

Associate
Publisher
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Heather Wilkins
Editorial Services

Indexer
Heather McNeil

Proofreader
Matt Purcell

Technical Editor
Steve Cvar

Publishing
Coordinator
Olivia Basegio

Designer
Gary Adair

Composition
Bronkella Publishing

This Book Is Safari Enabled
The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code
samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition

. Complete the brief registration form

. Enter the coupon code SNRG-H3DQ-9TLV-YNQV-Q3VU

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email customer-
service@safaribooksonline.com.

Sams Teach Yourself SQL®in 24 Hours, Fourth Edition
Copyright © 2008 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33018-6
ISBN-10: 0-672-33018-0

Library of Congress Cataloging-in-Publication Data
Stephens, Ryan K.

Sams teach yourself SQL in 24 hours / Ryan Stephens, Ron Plew, Arie D.
Jones. -- 4th ed.

p. cm. -- (Sams teach yourself in 24 hours)
On t.p. of earlier ed. Ronald R. Plew's name appeared first.
Includes indexes
ISBN 978-0-672-33018-6 (pbk.)

1. SQL (Computer program language) I. Plew, Ronald R. II. Jones,
Arie. III. Plew, Ronald R. Sams teach yourself SQL in 24 hours. IV.
Title.

QA76.73.S67P554 2008
005.75'6--dc22

2008016630

Printed in the United States of America

First Printing May 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

http://www.informit.com/onlineedition

Introduction

Welcome to the world of relational databases and SQL! This book is written for those self-

motivated individuals out there who would like to get an edge on relational database tech-

nology by learning the Structured Query Language—SQL. This book was written primarily

for those with very little or no experience with relational database management systems

using SQL. This book also applies to those who have some experience with relational data-

bases but need to learn how to navigate within the database, issue queries against the data-

base, build database structures, manipulate data in the database, and more. This book is

not geared toward individuals with significant relational database experience who have

been using SQL on a regular basis.

What This Book Intends to Accomplish
This book was written for individuals with little or no experience using SQL or those who

have used a relational database, but their tasks have been very limited within the realm of

SQL. Keeping this thought in mind, it should be noted up front that this book is strictly a

learning mechanism, and one in which we present the material from ground zero and pro-

vide examples and exercises with which to begin to apply the material covered. This book is

not a complete SQL reference and should not be relied on as a sole reference of SQL.

However, this book combined with a complete SQL command reference could serve as a

complete solution source to all of your SQL needs.

What We Added to This Edition
This edition contains the same content and format as the first through third editions. We

have been through the entire book, searching for the little things that could be improved to

produce a better edition. We have also added concepts and commands from the new SQL

standard, SQL:2003, to bring this book up to date, making it more complete and applicable

to today’s SQL user. The most important addition was the use of MySQL for hands-on exer-

cises. By using an open source database such as MySQL, all readers have equal opportunity

for participation in hands-on exercises.

What You Need
You might be wondering, what do I need to make this book work for me? Theoretically, you

should be able to pick up this book, study the material for the current hour, study the

examples, and either write out the exercises or run them on a relational database server.

However, it would be to your benefit to have access to a relational database system to

which to apply the material in each lesson. The relational database to which you have

access is not a major factor because SQL is the standard language for all relational databas-

es. Some database systems that you can use include Oracle, Sybase, Informix, Microsoft SQL

Server, Microsoft Access, MySQL, and dBASE.

Conventions Used in This Book
For the most part, we have tried to keep conventions in this book as simple as possible.

Many new terms are printed in italics.

In the listings, all code that you type in (input) appears in boldface monospace. Output

appears in standard monospace. Any code that is serving as a placeholder appears in

italic monospace.

SQL code and keywords have been placed in uppercase for your convenience and general

consistency. For example:

SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

9 rows selected.

The following special design features enhance the text:

There are syntax boxes to draw your attention to the syntax of the commands discussed

during each hour.

SELECT [ALL | * | DISTINCT COLUMN1, COLUMN2]
FROM TABLE [, TABLE2];

2

Sams Teach Yourself SQL in 24 Hours

Notes are provided to expand on the material covered in each hour of the book.

Cautions are provided to warn the reader about “disasters” that could occur and
certain precautions that should be taken.

Tips are also given to supplement the material covered during appropriate hours
of study.

ANSI SQL and Vendor Implementations
One thing that is difficult about writing a book like this on standard SQL is that although

there is an ANSI standard for SQL, each database vendor has its own implementation of

SQL. With each implementation come variations from the actual standard, enhancements

to the standard, and even missing elements from the standard.

The expected question is, “Because there is an ANSI standard for SQL, what is so difficult

about teaching standard SQL?” The answer to this question begins with the statement that

ANSI SQL is just that: a standard. ANSI SQL is not an actual language. To teach you SQL,

we had to come up with examples and exercises that involve using one or more implemen-

tations of SQL. Because each vendor has its own implementation with its own specifications

for the language of SQL, these variations, if not handled properly in this book, could actual-

ly cause confusion concerning the syntax of various SQL commands. Therefore, we have

tried to stay as close to the ANSI standard as possible, foremost discussing the ANSI stan-

dard and then showing examples from different implementations that are very close, if not

the same, as the exact syntax that ANSI prescribes.

We have, however, accompanied examples of variations among implementations with

notes for reminders and tips on what to watch out for. Just remember this: Each implemen-

tation differs slightly from other implementations. The most important thing is that you

understand the underlying concepts of SQL and its commands. Although slight variations

do exist, SQL is basically the same across the board and is very portable from database to

database, regardless of the particular implementation.

Understanding the Examples and Exercises
We have chosen to use MySQL for most of the examples in this book due to its high compli-
ance to the ANSI standard; however, we have also shown examples from Oracle, Sybase,
Microsoft SQL Server, and dBASE.

Introduction

3

By the
Way

Watch
Out!

Did you
Know?

The use of MySQL for hands-on exercises was chosen so that all readers may participate,
with minimal confusion in converting SQL syntax into the proper syntax of the database
each reader is using. MySQL was chosen for exercises because it is an open source database
(free), it is easy to install, and its syntax is very similar to that of the ANSI Standard.
Additionally, MySQL is compatible with most operating system platforms.

In Appendix B, “Using MySQL for Exercises,” we show you how to obtain and install
MySQL. After it is installed on your computer, MySQL can be used for most of the exercises
in this book. Unfortunately, because MySQL is not fully ANSI SQL compliant, MySQL exer-
cises are not available for every subject.

As stated, some differences in the exact syntax exist among implementations of SQL. For
example, if you attempt to execute some examples in this book, you might have to make
minor modifications to fit the exact syntax of the implementation that you are using. We
have tried to keep all the examples compliant with the standard; however, we have inten-
tionally shown you some examples that are not exactly compliant. The basic structure for
all the commands is the same. To learn SQL, you have to start with an implementation
using practical examples. For hands-on practice, we use MySQL. If you have access to
another database implementation such as Oracle, we encourage its use for hands-on exer-
cises. You should be able to emulate the database and examples used in this book without
much difficulty. Any adjustments that you might have to make to the examples in this
book to fit your implementation exactly will only help you to better understand the syntax
and features of your implementation.

Good luck!

4

Sams Teach Yourself SQL in 24 Hours

HOUR 3

Managing Database Objects

In this hour, you learn about database objects: what they are, how they act, how they are

stored, and how they relate to one another. Database objects are the underlying backbone

of the relational database. These objects are logical units within the database that are

used to store information and are referred to as the back-end database. The majority of the

instruction during this hour revolves around the table, but keep in mind that there are

other database objects, many of which are discussed in later hours of study.

The highlights of this hour include:
. An introduction to database objects
. An introduction to the schema
. An introduction to the table
. A discussion of the nature and attributes of tables
. Examples for the creation and manipulation of tables
. A discussion of table storage options
. Concepts on referential integrity and data consistency

What Are Database Objects?
A database object is any defined object in a database that is used to store or reference data.

Some examples of database objects include tables, views, clusters, sequences, indexes, and

synonyms. The table is this hour’s focus because it is the primary and simplest form of

data storage in a relational database.

42 HOUR 3: Managing Database Objects

What Is a Schema?
A schema is a collection of database objects (as far as this hour is concerned—tables)

associated with one particular database username. This username is called the

schema owner, or the owner of the related group of objects. You may have one or

multiple schemas in a database. The user is only associated with the schema of the

same name and often the terms will be used interchangeably. Basically, any user

who creates an object has just created it in her own schema unless she specifically

instructs it to be created in another one. So, based on a user’s privileges within the

database, the user has control over objects that are created, manipulated, and delet-

ed. A schema can consist of a single table and has no limits to the number of

objects that it may contain, unless restricted by a specific database implementation.

