactions, 361

roots, 688
%ROWCOUNT attribute of

DECLARE section (PL/SQL
blocks), 634-635

@@rowcount global
variable, 475

@@rowcount variable, 669
ROWID data type, 250
ROWID field, 252
ROWNUM view, 453
rows

COUNT(*) function, 507

counting, 507-511

deleting with views, 344

%ROWTYPE attribute of
DECLARE section (PL/SQL
blocks), 634

RPAD function, 205-206,
220, 538

RTRIM function,
206-207, 222

RUN command, starting
files, 598

running SQL (Structured
Query Language) files,
623-624

S

SALARIES tables, 425-427
SALARY field (SALARIES

table), updating, 427
SAVE command, files, saving,

595-596
SAVE newfile command, 588
SAVEPOINT command,

PL/SQL transactional
control, 644

savepoints, 364-366
SAVE_IT savepoint, 365
saving query results with

cursors, 472
scans, full-table, 371

avoiding, 391-392

How can we make this index more useful? Email us at indexes@samspublishing.com

scans, full-table 797

schemas, truncating tables,
522-523

scope of cursors, 475-476
screens, ODBC Data

Sources, 580
script files

PL/SQL, executing, 643

tables, creating and
entering data, 577-578

scripts
files, creating with EDIT

command, 623

maintaining, 279

Oracle SQL*Plus
referential integrity
reports (constraints on
data), 280-283

PL/SQL script file, 646-652

shell, generating, 523-524

SQL (Structured Query
Language)

comments, adding, 624

’ (single quotation
mark), 511

scrolling
cursors, through result sets,

473-474

tables with WHILE loop,
678-679

second normal form,
normalizing
databases, 233

seconds, breaking days into,
533-535

sections
DECLARE (PL/SQL

blocks), 631-632

EXCEPTION (PL/SQL
blocks), 631, 640

PROCEDURE (PL/SQL
blocks), 631, 635

security
databases, 413-415

DBA of Oracle data
dictionary, 451-452

managing with roles,
488-489

Personal Oracle, 416

Connect role,
creating, 420

DBA role, creating, 421

DBA roles, 433

Resource role,
creating, 421

roles, creating, 419-420

synonyms replacing
views, 430-432

tables, creating,
425-426

tables, qualifying,
427-429

tables, solution to
qualifying, 429-430

user access to views,
422-429

user privileges, 421-422

users, changing, 418

users, creating,
416-419, 426

users, deleting, 419

users, passwords, 417

views, 429-432

views, solution to
qualifying, 429-430

WITH GRANT
OPTION clause,
433-434

with views, 346

segments, rollback, 401-402
SELECT ANY SEQUENCE

system privilege, 424
SELECT ANY TABLE system

privilege, 424
SELECT clause, 100
SELECT command, 332, 356
SELECT keyword, 23-24, 87
SELECT statement, 13, 333

aggregate functions, 349

and CREATE VIEW
statement,
combining, 341

GROUP BY clause, 343

ORDER BY clause, 343

indexes, 377

restrictions, 343

syntax, 85-86

UNION operator, 343

SELECT statements
databases, 504

queries, 22

tables

columns, finding,
128-129

cross joining, 123-128

joining, 121-123

V$SESSION, 459

selecting
columns, 336

query values, 32-34

tables, 31

SELECT_ANY_TABLE
privilege, 449-450

self joins (tables), 143-146
self-contained

subqueries, 166
semicolon (;)

commands, 691

queries, writing, 28

SQL statements, 516, 690

Sequential Access
Method, 370

@@servername variable, 669
servers. See also SQL Server

client/server application
development, 13

client/server computing, 12

client/server database
systems, 11

client/server
development, 11

MySQL, database
security, 415

Sybase SQL Server,
database security, 415

798 schemas, truncating tables

sessions
cursors, creating, 476

Oracle data dictionary,
458-459

settings, 594-595

SET AUTOCOMMIT ON
command, 358

SET command, 358, 409
SET commands

SQL Server diagnostic
tools, 681

SQL*Plus work
environment,
customizing, 599-603

SET ECHO OFF command,
505, 509

SET ECHO ON command,
505, 511

SET FEEDBACK OFF
command, 506, 509

SET FEEDBACK OFF
commands, 601

SET FEEDBACK ON
command, 506

SET HEADING OFF
command, 506, 509

SET HEADING ON command,
506, 511

SET NOCOUNT ON
command, 681

SET NOEXEC ON
command, 681

set operators, 75
INTERSECT, 77

MINUS (difference), 77-78

UNION, 75-77

UNION ALL, 75-77

SET PARSONLY ON
command, 681

SET PASSWORD
statement, 688

SET ROLE command, 356
SET ROWCOUNT n [edit, n in

italics] command, 681
SET SHOWPLAN ON

command, 681

SET STATISTICS IO ON
command, 681

SET STATISTICS TIME ON
command, 681

SET TIMING ON
command, 409

SET TRANSACTION
statement, 356-358

set-oriented (sets or
groups), 6

shells scripts, generating,
523-524

SHOW ALL command, 594
SHOW COLUMNS

command, 694
SHOW commands, 460

MySQL terminal monitor,
693-694

session settings, displaying,
594-595

syntax, 693

SHOW DATABASES
command, 256, 694

SHOW ERROR
command, 595

SHOW FIELDS
command, 694

SHOW INDEX command, 694
SHOW MYSQLSHOW —

STATUS DB NAME
command, 694

SHOW MYSQLSHOW DB
NAME command, 694

SHOW PROCESSLIST
command, 694

SHOW STATUS
command, 694

SHOW TABLE STATUS
command, 694

SHOW TABLES
command, 694

SHOW VARIABLES
command, 694

SIGN function, 199-200
simplifying complex queries

with views, 347-348

single quotation marks (‘ ’)
character data types, 290

NULL values, 290

SQL scripts, 511

sizes, tables, 255
sizing tables, 254-255
slashes, / (forward)

