

Microsoft® XNA™ Game Studio 3.0 Unleashed
Copyright © 2009 by Chad Carter

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33022-3

ISBN-10: 0-672-33022-9

Library of Congress Cataloging-in-Publication Data:

Carter, Chad.

Microsoft XNA game studio 3.0 unleashed / Chad Carter.

p. cm.

ISBN 978-0-672-33022-3

1. Microsoft XNA (Computer file) 2. Computer games—Programming. 3. Video

games. I. Title.

QA76.76.C672C425 2009

794.8’1536—dc22

2008054527

Printed in the United States of America

First Printing April 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Technical Editor
Chris Williams

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Lisa Stumpf

Proofreader
Language Logistics

Publishing
Coordinator
Cindy Teeters

Multimedia Developer
Dan Scherf

Cover Designer
Gary Adair

Compositor
Jake McFarland

Introduction

Many developers became interested in programming because they saw a video game and
thought, “How did they do that?” This book helps demystify what is required to make video
games. Being able to write games on a next-generation console such as the Xbox 360 has never
been an option for the masses before. Now with the XNA Framework, games can be written for
the console.

By the end of this book, you will have created four complete games and many demos along the
way. This book takes a serious look at performance-related issues when writing games using XNA
for Windows and the Xbox 360. Two chapters are devoted to the High Level Shader Language
(HLSL), which is a necessity for writing great games. The book covers physics and artificial intelli-
gence (AI). It also covers special effects, including explosions, transitions, and how to create a 3D
particle system. It demonstrates how to create a sound project using the Microsoft Cross-Platform
Audio Creation Tool (XACT) and how to directly access sound files in a game. Two chapters are
devoted to programming games for the Zune. Saving and loading a high score list and creating a
full menu system are also taught in this book. Five chapters are devoted to creating multiplayer
games. Writing network games can be challenging, and this book covers networking in detail.
The final two chapters are on best practices and provide tips on how to sell games on the Xbox
LIVE Marketplace. In general, this book contains a great foundation for many topics that need to
be learned to create and sell a full-featured single-player or multiplayer game.

Who Should Read This Book?
This book was written for developers. You should have a good understanding of programming in
general. The book uses C#, but if you know any modern language, such as C++, Java, or VB.NET,
you will have no problem understanding the code in this book. The book assumes some under-
standing of the Microsoft .NET Framework, which is what the XNA Framework runs on. Without
prior experience writing code using the .NET Framework, you might have to do a little research
now and then, but should not have trouble getting through this book.

This book was written with a few different audiences in mind. Business application developers
who want to use their programming skill set to write computer games are one audience. Graphics
and game developers who have been around the OpenGL and DirectX block should also find
useful information in this book—especially in seeing how things are done “the XNA way.” The
book also targets readers who have some programming experience but have not done anything
formal. The book teaches by example. It is written in such a way that if you are not in front of
your computer, you can still get valuable information from the book because the code is
presented as it is being discussed.

2 Introduction

Hardware and Software Requirements
The code in this book is compiled with XNA Game Studio 3.0. In order to complete the
games and demos in this book, the requirements that follow must be met.

Supported Operating Systems

The following operating systems are supported:

. Windows XP Home Edition

. Windows XP Professional Edition

. Windows XP Media Center Edition

. Windows XP Tablet Edition

. Windows Vista Home Basic Edition

. Windows Vista Home Premium Edition

. Windows Vista Business Edition

. Windows Vista Enterprise Edition

. Windows Vista Ultimate Edition

Windows XP requires Service Pack 2 or later.

Hardware Requirements

When you run XNA Framework games on Windows, a graphics card that supports Shader
Model 1.1 is required. This book has samples that use Shader Model 2.0 and a couple that
use Shader Model 3.0. To get the most from this book, you need a graphics card that
supports Shader Model 3.0. The graphics card should have the most up-to-date drivers.
Updated drivers can be found on the graphics card’s hardware vendor website.

When you run XNA Framework games on the Xbox 360 console, a hard drive must be
connected to the console.

Software Requirements

All the software required to utilize the XNA Framework on Windows is free:

. Microsoft Visual C# 2005 Express Edition

. Microsoft XNA Game Studio Express

. DirectX 9.0c

Instructions on installing the software can be found in Chapter 1, “Introducing the XNA
Framework and XNA Game Studio.”

3How This Book Is Organized

Code Examples
The source code for the examples in this book can be found on the accompanying CD.
Any updates to the code can be downloaded via www.samspublishing.com or
www.xnaessentials.com.

How This Book Is Organized
This book is organized into 11 main parts, representing the information you need to
understand to use XNA Game Studio effectively. Writing a book is an interesting chal-
lenge. There are basically two routes an author can go. One route is to create small bite-
sized pieces that can be used as a reference. The other route is to take the reader on a
journey from start to finish, covering important topics along the way but doing it in such
a manner that the reader is gradually learning concepts. Then, once the entire book has
been enjoyed, the reader can go back and reread certain sections for mastery.

I have tried to take the second approach in writing this book. The book is best read in
order. The Internet has a wealth of information. Learning about a particular topic is not
difficult. You can easily find information from many different sources on a particular
topic. The problem is there is usually no place to see how a lot of different topics work
together. With a book that is designed to be read from front to back, the main drawback is
a larger time commitment. However, there is usually deeper understanding by the time
the task is complete versus the same amount of time spent looking at particular topics on
the subject from online tutorials and blog posts. Both are very important, but because a
wealth of reference information is available online already, there was no need to make this
a reference book.

There was some criticism concerning the order of the first book. This book is not orga-
nized in a manner similar to many other books. However, a lot of thought was put into
the order of this book. I do believe this book’s order is important, and I did not change it
from the first edition. I start with a very basic chapter explaining the history of XNA and
very detailed instructions on how to install XNA Game Studio. Most people will not need
this, but it is there for those who do. The next chapter jumps right in to talking about the
Xbox 360. Even though there are people who do not have an Xbox 360, it is important to
put this chapter up front so you can be aware of certain things when creating games using
XNA. It is always important to know what you are up against before you start. It is for this
same reason that the very next chapter is on performance. Most books simply give a nod
to performance in a later chapter or maybe an appendix, if at all. I personally believe that
thinking about performance early on is crucial to making a good game. This does not
mean we need to do micro-optimizations early in the process; instead, it is all about
measurement. This is why performance is discussed so early in the book.

www.samspublishing.com
www.xnaessentials.com

4 Introduction

The first real game code that is presented in this book is written for 3D. Many people are
shocked that 2D is not discussed until Chapter 9, “2D Basics.” The reason for putting 3D
before 2D in this book is because picking up 3D is not any harder than learning 2D. The
early chapters are there to introduce you to the XNA Framework as well as the concepts
behind a camera. It is my hope to tear down the mental block many people have that 3D
is much harder than 2D. Granted, there are some complex topics surrounding 3D, and
those are covered later in the book. However, by getting started by drawing models and
responding to input, you’ll see there is not a huge difference in the knowledge needed to
write 3D games versus 2D games.

After discussing 3D and the Content Pipeline, the book discusses 2D and then moves into
two chapters devoted to programming for the Zune. The next part of the book discusses the
High Level Shader Language. Physics and artificial intelligence are discussed next. The code
for those chapters uses the basic 3D information you will learn in earlier parts the book.

This is followed up by talking about more advanced 3D topics. A single-player 3D game is
then built, thus allowing us to put into practice all you will learn in this book.

The next part of the book provides an intensive look at developing multiplayer games.
Then the final part of the book discusses some best practices, most of which are done
while creating the demos and games throughout the book. The last chapter explains the
review process and getting your game into a condition to be sold on the Xbox LIVE
Marketplace.

CHAPTER 1

Introducing the XNA
Framework and XNA

Game Studio

IN THIS CHAPTER

. What Is the XNA Framework?

. Installing Visual C# 2008
Express

. Installing the DirectX Runtime

. Installing XNA Game Studio

. Creating the Platformer
Projects

. Compiling and Running
Platformer

Most developers I know decided to enter the computer
field and specifically programming because of computer
games. Game development can be one of the most chal-
lenging disciplines of software engineering—it can also be
the most rewarding!

Never before has it been possible for the masses to create
games for a game console, much less a next-generation
game console. As a relatively new technology, XNA is going
to experience tremendous growth. The sooner we get to
know this technology, the better we will be able to under-
stand the changes that will come in the future.

Microsoft is leading the way in how content will be created
for game consoles. Soon other game console manufacturers
will be jumping at a way to allow the public to create
content for their machines. The great news for the Xbox
360 is that Microsoft has spent a lot time over the years
creating productive and stable development environments
for developers. We will be installing one of Microsoft’s latest
integrated development environments (IDEs) in this
chapter. Before we get to that, though, let’s take a look at
the technology we discuss in this book—XNA.

What Is the XNA Framework?
You have probably heard the statement, “To know where
you are going, you need to know where you have been.” I
am uncertain if that is entirely true, but I do believe it
applies here. Before we dig into exactly what XNA is and
what it can do for us, let’s take a moment to look at DirectX
because that is what the XNA Framework is built on.

8 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

The Foundation of the XNA Framework

Let’s take a journey back to the days of DOS on the PC. When programming games,
graphic demos, and the like in DOS, programmers typically had to write low-level code to
talk directly to the sound card, graphics cards, and input devices. This was tedious, and
the resulting code was error prone because different manufacturers would handle different
BIOS interrupts, I/O ports, and memory banks differently. Therefore, the code would work
on one system and not another.

Later, Microsoft released the Windows 95 operating system. Many game programmers
were skeptical at writing games for Windows—and rightly so—because there was no way
to get down to the hardware level to do things that required a lot of speed. Windows 95
had a protected memory model that kept developers from directly accessing the low-level
interrupts of the hardware.

To solve this problem, Microsoft created a technology called DirectX. It was actually called
Windows Game SDK to begin with, but the name was quickly switched after a reporter
poked fun at the API names DirectDraw, DirectSound, and DirectPlay, calling the SDK
“Direct ‘X.’” Microsoft ran with the name, and DirectX 1.0 was born a few months after
Windows 95 was released. I remember working with DirectDraw for a couple of demos
back when this technology first came out.

Because of DirectX, developers had a way to write games with one source that would work
on all PCs, regardless of their hardware. Hardware vendors were eager to work with
Microsoft on standardizing an interface to access their hardware. They created device
drivers to which DirectX would map its API, so all of the work that previously had to be
done by game programmers was taken care of, and programmers could then spend their
time doing what they wanted to—write games! Vendors called this a hardware abstraction
layer (HAL). They also developed a hardware emulation layer (HEL), which emulates hard-
ware through software in case hardware isn’t present. Of course, this was slower but it
allowed certain games to be run on machines with no special hardware.

