
IN THIS CHAPTER

. Embedding the Silverlight
Control Manually

. Letting Silverlight.js
Handle the Dirty Work

. Understanding Your Hosting
Options

. Interacting with the
Silverlight Control
Programmatically

CHAPTER 1

Getting Started

Despite all the wonderful things you can say about
HTML, CSS, and JavaScript, I think most people doing a lot
of web-based development would agree that they form a
pretty poor environment for developing modern sites and
applications. If you care about your content working on
most web browsers (or even just Internet Explorer and
Firefox), accommodating their differences can be madden-
ing. Many techniques and JavaScript libraries have been
developed and shared over the years that can reduce this
frustration, but none of them are silver bullets.

In addition to browser differences, the graphical capabili-
ties of HTML are too limiting for many user experiences
that people want to create. Drawing a simple line, incorpo-
rating video, and a number of other things are extremely
difficult or impossible with HTML alone. It’s not that these
technologies were poorly designed, but simply that they
were designed for hyperlinked documents rather than the
extremely rich presentations that most people want to
create on the Web these days.

Considering these issues, it’s no wonder that Adobe Flash
has been so successful. Whether someone wants to create a
professionally designed website, an online game (or any
number of other applications), or even a simple advertise-
ment, Flash has been a natural choice for escaping the limi-
tations of HTML. If you doubt the pervasiveness of Flash,
try this experiment: Think of a brand of food you eat, and
then navigate to the brand’s website. Chances are you’ll
find Flash content at your destination. (I just tried
pepsi.com, doritos.com, and oscarmayer.com, and all three
are using Flash at the time of writing.) The Flash develop-
ment experience leaves much to be desired, however. Flash

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 9

(the runtime environment, as well as the tool) suffers from the same basic problem as
HTML: Many people are trying to use it for creating rich applications, but it was originally
designed for something else (in this case, simple animations).

This is why the introduction of Silverlight is so exciting. A promising alternative to Flash,
Silverlight enables the creation of rich web content and applications using a lightweight
add-on that is friendly to both designers and developers. Yes, the first version of Silverlight
is primitive in areas, but it’s a true development platform based on concepts and APIs
introduced with Windows Presentation Foundation (WPF) in 2006 and in development
for many years prior. And, unlike just about any software that has come out of Microsoft,
Silverlight is a small download! Version 1.0 is less than 1.5MB, so users who don’t have it
can get it pretty quickly when browsing to Silverlight content. (By default, Silverlight also
automatically updates to later versions when they are available.) Silverlight might just be
the silver bullet many designers and developers have been waiting for.

Silverlight 1.0 applications are created with a mixture of XAML (Extensible Application
Markup Language), HTML, and JavaScript, so they are easy to integrate into existing web
content and compatible with popular Asynchronous JavaScript and XML (AJAX) libraries
and techniques. XAML is an XML-based declarative language described in depth in the
next chapter. In typical Silverlight applications, a XAML file contains a hierarchy of visual
elements that must be rendered on the screen. Silverlight parses the XAML content on
initialization, and then renders the content as appropriate.

CHAPTER 1 Getting Started10

D I G G I N G D E E P E R

A Note for Those Afraid of JavaScript

A few readers might be excited at the idea of using JavaScript to create Silverlight content or
applications. If you’re like most developers I know, however, you’re disappointed to be
“forced” to use it in version 1.0. However, programming in JavaScript isn’t the worst thing in
the world. JavaScript is a very powerful dynamic language, and you can even use it in an
object-oriented way if you follow clever patterns that people have devised over the years.
(Note that JavaScript really has nothing to do with Java.)

In addition, now that Asynchronous JavaScript and XML (AJAX) is all the rage, there are a
number of useful tools and libraries to help you be productive with JavaScript, and they keep
getting better. Visual Studio 2008 boasts a number of improvements for JavaScript develop-
ment, especially related to debugging and IntelliSense.

The pain of programming in JavaScript (when used as part of a website) is often not because
of the language itself but rather differences in the HTML Document Object Model (DOM)
provided by various web browsers. Fortunately, writing JavaScript that interacts solely with
Silverlight objects doesn’t have this issue because the Silverlight object model remains the
same regardless of the host browser. Most Silverlight applications still require JavaScript that
interacts with the HTML DOM, but your exposure to the DOM can be much more limited. And
for those cases, ASP. NET AJAX (or other popular AJAX libraries) is a good fit for hiding
browser differences.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 10

Embedding the Silverlight Control Manually 11
1

Continued

If you’re still not convinced, rest assured that the next version of Silverlight (already available
in prerelease form) supports procedural code written in C#, Visual Basic, IronRuby,
IronPython, and other .NET languages. And for those who love JavaScript, the next version of
Silverlight should support compiled (.NET-based) JavaScript, giving performance that is orders
of magnitude faster than the interpreted JavaScript running in browsers today. Some of these
languages will be part of the core Silverlight download, whereas other languages might
require additional on-demand downloads.

FA Q

What are the differences between Silverlight and Adobe Flash?

“Flash” is the name for both a runtime component and a design tool. “Silverlight”
refers to a runtime component only, but there are both design tools (such as Expression
Blend) and development tools (such as Visual Studio) for Silverlight.

For years, Flash has been the only viable option for rich web-based content, and now
Silverlight is positioned to fill the same need. The two technologies have similar features, but
there are naturally pros and cons to each.

The biggest thing Flash (the runtime component) has going for it is ubiquity. A website can
use Flash with confidence that the vast majority of viewers already have the necessary player
installed. Silverlight, on the other hand, is brand new and will take some time to spread—
dependent on the amount of compelling Silverlight content out in the wild. Of course, both
Flash and Silverlight are designed to have a quick and painless installation, so sites don’t
have to inconvenience users too much if they don’t have the necessary software. But even if
Silverlight spreads like wildfire during the first few months, the Flash runtime component can
still reach places that Silverlight can’t (yet), such as mobile devices.

Flash has a variety of visual features that Silverlight lacks, such as bitmap effects (blurring
and glowing) and shape tweening (morphing the shape of an object in an animation). Notable
features of Silverlight that Flash lacks are higher quality video (even HD 720p full-screen with
reasonable hardware) with VC-1 codecs included, seamless interaction with HTML, support
for high-resolution and pressure-sensitive input data from a stylus or touch device, and
content that’s more discoverable to search engines by default thanks to the use of XML
rather than compiled script.

The biggest advantage of Silverlight over Flash is in the design of the platform and its associ-
ated tools. This advantage becomes especially apparent if you’re building an interactive appli-
cation rather than a simple piece of content. Flash (the design tool) has a huge learning
curve for creating an application with even a small amount of logic, and the resulting code is
often quite unnatural (and hard to debug). But most software developers, or even people who
dabble with HTML and a little bit of programming, should find the learning curve for Silverlight
to be pretty small. And if you happen to already be familiar with WPF, learning Silverlight is a
breeze.

?

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 11

CHAPTER 1 Getting Started12

FA Q

What are the differences between Silverlight and WPF?