PL/SQL, 642

SQL*Plus buffer, 590

table names, 248

SMALLDATETIME data
type, 312

smalldatetime data type
(T-SQL), 664

SMALLINT data type, 249
smallint data type

(T-SQL), 663
smallmoney data types

(T-SQL), 664
solution to qualifying for

Personal Oracle (tables
and views), 429-430

SOME keyword, embedding
subqueries, 172

sorting
case, 61

indexes, DESC
operator, 378

sources, importing and
exporting foreign data,
303-305

space allocation, DBA of
Oracle data dictionary,
457-458

spaces between names, 69
spacing, queries, 22
specifiers, format strings,

223-224
@@spid variable, 669
SPOOL command, 514

query output, spooling, 598

SPOOL FILENAME
command, 506

SPOOL OFF command,
506, 509

query output, spooling, 599

How can we make this index more useful? Email us at indexes@samspublishing.com

SPOOL OFF command 799

spooling query output,
598-599

SQL (Structured Query
Language), 5, 481. See
also T-SQL

ANSI extensions, 662-663

ANSI SQL3 standard, 18

call-level interfaces, 18

command-line, 14

cross-product language,
12-13

databases

Codd, E.F. (12 rules),
6-10

current technologies,
11-12

history, 6

relational, 6-10

embedded, 481-484

embedding in application
programming, 17-18, 575

files, running, 623-624

history, 5-6

IBM DB2, 16

implementations, 14

indexes, syntax to
create, 371

MySQL, 14

nonprocedural language,
5-6

ODBC, 16-17

Oracle

cursors, creating, 473

cursors, scrolling, 474

triggers, creating, 479

overview, 13-14

Personal Oracle8, 14-15

queries, 21-22

RDBMS, 5

scripts

comments, adding, 624

’ (single quotation
mark, 511

set-oriented (sets or
groups), 6

statements

; (semicolon), 690

PL/SQL, 629-630

Sybase, 15

view processing, 338-342

SQL queries (complex)
building, 546-547

bytes, converting to
kilobytes and
megabytes, 536

creating, 529

databases, fragmentation
reports, 537

dates, formatting, 538-539

days, breaking into hours,
minutes, seconds,
533-535

individual’s age, computing
from date of birth,
532-533

NULL values, 544-546

numeric values, 541-544

subqueries, 540-541

DML (Data
Manipulation
Language), 537

maximum values,
539-540

NULL values, 541

tables, 529

CREATE TABLE
statements, 529-532,
740-742

SQL Server
connections, logging

off, 471

CONVERT command, 680

data functions, 320

DATENAME function, 325

diagnostic tools, 681

import/export tools
(Microsoft and
Sybase), 304

SET commands, 681

SET NOEXEC ON
command, 681

SET PARSONLY ON
command, 681

SET SHOWPLAN ON
command, 681

SET STATISTICS IO ON
command, 681

SET STATISTICS TIME
ON command, 681

temporary tables,
creating, 471

SQL statements
; (semicolon), 516

batch loads and OLTP
(online transactional
processing), comparing,
398-400

batch transactions,
COMMIT statement,
401-402

data loads, dropping
indexes, 400-401

databases

EXPLAIN PLAN
tool, 409

performance
enhancement, disks,
405-407

performance obstacles,
identifying, 407-408

TKPROF tool, 409

tuning, 405-407

tuning tools
(built-in), 409

full-table scans, avoiding,
391-392

generating, 503-505

indexes

adding to tables, 393

rebuilding, 402-404

OLAP, 397

OLAP databases, 397-398

OLTP, 397

800 spooling query output

OLTP databases, 397-398

output, 26-27

practical applications,
524-525

queries

elements, arranging,
393-395

OR logical operator,
avoiding, 396-397

procedures, 395-396

readability, 390-391

schema tables, truncating,
522-523

shell scripts, generating,
523-524

SQL*Plus buffer, 588

SQL*Plus commands, 505

ED FILENAME,
507-509

SET ECHO OFF,
505, 509

SET ECHO ON,
505, 511

SET FEEDBACK OFF,
506, 509

SET FEEDBACK
ON, 506

SET HEADING OFF,
506, 509

SET HEADING ON,
506, 511

SPOOL, 514

SPOOL
FILENAME, 506

SPOOL OFF, 506, 509

START, 511

START
FILENAME, 506

streamlining, 389-390

synonyms, creating,
517-520

system privileges, granting,
512-513

table constraints, disabling,
516-517

table privileges, granting,
514-516

table views, creating,
520-522

tables

rebuilding, 402-404

rows, counting, 507-511

terminating, 28

transaction logs, 398

transactions, rollback
segments, 401-402

WHERE clause, 390, 393

.sql file extension, 597
SQL*Loader dialog box, 305
SQL*Plus, 15, 577, 587