After a couple of years, Microsoft released DirectX 3.0, which ran on Windows NT 4 as well
as Windows 95. As part of those upgrades, Microsoft introduced Direct3D. This allowed
developers to create 3D objects inside of 3D worlds. DirectX 4 was never released, but
DirectX 5 was released in 1997 and later had some upgrades to work under Windows 98.

When DirectX 8 came on the scene in 2000, some of the newly available graphics hard-
ware had vertex and pixel shaders. As a result, Microsoft added in a way to pass custom
program code to the hardware. Through assembly code, the game developer could manip-
ulate the data the main game passed to the graphics card. This assembly code was
consumed directly by the graphics hardware.

When there was no graphics hardware, games were slow, but they were very flexible. Later,
as hardware rendering became prominent, the games were faster, but they were not very
flexible in that all of the games really started to look the same. Now with shaders, the
speed of the hardware is combined with the flexibility for each game to render and light
its 3D content differently.

9What Is the XNA Framework?

1

This brings us to present-day DirectX: We are up to DirectX 9 and 10. Before I talk about
DirectX 9, I’ll spend some time talking about DirectX 10. DirectX 10 was released at the
same time as Microsoft Windows Vista. In fact, DirectX 10 only works on Vista. This is
largely due to the fact that Microsoft has made major changes in the driver model for this
operating system. DirectX 10 also requires a Shader Model 4.0 graphics card.

The Xbox 360 runs on DirectX 9 plus some additional partial support for Shader Model 3.0
functionality. DirectX 9 is the foundation for Managed DirectX, an API that exposed the
core DirectX functionality to .NET Framework developers. There was a lot of concern about
whether this “wrapper” could be as fast as the C++ counterparts. Fortunately, it was almost
as fast—about 98% was the benchmark touted. I experienced these benchmark speeds first-
hand while on the beta team for this technology. I fell in love with Managed DirectX.

The XNA Framework took the lessons learned from Managed DirectX and used that foun-
dation as a launching pad. To be clear, XNA was built from the ground up and was not
built on top of Managed DirectX. It doesn’t use the same namespaces as Managed DirectX
and is not simply pointing to the Managed DirectX methods in the background. Although
XNA utilizes DirectX 9 in the background, there are no references to DirectX’s API like
there were in Managed DirectX.

XNA Today

XNA is actually a generic term, much like the term .NET. XNA really refers to anything
that Microsoft produces that relates to game developers. The XNA Framework is the API
we are discussing. The final piece to XNA is the XNA Game Studio application, which we
discuss in detail later. This is the IDE we use to develop our XNA games.

TIP

In this book, whenever I use the term XNA, I am really referring to the XNA Framework,
unless otherwise noted.

XNA allows us to do a lot of things. We have easy access to the input devices (keyboard,
game pad or controller, mouse). XNA gives us easy access to the graphics hardware. We are
able to easily control audio through XNA. XNA provides the ability for us to store infor-
mation such as high scores and even saved games. XNA also has networking capabilities
built in. This was introduced in version 2.0 of the product. Microsoft uses the Xbox LIVE
technology for network support.

To get started using XNA, you have to install some software. You need to install the latest
version of DirectX 9 as well as have a graphics card that supports DirectX 9.0c and Shader
Model 1.1. (You should get a card that supports Shader Model 3.0 because some of the
examples, including the starter kit we use in this chapter and the next one, will not run
without it.) You also need to install Visual C# Express or one of the other Visual Studio
SKUs, the DirectX 9 runtime, and finally XNA Game Studio. Fortunately, all of the soft-
ware is free! If you don’t have graphics hardware that can support Shader Model 2.0, you

10 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

can pick up a card relatively inexpensively for about US$35. If possible, you should
purchase a graphics card that can support Shader Model 3.0 because a couple of examples
at the end of the book require it. Windows Vista machines have graphics cards that
support Shader Model 4.0 and definitely meet the needs of our XNA games.

In the past, only subscribers to the XNA Creators Club could play the games made by
other developers. Xbox LIVE Community Games, introduced in version 3.0 of XNA Game
Studio, has changed that. Through a peer review process, games can be approved and put
on Xbox LIVE for the world to download. Never before has there been such an easy way
for a game to be seen by so many people.

Not only is XNA Game Studio great for the professional, it is great for the game hobbyist,
the student, as well as someone just getting started because you do not have to shell out a
lot of money to get up and running. One exception to this is if you actually want to
deploy your games on your Xbox 360. To do that, you need to subscribe to the XNA
Creators Club for US$99 a year (or US$49 for four months). Writing games for the PC
using XNA is totally free! As an added benefit of paying for the Creators Club subscrip-
tion, you are able to review other creators’ games and are able to submit your own games
to sell on Xbox LIVE Marketplace. This is discussed in Part XI, “Xbox LIVE Community
Games.”

Oh, in case you are wondering what XNA stands for, XNA’s Not Acronymed (or so
Microsoft says in the XNA FAQ).

Installing Visual C# 2008 Express
To get started, you must have the software installed. Let’s start by installing Visual C#
2008 Express.

TIP

Any Visual Studio 2008 SKU works with XNA Game Studio 3.0.

XNA requires C# due to how the Content Pipeline is used. Some people have successfully
created demos using other languages, such as VB.NET and even F#. However, this is not
currently supported by Microsoft and won’t be discussed in this book. This book assumes
you have a good understanding of C#. If you know C++, Java, or VB.NET, you should be
able to pick up C# pretty quickly.

I provide detailed steps to make sure anyone who has not worked with Visual C# Express
will be able to get it installed with no issues. Feel free to skip this section if you already
have a Visual Studio 2008 SKU installed.

11Installing Visual C# 2008 Express

1

FIGURE 1.1 Select the check box if you want the system to provide feedback to Microsoft
about your installation experience.

TIP

Visit http://www.ILoveVB.net/ for some examples of using VB.NET to write XNA Game
Studio games.

To install Visual C# 2008 Express, follow these steps:

1. You will need to be connected to the Internet to install the application. The
application can be downloaded by browsing to http://www.microsoft.com/express/
download/ and clicking the Visual C# 2008 Express Edition Download link to
download and run the vcssetup.exe setup program.

2. Optional. On the Welcome to Setup screen, select the check box to send data about
your setup experience to Microsoft. This way, if something goes awry, Microsoft can
get the data and try to make the experience better the next time around. This screen
is shown in Figure 1.1.

3. Click Next to continue.

4. The next screen is the End-User License Agreement. If you accept the terms, select
the check box and click Next.

5. The following screen, shown in Figure 1.2, has two installation options you can
check. Neither of these options is required to utilize XNA Game Studio.

http://www.ILoveVB.net/
http://www.microsoft.com/express/download/
http://www.microsoft.com/express/download/

12 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

FIGURE 1.2 Neither of these options is required to utilize XNA Game Studio.

FIGURE 1.3 Specify in which directory you want Visual C# Express to be installed.

6. Click Next to continue.

7. The next screen, shown in Figure 1.3, asks where we would like to install Visual C#
Express. Note that other required applications, including Microsoft .NET Framework
3.5, will be installed. This is required because C# runs on the .NET Framework. You
will also notice it requires more than 300MB of space.

8. Click Next to continue.

9. Now you are looking at the Installation Progress screen, where you can monitor the
progress of the installation.

13Installing Visual C# 2008 Express

1

FIGURE 1.4 This is the Start Page inside of Visual C# Express.

10. On the Setup Complete screen, you can see the Microsoft Update link. Click it to get
any of the latest service packs for Visual C# Express.

11. Click Exit to complete the installation.

TIP

After you install Visual C# 2008 Express, a reboot may be required.

You have now successfully installed the first piece of the pie to start creating excellent
games with XNA! Before we continue to the next piece of software, you need to open up
Visual C# Express. It might take a couple of minutes to launch the first time the applica-
tion is loaded. Once the Visual C# Express is loaded, you should see the Start Page, shown
in Figure 1.4.

The following procedure is optional, but it does ensure that everything is working
correctly on your machine:

1. In the Recent Projects section, find Create Project and click the link. You can also
create a new project under the File menu.

2. Visual C# Express installed several default templates that you can choose from.
Select the Windows Application template, as displayed in Figure 1.5.

14 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

FIGURE 1.5 The New Project dialog box allows you to choose from the default templates to
create an application.

FIGURE 1.6 A C# Windows Form application after the default template has been compiled
and run.

3. You can leave the name set to WindowsFormsApplication1 because you will just be
discarding this project when we are done.

4. Click OK to create the application.

5. At this point a new project should have been created, and you should be looking at
a blank Windows Form called Form1.

6. Press Ctrl+F5 or click Start Without Debugging on the Debug menu.

If everything compiled correctly, the form you just saw in design mode should actually be
running. Granted, it doesn’t do anything, but it does prove that you can compile and run
C# through Visual C# Express. The end result can be seen in Figure 1.6. Close down the
application you just created as well as Visual C# Express. Feel free to discard the applica-
tion.

15Installing XNA Game Studio

1

Installing the DirectX Runtime
You also need the DirectX 9 runtime if it isn’t already on your machine. To get started,
follow these steps:

1. Run the dxwebsetup.exe file from Microsoft’s website. This can be found by clicking
the DirectX Runtime Web Installer link at the bottom of the XNA Creators Club
Online – Downloads web page (http://creators.xna.com/en-US/downloads). This file
contains the redistribution package of the February 2007 version of DirectX 9. You
will need to be connected to the Internet so it can completely install the application.

2. You are greeted with the End-User License Agreement. Handle with care.

3. The next screen is a dialog box asking where you would like the installation files to
be stored. You can pick any directory you want as long as you remember it so you
can actually install the runtime—you are simply extracting the files needed to install
the runtime.

4. Click OK to continue.

5. You will be prompted to create that directory if the directory entered doesn’t exist.
Click Yes to continue.

6. Wait for the dialog box with the progress bar to finish unpacking the files.

Now you can actually install the runtime by following these steps:

1. Browse to the folder where you installed the files and run the dxsetup.exe file to
actually install DirectX 9 onto your machine.