Whereas Silverlight is designed for creating rich web content or applications that can
be viewed in multiple browsers and multiple operating systems, WPF is designed for creating
rich Windows applications. WPF applications require the .NET Framework 3.0 or later, which is
a much larger download than Silverlight, although Windows Vista and later operating systems
already have it installed by default.

Silverlight 1.0 is essentially a subset of WPF, although Silverlight also has a few unique
pieces related to video, on-demand downloading of any content, and the control that hosts
the content inside a web page. Some WPF features missing from Silverlight 1.0 are common
user interface controls (such as buttons and scrollbars), layout panels, 3D graphics, data
binding, rich document support, performance optimizations from hardware accelerated graph-
ics, and more. In addition, Silverlight 1.0 applications don’t have the benefit of the depth and
breadth of the .NET Framework APIs, unless you use them from server-side ASP.NET code.
The next version of Silverlight will close some of the gap between Silverlight and WPF, but it
will undoubtedly always remain a subset of what WPF and the full .NET Framework provide.

Although Silverlight 1.0 coding is done in JavaScript, which is a big departure from the .NET
languages used with WPF (and future versions of Silverlight), the two technologies are highly
compatible. In some cases, Silverlight code related to user interface—especially XAML
content—can be reused in WPF applications with little work, and vice versa. The key to
choosing between Silverlight and WPF is whether you want to optimize for reach or for rich
functionality. This is really no different than the classic choice of going with a web application
or a Windows (or other OS) application. Besides aforementioned features such as 3D graph-
ics, WPF applications are a natural choice if you require offline support or extensive local
storage.

WPF doesn’t only support Windows applications, but also applications that run inside the
browser called XAML Browser Applications (XBAPs). XBAPs can arguably be considered web
applications because their content renders seamlessly inside the browser similar to
Silverlight content. However, XBAPs require the .NET Framework 3.0 or later, so they only run
on Windows (and only then if the .NET Framework is installed) and only work inside Internet
Explorer and Firefox. (Furthermore, Firefox support requires the .NET Framework 3.5 or later.)
XBAPs support a much larger subset of WPF functionality than Silverlight 1.0, so they can be
an appropriate choice for creating very rich applications that are web-like in their deployment.
For example, the British Library has an application called “Turning the Pages”
(at http://ttpdownload.bl.uk/browserapp.xbap) that takes advantage of WPF 3D graphics
inside the browser.

?

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 12

Embedding the Silverlight Control Manually 13
1

FA Q

What is the relationship between Silverlight 1.0 and the prerelease version
of Silverlight?

It’s a bit unusual that the next version of Silverlight (currently labeled 1.1) has been available
in a prerelease form before Silverlight 1.0 was even finished, but as the version number
suggests, it simply is the next version of Silverlight. This next version is a superset of
Silverlight 1.0 and is still a subset of WPF and the .NET Framework (but with some
unique features of its own). The most notable additions planned for the next version of
Silverlight are

. .NET support, which not only means additional language support, but also a subset of
the .NET Framework’s base class libraries

. Several features that already exist in WPF: user interface controls, layout, data binding,
and more

. Potential support for additional browsers and additional operating systems (such as
Windows 2000)

Despite all this, everything you learn about Silverlight 1.0 is directly applicable to future
versions of Silverlight.

?

FA Q

What web server is required for serving Silverlight content?

Any web server will do, although be sure to set up the MIME type for .xaml files.Using
Windows Server can give additional benefits when it comes to streaming media, such as the
Faststream technology in Windows Media Services. Silverlight Streaming by Windows Live
(http://streaming.live.com) can also be an attractive option for hosting Silverlight content on
someone else’s web server. It supports scalable streaming free (if you don’t mind advertise-
ments being served with your content) or for a small fee.

?

FA Q

What are the differences between Silverlight for Windows, Silverlight for
Mac OS X, and Silverlight for Linux?

Silverlight supports the same feature set, because it is designed to be completely compatible
between all the operating systems and browsers it supports. One advantage Silverlight has on
Windows is the ability to get high-resolution and pressure-sensitive input data from a stylus or
touch device, although this extra information is given in a way that avoids the need to write
Windows-specific code. (See Chapter 7, “Responding to Input Events,” for more details.)
Silverlight also has different performance characteristics on different browsers and operating
systems. For example, windowless controls (described later in the chapter) and elements with
transparency are especially slow in Safari on Mac OS X. And of course, Silverlight has bugs
that only apply to a specific browser or operating system. Some of these are pointed out in
this book.

?

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 13

Embedding the Silverlight Control Manually
Silverlight, just like Adobe Flash, is a web browser add-on. It’s a pair of components—one
for Internet Explorer (an ActiveX control), and one for all other supported browsers (a
Netscape plug-in)—but this is an invisible implementation detail to make things “just
work” regardless of the host browser. The standard way for web pages to take advantage of
an add-on—whether Silverlight, Flash, or another—is with the OBJECT HTML element.

Listing 1.1 contains a simple web page for a fictional “Great Estates” housing develop-
ment that embeds a Silverlight logo at the top using the OBJECT element.

LISTING 1.1 A Web Page with Embedded Silverlight Content

<html>

<head>

<title>Great Estates</title>

</head>

<body style=“background:blue“>

<!— A Silverlight-based logo: —>

<object type=“application/x-silverlight“ id=“silverlightControl“

width=“390“ height=“100“>

<param name=“background“ value=“Yellow“/>

<param name=“source“ value=“Chapter1.xaml“/>

</object>

<p style=“font-family:Tahoma; color:white“>

An idyllic new community located high on a hill and offering captivating

waterfront views. Tailored to meet both the needs of upsizing and

downsizing buyers, Great Estates offers custom quality architecture and

design at an affordable price point.

</p>

</body>

</html>

The id, width, and height attributes on the OBJECT element work the same way as on
elements such as DIV, TABLE, and so on. For example, width and height can be specified
in absolute pixel values or as a percentage. The type attribute refers to the MIME type of
the add-on content. The Silverlight add-on is invoked by the host browser for any
content of type application/x-silverlight.

The Silverlight add-on supports several custom parameters, covered later in the
“Understanding Your Hosting Options” section. In this example, the background parame-
ter is set to fill the 390x100 region with the color yellow, and the source parameter is
pointing to a separate XAML file containing the content to be rendered on top of the
yellow background. This XAML file, Chapter1.xaml, is shown in Listing 1.2.