Say you have been issued a database username and password by the database

administrator. Your username is USER1. Suppose you log on to the database and

then create a table called EMPLOYEE_TBL. According to the database, your table’s

actual name is USER1.EMPLOYEE_TBL. The schema name for that table is USER1,

which is also the owner of that table. You have just created the first table of a

schema.

The good thing about schemas is that when you access a table that you own (in

your own schema), you do not have to refer to the schema name. For instance, you

could refer to your table as either one of the following:

EMPLOYEE_TBL
USER1.EMPLOYEE_TBL

The first option is preferred because it requires fewer keystrokes. If another user were

to query one of your tables, the user would have to specify the schema, as follows:

USER1.EMPLOYEE_TBL

In Hour 20, “Creating and Using Views and Synonyms,” you learn about the distri-

bution of permissions so that other users can access your tables. You also learn

about synonyms, which allow you to give a table another name so you do not have

to specify the schema name when accessing a table. Figure 3.1 illustrates two

schemas in a relational database.

What Is a Schema? 43

There are, in Figure 3.1, two user accounts in the database that own tables: USER1

and USER2. Each user account has its own schema. Some examples for how the two

users can access their own tables and tables owned by the other user follow:

USER1 accesses own TABLE1: TABLE1

USER1 accesses own TEST: TEST

USER1 accesses USER2’s TABLE10: USER2.TABLE10

USER1 accesses USER2’s TEST: USER2.TEST

USER1

test

table1

table2

USER2

test

table10

table20

Schema Owners

DATABASE

Schema Objects

(Tables)

FIGURE 3.1
Schemas in a
database.

In this example, both users have a table called TEST. Tables can have the same

names in a database as long as they belong to different schemas. If you look at it

this way, table names are always unique in a database because the schema owner is

actually part of the table name. For instance, USER1.TEST is a different table than

USER2.TEST. If you do not specify a schema with the table name when accessing

tables in a database, the database server looks for a table that you own by default.

That is, if USER1 tries to access TEST, the database server looks for a USER1-owned

table named TEST before it looks for other objects owned by USER1, such as syn-

onyms to tables in another schema. Hour 21, “Working with the System Catalog,”

helps you fully understand how synonyms work. You must be careful to understand

the distinction between objects in your own schema and those objects in another

schema. If you do not provide a schema when performing operations that alter the

table, such as a DROP command, the database will assume that you mean a table in

your own schema. This could possibly lead to you unintentionally dropping the

wrong object. So you must always pay careful attention as to which user you are

currently logged into the database with.

44 HOUR 3: Managing Database Objects

Every database server has rules concerning how you can name objects and ele-
ments of objects, such as field names. You must check your particular implemen-
tation for the exact naming conventions or rules.

A Table: The Primary Storage for Data
The table is the primary storage object for data in a relational database. In its sim-

plest form, a table consists of row(s) and column(s), both of which hold the data. A

table takes up physical space in a database and can be permanent or temporary.

Columns
A field, also called a column in a relational database, is part of a table that is

assigned a specific data type; a field should be named to correspond with the type of

data that will be entered into that column. Columns can be specified as NULL or NOT

NULL, meaning that if a column is NOT NULL, something must be entered. If a col-

umn is specified as NULL, nothing has to be entered.

Every database table must consist of at least one column. Columns are those ele-

ments within a table that hold specific types of data, such as a person’s name or

address. For example, a valid column in a customer table might be the customer’s

name. Figure 3.2 illustrates a column in a table.

By the
Way

FIGURE 3.2
An Example of a
Column

Generally, an object name must be one continuous string and can be limited to the

number of characters used according to each implementation of SQL. It is typical to

use underscores with names to provide separation between characters. For example,

a column for the customer’s name can be named CUSTOMER_NAME instead of

CUSTOMERNAME.

Additionally, data can be stored as either uppercase or lowercase for character-

defined fields. The case that you use for data is simply a matter of preference, which

should be based on how the data will be used. In many cases, data is stored in

A Table: The Primary Storage for Data 45

uppercase for simplicity and consistency. However, if data is stored in different case

types throughout the database (uppercase, lowercase, and mixed case), functions

can be applied to convert the data to either uppercase or lowercase if needed. These

functions will be covered in Hour 11, “Restructuring the Appearance of Data.”

Be sure to check your implementation for rules when naming objects and other
database elements. Often database administrators will adopt a naming convention
that explains how to name the objects within the database so you can easily dis-
cern how they are used.

Rows
A row is a record of data in a database table. For example, a row of data in a cus-

tomer table might consist of a particular customer’s identification number, name,

address, phone number, fax number, and so on. A row is comprised of fields that

contain data from one record in a table. A table can contain as little as one row of

data and up to as many as millions of rows of data or records. Figure 3.3 illustrates

a row within a table.

By the
Way

FIGURE 3.3
Example of a
Table Row.

The CREATE TABLE Statement
The CREATE TABLE statement in SQL is used to create a table. Although the very act

of creating a table is quite simple, much time and effort should be put into plan-

ning table structures before the actual execution of the CREATE TABLE statement.

Carefully planning your table structure before implementation will save you from

having to reconfigure things after they are in production.

Some elementary questions need to be answered when creating a table:

. What type of data will be entered into the table?

. What will be the table’s name?

. What column(s) will compose the primary key?

46 HOUR 3: Managing Database Objects

. What names shall be given to the columns (fields)?

. What data type will be assigned to each column?

. What will be the allocated length for each column?

. Which columns in a table can be left blank?

After these questions are answered, the actual CREATE TABLE statement is simple.

The basic syntax to create a table is as follows:

CREATE TABLE table_name
(field1 data_type [not null],
field2 data_type [not null],
field3 data_type [not null],
field4 data_type [not null],
field5 data_type [not null]);

A semicolon is the last character in the previous statement. Most SQL implementa-

tions have some character that terminates a statement or submits a statement to the

database server. Oracle and MySQL use the semicolon. Transact-SQL has no such

requirement. This book uses the semicolon.

In this hour’s examples, we use the popular data types CHAR (constant-length char-
acter), VARCHAR (variable-length character), NUMBER (numeric values, decimal and
non-decimal), and DATE (date and time values).

Create a table called EMPLOYEE_TBL in the following example:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL);

Eight different columns make up this table. Notice the use of the underscore charac-

ter to break the column names up into what appears to be separate words (EMPLOYEE

ID is stored as EMP_ID). This is a technique that is used to make a table or column

name more readable. Each column has been assigned a specific data type and

length, and by using the NULL/NOT NULL constraint, you have specified which

columns require values for every row of data in the table. The EMP_PHONE is defined

as NULL, meaning that NULL values are allowed in this column because there might

By the
Way

A Table: The Primary Storage for Data 47

be individuals without a telephone number. The information concerning each col-

umn is separated by a comma, with parentheses surrounding all columns (a left

parenthesis before the first column and a right parenthesis following the informa-

tion on the last column).

Each record, or row of data, in this table would consist of the following:

EMP_ID, EMP_NAME, EMP_ST_ADDR, EMP_CITY, EMP_ST, EMP_ZIP, EMP_PHONE, EMP_PAGER

In this table, each field is a column. The column EMP_ID could consist of one

employee’s identification number or many employees’ identification numbers,

depending on the requirements of a database query or transactions. The column is a

vertical entity in a table, whereas a row of data is a horizontal entity.

NULL is a default attribute for a column; therefore, it does not have to be entered
in the CREATE TABLE statement. NOT NULL must always be specified.

Naming Conventions
When selecting names for objects, specifically tables and columns, the name should

reflect the data that is to be stored. For example, the name for a table pertaining to

employee information could be named EMPLOYEE_TBL. Names for columns should

follow the same logic. When storing an employee’s phone number, an obvious

name for that column would be PHONE_NUMBER.

Check your particular implementation for name length limits and characters that
are allowed; they could differ from implementation to implementation.

The ALTER TABLE Command
A table can be modified through the use of the ALTER TABLE command after that

table’s creation. You can add column(s), drop column(s), change column definitions,

add and drop constraints, and, in some implementations, modify table STORAGE val-

ues. The standard syntax for the ALTER TABLE command follows:

alter table table_name [modify] [column column_name][datatype|null not null]
[restrict|cascade]

[drop] [constraint constraint_name]
[add] [column] column definition

By the
Way

By the
Way

48 HOUR 3: Managing Database Objects

Modifying Elements of a Table
The attributes of a column refer to the rules and behavior of data in a column. You

can modify the attributes of a column with the ALTER TABLE command. The word

attributes here refers to the following:

. The data type of a column

. The length, precision, or scale of a column

. Whether the column can contain NULL values

The following example uses the ALTER TABLE command on EMPLOYEE_TBL to modi-

fy the attributes of the column EMP_ID:

ALTER TABLE EMPLOYEE_TBL MODIFY
EMP_ID VARCHAR(10);

Table altered.