2. The welcome screen you see includes the End-User License Agreement. Select the
appropriate radio button to continue.

3. Following the agreement is a screen stating that it will install DirectX. Click Next.

4. Once it finishes installing (a progress bar will be visible while the files are being
installed), you will be presented with the Installation Complete screen.

5. Simply click Finish to exit the setup.

Now we can move on to installing XNA Game Studio.

Installing XNA Game Studio
To use XNA Game Studio, you can use any of the Visual Studio SKUs, including Visual C#
Express.

WARNING

You must run the Visual C# Express IDE at least one time before installing XNA Game
Studio. If this is not done, not all the functionality will be installed. If XNA Game Studio
was installed prematurely, you will need to uninstall XNA Game Studio, run Visual C#
Express, and then exit the IDE. Then you will be able to reinstall XNA Game Studio.
This is true for any of the Visual Studio SKUs.

http://creators.xna.com/en-US/downloads

16 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

FIGURE 1.7 XNA Game Studio modifies the Windows Firewall so an Xbox 360 and the PC can
talk to each other. It also allows network games created with XNA to communicate.

To get started, complete the following steps:

1. Run the XNAGS30_setup.msi file from Microsoft’s website. The file can be down-
loaded by clicking the top link on the XNA Creators Club Online – Downloads
website (http://creators.xna.com/en-US/downloads).

2. Click Next to get past the setup welcome screen.

3. The next screen is the End-User License Agreement. If you accept the terms, select
the check box and click Next.

4. A notification dialog box opens that allows the Windows Firewall to have rules
added to it. These rules allow communication between the computer and the Xbox
360, as well as allow for communication between network games. This can be seen
in Figure 1.7.

5. Click Install to continue. The next screen shows the progress of the installation.

6. Once all of the required files are installed, you are presented with a completion dia-
log box. Simply click Finish to exit the setup.

After you have installed XNA Game Studio, you can go to the Start menu and see that it
added a few more items than those contained in the IDE. Make sure to take the time and
read through some of the XNA Game Studio documentation. There is also a Tools folder
that contains a couple of tools we will be looking at later. We will discuss the XACT tool
in Chapter 7, “Sound and Music,” and the XNA Framework Remote Performance Monitor
for Xbox 360 application in Chapter 3, “Performance Considerations.” Go ahead and
open the Visual C# Express or Visual Studio IDE.

http://creators.xna.com/en-US/downloads

17Creating the Platformer Projects

1

TIP

Everything in this book works with all the Visual Studio 2008 SKUs as well as Visual
C# 2008 Express. From this point on I will simply use the term Visual Studio, regard-
less of which SKU (including C# Express) is being used.

When you installed XNA Game Studio, it added properties to Visual Studio to allow it to
behave differently under certain circumstances. Mainly it added some templates (which
we will look at shortly) as well as the ability for Visual Studio to handle content via the
XNA Content Pipeline. It also added a way for you to send data to your Xbox 360, as you
will see in the next chapter.

Creating the Platformer Projects
With XNA Game Studio opened, once you create a new project, you should see a screen
similar to Figure 1.8. Select the Platformer Starter Kit template and feel free to change the
name of the project. Click OK to create the project.

FIGURE 1.8 You can see that installing XNA Game Studio added eight more templates to
Visual Studio.

18 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

Compiling and Running Platformer
At this point you have your software installed and have even created a starter template
(created by Microsoft) that you can take for a spin. You need to make sure you can
compile the code. To just compile without running, either press Ctrl+Shift+B, press F6, or
click Build Solution on the Build menu. The code should have compiled without any
issues. You can now press Ctrl+F5 to actually run the game. Have some fun playing the
game. Feel free to look around the code and tweak it. Fortunately, you can always re-create
the template if something gets really messed up!

TIP

When working with one solution file and multiple project files in Visual Studio, you can
easily change which devices you are currently building and deploying to by changing the
Solutions Platform dropdown box in the toolbar. If you select Mixed Platforms, you will
compile for each platform every time. For the project you set as your startup project,
XNA Game Studio will try to deploy the game to that device.

Summary
In this chapter, I laid the groundwork in getting all the software required installed so you
can actually create games on your PC. We even compiled a game and played it. After
getting a game session fix, join me in the next chapter, where we will get this project up
and running on the Xbox 360!

Index

Numerics
2D, 171

coordinate systems, 172

text, drawing, 189

2D games

collision detection, 240-243

enemies, drawing, 235-240

explosions, adding, 246-251

heroes, drawing, 230-235

parallax scrolling, creating, 220-229

setting up game skeletons, 217-220

sounds, adding, 251

switching between states, 229-230

transitions, adding, 243-246

winning and losing, 243

3D games, tunnel vision game, 471

3D lighting, 391

ambient, 397-398

bump mapping, 403

creating custom vertex formats, 391-394

demos, 394-397

directional, 399-403

normal mapping, 403-407

parallax mapping, 407-410

relief mapping, 410-414

texture animation, 414-416

3D models

loading, 114-119

normal mapping, 406

relief mapping, 413

texturing, 119-120

3D Objects

cameras

creating, 57

projection, 57-58

view, 58-59

world, 59

checking performance of, 72-76

effects, 63-64

GameComponent objects, creating, 69-72

index buffers, 66-69

mactrices, definition of, 56

textures, 65-66

transformations

definition of, 56

multiple transformations, 57

rotation, 56, 79-80

scaling, 56, 76-78

translation, 56

vectors, overview, 55-56

vertex buffers, 59-63

vertices, overview, 55

80-20 Rule, 34-35

A
acceleration, 326-330

AccelerationDemo program, 327-330

Draw method, 328

DrawModel method, 328

InitializeValues method, 328

LoadContent method, 328

PhysicalObject class, 328

Update method, 329-330

adding to objects, 326-327

formula, 326

Newton’s Second Law of Motion, 331

AccelerationDemo program, 327-330

Draw method, 328

DrawModel method, 328

InitializeValues method, 328

LoadContent method, 328

PhysicalObject class, 328

Update method, 329-330

acos function (HLSL), 299

AddAnimation method, cel animation, 197

AddEnemy method, tunnel vision game, 483

adding

cameras, 495-499

crosshairs, 494-495

explosions (2D games), 246-251

scoring, 511-512

skyboxes to tunnel vision game, 472

sounds, 542-544

sounds (2D games), 251

states, 709

transitions (2D games), 243-246

turn-based multiplayer games, 652-665

Additive, 213

AddMissile method, tunnel vision game, 477

AddService method, 85

AddValue method, 713

AddVerticesInformation, 157

advanced textures, 3D lighting, 391

ambient, 397-398

bump mapping, 403

creating custom vertex formats, 391-394

demos, 394-397

directional, 399-403

normal mapping, 403-407

parallax mapping, 407-410

relief mapping, 410-414

texture animation, 414-416

AdvancedTexturingDemo, InitializeVertices
method, 395

3D objects740

AI algorithms

advanced chase algorithm (TrackPlayer
method), 381-382

AIDemo program, 375-380

Draw method, 377

DrawModel method, 376

Initialization method, 377

KeepWithinBounds method, 379

private member fields, 376

skybox, 375

sphere member field, 375

UpdatePlayer method, 379

evading algorithm (EvadePlayer
method), 382

FSMs (finite state machines), 343

creating, 384-387

random movement algorithm
(MoveRandomly method), 382-384

simple chase algorithm
(TrackPlayerStraightLine method), 380-381

AIDemo program, 375-380

Draw method, 377

DrawModel method, 376

Initialization method, 377

KeepWithinBounds method, 379

Player class, 376

private member fields, 376

skybox, 375

sphere member field, 375

UpdatePlayer method, 379

AIState enumerated type, 384

algorithms (AI)