CHAPTER 1 Getting Started14

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 14

LISTING 1.2 Chapter1.xaml—A XAML File Containing a Logo

<Canvas xmlns=“http://schemas.microsoft.com/client/2007“>

<MediaElement Name=“video“ Source=“Lake.wmv“ Opacity=“0“ IsMuted=“true“/>

<!-- A circle containing a live video: -->

<Ellipse Width=“100“ Height=“100“>

<Ellipse.Fill>

<VideoBrush SourceName=“video“/>

</Ellipse.Fill>

</Ellipse>

<!-- Two pieces of text: -->

<TextBlock FontFamily=“Georgia“ Foreground=“Blue“ FontStyle=“Italic“

FontSize=“40“ Canvas.Left=“125“ Canvas.Top=“20“ Text=“Great Estates“/>

<TextBlock Foreground=“Blue“ Canvas.Left=“110“ Canvas.Top=“70“

Text=“Luxurious Living at an Affordable Price“/>

<!-- Curves and a line: -->

<Path Stroke=“Red“ StrokeThickness=“4“>

<Path.Data>

<PathGeometry>

<PathFigure StartPoint=“0,65“>

<ArcSegment SweepDirection=“Clockwise“ Size=“2,2“ Point=“25,65“/>

<ArcSegment SweepDirection=“Clockwise“ Size=“2,2“ Point=“50,65“/>

<ArcSegment SweepDirection=“Clockwise“ Size=“2,2“ Point=“75,65“/>

<ArcSegment SweepDirection=“Clockwise“ Size=“2,2“ Point=“100,65“/>

<LineSegment Point=“390,65“/>

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

</Canvas>

This XAML file defines a logo contain-
ing two lines of text, some vector
artwork, and even a live video cropped
by a circle! Don’t worry about the
syntax of the XAML file for now. The
next chapter covers everything you need
to know about XAML syntax, and the
various Silverlight elements (Canvas,
MediaElement, Ellipse, and so on) are
covered throughout the remainder of
the book.

Figure 1.1 displays the web page defined
by Listings 1.1 and 1.2. Most web pages
probably would make the Silverlight

Embedding the Silverlight Control Manually 15
1

FIGURE 1.1 Silverlight content manually
hosted in a web page with the OBJECT element.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 15

content blend in better by giving the
OBJECT element a matching background,
but for this example, the yellow back-
ground helps to highlight the area of
the page rendered by Silverlight.

Of course, the Great Estates web page
only resembles what’s shown in Figure
1.1 if the viewer has the Silverlight
add-on installed. Without the add-on,
the page looks similar to Figure 1.2
(depending on which browser you use).

Fortunately, there’s a relatively easy
solution for giving users who don’t have the
add-on a reasonable experience. If you place
content directly inside the OBJECT
element, browsers will render that
content in the case of failure. Therefore,
the OBJECT element in Listing 1.1 could
be updated as follows to downgrade the
logo to a simple image for viewers
without Silverlight:

<object type=“application/x-sil-

verlight“ id=“silverlightControl“

width=“390“ height=“100“>

<param name=“background“

value=“Yellow“/>

<param name=“source“

value=“Chapter1.xaml“/>

<!-- Alternative content: -->

</object>

The logo in logo.png could look identical to the Silverlight logo shown in Figure 1.1,
except that the live video would be a static image instead. If you don’t want to create a
downgraded version of your Silverlight content, you could always notify the user and
help her install the Silverlight add-on:

<object type=“application/x-silverlight“ id=“silverlightControl“

width=“390“ height=“100“>

<param name=“background“ value=“Yellow“/>

<param name=“source“ value=“Chapter1.xaml“/>

<!-- Alternative content: -->

This content requires Silverlight. <a href=

“http://www.microsoft.com/silverlight/downloads.aspx“>Get it here.

</object>

CHAPTER 1 Getting Started16

WA R N I N G

HTML and CSS fonts, colors, and more
are not inherited by Silverlight content!

The fonts, colors, and other visual aspects of
Silverlight content are completely indepen-
dent from any other settings on the page. If
you want to apply different themes to your
Silverlight content, you’ll need to employ a
custom mechanism to make this happen.

FIGURE 1.2 Listing 1.1 doesn’t look good when
the Silverlight add-on is missing or disabled.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 16

Unfortunately, Apple’s Safari web browser doesn’t currently support the OBJECT element.
Instead, you must use an element called EMBED, which also happens to work in Internet
Explorer and Firefox. Listing 1.3 contains this update to Listing 1.1 in order to work on
Safari as well.

LISTING 1.3 Embedding Silverlight Content Using EMBED Instead of OBJECT

<html>

<head>

<title>Great Estates</title>

</head>

<body style=“background:blue“>

<!-- A Silverlight-based logo: -->

<embed type=”application/x-silverlight” id=“silverlightControl”

width=”390” height=”100” background=”Yellow” source=”Chapter1.xaml”/>

<p style=“font-family:Tahoma; color:white“>

An idyllic new community located high on a hill and offering captivating

waterfront views. Tailored to meet both the needs of upsizing and

downsizing buyers, Great Estates offers custom quality architecture and

design at an affordable price point.

</p>

</body>

</html>

Besides the different element name
(EMBED versus OBJECT), the only other
difference is that the custom parameters
are specified as attributes of the EMBED
element rather than as child elements.
Alternative content (for when the
embedding fails) can be specified with a
separate NOEMBED element. The result
from using EMBED looks the same as
Figure 1.1 (at least the Silverlight
content), as seen in Figure 1.3.

Using EMBED is the simplest way to get
your content rendered in all supported
browsers, despite the fact that OBJECT is preferred for Internet Explorer and Firefox.

Letting Silverlight.js Handle the Dirty Work
Embedding Silverlight content manually with an OBJECT or EMBED element has a number
of issues. There’s the concern about browser differences (although that can be avoided by
always sticking to EMBED). Most importantly, it would be a fair amount of work to prop-
erly handle Silverlight detection. For example, although placing a download link as alter-
native content inside the OBJECT element (or using a NOEMBED element) seems simple

Letting Silverlight.js Handle the Dirty Work 17
1

FIGURE 1.3 Silverlight content manually
hosted in a web page with the EMBED element,
viewed in Apple’s Safari browser on Mac OS X.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 17

enough, it doesn’t behave appropriately if somebody has the wrong version of Silverlight
installed. If a web page contains Silverlight content that uses future features unavailable
in 1.0, viewers with 1.0 installed will not see the alternative content. Instead, the
Silverlight 1.0 add-on will attempt to render the content and will fail.

Microsoft would be making a huge mistake if they asked everyone to do the appropriate
version detection work on their own. The code involved is not straightforward, and
version detection logic—for any software—is notorious for being done incorrectly. (As silly
as it sounds, someone might write logic that behaves properly for version numbers such
as 1.0 and 1.1, but would fail years later when version 4.0 appears.) Sure enough, the
Silverlight Software Development Kit (Silverlight SDK) provides a JavaScript file called
Silverlight.js that defines a simple JavaScript function handling everything from
injecting an appropriate OBJECT or EMBED element into an HTML document to checking if
the right version of Silverlight is installed, and then directing the viewer to the appropri-
ate place to install it if it isn’t. You should always use the functionality in Silverlight.js
(discussed in this section) rather than directly using OBJECT or EMBED unless your content
must appear in an environment where JavaScript is not allowed.

Silverlight.createObject
The simple function exposed by Silverlight.js is Silverlight.createObject. Here is
how createObject could be called in JavaScript to generate an OBJECT/EMBED element as
shown in Listings 1.1 and 1.3:

Silverlight.createObject(

“Chapter1.xaml”, // source XAML

document.getElementById(“placeholder”), // parent HTML element

“silverlightControl”, // id for the control

// properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

// events:

{}

);

The first parameter becomes the source value for the dynamically generated OBJECT or
EMBED element, and the third parameter becomes its id. The second parameter can be an
existing HTML element to contain the new OBJECT or EMBED element. In this example, the
standard document.getElementById function is used to retrieve an element from the page
via its HTML id (placeholder), but you
could also pass document.body if you
want to append the new element
directly to the page’s body.