The column was already defined as data type VARCHAR (a varying-length character),

but you increased the maximum length from 9 to 10.

Adding Mandatory Columns to a Table
One of the basic rules for adding columns to an existing table is that the column

you are adding cannot be defined as NOT NULL if data currently exists in the table.

NOT NULL means that a column must contain some value for every row of data in

the table. So, if you are adding a column defined as NOT NULL, you are contradict-

ing the NOT NULL constraint right off the bat if the preexisting rows of data in the

table do not have values for the new column.

There is, however, a way to add a mandatory column to a table:

1. Add the column and define it as NULL (the column does not have to contain a

value).

2. Insert a value into the new column for every row of data in the table.

3. After ensuring that the column contains a value for every row of data in the

table, you can alter the table to change the column’s attribute to NOT NULL.

Adding Auto-Incrementing Columns to a Table
Sometimes it is necessary to create a column that auto-increments itself in order to

give a unique sequence number for a particular row. This could be done for many

reasons, such as not having a natural key for the data or you would like to use a

A Table: The Primary Storage for Data 49

unique sequence number to sort the data. Creating an auto-incrementing column is

generally quite easy. In MySQL the implementation provides the SERIAL method to

produce a truly unique value for the table. Following is an example:

CREATE TABLE TEST_INCREMENT(
ID SERIAL,
TEST_NAME VARCHAR(20));

INSERT INTO TEST_INCREMENT(TEST_NAME)
VALUES (‘FRED’),(‘JOE’),(‘MIKE’),(‘TED’);

SELECT * FROM TEST_INCREMENT;

ID	TEST_NAME
1	FRED
2	JOE
3	MIKE
4	TED

Modifying Columns
There are many things to take into consideration when modifying existing columns

of a table. Following are some common rules for modifying columns:

. The length of a column can be increased to the maximum length of the given

data type.

. The length of a column can be decreased only if the largest value for that col-

umn in the table is less than or equal to the new length of the column.

. The number of digits for a number data type can always be increased.

. The number of digits for a number data type can be decreased only if the

value with the most number of digits for that column is less than or equal to

the new number of digits specified for the column.

. The number of decimal places for a number data type can either be increased

or decreased.

. The data type of a column can normally be changed.

Some implementations may actually restrict you from using certain ALTER TABLE

options. For example, you might not be allowed to drop columns from a table. To do

this, you would have to drop the table itself, and then rebuild the table with the

desired columns. You could run into problems by dropping a column in one table

that is dependent on a column in another table, or a column that is referenced by a

column in another table. Be sure to refer to your specific implementation documen-

tation.

50 HOUR 3: Managing Database Objects

Take heed when altering and dropping tables. If logical or typing mistakes are
made when issuing these statements, important data can be lost.

Creating a Table from an Existing Table
A copy of an existing table can be created using a combination of the CREATE

TABLE statement and the SELECT statement. The new table has the same column

definitions. Any or all columns can be selected. New columns that are created via

functions or a combination of columns automatically assume the size necessary to

hold the data. The basic syntax for creating a table from another table is as follows:

create table new_table_name as
select [*|column1, column2]
from table_name
[where]

Notice some new keywords in the syntax, particularly the SELECT keyword. SELECT

is a database query and is discussed in more detail in Chapter 7, “Introduction to

Database Query.” However, it is important to know that you can create a table

based on the results from a query.

First, we do a simple query to view the data in the PRODUCTS_TBL table.

You will create the tables that you see in these examples at the end of this hour
in the “Exercises” section. In Hour 5, “Manipulating Data,” you will populate the
tables you create in this hour with data.

select * from products_tbl;

PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

SELECT * selects data from all fields in the given table. The * represents a com-
plete row of data, or record, in the table.

Watch
Out!

Watch
Out!

Watch
Out!

A Table: The Primary Storage for Data 51

Next, create a table called PRODUCTS_TMP based on the previous query:

create table products_tmp as
select * from products_tbl;

Table created.

Now, if you run a query on the PRODUCTS_TMP table, your results appear the same as

if you had selected data from the original table.

select *
from products_tmp;

PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

When creating a table from an existing table, the new table takes on the same
STORAGE attributes as the original table.

Dropping Tables
Dropping a table is actually one of the easiest things to do. When the RESTRICT

option is used and the table is referenced by a view or constraint, the DROP state-

ment returns an error. When the CASCADE option is used, the drop succeeds and all

referencing views and constraints are dropped. The syntax to drop a table follows:

drop table table_name [restrict|cascade]

In the following example, you drop the table that you just created:

drop table products.tmp;

Table dropped.

Whenever dropping a table, be sure to specify the schema name or owner of the
table before submitting your command. You could drop the incorrect table. If you
have access to multiple user accounts, ensure that you are connected to the data-
base through the correct user account before dropping tables.

By the
Way

Watch
Out!

52 HOUR 3: Managing Database Objects

Integrity Constraints
Integrity constraints are used to ensure accuracy and consistency of data in a

relational database. Data integrity is handled in a relational database through the

concept of referential integrity. Many types of integrity constraints play a role in

referential integrity (RI).

Primary Key Constraints
Primary key is the term used to identify one or more columns in a table that make a

row of data unique. Although the primary key typically consists of one column in a

table, more than one column can comprise the primary key. For example, either the

employee’s Social Security number or an assigned employee identification number is

the logical primary key for an employee table. The objective is for every record to

have a unique primary key or value for the employee’s identification number.

Because there is probably no need to have more than one record for each employee

in an employee table, the employee identification number makes a logical primary

key. The primary key is assigned at table creation.

The following example identifies the EMP_ID column as the PRIMARY KEY for the

EMPLOYEES table:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL);

This method of defining a primary key is accomplished during table creation. The

primary key in this case is an implied constraint. You can also specify a primary key

explicitly as a constraint when setting up a table, as follows:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL,
PRIMARY KEY (EMP_ID));

Integrity Constraints 53

The primary key constraint in this example is defined after the column comma list

in the CREATE TABLE statement.

A primary key that consists of more than one column can be defined by either of

the following methods:

CREATE TABLE PRODUCTS
(PROD_ID VARCHAR2(10) NOT NULL,
VEND_ID VARCHAR2(10) NOT NULL,
PRODUCT VARCHAR2(30) NOT NULL,
COST NUMBER(8,2) NOT NULL,
PRIMARY KEY (PROD_ID, VEND_ID));

ALTER TABLE PRODUCTS
ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

Unique Constraints
A unique column constraint in a table is similar to a primary key in that the value in

that column for every row of data in the table must have a unique value. Although

a primary key constraint is placed on one column, you can place a unique con-

straint on another column even though it is not actually for use as the primary key.

Study the following example:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL UNIQUE,
EMP_PAGER INTEGER(10) NULL);

The primary key in this example is EMP_ID, meaning that the employee identifica-

tion number is the column that is used to ensure that every record in the table is

unique. The primary key is a column that is normally referenced in queries, particu-

larly to join tables. The column EMP_PHONE has been designated as a UNIQUE value,

meaning that no two employees can have the same telephone number. There is not

a lot of difference between the two, except that the primary key is used to provide

an order to data in a table and, in the same respect, join related tables.

Foreign Key Constraints
A foreign key is a column in a child table that references a primary key in the parent

table. A foreign key constraint is the main mechanism used to enforce referential

54 HOUR 3: Managing Database Objects

integrity between tables in a relational database. A column defined as a foreign key

is used to reference a column defined as a primary key in another table.

Study the creation of the foreign key in the following example:

CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID));

The EMP_ID column in this example has been designated as the foreign key for the

EMPLOYEE_PAY_TBL table. This foreign key, as you can see, references the EMP_ID col-

umn in the EMPLOYEE_TBL table. This foreign key ensures that for every EMP_ID in

the EMPLOYEE_PAY_TBL, there is a corresponding EMP_ID in the EMPLOYEE_TBL. This

is called a parent/child relationship. The parent table is the EMPLOYEE_TBL table, and

the child table is the EMPLOYEE_PAY_TBL table. Study Figure 3.4 for a better under-

standing of the parent table/child table relationship.

EMPLOYEE_PAY_TBL

emp_id
position
date_hire
pay_rate
date_last_raise

EMPLOYEE_TBL

emp_id
last_name
first_name
mid_name
address
city
state
zip
phone
pager

Primary
Key

Foreign
Key

Parent
Table

Child
Table

FIGURE 3.4
The
parent/child
table relation-
ship.

In this figure, the EMP_ID column in the child table references the EMP_ID column in

the parent table. For a value to be inserted for EMP_ID in the child table, a value for

EMP_ID in the parent table must first exist. Likewise, for a value to be removed for

EMP_ID in the parent table, all corresponding values for EMP_ID must first be

removed from the child table. This is how referential integrity works.