advanced chase algorithm (TrackPlayer
method), 381-382

AIDemo program, 375-380

Draw method, 377

DrawModel method, 376

Initialization method, 377

How can we make this index more useful? Email us at indexes@samspublishing.com

KeepWithinBounds method, 379

Player class, 376

private member fields, 376

skybox, 375

sphere member field, 375

UpdatePlayer method, 379

evading algorithm (EvadePlayer
method), 382

FSMs (finite state machines), creating,
384-387

random movement algorithm
(MoveRandomly method), 382-384

simple chase algorithm
(TrackPlayerStraightLine method), 380-381

all function (HLSL), 299

alpha blending, sprites, 173

AlwaysDisplay property, 536

ambient lighting, 397-398

AmbientTexture.fx file, 307-310, 399

animation

cel animation, 191

textures, 414-416

animationKey, 641

ANTS Profiler, 35

any function (HLSL), 299

application data, passing to GPU, 306-307

ApplyFriction method, CollisionDemo
program, 340

ApplySmoothing method, 714

architecture, networks, 549

clients/servers, 549

hybrid, 550-551

peer-to-peer, 550

System Link versus LIVE, 552

artwork, Xbox LIVE Community Games
(XBLCG), 720

asin function (HLSL), 299

assembly language, 292

assembly language 741

AssemblyDescription attribute (games), 26

AssemblyInfo.cs file, 25

AssemblyTitle attribute (games), 25

associating Xbox 360 with computer, 21-23

atan function (HLSL), 299

atan2 function (HLSL), 299

attributes

AssemblyDescription, 26

AssemblyTitle, 25

Guid, 26

audio, Xbox LIVE Community Games
(XBLCG), 722

B
Back button, 715

bandwidth constraints, 556-561

BaseGameState class, 349, 356-357

BaseMenuState class, 595

BaseMenuState.cs, 591

BasicEffect class, 63

BeginDraw method, 569

benchmarks

creating, 35-37

micro-benchmark testing, 41-42, 46, 50-51

CheckPerformance class, 42

Program.cs file, 46

time measurement relationships, 50-51

bitmap fonts, creating, 188

BitShifter, 558

blend modes

Additive, 213

sprite batch demos, 179-183

sprites, 173

blending mode, RotateAndScaleDemo, 203

blocks, try/catch, 616

blurring, 319

bubbles, creating with particle effects, 461-462

buffers

index buffers, 66-69

vertex buffers, 59-63

bump mapping, 403

C
calculations, 331

Camera class, InitializeCamera method, 87

Camera object, 498

cameraReference field, 89

cameras

creating, 57

first person cameras, 102-104

game-specific cameras, creating for tunnel
vision, 495-499

input devices

game pads, 93-97

keyboards, 89-93

mouse, 97-98

projection, 57-58

render targets, configuring, 502

spin rate, 91-93

split screens, 104-108

stationary cameras, 98-100

cull mode, 99

Update method, 99-100

view, 58-59

viewports, 709

world, 59

CancelMenu method, 595, 620

capacity, particle systems, 440

Card.cs, 634

ceil function (HLSL), 299

AssemblyDescription attribute (games)742

cel animation, 191-201

AddAnimation method, 197

Draw method, 198

CelAnimationManager, 641

CelRange values, 641

Cg language, 292

chalk effect, 321

ChangeState method, 354

chase algorithms

TrackPlayer method, 381-382

TrackPlayerStraightLine method, 380-381

CheckCards method, 646-648, 655

CheckCollisions method, 487, 544

CheckPerformance class, 42

clamp function (HLSL), 299

classes

BaseGameState, 356

BaseMenuState, 595

BasicEffect, 63

Camera, InitializeCamera method, 87

CheckPerformance, 42

DrawableGameComponent, 347

FadingState, 368-369

FirstPersonCamera, Update method,
102-104

GameState, 348-351

GameStateManager, 352-354

InputHandler, 85, 598

LostGameState, 367

OptionsMenuState, 360-361

particles, creating, 436-441

PhysicalObject, 328, 334

Player (AIDemo), 376

PlayingState, 365-366, 543, 715

StartLevelState, 361-363

StartMenuState, 358-360

System.Diagnostics, 50

How can we make this index more useful? Email us at indexes@samspublishing.com

Texture2D, 65

TitleIntroState, 357-358

Utility, 441

WonGameState, 367

YesNoDialogState, 363

classes, OptionsMenuState, 536

classes, PlayingState, 510

Classification page, 731

clients, 549

clip function (HLSL), 299

clockDelta collection, 711

coefficient of restitution, 333

collections, performance optimization, 51-52

collision detection

2D games, 240-243

optimizing, 241

CollisionDemo program, 334-341

ApplyFriction method, 340

collision distance calculations, 338

final velocities, 338-339

Initialize method, 334

InitializeValues method, 335

PhysicalObject class, 334

private member fields, 334

Update method, 336

CollisionDetection method, tunnel vision
game, 478

collisions

coefficient of restitution, 333

CollisionDemo program, 334-341

ApplyFriction method, 340

collision distance calculations, 338

final velocities, 338-339

Initialize method, 334

InitializeValues method, 335

PhysicalObject class, 334

collisions 743

private member fields, 334

Update method, 336

conservation of momentum, 332

final velocities, 333

impulse, 332

kinetic energy, 332-333

momentum, 331-332

overview, 331

color

fading to, 204-206

switching RGB values, 318

colorful effects, creating with particle effects,
467-468

compiling

Spacewar Windows Start Kit project, 18

tunnel vision game, 472

components

GameStateManager, 589

InputHandler, 589

compression, 558-561

ConcentrationCards.png texture, 639

conditions (HLSL), 304

configuring

game states, 471-472, 605-630

games

adding cameras, 495-499

adding crosshairs, 494-495

logic, 493-494

HUD, 510-511

level timers, 508-509

menus, 590-591

refactoring states, 591-605

network demos, 565-577

Zunes, 578-582

options menus, updating, 536-540

Particle classes, 436-441

particle system demos, 455-458

particle system effects, 458-468

particle system engines, 443-452

particle systems, updating, 541-542

point sprite effect files, 452-455

radar, 501-504

real-time multiplayer games

creating, 671

functionality, 672-688

networks, 689-709

prediction/smoothing, 709-716

templates, 672

scoring, 511-512

creating high score screens, 532-537

tracking, 512-523

sound, 542-544

start menus, updating, 528-533

templates, 583-590

title screens, updating, 525-529

tunnels, 504-508

turn-based multiplayer games, 631-632

adding, 652-665

creating, 669-670

functionality, 633-651

players joining/leaving, 665-668

templates, 632

VertexPointSprite, 442-443

Xbox LIVE Community Games (XBLCG), 719

artwork, 720

audio, 722

controls, 720-721

displays, 719

marketing, 725-726

menus, 721

networks, 723

profiles, 723

rich presence data, 724

collisions744

storage, 724

Trial Mode, 721-722

configuring states, updating, 539-541

connecting Xbox 360 to computer, 21-23

connections, network architecture, 549

clients/servers, 549

hybrid, 550-551

peer-to-peer, 550

System Link versus LIVE, 552

conservation of kinetic energy, 333

conservation of momentum, 332

constraints, bandwidth, 556-561

contact force, 330

ContainsState method, 354

content, multiple projects, 578

Content Compiler, 113

Content DOM, overview, 113

Content Importer, overview, 113

Content Manager, overview, 114

Content Pipeline

Content Compiler, 113

Content DOM, 113

Content Importer, 113

Content Manager, 114

custom importers, creating, 164

loading 3D models, 114-119

texturing 3D models, 119-120

Content Pipeline extensions, debugging, 167

controls, Xbox LIVE Community Games (XBLCG),
720-721

coordinate systems

2D, 172

right-handed coordinate systems, 60

cos function (HLSL), 299

cosh function (HLSL), 299

Covey, Stephen, 33

Create method, 615

How can we make this index more useful? Email us at indexes@samspublishing.com

CreateEnemies method, 683

CreateLookAt method, 58

CreateParticle method, 448

CreatePerspectiveFieldOfView method, 57

CreateScale method, 78-80

CreateTexture method, 430, 527

CreateTranslation method, 77, 313

CreateVisualizationTexture method, 268

Creators Club, subscribing to, 20-21

Creators Club website, 728

cros function (HLSL), 299

cross-fade (dissolve), 422-423

crosshairs, creating for tunnel vision game,
494-495

cull mode, stationary cameras, 99

currentSmoothing value, 714

custom Content Pipeline importer, creating, 164

customizing

menus, 590-591

refactoring states, 591-605

vertext formats, 391-394

D
D3DCOLORtoUBYTE4 function (HLSL), 299

ddx function (HLSL), 299

ddy function (HLSL), 299

Debug menu commands, Deploy Solution
command, 23

debugging

Content Pipeline extensions, 167

Xbox 360, 25

degrees function (HLSL), 299

deleting players, 668

demo program (Xbox 360), 25-28

demo program (Xbox 360) 745

demos

3D lighting, 394-397

GameStateManagementSample, 532

network

creating, 565-577

Zunes, 578-582

particle systems, 455-458

Deploy Solution command (Debug menu), 23

deploying

Xbox 360, 23-24

Zune, 258

depth maps, 407

design

object-oriented design, 344-345

real-time multiplayer games

creating, 671

functionality, 672-688

networks, 689-709

prediction/smoothing, 709-716

templates, 672

turn-based multiplayer games, 631-632

adding, 652-665

creating, 669-670

functionality, 633-651

players joining/leaving, 665-668

templates, 632

determining function (HLSL), 299

directional lighting, 399-403

directional wipes, 423-428

DirectionalTexture.fx file, 401-402

DirectX, 7-8

FFP (Fixed Function Pipeline), 291

installing, 15

DirectX runtime, installing, 8-15

DisplayAlbumArtDemo, Zune, 255-258

displays, Xbox LIVE Community Games
(XBLCG), 719

dissolve, 422-423