The fourth and fifth parameters to
createObject are associative arrays of
properties and events, respectively,
supported by the Silverlight add-on. The
properties array is a mix of values that

CHAPTER 1 Getting Started18

T I P

If you pass null for the parent HTML
element, createObject returns a string
containing the OBJECT or EMBED element that
would have otherwise been added to the
parent. This gives you some flexibility for
morphing the element or otherwise customiz-
ing how it is added to your page.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 18

either alter the logic inside Silverlight.js (such as version), are applied directly to the
OBJECT or EMBED element (such as width and height), or are applied as PARAM element chil-
dren when the OBJECT element is used (such as background). The various properties (and
events) are covered in the upcoming “Understanding Your Hosting Options” section. The
only new property shown here is version, which should simply be set to the version of
Silverlight you’re targeting (1.0).

Letting Silverlight.js Handle the Dirty Work 19
1

T I P

The createObject function has sixth and seventh (optional) parameters that can both be
used to attach custom data to the Silverlight control. For example, if you set the sixth para-
meter (initParams) to the string "custom", the dynamically generated OBJECT element would
have the following additional child:

<param name=“initParams“ value=“custom“/>

With this in place, you could write JavaScript that retrieves this value with standard DOM func-
tions for traversing the tree of HTML elements or with a simple Silverlight-specific property
called InitParams explained toward the end of this chapter. If you set the seventh parameter
(context) to any object, that object will be passed as a parameter to the control’s onLoad event
handler (covered later in this chapter). This context functionality is specific to Silverlight.js
and, unlike initParams, cannot be accomplished with a PARAM element in HTML.

The capabilities provided by these two mechanisms are simply additional ways to communi-
cate information between JavaScript files that might be developed as separate components.

Silverlight.createObjectEx
Silverlight.js defines a second function for embedding Silverlight content called
Silverlight.createObjectEx. (The Ex suffix is an old Win32 convention that has myste-
riously made its way into this file. It typically denotes a newer or “extra” version of a
function.) The only difference between createObject and createObjectEx is that the
latter accepts a single associative array parameter with all the same information. For
example, here is the previous call to createObject translated into a call to
createObjectEx:

Silverlight.createObjectEx(

// Just one parameter, an array with 5 elements:

{

source: “Chapter1.xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

events: {}

}

);

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 19

The nice thing about createObjectEx is that calls to it are self-descriptive. You can clearly
see what piece of data is the source, parentElement, and so on without the need for
comments. For this reason, examples in this book use createObjectEx rather than
createObject. The syntax for calling createObjectEx might look unusual, but it’s basi-
cally JSON (JavaScript Object Notation), a popular data interchange format based on
simple JavaScript constructs.

CHAPTER 1 Getting Started20

D I G G I N G D E E P E R

The Implementation of createObjectEx

createObjectEx is a very simple wrapper over createObject, as you can see by looking at
its source code inside Silverlight.js. It is effectively implemented as follows:

Silverlight.createObjectEx = function(params)

{

return Silverlight.createObject(params.source, params.parentElement, params.id,

params.properties, params.events, params.initParams, params.context);

}

In JavaScript, syntax such as a.b is equivalent to a[“b”], which is why params.source can
be used to access the source element of the params array, and so on.

Putting It All Together
The createObject or createObjectEx
function can be called from any
JavaScript file or inline SCRIPT element,
but Microsoft has published the follow-
ing recommended approach for using
these functions:

1. Create a separate script file called
CreateSilverlight.js (by conven-
tion).

2. Define a parameterless function
(called createSilverlight by convention)
inside CreateSilverlight.js that makes the call to createObject or
createObjectEx.

3. Reference both Silverlight.js and CreateSilverlight.js from SCRIPT elements
in your HTML document (usually inside the document’s HEAD).

4. Place an HTML element that you want to contain the Silverlight content, such as a DIV,
inside the document and choose an id (used by your createSilverlight function).

5. Call the parameterless function inside inline JavaScript in the HTML document.

WA R N I N G

When calling createObject or
createObjectEx, some properties and
events can’t be omitted!

If you omit the version property, you’ll get a
script error; and if you omit either the width
or height, the resultant element won’t be
seen. As for events, you must at least
specify an empty associative array ({});
otherwise, you’ll get a script error.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 20

Listings 1.4 and 1.5 follow this approach to get the same result pictured in Figures 1.1
and 1.3.

LISTING 1.4 Embedding Silverlight Content Using the Recommended Silverlight.js Approach

<html>

<head>

<title>Great Estates</title>

<script type=”text/javascript” src=”Silverlight.js”></script>

<script type=”text/javascript” src=”CreateSilverlight.js”></script>

</head>

<body style=“background:blue“>

<!-- A Silverlight-based logo: -->

<div id=”placeholder”>

<script type=”text/javascript”>createSilverlight();</script>

</div>

<p style=“font-family:Tahoma; color:white“>

An idyllic new community located high on a hill and offering captivating

waterfront views. Tailored to meet both the needs of upsizing and

downsizing buyers, Great Estates offers custom quality architecture and

design at an affordable price point.

</p>

</body>

</html>

LISTING 1.5 CreateSilverlight.js—The Recommended Script File with the Parameterless
createSilverlight Function

function createSilverlight()

{

Silverlight.createObjectEx(

{

source: “Chapter1.xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

events: {}

}

);

}

Letting Silverlight.js Handle the Dirty Work 21
1

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 21

CHAPTER 1 Getting Started22

D I G G I N G D E E P E R

Avoiding “Click to activate and use this control” in Internet Explorer

Depending on how ActiveX controls are used, current versions of Internet Explorer require
viewers of a web page to “activate” it by clicking it (or pressing Enter or the spacebar when it
has focus). Once activated, the control can accept keyboard and mouse input. Hovering over
such controls shows a border and tooltip, as displayed in Figure 1.4.

This behavior is certainly annoying, but it is
especially annoying for content that is
supposed to blend seamlessly with HTML.
For this example, why would a viewer of
this page care about activating a logo?
This anti-feature exists because of a
recently settled patent case (Eolas v.
Microsoft) that had required Microsoft to
change Internet Explorer’s handling of
ActiveX controls.

Fortunately, there are techniques for
avoiding the activation behavior, as
covered in various articles (such as
http://msdn2.microsoft.com/en-
us/library/ms537508.aspx). Even better,
by following the recommended approach
of using Silverlight.js and
CreateSilverlight.js, you don’t need
to do anything further. This is why viewing
the pages from Listings 1.1 and 1.3 gives the “Click to activate and use this control” prompt,
but the page from Listing 1.4 (and the remaining examples in this book) does not.

FIGURE 1.4 The annoying “Click to activate
and use this control” behavior in Internet
Explorer.