A foreign key can be added to a table using the ALTER TABLE command, as shown

in the following example:

alter table employee_pay_tbl
add constraint id_fk foreign key (emp_id)
references employee_tbl (emp_id);

Integrity Constraints 55

The options available with the ALTER TABLE command differ among different
implementations of SQL, particularly when dealing with constraints. In addition,
the actual use and definitions of constraints also vary, but the concept of referen-
tial integrity should be the same with all relational databases.

NOT NULL Constraints
Previous examples use the keywords NULL and NOT NULL listed on the same line as

each column and after the data type. NOT NULL is a constraint that you can place

on a table’s column. This constraint disallows the entrance of NULL values into a col-

umn; in other words, data is required in a NOT NULL column for each row of data in

the table. NULL is generally the default for a column if NOT NULL is not specified,

allowing NULL values in a column.

Check Constraints
Check (CHK) constraints can be utilized to check the validity of data entered into par-

ticular table columns. Check constraints are used to provide back-end database

edits, although edits are commonly found in the front-end application as well.

General edits restrict values that can be entered into columns or objects, whether

within the database itself or on a front-end application. The check constraint is a

way of providing another protective layer for the data.

The following example illustrates the use of a check constraint:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL),
PRIMARY KEY (EMP_ID),
CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = ‘46234’);

The check constraint in this table has been placed on the EMP_ZIP column, ensuring

that all employees entered into this table have a ZIP code of ‘46234’. Perhaps that

is a little restricting. Nevertheless, you can see how it works.

If you wanted to use a check constraint to verify that the ZIP code is within a list of

values, your constraint definition could look like the following:

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP in (‘46234’,’46227’,’46745’));

By the
Way

56 HOUR 3: Managing Database Objects

If there is a minimum pay rate that can be designated for an employee, you could

have a constraint that looks like the following:

CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID),
CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

In this example, any employee entered in this table must be paid more than $12.50

an hour. You can use just about any condition in a check constraint, as you can

with a SQL query. You learn more about these conditions in Hours 5 and 7.

Dropping Constraints
Any constraint that you have defined can be dropped using the ALTER TABLE com-

mand with the DROP CONSTRAINT option. For example, to drop the primary key con-

straint in the EMPLOYEES table, you can use the following command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Table altered.

Some implementations might provide shortcuts for dropping certain constraints. For

example, to drop the primary key constraint for a table in MySQL, you can use the

following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Table altered.

Some implementations allow you to disable constraints. Instead of permanently
dropping a constraint from the database you might want to temporarily disable the
constraint, and then enable it later.

Summary
You have learned a little about database objects in general, but have specifically

learned about the table. The table is the simplest form of data storage in a relation-

al database. Tables contain groups of logical information, such as employee, cus-

tomer, or product information. A table is composed of various columns, with each

column having attributes; those attributes mainly consist of data types and con-

straints, such as NOT NULL values, primary keys, foreign keys, and unique values.

By the
Way

Q&A 57

You learned the CREATE TABLE command and options, such as storage parameters,

that might be available with this command. You have also learned how to modify

the structure of existing tables using the ALTER TABLE command. Although the

process of managing database tables might not be the most basic process in SQL, it

is our philosophy that if you first learn the structure and nature of tables, you more

easily grasp the concept of accessing the tables, whether through data manipulation

operations or database queries. In later hours, you learn about the management of

other objects in SQL, such as indexes on tables and views.

Q&A
Q. When I name a table that I am creating, is it necessary to use a suffix such

as _TBL?

A. Absolutely not. You do not have to use anything. For example, a table to hold

employee information could be named similar to the following, or anything

else that would refer to what type of data is to be stored in that particular

table:

EMPLOYEE
EMP_TBL
EMPLOYEE_TBL
EMPLOYEE_TABLE
WORKER

Q. Why is it so important to use the schema name when dropping a table?

A. Here’s a true story about a new DBA that dropped a table: A programmer had

created a table under his schema with the same name as a production table.

That particular programmer left the company. The programmer’s database

account was being deleted from the database, but the DROP USER statement

returned an error due to the fact that outstanding objects were owned by the

programmer. After some investigation, it was determined that the program-

mer’s table was not needed, so a DROP TABLE statement was issued.

It worked like a charm—but the problem was that the DBA was logged in as

the production schema when the DROP TABLE statement was issued. The DBA

should have specified a schema name, or owner, for the table to be dropped.

Yes, the wrong table in the wrong schema was dropped. It took approximately

eight hours to restore the production database.

58 HOUR 3: Managing Database Objects

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Will the following CREATE TABLE statement work? If not, what needs to be

done to correct the problem(s)?

Create table EMPLOYEE_TABLE as:
(ssn number(9) not null,
last_name varchar2(20) not null,
first_name varchar2(20) not null,
middle_name varchar2(20) not null,
st address varchar2(30) not null,
city char(20) not null,
state char(2) not null,
zip number(4) not null,
date hired date);

2. Can you drop a column from a table?

3. What statement would you issue in order to create a primary key constraint

on the preceding EMPLOYEE_TABLE?

4. What statement would you issue on the preceding EMPLOYEE_TABLE to allow

the MIDDLE_NAME column to accept NULL values?

5. What statement would you use to restrict the people added into the preceding

EMPLOYEE_TABLE to only reside in the state of New York (‘NY’)?

6. What statement would you use to add an auto-incrementing column called

EMPID to the preceding EMPLOYEE_TABLE?

Workshop 59

Exercises
1. Bring up a command prompt and use the following syntax to log onto your

local MySQL instance, replacing username with your username and password

with your password. Ensure that you do not leave a space between –p and

your password.

Mysql -h localhost –u username -ppassword

2. At the mysql> command prompt, enter the following command to tell MySQL

that you want to use the database you created previously:

use learnsql;

3. Now, go to Appendix D, “CREATE TABLE Statements for Book Examples,” to

get the DDL for the tables used in this book. At the mysql> prompt, enter each

CREATE TABLE statement. Be sure to include a semicolon at the end of each

CREATE TABLE statement. The tables that you create will be used throughout

the book.

4. At the mysql> prompt, enter the following command to get a list of your

tables:

show tables;

5. At the mysql> prompt, use the DESCRIBE command (desc for short) to list the

columns and their attributes for each one of the tables you created. For exam-

ple:

describe employee_tbl;
describe employee_pay_tbl;

6. If you have any errors or typos, simply re-create the appropriate table(s). If the

table was successfully created, but has typos (perhaps you did not properly

define a column or forgot a column), drop the table, and issue the CREATE

TABLE command again. The syntax of the DROP TABLE command is as fol-

lows:

drop table orders_tbl;