APPEND text
command, 588

buffer, 588, 591-593

* (asterisk), 590

APPEND
command, 592

CHANGE command,
syntax, 590

CLEAR BUFFER
command, 592

CLEAR command, 592

commands, 588-589

contents, clearning, 592

/ (forward slash), 590

INPUT command, 591

line numbers, 589-590

lines, 591

LIST command, 588

SQL statement, 588

CHANGE/old value/new
value command, 588

COLUMN command, 620

columns, 605-606

commands. See SQL*Plus
commands

DATE conversions,
619-623

date picture, parts of, 620

DECODE function,
616-619

DEL command, 588

DUAL table, 615-616

files

EDIT command,
595-596

EDIT PROD.LST
command, 599

GET command,
595-596

manipulating with file
commands, 595

query output, spooling,
598-599

RUN command, 598

SAVE command,
595-596

SPOOL command, 598

SPOOL OFF
command, 599

START command, 598

starting, 596-598

GET filename
command, 588

groups

BREAK ON command,
607-608

COMPUTE command,
608-610

summaries, creating,
606-610

LIST line number
command, 588

output, formatting, 603

reports, 587

BREAK ON command,
607-608

BTITLE command, 604

COMPUTE command,
608-610

creating, 624-626

formatting, 604

summaries, creating,
606-610

TTITLE command, 604

How can we make this index more useful? Email us at indexes@samspublishing.com

SQL*Plus 801

SAVE newfile
command, 588

session settings, displaying,
594-595

settings, 603

SQL files, running,
623-624

SQL scripts, adding
comments, 624

tables, 593-594

TO CHAR function, 619

TO DATE function, 622

variables, 610

& (ampersand), 611

ACCEPT command,
612-614

DEFINE command,
611-612

NEW VALUE
command, 614-615

work environment

customizing, 599-603

FEEDBACK
commands, 600

LINESIZE option,
601-602

PAGESIZE option, 602

SET commands,
599-603

SET FEEDBACK OFF
commands, 601

TIME option, 602

SQL*Plus commands, 505
ED FILENAME command,

507, 509

SET ECHO OFF
command, 505, 509

SET ECHO ON command,
505, 511

SET FEEDBACK OFF
command, 506, 509

SET FEEDBACK ON
command, 506

SET HEADING OFF
command, 506, 509

SET HEADING ON
command, 506, 511

SPOOL command, 514

SPOOL FILENAME
command, 506

SPOOL OFF command,
506, 509

START command, 511

START FILENAME
command, 506

SQL3, 487
ALTER TYPE statement,

493-494

ANSI, 18

CREATE ROLE statement,
488-490

CREATE TYPE statement,
492-496

DROP statement, 493-494

object-orientation, 492

RDBMS, 487

triggers, creating, 490-492

SQL3 standard (ANSI), 6
SQLBase, 312
SQLSTATISTICS

command, 694
@@sqlstatus global

variable, cursors (testing
status), 475

@@sqlstatus variable, 669
SQRT function, 200-201
standards

ANSI, 86

aggregate
functions, 179

date and time data
types, 310-311

ANSI SQL3, 6, 18

ISO, 6

START command, 511, 613
files, starting, 598

START FILENAME
command, 506

starting
files, 596-598

MySQL on UNIX-based
systems, 687-688

mysqld daemon, 687

PL/SQL blocks, 642

statements. See also SQL
statements

% (percent sign), 64

ALTER TABLE

CHANGE option,
syntax, 259

constraints, 279

primary keys, 273

syntax, 258

table structures,
modifying, 257-261

ALTER TYPE, syntax,
493-494

BEGIN

of PROCEDURE
section (PL/SQL
blocks), 635

program flow
control, 672

BEGIN
TRANSACTION, 480

columns, aliases, 133

COMMIT

batch transactions,
401-402

transactions, 359-360

transactions,
cancelling, 363

conditional, of
PROCEDURE section
(PL/SQL blocks),
637-640

CREATE, 241

CREATE DATABASE, 242

data dictionaries,
creating, 244-245

data, breaking
down, 247

database design, 244

802 SQL*Plus

key fields, creating,
246-247

options, 243

syntax, 242

CREATE INDEX, 369,
373-375

ALTER TABLE
command, 373

code, 372

MySQL database, 373

UNIQUE keyword,
381-382

CREATE ROLE, 488-490

CREATE TABLE, 247-
248, 269, 529-532, 731-
742

code example, 248

constraints, 279

examples, 737

field data types,
249-250

field names, 249

field NULL value,
250-252

field, unique, 252-254

NOT NULL
constraints, 271

storage clause, 254-255

table names, 248-249

tables, 254-257

CREATE TRIGGER, 491

CREATE TYPE, 492-496

CREATE VIEW, 332

columns, selecting and
placing, 336

CREATE VIEW:
SELECT, 343

data definition, 241

data manipulation, 241

data-manipulation, 285-286

DEALLOCATE, 475