D I G G I N G D E E P E R

Silverlight Streaming by Windows Live

Silverlight Streaming by Windows Live is a web service that provides highly scalable hosting
and streaming of Silverlight content free (with advertising) or for a small fee. This service has
its own procedure to follow for packaging and uploading content, but the consumption of the
content is very similar to the normal Silverlight.js approach. Instead of referencing your
own copy of Silverlight.js, you can reference a modified Silverlight.js provided by
Silverlight Streaming. Then you can call Silverlight.createHostedObjectEx—a special
function defined by this service—which embeds an IFRAME into your HTML document rather
than an OBJECT or EMBED element directly. The source given to createHostedObjectEx
must be a special string containing pieces of information that you must previously register
with the Silverlight Streaming service. Alternatively, you can leverage Silverlight Streaming
without JavaScript by setting the source of an IFRAME to a special URL specific to your
hosted application. For more details, go to http://streaming.live.com.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 22

Understanding Your Hosting Options
Silverlight exposes a number of properties and events that customize the appearance of
the Silverlight content and the way it interacts with the HTML document it lives inside.
In addition, the source parameter exposed by the Silverlight add-on supports more func-
tionality than previously described. This section examines the extra functionality of
source, and then looks at all the properties and events that the add-on directly exposes.

source
Previous listings have demonstrated the most common usage of source setting it to the
name (and path, if applicable) of a XAML file on the web server. However, you can alter-
natively place your XAML inline in the HTML document. There are two steps for doing
this:

1. Place your XAML content within a SCRIPT element with type text/xaml somewhere
in the document before the HTML element that will contain the Silverlight control,
and give it a unique id.

2. Use the SCRIPT element’s id preceded by a # as the source value given to the
Silverlight add-on. The # prefix is what distinguishes an id from a filename.

Listings 1.6 and 1.7 are updates to Listings 1.4 and 1.5 that remove the dependency on
the separate Chapter1.xaml file.

LISTING 1.6 Placing Inline XAML Inside HTML

<html>

<head>

<title>Great Estates</title>

<script type=“text/javascript“ src=“Silverlight.js“></script>

<script type=“text/javascript“ src=“CreateSilverlight.js“></script>

</head>

<body style=“background:blue“>

<!-- A Silverlight-based logo: -->

<script id=”xaml” type=”text/xaml”>

<Canvas xmlns=”http://schemas.microsoft.com/client/2007”>

<MediaElement Name=”video” Source=”Lake.wmv” Opacity=”0” IsMuted=”true”/>

<!-- A circle containing a live video: -->

<Ellipse Width=”100” Height=”100”>

<Ellipse.Fill>

<VideoBrush SourceName=”video”/>

</Ellipse.Fill>

</Ellipse>

<!-- Two pieces of text: -->

<TextBlock FontFamily=”Georgia” Foreground=”Blue” FontStyle=”Italic”

FontSize=”40” Canvas.Left=”125” Canvas.Top=”20” Text=”Great Estates”/>

Understanding Your Hosting Options 23
1

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 23

LISTING 1.6 Continued

<TextBlock Foreground=”Blue” Canvas.Left=”110” Canvas.Top=”70”

Text=”Luxurious Living at an Affordable Price”/>

<!-- Curves and a line: -->

<Path Stroke=”Red” StrokeThickness=”4”>

<Path.Data>

<PathGeometry>

<PathFigure StartPoint=”0,65”>

<ArcSegment SweepDirection=”Clockwise” Size=”2,2” Point=”25,65”/>

<ArcSegment SweepDirection=”Clockwise” Size=”2,2” Point=”50,65”/>

<ArcSegment SweepDirection=”Clockwise” Size=”2,2” Point=”75,65”/>

<ArcSegment SweepDirection=”Clockwise” Size=”2,2” Point=”100,65”/>

<LineSegment Point=”390,65”/>

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

</Canvas>

</script>

<div id=“placeholder“>

<script type=“text/javascript“>createSilverlight();</script>

</div>

<p style=“font-family:Tahoma; color:white“>

An idyllic new community located high on a hill and offering captivating

waterfront views. Tailored to meet both the needs of upsizing and

downsizing buyers, Great Estates offers custom quality architecture and

design at an affordable price point.

</p>

</body>

</html>

LISTING 1.7 CreateSilverlight.js—Using Inline XAML as the source

function createSilverlight()

{

Silverlight.createObjectEx(

{

source: “#xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

events: {}

}

);

}

CHAPTER 1 Getting Started24

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 24

This #id syntax is supported anywhere the source might be specified: createObject,
createObjectEx, directly on an EMBED element, or as a PARAM inside an OBJECT element.
This functionality is a handy way to combine what would ordinarily be two web requests
into one. But in addition to efficiency considerations, removing the dependency on a
custom external file enables server-side code (in technologies such as ASP.NET or PHP) to
emit Silverlight content in a completely encapsulated way.

Properties
The width, height, and version proper-
ties exposed by Silverlight are straightfor-
ward, but the background property could
use a little more explanation. In addition,
the Silverlight add-on supports more
properties that haven’t been discussed yet.

background
The background property—which can be
set via createObject, createObjectEx, or
directly on an OBJECT/EMBED element—is
more powerful than a normal HTML
color value. Besides named colors—such
as Red or Yellow—and RGB values—such
as #F1F1F1 or #456, background can be
given an alpha channel for creating trans-
parent or translucent background colors.
The syntax is #AARRGGBB (or #ARGB), so a
translucent red color would be #77FF0000
(or #7F00). background can also be set to
the named value Transparent, which is
the same as any color with an alpha
channel value of zero. If you omit back-
ground altogether, the control will be
given a white background.

isWindowless
By default, an instance of the Silverlight
control is known as windowed, but by
setting isWindowless to true (which can
be done via createObject,
createObjectEx, or directly on an
OBJECT/EMBED element), you can change
it to be a windowless control. The
distinction of windowed versus window-
less isn’t specific to Silverlight, but rather
refers to a low-level implementation detail
on Windows (whether the control has its own window handle, or HWND).

Understanding Your Hosting Options 25
1

WA R N I N G

Inline XAML doesn’t work in Firefox
unless the DOCTYPE element is
removed!

Putting a DOCTYPE (document type declara-
tion) in your HTML page that specifies which
version of HTML or XHTML you’re using is a
best practice. However, current versions of
Firefox have a bug that prevents inline XAML
from working on a page with a DOCTYPE.
Therefore, if you care about your content
rendering on Firefox, you must choose to use
only one or the other.

WA R N I N G

The XAML file used as the source
must be served from the same domain
as the web page!

You cannot set the Silverlight control’s source
to a different domain (or protocol) than the
one hosting the HTML document. This limita-
tion is intentional, as a security measure.
Although this restriction is unnecessarily strict
(in this author’s opinion), it is at least consis-
tent with the policy that browsers enforce with
their XmlHttpRequest object, called the same
origin policy. (People have come to believe
that XML from a different domain is inherently
more dangerous than JavaScript from a differ-
ent domain, because all browsers block the
former but allow the latter! I wouldn’t be
surprised to see browsers change their policy
in the next few years.)