Symbols

+ (addition operator), 135, 210

/ (division operator), 136

|| (double pipe signs), 353

= (equal operator), 118

> (greater than operator), 119-120

< (less than operator), 119-120

* (multiplication operator), 135-136

!= (non-equality operator), 119

; (semicolons), 46

“ (single quotation marks), 353

- (subtraction operator), 135

A

abandoned privileges, 304

ABS (absolute value) function, 178

accessing

remote databases, 361

JDBC, 363

ODBC, 362

vendor connectivity tools, 363

web interface, 363-364

user access, controlling, 302, 361

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

adding

auto-incrementing columns to tables, 48

characters to strings, 176-177

columns to tables, 48

data to tables, 74-75

from another table, 76-78

NULL values, 78-79

into specified columns, 75-76

rows into views, 321

time to dates, 190-191

addition operator (+), 135

ADD_MONTHS function, 190

ADMIN OPTION (GRANT statement), 303

Index

aggregate functions

AVG, 146-147

COUNT, 142-144

definition, 141-142

GROUP BY clause, 153-156

MAX, 147

MIN, 147-148

SUM, 144-146

aliases

columns, 112-113

tables, 208

ALL operator, 126

ALL option (SELECT statement), 104

ALTER TABLE statement, 47-48, 381

American National Standards Institute. See ANSI

AND operator, 127-128

ANSI (American National Standards Institute), 8

character functions, 165

concatenation, 166-168

INSTR, 172

LOWER, 170

LTRIM, 173

REPLACE, 169

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

object privileges, 300

SELECT statement syntax, 370

trigger creation syntax, 349

ANSI SQL, 8, 371

ANY operator, 126

arithmetic operators, 134

addition, 135

combining, 136-137

division, 136

multiplication, 135-136

subtraction, 135

ascending order, 106

ASCII characters, returning, 178

ASCII chart website, 178

ASCII function, 178

authIDs (Authorization Identifiers), 283

authority levels, 305

AUTHORIZATION keyword (CREATE SCHEMA state-

ment), 290

auto-incrementing columns, 48

automated population, 74

AVG function, 146-147

avoiding

indexes, 259-260

large sort operations, 275

B

back-end applications, 360-361

base tables, join considerations, 214-215

BETWEEN operator, 122, 222

BLOB data type, 30

book website, 9

BOOLEAN data types, 34

C

call-level interface (CLI), 352

Cartesian product, 215-217

CASCADE option (REVOKE statement), 303

452

aggregate functions

case sensitivity (queries), 108

CEIL function, 178

ceiling values function, 178

Center for Internet Security website, 298

CHAR data type, 29

character functions, 165

ASCII, 178

COALESCE, 176

combining, 181-182

concatenation, 166-168

DECODE, 174-175

IFNULL, 175-176

INSTR, 172

LENGTH, 175

LOWER, 170

LPAD, 176-177

LTRIM, 173

REPLACE, 169

RPAD, 177

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

character string conversions

dates, 196-197

to numbers, 179-180

characters

adding to strings, 176-177

ASCII, returning, 178

constant, 29

lowercase, 170

positions, 172

replacing, 169

trimming, 173-174

uppercase, 169

CHK (check) constraints, 55-56

clauses

FROM, 385

SELECT statement, 104

table arrangement, 269

GROUP BY, 152, 385

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

compound queries, 244-245

CREATE VIEW statement, 323

functions, 152

ordering column names with numbers, 156

selected data, 152

HAVING, 159-160, 275, 385

ORDER BY, 385

compared to GROUP BY clause, 156-159

compound queries, 242-244

SELECT statement, 106-108

views, 323

SELECT, 102, 384

WHERE, 385

DELETE statement, 81

restrictive condition, 270-271

SELECT statement, 105-106

CLI (call-level interface), 352

client/server systems, 12

closing cursors, 345-346

COALESCE function, 176

Codd, Dr. E.F., 8

columns, 21, 44-45

adding, 48

aliases, 112-113

attributes, editing, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

columns

453

auto-incrementing, adding, 48

averaging values, 146-147

cardinality, 260

check constraints, 55-56

counting values, 142-144

data, adding, 75-76

dropping constraints, 56

editing, 49

foreign keys, 53-54

index considerations, 258

maximum values, 147

minimum values, 147-148

NOT NULL constraints, 55

NULL values, 78-79

ordering with numbers, 156

primary keys, 52-53

qualifying, 205

totaling values, 144-146

unique constraints, 53

updating, 79-80

user access control, 304

combining

arithmetic operators, 136-137

character functions, 181-182

comparison operators, 120-121

commands. See statements

COMMIT statement, 89-90, 381

comparison operators, 118

combining, 120-121

equal, 118

less than, greater than, 119-120

non-equality, 119

composite indexes, 257

compound queries, 235

clauses

GROUP BY, 244-245

ORDER BY, 242-244

data retrieval, 246

operators

EXCEPT, 241-242

INTERSECT, 240-241

UNION, 237-240

concatenation, 166-168

conditions, queries, 105-106

conjunctive operators, 127

AND, 127-128

OR, 128-130

CONNECT statement, 14

CONNECT group, 305

connecting sessions, 14

constant characters, 29

constraints (integrity), 52

check, 55-56

dropping, 56

foreign keys, 53-54

NOT NULL, 55

primary keys, 52-53

unique, 53

controlling

data, 16

transactions, 88-89

COMMIT statement, 89-90

performance, 95

RELEASE SAVEPOINT statement, 94

ROLLBACK statement, 90-92

ROLLBACK TO SAVEPOINT statement, 92-94

SAVEPOINT statement, 92

SET TRANSACTION statement, 94

statements, 17

454

columns

user access, 302

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

conversion functions, 179

character strings to numbers, 179-180

numeric strings to characters, 180-181

converting dates, 192

character strings, 196-197

date pictures, 193-195

correlated subqueries, 229-230

COUNT function, 111, 142-144

counting table records, 111

CREATE DOMAIN statement, 381

CREATE INDEX statement, 255, 381

CREATE ROLE statement, 306, 382

CREATE SCHEMA statement, 289-290

CREATE TABLE AS statement, 382

CREATE TABLE statement, 45-47, 50-51, 382

CUSTOMER TBL statement, 436

EMPLOYEE PAY TBL statement, 435

EMPLOYEE TBL statement, 435

ORDERS TBL statement, 436

PRODUCTS TBL statement, 436

CREATE TRIGGER statement, 349-350

CREATE TYPE statement, 382

CREATE VIEW statement, 316, 382

GROUP BY clause, 323

views from multiple tables, 318-319

views from other views, 319-320

views from single tables, 316-318

WITH CHECK OPTION, 320-321

creating

indexes, 255

roles, 306

schemas, 289-290

SQL with SQL, 352-353

synonyms, 324-325

system catalog, 331

tables, 45-47

existing tables, 50-51

from views, 322

triggers, 349-350

users, 286

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

views

from single tables, 316-318

from multiple tables, 318-319

from other views, 319-320

WITH CHECK OPTION, 320-321

cross joins, 215-217

current date/time function, 188

cursors

closing, 345-346

current values, 344

declaring, 344

definition, 343

fetching data from, 345

opening, 345

overview, 344

How can we make this index more useful? Email us at indexes@samspublishing.com

cursors

455

D

data

administration, 17

controlling, 16

definition, 27

fetching from cursors, 345

for indexes, 272

grouping, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

manipulating, 16, 73

populating tables, 74

redundancy, 63

retrieving from compound queries, 246

selecting

statements, 16

multiple tables, 203

simplifying with views, 314

summarized data maintenance, 315-316

system catalog, 331-332

tables

deleting, 81

examples in book, 18-20

inserting, 74-75

inserting from another table, 76-78

inserting into specified columns, 75-76

inserting NULL values, 78-79

selecting from another table, 112

updating, 79-80

views, updating, 321

Data Control Language (DCL), 16

Data Definition Language (DDL), 15

data dictionaries. See system catalog

Data Manipulation Language. See DML

Data Query Language (DQL), 16

data types

basic, 28

BLOB, 30

BOOLEAN, 34

CHAR, 29

date and time, 32-33, 186-187

decimal, 31-32

definition, 27

domains, 35

DOUBLE PRECISION, 32

fixed-length strings, 29

floating-point decimals, 32

integers, 32

large objects, 30

lengths, 37

literal strings, 33-34

NULL, 34

numeric, 30-31

REAL, 32

TEXT, 30

user-defined, 35

VARCHAR, 29

varying-length strings, 29

database administrators (DBAs), 285

database management system (DBMS), 7

databases

client/server systems, 12

definition, 10

denormalizing, 69

design information, 332

full table scans, 254

Internet access tools, 365

456

data

logical, 62-63

MySQL examples/exercises, 22

normalizing

benefits, 67-68

disadvantages, 68

names, 67

normal forms, 61, 64-66

overview, 61-62

objects

definition, 41

schemas, 42-43

parsing, 275

queries. See also subqueries

case sensitivity, 108

column aliases, 112-113

compound. See compound queries

conditions, 105-106

counting table records, 111

definition, 16, 101

examples, 109-110

grouping results. See groups, data

ordering output, 106-108

searching, 174-175

SELECT statement, 101-104

SELECT statement with case sensitivity, 108

SELECT statement with FROM clause, 104

SELECT statement with ORDER BY clause,

106-108

SELECT statement with WHERE clause,

105-106

selecting data from another table, 112

single, 235

raw, 62

relational, 11

remote, 361-364

security, 297-298

privileges. See privileges

user access control, 302-305

structures statements, 15

transactions

statements, 17

controlling, 88-90

definition, 87

initiating, 94

overview, 87

performance, 95

savepoints, 92-94

saving changes, 89-90

undoing, 90-92

tuning, 266

users

authIDs, 283

creating, 286-287

creating in MySQL, 289

creating in Oracle, 287-288

creating in SQL Server, 288-289

creating in Sybase, 288-289

deleting, 293

editing, 291

GUI tools, 293

managing, 285

roles/privileges, 285

schemas, 286-290

sessions, 292

types, 284

vendors, 13-14

web-based systems, 12-13

date and time data types, 32-33

How can we make this index more useful? Email us at indexes@samspublishing.com

date and time data types

457

DATEADD function, 190

DATEDIFF function, 192

DATENAME function, 192

DATEPART function, 192

dates

conversions, 192

character strings, 196-197

date pictures, 193-195

data types

implementation-specific, 187

standard, 186

date functions, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATETIME elements, 186