DECLARE cursor_name
CURSOR, 473

DELETE, 285

data, deleting, 298-302

table views, 345

WHERE clause, 300

DROP, 493-494

DROP DATABASE,
262-263

DROP INDEX, 375-376

DROP TABLE, 261-263

DROP TRIGGER, 491

DROP VIEW, 350

END

of PROCEDURE
section (PL/SQL
blocks), 635

program flow
control, 672

EXECUTE, executing
Print Artists Name
procedure, 477

GRANT, 512-513

syntax, 433

tables, 514

WITH GRANT
OPTION clause,
433-434

IF, ELSE, program flow
control, 673-675

IF, THEN, 638

INSERT, 285

data, entering, 286

date datatype format,
748, 752

examples, 36, 118

NULL values, inserting,
289-290

records, entering with
INSERT, SELECT
statement, 292-294

records, entering with
INSERT, VALUES
statement, 286-289

tables, populating, 333,
743-755, 757-758,
760-761

unique values, inserting,
291-292

views, 345

INSERT, SELECT,
292-294

INSERT, VALUES

DELETE, 298

records, entering,
286-289

syntax, 286

JOIN, 121

MODIFY clause, 261

number-defined fields, ”
(quotation marks), 59

ROLLBACK, 361-364

SELECT, 13, 333

aggregate
functions, 349

columns, finding,
128-129

databases, 504

GROUP BY clause, 343

ORDER BY clause, 343

indexes, 377

queries, 22

restrictions, 343

syntax, 85-86

tables, cross joining,
123-128

tables, joining, 121-123

UNION operator, 343

V$SESSION, 459

SELECT and CREATE
VIEW, combining, 341

SET PASSWORD, 688

SET TRANSACTION,
356-358

SQL

ED FILENAME
command, 507, 509

generating, 503-505

output, 26-27

PL/SQL, 629-630

How can we make this index more useful? Email us at indexes@samspublishing.com

statements 803

practical applications,
524-525

schema tables,
truncating, 522-523

; (semicolon), 516, 690

SET ECHO OFF
command, 505, 509

SET ECHO ON
command, 505, 511

SET FEEDBACK OFF
command, 506, 509

SET FEEDBACK ON
command, 506

SET HEADING OFF
command, 506, 509

SET HEADING ON
command, 506, 511

shell scripts, generating,
523-524

SPOOL command, 514

SPOOL FILENAME
command, 506

SPOOL OFF command,
506, 509

SQL*Plus buffer, 588

SQL*Plus
commands, 505

START command, 511

START FILENAME
command, 506

synonyms, creating,
517-520

system privileges,
granting, 512-513

table constraints,
disabling, 516-517

table privileges,
granting, 514-516

table rows, counting,
507-511

table views, creating,
520-522

terminating, 28

syntax, 86

tables, aliases, 133

UPDATE, 285

data, modifying,
295-298

syntax, 295

WHERE clause, 295

Static SQL (Structured Query
Language), 482-483

in C functions, 483-484

statistics, user statistics
tables, 438

status of cursors,
testing, 475

STDDEV function, 186-187
stopping

MySQL on UNIX-based
systems, 687-688

MySQL commands, 691

mysqld daemon, 688

storage clauses in CREATE
TABLE statement, 254-255

stored procedures
creating, 476-478

cursors, creating, 476

deleting, 478-479

DROP command, 478

PL/SQL, 652-654

and Java,
comparing, 657

Print Artists Name
procedure, executing, 477

storing
data, case sensitivity, 58

date values, 310

dates, 326

dates of birth, 320

indexes, 379

tables, 379

time values, 310

storing tables, 254-255
streamlining SQL

statements, 389-390

strings
binary strings data type (T-

SQL), 664

character

converting to dates, 326

data types (T-SQL), 663

connection, converting to
dates, 325

format, specifiers, 223-224

literal, “ ” (double
quotation marks), 620

|| (double pipe)
concatenation character
operator, 67-70

Structured Query Language.
See SQL

structures
databases, 230

of tables

modifying, 257-261

PAYMENTS
database, 246

PL/SQL blocks, 630-631

DECLARE section,
631-632

EXCEPTION section,
631, 640

PROCEDURE section,
631, 635

SALARIES table, 425

tables, 593-594

USER tables, 417-418

subqueries, 540-541
aggregate functions,

160-161

ALL keyword, 169-174

ANY keyword, 169-174

building, 153-160

correlated, 166-169

DML (Data Manipulation
Language), 537

embedding, 151-153

= (equal sign) relational
operator, 159

804 statements

EXISTS keyword, 169-174

IN keyword, 173

maximum values, 539-540

nesting, 162-165

NULL values, 541

parentheses (), 155

self-contained, 166

SOME keyword, 172

SUBSTR function, 209-213
SUBSTR/MID function, 213
SUBSTRING function, 221
subtracting dates,