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 25

The important thing to understand is
the two different behaviors of a window-
less control:

. A windowless control respects
HTML z-indexing, so you can
overlay and overlap HTML content
on top of Silverlight and vice
versa. A windowed control, on the
other hand, is always rendered on
top.

. A windowless control supports
transparency, so it can be given a
transparent or translucent back-
ground,
and content inside it can be trans-
parent or translucent.

Figure 1.5 shows a potential way that
the Great Estates website might take
advantage of windowless Silverlight
content—placing an HTML SELECT
element on top of the Silverlight logo.

To create the result in Figure 1.5, Listing
1.8 adds a SELECT element to the page
from Listing 1.4 and uses CSS to give it an
absolute position and a z-index to ensure that
it is placed on top of the Silverlight content.

CHAPTER 1 Getting Started26

T I P

In addition to using literal strings, you can set background to the color of any existing HTML
element. For example, the following call gives the Silverlight control a background color that
matches the host document, if it has one set via the style attribute:

Silverlight.createObjectEx

{

...

properties:

{ ... , background: document.body.style.backgroundColor },

...

);

This is much preferred to using a background color of Transparent, because it works regard-
less of other Silverlight property settings and it can give dramatically better performance.

WA R N I N G

Transparent or translucent background
colors only work as expected if
isWindowless is set to true!

Without setting this to true, a background
set to Transparent will appear black, and
translucent colors will be blended with black
rather than the HTML content behind the
Silverlight control.

WA R N I N G

Using a windowless control or a trans-
parent/translucent background can
severely degrade performance!

The performance problems with windowless
controls and colors with an alpha channel
are especially apparent in Safari on Mac OS
X. Therefore, unless the behavior enabled by
windowless controls and transparent/translu-
cent content is absolutely necessary, you
should avoid using these features.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 26

LISTING 1.8 Placing an HTML SELECT Element in Front of the Silverlight Control

<html>

<head>

<title>Great Estates</title>

<script type=“text/javascript“ src=“Silverlight.js“></script>

<script type=“text/javascript“ src=“CreateSilverlight.js“></script>

</head>

<body style=“background:blue“>

<!-- A Silverlight-based logo: -->

<div id=“placeholder“>

<script type=“text/javascript“>createSilverlight();</script>

</div>

<select style=”position:absolute; left:289px; top:18px; z-index:1”>

<option>California</option>

<option>Pennsylvania</option>

<option>Washington</option>

</select>

<p style=“font-family:Tahoma; color:white“>

An idyllic new community located high on a hill and offering captivating

Understanding Your Hosting Options 27
1

T I P

Despite the performance implications, many rich Internet applications created with Silverlight
1.0 need to set isWindowless to true. The ability to place HTML-based controls (whether
simple controls similar to INPUT or BUTTON or richer controls such as those found in ASP.NET
AJAX) on top of Silverlight content is crucial, due to the lack of such controls natively existing
in Silverlight. With a windowless control, you can even overlay Flash on top of Silverlight
content! Microsoft Popfly is an example of a rich Internet application that does all these
things. If you can confine your Silverlight content and HTML content to regions that don’t
overlap, however, then you can get away with a windowed control.

FIGURE 1.5 A windowless Silverlight control allows HTML to appear on top of it.

HTML on top of Silverlight

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 27

LISTING 1.8 Continued

waterfront views. Tailored to meet both the needs of upsizing and

downsizing buyers, Great Estates offers custom quality architecture and

design at an affordable price point.

</p>

</body>

</html>

Listing 1.8 only produces the desired result because the corresponding
CreateSilverlight.js file sets isWindowless to true, as shown in Listing 1.9.

LISTING 1.9 CreateSilverlight.js—Hosting Familiar Silverlight Content in a Windowless
Control

function createSilverlight()

{

Silverlight.createObjectEx(

{

source: “Chapter1.xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow”,

isWindowless: “true” },

events: {}

}

);

}

CHAPTER 1 Getting Started28

WA R N I N G

The Boolean used for isWindowless must be specified as a string!

The following property setting works in a call to createObject or createObjectEx:

{ ... , isWindowless: “true”, ... }

But the following setting does not work as expected:

{ ... , isWindowless: true, ... }

Any non-string is treated as false, and therefore has no effect!

inplaceInstallPrompt
The inplaceInstallPrompt property, which can only be used with createObject or
createObjectEx, controls the look and behavior of the Silverlight installation graphic
that gets displayed when the viewer doesn’t have the appropriate version of Silverlight.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 28

Figure 1.6 shows the appearance of the two options. Setting inplaceInstallPrompt to
false (the default behavior) gives a small graphic that links to the official download page
with more information. Setting it to true gives additional text, but the link now points
directly to the file to download rather than an intermediate page.

Understanding Your Hosting Options 29
1

FIGURE 1.6 The two different install prompts supported by Silverlight.js.

maxFramerate
The maxFramerate parameter, which can be set via createObject, createObjectEx, or
directly on an OBJECT/EMBED element, customizes the maximum frame rate that the
Silverlight control renders content, measured in frames per second. (The actual frame rate
is dependent on the client computer and its current load.) The default value for
maxFramerate is 24. If you decide to customize maxFramerate, you should select the
lowest number possible that gives you the results you need.

The frame rate controls all content inside the Silverlight control—animations and even
video—except for audio. You can see this with the Great Estates logo by setting its
maxFramerate to 1 and changing IsMuted to false instead of true in the XAML file. This
causes the video to progress in an extremely choppy fashion, yet the corresponding audio
plays smoothly.

WA R N I N G

The Boolean used for inplaceInstallPrompt must not be
specified as a string!

Unlike the case for isWindowless, the following property setting works in a call to
createObject or createObjectEx:

{ ... , inplaceInstallPrompt: false, ... }

But the following setting does not work as expected:

{ ... , inplaceInstallPrompt: “false”, ... }

Any string is treated as true!

inplaceInstallPrompt=false

inplaceInstallPrompt=true

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 29

Events
The Silverlight control supports two events that can be set directly on the OBJECT or EMBED
element: onLoad and onError. You can assign either event the name of a JavaScript func-
tion to be called. For example:

<object type=“application/x-silverlight“ id=“silverlightControl“

width=“390“ height=“100“>

<param name=“background“ value=“Yellow“/>

<param name=“source“ value=“Chapter1.xaml“/>

<param name=”onLoad” value=”myFunction”/>

</object>

CHAPTER 1 Getting Started30

WA R N I N G

The number used for maxFramerate must be specified as a string!

Similar to isWindowless, the following property setting works in a call to createObject or
createObjectEx:

{ ... , maxFramerate: “24”, ... }

But the following setting does not work as most people would expect:

{ ... , maxFramerate: 24, ... }

Any non-string is treated as zero frames per second!

D I G G I N G D E E P E R

maxFramerate Versus framerate

You might come across some Silverlight examples that set the framerate property instead
of maxFramerate. Setting framerate is exactly the same as setting maxFramerate, and it
can only be done via createObject or createObjectEx. The logic in Silverlight.js maps
both framerate and maxFramerate to the one true maxFramerate property supported by the
underlying Silverlight control. It does this simply for compatibility with prerelease versions of
Silverlight. For clarity, you should stick to using maxFramerate if you feel the need to
customize the frame rate.