parts, 194-195

pictures, 193-195

storing, 186

system, 188

DATETIME data types, 32

DATETIME element, 186

DAYNAME function, 192

DAYOFMONTH function, 192

DAYOFWEEK function, 192

DAYOFYEAR function, 192

DBA group, 305

DBAs (database administrators), 285

dBASE, 333

DBMS (database management system), 7

DCL (Data Control Language), 16

DDL (Data Definition Language), 15

DECIMAL data type, 31

decimals, 31-32

DECODE function, 174-175

DELETE statement, 383

subqueries, 226

table data, 81

WHERE clause, 81

deleting

rows into views, 321

savepoints, 94

schemas, 290

table data, 81

users, 293

denormalization, 69

descending order, 106

differences in vendor implementations, 369-371

direct SQL, 353

DISCONNECT statement, 14

disconnecting sessions, 14

DISTINCT statement, 104, 142

division operator (/), 136

DML (Data Manipulation Language), 16

DELETE statement

deleting table data, 81

subqueries, 226

INSERT statement

adding data from another table, 76-78

adding data to specific columns, 75-76

adding data to tables, 74-75

subqueries, 224-225

NULL values, 78-79

overview, 73

UPDATE statement

multiple columns, 80

single columns, 79-80

458

DATEADD function

subqueries, 225-226

tables, 79

domain data types, 35

double pipe signs (||), 353

DOUBLE PRECISION data type, 32

DQL (Data Query Language), 16

DROP statement, 51

indexes, 260-261

users, 293

DROP INDEX statement, 383

DROP ROLE statement, 306

DROP SCHEMA statement, 290

DROP TABLE statement, 383

DROP TRIGGER statement, 351

DROP VIEW statement, 323, 383

dropping

constraints, 56

indexes, 260-261

roles, 306

synonyms, 325

tables, 51, 57

triggers, 351

views, 323

dynamic SQL, 351-352

E

editing

columns, 49

tables, 47-49

users, 291

embedded SQL, 353

embedding subqueries, 227-228

enhancements, 371

enterprise, 359-361

equal operator (=), 118

equijoins, 204-206

example extensions, 372-373

MySQL, 374-375

PL/SQL, 373-374

Transact-SQL, 373

EXCEPT operator (compound queries), 241-242

EXISTS operator, 125

EXIT statement, 14

exiting sessions, 14

EXP (exponential values) function, 178

extensions, 371-372

MySQL, 374-375

PL/SQL, 373-374

Transact-SQL, 373

F

FETCH statement, 345

fetching data from cursors, 345

fields (tables), 20

firewalls, 364

first normal forms, 64

fixed-length strings, 29

FLOAT data type, 32

floating-point decimals, 32

FLOOR function, 178

floor values function, 178

FOR EACH ROW syntax (triggers), 351

foreign keys, 53-54

forgotten passwords, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

forgotten passwords

459

formatting statements, 266

FROM clause table arrangement, 269

join order, 269-270

readability, 267-269

WHERE clause condition, 270-271

FROM clause, 385

SELECT statement, 104

table arrangement, 269

front-end applications, 360-361

front-end tools, 63

full table scans, 254, 272

functions

ADD_MONTHS, 190

aggregate

AVG, 146-147

COUNT, 142-144

definition, 141-142

GROUP BY clause, 153-156

MAX, 147

MIN, 147-148

SUM, 144-146

character, 165

ASCII, 178

COALESCE, 176

combining, 181-182

concatenation, 166-168

DECODE, 174-175

IFNULL, 175-176

INSTR, 172

LENGTH, 175

LOWER, 170

LPAD, 176-177

LTRIM, 173

REPLACE, 169

RPAD, 177

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

conversion

character strings to numbers, 179-180

numeric strings to characters, 180-181

COUNT, 111

date, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATEADD, 190

DATEDIFF, 192

DATENAME, 192

DATEPART, 192

DAYNAME, 192

DAYOFMONTH, 192

DAYOFWEEK, 192

DAYOFYEAR, 192

definition, 141, 347

GETDATE(), 188, 192

GROUP BY clause, 152

mathematical, 178

MONTHS_BETWEEN, 192

NEXT_DAY, 192

NOW, 188

460

formatting statements

G

GETDATE() function, 188, 192

GRANT statement, 383

ADMIN OPTION, 303

GRANT OPTION, 303

privileges, 301

user access control, 302-303

granting privileges, 301

greater than operator (), 119-120

GROUP BY clause, 385

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

compound queries, 244-245

CREATE VIEW statement, 323

functions, 152

ordering column names with numbers, 156

selected data, 152

groups

data, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

privileges, 305

GUI tools, 293

H - I

HAVING clause, 159-160, 275, 385

IFNULL function, 175-176

implementation-specific data types, 187

implementations

ANSI SQL compliance, 371

cursors, 344

differences, 369-371

extensions, 371

SQL, 10

system catalog, 333-334

implicit indexes, 257

IN operator, 123

indexes

avoiding, 259-260

column considerations, 258

creating, 255

data for, 272

definition, 253

disabling during batch loads, 275-276

dropping, 260-261

function, 254-255

overview, 253-254

performance, 260, 275-276

types, 255

composite, 257

implicit, 257

single-column, 256

unique, 256-258

Informix, 371

initiating transactions, 94

INSERT object privilege, 300

INSERT statement, 383

adding data to tables, 74

from another table, 76-78

specified columns, 75-76

CUSTOMER TBL statement, 438

EMPLOYEE PAY TBL statement, 438

How can we make this index more useful? Email us at indexes@samspublishing.com

INSERT statement

461

EMPLOYEE TBL statement, 437

ORDERS TBL statement, 439

PRODUCTS TBL statement, 440

subqueries, 224-225

INSERT(column_name) object privilege, 300

INSERT…SELECT statement, 383

installing MySQL

Linux, 388-389

Windows, 387-388

INSTR function, 172

integers, 32

integrity constraints, 52

check, 55-56

dropping, 56

foreign keys, 53-54

NOT NULL, 55

primary keys, 52-53

unique, 53

interactive SQL statements, 375-376

International Standards Organization (ISO), 8

Internet

data availability for employees/customers, 365

database access tools, 365

security, 366

worldwide availability, 364

INTERSECT operator (compound queries), 240-241

intranets, 365-366

INX suffix, 18

IS NOT NULL operator, 133

IS NULL operator, 121-122

ISO (International Standards Organization), 8

J

JDBC (Java Database Connectivity), 363

joins

base tables, 214-215

Cartesian product, 215-217

component locations, 204

equijoins, 204-206

multiple keys, 213-214

natural, 206-207

non-equijoins, 208-209

ordering, 269-270

outer, 210-211

self, 212-213

table aliases, 208

types, 204

K-L

keys

foreign, 53-54

joining, 213-214

primary, 21, 52-53

large object data types, 30

LENGTH function, 175

lengths

data types, 37

strings, 175

less than operator (<), 119-120

LIKE operator, 123-124, 273

Linux, MySQL installation, 388-389

literal strings, 33-34

logical databases, 62-63

462

INSERT statement

logical operators, 121

ALL, 126

ANY, 126

BETWEEN, 122

EXISTS, 125

IN, 123

IS NULL, 121-122

LIKE, 123-124

SOME, 126

LOWER function, 170

lowercase strings, 170

LPAD function, 176-177

LTRIM function, 173

M

managing users, 285

creating users, 286-287

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

deleting, 293

editing, 291

GUI tools, 293

schemas, 289-290

sessions, 292

manipulating data, 16, 73

manual population of data, 74

mathematical functions, 178

MAX function, 147

Microsoft

Access, 333

SQL Server, users, 288-289

MIN function, 147-148

MONTHS_BETWEEN function, 192

multiplication operator (*), 135-136

MySQL, 374-375

cursor declaration, 344

examples/exercises, 22

installing

Linux, 388-389

Windows, 387-388

stored procedure syntax, 347-348

system catalog implementations, 334

system privileges, 300

trigger creation syntax, 350

users, creating, 289

website, 375

N

names

normalization, 67

saving points, 92

synonyms, 326

tables, 18, 47

natural joins, 206-207

negative operators, 130

IS NOT NULL, 133

NOT BETWEEN, 131-132

not equal, 131

NOT EXISTS, 134

NOT IN, 132

NOT LIKE, 133

nesting

queries. See subqueries

stored procedures, 346

How can we make this index more useful? Email us at indexes@samspublishing.com

nesting

463

Net8, 363

NEXT_DAY function, 192

non-equality operator (!=), 119

non-equijoins, 208-209

normal forms, 61, 64

first, 64

second, 65

third, 66

normalization

benefits, 67-68

disadvantages, 68

names, 67

normal forms, 61

first, 64

second, 65

third, 66

overview, 61-62

NOT BETWEEN operator, 131-132

NOT EXISTS operator, 134

NOT IN operator, 132

NOT LIKE operator, 133

NOT NULL constraints, 55

NOW function, 188

NULL data types, 34

NULL value checker, 175-176

NULL values

adding to columns, 78-79

checking, 175-176

replacing, 176

tables, 22

NUMERIC data type, 30-31

numeric strings, converting to characters, 180-181

O

object privileges, 300-301

ODBC (Open Database Connectivity), 362

Open Client/C Developers Kit, 363

opening cursors, 345

operators

arithmetic, 134

addition, 135

combining, 136-137

division, 136

multiplication, 135-136

subtraction, 135

BETWEEN, 222

comparison

combining, 120-121

equal, 118

less than, greater than, 119-120

non-equality, 119

conjunctive

AND, 127-128

OR, 128-130

definition, 105, 117

EXCEPT, 241-242

INTERSECT, 240-241

LIKE, 273

logical

ALL, 126

ANY, 126

BETWEEN, 122

EXISTS, 125

IN, 123

IS NULL, 121-122

LIKE, 123-124

SOME, 126

464

Net8

negative, 130

IS NOT NULL, 133

NOT BETWEEN, 131-132

not equal, 131

NOT EXISTS, 134

NOT IN, 132

NOT LIKE, 133

OR, 274-275

OVERLAPS, 191

UNION, 235-239

UNION ALL, 239-240

options

ADMIN OPTION, 303

ALL, 104

CASCADE, 303

DISTINCT, 104

GRANT OPTION, 303

RESTRICT, 303

WITH CHECK, 320-321

OR operator, 128-130, 274-275

Oracle

cursor declaration, 344

Net8, 363

parameters, 376

PL/SQL, 373-374

roles, 305

SELECT statement syntax, 370

stored procedure syntax, 347-348

system catalog implementations, 334

system privileges, 299

trigger creation syntax, 350

users, creating, 287-288

ORDER BY clause, 385

compared to GROUP BY clause, 156-159

compound queries, 242-244

SELECT statement, 106-108

views, 323

outer joins, 210-211

OVERLAPS operator, 191

owners (schemas), 42

P

parameters, 375

parent/child table relationships, 54

parsing, 275

parts of dates, 194-195

passwords

forgotten, 308

system catalog, 338

performance

definition, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 260, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