distance function (HLSL), 299

distributing games, 24-25

DOS, 8

dot function (HLSL), 299

Draw method, 27, 77, 328, 406, 420, 709

AIDemo program, 377

cel animation, 198

GameStateDemo project, 373

particle system demo, 457-458

particle system engines, 449-450

radar, creating, 502

split screens, 108

tunnel vision game, 479-480, 488, 493

DrawableGameComponent class, 347

DrawIndexedPrimitives,
DrawUserIndexedPrimitives versus, 74-76

drawing

2D text, 189

enemies (2D games), 235-240

heroes (2D games), 230-235

multiple sprites from one texture demo,
177-179

DrawMessage method, 568

DrawModel method, 117-119, 328, 421

AIDemo program, 376

DrawRectangle method, 76

tunnels, creating, 507

DrawScene method, split screens, 108

DrawUserIndexedPrimitives,
DrawIndexedPrimitives versus, 74-76

dual platform programming, 28-31

dxwebsetup.exe file, 15

demos746

E
E ratings, 724

effects, 63-64

blurred images, 319

cel animation, 199

chalk, 321

embossed images, 319

explosions, creating, 214-215

fading to color, 204-206

fire, creating, 206-214

grayscale, 320

negative images, 318

NightTime, 316-317

particle system demos, 455-458

particle systems, creating, 458-468

postprocessing, 316-317

rotation, 203

scaling, 203

sharpened images, 318-319

switching RGB values, 318

wavy, 321

elastic collisions, 332

embossed images, 319

enemies, drawing (2D games), 235-240

Enemy.cs, 673

EnemyManager drawable game
component, 503

Entries collection, 595

enumerations

AIState, 384

managing game state with, 346

PrimitiveType, 64

EvadePlayer method, 382, 682, 706

evading algorithm (EvadePlayer method), 382

exiting Spacewar project, 24

exp function (HLSL), 299

How can we make this index more useful? Email us at indexes@samspublishing.com

exp2 function (HLSL), 299

explosions

adding in 2D games, 246-251

creating, 214-215

extensions, debugging Content Pipeline
extensions, 167

extern modifier (HLSL), 295

F
faceforward function (HLSL), 300

fades, cross-fades (dissolve), 422-423

fading to color, 204-206

FadingState class, 368-369

FFP (Fixed Function Pipeline), 291

field force, 330

fields, storedTime, 509

files

AmbientTexture.fx, 307-310, 399

AssemblyInfo.cs, 25

DirectionalTexture.fx, 401-402

GameStateInterfaces.cs, 355-356

interfaces.cs, 349

NormalMapping.fx, 403

ParallaxMapping.fx, 407-409

point sprite, formatting, 452-455

point sprites, 452-455

ReliefMapping.fx, 411-413

.xnb file extension, 114

final velocities, 333

CollisionDemo program, 338

FindColorIndex method, 210

FindWinner method, 661-662

FinishSavingHighScore method, 518

FinishSavingHighScore method 747

finite state machines (FSMs), 343

AIState enumerated type, 384

conditions, 386-387

constants, 385-386

creating, 384-387

properties, 384

switch statement, 385

fire, 428-434

creating, 206-214

FireDemo, Zune, 260-262

first person cameras, 102-104

FirstPersonCamera class, Update method,
102-104

Fixed Function Pipeline (FFP), 291

flags, Game.IsActive, 722

floor function (HLSL), 300

fmod function (HLSL), 300

fonts

bitmap fonts, creating, 188

TrueType fonts, 187

importing, 188

force, 330-331

formatting

game states, 471-472, 605-630

games

adding cameras, 495-499

adding crosshairs, 494-495

logic, 491-494

HUD, 510-511

level timers, 508-509

menus, 590-591

refactoring states, 591-605

network demos, 565-577

Zunes, 578-582

options menus, updating, 536-540

Particle classes, 436-441

particle system demos, 455-458

particle system effects, 458-468

particle system engines, 443-452

particle systems, updating, 541-542

point sprite effect files, 452-455

radar, 501-504

real-time multiplayer games

creating, 671

functionality, 672-688

networks, 689-709

prediction/smoothing, 709-716

templates, 672

scoring, 511-512

creating high score screens, 532-537

tracking, 512-523

sound, 542-544

start menus, updating, 528-533

states, updating, 539-541

templates, 583-590

title screens, updating, 525-529

tunnels, 504-508

turn-based multiplayer games, 631-632

adding, 652-665

creating, 669-670

functionality, 633-651

players joining/leaving, 665-668

templates, 632

VertexPointSprite, 442-443

Xbox LIVE Community Games (XBLCG), 719

artwork, 720

audio, 722

controls, 720-721

displays, 719

marketing, 725-726

menus, 721

networks, 723

profiles, 723

rich presence data, 724

finite state machines (FSMs)748

storage, 724

Trial Mode, 721-722

formulas

acceleration, 326

conservation of kinetic energy, 333

conservation of momentum, 332

final velocities, 333

force, 331

impulse, 332

kinetic energy, 332

momentum, 331

velocity, 326

frac function (HLSL), 300

framesBetweenPackets variable, 713

frexp function (HLSL), 300

FSMs (finite state machines), 343-344

creating, 384-387

AIState enumerated type, 384

conditions, 386-387

constants, 385-386

properties, 384

switch statement, 385

functionality

real-time multiplayer games, 672-688

turn-based multiplayer games, 633-651

functions

HLSL, 298-304

pixelShader, 454

fwidth function (HLSL), 300

G
game components, number of, 84

game components, creating, 69-72

Game Information page, 730

How can we make this index more useful? Email us at indexes@samspublishing.com

game logic, tunnel vision game, 473-486,
490, 494

AddEnemy method, 483

AddMissile method, 477

CheckCollisions method, 487

CollisionDetection method, 478

Draw method, 479-480, 488, 493

InitializeMissile method, 478

Load method, 476

LoadContent method, 476-482

PhysicalObject class, 474

StartLevelState, 491

StateChanged method, 488-491

UnloadContent method, 476-482

Update method, 493

UpdateEnemies method, 487

VertexDisplacement.fx, 489

game loops, definition of, 34

Game object, 84

game pads, 93-97

determining state of, 93-95

SetVibration method, 96-97

game services

creating, 83-86

GraphicsDevice, 84

game skeletons, setting up, 217-220

game state, 345

game-specific cameras, creating for tunnel
vision game, 495-499

Game.IsActive flag, 722

Game1 method, 372-373

Game1.cs code files, 612

GameComponent objects, creating, 69-72

GameManager.PushState method, 602

Gamer.SignedInGamers, 723

GamerJoinedEventHandler method, 569

GamerLeftEventHandler method, 627

GamerLeftEventHandler method 749

GamerServicesComponent, 589

games, 24

3D games, 471

game components, number of, 84

game services

creating, 83-86

GraphicsDevice, 84

game state, 345

GameComponent objects, creating, 69-72

Grand Theft Auto III, 345

improving, 544-545

network requirements, 552

hardware, 554

membership, 553-554

optimizing to run on Zune, 283-286

players, inviting to, 563-564

porting to run on Zune, 273-280

postprocessing

blurring images, 319

chalk effect, 321

effect code, 316-317

embossed images, 319

game code, 313-316

grayscale images, 320

negative images, 318

NightTime effect, 316-317

overview, 313

sharpening images, 318-319

switching RGB values, 318

wavy effect, 321

real-time multiplayer

creating, 671

functionality, 672-688

networks, 689-709

prediction/smoothing, 709-716

templates, 672

reviewing, 727-730

running in landscape mode (Zune), 280-283

selling, 727-737

Spacewar, 24

split screens, 104-108

states, formatting, 605-630

submitting, 732-735

turn-based multiplayers

adding, 652-665

creating, 669-670

design, 631-632

functionality, 633-651

players joining/leaving, 665-668

templates, 632

Games Catalog, 728

games states, creating in tunnel vision
game, 471

GameState class, 348-351

GameState.PlayerIndexInControl property, 601

GameStateDemo project, 348

BaseGameState class, 349, 356-357

ChangeState method, 354

ContainsState method, 354

Draw method, 373

FadingState class, 368-369

Game1 constructor, 373

GameState class, 348-351

GameStateInterfaces.cs file, 355-356

GameStateManager class, 351-352

IGameState interface, 348

interfaces.cs file, 349

LostGameState class, 367

OptionsMenuState class, 360-361

PlayingState class, 365-366

PushState method, 353-354

RemoveState method, 353

StartLevelState class, 361-363

StartMenuState class, 358-360

GamerServicesComponent750

TitleIntroState class, 357-358

WonGameState class, 367

YesNoDialogState class, 363

GameStateInterfaces.cs file, 355-356

GameStateManagementSample demo, 532

GameStateManager, 600

GameStateManager class, 351-352

ChangeState method, 354

ContainsState method, 354

PushState method, 353

GameStateManager component, 589

garbage collection, 39-41

GetIndexFromColor method, 699

GetNextPlayer method, 648, 668

GetService method, 85

GetState method

game pads, 93-94

keyboards, 89

GetTexture method, 503

GPU, passing application data to, 306-307

Grand Theft Auto III, 345

graphics cards, 200

GraphicsDevice game service, 84

gravity, 330

grayscale images, 320

Guid attribute (games), 26

Guide.IsTrialMode property, 721

Guide.ShowMarketplace method, 722

H
HandleInput method, 646, 680

hardware, requirements, 554

hardware abstraction layer, 8

hardware emulation layer, 8

headers, packets, 557

How can we make this index more useful? Email us at indexes@samspublishing.com

height maps, 407

HEL (hardware emulation layer), 8

HelpState.cs, 603

heroes, drawing (2D games), 230-235

High Level Shader Language, 292

high score screens, creating, 532-537

HLSL (High Level Shader Language), 292

AmbientTexture.fx demo, 307-310

application data, passing to GPU, 306-307