318-320, 713
SUM function, 181-182, 341

groups, 608

subqueries, embedding,
160-161

summaries
of groups

BREAK ON command,
607-608

COMPUTE command,
608-610

creating, 606-610

of reports

BREAK ON command,
607-608

COMPUTE command,
608-610

creating, 606-610

summarizing data
aggregate functions, 180

AVG function, 182-183

COUNT function, 180-181

from tables, 349

MAX function, 184

MIN function, 185

STDDEV function,
186-187

SUM function, 181-182

VARIANCE function, 186

Sybase, 15
DATETIME data type, 312

savepoints, creating
(syntax), 364

SMALLDATETIME data
type, 312

SQL Server, import/export
tools, 304

Sybase SQL Server, database
security, 415

synonyms
CREATE PUBLIC

SYNONYM, 517

creating, 517-520

dropping, 432

private, 430

public, 430

CREATE PUBLIC
SYNONYM
privilege, 517

public synonyms in
multischema
databases, 567

synonyms replacing views,
Personal Oracle security,
430-432

syntax
ALTER TABLE

statement, 258

CHANGE option, 259

ALTER TYPE statement,
493-494

CHANGE command, 590

<column name = alias>
syntax, 46

columns

changing from NOT
NULL to NULL, 259

changing from NULL to
NOT NULL, 260-261

CREATE statements, 241

CREATE TABLE
statement, examples, 737

CREATE TRIGGER
statement, 491

CREATE TYPE statement,
493-494

CREATE VIEW
statement, 332

DEALLOCATE
statement, 475

diagrams, 86

DROP DATABASE
statement, 262

DROP statement, 493-494

DROP TABLE
statement, 261

DROP TRIGGER
statement, 491

GRANT statement, 433

INSERT, SELECT
statement, 293

INSERT, VALUES
statement, 286

JOIN ON, 140

Oracle

ROLLBACK
statement, 361

savepoints,
creating, 364

tables, creating, 255

transactions,
finishing, 359

Oracle SQL

cursors, creating, 473

triggers, creating, 479

Personal Oracle,
transactions, 356

public synonyms, 430

queries, 22-23

SELECT statement, 85-86

SHOW commands, 693

SQL, creating indexes, 371

statements, 86

Sybase, creating savepoints,
364

synonyms, dropping, 432

How can we make this index more useful? Email us at indexes@samspublishing.com

syntax 805

T-SQL

cursors, 473

triggers, 479

UPDATE statement, 295

WHERE clause, 41-42

syntax 1, creating temporary
tables, 468, 471

SYSDATE function,
193-195, 314

pseudocolumn, 314

system catalog. See data
dictionaries

system engineers, data
dictionaries, 439

system privileges, granting,
512-513

system resources, failure to
budget, 570

SYSTEM tablespace, 454
system tablespaces, placing

objects in, 569-570
systems, 423-424

client/server computing, 12

client/server database, 11

client/server
development, 11

resource contentions, 399

T

T-SQL (Transact-SQL),
473, 661

[] (brackets) wildcard
operator, 680

^ (caret) wildcard
operator, 680

@@char convert
variable, 668

@@client csid
variable, 668

@@client csname
variable, 668

@@connections
variable, 669

@@cpu busy variable, 669

@@error variable, 669

@@identity variable, 669

@@idle variable, 669

@@io busy variable, 669

@@isolation variable, 669

@@language variable, 669

@@languid variable, 669

@@max connections
variable, 669

@@maxcharlen
variable, 669

@@ncharsize variable, 669

@@nestlevel variable, 669

@@pack received
variable, 669

@@pack sent variable, 669

@@packet errors
variable, 669

% (percent sign) wildcard
operator, 680

@@procid variable, 669

@@rowcount variable, 669

@@servername
variable, 669

@@spid variable, 669

@@sqlstatus variable, 669

@@textsize variable, 669

@@thresh hysteresis
variable, 669

@@timeticks variable, 669

@@total errors
variable, 669

@@total read variable, 669

@@total write
variable, 669

@@tranchained
variable, 669

@@trancount variable, 669

@@translate variable, 669

@@version variable, 669

ANSI SQL extensions,
662-663

BASEBALL database,
665-668

components, 662-663

cursors

creating, 473

status, testing, 475

data types, 663-665

database access, 665

date conversions, 680-681

FETCH command,
scrolling cursors, 473-474

PRINT command, 671-672

program flow control, 672

BEGIN statement, 672

BREAK command, 677

CONTINUE command,
677-678

END statement, 672

EXISTS keyword, 675

FOR loop, 676

IF, ELSE statement,
673-675

query results, testing,
675-676

WHILE loop, 676-679

SET NOCOUNT ON
command, 681

SET ROWCOUNT n
command, 681

SQL Server, 681

stored procedures,
creating, 477

triggers, creating, 479

_ (underscore) wildcard
operator, 679

users, 662

variables, 668-671

wildcard operators,
679-680

table commands, MySQL,
460-461

806 syntax

tables. See also columns
aliases, 133, 157, 391

ALTER TABLE command,
constraints (on data),
275-276

ALTER TABLE statement

CHANGE option,
syntax, 259

table structures,
modifying, 257-261

ARTISTS, 469

cursors, creating, 473

backing up, 523

BALANCES, transaction
control, 355

BANK ACCOUNTS, data,
254, 334

base, 135

BATTERS, 666

BILLS

ACCOUNT ID field,
creating indexes,
373-377

AMOUNT field,
creating indexes,
377-378

data, 253-254, 333

data breakdown, 247

CASE tools, 245

CHECKS, 25

child, Oracle SQL*Plus
referential integrity
reports, 280-281

columns

changing from NOT
NULL to NULL,
syntax, 259

changing from NULL
to NOT NULL to
NULL, 260-261

finding, 128-129

lengths, increasing or
decreasing, 258

names, 336

in relational
databases, 8

renaming, 45, 337-338

selecting and
placing, 336

COMPANY, data, 254, 334

composite indexes, 393

constraints, disabling,
516-517

COUNT(*) function, 507

CREATE DATABASE
statement, 242

data dictionaries,
creating, 244-245

data, breaking
down, 247

database design, 244

key fields, creating,
246-247

options, 243

syntax, 242

CREATE statements, 241

CREATE TABLE
command, 255, 335

CREATE TABLE
statement, 247-248

code example, 248

field data types,
249-250

field names, 249

field NULL value,
250-252

fields (unique), 252-254

storage clause, 254-255

table names, 248-249

tables, creating,
255-257

tables, storing and
sizing, 254-255

CREATE TABLE statement
examples, 737

create table statements,
269, 731-738

creating, 241, 255-257,
495-496, 577