L O O K I N G F O R WA R D

The enableHtmlAccess Property

Silverlight also supports a property called enableHtmlAccess, but it only applies to versions
after 1.0. It controls whether .NET code (such as C#) is capable of accessing the browser’s
DOM via a special layer designed for .NET. The default value of enableHtmlAccess is true,
but it doesn’t apply to JavaScript hosted by the browser because it always has access to the
browser’s DOM.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 30

However, because handling either of these events requires the use of JavaScript, you
might as well take advantage of createObject or createObjectEx rather than attaching
these handlers the “raw” way.

onLoad
The onLoad event is raised as soon as the XAML content has been loaded. Handling this
event is useful for performing custom initialization of Silverlight content, such as initiat-
ing animations or dynamic positioning/sizing of the control based on document dimen-
sions. These specific kinds of activities are covered in later chapters, but Listing 1.10 at
least demonstrates how to designate a function as a handler for the onLoad event.

LISTING 1.10 CreateSilverlight.js—Assigning an onLoad Handler

function createSilverlight()

{

Silverlight.createObjectEx(

{

source: “Chapter1.xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

events: { onLoad: myFunction }

}

);

}

function myFunction(control, context, rootElement)

{

// Perform custom initialization

}

The purpose of Silverlight’s onLoad event is similar to the HTML DOM’s onload event.
However, to avoid timing issues, you should stick to the HTML onload event for manipu-
lating HTML content and Silverlight’s onLoad event for manipulating Silverlight content.

Handlers for the onLoad event are passed three parameters:

. control, which is the instance of the Silverlight control. The next section,
“Interacting with the Silverlight Control Programmatically,” describes some of the
things you can do with this object.

. context, which is simply whatever custom context value was given to
createObject or createObjectEx (if one was given).

. rootElement, which is the instance of the root element in the source XAML
content. The next chapter explains how you can programmatically interact with
Silverlight elements declared in XAML.

Understanding Your Hosting Options 31
1

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 31

onError
The onError event is raised whenever Silverlight throws an exception not already handled
by your JavaScript code. (For an exception thrown from a synchronous function call, this
means that no corresponding try/catch block exists. For an exception thrown from an
asynchronous function call, this means that no event handler is attached for that specific
failure case.) Exceptions can be raised by Silverlight for XAML parsing errors or for any
number of runtime errors.

If you don’t specify a handler for
onError when directly using an OBJECT
or EMBED element, unhandled Silverlight
errors are swallowed. But when you use
createObject or createObjectEx, a
function called default_error_handler
is automatically set as the handler for
onError unless you provide your own.
The default handler calls JavaScript’s
alert function to display a simple dialog,
such as the one shown in Figure 1.7.

To understand how to create your own onError handler, it is instructive to look at the
implementation of default_error_handler inside Silverlight.js. It is effectively imple-
mented as follows:

function default_error_handler(sender, args)

{

var errMsg = “\nSilverlight error message\n”;

// All errors have a numeric code, a type, and a message

errMsg += “ErrorCode: “ + args.errorCode + “\n”;

errMsg += “ErrorType: “ + args.errorType + “\n”;

errMsg += “Message: “ + args.errorMessage + “\n”;

if (args.errorType == “ParserError”)

{

// A parser error gives the location in the XAML content

errMsg += “XamlFile: “ + args.xamlFile + “\n”;

errMsg += “Line: “ + args.lineNumber + “\n”;

errMsg += “Position: “ + args.charPosition + “\n”;

}

CHAPTER 1 Getting Started32

WA R N I N G

The function for onLoad (and onError) must not be specified as a string!

Unlike the strings passed as most property values, the elements in the events associative
array must contain direct references to the functions you’ve defined (function pointers), as in
Listing 1.10. The following would cause a script error:

{ onLoad: “myFunction”, ... }

FIGURE 1.7 When good content goes bad.

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 32

else if (args.errorType == “RuntimeError”)

{

if (args.lineNumber != 0)

{

// Display the line number and character, if the information exists

errMsg += “Line: “ + args.lineNumber + “\n”;

errMsg += “Position: “ + args.charPosition + “\n”;

}

// The name of the function that failed

errMsg += “MethodName: “ + args.methodName + “\n”;

}

// Display the message in a simple alert box:

alert(errMsg);

}

The sender is the object on which the error occurred, if applicable. For parser errors, such
as the one shown in Figure 1.6, sender is null. The args object provides a number of
pieces of information that depend on
the type of error raised, as seen in the
implementation of
default_error_handler.

Interacting with the
Silverlight Control
Programmatically
The OBJECT or EMBED element represent-
ing the Silverlight control (whether part
of the static HTML document or dynamically injected by Silverlight.js) has an HTML
id, so you can write JavaScript to retrieve the element and get or set properties on it just
like any other HTML element. For example,

// Retrieve the element via a standard HTML DOM function:

var element = document.getElementById(“silverlightControl”);

// Set properties on the element:

element.width = 500;

element.style.zIndex = 2;

Because this element is an instance of the ActiveX object (or Netscape plug-in), it provides
a number of useful properties, functions, and events specific to Silverlight. This element
returned by document.getElementById is the same object passed as the first parameter to
the onLoad event handler. However, you should avoid accessing any Silverlight-specific
members on this object before the control has finished loading (and its onLoad event is
raised).

Interacting with the Silverlight Control Programmatically 33
1

T I P

Despite the presence of an onError handler,
it’s easy to make a mistake in JavaScript
causing an error that doesn’t get sent to this
function. The behavior of such unhandled
JavaScript errors varies from browser to
browser. To debug them in Internet Explorer
with Visual Studio, be sure to uncheck the
Disable script debugging settings in the
Advanced tab of the Internet Options pane!

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 33

The Silverlight control exposes most of its functionality via two properties: Settings and
Content.

The Settings Property
Most relevant to this chapter is the control’s Settings property, which defines a number
of subproperties for getting or setting a number of attributes (many of which could have
alternatively been set via createObject, createObjectEx, or directly on the OBJECT/EMBED
element):

. Background—The same property discussed earlier. However, this makes it easy to
change the background color at any time.

. EnableFramerateCounter—A Boolean property that toggles the display of the
current frame rate in the browser’s status bar. (This is potentially useful for debug-
ging purposes.)

. EnableRedrawRegions—Another Boolean property meant for debugging, this high-
lights regions of the screen that are redrawn on each frame, when set to true.

. EnableHtmlAccess—The same property discussed earlier.

. MaxFrameRate—The same property discussed earlier.

. Windowless—The same as the isWindowless property discussed earlier.