conditions, 304

intrinsic functions, 298-304

loops, 304

modifiers, 295

overview, 291-292

passes, 306

pixel shaders, 305

compared to vertex shaders, 291

postprocessing

blurring images, 319

chalk effect, 321

effect code, 316-317

embossed images, 319

game code, 313-316

grayscale images, 320

negative images, 318

NightTime effect, 316-317

overview, 313

sharpening images, 318-319

switching RGB values, 318

wavy effect, 321

semantics, 296-298

shader process flow, 293-294

structs, 296-298

techniques, 305-306

variables, types, 294-295

vertex displacement, 311-313

HLSL (High Level Shader Language) 751

vertex shaders, 304-305

compared to pixel shaders, 291

HLSLFireDemo project, 428-434

Hoare, Sir Tony, 34

HookSessionEvents method, 626

HUD, creating, 510-511

hybrid networks, 550-551

I
IGameState interface, 348

IGameStateManager interface, 600

images

blurring, 319

chalk effect, 321

color, switching RGB values, 318

embossed effect, 319

grayscale effect, 320

negative images, creating, 318

sharpening, 318-319

wavy effect, 321

implementing particle system engines, 443-452

importing TrueType fonts, 188

improving games, 544-545

impulse, 332

index buffers, 66-69

indexes

index buffers, 66-69

players, 720

inelastic collisions, 332

INetworkMenuState interface, 612

Initialization method, AIDemo program, 377

Initialize method, 543, 639

CollisionDemo program, 334

Particle class, 438-439

InitializeCamera method, 57, 87

InitializeDefaultHighScore method, 521

InitializeMissile method, tunnel vision
game, 478

InitializeValues method, 328

CollisionDemo program, 335

InitializeVertices method,
AdvancedTexturingDemo, 395

input devices

game pads, 93-97

determining state of, 93-95

SetVibration method, 96-97

keyboards, 89-93

camera reference direction, 89

determining state of, 89-91

spin rate, 91-93

mouse, 97-98

determining state of, 97-98

input handlers, updating, 134-139

Input namespace, 85

InputHandler class, 85, 598

InputHandler component, 589

InputHandler interface, 85

installing

DirectX 9 runtime, 15

DirectX runtime, 8-15

XNA Game Studio Express, 15-17

interfaces

IGameState, 348

IGameStateManager, 600

IInputHandler, 85

INetworkMenuState, 612

ISessionListState, 616

ISessionLobbyState, 620

interfaces.cs file, 349

interpolating, 715

intrinsic functions (HLSL), 298-304

inviting players to games, 563-564

HLSL (High Level Shader Language)752

IsActive condition, 579

ISessionListState interface, 616

ISessionLobbyState interface, 620

isfinite function (HLSL), 300

IsGameFinished property, 649

isinf function (HLSL), 300

isnan function (HLSL), 300

J
joining

games, 665-668

inviting players to, 563-564

XNA Creators Club, 20-21

JoinInProgressGame method, 628

K
KeepWithinBounds method, 677

AIDemo program, 379

keyboards, 89-93

camera reference direction, 89

determining state of, 89-91

spin rate, 91-93

keywords

matrix, 295

ref, 39

vector, 294

kinematics

acceleration, 326-330

force, 330-331

overview, 325-326

velocity, 326

kinetic energy, 332-333

How can we make this index more useful? Email us at indexes@samspublishing.com

L
landscape mode, running games in Zune,

280-283

LANs (local area networks), 552

laser scanners, creating with particle effects,
464-465

laser shields, creating with particle effects,
462-464

latency, 554-555, 711

layouts, menus

formatting, 590-591

refactoring states, 591-605

ldexpfunction (HLSL), 300

leaving games, 665-668

length function (HLSL), 300

lerp function (HLSL), 300

level timers, creating, 508-509

libraries, 86-88

lighting

3D, 391

ambient, 397-398

bump mapping, 403

creating custom vertex formats, 391-394

demos, 394-397

directional, 399-403

normal mapping, 403-407

parallax mapping, 407-410

relief mapping, 410-414

texture animation, 414-416

AdvancedTexturingDemo, InitializeVertices
method, 395

limitations of Zune, 286-287

LineList member (PrimitiveType
enumeration), 64

LineStrip member (PrimitiveType
enumeration), 64

lit function (HLSL), 300

LIVE, 552

753

Load method, tunnel vision game, 476

Load3DObject project, 113-119

LoadContent method, 418, 476-482, 506,
532, 640

particle system demo, 456

tunnel vision game, 476-482

loading

3D models, 113-119

screen demos, sprite batches, 176-177

local ad-hoc Wi-Fi gaming, 578-582

local area networks, 552

log function (HLSL), 300

log10 function (HLSL), 300

log2 function (HLSL), 300

logic, games

adding cameras, 495-499

adding crosshairs, 494-495

creating, 473-491, 493-494

loops

definition of, 34

HLSL, 304

losing 2D games, 243

loss, packet, 555-556

LostGameState class, 367

low function (HLSL), 301

M
managing game state

enumerated types, 346

GameStateDemo project, 348

BaseGameState class, 349, 356-357

ChangeState method, 354

ContainsState method, 354

Draw method, 373

FadingState class, 368-369

Game1 constructor, 373

GameState class, 348-351

GameStateInterfaces.cs file, 355-356

GameStateManager class, 351-352

IGameState interface, 348

interfaces.cs file, 349

LostGameState class, 367

OptionsMenuState class, 360-361

PlayingState class, 365-366

PushState method, 353-354

RemoveState method, 353

StartLevelState class, 361-363

StartMenuState class, 358-360

TitleIntroState class, 357-358

WonGameState class, 367

YesNoDialogState class, 363

goals of, 345-346

stacks, 346-348

managing memory, 39

mapping

bump, 403

normal, 403-407

normal mapping, 406

parallax, 407-410

relief, 410-414

relief mapping, 413

marketing Xbox LIVE Community Games
(XBLCG), 725-726

mass, 331

matrices

defining, 295

definition of, 56

matrix keyword, 295

max function (HLSL), 300

measuring performance

80-20 Rule, 34-35

benchmarks, creating, 35-37

Load method, tunnel vision game754

overview, 33-34

profiler tools, 35

on Xbox 360, 37-39

membership in XNA Creators Club,
purchasing, 20

membership requirements, 553-554

memory, 39

buffers

index buffers, 66-69

vertex buffers, 59-63

managing, 39

menus

configuring, 590-591

refactoring states, 591-605

options, updating, 536-540

start, updating, 528-533

Xbox LIVE Community Games (XBLCG), 721

MenuSelected method, 595, 620

MessageDialogState, 611

MessageDialogState.cs, 609

MessageType enums, 695

methods

AddService, 85

AddValue, 713

ApplyFriction, CollisionDemo program, 340

ApplySmoothing, 714

BeginDraw, 569

CancelMenu, 595, 620

ChangeState, 354

CheckCards, 646-648, 655

CheckCollisions, 544

ContainsState, 354

Create, 615

CreateEnemies, 683

CreateLookAt, 58

CreatePerspectiveFieldOfView, 57

CreateScale, 78-80

How can we make this index more useful? Email us at indexes@samspublishing.com

CreateTexture, 430, 527

CreateTranslation, 77, 313

Draw, 27, 77, 328, 406, 420, 709

AIDemo program, 377

GameStateDemo project, 373

split screens, 108

DrawMessage, 568

DrawModel, 117-119, 328, 421

AIDemo program, 376

DrawRectangle, 76

DrawScene, split screens, 108

EvadePlayer, 382, 682, 706

FindWinner, 661-662

FinishSavingHighScore, 518

Game1, 372-373

GameManager.PushState, 602

GamerJoinedEventHandler, 569

GamerLeftEventHandler, 627

GetIndexFromColor, 699

GetNextPlayer, 648, 668

GetService, 85

GetState

game pads, 93-94

keyboards, 89

GetTexture, 503

Guide.ShowMarketplace, 722

HandleInput, 646, 680

HookSessionEvents, 626

Initialization, AIDemo program, 377

Initialize, 543, 639

CollisionDemo program, 334

InitializeCamera, 57, 87

InitializeDefaultHighScore, 521

InitializeValues, 328

CollisionDemo program, 335

InitializeVertices,
AdvancedTexturingDemo, 395

methods 755

JoinInProgressGame, 628

KeepWithinBounds, 677

AIDemo program, 379

LoadContent, 418, 476-482, 506, 532, 640

MenuSelected, 595, 620

MoveRandomly, 382-384, 680

NetworkSession.Create, 612

NetworkSession.FindGamerById, 667

NetworkSession.Update, 653

OnInviteAccepted, 563

PausedState, 601

PlayerLeft, 628, 665

PowerCurve, 498

PushState, 353-354

ReadIncomingPackets, 653, 699

ReadInputs, 573

ReadNetworkPacket, 710

RemoveState, 353

SessionEndedEventHandler, 570, 626

SetCameraProperties, 686

SetPlayerColor, 698

SetPresenceInformation, 642, 684

SetupGame, 509, 642, 684

SetValue, 312

SetVibration, 96-97

ShuffleCards, 642

StartGame, 588

StartLevel, 509

StartLocalMultiplayerGame, 612

StateChanged, 347, 619, 626

TrackPlayer, 381-382, 682

TrackPlayerStraightLine, 380-381

UnloadContent, 28, 418, 431, 476-482,
502, 533

Update, 406, 419, 509

AccelerationDemo program, 329-330

CollisionDemo program, 336

first person cameras, 102-104

stationary cameras, 99-100

UpdateFade, 422

UpdateInput, 419

UpdateLocal, 710

UpdateLocalGamer, 572, 653, 691

UpdateNetworkSession, 573, 690, 699

UpdatePlayer, AIDemo program, 379

UpdateRemote, 714

UpdateState, 678

UpdateWipe, 426

VertexPositionNormalTexture, 62

virtual methods, sealing, 51

WasButtonPressed, 599

WasPressed, 598

WriteNetworkPacket, 703

micro-benchmark testing, 41-42, 46, 50-51

CheckPerformance class, 42

Program.cs file, 46

time measurement relationships, 50-51

Microsoft Permissive License (Ms-PL), 711

min function (HLSL), 300

missileManager.CheckCollision condition, 544

mod function (HLSL), 301

models, 3D models

loading, 113-119

texturing, 119-120

modifiers (HLSL), 295

momentum, 331-332

conservation of, 332

monitoring performance on Xbox 360, 37-38

motion dynamics, 325

mouse input devices, 97-98