code examples, 731-738

for Personal Oracle,
425-426

creating and
populating, 333

CUSTOMERS, transaction
control, 354

data

entering, 577

inserting with
INSERT, VALUES
statement, 287

summarizing with
views, 349

data definition
statements, 241

data dictionary, 437

data manipulation
statements, 241

data, merging, 233

DBMS, 241

defragmenting, 403

DELETE operation,
triggers, 479

deleting, 262

DEPENDENTS,
records, 10

DEPENDENTS and
EMPLOYEE, retrieving
fields, 10

DESCRIBE command, 645

disk space, 244

driving, 135

DROP DATABASE
statement, 262-263

DROP TABLE
command, 262

DROP TABLE statement,
261-263

dropping, 377

DUAL, 314, 615-616

How can we make this index more useful? Email us at indexes@samspublishing.com

tables 807

EMPLOYEE

records, 8-9

SELECT statement, 13

EMPLOYEE and
DEPENDENTS,
retrieving fields, 10

= (equal sign), tables, 137

fields in relational
databases, 8

first normal form, 232

foreign key field, 246

foreign keys, 233-236, 246

constraints
(on data), 274

full-table scans, avoiding,
391-392

GRANT statements, 514

indexes, 370-371

adding, 393

creating, 369-377

Direct Access
Method, 370

dropping, 375-376

full-table scans, 371

Sequential Access
Method, 370

storing, 379

INITIAL SIZE, 255

INSERT command, 335

INSERT operation,
triggers, 479

INSERT statements,
345, 743-755, 757-758,
760-761

JOIN ON syntax, 140

join operations, 233

joining, 121

columns, finding,
128-129

cross joining (Cartesian
product), 123-128

equi-joins (equality),
129-137

in SELECT statements,
121-123

non-equi-joins (non-
equality), 137-139

OUTER JOINs and
INNER JOINs,
comparing, 139-143

self joins, 143-146

WHERE clause, 126

lists, viewing, 256-257

lookup, 292

mailing list, code, 403-404

maintaining, 241

MAX HITS, dropping, 261

MAXEXTENTS, 255

MEDIA, 470

MINEXTENTS, 255

names, 248-249

conflicts, 635

naming conventions, 234

NEXT SIZE, 255

Oracle syntax, 255

ORDERS, creating,
152-153

Parent, Oracle SQL*Plus
referential integrity
reports, 281-283

parent/child, relationships,
275-276

PART, creating, 152-153

PAY STATUS TABLE,
645, 647-648

truncating, 647

PAY TABLE, 648-652

PAYMENT TABLE,
645, 648

PCTINCREASE, 255

PITCHERS, 666-667

PL/SQL, 645

+ (plus sign), tables, 143

populating

code examples,
743-755, 757-758,
760-761

use database
command, 743

with INSERT
statement, 333

(pound sign), 468

primary key field, 246

primary keys, 232-233,
235, 246

privileges, granting,
514-516

qualifying, 519

for Personal Oracle,
427-429

rebuilding, 402-404

RECORDINGS, 470

triggers and
transactions, 480

records, join views, 345

referential integrity,
triggers, 479-480

rows

counting, 507-511

deleting with
views, 344

SALARIES, 425-427

schema, truncating,
522-523

scripts, maintaining, 279

scrolling with WHILE
loop, 678-679

second normal form, 233

selecting, 31

sizes of, 392

sizing, 254-255

solution to qualifying, for
Personal Oracle, 429-430

SQL queries
(complex), 529

CREATE TABLE
statements, 529-532,
740-742

storing, 254-255

808 tables

structure

modifying, 257-261

PAYMENTS
database, 246

viewing with DESC
command, 593

viewing with
DESCRIBE
command, 593-594

SUM function, 341

TEAMS, 667-668

temporary, 292

creating, 468-470

SQL Server, creating
in, 471

syntax 1, creating with,
468, 471

TEMPDB database,
creating in, 471

third normal form, 234

TRANSACTION, 655

Triggers, 479-481

truncating, backing up, 523

unqualified tables,
dropping, 566-567

UPDATE operation,
triggers, 479

USER, structure, 417-418

user statistics, 438

views, 335

creating, 520-522

DELETE
statements, 345

virtual (views), 331

tablespaces
dropping into databases,

523-524

SYSTEM, 454

USERS, 441, 454

TAR command, 687
TEAM clause, 113-115
TEAMS table, 667-668

technologies, databases,
11-12

TEMPDB database, creating
temporary tables, 471

temporary tables, 292
creating, 468-471

terminal monitor, MySQL on
UNIX-based systems, 688

batch mode, 692-693

command-line history, 692

command-line options,
689-690

commands, entering,
690-692

databases, connecting
to, 689

disconnecting from, 689

prompts, changes, 692

SHOW commands,
693-694

terminating SQL
statements, 28

testing
cursors, status of, 474-475

query results, for program
flow control, 675-676

text data type (T-SQL), 663
text files, delimited

(exporting), 303
@@textsize variable, 669
third normal form,

normalizing
databases, 234

third-generation languages
(3GLs), 5

@@thresh hysteresis
variable, 669

time, 309. See also date and
time functions

adding to dates, 315-318

ANSI standard data types,
310-311

data types,
implementing, 312

DATETIME data type,
309-310

DATETIME elements, 311

days, breaking into
hours, minutes, seconds,
533-535

values, storing, 310

TIME data type, 310-312
TIME FORMAT function, 224
TIME option (SQL*Plus), 602
time periods and dates,

comparing, 320
time zones, 315
TIMESTAMP data type,

310-312
@@timeticks variable, 669
timing queries, 383
tinyint data type (T-SQL), 663
TKPROF tool, 409
TNS: Listener could not

resolve SID given in
connect descriptor, 563

TO CHAR function,
215-217, 325

dates, 619

TO DATE function, 622
TO NUMBER function, 217
tools. See also development

tools for applications
BCP (bulk copy), 304

built-in tools, database
tuning, 409

CASE (computer-aided
software engineering),
245, 439

diagnostic, SQL
Server, 681

EXPLAIN PLAN, 409

import/export, 303-305

TKPROF, 409

WinMySQLadmom, 440

TO_CHAR function, 544
@@total errors variable, 669

How can we make this index more useful? Email us at indexes@samspublishing.com

@@total errors variable 809

@@total read variable, 669
@@total write variable, 669
@@tranchained variable, 669
@@trancount variable, 669
Transact-SQL. See T-SQL
transaction control (of

databases), 354
banking applications,

354-356

transactions

beginning, 356-359

canceling, 361-364

finishing, 359-361

savepoints, 364-366

transaction logs, 398
transaction management.