statistics stored in system catalog, 332

tools, 276

transactional control, 95

WHERE clause condition, 270-271

wildcard placement, 273

How can we make this index more useful? Email us at indexes@samspublishing.com

performance

465

PL/SQL, 373-374

plus (+) symbol, 210

populating tables with data, 74-75

from another table, 76-78

NULL values, 78-79

into specified columns, 75-76

positioning characters, 172

POWER function, 178

precision, 31

primary keys, 21, 52-53

PRIVATE synonyms, 324

privileges, 298

abandoned, 304

controlling with roles, 305-307

granting/revoking, 301

groups, 305

object, 300-301

system, 299-300

pseudocolumns, 188

PUBLIC database account, 304

PUBLIC synonyms, 324

Q

qualifying columns, 205

queries. See also subqueries, 221

case sensitivity, 108

column aliases, 112-113

compound, 235

data retrieval, 246

EXCEPT operator, 241-242

GROUP BY clause, 244-245

INTERSECT operator, 240-241

ORDER BY clause, 242-244

UNION ALL operator, 239-240

UNION operator, 237-239

conditions, 105-106

counting table records, 111

definition, 16, 101

examples, 109-110

grouping results, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

ordering output, 106-108

searching, 174-175

SELECT statement, 101

case sensitivity, 108

FROM clauses, 104

ORDER BY clauses, 106-108

selecting data, 102-104

WHERE clauses, 105-106

selecting data from another table, 112

single, 235

system catalog, 335-336

R

raw databases, 62

RDBMS (relational database management

system), 7

readability of statements, 267-269

REAL data type, 32

records (tables), 21, 111

redundancy (data), 63

REFERENCES object privilege, 301

466

PL/SQL

REFERENCES(column_name) object privilege, 301

referential integrity, 68

relational database management system

(RDBMS), 7

relational databases, 11

RELEASE SAVEPOINT statement, 94

remote databases, accessing, 361

JDBC, 363

ODBC, 362

vendor connectivity tools, 363

web interface, 363-364

REPLACE function, 169

replacing

characters, 169

NULL values, 176

RESOURCE group, 305

RESTRICT keyword

DROP SCHEMA statement, 290

REVOKE statement, 303

REVOKE statement, 384

privileges, 301

user access control, 303-304

users, 293

revoking privileges, 301

roles

creating, 306

dropping, 306

Oracle, 305

setting, 307

ROLLBACK statement, 90-92, 384

ROLLBACK TO SAVEPOINT statement, 92-94

rolling back savepoints, 92-94

ROUND function, 178

rows, 21, 45

averaging values, 146-147

counting, 142-144

maximum values, 147

minimum values, 147-148

totaling values, 144-146

views, 321

RPAD function, 177

RTRIM function, 173-174

S

SAVEPOINT statement, 92, 384

savepoints

deleting, 94

names, 92

rolling back, 92-94

schemas

creating, 289-290

definition, 42

deleting, 290

overview, 42-43

owners, 42

users, compared, 286

searching queries, 174-175

second normal forms, 65

security

databases, 297-298

firewalls, 364

information stored in system catalog, 332

Internet, 366

privileges, 298

abandoned, 304

controlling with roles, 305-307

How can we make this index more useful? Email us at indexes@samspublishing.com

security

467

granting/revoking, 301

groups, 305

object, 300-301

system, 299-300

roles, 305

creating, 306

dropping, 306

setting, 307

user access

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

views, 315

security officers, 285

SELECT statement, 384

clauses, 102

column aliases, 112-113

COUNT function, 111

EXCEPT operator, 241-242

GROUP BY clause, 244-245

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

functions, 152

ordering column names with numbers, 156

selected data, 152

HAVING clause, 159-160

implementation differences, 370

INTERSECT operator, 240-241

ORDER BY clause, 242-244

queries, 101

ALL option, 104

case sensitivity, 108

DISTINCT option, 104

FROM clause, 104

ORDER BY clause, 106-108

selecting data, 102-104

WHERE clause, 105-106

selecting data from another table, 112

single queries, 235

subqueries, 223-224

UNION ALL operator, 239-240

UNION operator, 237-239

SELECT object privilege, 300

selecting data

from another table, 112

statements, 16

multiple tables, 203

self joins, 212-213

semicolons (;), 46

sessions

connecting, 14

definition, 14

disconnecting, 14

exiting, 14

users, 292

SET ROLE statement, 307

SET TRANSACTION statement, 94

SIGN function, 178

sign values function (SIGN), 178

single queries, 235

single quotation marks (“), 353

single-column indexes, 256

SOME operator, 126

sort operations, 275

SQL (Structured Query Language), 8

definition, 8

generation with SQL, 352-353

implementation, 10

468

security

on the Internet

data availability for employees/customers,

365

database access tools, 365

worldwide availability, 364

optimizer, 267

SQL Server

cursor declaration, 344

stored procedure syntax, 347-348

system catalog implementations, 333

Transact-SQL, 373

trigger creation syntax, 350

users, creating, 288-289

SQL-2003, 9-10

SQLBase

authority levels, 305

SELECT statement syntax, 370

SQRT (square root) function, 178

standard data types, 186

standards

ANSI SQL, 8

SQL-2003, 9-10

table-naming, 18

statements

ALTER TABLE, 47-48, 381

COMMIT, 89-90, 381

CONNECT, 14

CREATE DOMAIN, 381

CREATE INDEX, 255, 381

CREATE ROLE, 306, 382

CREATE SCHEMA, 289-290

CREATE TABLE, 45-47, 50-51, 382

CUSTOMER TBL, 436

EMPLOYEE PAY TBL, 435

EMPLOYEE TBL, 435

ORDERS TBL, 436

PRODUCTS TBL, 436

CREATE TABLE AS, 382

CREATE TRIGGER, 349-350

CREATE TYPE, 382

CREATE VIEW, 382

GROUP BY clause, 323

views from multiple tables, 318-319

views from other views, 319-320

views from single tables, 316-318

WITH CHECK OPTION, 320-321

DELETE, 383

subqueries, 226

table data, 81

WHERE clause, 81

DISCONNECT, 14

DISTINCT, 142

DROP, 51

indexes, 260-261

users, 293

DROP INDEX, 383

DROP ROLE, 306

DROP SCHEMA, 290

DROP TABLE, 383

DROP TRIGGER, 351

DROP VIEW, 323, 383

EXIT, 14

FETCH, 345

formatting, 266

GRANT, 383

ADMIN OPTION, 303

GRANT OPTION, 303

privileges, 301

user access control, 302-303

How can we make this index more useful? Email us at indexes@samspublishing.com

statements

469

INSERT, 383

adding data to columns, 75-76

adding data to tables, 74-78

CUSTOMER TBL, 438

EMPLOYEE PAY TBL, 438

EMPLOYEE TBL, 437

ORDERS TBL, 439

PRODUCTS TBL, 440

subqueries, 224-225

INSERT…SELECT, 383

interactive, 375-376

RELEASE SAVEPOINT, 94

REVOKE, 384

privileges, 301

user access control, 303-304

users, 293

ROLLBACK, 90-92, 384

ROLLBACK TO SAVEPOINT, 92-94

SAVEPOINT, 92, 384

SELECT, 384

ALL option, 104

case sensitivity, 108

clauses, 102

column aliases, 112-113

COUNT function, 111

DISTINCT option, 104

EXCEPT operator, 241-242

FROM clause, 104

GROUP BY clause, 152-159, 244-245

HAVING clause, 159-160

implementation differences, 370

INTERSECT operator, 240-241

ORDER BY clause, 106-108, 242-244

queries, 101-104

selecting data from another table, 112

single queries, 235

subqueries, 223-224

UNION ALL operator, 239-240

UNION operator, 237-239

WHERE clause, 105-106

SET ROLE, 307

SET TRANSACTION, 94

tuning, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

tools, 276

WHERE clause condition, 270-271

wildcard placement, 273

types

data administration, 17

data control, 16

defining database structures, 15

manipulating data, 16

selecting data, 16

transactional control, 17

UPDATE, 384

multiple columns, 80

single columns, 79-80

subqueries, 225-226

table data, 79

470

statements

static SQL, 351

stored procedures

advantages, 348