determining state of, 97-98

methods756

MoveRandomly method, 382-384, 680

moveSpeed, 481

Ms-PL (Microsoft Permissive License), 711

mul function (HLSL), 301

MultiplayerMenuState, 609

MultiplayerMenuState.cs, 605

multiple content projects, 578

N
namespaces, Input, 85

negative images, creating, 318

.NET Compact Framework, 31-32

garbage collection, 40-41

.NET Framework, garbage collection, 39-40

network demos

creating, 565-577

Zunes, 578-582

NetworkGameTemplate, 583-590

NetworkMenuState.cs, 613

networks

architecture, 549-552

bandwidth constraints, 556-561

game states, 605-630

latency, 554-555

packet loss, 555-556

prediction, 562-563

real-time multiplayer games, 689-709

requirements, 552-554

smoothing, 562-563

Xbox LIVE Community Games (XBLCG), 723

NetworkSession.Create method, 612

NetworkSession.FindGamerById method, 667

NetworkSession.Update method, 653

NetworkSessionEndedEventArgs parameter, 570

NetworkSessionType, 615

How can we make this index more useful? Email us at indexes@samspublishing.com

Newton’s First Law of Motion, 331

Newton’s Second Law of Motion, 331

Newton’s Third Law of Motion, 332-333

NightTime effect, 316-317

noise function (HLSL), 301

normal mapping, 403-407

normalize function (HLSL), 301

NormalMapping.fx, 403

normals, 399

NProf, 35

O
object-oriented design, 344-345

objects

Camera, 498

collisions

coefficient of restitution, 333

CollisionDemo program, 334-341

conservation of kinetic energy, 333

conservation of momentum, 332

final velocities, 333

impulse, 332

kinetic energy, 332-333

momentum, 331-332

overview, 331

Game, 84

motion dynamics, 325

object-oriented design, 344-345

objects (3D), 55

OnInviteAccepted method, 563

optimizing

collision detection, 241

games to run on Zune, 283-286

optimizing 757

optimizing performance

collections, 51-52

micro-benchmark testing, 41-42, 46, 50-51

CheckPerformance class, 42

Program.cs file, 46

time measurement relationships, 50-51

overview, 41

virtual methods, sealing, 51

options menus

refactoring states, 591-605

updating, 536-540

OptionsMenuState class, 360-361, 536

P
packet loss, 555-556

packets

bandwidth constraints, 557

compression, 558-561

parallax mapping, 407-410

parallax scrolling, creating, 220-229

ParallaxMapping.fx file, 407-409

parameters

NetworkSessionEndedEventArgs, 570

pipeline processor, 165-167

Pareto, Vilfredo, 34

Particle class, creating, 436-437

capacity, 440

Initialize method, 438-439

ParticleSystemSettings.cs, 439-440

randomness, 440-442

Update method, 437

particle effects, creating, 458-468

bubbles, 461-462

colorful effects, 467-468

laser scanners, 464-465

laser shields, 462-464

poisonous gas, 465-467

rain, 458-461

particle system demo, 455-458

Draw method, 457-458

LoadContent method, 456

particle system engines, creating, 443-452

CreateParticle method, 448

Draw method, 449-450

PopulatePointSprites, 451

SetBlendModes method, 450

particle systems, 435-436, 541-542

updating, 541-542

VertexPointSprite, creating, 442-443

particles, VertexPointSprite, creating, 442-443

ParticleSystemSettings.cs, 439-440

passes (HLSL), 306

passing by reference, 39

passing by value, 38

PausedState method, 601

Peer Review Terms and Conditions page, 729

peer reviews, games, 727-730

peer-to-peer networks, 550

performance

of 3D objects, checking, 72-76

garbage collection, 39-41

measuring

80-20 Rule, 34-35

benchmarks, 35-37

overview, 33-34

profiler tools, 35

on Xbox 360, 37-38

memory management, 39

optimizing

collections, 51-52

micro-benchmark testing, 41-42, 46,
50-51

optimizing758

overview, 41

virtual methods, sealing, 51

overview, 33

PhysicalObject class, 328, 334

physics

collisions

coefficient of restitution, 333

CollisionDemo program, 334-341

conservation of kinetic energy, 333

conservation of momentum, 332

final velocities, 333

impulse, 332

kinetic energy, 332-333

momentum, 331-332

overview, 331

kinematics

acceleration, 326-330

force, 330-331

overview, 325-326

velocity, 326

mass, 331

Newton’s First Law of Motion, 331

Newton’s Second Law of Motion, 331

Newton’s Third Law of Motion, 332-333

pipeline processor parameters, 165-167

pixel input semantics, 296

pixel output semantics, 296

pixel shaders, 305

compared to vertex shaders, 291

pixelShader function, 454

Player class (AIDemo), 376

player index, defining for split screens, 106-107

Player object, 710

Player.cs, 635, 674

PlayerIndex.One, 720

playerIndexInControl, 599

PlayerLeft method, 628, 665

How can we make this index more useful? Email us at indexes@samspublishing.com

players

indexes, 720

turn-based multiplayer games, 665-668

PlayingState, 499

PlayingState class, 365-366, 510, 543, 715

PlayingState.cs, 584

PlayingState.cs file, 633-651

point sprites, 452-455

defined, 436

PointList member (PrimitiveType
enumeration), 64

poisonous gas, creating with particle effects,
465-467

PopulatePointSprites method, particle system
engines, 451

porting games to run in Zune, 273-280

Position property, 709

postprocessing

blurring images, 319

chalk effect, 321

defined, 311

effect code, 316-317

embossed images, 319

game code, 313-316

grayscale images, 320

negative images, 318

NightTime effect, 316-317

overview, 313

sharpening images, 318-319

switching RGB values, 318

wavy effect, 321

PowerCurve helper method, 498

prediction, 562-563

real-time multiplayer games, 709-716

Premium members, 728

prevHighlightedCard field, 634

PrimitiveType enumeration, 64

profiler tools, 35

profiler tools 759

profiles, Xbox LIVE Community Games
(XBLCG), 723

programming for dual platforms, 28-31

progress bars, sprite batches, 183-187

projection, 57-58

projects

AdvancedTexturingDemo, InitializeVertices
method, 395

AIDemo, 375-380

Draw method, 377

DrawModel method, 376

Initialization method, 377

KeepWithinBounds method, 379

Player class, 376

private member fields, 376

skybox, 375

sphere member field, 375

UpdatePlayer method, 379

demo program (Xbox 360), 25-28

fire, 428-434

GameStateDemo, 348

BaseGameState class, 349, 356-357

ChangeState method, 354

ContainsState method, 354

Draw method, 373

FadingState class, 368-369

Game1 constructor, 373

GameState class, 348-351

GameStateInterfaces.cs file, 355-356

GameStateManager class, 351-352

IGameState interface, 348

interfaces.cs file, 349

LostGameState class, 367

OptionsMenuState class, 360-361

PlayingState class, 365-366

PushState method, 353-354

RemoveState method, 353

StartLevelState class, 361, 363

StartMenuState class, 358-360

TitleIntroState class, 357-358

WonGameState class, 367

YesNoDialogState class, 363

libraries, creating, 86-88

Load3DObject, 114-119

multiple content, 578

NetworkGameTemplate, 583-590

programming for dual platforms, 28-31

Spacewar project

creating, 19

deploying to Xbox 360, 24

distributing, 24-25

exiting, 24

Spacewar Windows Start Kit project

compiling and running, 18

creating, 17

TransitionsDemo, 417-422

cross-fade (dissolve), 422-423

directional wipes, 423-428

XNAPerformanceChecker, 42-46

properties

AlwaysDisplay, 536

GameState.PlayerIndexInControl, 601

Guide.IsTrialMode, 721

IsGameFinished, 649

Position, 709

ReadyToCheckCards, 646

Velocity, 709

purchasing XNA Creators Club memberships,
20-21

PushState method, 353-354

profiles, Xbox LIVE Community Games (XBLCG)760

Q
Quick Match feature, 723

R
radar

creating, 501-503

Draw method, 502

radian function (HLSL), 301

rain, creating with particle effects, 458-461

random movement algorithm (MoveRandomly
method), 382-384

randomness, particle systems, 440-442

RBG values, switching, 318

ReadIncomingPackets method, 653, 699

ReadInputs method, 573

ReadNetworkPacket method, 710

ReadyToCheckCards property, 646

real-time multiplayer games

creating, 671

functionality, 672-688

networks, 689-709

prediction/smoothing, 709-716

templates, 672

ref keyword, 39

refactoring menu states, 591-605

reference, passing by, 39

referencing libraries, 88

reflect function (HLSL), 301

reflief mapping, 410-414

ReliefMapping.fx, 411

ReliefMapping.fx file, 413

reminders, storing, 447

RemoveState method, 353

How can we make this index more useful? Email us at indexes@samspublishing.com

removing players, 668

render targets, configuring, 502

requirements, networks, 552

hardware, 554

membership, 553-554

restitution, coefficient of, 333

reviewing games, 727-730

rich presence data, Xbox LIVE Community
Games (XBLCG), 724

right-handed coordinate systems, 60

RollingAverage.cs, 711

RotateAndScaleDemo, 201-202

blending mode example, 203

rotating objects

definition of, 56

example, 79-80

rotation, RotateAndScaleDemo, 201-202

blending mode example, 203

round function (HLSL), 301

rsqrt function (HLSL), 301

running Spacewar Windows Start Kit project, 18

S
saturate function (HLSL), 301

save state modes, sprites, 174-175

scaling

RotateAndScaleDemo, 201-202

RotateAndScaleDemo blending mode
example, 203

sprites, 173

scaling objects

definition of, 56

example, 76-78

scoring

adding to tunnel vision game, 511-512

high score screens, creating, 532-537

scoring 761

tracking high scores, tunnel vision game,
512-516, 523

scrolling, parallax scrolling, 220-229

sealing virtual methods, 51

selling games, 727-737

semantics (HLSL), 296-298

servers, 549

services (game)