For example, the EnableRedrawRegions and Background properties can be set in a
Silverlight onLoad event handler as follows:

function myFunction(control, context, rootElement)

{

control.Settings.EnableRedrawRegions = true;

control.Settings.Background = “Red”;

}

These properties, and all other members exposed on the control object, are pretty flexible.
For example, they are not case sensitive. Many people prefer using lowercase names
because it matches JavaScript conventions, as in the following code that produces the
same result as the preceding snippet:

function myFunction(control, context, rootElement)

{

control.settings.enableRedrawRegions = true;

control.settings.background = “Red”;

}

In addition, the Boolean properties can be set to a true or false string or to a true or
false Boolean literal, and they work correctly either way.

CHAPTER 1 Getting Started34

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 34

None of the Settings members are extremely compelling, however, as it’s rare you would
need to retrieve or change the data after the control has loaded.

The Content Property
The most commonly used member on the Silverlight control is its Content property,
which represents the XAML content hosted by the control and exposes some interesting
functionality. It has the following subproperties:

. ActualWidth and ActualHeight—Report the dimensions of the Silverlight control.
You can discover the same information by using the HTML DOM, although these
Silverlight properties give different values than the corresponding HTML properties
when the browser zoom level (an Internet Explorer feature) is not 100%. These
Silverlight properties always report the real dimensions, whereas the HTML proper-
ties report the virtual dimensions (in essence, hiding the zoom level).

. Root—The instance of the root element in the current XAML content. This is the
same object passed to onLoad as the rootElement parameter. (This property makes
the rootElement parameter unnecessary because the handler can always use
control.Content.Root instead.)

. FullScreen—Enables the Silverlight content to fill the entire screen. To prevent
hostile Silverlight applications from holding your screen hostage, full-screen mode
must be initiated by a user action (such as a mouse click or key press). Therefore,
this functionality is covered in Chapter 7, “Responding to Input Events.”

. Accessibility—Enables you to customize how the Silverlight control appears to
accessibility software. The Accessibility object contains three settable properties:
Title, Description, and ActionDescription (see Chapter 7 for more information).

Content exposes three functions explained in Chapter 2, “XAML,” and Chapter 8,
“Downloading Content on Demand”:

. CreateFromXaml—Dynamically creates Silverlight content specified in XAML in a
JavaScript string.

. CreateFromXamlDownloader—Dynamically creates Silverlight content specified in a
XAML file downloaded on demand.

. FindName—Finds the instance of a Silverlight object defined in XAML based on an
assigned name.

Content even exposes two unique events that cannot be consumed any other way. For
example, you cannot specify either of these in the events array passed to createObject
and createObjectEx. These two events are

. OnResize—Raised whenever the value of Content‘s ActualWidth or ActualHeight
property changes

. OnFullScreenChange—Raised whenever the value of Content‘s FullScreen property
changes

Interacting with the Silverlight Control Programmatically 35
1

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 35

A handler can be attached to either event by assigning a function reference. Listing 1.11
demonstrates this for the OnResize event.

LISTING 1.11 CreateSilverlight.js—Assigning an OnResize Handler

function createSilverlight()

{

Silverlight.createObjectEx(

{

source: “Chapter1.xaml”,

parentElement: document.getElementById(“placeholder”),

id: “silverlightControl”,

properties:

{ width: “390”, height: “100”, version: “1.0”, background: “Yellow” },

events: { onLoad: myFunction }

}

);

}

function myFunction(control, context, rootElement)

{

control.Content.OnResize = function()

{

var htmlElement = document.getElementById(“silverlightControl”);

alert(“Actual Dimensions: “ + control.Content.ActualWidth + “x” +

control.Content.ActualHeight);

alert(“Virtual Dimensions: “ + htmlElement.offsetWidth + “x” +

htmlElement.offsetHeight);

};

}

In this example, OnResize is set to a JavaScript closure (a function defined inside another
function), which displays the control’s dimensions according to Silverlight and according
to the HTML DOM. If you try this with any of the examples in this chapter and change
Internet Explorer’s zoom level to 200%, you’ll see that the HTML DOM still reports
dimensions of 390x100 but Silverlight reports dimensions of 780x200. Although Internet
Explorer doesn’t want web pages to know when they are being zoomed (because they
could do weird things that interfere with proper zooming), leveraging this information
can be critical for Silverlight content because the visual elements inside the control do
not get scaled automatically. Chapter 6, “Positioning and Transforming Elements,”
discusses the resizing of Silverlight content.

Other Members
In addition to the Settings and Content properties, the Silverlight control defines three
more properties:

CHAPTER 1 Getting Started36

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 36

. InitParams—Gives whatever string was set (if any) for the initParams parameter to
createObject or createObjectEx (or directly on the OBJECT/EMBED element).
Although InitParams is always exposed to JavaScript as a single string, a comma-
delimited list will be split into an array of strings passed to .NET code in future
versions of Silverlight.

. IsLoaded—Reports whether the Silverlight content has been loaded.

. Source—Gives the control’s source URL or #id value. This property can also be set
to a new URL or #id value. This causes the control to reload with the new content,
and the onLoad event will be raised again.

The control also directly defines two functions:

. CreateObject—Enables you to create an instance of the downloader object
described in Chapter 8.

. IsVersionSupported—Given an input string containing a version number such as 1.0,
this function tells you whether the installed version of Silverlight is compatible with
that version. Silverlight.js uses this internally to perform its version checking.

The control also defines a single event—OnError—that is the same as the onError event
described earlier. By assigning a function reference to the control’s OnError member, you
can change the default error handler at any time. Note that the control does not have an
OnLoad member. You can only assign a handler for the onLoad event using the approaches
discussed earlier.

Conclusion
As time passes, more software is targeted for the Web, and more software is expected to
deliver high-quality—sometimes cinematic—experiences. However, the effort involved in
creating such user interfaces has been far too difficult in the past.

If you’re a software developer, you might be skeptical about the need for “eye candy”
beyond what HTML provides. But like it or not, having an engaging user experience
matters, whether you are creating a public consumer-facing site, or a simple intranet appli-
cation for your manager. You can blame the unrealistic software on movies and on TV, or
you can blame real-world software that is starting to catch up to Hollywood’s standards!
Indeed, modern software has more visual polish than it used to. You can see it in tradi-
tional operating systems (such as Mac OS X and, more recently, Windows Vista), in soft-
ware for devices such as TiVo or Xbox, and of course all over the Web thanks to Adobe
Flash. Users have increasing expectations for the experience of using software, and compa-
nies are spending a great deal of time and money on user interfaces that differentiate
themselves from the competition. Microsoft understands this, and it’s apparent in its latest
technologies—first on the desktop with WPF, and now on the Web with Silverlight.

Silverlight makes it easier than ever before to create engaging web-based user interfaces,
whether you want to create a simple piece of content or an immersive interactive experience

Conclusion 37
1

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 37

worthy of a role in a summer blockbuster! This chapter focused on the HTML and/or
JavaScript required for getting any Silverlight content inside a web page, as well as the ways
in which the embedding can be customized. The next chapter explores the XAML side of the
story in depth, and then the remainder of the book covers all the different types of content
and interactivity that can be achieved with Silverlight.

CHAPTER 1 Getting Started38

Nathan_Ch01i_Iss.qxd 9/21/07 12:08 AM Page 38