definition, 346

MySQL syntax, 347-348

nesting, 346

Oracle syntax, 347-348

overview, 347

performance, 275

SQL Server syntax, 347-348

storing dates/times, 186

DATETIME elements, 186

implementation-specific data types, 187

standard data types, 186

strings

characters

adding, 176-177

ASCII, 178

date conversions, 196-197

functions, 165

positions, 172

replacing, 169

concatenation, 166-168

conversions

character to numbers, 179-180

numeric to characters, 180-181

fixed-length, 29

lengths, 175

literal, 33-34

lowercases, 170

NULL values, 175-176

query searches, 174-175

substrings, 166, 170-171

translating, 166-169

trimming, 173-174

uppercase, 169

varying-length, 29

Structured Query Language. See SQL

subqueries

BETWEEN operator, 222

correlated, 229-230

definition, 221

DELETE statement, 226

embedded, 227-228

INSERT statement, 224-225

overview, 221-222

rules, 222

SELECT statement, 223-224

syntax, 222

UPDATE statement, 225-226

SUBSTR function, 170-171

substrings, 166, 170-171

subtraction operator (-), 135

SUM function, 144-146

summarized data maintenance, 315-316

Sybase

Open Client/C Developers Kit, 363

parameters, 376

system catalog implementations, 334

system privileges, 299

users, creating, 288-289

synonyms

creating, 324-325

definition, 324

dropping, 325

names, 326

overview, 324

PRIVATE, 324

PUBLIC, 324

How can we make this index more useful? Email us at indexes@samspublishing.com

synonyms

471

system catalog

creating, 331

data, 331-332

definition, 329

implementations, 333-334

maintenance, 332

overview, 330

passwords, 338

querying, 335-336

table queries, 338

updating, 337

systems

analysts, 285

client/server, 12

date, 188

privileges, 299-300

web-based database, 12-13

T

tables

aliases, 208

arranging in FROM clauses, 269

base, 214-215

columns, 21, 44-45

adding, 48

adding data, 75-76

aliases, 112-113

attributes, editing, 48

auto-incrementing, adding, 48

averaging values, 146-147

cardinality, 260

check constraints, 55-56

counting values, 142-144

dropping constraints, 56

editing, 49

foreign keys, 53-54

index considerations, 258

maximum values, 147

minimum values, 147-148

NOT NULL constraints, 55

NULL values, 78-79

ordering with numbers, 156

primary keys, 52-53

qualifying, 205

totaling values, 144, 146

unique constraints, 53

updating, 79-80

user access control, 304

creating, 45-47

existing table, 50-51

views, 322

data

deleting, 81

inserting, 74-75

inserting from another table, 76-78

inserting into specified columns, 75-76

inserting NULL values, 78-79

populating, 74

selecting from another table, 112

updating, 79-80

data examples in book, 18, 20

dropping, 51, 57

editing, 47-49

fields, 20

joins

base tables, 214-215

Cartesian product, 215-217

component locations, 204

472

system catalog

equijoins, 204-206

multiple keys, 213-214

natural, 206-207

non-equijoins, 208-209

outer, 210-211

self, 212-213

table aliases, 208

types, 204

names, 18, 47

NULL values, 22

parent/child relationships, 54

primary keys, 21

records, 21, 111

relational databases, 11

rows, 21, 45

averaging values, 146-147

counting, 142-144

maximum values, 147

minimum values, 147-148

totaling values, 144-146

selecting data from multiple, 203

system catalog, 338

windowed table functions, 354

TBL suffix, 18

TEXT data type, 30

third normal forms, 66

time zone function, 189

times

adding to dates, 190-191

data types

implementation-specific, 187

standard, 186

date functions, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATETIME elements, 186

storing, 186

tools

front-end, 63

GUI, 293

performance, 276

web database access, 365

Transact-SQL, 373

transactions

controlling, 88-90

databases, 17

definition, 87

initiating, 94

overview, 87

savepoints

deleting, 94

names, 92

performance, 95

rolling back, 92-94

saving changes, 89-90

undoing, 90-92

TRANSLATE function, 166-169

translating strings, 166-169

triggers

creating, 349-350

definition, 349

dropping, 351

FOR EACH ROW syntax, 351

trimming strings, 173-174

troubleshooting passwords, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

troubleshooting passwords

473

tuning

databases, 266

SQL statements

definition, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

tools, 276

WHERE clause condition, 270-271

wildcard placement, 273

types

statements

data administration, 17

data control, 16

defining database structures, 15

manipulating data, 16

selecting data, 16

transactional control, 17

data

basic, 28

BLOB, 30

BOOLEAN, 34

CHAR, 29

date and time, 32-33, 186-187

DECIMAL, 31-32

definition, 27

domains, 35

DOUBLE PRECISION, 32

fixed-length strings, 29

FLOAT, 32

floating-point decimals, 32

integers, 32

large objects, 30

lengths, 37

literal strings, 33-34

NULL, 34

numeric, 30-31

REAL, 32

TEXT, 30

user-defined, 35

VARCHAR, 29

varying-length strings, 29

indexes, 255

composite, 257

implicit, 257

single-column, 256

unique, 256-258

joins

equijoins, 204-206

natural, 206-207

non-equijoins, 208-209

outer, 210-211

self, 212-213

users, 284

U

undoing transactions, 90-92

UNION ALL operator, 239-240

UNION operator, 235-239

unique column constraints, 53

474

tuning

unique indexes, 256-258

UPDATE object privilege, 301

UPDATE statement, 384

subqueries, 225-226

table data, 79-80

UPDATE(column_name) object privilege, 301

updating

system catalog, 337

table data, 79-80

view data, 321

UPPER function, 169

uppercase strings, 169

USAGE object privilege, 300

user-defined data types, 35

users

access, controlling

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

authIDs, 283

creating, 286-287

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

data, system catalog, 332

deleting, 293

editing, 291

GUI tools, 293

logical database design considerations, 63

managing, 285, 298

roles/privileges, 285

schemas, 289-290

schemas, compared, 286

sessions, 292

types, 284

V

values

ceiling and floor function, 178

exponential function, 178

NULL

adding to columns, 78-79

checking, 175-176

replacing, 176

tables, 22

VARCHAR data type, 29

varying-length strings, 29

vendors

databases, 13-14

implementations, 369-371

views

creating, 316

multiple tables, 318-319

other views, 319-320

single tables, 316-318

WITH CHECK OPTION, 320-321

creating tables from, 322

data updates, 321

definition, 313

dependencies, 320

dropped tables, 326

dropping, 323

ORDER BY clause, 323

How can we make this index more useful? Email us at indexes@samspublishing.com

views

475

overview, 314

rows, 321

security, 315

simplifying data, 314

summarized data maintenance, 315-316

W

web interfaces, 363-364

web-based database systems, 12-13

websites

ASCII chart, 178

book, 9

Center for Internet Security, 298

MySQL, 375

WHERE clause, 385

DELETE statement, 81

restrictive condition, 270-271

SELECT statement, 105-106

wildcard performance, 273

windowed table functions, 354

WITH CHECK OPTION (CREATE VIEW statement),

320-321

X-Z

XML, 354-355

476

views

	Introduction
	What This Book Intends to Accomplish
	What We Added to This Edition
	What You Need
	Conventions Used in This Book
	ANSI SQL and Vendor Implementations
	Understanding the Examples and Exercises

	HOUR 3: Managing Database Objects
	What Are Database Objects?
	What Is a Schema?
	A Table: The Primary Storage for Data
	Integrity Constraints
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	J
	K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