creating, 83-86

GraphicsDevice, 84

SessionEndedEventHandler method, 570, 626

SessionListState.cs, 616

SessionLobbyState.cs, 620

SetBlendModes method, particle system
engines, 450

SetCameraProperties method, 686

SetPlayerColor method, 698

SetPresenceInformation method, 642, 684

SetupGame method, 509, 642, 684

SetValue method, 312

SetVibration method, 96-97

The 7 Habits of Highly Effective People, 33

shaders

AmbientTexture.fx demo, 307-310

application data, passing to GPU, 306-307

definition of, 291

passes, 306

pixel shaders, 305

compared to vertex shaders, 291

process flow, 293-294

techniques, 305-306

vertex displacement, 311-313

vertex shaders, 304-305

compared to pixel shaders, 291

sharpening images, 318-319

ShuffleCards method, 642

sign function (HLSL), 301

SignedInGamer.SignedOut, 723

SimpleNetworkDemo, 565-577

Zunes, 578-582

sin function (HLSL), 301

sincos function (HLSL), 301

sinh function (HLSL), 301

size of textures, 208

skybox compilers, creating, 160-161

skybox content objects, creating, 152

skybox processors, creating, 152, 157-160

skybox readers, creating, 162-163

skyboxes

adding to tunnel vision game, 472

AIDemo program, 375

creating, 151-152

skybox compilers, 160-161

skybox content objects, 152

skybox processors, 152, 157-160

skybox readers, 162-163

using in games, 163-165

smoothing, 562-563

real-time multiplayer games, 709-716

smoothstep function (HLSL), 301

software

DirectX runtime, installing, 15

Visual C# Express, installing, 11-14

sort modes

sprite batch demos, 179-183

sprites, 173-174

sound banks, creating, 125-126

sound demos, creating, 146-149

sound managers, 139, 145-146

sounds

adding, 542-544

in 2D games, 251

sound banks, creating, 125-126

sound demos, creating, 146-149

scoring762

variations, 126-133

wave banks, creating, 124

XACT (Microsoft Cross-Platform Audio
Creation Tool), 124

Spacewar project

creating, 19

deploying to Xbox 360, 24

distributing, 24-25

exiting, 24

Spacewar Windows Start Kit project

compiling and running, 18

creating, 17

special effects

fire, 428-434

transitions, 417-421

cross-fade (dissolve), 422-423

directional wipes, 423-428

TransitionsDemo project, 422

spin rate, 91-93

splash screen demos, sprite batches, 176-177

split screens, 104-108

Draw method, 108

DrawScene method, 108

player index, 106-107

viewports, defining, 105-106

sprite batches, 173

blend and sort mode demos, 179-183

drawing multiple sprites from one texture
demo, 177-179

progress bar demo, 183-187

splash or loading screen demos, 176-177

SpriteFont, 473

sprites, 171-172

2D text, drawing, 189

blend mode, 173

How can we make this index more useful? Email us at indexes@samspublishing.com

fonts

bitmap fonts, creating, 188

TrueType fonts, 187

TrueType fonts, importing, 188

point sprites, 452-455

defined, 436

save state modes, 174-175

scaling, 173

sort modes, 173-174

stacks

definition of, 346

GameStateDemo project, 348

BaseGameState class, 349, 356-357

ChangeState method, 354

ContainsState method, 354

Draw method, 373

FadingState class, 368-369

Game1 constructor, 373

GameState class, 348-351

GameStateInterfaces.cs file, 355-356

GameStateManager class, 351-352

IGameState interface, 348

interfaces.cs file, 349

LostGameState class, 367

OptionsMenuState class, 360-361

PlayingState class, 365-366

PushState method, 353-354

RemoveState method, 353

StartLevelState class, 361-363

StartMenuState class, 358-360

TitleIntroState class, 357-358

WonGameState class, 367

YesNoDialogState class, 363

overview, 346-348

stacks 763

start menus

formatting, 590-591

refactoring states, 591-605

updating, 528-533

StartGame method, 588

StartLevel method, 509

StartLevelState, tunnel vision game, 491

StartLevelState class, 361-363

StartLocalMultiplayerGame method, 612

StartMenuState class, 358-360

StartMenuState.cs, 595

StateChanged method, 347, 619, 626

tunnel vision, 491

tunnel vision game, 488

statements, using, 456, 504

states

adding, 709

FSMs (finite state machines), 343

creating, 384-387

of game pads, 93-95

games

creating, 471-472

formatting, 605-630

of keyboard, 89-91

of mouse input devices, 97-98

PlayingState, 499

switching between (2D games), 229-230

updating, 539-541

states, managing

enumerated types, 346

GameStateDemo project, 348

BaseGameState class, 349, 356-357

ChangeState method, 354

ContainsState method, 354

Draw method, 373

FadingState class, 368-369

Game1 constructor, 373

GameState class, 348-351

GameStateInterfaces.cs file, 355-356

GameStateManager class, 351-352

IGameState interface, 348

interfaces.cs file, 349

LostGameState class, 367

OptionsMenuState class, 360-361

PlayingState class, 365-366

PushState method, 353-354

RemoveState method, 353

StartLevelState class, 361-363

StartMenuState class, 358-360

TitleIntroState class, 357-358

WonGameState class, 367

YesNoDialogState class, 363

goals of, 345-346

stacks

definition of, 346

overview, 346-348

static modifier (HLSL), 295

stationary cameras, 98-100

step function (HLSL), 301

storage

reminders, 447

Xbox LIVE Community Games (XBLCG), 724

storedTime, 715

storedTime field, 509

structs (HLSL), 296-298

structures, VertexPositionNormalTexture
struct, 393

submitting games, 732-735

subscribing to XNA Creators Club, 20-21

Summary page, 731

switching RGB values, 318-319

switching between states (2D games), 229-230

swizzling, 294

System Link, 552

System.Diagnostics class, 50

stacks764

T
tan function (HLSL), 301

tangent binormal normal (TBN), 406

tanh function (HLSL), 301

targets, render targets, 502

TBN (tangent binormal normal), 406

TCP (Transmission Control Protocol), 555

techniques (HLSL), 305-306

templates

creating, 583-590

real-time multiplayer games, 672

turn-based multiplayer games, 632

testing, micro-benchmark testing, 41-42, 46,
50-51

CheckPerformance class, 42

Program.cs file, 46

time measurement relationships, 50-51

tex1D function (HLSL), 302

tex1Dgrad function (HLSL), 302

tex1Dlod function (HLSL), 302

tex1Dproj function (HLSL), 302

tex2D function (HLSL), 302

tex2Dbias function (HLSL), 302

tex2Dgrad function (HLSL), 302

tex2Dlod function (HLSL), 302

tex2Dproj function (HLSL), 302

tex3D function (HLSL), 302

tex3Dbias function (HLSL), 303

tex3Dgrad function (HLSL), 303

tex3Dlod function (HLSL), 303

tex3Dproj function (HLSL), 303

texCUBE function (HLSL), 303

texCUBEbias function (HLSL), 303

texCUBEgrad function (HLSL), 303

texCUBEproj function (HLSL), 303

text, updating title screens, 525-529

How can we make this index more useful? Email us at indexes@samspublishing.com

Texture2D class, 65

Texture2D.SetData, 213

textures, 65-66

3D lighting, 391

ambient, 397-398

animation, 414-416

bump mapping, 403

creating custom vertex formats, 391-394

demos, 394-397

directional, 399-403

normal mapping, 403-407

parallax mapping, 407-410

relief mapping, 410-414

AdvancedTexturingDemo, InitializeVertices
method, 395

normal mapping, 406

relief mapping, 413

size of, 208

space, 405

texturing 3D models, 119-120

time measurement relationships, 50-51

timeDelta, 711

timers

level timers, creating, 508-509

for vertex displacement, 311-312

title screens, updating, 525-529

TitleIntroState, 720-723

TitleIntroState class, 357-358

tracking high scores, 512-523

TrackPlayer method, 381-382, 682

TrackPlayerStraightLine method, 380-381

transformations, 76

definition of, 56

multiple transformations, 57

rotation

definition of, 56

example, 79-80

transformations 765

scaling

definition of, 56

example, 76-78

translation, definition of, 56

transitions, 417-421

adding in 2D games, 243-246

cross-fade (dissolve), 422-423

directional wipes, 423-428

TransitionsDemo project, 422

TransitionsDemo project, 417-422

cross-fade (dissolve), 422-423

directional wipes, 423-428

translation, definition of, 56

Transmission Control Protocol (TCP), 555

transpose function (HLSL), 303

Trial Mode, Xbox LIVE Community Games
(XBLCG), 721-722

TriangleFan member (PrimitiveType
enumeration), 64

TriangleList member (PrimitiveType
enumeration), 64

TriangleStrip member (PrimitiveType
enumeration), 64

troubleshooting

bandwidth constraints, 556-561

latency, 554-555

packet loss, 555-556

TrueType fonts, 187

importing, 188

try/catch block, 616

tunnel vision game, 471

compiling, 472

crosshairs, creating, 494-495

game logic, 473-486, 490, 494

AddEnemy method, 483

AddMissile method, 477

CheckCollisions method, 487

CollisionDetection method, 478

Draw method, 479-480, 488, 493

InitializeMissile method, 478

Load method, 476

LoadContent method, 476-482

PhysicalObject class, 474

StartLevelState, 491

StateChanged method, 488, 491

UnloadContent method, 476-482

Update method, 493

UpdateEnemies method, 487

VertexDisplacement.fx, 489

game states, creating, 471

game-specific cameras, creating, 495-499

HUD, creating, 510-511

level timers, creating, 508-509

radar, creating, 501-503

scoring

adding, 511-512

tracking high scores, 512-516, 523

skyboxes, adding, 472

tunnels, creating, 504-508

tunnels, creating, 504-508

turn-based multiplayer games

adding, 652-665

creating, 669-670

design, 631-632

functionality, 633-651

players joining/leaving, 665-668

templates, 632

types (HLSL), 294-295

U
UDP (User Datagram Protocol), 555

uniform modifier (HLSL), 295

uniform modifier (HLSL)766

unit matrix, 56

UnloadContent method, 28, 418, 431, 476-482,
502, 533

tunnel vision game, 476-482

Update method, 406, 419, 509

AccelerationDemo program, 329-330

CollisionDemo program, 336

first person cameras, 102-104

Particle class, 437

progress bar, sprite batches, 186

stationary cameras, 99-100

tunnel vision game, 493

UpdateEnemies method, 487

UpdateEnemyPosition, 680

UpdateFade method, 422

UpdateInput method, 419

UpdateLocal method, 710

UpdateLocalGamer method, 572, 653, 691

UpdateNetworkSession method, 573, 690, 699

UpdatePlayer method, AIDemo program, 379

UpdateRemote method, 714

UpdateSinglePlayer, 680

UpdateState method, 678

UpdateStateMenu method, 278

UpdateWipe method, 426

updating

input handlers, 134-139

options menus, 536-540

particle systems, 541-542

start menus, 528-533

states, 539-541

title screens, 525-529

XELibrary, Zune, 258-260

User Datagram Protocol (UDP), 555

using statements, 456, 504

Utility class, 441

How can we make this index more useful? Email us at indexes@samspublishing.com

V
value abs function (HLSL), 299

value sqrt function (HLSL), 301

value, passing by, 38

variables

passing by reference, 39

passing by value, 38

variables (HLSL), types, 294-295

variations, 126-133

vector keyword, 294

Vector3 types, 715

vectors

normals, 399

overview, 55-56

velocity, 326

final velocities, 333

CollisionDemo program, 338

Velocity property, 709

vertex buffers, 59-63

vertex displacement, 311-313

CreateTranslation method, 313

defined, 311

SetValue method, 312

timers, 311-312

vertex formats, creating custom, 391-394

vertex output semantics, 296

vertex shaders, 304-305

compared to pixel shaders, 291

VertexDisplacement.fx, tunnel vision game, 489

VertexPointSprite, creating, 442-443

VertexPositionNormalTexture method, 62

VertexPositionNormalTexture struct, 393

vertices

overview, 55

vertex buffers, 59-63

vertices 767

vertex displacement, 311-313

CreateTranslation method, 313

SetValue method, 312

timers, 311-312

view (camera), 58-59

viewing Xbox LIVE Community Games
(XBLCG), 719

viewports

cameras, 709

defining for split screens, 105-106

virtual methods, sealing, 51

Visual C# Express, installing, 10

visualization demo, Zune, 262-268

visualizations, Zune, 268-271

voice, bandwidth constraints, 557

volatile modifier (HLSL), 295

W
WasButtonPressed method, 599

WasPressed method, 598

wave banks, creating, 124

wavy effect, 321

Windows

garbage collection, 39-40

mouse input devices, 97-98

determining state of, 97-98

network demos, creating, 565-577

winning 2D games, 243

wipes, directional, 423-428

WonGameState, 715

WonGameState class, 367

world, 59

WriteNetworkPacket method, 703

X
XACT (Microsoft Cross-Platform Audio Creation

Tool), 124

XACT projects, 543

Xbox, 360

connecting to computer, 21-23

debugging, 25

deploying, 23-24

deploying to, 24

garbage collection, 40-41

monitoring performance on, 37-38

.NET Compact Framework on, 31-32

network demos, creating, 565-570

test demo program, 25-28

Xbox LIVE Community Games (XBLCG)

artwork, 720

audio, 722

controls, 720-721

creating, 719

displays, configuring, 719

marketing, 725-726

menus, 721

networks, 723

profiles, 723

rich presence data, 724

storage, 724

Trial Mode, 721-722

Xbox LIVE Marketplace, 727-737

XELibrary, updating for Zune, 258-260

XNA Creators Club, subscribing to, 20-21

XNA Framework

Content Pipeline

Content Compiler, 113

Content DOM, 113

Content Manager, 114

vertices768

loading 3D models, 113-119

overview, 113

texturing 3D models, 119-120

definition of, 9

XNA Game device Center application, deploying
Zune, 258

XNA Game Studio Express, installing, 15-17

XNAPerformanceChecker project, 42-46

.xnb file extension, 114

Y
YesNoDialogState class, 363

Z
z buffer, 118

Zune

deploying, 258

DisplayAlbumArtDemo, 255-258

FireDemo, 260-262

games

optimizing, 283-286

running in landscape mode, 280-283

limitations of, 286-287

local ad-hoc Wi-Fi gaming, 578-582

porting games to run on, 273-280

visualization demo, 262-268

visualizations, creating, 268-271

XELibrary, updating, 258-260

ZuneSoundManager.cs, 274-276

How can we make this index more useful? Email us at indexes@samspublishing.com

769

	Introduction
	1 Introducing the XNA Framework and XNA Game Studio
	What Is the XNA Framework?
	Installing Visual C# 2008 Express
	Installing the DirectX Runtime
	Installing XNA Game Studio
	Creating the Platformer Projects
	Compiling and Running Platformer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