See transaction control
TRANSACTION table, 655
transactional control

(PL/SQL), 644
transactions

batch, COMMIT statement,
401-402

BEGIN TRANSACTION
statement, 480

beginning, 356

COMMIT command,
359-360

COMMIT statement,
359-360, 363

COMMIT WORK
command, 360

commit, 364

controlling, 353

finishing, 359

nested, 357-358

rollback segments, 401-402

ROLLBACK statement,
361-364

rollbacks, 361

savepoints, 364-365

SAVE_IT savepoint, 365

SET TRANSACTION
statement, 356-358

triggers, 480

unit of work, 354

TRANSLATE function,
213-214

@@translate variable, 669
trees, 370-371
triggers

CREATE TRIGGER
statement, 491

creating, 490-492

Oracle SQL syntax, 479

T-SQL syntax, 479

cursors, creating, 476

definition, 652

DELETE event, 490

designing, 479

DML commands, 490

DROP TRIGGER
statement, 491

events, 490

INSERT event, 490

nesting, 481

parts of, 490

PL/SQL, 652, 655-656

referential integrity,
479-480

restrictions, 481

tables, 479

transactions, 480

UPDATE event, 490

TRIM function, 222
troubleshooting errors

allowing large tables to
take default storage
parameters, 569

cannot create operating
system files, 564

Cartesian product, 567-568

columns ambiguously
defined, 558-559

commands not properly
ended, 559

dropping unqualified tables,
566-567

escape character in your
statement—invalid
character, 564

failure to budget system
resources, 570

failure to compress large
backup files, 570

failure to enforce file
system structure
conventions, 568

failure to enforce input
standards, 568

FROM keyword not
specified, 553-554

group function not allowed,
554-555

inserted value too large for
column, 562-563

insufficient privileges
during grants, 563-564

integrity constraints
violated—parent key not
found, 561

invalid column names,
555-556

invalid usernames or
passwords, 553

missing commas, 558

missing expressions,
559-560

missing keywords, 556

missing left parenthesis,
556-557

missing right parenthesis,
557-558

not enough arguments for
function, 560

not enough values, 560-561

Oracle not available, 562

placing objects in the
system tablespace,
569-570

810 @@total read variable

public synonyms in
multischema
databases, 567

table or view that does not
exist, 552

TNS: Listener could not
resolve SID given in
connector descriptor, 563

use of DISTINCT when
selecting multiple
columns, 566

using reserved words in
your SQL statement,
564-566

TRUE value, comparison
operators, 55

TRUNC command, 533
TRUNC function, 319
truncating

PAY STATUS table, 647

schema tables, 522-523

tables, backing up, 523

truncation (databases), 298
TTITLE command, formatting

reports, 604
tuning

databases, 405-407

tools (built-in), 409

OLAP databases, 398

OLTP databases, 397-398

%TYPE attribute of DECLARE
section (PL/SQL blocks),
633-634

types. See also data types
ALTER TYPE statement,

493-494

CREATE TYPE statement,
492-496

of constraints
(on data), 269

check, 276-277

foreign key, 274-276

NOT NULL, 269-271

parent/child table
relationships, 275-276

primary key, 271-273

unique, 273-274

U

UDTs (User Defined
Types), 493

attributes, 495

creating, 494-495

tables, creating, 495-496

underscore (_) character
operator, 65-67

underscore (_) wildcard
operator (T-SQL), 679

UNION, relational
databases, 9

UNION ALL set operator,
75-77

UNION operator, SELECT
statement, 343

UNION set operator, 75-77
unions, relational

databases, 9
unique constraints (on data),

273-274
unique fields, 252-254
UNIQUE keyword, CREATE

INDEX statement, 381-382
unique values, inserting,

291-292
unit of work

(transactions), 354
units, converting with views,

346-347
UNIX, MySQL, 685

administration, 686

initial access
privileges, 688

installing, 686-687

isamchk utility, 694

mysqlaccess utility, 694

mysqladmin utility, 694

mysqldump utility, 694

mysqlimport utility, 694

mysqlshow utility, 694

(pound sign), 687

starting, 687-688

stopping, 687-688

terminal monitor, 688-694

utilities, 694

UNKNOWN value,
comparison operators, 55

unqualified tables, dropping,
566-567

UPDATE ANY TABLE system
privilege, 424

UPDATE command, 332,
418, 440

views, 343-344

UPDATE event, 490
UPDATE function, views, 345
UPDATE operation, tables

(triggers), 479
UPDATE statement, 285

data, modifying, 295-298

syntax, 295

WHERE clause, 295

updating
data from banking

applications, 355

virtual columns, 345

UPPER function, 203-205
use database command,

populating tables, 743
USE ROLLBACK SEGMENT

option (SET TRANSACTION
statement), 357

usefulness of constraints (on
data), 268

USER CATALOG view, 453
User Defined Types.

See UDTs

How can we make this index more useful? Email us at indexes@samspublishing.com

User Defined Types 811

USER function, 218-219
user privileges,

INFORMATION_SCHEMA,
462-463

user roots (MySQL), 688
USER SEGMENTS view, 446
user statistics tables, 438
USER tables, structure,

417-418
USER TABLESPACES

view, 448
USER TS QUOTAS view, 448
usernames, invalid user

names, 553
users

access to views for
Personal Oracle, 422-429

ALTER USER
command, 418

changing for Personal
Oracle, 418

creating for Personal
Oracle, 416-419, 426

database design, 230-231

DBA of Oracle data
dictionary, 450-451

defined, 419

DELETE command, 418

deleting from Personal
Oracle, 419

DROP USER
command, 419

IDENTIFIED BY
clause, 417

identifying for data
dictionary, 438-439

MySQL anonymous, 688

of Oracle data dictionary

access, 443-449

identifying, 441-442

privileges, 442-443

views, 440

output, displaying, 643-644

passwords for Personal
Oracle, 417

privileges for Personal
Oracle, 421-422

system privileges, granting,
512-513

T-SQL (Transact-
SQL), 662

table constraints, disabling,
516-517

table privileges, granting,
514-516

tables, qualifying, 519

UPDATE command, 418

USERS tablespace, 441, 454
USER_CATALOG view,

443-444
USER_OBJECTS view, 445
USER_ROLE_PRIVS view,

442-443
USER_SYS_PRIVS view, 442
USER_TABLES view, 445
USER_USERS view, 441
utilities, MySQL on UNIX-

based systems, 694

V

V$SESSION, SELECT
statements, 459

values
comparing, 538

dates, storing, 310

DATETIME, 315

decimal, deleting, 533

FALSE, comparison
operators, 55

maximum, subqueries,
539-540

NULL

of fields, 250-252

indexes, 379

inserting, 289-290

‘ ’ (single quotation
marks), 290

SQL queries (complex),
544-546

subqueries, 541

numeric, 541-544

of queries, selecting, 32-34

time, storing, 310

TRUE, comparison
operators, 55

unique, inserting, 291-292

UNKNOWN, comparison
operators, 55

VARCHAR data type, 250
varchar data type

(T-SQL), 663
VARCHAR2(size) data

type, 250
variables

@ (at symbol), 668

@@char convert
variable, 668

@@client csid
variable, 668

@@client csname
variable, 668

@@connections
variable, 669

@@cpu busy variable, 669

@@error variable, 669

@@identity variable, 669

@@idle variable, 669

@@io busy variable, 669

@@isolation variable, 669

@@language variable, 669

@@languid variable, 669

@@max connections
variable, 669

@@maxcharlen
variable, 669

@@ncharsize variable, 669

@@nestlevel variable, 669

@@pack received
variable, 669

@@pack sent variable, 669

812 USER function

@@packet errors
variable, 669

@@procid variable, 669

@@rowcount

cursors, testing
status, 475

@@rowcount variable, 669

@@servername
variable, 669

@@spid variable, 669

@@sqlstatus

cursors, testing
status, 475

@@sqlstatus variable, 669

@@ symbol, 668

@@textsize variable, 669

@@thresh hysteresis
variable, 669

@@timeticks variable, 669

@@total errors
variable, 669

@@total read variable, 669

@@total write
variable, 669

@@tranchained
variable, 669

@@trancount variable, 669

@@translate variable, 669

@@version variable, 669

data, storing, 670

DECLARE keyword, 670

of DECLARE section
(PL/SQL blocks),
assigning, 632-633

declaring, table name
conflicts, 635

global variables, declaring,
668-669

local

data, retrieving, 671

declaring, 668

SQL*Plus, 610

ACCEPT command,
612-614

& (ampersand), 611

DEFINE command,
611-612

NEW VALUE
command, 614-615

T-SQL, 671

VARIANCE function, 186
@@version variable, 669
viewing

table lists, 256-257

table structure, 593-594

views, 332
ALL TAB PRIVS, 447

ALL TABLES, 445-446

ALL USERS, 441

ALL_CATALOG, 444

BANK ACCOUNTS
table, 334

BILLS table, 333

columns

names, 336

renaming, 337-338

COMPANY table, 334

complex queries,
simplifying, 347-348

CREATE VIEW
statement, 332

columns, selecting and
placing, 336

syntax, 332

CREATE
VIEW[colon]SELECT
statement, 343

creating, 331, 336

with DISTINCT
clause, 345

data

filtering, 336

modifying, 343-345

modifying,
problems, 345

querying, 337

summarizing from
tables, 349

DBA (database
administrator) of Oracle
data dictionary, 449-450

DBA CATALOG, 453

DBA DATA FILES, 457

DBA EXTENTS, 457

DBA INDEXES, 454

DBA ROLE PRIVS, 451

DBA ROLES, 451

DBA SEGMENTS,
456-457

DBA SYS PRIVS, 451-452

DBA TABLES, 453

DBA TABLESPACES, 455

DBA USERS, 451

DELETE command,
332, 343

DROP VIEW
command, 350

dropping, 350

dynamic performance,
DBA of Oracle data
dictionary, 458-461

exploring, 335-337

indexes, creating, 379

INSERT command,
332, 343

INSERT statements, 345

join, handling records, 345

PCT INCREASE, 448

removing with DROP
VIEW statement, 350

replacing with synonyms,
Personal Oracle security,
430-432

ROWNUM, 453

rows, deleting, 344

How can we make this index more useful? Email us at indexes@samspublishing.com

views 813

security

for Personal Oracle,
429-432

providing, 346

SELECT command, 332

SELECT statement, 333

aggregate
functions, 349

restrictions, 343

solution to qualifying for
Personal Oracle, 429-430

SQL view processing,
338-342

tables, 335

creating, 520-522

DELETE statements,
345

populating, 333

tasks performed, 346

units, converting, 346-347

UPDATE command, 332,
343-344

UPDATE function, 345

user access, for Personal
Oracle, 422-429

USER CATALOG, 453

USER OBJECTS, 445

USER ROLE PRIVS,
442-443

USER SEGMENTS, 446

USER SYS PRIVS, 442

USER TABLES, 445

USER TABLESPACES,
448

USER TS QUOTAS, 448

USER USERS, 441

users of Oracle data
dictionary, 440

USER_CATALOG,
443-444

virtual columns,
updating, 345

virtual tables, 331

|| (double pipe)
operator, 338

virtual columns,
updating, 345

virtual tables (views), 331

W

Web sites, downloading
MySQL, 14, 686

MySQL 3.23, 686

Oracle Corporation,
Personal Oracle8, 15

Personal Oracle8, 15

WHEN OTHERS
command, 642

WHERE clause, 87-88, 115-
116

DELETE statement, 300

most restrictive condition,
393-395

SQL statements, 390, 393

syntax, 41-42

tables, joining, 126

UPDATE statement, 295

WHILE loop
program flow control, 676

tables, scrolling, 678-679

WHILE-LOOP, conditional
statements, 639-640

wildcard operators (T-SQL),
679-680

wildcards, _ (underscore)
character operator, 65-67

Windows, installation
instructions, 763-764

WinMySQLadmin tool, 440
WITH ADMIN OPTION option,

Personal Oracle database
security, 420, 422

WITH GRANT OPTION clause,
Personal Oracle security,
433-434

work environment of
SQL*Plus

customizing, 599-603

FEEDBACK
commands, 600

LINESIZE option, 601-602

PAGESIZE option, 602

SET commands, 599-603

SET FEEDBACK OFF
commands, 601

TIME option, 602

writing queries, 26
asterisk (*), 26-27

columns

individual, selecting, 28

order, changing, 29-32

semicolon (;), 28

SQL statements, 26-28

Tables, selecting, 31

X-Y-Z

XML (Extensible Markup
Language), 499-500

YEAR data type, 312
ZERO_DIVIDE exception, 643
zones, time zones, 315

814 views

	Introduction
	LESSON 3: Expressions, Conditions, and Operators
	Working with Query Expressions
	Placing Conditions on Queries
	Learning How to Use Operators

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

